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ABSTRACT

In this thesis. we have studied the properties of a superconductor in
which there are two competing dynamical interactions. One of the interac-
tions promotes the pairing, while the other is pair breaking. We have studied
the model in the framework of Eliashberg theory for the complete range of
coupling strengths. from weak coupling (BCS) to the extreme strong cou-
pling limit. We find that there are distinctive signatures in the specific heat
results that are not found in a model with no dynamical pair breaking.

The work was motivated by the fact that the parent compounds
of most of the high-T, superconductors are antiferromagnetic insulators. In
the superconducting state, spin fluctuations have been observed, at least in
LaSrCuO and YBaCuO. For an s-wave superconductor, spin fluctuations are
pair breaking. The observed thermodynamic data are consistent with the

model that we have studied.
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Chapter 1

Introduction

1.1 CGENERAL BACKGROUND

Superconductivity was first observed in Hg by K. Onnes' in 1911.
Since the initial discovery, many more materials have been observed to su-
perconduct. Recently, great excitement has been generated by the discovery
of superconductivity in various metallic oxides, with transition temperatures
of the order of 100K 2.

Superconductors exhibit some beautiful behavior. They are named
for the property that below their transition temperature, T., they have no
DC electrical resistance. Their AC electrical resistance is zero for frequencies
below a certain threshold, at which point it becomes finite. This behavior is
shown in Figures 1.1 and 1.2. Figure 1.1 shows the temperature dependence

of the DC resistivity of a high T. material. There is a sudden drop of the
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resistivity to zero, with an onset of about 95 K. Figure 1.2 shows the fre-
quency dependence of the optical conductivity of a typical normal metal and
a superconductor.

The optical results shown were calculated using Drude theory for the normal
state, and the theory of Mattis and Bardeen® for the superconducting state.
Optical conductivity is typically measured using far-infrared techniques.

Superconductors also exhibit some unusual magnetic properties, which
were discovered in 1933 by Meissner and Ochsenfeld®. As a superconductor
is cooled through T, it begins to expel magnetic flux from itself. Whether
the flux exclusion is complete or not will depend upon the details of the indi-
vidual material. A type I material will expel the flux completely, and will be
perfectly diamagnetic for applied fields less than the thermodynamic critical
field, H.(T). For applied fields in excess of H.(T), the material reverts to the
normal slate.

A type II superconductor is perfectly diagmagnetic for applied fields
less than H.,(T), the lower critical field. As the applied field is increased be-
yond this value, flux begins to penetrate the sample. When the applied field
reaches H(T), the upper critical field, the material goes into the normal
state. Figure 1.3 show magnetization curves for type I and type II supercon-
ductors. It is important to note that this magnetic behavior is not simply
a consequence of the zero electrical resistance. A material with zero elec-
trical resistance will freeze in whatever flux was present when it makes the
transition to the zero resistance state. It will not expel flux.

Measurement of H.(T), the thermodynamic critical field, gives one

the free energy difference between the normal and superconducting states
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Figure 1.1-Resistance versus temperature for a sample of YBa;Cu30es°. Note
the dramatic drop in resistance, starting at approximately 95 K. The zero

resistance state is fully developed at approximately 91 K.
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Figure 1.2-Real part of the optical conductivity of a superconductor and a
Drude metal. Note the zero optical conductivity for the superconductor up
to twice the gap edge. There is a delta function at the origin which gives the
zero DC resistivity. The superconducting conductivity was calculated using

the results of Mattis é.nd Bardeen®.
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through the relation

2
Fy-Fs=ar= 2@ (L)
8w

where Fy is the free energy of the normal state and Fs is the frce energy of
the superconducting state, per unit volume.

The specific heat of a superconductor exhibits a discontinuity at the
transition temperature. This type of behavior is characteristic of a second
order phase transition. At low temperatures the specific heat vanishes ex-
ponentially, which indicates that there is a gap in the excitation spectrum.
Figure 1.4 shows the specific heat of aluminum as a function of temperature.
The normal state data was obtained by applying a magnetic field of sufficient
strength to drive the sample into the normal state.

There are many other physical properties of superconductors which
are too numerous to discuss in detail. One property which has received a
great deal of attention within the context of the high T, oxide supercon-
ductors is the isotope effect. For most conventional superconductors, the
transition temperature T, ‘T}g,-, afa%, where M is the ionic mass. This is one
of the indications that lattice vibrations are related to the superconductiv-
ity. In the oxide superconductors, the isotope effect is generally small®, and
this is sometimes interpreted as an indication that lattice vibrations are not
responsible for the superconductivity in these materials.

The theoretical explanation of superconductivity was a problem that
challenged physicists for nearly half a century. It was not until 1957 that
a successful microscopic theory of the phencmena was formulated. Various

phenomenological theories were proposed prior to 1957 which met with some

success.
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Figure 1.3-Magnetization versus applied field for type I (upper) and type II
(lower) superconductors. Both types are diamagnetic until the applied field
reaches H.(T) or H.(T). At this point the type I material goes normal, while

the type II material enters a mixed state, eventually going normal at H.(T).
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Figure 1.4-The specific heat of Al*¢ in the normal and superconducting states.
Note the jump at T.. Also note the exponential behaviour at low T, indicative
of an energy gap in the excitation spectrum. The normal state data was

measured by applying a magnetic field to drive the sample normal.
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In 1934. Gorter and Casimir’ proposed a two fluid model which was
reasonably successful in describing the thermodynamic properties of super-
conductors. In 1935, F. and H. London® developed a theory for the electro-
dynamics of superconductors, based upon the two fluid model. This model
was very successful. In 1953, Pippard® generalized the London theory to in-
clude non-local effects. In 1950, Ginzburg and Landau!? were able to extend
the London model by taking into account spatial variations of the superfluid
density. This theory was able to successfully describe the magnetic behavior
of both type I and type Il superconductors.

The development of the microscopic theory started with Fréhlich’s!?
proposal that it is the electron-phonon interaction that is responsible for
superconductivity. It is interesting to note that Frohlich was unaware of
the isotope effect when he made this proposal, although the publication of
that discovery!? preceded the publication of Fréhlich’s work. In 1956, L. N.
Cooper!? considered the problem of a pair of electrons interacting only with
each other in the presence of a filled Fermi sea. The attractive interaction was
assumed to arise from the electron-phonon interaction, and was restricted to
act between states within wp, a characteristic phonon energy, of the Fermi
surface. He found that a bound state existed for the pair of electrons when
both their spin and momentum were equal and opposite. This suggested that
the Fermi sea is unstable to the formation of these pairs, usually referred to
as Cooper pairs.

In 1957, Bardeen, Cooper and Schrieffer (BCS)'* proposed a wave
function for a superconductor which incorporated the ideas of Cooper. Using
this wave function, they were able to successfully describe the features of

the superconducting state. Their theory requires one param:ter, and once
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this is specified, one is able to calculate all the superconducting properties
of the material. However, the theory is not able to describe all materials.
In particular, the BCS theory makes predictions for the ratios of various
quantities which are completely independent of any material parameters.
These ratios are observed to vary from material to material. This is due
to the simplifying approximations made with respect to the nature of the
electron-phonon interaction. The BCS theory treats the effective electron-
electron interaction as a constant for energy transfers less than wp, and
zero for energy transfers greater than wp. In reality, the interaction is not
a constant, and reflects various details of the material, such as the lattice
structure, the electronic structure and the coupling strength between the
electrons and the phonons.

In 1960, Eliashberg!® developed a theory of superconductivity based
upon the BCS theory which takes into account the full energy dependence of
the electron-phonon interaction. Using the Eliashberg formalism, it is possi-
ble to explain the deviations from the BCS theory in most materials!®, with
the possible exceptions of .rganic superconductors, heavy fermion supercon-

ductors, and the high T, oxide superconductors.

1.2 OUTLINE

In metals, there are excitations other than phonons to which the
electrons can couple. Berk and Schrieffer'® pointed out that by considering
the effects of ferromagnetic spin fluctuations, they were able to understand
why some of the transition metals had reduced effective pairing potentials.

The spin fluctuations suppress the superconductivity in these systems.
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Whether an excitation promotes or suppresses superconductivity is
related to the symmetry of the interaction. If the interaction Hamiltonian for
the excitation preserves the symmetry of the superconducting state, then the
excitation enhances the superconductivity. If on the other hand. the pertur-
bation breaks the symmetry of the superconducting state, then the excitation
suppresses the superconductivity. Indeed, the symmetry of the superconduct-
ing state is determined by the symmetry of the interaction which leads to
the superconductivity.

Conventional electron-phonon superconductors are believed to be s-
wave, spin singlet superconductors. The spin fluctuations break this symme-
try by introducing the possibility of spin flip scattering, and hence suppress
the superconductivity in these systems.

In the heavy fermion superconductors, there is considerable evidence
that the superconducting state is not an s-wave state. For example. the low
temperature specific heat of UBe;z does not vanish exponentially as one
would expect for an s-wave superconductor'®. The ultra-sonic attenuation
of this material also exhibits features which are not consistent with s-wave
superconductivity!®.

For a d-wave state, spin fluctuations can lead to pairing. Antiferro-
magnetic spin fluctuations are observed in the heavy fermion materials'®.
Hence, it has been proposed that in the heavy fermion materials. the su-
perconducting state is a d-state that is stabilized by antiferromagnetic spin
fluctuations'®. This suggestion has some rather appealing features. It pro-
duces the large masses that are observed in the heavy fermion superconduc-

tors. In addition, it predicts that the mass enhancement is proportional to the
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magnetic susceptibility, which is observed!!!. Norman'® has performed cal-
culations for several of the heavy fermion superconductors, based upon this
proposal, using the Eliashberg formalism. He has found reasonable agreement
with experiment for the critical temperature and the specific heat data.
D-wave superconductivity has also been considered for the high 7.
superconductors. The resistivity of these materials is linear right down to
the transition temperature. This would indicate that there is a great deal of
low frequency scattering. It was suggested that this low frequency scatter-
ing would be pair-breaking!*®, and that T, would be suppressed. However,
Bergmann and Reiner** have previously shown that for s-wave superconduc-
tors, scattering at any frequency does not lead to pair-breaking. In searching
for a model in which the low frequency scattering is pair-breaking, Millis et al.
19 considered a d-wave state due to antiferromagnetic spin fluctuations. For
such a state, they found that the high frequency modes promoted pairing,
while the low frequency modes were pair-breaking. However, they concluded
that such a model would not produce high critical temperatures. D-wave
solutions have also been considered by Rieck et al. ''. Using an isotropic
clectron-phonon interaction in addition to a non-phonon anisotropic interac-
tion, they find reasonable agreement with the tunnelling density of states.
It is now believed that the superconducting state in the high Tc ma-
terials is an s-wave, singlet state!!?. However, it is questioned whether the
electron-phonon interaction can produce such high critical temperatures. The

BCS theory predicts that

kpT: = 1.13wpe oW (1.2)
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where N(0) is the electronic density of states at the Fermi surface and V
is the effective electron-electron interaction. For materials where the BCS
formalism is appropriate, N(0)V is typically of the order of 0.2, and Debye
frequencies are typically in the range of 10 ~ 40 meV. These values pro-
duce critical temperatures in the range of .1 ~ 10 K. Strong coupling effects,
which are described by the Eliashberg formalism. tend to raise the critical
temperatures, In fact, the Eliashberg theory places no formal limit upon the
value of T.. One can obtain any value one desires by simply increasing the
strength of the electron-phonon interaction. However, if the electron-phonon
interaction becomes too strong, it is expected that a lattice instability will
result!?. The BCS result of equation 1.2 suggests that if one could increase the
characteristic frequency of the interaction, high critical temperatures would
be attainable. This has led to the consideration of alternate mechanisms of
superconductivity, with the pairing mediated by excitons'® for example. The-
ories of pairing by mechanisms of electronic origin suffer from the difficulty
that many of the simplifying approximations that one is able to make for the
electron-phonon case do not appear to be valid®. Spin fluctuations are also
observed in the high 7. materialsi®!!, In such a case, one would expect the
spin fluctuations to be suppressing the superconductivity.

There has been proposed a model of the high 7, materials which is
motivated by the normal state properties?’. An ansatz is made about the
polarizability, from which follows, among other properties, the linear resis-
tivity, the tunneling conductance, and the nuclear relaxation rate. The model
is referred to as a marginal Fermi liquid model, as while the quasi-particle
lifetime remains infinite on the Fermi surface, there is only a logarithmic

singularity in the momentum distribution. The superconducting state may,
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to a first approximation, be described by the Eliashberg theory. There is
coupling via both charge and spin degrees of freedoin. and hence there is
pair-breaking in this model.

There is another school of thought which suggests that thiese ma-
terials are not well described by a Fermi liquid approach®®. This belief is
motivated by the fact that the parent compounds of these materials arve all
antiferromagnetic insulators.

In this work, we have adopted the viewpoint that the Fermi liquid ap-
proach is appropriate, and that the superconducting state may be described
within the context of the Eliashberg formalism. We have studied a system
where there are two competing dynamical mechanisms, one which promotes
the superconductivity, and one which suppresses the superconductivity. We
do not specify what the atiractive interaction is, but assume that it exists.
We will mainly consider the repulsive interaction to be due to spin fluctua-
tions. However, our equations are similar to the d-state considered by Millis
et al. 19, In that case, the superconductivity is due to the antiferromagnetic
spin fluctuations, which are attractive at high frequencies, but repulsive at
low frequencies. We have also done calculations for the marginal Fermi liquid
model, which also exhibits pair-breaking at low frequencies.

In Chapter 2 we give an introduction to the basic ideas underlying the
theory of conventional superconductors and we present the Eliashberg equa-
tions. We also describe some of the techniques that are employed throughout
the rest of the thesis.

In Chapter 3 we introduce and motivate the particular models that we
have studied, and present results for the case where the frequency dependence

of the pairing and depairing interactions is the same. We also discuss the
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marginal Fermi liquid model, and give some results for that model at the
end of Chapter 3. In Chapter 4 we treat the case where the two interactions
have different frequency dependencies, such as one might expect in an s-wave
superconductor in which there are also spin fluctuations.

Chapter 5 deals with the model of Chapter 3 in the limit of the
pairing interaction being extremely large. We have also studied this limit for
models in which there is no pair breaking. As the remainder of the thesis
deals exclusively with models in which there is pair breaking, it was decided
to present these results in Appendices 2 and 3 rather than in the main body
of the thesis.

Chapter 6 contains a summary of our theoretical results. Where pos-
sible we have compared our results to experiment. Appendix 1 contains some

msthematical details relating to Chapter 3.



Chapter 2

Eliashberg Equations

In this chapter we will present the formalismn which is used in the
rest of the thesis - the Eliashberg equations. Unfortunately, they are a rather
complicated set of equations, for which one resorts to numerical solutions for
any realistic case. As such, it seems appropriate to include a discussion of the
basic ideas underlying the theory before presenting the equations themselves.

It is believed that the electron-phonon interaction is responsible for
causing superconductivity in conventional superconductors. By conventional,
we mean not heavy fermion, organic, or high temperature superconductors.
The basic idea is that a net attractive electron-electron interaction, which
leads to the formation of Cooper pairs, can come about due to the electron-
phonon interaction. Of course, the electrons are charged, and hence interact
with one another via the Coulomb interaction. The electron-phonon interac-

tion must be sufficiently strong to overcome the Coulomb repulsion in order

15
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for o material to be a superconductor. How does this net attractive interac-
tion come about?

A simple way of visualizing this effect is to consider an electron trav-
elling through a lattice of positively charged ions. An attractive force exists
between the electrons and the ions, and the lattice tends to be polarized along
the path of the electron. This polarized region will appear to be slightly more
positive than the rest of the lattice, and hence a second electron will be at-
tracted to this region. An essential feature of this interaction is the fact that
it is retarded in time. The electrons travel through the metal at the Fermi
velocity, ve ~ 108cms™!. Lattice vibrational frequencies are typically of the
order of 10~100 meV. If we treat the lattice vibrations as simple harmonic
oscillators, then u(t), the excursion of an ion from its equilibrium position is
given by u(t) = usin(wt), where u, is the maximum displacement. Maximum
displacement, and hence maximum lattice polarization, will occur at a time

t such that wt = §. In this time the electron will have travelled a distance

d = vpt = <2 ~ 10004 (2.1)
2w

The electron which initially polarized the lattice has travelled a significant
distance by the time the lattice is fully polarized. It is this retardation effect
which is essential.

BCS!M proposed a wave function of the form
U= H(uk + vkcl‘tct_k.l)IO) . (2.2)
k

uy and v, are variational parameters, and "LI creates an electron of momen-
tum k, spin 1. In the presence of a net attractive interaction, they were able

to find a solution with lower energy than the free electron ground state. The
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clectrons form Cooper pairs, of the form cLlcf_k.l. Associated with the for-
mation of these pairs is an energy, A(T), referred to as the energy gap. The
BCS solution is an s-wave singlet solution, and the energy gap forms over
the entire Fermi surface. It is this feature which is responsible for, among
other things, the exponential behaviour at low temperature in the specific
heat. It should be noted that the Cooper pairs do not form in real space but
rather in momentum space. As such, the pairs are quite large, and there is a
significant amount of overlap between pairs in real space..

The isotropic Eliashberg equations written on the imaginary axis

are30
2 o Aliwp) .
Z(!L\Jn )A(zwn) =T m;_:m[f\(m - Tl) -u ]m s (2.3&)
Zliwg)wn = wn +7T Y Am—n) om (2.3b)

M= -0 \Y Az(iwm) + w?n ‘

The A(iw,) are the energy gap functions, evaluated at the Matsubara fre-
quencies, iy, = ixT(2n — 1), nel, (h = kg = 1). Z{iw,) is the renormalization
function. u" is the Coulomb pseudo-potential?’, which mimics the effect of
the Coulomb repulsion between the electrons. In order to calculate the en-
ergy gap, it is necessary to analytically continue the gap function to the real
axis where it is given by

RA(w=4,)= 4, (24)

All the details of the electron-phonon interaction enter Eliashberg

theory via

5 [©_ wolF(w) .
Alm —n) = 2/0 ST (o= wﬂ)zdw. (2.5)
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where a®F(w), the electron-phonon spectral density function, is given by

2 Qq L I Iy 2 a It
a” Flw) = [W]QW ;/dakﬁ (GE)/dak 5(ep) | 95 fn I? 6 (w—wj(k—k ))

(2.5a)

[ L
Efr s = "—:.'—-_1,""'61 k—'k' VV l-:, . 2.54
IRRG =\ M (B - k')( gle'(k =) - VVidg) (2:50)

Q, is the unit cell volume, N(0) is the electronic density of states at the
Fermi surface, ¢; are the energies of the electronic states ¥, and € (k) are
the polarization vectors of the phonon modes, with branch index j and energy
w;(F). M is the ionic mass and V is the electron-ion potential.

In deriving the Eliashberg equations, an assumption has been made
that vertex corrections are small. This is known as Migdal's theorem!®,
which asserts that the corrections are of order 2, with wp being the Debye
frequency and ¢ is the Fermi energy. It seems to be valid for the electron-
phonon interaction, but may not be valid for all interactions.

Tt is possible, but formidable, to calculate o F{w) from first principles®.
It is more usual to obtain a®F(w) from inversion of tunnelling data® through
the use of the Eliashberg equations themselves. Using such a procedure,
one is able to predict structure in the tunnelling data, due to multi-phonon
processes, which occurs beyond the range of the data used in the inversion
process. One is also able to calculate other superconducting properties using
a tunnelling derived a? F(w), and the agreement with experiment is generally
quite good.

In figure 2.1 we show two o?F(w) spectra, one for Al, and one for Pb.
Al is a material whose superconducting properties are well described by the

BCS theory. Pb, however, exhibits significant deviations from BCS behavior.
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Figure 2.1-Electron-phonon spectral densities, a?F(w), for Pb (solid) and Al
(dashed). The Pb spectrum was obtained from tunnelling inversion %, The
Al spectrum was calculated®?. The superconducting properties of Al are well

described by the BCS theory. Pb exhibits significant deviations from the BCS
results, but is well described by Eliashberg theory.
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Unfortunately, it is not always obvious what superconducting prop-
erties will result from a given a*F{w). In order to gain some more insight
into the dependence of the superconducting properties upon the frequency
distribution of a®F(w), one can employ functional derivative techniques **.

In general, any superconducting property, Q, is a functional of o? F(w),
denoted Q[a?F(w)). If one wishes to know how Q will change in response to
a change in o®F(w) at some w, one can calculate the functional derivative of

Q with respect to a?F(w), defined as

§Q  _ . Qo)+ e (w = wo)l = Qo*F(w)]

b2 F(wo)  ¢—0 €

(2.6)

In figure 2.2 we show the functional derivative of the critical temperature with
respect to a?F(w) for the weak coupling (BCS) limit of Eliashberg theory %°.
The function goes to zero at both low and high frequencies and is peaked at
F ~ 10. This peak reflects the retarded nature of the electron-phonon inter-
action. Phonons with very low frequencies will be fully polarized long after
the first electron has subsequently scattered. Phonons with high frequencies
will be fully polarized while the first electron is still in the vicinity, and the
Coulomb repulsion will dominate. Those phonons whose frequency allows
the electron to travel far enough to reduce the Coulomb interaction, but
not so far that it has scattered again, are most effective for T.. The deriva-
tive is everywhere positive definite, which means that no phonons reduce T,
regardless of their frequency.

It is found that the functional derivatives of most superconducting

properties have their maxima at some finite frequency. This suggests that
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one would be able to obtain extreme values for that quantity by placing all
of the spectral weight at the optimum frequency.

An o*F(w) spectrum with all of its spectral weight at one frequency corre-
sponds to an Einstein phonon model. By using such spectra, one is able to
compare the range of values produced with experiment in order to determine
if the Eliashberg description is appropriate *.

Since all superconducting properties are functionals of & F(w), it is
tempting to try to identify a functional of a® F{io) which would allow one to
predict the properties of a superconductor without solving the Eliashberg
equations. Many attempts have been made to find such a parameter. Per-
haps the most common electron-phonon parameter is A, the electron mass
enhancement factor, given by

_ o [ F(w) .
A= 2/0 —dw. (2.7)

In 1962, Morel and Anderson®” derived a T. equation from the mi-

croscopic theory of the form
=1
T. = 1.13wpe*=+* (2.8)
where p" is the Coulomb pseudopotential. A perhaps more famous equation
for T., derived by McMillan®s is

1.0 1y
T, = Efser:..—-&—‘%’%a'r, (2.9)

The McMillan equation works well for some materials, but fails for others.
It also implies that there is a maximum 7T, attainable from the Eliashberg

theory which is not true®®. An excellent discussion of T¢ is given by Allen

and Mitrovié®®,
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2

Eliashberg Equations

(140)8T, /602F(w)

Figure 2.2-Functional derivative of the critical temperature with respect to

the electron-phonon spectral density, 7—2=—. The derivative was calculated
& a Fwo}

using the square-well model. The derivative is everywhere positive, and is

peaked for 3 ~ 10.
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A single quantity which seems to characterize a spectrum well is Z=,

where wy, is defined as®™

Wy = e::p[;- -/Om @In(w) dw] {2.10)

In the BCS approximation, in which the Eliashberg equations can be solved
analytically, J= = 0. In this limit, many ratios are predicted to be univer-

sal numbers, independent of any material parameters. For example, BCS

predicts
24,
kBTc

= 3.33 (2.11)

where A, is the zero temperature gap edge. This relationship does not hold
for all materials. It is however possible to expand the Eliashberg equations
in powers of X, in order to calculate the corrections to the BCS values.

Mitrovi€ et al. 3! have calculated such an expression for the gap ratio. Their

result is

24,
LBT

Win

)’l Gz )] (2.12)
with @ = 12 and b = 2. a and b are in fact determined by various moments of
a® F(w), but Mitrovi¢ et al. have determined a and b from fitting to gap ratios
which were obtained from full numerical solutions of the Eliashberg equa-
tions. The values of a and b so obtained are in fairly reasonable agreement
with values which one would obtain for delta function spectral densities.
Their results are shown in Figure 2.3 along with values obtained from full
numerical solutions. One can see that the agreement between the expansion
and the calculated values is quite good. Similar expansions for other su-

perconducting properties have also been performed®?, and the same level of

agreement is also achieved. Therefore, it seems thdt = s a good parameter
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for characterizing spectral densities. In this work, we make extensive use of

the parameter -‘;—r‘- We also use primarily Einstein spectral functions of the

n

form

o’ F(w) = Ab{w — wg), (2.13)

and for such spectral functions wy, = wg.
la order to calculate any thermodynamic properties one needs an
expression for the free energy difference between the normal and supercon-

ducting states. There are two common expressions available in the literature.

One, due to Wada®?, is

Fy-Fs o :.D(iu,,) : 2

———=2T wa| — signwn] + (7T)°X
N(0) n;w \/52(1-,‘,“) + @2(fun)
S { @(iw2n) _ oliwm)

[ A (iwn) + & (iwn) f A2(iwm) + &2 (iwm)

p—Alisn) __Aiwn) A(m_n)_#.]}
V&%) + 23(ion) \f A i) + G2(im)

- signw.,wm] A(m —n)

== m==—00

(2.14)
This form has the extremely useful property that it is stationary with respect
to variations in any A(#ws) and @&(iw,) which are solutions to the Eliashberg
equations. As a result, one can immediately calculate functional derivatives

of thermodynamic properties from this expression by noting that®

SAF  9AF §Mm-—n)
§a’F(w,) OMm—n) 6a’F(wo)

(2.15)

Another expression for the free energy difference, which can be ob-

tained from the Wada expression by substituting (2.3a) and (2.3b) into
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Figure 2.3-Zero temperature gap ratio versus ;7}': The points are from full

numerical solution, and the curve is the analytic form of equation 2.12. The

parameter = is useful for characterizing an o?F(w) spectrum.
In
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(2.14), is™

P = Fo = NORT " |\/3%ium) + 5 (ian)~ | in) 1] [1_ B CACYE }
m=—co Ja2(iwm) + Q:(iwm)

" .
&°(iwn) =wn + vT Z Am = n)signwm
TS =00
(2.16)
Both (2.14) and (2.16) give the same results, and the use of one over the
other is dictated by the type of calculation one wishes to perform.
Once an expression for the free energy difference is obtained, one can

readily determine the specific heat jump. This quantity is usually normalized

to the normal state specific heat at T, Cn(7e) = 7Te.

ég__ Cs~-Cn _ T 8% Fs - Fn)
. L. ~ qT. 8T?

(2.17)

This quantity is then independent of the electronic density of states at the

Fermi surface. For materials with low critical temperatures,
2 5
7= 3T NO(1+24). (2.18)

For materials with higher critical temperatures, it is necessary to modify
this expression to correctly account for the temperature dependence of the

electron phonon interaction. We must replace A with AT"), which is given

by

_ o [P dPF(w) ,, hw
MT) = 2/0 ” G(kBT)dw,

95 '
G(y) = j L

(2.19)

and f is the Fermi function.
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One final set of equations is needed for the work in this thesis. They
are the equations for the upper critical field H.(T). First given by Schoss-

mann and Schachinger®®, they are

Altwn ) Z,(iwy) = =T m;z_m[.\‘(m - n) - ;!']-(1,—_"%(1‘;?—:‘;3;—-)-3 ) (2.20a)
and
ppmp _ 2 = it -1 V@ 9
(@i ) = *ﬁ/n dge™% tan m (2.20b)

where o = LeHo(T)v}. Here e is the electronic charge and vp is the Fermi
velocity. One can avoid the need to specify vp by considering the reduced

upper critical field which is defined as

Ha(T)

Tcl%ﬁh‘:‘

In this expression t = a}r;- is the reduced temperature.

hea(t) = (2.21)



Chapter 3

Spin Fluctuations in
Superconductivity

3.1 INTRODUCTION

To this point we have limited our discussion to the case where there is only
an attractive component to the electron-electron interaction, due to phonens.
There are other interactions in metals to which the electrons couple. We now
consider what effect these other interactions have on the superconducting
state.

From equation 2.2 for the BCS wave function we see that the su-
perconducting state is symmetric under exchange of momentum and spin.
This symmetry is referred to as time-reversal symmetry*®. In the case of
static impurities, Anderson® has shown that if the perturbation does not
break the time-reversal symmetry, the thermodynamic properties of the su-
perconducting state are unaltered. This is nicely illustrated by the effects

of non-magnetic and magnetic impurities. Non-magnetic impurities do not

29
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break time-reversal symmetry, and have little effect on the thermodynamic
properties of a superconductor. Their principal effect is to cause a change in
the density of states at the Fermi surface, and heuce a change in the pairing
strength, N(0)V.

Magnetic impurities do break time-reversal symmetry as they intro-
duce the possibility of spin-flip scattering, This l:ads to a strong suppression
of T. which has been observed experimentally®*. This problem has been suc-
cessfully treated theoretically®®?!, and an excellent summary of such work is
given by Maki™.

If one considers dynamic interactions, a similar picture emerges. Ex-
citations which couple via charge, such as e;ccitons, are attractive, while
excitations which couple via spin, such as spin fluctuations, are repulsive. In
searching for mechanisms to produce higher critical temperatures, various
interactions have been proposed, such as excitons’™'® and plasmons™. The
attractive feature of such mechanisms is that their characteristic frequencies

are high, and from u simple BCS approach
T, & Qe” ¥OW | (3.1)

where  is the characteristic energy of the excitation. The alternate route of
increasing T. by increasing the coupling strength of the interaction is argued
to lead to an instability, either of the lattice in the case of the electron-phonon
interaction!?, or of the electronic system itself*>, Models of superconductivity
of electronic origin have been studied extensively (see for example 95, 96, 97,
98). The main difficulty lies in treating the Coulomb interaction in a suitable

fashion.
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In the electron-phonon case, Migdal’s theorem allows one to neglect
vertex corrections. However, this is only valid when the characteristic energy
of the excitations is much less than the Fermi energy. For excitations of
electronic origin, this approximation does not appear to be valid®,

There are also repulsive interactions and in particular we wish to
consider the effects of spin fluctuations on superconductivity. Spin fluctua-
tions arise in a metal due to the Coulomb repulsion that exists between the
electrons. These effects are particularly pronounced in materials that are well
described by a tight binding approach, in which the electrons form narrow
bands. Hubbard® pointed out that for such materials, the dominant term
due to Coulomb effects would be of the form

Hy=U Z Nio Mg’ (3.2)
i
where n;, is the density operator for an electron of spin ¢ at the ith site of

the lattice, and
U= [ ad e (@) (e2)Vielor = 22)¥(z) V() (3.3)

where V. is a screened Coulomb interaction and the ¥ are the tight-binding

wave functions. H; of equation 3.2 can be rewritten as
Hr=UN+UY nigmiy (3.4)

where we have used n?, = ni,. We can then see from 3.4 that depending
upon the sign of U, there will be a tendency for the electronic system to
favour ferromagnetic (U > 0} or antiferromagnetic (U < 0} order. Prior to
the onset of long range magnetic order, there may be some fluctuations in

the spin density, referred to as spin fluctuations.
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The standard textbook approach to this problem studies the linear
response of the electron gas to an external perturbation!®. The perturbing

Hamiltonian is given as
Hine = — /ﬁ(z,t) . &(z)dz (3.5)

wnere #(z,t) is the external magnetic field, and &(z) is the spin density

operator,

5(3:) = Z é‘(:': - Ic!cctrcn)&-clec!ron (3.6)

clectrons

To first order in H(z, t), one finds

(o:(z, 1)) = {oi(z, ) =0 + Z/dt'jda:’x;d(:: —z',t = t"hHi(z,1) (3.72)
b

where

xij(z — 't = ') = 6t - t'){[os(z, ), a5(z", 1)) (3.75)

is referred to as the susceptibility tensor. The subscripts i and j refer to
Cartesian components. In practice one solves for the transverse susceptibility
X~z -2t =) = i8(t = "o~ (z, 1), 0t (=, )])

(3.7¢)

ot = -;-(a'x + ioy)

and y::. One can calculate x=* in the random phase approximation to find,

after Fourier transforming in space and time,

iy o ITHEW)
+ _ ¥
X @)= T )

o 1 far - fava. (3.8)
F+(""")=}v’z§:w Bt — fpral

- (&4 — &) +10
where f;,; is the Fermi function and &; are the electronic energies. x~(7,w)

diverges when

U+ (g,w) = 1 (3.9)
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which is the signature of the transition to the magnetically ordered phase.
As one approaches this point, the susceptibility will be enhanced.

Berk and Schrieffer!® pointed out that in the transition metals with
enhanced susceptibilities, the BCS pairing interaction V was sharply reduced
compared to those transition metals without enhanced susceptibilities. They
proposed that this was due to the spin fluctuations in these systems. For the
case of ferromagnetic correlations, this is fairly easy to picture. Any electron
will tend to be surrounded by a spin-polarized cloud of electrons, all having
the same spin. Another electron of opposite spin trying to take advantage of
the lattice polarization produced by the first electron will be repelled by the
polarized cloud. This repulsion only occurs for pairing between electrons of
opposite spin, as in the s-wave singlet case.

Berk and Schrieffer were able to show that spin fluctuations did in-
deed suppress T, in s-wave superconductors. They also poin:ed out that liquid
He? has an enhanced susceptibility and that perhaps the superfluidity in this
system was being suppressed by spin fluctuations. Doniach and Englesberg!®
and Brinkman and Englesberg!® analyzed this effect in He?, and the results
agreed well with the experiment. They predicted rather large effective masses
and non-linear behavior in the low temperature specific heat.

Large effective masses and anomalous low temperature specific heats
are observed in the heavy fermion superconductors!®. This behaviour in con-
junction with other unusual behaviour, ultrasonic attenuation for example!®,
led to speculation that the superconducting state in these materials was not
an s-wave state. In such a state, spin fluctuations can be attractive, and it has
been suggested that the superconductivity in the heavy fermion materials is

due to antiferromagnetic spin fluctuations in a d-wave state!%. Norman'®
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Figure 3.1-Phase diagram for La;_;Sr.CuO,. For small x, the systems orders
antiferromagnetically. As x is increased, the long range antiferromagnetic or-
der is lost, but the total moment is preserved, and there are spin fluctuations

in the superconducting regime.
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has calculated some of the superconducting properties of UPt; and UBe3
using this approach in Eliashberg formalism. He found reasonable agreement
with experiment for the transition temperatures and the specific heat data.

Spin fluctuations are also observed in the high temperature super-
conductors. Figure 3.1 is a phase diagram for La,_.Sr-CuQy, a high T, oxide
superconductor®”. Plotted are the relevant temperatures versus x. The tem-
peratures of interest are Ty, the Néel temperature, below which the sample
orders antiferromagnetically, and T, the superconducting transition tem-
perature. While we are showing a phase diagram for a particular material,
the features that we are interested in are similar for other high 7. materi-
als. For small values of x, the system orders antiferromagnetically (AF). As
X increases, the Néel temperature decreases going to zero at x~0.02. As x
reaches 0.05, a superconducting phase is entered. 7. is initially quite small,
rising to 2 maximum for x~0.18 and falling to zero at x~0.32. There are
some experiments indicating that there is co-existence of AF order and su-
perconductivity in both LaSrCu03% and YBaCuO?3%. More importantly, in
both LaSrCu0% and YBaCuO%, AF spin fluctuations have been observed
using neutron scattering techniques. These fluctuations persist in the super-

conducting state, even though there is no long range AF order.

3.2 FORMALISM

For a material in which there are excitations which couple to both

charge and spin, Millis et al. '® have derived the following Eliashberg equa-

tions

m -
Z(F,wm ) AR wp) = #T ] dS, S K-(men,f-7) A, wm)
sF |7l

me=—o0 VAH(P,wn) + wh

(3.10a)
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Z(J,wn) =1+£ 45, Z K*(m—n,k-p) w

wa Jsp 18] VAN B wm) F 2

The integrals are over the Fermi surface and %, is the Fermi velocity. The

(3.108)

kernels are given by
E*(m,p) = a* D(F,wm) £ I X3(,wm) (3.11)

with D(f,wm) and e being the propagator and the coupling for the bosons
which couple to the electron density. They considered spin fluctuations as the
excitation which couples to the spin density. Thus, Yo(f,wm) = ImTrX; ;(F,wm)
and 7 is a phenomenological coupling constant. In the derivation of these
equations, Millis et al. assumed that the Migdal theorem was valid for both
the attractive and repulsive interactions. This may not be valid for all excita-
tions. In the case of excitations of electronic origin, it seems that the Migdal
theorem is not valid®®. However, it may be reasonable to assume that the
Eliashberg equations are a reasonable starting point. They also neglected to
include a term for the static Coulomb repulsion, They were primarily inter-
ested in investigating a d-wave soluticn, which would not be affected by an
isotropic Coulomb term. For the rest of this chapter, we have also neglected
ne.

We can recover the isotropic Eliashberg equations for 2 phonon su-
perconductor by the following procedure. We set I2¥, = 0, and assume that
a®D(P,wm), which would describe the coupling to phonons, is independent
of 5. With these assumptions, the right hand sides of equations 3.10 be-
come independent of k. As a result, Z(K,wn) = Z(wy), and A(K,wn) = A(wy).

Employing a spectral representation

® %ol F(w)dw

ol (3.12)

N(0)o’ D(w,) =
0
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with

N(O) = / ds, (3.12a)
sF |5l
one readily obtains 2.3a and 2.3b with u" = 0.
One obtains the isotropic Eliashberg equations including spin fluc-

tuations from 3.10 by assuming that both a?D(5,wm) and I2.Ys(f,wm) are

independent of 5. Employing a spectral representation for the susceptibility

of the form
N{O) 2 Xa(wp) = / 2 P(w)dw (3.18)
0o Witw;
one then obtains
: : e - Aliwm)
A(tun)Z,(:w,,) ==T m;mf\ (m - n)m (31‘16}
and
. = Wm
w,,Z,(wn) =W, + T m=z_°° A+(m - n)_‘/AzT—UJ—.'i._wé_‘ (3.14b)
with
o0
de oy wlE(w) £ P(w)]dw
ME(m = n) = 2/° S (3.14¢)

We have denoted the spectral density for the attractive portion of the inter-
action by E(w). We are primarily interested in the effects of spin fluctuations
in suppressing superconductivity. As such, we assume that there is an at-
tractive interaction, due to some boson exchange, and we wiil denote the
spectral density of that interaction by E(w). We present calculations for this
model in Chapter 4.

As mentioned previously, Millis et al. were interested in d-wave solu-
tions. We will now discuss their model. They assume that A2(f,wm) may be

written in the separable form

Xa(Fywm) = Xo(F)P(wm) (3.15)
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where A, is the static susceptibility and they employ a spectral representation

for ®{wm)
® 2wA(w)

3.16
w? + w?, ( )

N(0)*®(wm) =
0

That the susceptibility may be written this way was motivated by experi-
ments in the heavy fermion superconductors. Neutron scattering data has
been fit with such a separable form for UPt3!%. Norman'% has also used
such a form in his calculations for this material, and he obtained reasonable
agreement with experiment.

Millis et al. consider a case where D(f,wn) = 0 and they assume the
following for the susceptibility

PXy(p) = Jo — I11(P) (3.17)

with

¥(P) = 2(cospza + cospya + cosp.a) (3.18)

They also assume a separable form for the gap functions

A(Bywm) = Alwm)7(P) (3.19)

They assume that 7(#) is a function with d symmetry. One explicit

form for n(5) that they consider is
7(P) = V6(cospza — cospya) (3.20)

However, it suffices to impose the following conditions upon 7(5)

(3.21)
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Putting these assumptions into equations 3.10, one arrives at the

following equations for a d-wave superconductor

Z(iw)A(wy) = g7T mgm,\(m - n) A‘E\‘L’:”)‘l = (3.22a)
and
Z(iwg) = 1 4 — A(m m 3.22)
(Iw ) + “n m..z—oo VAz(iwm)'*'w?;l ( )
where
J EEn(B)n(k) Xo(5 — F) 3.22)
g .
| B PX(B-F)
and
B wA(w) .
m) = 2 f w2+w2 (3.224)

In arriving at this result, it is necessary to neglect the momentum dependence
in the square root denominators. As a result, we would only expect these
equations to be valid for T = T

Returning to equations 3.13, we note that if the functions E(w) and
P(w) have the same frequency dependence, then 3.13 are of the same form
as 3.22,

In this chapter we consider the case in which the frequency depen-
dence of E(w) and P(w) is the same, but the strength of the interactions are
different. This form has the advantage that one can readily obtain analytical

results for limiting cases. The equations which we will now study are

Alion)Zuliion) = 05T 3" Mm = n)mealiim)

) (3.230)
ME—-00 V Az(wm) + wrzn
— w
wnZy(iwn) =wn + 7T Am — n)———— (3.23b)
e mg_:m VAT ) + wh
_o [P wi(w)
Alm—n)= 2/0 7T (o = wn)zdw (3.23¢)
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In this case, the parameter g is given by

E(w) + Plw) = Alw)
, (3.23d)
E(w) - Plw) = gA(w)

and it is a measure of the relative strengths of the two interactions, with
g = 1 being the purely attractive case, and g = —1 being the purely repulsive

case.

3.3 CRITICAL TEMPERATURE

We start by considering the limit in which 31"; — 0, which 1s referred
to as the weak coupling or BCS limit. In this limit one can make a square-

well approximation for the A(m — n)?®

Mm—n)= { 3(0)91-.[ lwal, lwm| < we; (3.24)

|wnlv |wm| > Wey

where w, is some maximum frequency. In the BCS theory, w, is taken to be

wp, the Debye frequency. Using this model in equation 3.23b one obtains
Z(iwg) = 1 + X (3.25)

Substituting this result in 3.23a and using the approximation for the A(m—n),

one obtains

A(T) = ‘rT 3.26
)= Z L\2(T) + VA(T) + w3, (3:20)
This equation can be solved for T, to give

kpTe = hwel.13e™ 5% (3.27)

This form illustrates the suppression of T, as we increase the coupling to the
spin fluctuations. This can be seen more clearly by considering the functional

derivative of the critical temperature with respect to the spectral density
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function. The calculation is presented in some detail, as it is fairly straight-
forward, and offers some insight into the relationship between the Eliashberg
formalism and the BCS results. We will also obtain equation 3.27, the T,
equation.

The functional derivative is calculated by adding an infinitesimal
piece to A(w) and calculating the change, to first order, in the quantity of
interest. Hence, we set .

A(w) — Alw) + eb(w — w,)

2w (3.29)
Mm=—n)— Mm-=n)+e¢ 2 .
(m=n) = AMm =} e 37

We perform our calculations at T., where all of the A, are zero. Hence,
we need only consider the linearized versions of 3.23a and 3.23b. Putting 3.28

into 3.23b, and using the model of 3.24 for A(m - n), one obtains

Z(iwn) ol = lwnl(L + A) + exT 2 o sign(nn)  (3.29)

me=—co o (wm ﬂ)

From 3.23a, we obtain, to first order in ¢,

Ne Ne  x4s
gA wm) gi Aiwm ) fin
A(:wn) = ‘TT /\ Z T)(Tm mz w?n
Ne _ (3.30)
te grT 2wo Alwwm)
T+X e w2+ (wm —wn)?  |wml

where fn =T L% __ - +(um-u 7 5197(wmwms) and Aliwg) = Z(iwn)A(iwn).

All of the n dependence in the right-hand side of 3.30 is contained in

the infinitesimal piece. Therefore, we write,

Aliwn) = A + €6
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N oy
a=apfh 3t Al

14 me—N Iwml
oA S Alwn)fm 07T 2% A(iom)
b = - m ° m
== Oy m_z_: WE, 1+,\m_Z_:N Z F (Wm — @n ) ||
(3.31)
Suhstituting 3.31 into 3.30 and canceling A, one obtains
v
1 + A_ 29X AL
nT Z —¢(nT) (1+ A)Z Z mz |wm| |um.l (
3.32)
N Nc
(1.'T)2 = 1 1 2,
+eg—r
9 1+ A m'—‘X—:Nc m'=z—:N¢ |wml Iwm’] wg + (wm = ‘;"M‘)z
To obtain the unperturbed critical temperature, we set € = 0. Then
Ne
144 1 1 2e"w,
— =T — = (N, + z)=In

kpT. = 1.13hwce( ‘S‘r’
In 3.33, ¢ is the digamma function, and for large x, ¥(z) = In(z).

We can now use the result of 3.33 in 3.32 to get

T + 6T, 5T (erc) 2wo
In(==—"S) =~ =
n( T ) T. 1+ A m-;N m'z-jN lwm| ]wma| w2 4 (W — Wy )?
Zc 2, TGN (Wmm ) ]
= |f...v,,.,|2 |wm:| w2 4+ (W + W )?
Ne Qw,
+A m;N m';N |2m = 1w+ (wm = wm')?
{ _ stgn(wmwmu)]
|2m’ -1 |2m — 1]
(3.34)
This then yields the functional derivative as
§T, _ 1 ~ - Wy
9A(@) 1+,\"( @ , @=sg
- 2& siyn(wmwm:)
G =
@) m_z_;m m,_z_m |2m - 102 4+ 472(m - m')? |:|2m’ -1 ]2m-1] )

(3.35)
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Figure 3.2-The functional derivative of the critical temperature with respect

to the electron-boson spectral density, 35l;, as given by equation 3.35. For

g#1, there is a negative divergence at low frequencies, For g = 1, the curve

is everywhere positive definite.
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We have relaxed the cutoffs in our sums since they no longer diverge.
This also gives the functional derivative as a material independent function
Gla,¢), times a prefactor &x If we set g = 1, we recover the result for a
superconductor with only attractive interactions®.

In Figure 3.2, we plot G(@,g) for various values of g. For g = 1, the
curve is everywhere positive, as discussed previously. For g#l, the curves
exhibit a zero crossing at some frequency, w:, and diverge negatively as
w—0.

The negative divergence of functional derivatives tells us that the
low frequency modes are pair breaking. In the case of the d-wave model,
it is the same excitations which appear in both the particle-particle channel
and the particle-hole channel, although the coupling is weaker in the particle-
particle channel. Within this context, the same excitations which bring about
the superconductivity are pair breaking at low frequencies. This is distinctly
different from the conventional phonon case, given by g = 1.

We also note that as g gets smaller, w., gets larger. Numerical work®
has shown that for g sufficiently small, In%* « %. This relation restricts the
values of ;7;:- which one can obtain withix this model. As g — 0, In%= — co. If
we wish to obtain a finite T, we must put most of our spectral weight above
wze. This drives ;7;5‘- — 0. For example, for g = 0.15, the largest value of wl::
we could obtain numericaliy was 0.N01. This brings us very close to the BCS

regime.

3.4 THERMODYNAMICS

We now consider the thermodynamics of this system. We will first show that

near T, the free energy difference is independent of g in the BCS limit. Again,
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we will show the calculation in some detail as it 1s illustrative of subsequent
calculations, particularly the strong coupling corrections.

The approach that one takes to calculate the free energy difference,
near T, is to expand the Lliashberg equations and the free energy difference
in powers of %:- "The free energy difference goes to zero at T as (%})". In
order to calculate any thermodynamics at T., it suffices to determine (22) to

lowest order. We therefore expand 3.23 to obtain

T =2 A(zwm) 1 Aiwm) o
Aliwn) —garTm;ooA(m— = )I[ m) o]
L Aim) {3.36)
Whn
&(twn) = wm + ,.Tm-:z_:oo A(m — n)sign(wn {1 - (w(w )) + ]
We now apply the A% model (equation 3.24) to 3.36, giving
1 = A(T) - C(T)AYT) (3.37a)
A = 1 A 1.13w,
AT = 7T _Z_ o 9T Aln( e ) (3.37b)
_ T A = A €(3)
C(T) =95 137 Z lwm|3 s TR RTT (3.37¢)

At T =T, A(T.) = 0, and we obtain our previous result, 3.12.
We now consider the free energy. For this calculation we will use the
Bardeen-Stephen formula, 2.16. We expand to lowest order in (%;-}), treating

A, as a constant, to obtain

AF 1 1 At i 1
N(0) 4+ AP (T)? &= [2m - 1P

_1 (@) A (3.38)
14+ AP (xT)?

16 (1
1
= 5o C(T)AY(T)

We now solve for A? in 3.37, to obtain

dA
AYT) = (T - Tc)% (3.39)
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Putting this result into 3.38 one finds

AF 4
== ‘(1.[.,\)

2 .
Y0 ( -T.) (3.40)

C(3)
which has no explicit g dependence. One can calculate the specific heat jump
in this limit, and obtain —7-—1 43. As we shall see later. our numerical work

verifies the g independence of the BCS limit.

3.5 SPECIFIC HEAT JUMP

We will now consider how strong coupling effects will alter the specific
heat jump. In order to do this, we perform expansions about the BCS limit,

using &= as our expansion parameter. We employ a model for A, and Zs{wm)3?
/ . _ AQ(T), if ‘wnl < """0;
.l(!wn) - { AOO’ if Iwnl > uo.
Zs(wn) = { Zo(T), if |wn| < wo;

1, if jwn] > we.

(3.41)

These expansions are rather long and tedious. A sketch of the calculation will
be given here with details provided in appendix A. Expansion of equations

3.23a and 3.23b vields for Aq(T)

1 = F(T) + AY(T)G(T) + AsJ(T) (3.42)
where
oy 9N 113w gA (rT)? 4.
F(T) = 50 5T ) - 1+A"91+A( (T) - 3b)
AT b
G(T) = ‘1+,\§(7Cr(1§;2 T+ A sC( )9 - )+ ff,)\(”'g) (343)
J(T) = gh 93 ¢(5) ¢(3) & 21 g 93 ((5)

1+ A128(=T)% (:rT)21+,\16( t3 ) 1+ 128 (T)?
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These results reduce to the BCS limits if we set A. &(7T). and & to zero. which

are defined by

1= 2/ dwi&“-’lln(l + ﬁ) (3.44a)
0 w
a(T) =2 ] ” ‘( Din (3.44b)
o]
=2 du"l(;") (3.44c)
0 w

In order to calculate the specific heat jump, it is necessary to obtain
an expression for the free energy difference. We expand equation 2.16 to find

AF  1(1+A)?

N(0)=% (ASK(T) + 2 AGL(T)I (3.45)

where
E(T) = Go(T) - ng)[(r)-a(r) _] (3.46)

and
1) = 4o+ 35Dy - 3 (3.47)

The subscript “o” is employed to indicate that there are no strong coupling

corrections, ie.

S LA C) :
GolT) = ~T T 35T Y (3.48)

The prime is used to denote differentiation with respect to temperature, T.
We have also introduced another moment of the spectral density function

?(T), given by

T)=2 / dw A("’) 1A13;) (3.49)

Putting the solution of 3.42 into 3.45, and using 2.17 and 2.18, we

obtain the following expression for the specific heat jump

— =p=(1-t)q, t== 3.50a
T, =P (1-t)g (3.302)
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. T 2, Win
p=143[14+ ru(-;’:) In{ bch)] (3.500)
g=3.77[1+ ug(i)zln(ﬁ-)] (3.50¢)
tin bo T,

The coefficients a; and b; are functions of g and are given in Appendix A.

They are of the form

a; = o+ Ei
g (3.51)
Tt
hi=e =

If we set g = 1, these expressions reduce to the results which have been
obtained previously by other authors®?. The a;, §;, %, and &, are functions
of the &(T), b, &T) which take on definite values for a given spectral density.
In our numerical work, we have used delta function spectral densities, in
which case these coefficients are readily determined. If we use these specific
values in our expression, we do not get particularly good agreement with
our numerical results. If we try to fit one of the curves, we are not able to
reproduce all of the curves with the same set of parameters. However, we are
able to reproduce the trends that are seen in the numerical results. That is,
that %ﬁ- gets larger than the BCS value of 1.43 as ;%: increases. This occurs
for any value of g. In addition, as g is decreased from 1, for a fixed %, %ﬁ-
increases. We show our numerical results in Figure 3.3a, and the analytic

results in Figure 3.3b. The numerical results were obtained using spectral

density functions of the form
Aw) = Ab(w — wE) (3.52)

The calculations were performed by choosing a T, and an wg, and calculating

A. We only show results for g relatively close to 1. Our reason for doing this
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Figure 3.3a-Numerical results for Sf, the specific heat jump, versus Ze, for
various values of g. Note the strong enhancement of the jump for ¢ < 1. Also

note the independence of g in the BCS limit, g-;- = 0.
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Figure 3.3b-Analytic results for the specific heat jump, ;’%ﬁ-, versus E;— We
note that the trends of the numerical results are reproduced reasonably
well for small E:, but the disagreement becomes more pronounced as g;-

increases.
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as g gets small, our programs converge much less rapidly. However, we have
been able to obtain convergence for g as small as 0.15.

We observe in Figure 3.3a that as ITE — 0, the BCS limit. all of the
curves tend to 1.43, the BCS value. This verifies our calculation that the
thermodynamics are independent of g in this limit.

From the numerical results, we see that as -E-;- increases. the curves
begin to exhibit some g dependence. When g = 1, we obtain the curve for
a superconductor in which there are only attractive interactions. This curve
steadily increases, has a broad maximum for -E;- = 0.2, and then begins to
decrease. The maximum value is = 3.4. Blezius and Carbotte®® have demon-
strated that the maximum value attainable for -_’éﬁ-, where there is no dynamic
pair breaking, is = 3.4 for " = 0. As p” increases, %ﬁ- also increases slightly,
reaching 3.9 for = = 0.3.

As g is decreased from 1, there is a dramatic departure from this
behaviour. There is an enhancement of the specific heat jump which becomes
more pronounced as %}5 increases. For example, with g=0.7, %:-g- = (.26, we
obtain a value of 8.46 for the specific heat jump. We were unable to obtain
convergence with g=0.7 and ;:% = 0.27. This is due to the relation for the

Zero Crossing, w.., of the T, functional derivative, given as

me & L . (3.53)
] g

This condition restricts the range of 3—;- for a fixed g. If wg < ws, then all
of the spectral weight (for an Einstein spectrum) is placed in the frequency
regime that is pair-breaking, and no T, is obtainable.

It is this same effect which controls the maximum value that we are

able to obtain for%%. From figure 3.3a, one might conclude that almost any
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value desired could be obtained by either making g quite small, or Z= large.
This is not the case. For g=0.6, the largest value of ITE for which our programs
converged was 0.18. This yielded a value of 6.12 for _%C-:-, which is less than
the maximum value obtained for g=0.7. A rough search gave a maximum
value of ;Aﬁ- = 9.1 for g=0.75 and -E;; = 0.31.

These results are distinctly different from those obtained by Blezius
and Carbotte, and would be a clear signature of a system in which there are
two competing dynamical mechanisms.

When we compare our analytic form of 3.50 with the numerical re-
sults, we see that for small ;T;:-, the trends are reproduced quite well. As %'g-
gets larger however, we see greater disagreement. In fact, the numerical re-
sults continue to grow, while the analytic form starts to turn over. It would
seem that our expansion is starting to fail in this regime.

In order to gain more insight into the enhancement of the specific
heat jump, we will now consider the functional derivative of ;!"3‘79'- We would
expect the derivative to be large and positive at low frequencies, reflecting
the large enhancements observed for large g—::;

The quantity that we will consider is

1§ -AC
— 3.54

7 BA() 712 (354
We have removed the 2 factor from the derivative, as it diverges negatively at
low frequencies. An explicit formula for the specific heat functional derivative

has been given by Marsiglio et al. 2. In deriving their expression, they have

use the fact that the Wada expression, equation 2.14, is stationary with



3.5

1/76(AC/Te)/50°F(w)

Specific Heat Jump 53

20.0 .I ¥ L 1 1 1 I 1 I 1 T T T l 3 1 ¥ ]
! _
';!

il i
i i
|

't i
] —_—

15.0 f — =10
T g=0.95 -
~: ~---g=0.90 -
; — —g=0.80 .
I -g=0.70 -

10.0 i
H -
L;t\ _
AR\ NP,

R T
TN -
LN NN .

5.0 — .\'\ \\-\...“

b— _\‘ \\',\:“.‘ -

_ S N -
Y. ~ T T

= \"--___‘_:"“ ::_:_‘:_‘-:-_____‘__ - -

0.0 PR SN TS T HN SN N WA T AN T W S SR N N S R
0.0 5.0 10.0 15.0 20.0

Figure 3.4-Functional derivative of the specific heat jump. For g<1, the curves

diverge positively at low frequencies. This is related to the enhancement of

the specific heat observed in figure 3.3a. The onset of the divergence shifts

to larger frequency as g becomes smaller.
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respect to variations in both A(iw,) and @(iw,). We have generalized their
result to include the competing interactions. The resulting expression is43

1652 NOT &
y0A(Ww) v T.dT?

SR & (iwy ) @ (i)
T 2 — e ———
" [(ﬁ ) ,.zt:m m;m[\/&(iwn) + @2(iwy) \[Ai(wm) + @(iwm)
—_ sign(wnum) -+ g._ﬂ_—_—%’ﬂ)_]
v/ A2(iwn) + &2 (iwn) v A% (iwm) + 32 (iwm)
2w, 2 ‘STc
% [wg + (wn — wm)? B -ﬁ(wﬂ — Wm) dA(w)

oo %fA(w!) d&”
<), T 5oy
(3.55)

In order to evaluate this expression, we also need the 7. functional
derivative, which we have already discussed. We have solved 2.3a and 2.3b
numerically, and used the results in 3.55. We show in figure 3.4 the results
for the same set of g values as in figure 3.3a.

The solid curve, corresponding to g = 1, goes to zero at both low
and high frequencies, and displays a maximum at # =~ 4.0. This corresponds
to L= ~ 0.25, which is close to the position of the maximum value of &F
in figure 3.3 for the g = 1 case. We note that the maximum of the specific
heat jump derivative occurs at a lower frequency than the maximum of the
T. derivative. Therefore, it is not possible to maximize these two quantities
simultaneously.

As g is decreased from 1, we see that there is a positive divergence
at low frequencies in the derivative. This implies that low frequéncy modes

strongly enhance the normalized specific heat jump. This is the opposite to

what was found in the 7. functional derivative. For g= 0.95, we note that
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as g~ decreases, there is a local maximum at some finite frequency, a local
minimum, and then the curve diverges once we are sufficiently close to zero
frequency. As g is decreased, the local minimum begins to disappear, and
the local maximum tends to be swamped by the divergence. This would be
consistent with the onset of the divergence shifting to higher frequencies as
g is decreased, as was found for the derivative of the critical temperature.
For larger values of 4, we note that the derivative decreases in mag-
nitude as g decreases. This would seem to be at variance with the fact that
as g decreases, :',—37% increases. However, it is felt that as the jump is increased
as a result of decreasing g, it is tending to its maximum possible value, and it
is becoming difficult to increase it further. An analogous situation occurs in
the functional derivatives of i'—"‘ﬁ- for systems with paramagnetic impurities®.
As the concentration of paramagnetic impurities is increased, ,?—I% decreases.

However, the functional derivative of ,%E- is enhanced.

3.6 SLOPE OF THE SPECIFIC HEAT JUMP

Unfortunately, it is very difficult to determine %ﬁ- experimentally.
One of the reasons for this difficulty is that v, the coeffiziant of the linear
term in the normal state specific heat, is not well known. As such, it would be
desirable to calculate a quantity related to the specific heat that is indepen-
dent of 7. We have calculated the slope of the specific heat at T, normalized
to the jump itself

y T (3.56)

We have multiplied by T. in order to obtain a dimensionless quantity.
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Figure 3.5-Numerical results for normalized slope of the specific heat jump
versus g-;-. For g<1, there is significant enhancement over the g = 1 results.

This quantity is independent of 7, the normal state specific heat parameter.
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We will present only numerical results for this quantity. Although we did
obtain analytic expression for both of the quantities needed for this ratio
in our strong coupling calculations, we feel that the ratio of the two would
be particularly sensitive to ihe fitted parameters. Since we were only able
to obtain qualitative agreement between the analytic expressions and the
numerical results, it would seem that the ratio of the analytic expressions
would be of dubious merit.

In figure 3.5 we show our numerical results for the normalized slope
versus g; for the same set of g values as in the two previous figures. The
solid curve is the g = 1 case. It starts out at the BCS value of 2.64 at Iz = 0.
It increases fairly rapidly to a maximum value ofx 4.5 for g;- =2 0.18, and then
decreases, falling slightly below 3 at g;- = 1.0. The g = 1 case has been studied
by Akis and Carbotte?®, who have also included u* in their calculations. We
have set u* to zero in all of our work. For u* = 0, Akis and Carbotte
obtain a maximum value of 4.6 for the normalized slope. This increases to
approximately 5.0 for 4~ = 0.4. When g#1, we again see significant departure
from the g = 1 behaviour. For -Eg = 0, all the curves converge to the BCS
value, as expected. As %';- increases however, we see an enhancement of the
normalized slope. As g is decreased, the normalized slope is enhanced quite
significantly above the g = 1 values. The largest value that we achieved,
again without an exhaustive search, occurred for g = 0.78 and g-';- = 0.344.
For these parameters, we found Tc%—cc‘:.-" = 9.75, which is more than twice the
maximum observed with g = 1. We point out that it is not possible to increase
this quantity indefinitely, for the same reasons that were outlined in our

discussion of the specific heat jump itself.
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Figure 3.6-Numerical results for the normalized specific heat difference i‘%{%
versus reduced temperature t. For all the curves, g=0.7. As Z& increases, the

slope below T, becomes steeper, and the zero crossing shifts to larger reduced

temperature,
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Associated with the steep slope of the specific heat difference below
T. is the zero crossing of the specific heat difference. We would expect that

the zero crossing might shift to higher temperatures due to the relation for

the change in entropy, AS,
Te
AS = / A—CdT =0 (3.57)

If the jump becomes large, the zero crossing may shift to higher reduced
temperature to satisfy this constraint. We have calculated the specific heat
difference below T, and show our results in figure 3.6. We chose to fix g=0.7,
and we plot curves for various values of Ze. The figure clearly exhibits the
steepening of the slope below T as 15 1ncreased We also observe a shift to
larger reduced temperature of the zero crossing. The maximum value found
in the figure is ¢ = 0.72 for Z& = 0.25. This is larger than the values which are

obtained with g = 1, which are typically ~ 0.65%5,

3.7 ENERGY GAP

We have also considered the ratio of twice the zero temperature gap
edge to the critical temperature, -2,‘%%. In order to do this, we must extend

our calculation to zero temperature. This is accomplished by making the

substitution

aT E Flwn) — ] 7 F(w)dw (3.58)

n=—oo

Numerically, one can never actually crlculate at zero temperature.
In our numerical calculation, we cut off the sums at some large, finite value,

which is determined by increasing the cutoff until the results no longer change
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to the desired level of accuracy. This then sets the cutoff frequency, wc, which

is used to calculate the limits on the sums, N, through

_we 1
Ne=o7+3 (3.59)

As T — 0, N. — oo, and hence we can only calculate at finite T. We are able
to extract the zero temperature results by reducing the temperature until
the result is no longer changing. We have performed numerical calculations
of the gap ratio as well as strong coupling correction caleulations. We show
the numerical results in figure 3.7a. All of the curves start at the BCS value
of 3.53 for & ==0.Forg=1, the curve increases rather smoothly, and reaches
a value of = 5.7 for Eg = 0.25. We note that the curve gives no indication that
it may be starting to turn over. This is in contrast to the results for both
the jump and slope of the specific heat. Both of these quantities displayed a
maximum and then began to decrease as = T increased. The gap ratio does
not exhibit this behaviour. In fact, it can be shown® that the gap ratio
continues to increase as == T increases, and saturates at some finite value as
I—;- — 00. This feature allows one to uniquely deterrmne < given a value for
-1%%’-. This cannot be done with specific heat data.

We have also derived a strong coupling formula for the gap ratio for

this model. The form of the equation is

24A(0)

T = bl et )2111(%,':-:)] (3.60)

The coefficients a; and b, are functions of g and are given in Appendix A.

They are of the form

=]
]
R
+

@ [

(3.61)

-4
nL-i-
'S
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Figure 3.7a-Numerical results for the energy gap ratio, 3,(%%, versus g;—. The
g<1 results are enhanced above the g = 1 results for fixed gg However, the
g<1 results never exceed the maximum value of 13 found in the g = 1 case

when I= — co.
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Figure 3.7b-Analytic results for 3,‘%933- Versus g;- We again find, as in the case
of the specific heat results, that the trends are reproduced well for small -E;-,

but the agreement becomes poor as g-'; increases.
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If we set g = 1, these expressions reduce to the results which have been
obtained previnusly by other authors®. «, 3, 7, and § are functions of a(7T),
b, &(T) which take on definite values for a given spectral density. As for the
specific heat results, our analytic form is not able to capture the quantitative
trends of the numerical data well.

As g decreases from 1, we observe an enhancement of the gap ratio
above the g = 1 values. Our analytic results are displayed in figure 3.70.
We note that they capture this behaviour qualitatively, but the quantitative
agreement is not good.

For the gap ratio, we do not see the spectacular enhancement when
g#1 that was observed in our results for the specific heat. This is related to
the pair breaking at low frequencies. As g is decreased, we are unable to go to
arbitrarily large ng" as discussed previously (see equation 3.53). For g=0.7,
the largest value of -Eg for which we could obtain convergence was 0.26. At
this point, we found -'i%‘-ﬁ} = 7.61. This is still less than the maximum value
of 1353 that is found in the ¢ = 1 case, although this maximum only occurs
in the limit of A going to infinity. Nevertheless, a measurement of the gap
ratio does not provide us with an unambiguous indication that the system
of concern is described by a g#1 theory. However, if we find a 4f that is
larger than the maximum value for the g = 1 case, then it should be possible

to ascertain a g and a = using both the £F and the 3,%93} results.

3.8 ASYMPTOTIC LIMIT

It is also of some interest, albeit perhaps strictly mathematical, to

consider the properties of this model in the limit A — oo. We will only state
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results here, and will leave the details of the derivations to a subsequent
chapter.

For the critical temperature, we find

T, = ‘;E \/_ ."1(%\‘(11)_;)_1 (3.62)
One can see that the dependence of T upon ) is markedly different in the
two cases, g = 1, and g#1. For g = 1, T. = ¥€+/A =1, a result first obtained
by Allen and Dynes®®. For g#1, Tc = 55 319-_‘-!;1-, independent of A. This result
is only valid for g>1. We would expect to find a constraint such as this, as
we are taking the limit of g—;- >> 1. Again, the relation of equation 3.53 is
having its effec.. The linearity of T, with wg has been checked numerically
in this limit, and is shown in figure 3.8. We also note that as g decreases, so
does T., as was also found in the BCS limit. The analytic result also displays
this behaviour.
We have also considered the specific heat jump and its slope in this

limit. For we find

AC 3 b- 1 \(3gl - 98¢ + 24 4 3U) + 24
3T T 290 .\ 0*i-3 ") -0 (@6
where a=g-1, b=g+1, and U = 420 ;;,}:;}‘)"“”1. In figure 3.9 we show the

specific heat jump and slope as a function of g. Both curves tend to zero at
g=0.5 and g = 1, and display a maximum for g=0.8. The maximum value for
the jump is &F —9 .16 for g=0.81, while for the slope, =19.8 at g=0.82.
The ratio Tc-55'= 9.2 is of the order of the maximum found numerically, but it
should be stressed that this is probably not significant. All of the asymptotic
results are not expected to give qualitatively correct results. They do however
give the correct dependencies upon A and wg. The T, result for example, is

a lower bound upon Te. This will be discussed in more detail in chapter 5.
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Figure 3.8-Critical temperature versus wg in the asymptotic limit A — oo,
T. increases linearly with wg, as was found in the one gap calculation. As g

decreases, so does T, again consistent with the one gap result.
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Figure 3.9-One gap model results for the specific heat jump, %ﬁ, and the

normalized slope, T35 versus g, in the limit A — co. Both results tend to

zero for g = 1. In addition, they go to zero at g=0.5, as our solution breaks
down at this point.



3.9 Marginal Fermi Liquid Model 87

We can also show that the gap ratio, ?k%%, is a constant times some

function of g. Unfortunately, the form of the function is not readily deter-

mined. However, we note that the gap ratio saturates for large -Eg for both

g=1and g#l.

3.9 MARGINAL FERMI LIQUID MODEL

Kuroda and Varma?! have proposed a model for the high temperature
superconductors which they refer to as a marginal Fermi liquid (MFL). The
model is motivated by a phenomenological ansatz about the excitations which
exist in these systems. By making this ansatz, they are able to explain many
of the normal state properties of the high T, materials.

In a non-interacting system of fermions at zero temperature, there is
a discontinuity in the momentum distribution of the particles, referred to as
the Fermi surface. All the states at that particular energy are occupied. As
a result, there are no unoccupied states available for elastic scattering. The
particles have well defined energies and infinite lifetimes. Such a state is a
Fermi liquid.

In reality, the electrons interact with one another via the Coulomb
interaction. The main effect of the Coulomb interaction is a plasma mode
which occurs at high frequencies for a dense electron gas. However, there
are also low-lying charge fluctuations which shift the energies of the non-
interacting system. They lead to a finite lifetime, 7, for excitations away
from the Fermi surface, but at the Fermi surface, the lifetime is still infinite.
The shift in the energies, as well as the lifetime effects are given by the self

energy, X(k,w), such that

Eg = ¢ + ReX(k, Eg + iTy) (3.64a)
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— = —Tp = —Im%(%, By + iTg) (3.64b)
In terms of the self-energy, the one-particle Green’s function is

1
W —€p — E(E,w)

Glkw) = (3.64c)

For the non-interacting case, there is no self-energy term. The Green’s func-
tion is then entirely real. The pole of the Green's function occur at w = .
In real space and time, the Green’s function is then an undamped travel-
ing wave. Once the interactions lead to a finite self- energy, the poles of
the Green's functions are shifted by the real part of the self-energy, and the
imaginary part leads to damping. In this case, the Green’s function can be

written, near the Fermi surface, as

G(F,w) = oL I— (3.65)
w — Ep +iImZ(k,w)

where z;! = 1 — 28E| .. . z is the spectral weight.

Earlier, we discussed the microscopic origin of spin fluctuations, and
we introduced the susceptibility, X(F,w), which described the response of the
system to an external magnetic field. The response of a system to an external

electric charge is given by the dielectric response function, €(3,w), defined by

Pesternat(@wr) (3 66

(Ptolnl(‘-j’w)) = pez!crnal(q.sw) + (Pinduud(‘?‘rw)) = 6(6,0))

where p(F,w) is the Fourier transform in both space and time of the charge
density p(Z,t). This problem can be analyzed in a fashion similar to that for

the charge fluctuations, and one finds

e1(Fw) = [1 - PR@GwV@)™ (3.67)
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V(g) = f'—’;ff- is the Fourier tran-form of the Coulomb potential, and PR(F,w)

is the retarded polarizability. It is given by

f3 — [
Rim o\ — 3~ Jpaq
P! (q'w)_§w—(€s—€m)—in (3.68)

with ff = —— and & = % — u. This is the same expression that we
obtained for I‘i‘:a}',w) in the context of spin fluctuations. These charge fluc-
tuations lead to a self-energy which has a real part ReZ(k,w) ~ w, and the
imaginary part ImZ(k,w) ~ —w? Hence, the lifetime r still goes to infinity
at the Fermi surface, w = E; = 0. The spectral weight is reduced somewhat
from the non-interacting value, but is non-zero.

The mode! of reference 21 is based on the hypothesis that there are

charge and spin density fluctuations which are described by a polarizability

~ _ J=N(O)F, for [w| < T}
ImP(g,w) = {—N(O)sgnu, for lwj>T. (3.69)

with N(0) the single particle density of states. This polarizability leads to a

one-particle self-energy of the form
i 2 ar2 £ .w
B(kw) ~ g N*(0)(wln— —iz2). (3.70)
We 2

z = maz(|w|,T), we is a cut-off, and g is a coupling constant. The quasi-
particle lifetime is still infinite at the Fermi surface. However, the spectral

weight

1
AL r— (3-71)
7 InfgEl

now vanishes at the Fermi surface. Varma refers to this as a marginal Fermi
liquid.
With the polarizability of equation 3.68, Varma reports agreement

with various normal state properties of the high T. materials. For example,
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one cbtains the d.c resistivity from the imaginary part of the self energy at
zero frequency, p ~ ImE(w = 0) ~ T, in agreement with experiment.

In addition, I{uroda and Varma have considered the properties of a
s-wave spin singlet superconductor, where they have used for the kernels in

the Eliashberg equations

F(iw,) = X / * dz ImP(z) (3.72)

—os T Wy =T
with

MW=t (3.73)

where A, and }, are the coupling constants to the charge and spin fluctuations

respectively. For their calculations, they model ImP(w) by

ImP(w) = { [-;-,N(O)tanhﬁ', Il::l ; iza (3.74)

Kuroda and Varma?! report results for T, ;Aﬁ-, and -i%%. They have
used the following parameters; A* = 3.0, A~ = 1.4, w, = 3000 K, and obtain
T. ~ 110 K, 2,?3(0‘ ~ 8, and predict that £F will be less than the BCS value of
1.43. Using these parameters, we obtain 7. =~ 35 K and ;Aﬁ- =2. E.J. Nicol%®
has calculated the gap ratio for these same parameters, and found -";(%&93- =T,

We have also performed calculations of various properties as a func-
tion of 5'5 and g. The results are shown in figure 3.10, where we plot %ﬁ-, and
T.3% versus Efc- for 3 values of g=47. We would expect that the results would
be larger than the BCS results, due to the fact that there are two competing
interaciious. However, we do not expect that we will obtain results as large
as was found using the delta function spectral densities. This is based on the

shape of the functional derivatives. The positive divergence of the specific

hesat
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Figure 3.10-Numerical results for the specific heat jump and the normal-
ized slope for the marginal Fermi liquid model. We find that the results are
enhanced above the BCS values, but fall below the values obtained using

Einstein spectral functions.
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jump functional derivative implies that the specific heat jump is maximized
by placing all of the spectral weight at low frequencies. The spectrum of 3.64
has spectral weicht distributed throughout its entire frequency range, and as
such, results for -_%Tc-‘:- should be less than those found with Einstein spectral
densities. For g=0.5, 1-%-' 2 0.1, the Einstein spectral function yields :?-f:';z3.4,
while the MFL model gives %%22.4. We also note that there is not a great

enhancement of the normalized jump, in contrast to the results found with

Einstein spectral functions.



Chapter 4

Numerical Results

4.1 INTRODUCTION

In this chapter, we consider the case where both the frequency dependence
and strengths of the attractive and repulsive interactions are different. This
would correspond to a situation in which there are two distinctive inter-
actions. The equations we wish to consider are the Eliashberg equations

including spin fluctuations:

A(iwn)Zs(iwy) = 7T Z A~ (m - n)——zjl-\/_?‘(w—ﬁi__';%?, (4.1)
wnz.s(iwn) = Wn + =T i A+(m -— ﬂ) Ym (4.2)

e VBl ) + w2,

The kernels are given by

M(m—n)= 2/:' ;[f((u;ld:i(:))]zdw (4.3)

In this chapter we will treat the E(w) and P(w) as separate functions.

This makes analytical work rather difficult, but it is possible to obtain some

73
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analytic results. For our numerical work, we use Einstein spectral densities

of the form

E(w)= “’52’\55 (w — wE)
(4.4)

P
Pw) = 2£ A

§ (w — wp)
with A€ and AP the mass enhancement parameters for E(w) and P(w) respec-
tively.

If we solve in the BCS limit, using the square well model of 3.24, we
get from 4.2

7Z =1+A%, (4.5)

Putting this result into 4.1, and using the square well model, we find, for

T="T,
A B PR
l—-TI‘TW Z |wml—7i’T1+,\+ Z 1w—m|-, (4.6)
m=-Ng m==Np
where .
i~ l‘f*“}
Az lUde,
] W
o0
Az = 2] -P(_w) ,
o Y (4.6a)
_wgp 1
Ner =gty
At = AExAP,
We perform the sums as in 3.12 to obtain
14+ = 2B LI3WE _ ypy LLR
kgT. kgT: (4.7)
14t —aBmiaaw e 143 P In(1.12wp)
T.=e A=

One can also calculate thermodynamics in this limit, and obtain the
usual BCS results, independent of any materiai parameters.
If one attempts to calculate st.ong coupling corrections to the BCS

limit in this model, the results are highly unsatisfactory. The final expressions
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A’

Figure 4.1-Electron-spin fluctuation mass enhancement factor, A, versus gf:-

and 2, for ;ﬂ;- = 0.5. The surface has a height of » 0.05 at (0,0), and a

wp?

maximum value of =~ 1.7 at (2,2).
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Figure 4.2-Electron-boson mass enhancement factor, A, versus %53—. A\E is

determined by choosing an wg and then calculating AE to give T? = 200 K.

For £ > 0.5, AF appears to be unphysically large.
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which one obtains are very complicated, with 2 profusion of parameters. This
seemns to violate the spirit of such calculations, and we will not present the
results.

It is possible to solve the equations in the extreme strong coupling

limit for the pairing mechanism. We treat the spin fluctuations in the BCS

limit, and we find

wg AE
e (48)

This result is the same as the result obtained by Allen and Dynes®® with
AP playing the role of u". u* is a static pair breaking term, and we lose the
dynamic pair breaking effects that we saw in chapter 3. It is difficult to take
the general limit of both A% aud AP going to infinity, as we would need to
include some constraint which would ensure that -};51, or else we would no
longer expect to have a finite critical temperature.

When we treat the spin fluctuations in the BCS approximation, all
of the results for the purely attractive case are relevant, with p* playing the
role of AP,

We have solved equations (4.1} and (4.2) numerically and used the
results to calculate the specific heat given by equation (2.17). In our calcula-
tions, we choose a critical temperature (T? ) for a pure system which we hold
fixed. We then choose a value of wg and calculate AF to give us our chosen
T®. We then add spin fluctuations at some frequency wp, and calculate a AP
which will suppress the critical temperature to 100 K. Two values of T, 150
K and 200K were used. For both values of T?, the results were qualitatively
the same. We will only show results for T°=200 K. In our calculations, we

have varied the frequencies of both the pairing and spin fluctuation spectra.
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T a.nd to discuss the results. Our numer-

We use the parameters ==
ical studies have spanned the range of 0 to 2 for both == and . We point
out that conventional phonon materials lie in the range 0 < 5% < 0.25.

In figure 4.1 we display AP, the electron-spin fluctuation mass en-
hancement factor versus I’- and . We note that AP rises rapidly for small
values of both parameters and then levels off. For 72 = 200 K, the maximum
value of AP is 1.7 for I;- = IE— = 2.0. In figure 4.2 we show AZ versus %‘; We
note that for —f- = 2.0, AE = 120, which seems rather unphysical. If we restrict
ourselves to a AF < 5.0, we find that we only need AP < 1.0 to suppress T,
from 200 K to 100 K. For very weak coupling in both the pairing and spin
fluctuations, a T, suppression of 50% is achieved with AP 2 0.05. Thus even
weakly coupled spin fluctuations can have a dramatic effect upen the critical

temperature of a superconductor. Such weakly coupled excitations would be

difficult to detect experimentally in the superconducting properties.

4.2 SPECIFIC HEAT JUMP

Figure 4.3 displays the normalized specific heat j jump For ~& and
—=- equal to zero, we obtain the usual BCS value of 1.43. As < incresses,
%ﬁ- increases, reaches a maximum of = 4.1 for = 0.4 and then decreases
below the BCS value. As 1ncrea.ses, the spec:ﬁc heat jump is enhanced.
For =04 and = 2.0 we find that 5 '-FTE = 9.6, which is much larger than
the maximum value obtained without spin fluctuations?. It is interesting
to note that in the case of paramagnetic impurities the specific heat jump
is always suppressed below it’s pure value®®, Figure 4.4 shows the slope of
the specific heat difference at T, normalized by 7, 143&( is the Sommerfeld
value). For -E_— =0, we obtain the BCS result of 3.77. As mcreases,
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Figure 4.3-Normalized specific heat jump, :%%, versus g:-:_- and %,for {% = 0.5.
At (0,0) the height is 1.43, the B.C.S. value. The maximum of 11.4 occurs
at %i— =04 and gf; = 2.0. This is much larger that the maximum value that

can be obtained in a purely attractive system.
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the normalized slope increases, reaches a2 maximum and then decreases. For
§§'; = 0, 2 maximum value of & 21 is attained for g% = 0.4. The maximum
value obtained was 67.3 for -1:% = 0.4 and %{; = 2.0. The slope of the specific
heat behaves qualitatively like the specific heat jump. This is not particularly
surprising, as one would expect them to be correlated to one another in order
to satisfy the entropy sum rule.

When we compare these results to those obtained for systems where
no dynamic pair breaking mechanism is included (g, a static, repulsive
coulomb psuedopoterial is included) we find that the results are qualita-
tively similar, but there are large quantitative differences. In the case of both
the jump and the slope, other authors*® find a maximum in these values at
;7-'; = 0.2. Note that the position of these maximum agrees with the values
obtained here when we recall that % = 0.5. However, the maxima obtained
for the jump, with u* = 0.0, is = 3.4. Even in the weak-coupling limit for
the spin fluctuations, we obtain a maximum of 4.1. Similarly, the maximum
value for the slope in the purely attractive case is ~ 14.5 whereas we get a
value, again in the weak coupling SF regime, of ~ 21. Once again, as for the
critical temperature, we see that even very weakly coupling spin fluctuations

can have a dramatic effect upon the properties of a superconductor.

4.3 SLOPE OF THE SPECIFIC HEAT JUMP

In order to measure the normalized jump or slope of the specific heat, it
is necessary to know the value of the Sommerfeld constant 7. Due to the
large critical temperatures and low temperature critical fields, v is not a well

known quantity for the high-T. superconductors. A quantity which contains
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ac
g A

Figure 4.4-195C versus %i- and 12, with 5 = 0.5. At (0,0), we obtain the

wp?

B.C.5. value of 3.77. The maximum value .f 23 occurs at % = 0.4 and

%-f; = 2.0, the same place where the maximum of the specific heat jump

occurs.
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information about both the jump and the slope in ihe specific heat is the
ratio of the slope to the jump. In particular, we have calculated Ld 20,
This quantity is independent of 4. In addition, if we restrict ourselves to
values at T., one would hope that experimental results for this quantity
would be reasonably insensitive to the details of the subtraction of the lattice
contribution to the specific heat. Results of our calculations are shown in
figure 4.5. Along the %;-:- = 0.0 line we see a sharp rise to a maximum of
= 5.2 for % = 0.4 and then a gradual fall as g-i— increases further. In this
case, the value does not fall below the BCS value of 2.64 which we obtain for
5— = §=;- = 0.0. As we move away from -Ef; = 0.0, we see a further increase. For
both % and % 2 0.5, a plateau is reached at =~ 7.25. As we move further
out, a slow incrcase to 7.6 is observed at gi— = g% = 2.0. Comparing these
results to values obtained for pure systems, we find that they are larger. Akis
and Carbotte?s report values in the range of 2.64 (BCS) to 5.0. For u* = 0.0,
they give a maximum value of 4.6.

We are able to compare these results with experiment. Akis and
Carbottes have analyzed specific heat data of Junod et al. °® for YBa;Cua0y,
and find a value for 249 in the range of 8 to 14, depeading upon the
temperature interval that they use to calculate the slope. We note that there
is evidence that the fluctuation regime in these materials is large®!, which
would tend to sharpen the specific heat anomaly. As a consequence, perhaps
the lower bound of their estimate is the more relevant. Qur results would

seem to fit with the lower bound. However, we are only able to achieve these

values in the strong coupling regime for the pairing mechanism.
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Figure 4.5-Ratio of the temperature derivative of the specific heat to the
specific heat at T}, versus % and g-f;. 7}': = 0.5. This ratio is independent of 7,
the coefficient of the linear term in the normal state specific heat. We obtain
the B.C.S. result Of 2.64 at (0,0), and a maximum of 7.6 at (2,2). At (0.5,0.5),

we obtain 7.25.
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Figure 4.6-Reduced upper critical field versus reduced temperature for %;& =
0.66. For all curves, % = 0.05. The trend for increasing g% is shown clearly

in figure 4.7.
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This type of behaviour is qualitatively similar to that of a purely attractive

system as a function of I, For g% = 0, we agree with the B.C.S. result of

0.73.
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4.4 CRITICAL FIELD

We now consider our results for the reduced upper critical field which
were obtained by solving equations (2.7) and (2.8). Figure 4.6 shows the
reduced upper critical field versus reduced temperature t. For all curves gi— =
0.05 and T°=200 K. The curve for gﬁ- = 0.05 seems to be tending smoothly
to the BCS value of 0.73 at zero temperature. The spin fluctuations have no
observable effect upon the reduced upper critical field in the weak coupling
regime. This is in marked contrast to both the critical temperature and the
specific heat. In figure 4.7 we show he2(0) versus gi—. We observe that it
starts off slightly below 0.73, dips and then rises, reaching a value of =~ 0.88
for %f:- = 2.0 . This type of behaviour is similar to the behaviour seen by
Schossmann et al. 32 as a function of %‘5:_- They obtain a maximum value near

1.5 for % = 1.5. Our maximum value is smaller than this, although our curve

is still increasing.

4.5 ENERGY GAP

Figure 4.8 shows the ratio of ?E%% versus g{;. This quantity was also
computed for -Ei— = 0.05. The curve starts off slightly above the BCS value
of 3.53, exhibits a small dip, and then rises. The values obtained for these
parameters are all well below the maximum possible value of approximately
13 that can be obtained in the extreme strong coupling regime with no pair
breaking mechanism®®. For comparison with conventional phonon supercon-

ductors, we remind the reader that Pt has an energy gap ratio of 4.5.
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Figure 4.8-The zero temperature gap ratio versus z% for 7 = 0.5. o5 = 0.05.
The values obtained are all well below the maximum values that can be

obtained in a purely attractive system.
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4.6 ISOTOPE EFFECT

We now focus our attention upon the isotope effect that we would
expect in such systems if we assume that the pairing interaction is due cnly to
phonons. As we have already stated, we do not believe that phonons alone
are responsible for the superconductivity in the high-T. superconductors.
Indeed, our results for the isotope effect will demand that if the scenario
that we have discussed |5 to be applicable, the pairing mechanism cannot be
phonons alone, and some other pairing mechanism must be invoked.

We have performed numerical as well as analytic calculations of the

isotope effect, 8, which is given by

_d log(T.)

A= dlog(M)’

(4.9)

where M .3 the ionic mass. In all of the results below, we have assumed that

all of the attractive interaction is due to phonons;
E(w) = o* F(w) = Ab(wpr —w) (4.10)

Numerical results are shown in figure 4.9. This curve was calculated for
I = 0,05, and T? = 200 K. We see that g is everywhere larger than 3, the
Wph

BCS result. The peak occurs at gs;- = 0.28. We can gain more insight into

this result by considering the Rainer-Culetto formula for the isotope effect®

Brotat = ./Ooo dwR(w)a® F(w) . (4.11)

R(w) is defined as

T, d T,

1. 6T,
Rw) = 575w t Y T tatF @)

(4.12)
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Figure 4.10-Functional derivative of the critical temperature with respect to
the electron-boson spectral density versus #. For both curves ;,% = 0.05, and
for the system with spin fluctuations, gi— = 0.05 and g-':; = 0.5. The derivative
for the purely attractive system is smaller and shifted to slightly lower »

than the derivative for the system with the spin fluctuations.
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For Einstein spectral densities 3 is simply equal to AR(wph)- We need
to know the functional derivative of the critical temperature with respect to
the electron-phonon spectral density in order to see why the isotope effect
is larger than 1. In figure 4.10 we show the functional derivative W‘%?E)' for
two cases; a 200 K superconductor with no spin-fluctuations, and the same
system with its critical temperature suppressed to 100 K by spin fluctua-
tions. In both cases Ul:: = 0.05, and for the second case % = 0.05. Both
curves are everywhere positive definite, and the curve with spin fluctuations
is everywhere larger than the curve for the pure system.

The curve for the system with the spin fluctuations does not diverge
negatively at low frequencies as was seen in chapter 3. This is because we
are treating the pairing and the depairing mechanisms distinctly in this cal-
culation. In chapter 3, when we calculated the functional derivative of the
critical temperature, we added spectral weight to both mechanisms. In this
calculation, we have only enhanced the pairing mechanism. Marsiglio has
calculated the functional derivative of T. with respect to the spin fluctuation
spectral density in the BCS limit. It is everywhere negative, and diverges
negatively at zero frequency. The result of chapter 3 is the sum of these two
terms in the special case of the two spectral functions being the same.

There are various factors contributing to the change in § when we
add the spin fluctuations to the system. There is a suppression of T, which
tends to cause S to increase. In addition to this effect, there is a change in
the functional derivative. One must remember that the functional derivative
is plotted versus #:, and hence the relevant data is at 5=20.0 for T.=200 K,
and #=40.0 for T.=100 X. One can see that both the functional derivative

and its derivative with respect to frequency are smaller for the system with
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spin fluctuations. However, both of them have been reduced by less than %
which in combination with the factor of two coming from the T, suppression
leads to an enhanced isotope effect.

Let us now look at the isotope effect for the two limiting cases that
we considered at the start of the chapter, the BCS limit and the extreme
strong coupling limit. In the BCS limit, 7. is given by equation 4.6, and

hence

1 M\E

In the limit of AP — 0, we recover the BCS resuilt of . As AP becomes finite,
# become greater than 3, as our numerical results indicate. In the extreme

strong coupling limit, T. is given by equation 4.7 which yields

(4.14)

ol =

8=

Our numerical results indicate that § is approaching this limit as -‘% becomes

large.



Chapter 5

Asymptotic Limits

In this chapter, we will consider Eliashberg theory in the limit in
which the critical temperature, T, is much larger than the characteristic
frequency of the spectral density function, wi,. This is the opposite of the BCS
limit, which assumes that wl;t <<1. We should point out that for conventional
phonon superconductors, 0 < ;7}:7 < 0.3. We will be considering the regime of
L~ .

It is questionable whether this regime is physically relevant, as in this
limit, A — oco. As mentioned previously, if the pairing is mediated by phonons,
it is widely believed that the lattice will become unstable for too strong
an electron-phonon interaction!?. However, it is still interesting to examine
this regime if one wishes to know the range of values for superconducting
properties that is predicted by the Eliashberg equations.

We will restrict ourselves to the model of Chapter 3, and consider

both the g=1 and g#1 cases. We could consider the model of Chapter 4, but

23
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the results are quite complicated due to the different frequency dependences
of the competing interactions. As such, it seemns to defeat the purpose of
gaining some understanding of this limit of the equations.

We will begin by considering the equations at T- They are

Aiwn ) Zy(iwn) = g=T Z Alm - n)Al(wT) (5.1a)
wnZy(iwn) = wn + 7T i AMm = n)sign(wm) (5.1b)

Equations 5.1a and 5.1b can be transformed into a Hermitian eigenvalue

problem by introducing a parameter p(T)?*, defined by

Aiwn)

Aliwg) = —= 5.2
() = )] + =T p(T) (5:2)
T. is given by p(T.) = 0.
We can then write 5.1a and 5.1b as

o

Y K = pomald(in) =0, n21

m=1

el (5.3)

I\"’lﬂ - g[)‘(m - ﬂ) + '\(m'*' n-— 1)] “ém,n[2m - 1+ A 0)+ Z /\(m )]
m'=1

We solve this problem by setting the determinant of X=0. For simplicity, we

will use an Einstein spectral function.
AWE
E(w) = —2—-6(w - wg) (5.4)

Let us first consider the case g=1. For this case, we note that A(0)
does not contribute to the solution. In the limit of wg << T, we are able to
make the approximation

g wk
w + 47T m — n)? tl:*r’T‘?(m—n)2

A(m - (5.5)
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If we define

T.
VAwg

we can then write K., in terms of 7. alone, and there are no other material

e -

(5.6)

parameters present. T. is then a universal number. We have neglected p°, the

Ceculomb psuedopotential.

Allen and Dynes? consider a lower bound on 7. by taking only the

m=n=1 term in the determinant. This leads to
K= AM1)-1=0,T. = t_;%\/:\- (5.7)

Had we not made the approximation of equation 5.5, we would replace VA
with VA =1 . This result shows that there is no limit upon T imposed by

the Eliashberg equations themselves, and that one must look elsewhere to

find such a limit.

For g#1, we obtain for T., again considering only the m=n=1 term

WE /A(2g— 1)-1 wg \/29— 1
== [ = [ 5.8
I 27\ 1+A(l-g) 2¢¥ l-g (58)

in the limit of large A. We are not able to make the approximation of 5.5 in

of the determinant

this case, as K. depends on A(0). This result is qualitatively different than
the g = 1 case. We first note that it is independent of A(0). In addition, it
also breaks down for g< -;-, as T. would then become complex.

It is possible to improve upon this estimate of T. by including the

m,n=2 terms. The result for g =1 is

T, = 0.180Vdwg (5.9)
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One can solve the Eliashberg equations numerically using the approximation

of equation 5.5 and one finds*?
7, = 0.182VAwg (5.10)

Hence, our 2x2 result is very close to the exact result. More impor-
tantly, the dependence upon A and wg is the same. We will only work withir:
the m=n=1 approximation henceforth. as it is sufficient to give us the A and
wg dependence.

We have also calculated the specific heat jump in the asymptotic
limit. In order to perform this calculation, we must use the nonlinear equa-
tions, 3.22a and 3.22b, and ‘nclude terms to first order in (%—:—)2. Upon ex-

panding and combining 3.1 and 2.2, we obtain
1 A 1 A
(9 = DA®) +gA(1) - 1- 3(g = DAOY () - 5o+ DADNGH) =0 (5:11)
1 Wy

We then expand in T about T and us~ the result of equation 5.8 for

T, to obtain

Arye _ MR- D -1+ -9\,
wl) =4 (1+g)A+(1-g)22 (1-1t) (5.12)

We have retained the A dependence, as if we wish to recover the g=1 results,
we must set g=1 before taking the limit A — oo.

We also expand the free energy, given by 2.16, to obtain

AF
N{O)

(WT)2 A4
-+ MO (5.13)

Expanding in T about T¢, and using 5.8 and 5.12, we find

AC 24 [M2g-1-1P1+(1- DA?
AT~ (1+XN)g Ml+g+(1-9)]

(5.13)
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If we let A — oo with g#1, we obtain

AC .24(29— 11— g)

—_—= 5.14)
T P (5.14)
If we set g=1, and then take the limit of A — oo, we obtain
AC 12
—_—= — .1
. 144 (5.15)

The two results show distinctly different behavior, as was discussed iz Chap-
ter 3.

All of the results that we have considered so far have been restricted
to temperatures at or near T,. It is rather straight forward to obtain explicit
expressions near T, as the equations are linear, or at most quadratic. For
quantities away from T, it is not so simple to obtain explicit expressions, but
it is possible to infer the A and wg dependence of the quantity of interest.

We can combine equations 3.1 and 3.2 and write them in the form
)\sz

. Wm oo 1
wi + 4x2T%(m — n)? [9A(iwm) - ;:A(“*’n)] m
(5.16)

Aliwn) =T Y
m=—0o00

where we have used an Einstein spectral density. If we introduce the notation

Q= %, and rewrite equation 5.16 in terms of these quantities, we obtain

[~ ]
A(iu,.)-“;—s =mT Y

m==C0

! (92 (iwm) Em R (i )]—-——1
T T A W/ )
(5.17)

Taking the limit of wg — 0, the left-hand side of 5.17 drops out, and we
are left with an equation with no material parameters. This implies that

T. = f(g), and A(iwn)} = j(t,g). With these results, we are able to determine
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the dependence of the free energy upon A and wg. Writing equation 2.14 in

terms of A(iw,) and T; gives
AF

. il
N(O) =27 Tcwgﬂjdwwnug[\/___— sign(@n)]

" =, wﬂwm"l' A Am
+ vr'tzTc’sz Z z [____2___ — sign(wnwm)]

y A(O)
1+ 472t2T2(m — n)?

(5.18)

This has the form ﬁ(-% = a(t)wk + b(t,g)Awg, which in the limit of

wg — 0 is proportional to b{t,g)Awg . This relation holds only for g#1. From
#5;, one obtains the thermodynamic critical field, He(T), through

EES(TTZ = AF (5.19)
and hence the thermodynamic critical field is proportional to VAwg. We have
verified this dependence numerically. We have also computed the critical
field as a function of temperature for various values of g. The results are
shown in figure 5.1. Rather than plot H.(T) , we have plotted the reduced

thermodynamic critical field, given by

helt) = HA(T)
= TdHAT)/dT |i=1.

(5.20)

The temperature dependence is completely different for g#1 than for
g=1. For g=1%, the curve has a rather large linear region for t near 1, and
curves upwards as t decreases. For g#1, there is no linear region, and the
curvature is of the opposite sign to the g=1 case.

Appendices 2 and 3 are publications®*% of work that was done in col-
laboration with F. Marsiglioc and J.P. Carbotte. They deal with the asymp-
totic limit in purely attractive systems, and as such were not included in the

main body of the thesis. They are submitted as part of the thesis.
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Figure 5.1-Reduced thermodynamic critical field versus reduced temperature

for g=1 and g=0.9. The temperature dependence is completely different in

the two cases.



Chapter 6

Conclusion

Our theoretical results can be rather neatly summarized. In a model
of superconductivity in which there are two competing dynamical interac-
tions, there are distinct signatures in the specific heat data. In particular,
we would expect that the jump in the specific heat would be enhanced over
the value that one would observe in 2 material where there is no competing
mechanism, and the ratio of the critical temperature to the characteristic
energy of the excitations is comparable. We would also expect that the slope
of the specific heat just below Te would be steeper than in the attractive
case. Associated with this steep slope would be a move to a larger reduced
temperature of the zero crossing of the specific heat difference. We would also
predict that the energy gap ratio would be larger in a model with competing

mechanisms than in a purely attractive model.
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The asymptotic behavior of this model was also seen to be distinctly
different from the usual behavior. In addition, we obtained results for the
isotope effect which are greater than %, the BCS value.

Unfortunately, the experimental results for the specific heat and the
energy gap ratio are not completely certain, as both the experiments and
their interpretation are difficult.

Measurement of the electronic component of the specific heat is com-
plicated by various factors. The quantity of interest is the difference between
the specific heats of the normal and superconducting states. In materials
with reasonably low critical temperatures and critical magnetic fields, such
data are readily attainable. At low temperatures, the lattice contribution
to the total specific heat is small, and can be accurately subtracted. The
normal state specific heat can be obtained by applying a magnetic field of
sufficient strength to cause the sample to be normal. In the oxide supercon-
ductors, there are difficulties associated with these measurements. Because
the critical temperatures of these materials are relatively high, the lattice
contribution to the total specific heat is quite large compared to the elec-
tronic contribution. In Figure 6.1 we show some experimental results for
specific heat measurements on YBCOY. The two insets show details of the
curve at T and low T. Notice that the anomaly at T. is only about 2-3 %
of the total specific heat. As such, it is imperative that the non-electronic
contributions to the specific heat be known to a high degree of accuracy and
precision in order to be able to obtain useful information about the electronic

specific heat.
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Figure 6.1-Experimental results for the specific heat of YBa;Cu3Oy7. Note

how small the anomaly at T, is compared to the total signal. Also, there is

an upturn at low temperature, rather than the usual exponential decay, as

shown in figure 1.3.
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An additional complication is that it is only possible to get normal
state data close to T:, as the critical fields are quite large and difficult to
obtain in the laboratory.

At low temperatures, there is an upturn in the specific heat rather
than the cxpected exponential decay. It is felt that this upturn is related
to ordering of magnetic impurities’8. However, there is still a linear term at
low temperature. Various suggestions have been put forward to explain this
term. Part of the sample could remain normal, it could be gapless supercon-
ductivity or perhaps due to impurity phases®®. However, there is as yet no
concensus on the origin of the linear term.

Because of these difficulties, the analysis of the experimental data is
usually done by assuming that the BCS relation, %%:1.43 holds 9. How-
ever, Beckman et al. point out that the v extracted by this analysis is not
in good agreement with values extracted from high temperature magnetiza-
tion 6 experiments or band structure calculations®!, which are in reasonable
agreement with one another.

Some groups have analysed their data without making the assump-
tion that %%:1.43. Loram and Mirza®? have used differential calorimetry on
YBCO samples and report %%:4.1 and 3,%&?—:615 Recently, Phillips et al.
83 have reported %%:4.8 and 2': De =T7.

The normalized slope of the specific heat is a quantity that is in-
dependent of 7. In addition, if the slope is determined in a fairly narrow
temperature range near T¢, one might hope thac the results would be reason-
able insensitive to the details of the subtraction of the lattice specific heat.
Akis and Carbottes have analysed specific heat date. for YBCO* and find

T.5% in the range of 8 - 14, depending upon the temperature interval used
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in the snalysis. Unfortunately, this is the only determination of this quantity
that we are aware of.

We should also mention that it has been suggested that there are
fluctuation effects in the specific heat near T;, due to the short coherence
length in the high T. oxides®. These effects would tend to make the slope
steeper than the mean field slope.

We now consider the zero crossing of the specific heat difference.
Phillips et al. %5 have determined AC by subtracting measurements performed
in high magnetic fields from low field measurements. Their data exhibit a zero
crossing at t = 7~ ~0.8 in LaCaCuO with T= 37 K. Junod et al. *¢ find a
zero crossing at t=0.8 in a YCBO sample. Such large values of t for the
zero crossing of the specific heat support the hypothesis that the specific
heat jump and the slope of the specific heat difference are large in the oxide

superconductors. This is motivated by the entropy constraint on the specific

heat difference

Te
AS:[ ACur=o (6.1)
L T

If the zero crossing of AC occurs at high t, then AC must get large in order to
compensate for this. The ,}- accentuates this effect. Therefore, it would seem
that there is strong evidence for the specific heat jump to be large in the high
T. materials. In particular it appears that % is larger than the maximum
value of ~3.73 which Blezius and Carbotte % find for a superconductor with
only attractive dynamical interactions.

The experimental results for the energy gap are also difficult to in-
terpret. The main techniques used to measure the energy gap are infrared

spectroscopy and tunnelling spectroscopy. In addition, Raman spectroscopy
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and high resolution photo-emission experiments have been employed on the
high 7. materials.

In both the tunnelling and the far infrared measurements, there is
fairly good agreement upon the general features of the data. However, the
interpretation of the data and an extraction of a value for %;%‘ﬁl has proved
to be difficult. There does seem to be a consensus emerging from the various
techniques however®®®7. It seems that there is a reduction in the electronic
density of states at the Fermi surface in the superconducting state. Whether
the reduction is complete or not (is there a well developed energy gap) is
not entirely clear. The energy scale of the reduction seems to scale with the
critical temperature, and if it is interpreted as an energy gap, it leads to a
value of %%% ~ 8. The temperature dependence of this gap-like feature is
very non-BCS like. There are groups who would dispute the assignment of
this feature to the energy gap, particularly in the infrared results®®. However,
their estimates would place the gap at an even larger value. It would seem
to be fairly safe to conclude then, that -2,%‘1‘-?- is certainly much larger than
3.54, the BCS value, and is around 8. This estimate agrees well with photo-
emmission and Raman work as well.

This large value of the energy gap, in conjunction with the specific
heat results are consistent with the model that we have discussed in this
thesis. It would seem that the experimental results cannot be accounted for
in Eliashberg theory without competing interactions. This conclusion has to
be reconciled with the isotope effect results.

Isotope effect experiments have been done for the high 7. oxide ma-

terials, and again there is a certain amount of variability in the results. The
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most commonly reported results are for the oxygen isotope effect, foz, but
there are results for the other species in the various compounds.

For YBCO, the oxygen isotope effect seems to be small, but measur-
able. A typical value is 8o, =~ 0.02%, but there are resulis giving fo- = 0.1
In LaSrCuO, the oxygen isotope effect is considerably larger, although there
is a fair degree of variability in the reported values. Typical values are in the
range of 0.1 to 0.27 for fo.. However, there have been reported values of as
high as fo, ~0.87! in this material. A recent study™? of Bor in Laz_-Sr-CuOy
as a function of x has yielded some interesting results. They find fo- = 0.4 for
x2:0.07, rising to 0.6 for x=~0.11, and then falling to 0.1 and remaining fairly
constant for any further increases of x. For this material, T¢ is also a function
of x, as shown in figure 3.1, the phase diagram for Lag_.Sr:Cu0y. The peak
in Bor found by Crawford et al. occurs for a fairly low critical temperature.
Measurements of the isotope effect for elements other than oxygen all seem
to give no measurable effect, at least in YBCO®.

Values of 8 greater than 1 are difficult to account for in a model
where there are only attractive interactions. In such a model, one can get
enhanced isotope effects if there is structure in N(¢) ™, the electronic density
of states, near the Fermi surface which varies rapidly on the scale of wp, the
typical energy for the exchange boson. One can also get 4 > 1 in a model
with paramagnetic impurities, however in that case, -_‘%ﬁ- is suppressed below
the BCS value of 1.43.

The conclusion that one ca:l draw from the isotope effect measure-
ments would seem to be that there is an isotope effect, but it is small. In
order for the competing interaction model to be consistent with this conclu-

sion, we would require that the attractive interaction have two components
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to it, one due to phonons, and one due to some other mechanism which is
not affected by the isotopic substitution. There is 2 long history of alternate
pairing mechanisms such as excitons™78 and plasmons™. Whether such ex-
citations exist in the oxide superconductors, and whether they couple to the
conduction electrons is not well known. Combined exciton-phonon models
have been studied theoreticaily”, and a value of :‘};ﬁg deduced that pro-
duces the observed isotope shifts. If there is in addition a repulsive interaction

as we have considered, then such estimates would have to be revised.



Appendix 1

Strong Coupling Corrections

In this appendix, we will outline the calculation of the strong coupling
correction to the specific heat j Jump, We will treat the model of Chapter

3,

Z(iw)Aliw) = 97T > Mm - n)\/_zgé(‘,——_zﬁ")‘__)?w—! (AL.1)
Z(w,.)—l-l-— Z Alm - n)\/_‘/_\w‘:"')w (A1.2)

We expand for T ~ T. to obtain
Z(iwn)Aiwn) = gvT Z A(m - n)A!(wm)[l - l(A(“:“'}"‘)) . (AL.3)
Z(iwn) =1 + _ Z A(m = n)sign(wm )[1 - l A(W'"))'2 J (Al4)

In Al.4, this leads us to consider terms like

109
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i L ! (ALS5)

it W 2+ (Wn — wm)?

We are interested in corrections to the BCS results, which are obtained by

neglecting the m and n dependence in m We therefore expand as

follows

) i _1_[ 1 L
- ?n V2+(wn—wm)2 U2+(Un +Um)2
1

m=1
_ i 4wnm
T Wi +w? +wd)? — dwivd

Z 4wn 1 [+ dwZ wk .
At S CE RN G A

We recall that the Matsubara frequencies are proportional to the temper-
ature, and hence we are expanding in powers of (£). We can see that the
second term is of order (Z), and we will drop this term. Hence we need to

evaluate sums like

= 1 1
Ui = wndnT 2; Y P (AL6)
They give
_ p 1.13/v? + wi Wy
U = (F ¥ 02 n ke - o T i) (Al.6a)
and
7 ¢(3) 1
Uy =wnp 2T (i) (A1.6b)
with ¢(3) the Riemann zeta-function. If we define
Znliwg) = 1 + — Z Am — n)sign(wm) (ALT)

m==00

and substitute the results of A1.6 into Al.4, we obtain

. . © 9pe? F(v)dv ., 1.134/V2 + w?
- - - 2 no_
Zs(iwn) = Zn(iwn) = -4 (T).[o T wl)? [2In %5 1] (AL8)
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Al.3, expanded in a fashion similar to Al.4, gives

l
m U+ Wi+ wh

Zs(iwn)A(T) = gA( T)/ 2va’ F(v) du[‘Z:rTZ

=]
4w3wm ‘
-:-2:&"221 FTat o (A1L.9)
1
2
_ A (T)2n T): u2+u-+u‘2]
Evaluating the sums yields
> 1 1317+ w xT)?
P2 D Y = itV en T4 10a)
~ wnm VWl twh VP +w? kgT 6(v? +wi)
= EIRLIN w2
whs n L AlL.10b
i TZ_ (v +wi +wi)? S raR)y ( )
1 T 4B 1 1 1.13/vF + wl
1 =
2T mz_l B it et twl,  A(xTEvItwE (VP4 uwl)? T kas
(Al1.10¢)
and hence

=] o 2
Zs(iwn)A(T) = gMT) /D 202 F(u)du [ g ln 213V T _(T)

v? 4 w3 kpT T 6(v? +w?)
wl
+ (U2 +u2)2
1.13/v% + w2
I LY )
(TR +wi (0 +w?) 5T
(A1.11)
We evaluate for n=1, and use Zny(1) =1 + A, to get
1 = F(T) + A¥T)G(T) (A1.12)
where
A 113w, (:r'r)
= - —b Al.12
P(T) = giqin = - gy () - 300 (41.120)
and
oy AL gal) a2 b (A1.125)

STHFAS (T2 " 2144 T 14+4 2(1+4)
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In this expresssion,

® 9paF(v)dy, 1.13v
a(T) = /0 e In T

and
- /‘” 2ua® F(v)dy
0

V‘I
We have neglected the n dependence in the square root factors for simplicity.
In order to calculate the specific heat jump we need an expression

for the free energy difference. We expaud equation 2.16 in similar fashion to

find
= + A AT E(T) (4L13)
where
KTy =~ 2 (fg'g, + i\,\)? () - o(T) + -
with

® pal F(v)dv, ,1.13v
c(T)=] P =

Solving A1.12 for A(T) in powers of (T —T¢), and putting the solution

into A1.13, we obtain for the normalised specific heat jump

aC¢ Te oy
—7 = L3l + a2 In ] (A1.14)
with
\ 8 2 1 8
o= 7l 7+ Do = G
and

by = — exp{(‘—:?- +Bra; - whrasings — }
1.13 (4 + Gl + Do — g7z
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The coefficient o, is obtained from a(7) through

=) 2
oT) = / 2va F(u)du]nl.lllu
0

v kgT
_ _0_1' 2ucx2F(v)dul 1.13»
T Wi v kgT
_ ) 1 g
- wi, P R kgT

The first step follows from the mean value theorem, and the second follows
from the definition of wi,. The other coefficients are derived in similar fashion
from b (@) and o(T) (a3 and B5). For Einstein spectral densities, all of the
coefficients are equal to one.

We have also derived expressions for other quantities. They are all
obtained in a fashion similar to that sketched above. As such, we will just
present the results, and omit the derivations.

For the normalised slope of the specific heat we obtain

d AC Tc 2 Win =
Lo o3 AT Pl ALl
BT, 377[1+02(w;n) lnszc] ( 3)
with
3 28 160 1 1 32 A 5, 16
w= o (g gy T M T c(a)( T3 )] A= g

and
by = — dmp{ (=52 + (5 - Fhvd + 54 + g2 - (A - ::)Tc(a)““l“ﬂf’}
1.13 [% + 21’?‘(3)(% + %) ~ 44— 24 (Lt Doy + (4 3)7((3)

7 ¢ 3 2
: _ 934(s

with 4 = &+ 3

The expression for the gap ratio is

2A(0)
kpTe

= 3.54[1 + a;;( )21n (AL.16)

baT 7o)
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with

3.54% 1
0.3='———'( + )a +:'T a3}

and

i %‘i(l Dag + 37%a:
ba = P

ex
1.13 —-—3'5442 (% Dy + 2
We have also obtained an expression for ﬂ"%

'7T2 Win

- deye -
0 =" 168(1 + a4( ) ny 7+ (AL.17)

where

35421 1 3.54 .1
as=(——(3+ 5) +258)ay - (—2—)2503

and

b.|=

1 {(-—""'EQ;'12 (1+¢) + &r)a - (34)2hen — (3 )2';:03111&3}
exp

1.13 (L + 1) + 20 — (334)7 500

We have also calculated the specific heat jump for the model of chap-

ter 4. The result is rather complicated, and seems to defeat the intent of

deriving a simple expression for the quantity of interesi. We give the result

as
?IC‘; = 1.43[1+a1(1: ) l“bf;‘h +“2(Tc)21 525:::
P
+U“[as( v )1 2;:% +a4(TC) In? ;:,’;‘
T. whe I. w’“ ]
+as( o )lan +as( S5 )l W)

In these expressions, the superscripts ph and P refer to the pa.mng and the
pair breaking mechanisms respectively, and
-_8
U_l = A T(iai

11320

Mhln 0 _ APin e
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A™ = 2R AP,
APk 94
=7l ——+4
ay 16 +4)m
AP
S ON 4)p1
b= 1 aIp{(.f%j-t-l'_-f.)az}
PTIETT L (e
b o L (587 ~ )P
LA WE RS (o Sy
. 7@ ~ R
2 AP
a3 =7 T:ag
_ ¥
= FPs
1
bh=—=b
1

Aph
as = 1727\:-(—03111&3 - al)

AP
ag = wz-,\—_(—-pslnaa -pn)

by = 1 er %2 }
5= 123%P Wasinfs + @)

1 P2
bg =
6 1.13821,{ 4{palnos + ;) }

P1, P2, P3, and o3 are defined in analogy with a1, a2, a3, and 83, except that

they refer to the pair breaking spectral density.
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Asymptotic Limit for the Thermodynamics
of a Boson Ezchange Superconductor

We establish formulas for the free energy difference (AF) between
superconducting and normal state of an Eliashberg superconductor valid in
the asymptotic limit A — oo where A is the mass renormalization. It is shown
that (AF) goes like { times a universal function of the reduced temperature
t= v}rg The universal function is calculated numerically for finite t>0.

Stimulated by the discovery of superconductivity in the oxides™ with
values of the critical temperature T, now as high as 160K, Marsiglio, Akis,
and Carbotte™ considered the thermodynamics and other properties of an
Eliashberg superconductor for values of T. comparable in size or greater than
the characteristic boson energy wi,. The parameter wi, was first introduced by
Allen and Dynes? and is well defined in terms of the electron-boson spectral
density o? F(w) which enters the kernels of the Eliashberg equations. In their
work, Marsiglio et al. ™ carry out calculations somewhat beyond Z==1. This

corresponds to large, as compared with conventional cases, but still quite
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finite values of A. Here we wish to consider the limit of A — co. While this
regime is not likely to ever be reached in real materials, it gives particularly
simple results which can help in understanding the large but finite A region.

The work starts from the Eliashberg equations in the Matsubara
representation®®®! for the gap A(iwn) and renormalization Z (iwn) at the Mat-

subara frequencies iwe=ixT(2n-1) n=0,%1, +92... with T the temperature.

They are
o0 A - ™
Aiwn)Zu(iwn) = 5T 3 Mm=n) m%‘%w_. (42.1)
and
wnZs(in) = wa+ 7T Y Mm— n)_zsz(;m — (A2.2)

where, for convenience, we have ignored the Coulomb pseudopotential u”
and where Am — n) contains the information on the spectral density a’F(w)
for boson exchange. While the form of equations (A2.1) and (A2.2) is based
on Migdal's theorem and is valid only for the electron-phonon interaction,
they can still be used as a first approximation for other more exotic exchange
bosons so that our asymptotic limit will be approximately valid in such cases

as well. In terms of a® F(w) we have

oo 2
Am —n)= 2]0 = _‘:a’:(_wln)zdu (A2.3)

If we use for a?F(w) a delta function centered at the Einstein energy wg and

of weight A, we obtain

wpA

AMm=n)=
(m =) = T (on —om)

(A2.3)

If we assume A to be fixed and increase A by decreasing wg (A=24),the A — co

limit corresponds to wg —0. In this case, the w% term in the denominator
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of equation (A2.4) can be neglected provided it is assumed that wg << 277,
a condition we will return to later. Substitution of (A2.4) into (A2.1) and
(A2.2) and insertion of (A2.2) into (A2.1) leads to a simple equation for

A(iwn) which can be rewritten in the form

A(ian) = mtT. Z Aliam) - S (i)

= (@ —wm)’[ VaE, + D) ]

where any Q=7§E and the reduced temperature t = ,;-’:c- On examination of

(A2.5)

equation (A2.5), we see that all reference to material parameters has dropped
out so that, A(ie,) is simply a universal function (f(t)) of the reduced tem-
perature t, ie. A(i@n)=fs(t). In particular, iteration of the linearized version
of (A2.5) yields the critical temperature T.=0.2584 which is a universal num-
ber first given by Allen and Dynes. Thus, in the asymptotic limit the critical

temperature is

T, = 0.25841/Awg = 0.183wE VA (A2.6)

To caleulate the thermodynamics in the asymptotic limit, we need
to know the free energy difference between superconducting and normal
state AF(t) which is given in terms of the A(iw,)’s and Z's by the Bardeen-

Stephen®! formula

i ZVGwn) o ), A(wu)
oM zwrgu,,[zsgw,,)_ \/_N_W_][ (A2.7)

where N(0) is the single spin electronic density of states at the Fermi energy.
From equation (A2.5), it is clear that the square root factor in (A2.7) is
independent of X as it depends only on A(id,). Further, the superconducting

state renormalization factor can be written as

T aiEy i (428)
@ m;&ﬂ(w

Z5(iwn) = 1 + ———e——
(on) V@2 + A(im) n — @m)? /@2 4+ A2(iwn)
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and its normal state value ZV is obtained from (A2.8) by setting A(i@,) equal
to zero in the last two terms on the right hand side. We note that for both Z¥
and Z5, the second term depends on A and hence, on material parameters,
but the last term does not since A(i@s) is universal. On inserting (A2.8) into
(A2.7), it is clear that the A dependence in Z5 and ZV cancel so that the
expression in the square bracket is material independent leaving us with a

free energy that scales like T2 because of the presence of an overall factor of

T and so%?

2
.ﬁ% - i‘;\. a() (42.9)

where g(t) is a universal function of reduced temperature. This function,
which is independent of material parameters, can be calculated from the uni-
versal equation (A2.5) for A(i@,) and from the free energy difference (A2.7)
noting that ), which still appears explicitly in both ZV and 75, cancels in
the combination needed in formula (A2.7).

The thermodynamic critical magnetic field Hc (T) follows from AF(T)

as does the specific heat difference ACG(T). Thermodynamics yields

HAT) = VB7AF, and AC(T) = Tf—ﬁ— (A2.10)

Direct calculation of g(t) as a function of reduced temperature yields He(t)

and AC(t). The results of our numerical calculations are given in Fig. A2.1.
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Figure A2.1- Plot of the reduced critical thermodynamic magnetic field (solid

curve) as a function of reduced temperature t in the limit A — co. The curve

has pronounced positive curvature with the zero temperature value unclear.

The dotted curve is t times the reduced field h.(t) and shows a finite limit

at t=0.
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Instead of g(t) itself, we have chosen to plot he(t) (the reduced thermody-

namic critical magnetic field) defined by

Ht) Vo) (42.11)

|%c_ul |ié@1t=1

which is simply /g(f) normalized to its slope at t=11i.e. T=T.. From the solid

curve of Fig. A2.1, it is clear that in the asymptotic limit the reduced critical
feld looks very different from its value in BCS theory. For example, within
BCS. the h.(t) curve has negative curvature at all temperatures and at t=0
h.(0)=0.576. In contrast, in the asymptotic limit he(t) exhibits a large region
of near linear dependence below t=1 and then shows the opposite curvature
bending upward as t decreases. It is still rising rapidly at t=0.008. This is
the lowest reduced temperature we could handle in our numerical work due
to computer time limitations. Consequently, we do not have information on
its zero temperature behaviour. To understand that this is not a serious
limitation, we return to the condition wg << 97T introduced from the very
beginning into our formalism. It can easily be changed, with the help of

equation (A2.6) for T. valid in the asymptotic limit, into an inequality
Vat>> i (A2.12)
which is central to our work. Recalling that
H(t) = sfr——\/g_(t' V8r \‘/4_|d‘{§t_|,_1hc(t) (A2.13)

we rewrite it in the form

1 =1
H{t) x —=he(t) = ﬁt(thc(t)) (A2.14)
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We see that condition (A2.12) requires 715 <<1. Also, we note that t h.(t)
shown in Fig. A2.1 {dotted curve) is well behaved even for t=0. Thus, ex-
pression (A2.14) is also well behaved in the range - <<1. What we need
to remember is that A must go to co before t goes to zero for the condition
71:; <<1 to be satisfied. From formula (A2.14), we get H.(t)=0 for A — oo
and so also AF(t)=0. There is no transition to the superconducting state in
this case.

Our results for he(t) or t h.(t) cover the entire temperature depen-
dence of the free energy difference and so the specific heat should follow as
well (formaula (A2.10)). Evaluation of the jump in AC(T) at Te and its slope

give respectively

AC(T.) _ 199
A -5 (A2.15)
and
d AC(T,) _ 39.2 (A2.16)

it (0. A
These values of jump and slope cannot be compared directly with the uni-
versal BCS values of 1.43 and 3.77 respectively. BCS is the weak coupling
case which is the opposite limit to that considered here. It is clear, however,
that for large A’s, both quantities fall below BCS. This bebaviour, which can
be taken to be a signature of the asymptotic limit, is very different from the
conventional strong coupling case for which the corrections to BCS tend to
increase these coefficients over the BCS value. More specifically Marsiglio
and Carbotte3? find

AC(T:)

‘7(0)Tc = 1.43[1 + 53(%)2111( Lin )] (A2.1?)

3T,
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d AC(T) _ 2

= 3.77(1 + 117(—)! A2.18
aOn - o ( < Pin(gr) (4218)
where == T is the characteristic strong coupling parameter and wyy, is the av-

erage boson energy of Allen and Dynes which is given by

Wip = ea:p[—% /:o EM du] (A2.19)

w

Equations (A2.17) and (A2.18) apply only for —-=- <0.25.

While both the normalized jump and slope go to zero as A —
their ratio remains constant. It is equal to 1.96 which is to be compared
with a BCS value of 2.64. For conventional superconductors, it is found to
be somewhat greater.

In conclusion, we have solved for the free energy difference between
normal and superconducting state at any finite reduced temperature t in Lhe
asymptotic limit A — co. The free energy is found to scale like { times a
universal function of t which is independent of any material parameter. The
formula obtained holds only for VAt >> 1 so that very large values of A are
needed if the low temperature region is to be investigated. Our calculations
are based on equations that are independent of A and therefore, universal.
The normalized jump and slope at T. of the specific heat were computed and
found to go like 1 for large A with coefficients universal numbers. While the
asymptotic limit is not likely to be reached in real systems, it nevertheless,
gives information on how a very strong coupling superconductor is likely to

behave.
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Asymptotic Limit for H,
in Eliashberg Theory

We have calculated the reduced upper critical magnetic field he(t)
as a function of reduced temperature (t) in the limit when the electron-
boson mass renormalization parameter ) of Eliashberg theory goes towards
co. Our results are valid for any reduced temperature t satisfying the inequal-
ity VAt >>1. At low temperature, the results in the finite impurity limit are
smooth and can be extrapolated to get he(0)~0.57 independent of impurity
content.

I - Introduction

Bulaevskii et al. 32 have given results for the second upper critical
magnetic field He(T) in the limit of Eliashberg theory when the mass en-
hancement parameter A is assumed to tend towards infinity. While they con-
sider both dirty and clean limits, they give results only at zero temperature

and near 7. and use large but quite finite-A numerical calculations to fit some

125



126 appendix 3

of the proportionality constants. In a recent paper Marsiglio et al. 8 have de-
veloped a technique to calculate the free energy of an Eliashberg supercon-
ductor using a numerical method which is valid for any reduced temperature
t>0 provided X is taken large enough for the inequality VAt >>1 to hold.

In this paper, we extend -ur previous work3? to consider the second
upper critical magnetic fleld Heo(T). This work complements and extends
the paper of Bulaevskii et al. 8 as well as corrects it in one instance. In
section II, we introduce the strong coupling equations for Heo(T) derived by
Schossmann and Schachinger®® and consider the dirty limit which, while not
directly applicable to a physical situation, serves as a basis for section I
where we consider a general finite impurity concentration. Conclusions are
to be found in section IV.

1I - General Formulation and Dirty Limit

The general equations for Hep(T) valid for any isotropic Eliashberg
superconductor defined by an electron-boson spectral density o?F(w) and
Coulomb pseudopotential p* were first derived by Schossmann and Schachinger®
and are valid for any impurity concentration described by ty. = 5= with 7
the impurity scattering time. They are36.84

oo

oy . A(itim)
A(iwy) = 7T m;m[)\(m —-n)—p ]X'l(&(ium)) ey (A3.1)
and
Oiwg) =w + 7T E A(m — n)sign(wm) + mty.sign(wn) (A3.2)
In equation (A3.1), X(&(iwa)) is given by
iy 2 [ —an- g/
X{(iwm)) = \/EL dge™% tan l—lé(iwmﬂ (A3.3)
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with

a= -é-eHc-z(T)v'f:- (A3.4)

Finally, in equation (A3.1) and (A3.2), the parameter A(m - n) is given by

=~} 2
Mm—n)=2 /ﬂ - :(‘L: (_‘“’ln)zdw (A3.5)

where iw, is the n'th Matsubara frequency iw, =irT(2a — 1), n=0, *1, £2, ...
and T is the temperature.

We start with the dirty limit which, as we will see later, is somewhat
artificial from a physical point of view. Nevertheless, it plays an important
mathematical role since the finite impurity case can be related to it.

To start, rewrite equation (A3.2} in the form

O(iwn) = &°(fwn) + Tiysign{wn) (A3.6)
with
[« )
&°(iwn) S wn + 7T Z A(m — n)sign(wn) (A3.7)
In the dirty limit
| D(iwm) =] @°(iwn) | +74 >> 1 (A3.8)
and hence
L A3.9
sl (439)
which implies (equation (A3.3)) that
_1 [44
(@iwn)) 2| B(iwn) | [1+ 3@(:7)?1 (A3.10)
and so
XY@ (i) — 7t 2| G°(iwn) | +-1-—°‘- (A3.11)

1rt+
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where | &(iw,) | in the denominator of the last term has been replaced by

#t4. Substitution of this last relationship into equation (A3.1) gives

- s Aiwq)
A(iwy) ==T Mm—=n)—p|— - Ad.12
(o) =T 3 Wm=m =il i (491
where we have defined
w210 _ oy A3.13

with D = Lvkr the diffusion constant.
It is convenient and conventional® to transform equation (A3.12)

through the change
__ Aiwn)
~ @°(wa) | +o%

Aliwy) (A3.14)

which, when substituted into equation (12), gives

Aliwy)[|wnl+7T i z\(m—-n)sign(wnwm)-}-pd"] =aT i [A(m—n)—p"1Aiwn)

T T (A3.15)
where use was made of equation (A3.7). A critical observation about equation
(A3.15) is that the term n=m on the right hand side cancels against the

similar term on the left hand side, so that both sums can be restricted to

m#n only. This means that the term
oo 2
M0)= A= / WwalFw)
0 w

does not appear in equation {A3.15) and we require A(m - n) only for n#m.
For the spectral density, we will take a delta functio.. model of weight A

centered at the Einstein frequency wg. In this case

_ 24wg
T wi 4 (wa - wm)? !

A(m =) m#n (A3.16)

A great simplification arises if we assume wg << orT. We will see later that

this restricts our numerical work to the range VAt >>1 with t the reduced
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temperature. In this approximation, we can neglect '} in the denominator

of (A3.16) since n#m and get

2Awg

A(m—n) = @ Te(m =) JMER (A3.17)

A simple transformation can now be used to change equation (A3.15) into an
equation with dimensionless kernels in which no material parameters appear
explicitly (for p*=0). This equation, when solved numerically, will then yield

a single universal curve for the reduced upper critical field

HcZ(T)

hc?(t) = Tcl(dhrczde)ch

valid in the asymptotic limit (vt >>1). If we introduce dimensionless tem-

perature T = -, equation (AZ.17) reduces to

2

)\(m) = W

(A3.18)
and equation (A3.15), with u*=0 for convenience, can be rewritten as

di o0

£ a(iwn) = m;@ [,\(m — )1 = 6mn) + A(m+n—1)

(A3.19)

m—-1
—Gmal2m 142 )\(m’)]] Aliwm)

Noting (A3.18), we see that equation (A3.19) makes no reference to any

material parameter and will yield an eigenvalue of the form

di di
g__ -— Y EH&(T)D

A3.2
— (A3.20)

where g(T) is some well defined universal function of the dimensionless tem-
perature T. In particular, the critical temperature is obtained for g(T:)==0
which gives numerically

T. = 0.183wgVA (A3.21)
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2 result first obtained by Allen and Dynes®. Solving (43.19) for values of T

below T, , we obtain

7T, 0.183x
{1 = (1 Ad3.22
eDL(t) > wgVAk(t) | (A3.22)

€

HH(T) =
where k(t) is a universal function of the reduced temperature related to g(T).

For t near 1 equation (A3.22) reduces to

2.24nT,
eD

HE(T) = (1-1) (A3.23)

which agrees well with the result of Bulaevskii et al 82 We are, however, able
to produce results for any finite temperature t>0 provided the approximation
wg << 2rT is satisfied. Referring to equation (A3.21), we can transform
this condition to read VAt >>1. Instead of plotting Hez, which depends on
material parameters as (A3.22) and (A3.23) demonstrate, we have chosen
to present our universal results for h#(t)=0.447k(t). This is shown as the
solid curve in Fig. A3.1. We note that this curve is really very different from
the usual weak coupling curve for the reduced upper critical field which has
downward curvature. In our case, hey(t) is nearly linear over a large range
of reduced temperature near t=1 and then shows a divergent behaviour as
t-+0. Note that our technique of solution does not permit us to reach the
t=0 limit because of the condition vAt >>1 which must always be met. For

T=0, Bulaevskii et al. 8 obtain, without proof, the result

. LO8T, 0.198wg)
digy — c = E
HE0) = ——=Vi=

2
— (A3.24)

and so find that h#i(0)=0.45vA. The X dependence in (A3.24) is certainly
consistent with our result that he(t) — co as t—0 in the limit of infinite A

Also the result hc2(0)=0.45\/x is confirmed in the previous numerical work
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Figure A3.1- The asymptotic value (A — oo) of the reduced upper critical
field hdi(t) in the dirty limit (solid line) as a function of reduced temperature

for t>0. The dotted curve applies to any finite impurity concentration and

is related to hdi(t) by heb(t)=t hdi(t).
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of Schossmann et al. 2 . These authors have calculated H%(0) numerically
as a function of = up to a value of about 1.4. Since %:0.183\/3, we note
that their calculations end for VA 27.7 which extends beyond the numerical
work of Bulaevskii et al. 82 . While it is certainly true that in this range of A
values hdi(0) appears to vary like V& with coefficient ~0.45 we may not yet
be in the asymptotic limit. Certainly, we will see in the next section that for
any finite impurity concentration we need to go to much higher values of A
in order to achieve the asymptotic limit. To end this section, we point out
that an approximate analytic form for H(t) can be obtained from equation
(A3.19) if we keep a single Matsubara gap, namely the m=1 term. This leads

immediately to

di 2
~ 5T [ — 2
P wT[(21rT)2 1] (43.25)
from which follows
T. = Q—irug\/x , (A3.26a)
HE() = %’%‘-(1 —1) fort—1 (A3.26b)
and
hea(t) = 5[; —1] fort>0. (A3.26¢)

'This last result is compared with our exact numerical results in Fig. A3.2
We see that solid (exact) and dotted equation (A3.26c) curves are surpris-
ingly close. They both diverge like { as t—0 but with somewhat different
coefficients.

TII - Finite Impurity Case

The arguments we will use to reduce equation (A3.1) when 7t4 is

finite are similar to those used in the previous section but somewhat different
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Figure A3.2-The reduced upper critical magnetic field hdi(t) versus reduced

temperature t (solid curve) compared with the simple form 1(1 - t) (dotted

curve).
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in details. We start by writing

| @(iwg) |= aTA+ len (2w )l (A3.27)
with
O (iwn) =wn + 7T Z A(m — n)sign(wm) + wty.sign(wn) (A3.28)
m#Fn

For A — oo we have 7TA >> |@n(iwy)| for any finite impurity concentration
nts and if we further hypothesize that #TA >> /a, as will be verified later,
the same expansion of the inverse tangent as we used in the previous section
can again be used with the result that
-1 [}
X=Y(|o(iwn)]) - Tt4 2 TTA + |wa| + 27T z A(m)+ hm

mi=1 (A3.29)
l &

-Q
=l @*(n) | +377%
If we define p¢ = %ﬁﬂ‘ we recover equation (A3.12) with the eigenvalue ph

replaced by p¢ from which we immediately conclude that
ot = p® (A3.30)

Thus we have

GrrTA

HE(T) = DHZ(T) (43.31)

On substituting (A3.22) into (A3.31), we find

) = Tk

()t (43.32)

so that HA(T) in the A — oo limit is determined by the same universal
function as H3(T) except for a numerical coefficient and an extra factor of
the reduced temperature t. It is the same whatever the impurity content as

nt, has dropped out. In this sense, the dirty limit of the previous section
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is unphysical and was not pursued further. The condition #TA >> =ty is
implied in our derivation and can be rewritten as VXAt >> :%E If we think
of taking A to co by having A fixed and wg —0, we write VAt >> 4 which is
always satisfied for any finite t4 for sufficiently large A. If instead wg is fixed
and A— o0, we can again have A3/2t >> :%E for any fixed value of ¢, .

Near t=1, i.e. around the critical temperature, we get

13.472T2)

HYT) = =

(1-1) (A3.33)

which agrees well with the result of Bulaevskii et al. ® provided we assume
they have mistakenly left out a factor of .

It follows from (43.32) and (A3.33) that the clean limit reduced
critical magnetic field

heh(t) = th(1) (43.34)

Numerical results for h¢i(t) based on the universal equation (A3.19) are
shown as the dotted line in Fig. A3.1. We see that this curve appears to define
a well behaved function of t for small t and so it can safely be extrapolated
to t=0 to get he,(0)=0.57. While we have worked only in the region VAt >>1
and hence t>0, we see that the zero temperature value of Heb(0) can be
obtained from our extrapolated hej(0) to get

7.6472T2A
evk

HE(0) = (A3.35)
This result is in serious disagreement with that found by Bulaevskii et al.
82 who get he(0)21.5 from their numerical work. The problem can easily
be traced to the fact that, at VX ~5.5, which is where these authors stop
their calculations, we are, in reality, still far from the asymptotic limit. This

is illustrated in Fig. A3.3 where we show hea(t=0.1)8 as a function of -E; =

0.183VA. We see
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Reduced Critical Field

3.0

Appendix 3

2.0 -

0.0

I

100.0 meV
0.0 meV

Figure A3.3-The reduced upper critical magnetic field at reduced tempera-

ture t=0.1 as a function of 3—-:‘- = 0.183V/3 for the clean limit ¢4=0.0 (solid

curve) and t,=100.0 meV (dotted curve).
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that for both the clean limit (solid curve) and for 71,=100.0 meV (dotted
curve) the curves do not reach their asymptotic limit until beyond %': ~10
while Bulaevskii et al. 82 stop around 1, which is close to the maximum of
the clean limit curve. This maximum value is almost a factor of three larger
than the asymptotic value of 0.57. Also we note that, while for small A, the
clean and #¢,=100 meV curves can differ significantly, the two curves tend
towards the same value as A gets large. This is to be taken as a numerical
illustration of the theorem we proved previously, namely that for A — oo the
results do not depend on impurity concentration if finite.

To end, we consider our approximate analytic model solution ob-
tained by using a single Matsubara gap approximation. We get from {A3.31)
and (A3.25)

2m2
Ha(ry = T g2 (43.360)
evF
from which we find for t near 1
m?2
Ay o 22 Ted ) (A3.36b)
evp
and for t=0
6m2T2\
{ c
EOER (A3.36¢)

which gives h$,(0)=0.5 instead of the exact result of 0.57. Also, our approx-
imate heh(t) is

hek (1) = %(1 ~ ) (A3.37

Comparison of this last result with our exact numerical calculations are given
in Fig. A3.4. We see a remarkable agreement between approximate and exact
calculations except near t=0. Finally, we note that for any t, Heb(t)x A? for

fixed wg and hence v/a x A. The condition #TA >> /&, which we assumed
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Figure A3.4-The asymptotic value (A — oo) of the second upper critical
magnetic field heb(t) in the clean limit (solid curve) as a function of reduced

temperature (t) compared with the simple form 3(1 - £2).
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to be satisfied at the beginning of our derivation, can be rewritten (dropping

all numerical factors) as

Vat>> 1

a condition which was assumed to hold in our derivation of the dirty limit
critical magnetic field. No new restriction is implied.

IV - Conclusions

We have calculated the second upper critical magnetic field for any
finite impurity concentration in the limit A — oo. It is found that this asymp-
totic limit is independent of impurity content and that the reduced field hcz(t)
is a universal and well behaved function of t. It behaves roughly like 0.5(1-
t2) for most of the temperature range. While our work is, strictly speaking,
only valid for t>0, an extrapolation to zero temperature gives he,(0)=0.57,
in contradiction to a previous result which has appeared in the literature
and is ~1.5. We trace the discrepancy to the fact that the asymptotic limit

is reached only for values of A much larger than was previously expected.
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