Chaotic Prediction and Modeling of Sea Clutter

using Neural Networks

by

Henry Leung

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the degree
Doctor of Philosophy

McMaster University
March 1991



Chaotic Prediction and Modeling of Sea Clutter
using Neural Networks



Doctor of Philosophy {1991) McMaster University
(Electrical Engineering) Hamilton, Canada

TITLE: CHAOTIC PREDICTION AND MODELING OF
SEA CLUTTER USING NEURAL NETWORKS

AUTHOR: Henry Kwai Yi Leung
B.Math (University of Waterloo,1984)
M.Sc (University of Toronto,1985)
M.Eng (McMaster University,1986)

SUPERVISOR: Dr.S. Haykin

NUMBER OF PAGES: x, 182

i



ABSTRACT

Radar clutter, the unwanted radar echoes, has a long history of being modeled
as a stochastic process. The main reason for using this model is that radar clutter
appears to be very random to our naked eyes. Due to this stochastic assumption,
radar detection is based on statistical decision theory. More precisely, the probability
distribution of noise or clutter is obtained to derive the likelihood function for making
decision.

In this thesis, we try to justify the stochastic assumption of radar clutter, in
particular, sea clutter. We find that assuming sea clutter as a random process uses
unnecessarily high degrees of freedom. In other words, sea clutter does not have to be
modeled by a random process to handle its random behavior. Using different real-life
sca clutter data, we show that the random nature of sea clutter is possibly a result
of the chaotic phenomenon.

After showing that sea clutter is not truely random, we then try to model sea
clutter data by a deterministic dynamical system. To construct a useful model for
sea clutter, we need to reconstruct the dynamics of sea clutter, and neural network is
used here as a tool to achieve this purpose. Two novel neural networks are developed
to reconstruct the clutter dynamics. The first one is called rational function neural
nctwork which has an unique local minimum and a rapid learning phase. The second
network, which uses the idea that sea clutter can be embedded as a manifold, does not
require any learning, and is very robust and accurate. Both networks have excellent
performances in reconstructing the dynamics of the real-life sea clutter data.

The model for sea clutter is then used for detection of small targets in ocean
environment. Now detection is no longer a statistic decision problem, but rather a

process of distinguishing two different dynamical systems. One dynamical system
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containrs trajectories for sea clutter and targets, and the other describes the motion of
sea clutter only. We use the trajectory matching idea to classify different dynamical
systems, and the result of detecting real-life small targets such as a waverider is very

exciting.
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Chapter 1

Introduction

1.1 Sea Clutter Modeling

Radar clutter consists of radar returns from reflectors that are not of intercst, and
often obscures the signals from targets that are of interest. Radar clutter is typically
caused by objects such as rain, birds, sea, woods, and mountains. Examples of radar
targets are ships, aircraft, and satellites. However, there are also cases in which the
clutter itself is the wanted target. One example is the clutter classification problem
in air traffic control radar.

The radar backscatter from the sea surface is called sea clutter. A description of
sea clutter is of interest to radar designers and operators, because shipboard radars
viewing the ocean surface or low-flying targets must often operate at such low eleva-
tion angles that the sea surface is illuminated along with the target.

Early work by Goldstein [16] characterized sea clutter as noise-like and the av-
crage radar cross section per unit area of illuminated sea surface, and an associated
distribution function to describe its amplitude characteristic. Because of the central

limit theorem and simple processing architectures, this probability was conventionally



considered to bé Gaussian. This follows the usual assumption that a large number
of independent scatters are illuminated by the radar. However, measurements of sea
clutter for very narrow pulse widths have demonstrated that a Gaussian model is
inadequate. Instead, there is an increasing tendency toward high-amplitude spikes
( commonly known as sea spikes ) with the result that the tail of the distribution
function is higher than that given by a Gaussian model.

Since then , there have been many subsequent attempts to relate the behavior of sea
surface to the statistical properties of the scattered radar waves. Some progress was
made in the late 1960s, the fluctuations properties of the radar return have generally
been modeled by ad hoc distributions that give a reasonable fit to the data; lognormal
and Weibull (36] are two examples. During the mid-seventies, the random-walk model
was added to the list. A semi-empirical model, K-distribution, was proposed [24}. The
fitting of this distribution to experimental data was very good, and it is still generally
accepted to be the best model for sea clutter so far.

Before going any further on the modeling of sea clutter, we think we should explain
what a2 mathematical model is, and how we choose a good model. The complexity
of nature calls for partial descriptions that are sometimes mathematical in character
and then generally called mathematical models. The relation between nature and a
mathematical model can be represented schematically as in Fig. 1.1. Here are some

qualities necessary or desirable for such a model:

1. Consistency with experimental data
2. Consistency with possible ideal physical mechanism

3. Be adapted to the needs of a user, in that it can predict useful parameters from

input measurements accessible to the user
4. Have a minimum number of degrees of freedom ( or independent input mea-
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feedback: change model

Figure 1.1: Relation between nature and mathematical models



surement )

With these criteria in mind, we immediately observe that the conventionai sea clutter
modeling in the literature mainly emphasizes conditions 1 and 3. Condition 1 is
about the fitting of data which is the major work done in sea clutter modeling.
Condition 3 has to do with the power of the model or the usefulness of the model. For
engineering applications, this condition is particularly important since the ultimate
goal of modeling sea clutter is to perform some operations like detection.

K-distribution is unique in that it is the only sea clutter model which considers
condition 2. In other words, the model starts with or tries to relate the model to some
reasonable physical mechanisms describing the backscattering process. This point is
important in mathematical modeling because it gives confidence that the model is
also valid outside of the regions where it has been verified.

Comparatively there is not too much work related to condition 4. The only
progress on this condition is the observation that sea clutter is not suitably mod-
eled by a pure noise process. Nevertheless, this observation is extremely important
since it initiates all researches on sea clutter modeling. In other words, it forins the
basis of modeling of sea clutter. Noise has a totally unpredictable, random behavior,
and hence requires a very high number of degrees of freedom to describe it. I"inding
out that radar clutter is not merely a noise process is indeed a real brea.ktﬁfough since
not only the cornple.xity ( or degrees of freedom ) can be reduced, but the perforraance
will also be improved. Because of the significance of condition 4, we would raise a
question : Do we really have a minimum number of degrees of freedom in sea clutter
modeling by using all these conventional models ?

To make this question clearer, let us first point out one important common feature
of all these sea clutter models. That is, all these models are based on statistical meth-

ods. In other words, sea clutter is considered to be governed by some kind of random



process. This is not an evidence but just an assumption. This assumption has been
used in the modeling of radar clutter for more than fifty years, and surprisingly no
one doubts the validity of the randomness assumption. To the best of our knowledge,
this assumption does not have any rigorous physical explanation nor mathematical
argument to support it. It is simply a result of the complex appearance of sea clutter
to our naked eyes. The problems raised by this assumption is the introduction of
unnecessary degrees of freedom. For example, to describe the linear acceleration of
a rigid body, we just need to know the force acting on the object. If we include
unnecessary (actors like temperture, quantum effect, radiaticn from the rigid body,...
etc, the performance of the model will be degraded. Another example is the motion
of the earth; the generally accepted model of this motion is a circular rotation around
the sun, described by Newtonian mechanics. It is unlikely that anyone will model this

motion by some random process since it again complicates the model for no purpose.

1.2 Dynamics and Statistics

Those who try to explain the world we live in always hope that in the realm of the
complexity and irregulazity observed in nature, simplicity would be found behind
everything, and finally unpredictable events would become predictable. - Note that
simplicity and regularity are associated with predictability. For example, because the
orbit of the carth is simple and regular, we can always predict when astronomical
winter will come. On the other hand, complexity and irregularity are almost syn-
onymous with unpredictability. That complexity and irregularity exist in nature is
obvious. We only need to look around us to realize that practically everything is
random in appearance, of course including sea clutter. Or is it? Clouds, like many
structures in nature, come in an infinite number of shapes, every cloud is different,

yet everybody will recognize a cloud. Clouds, though complex and irregular, must



on the whole possess a uniqueness that distinguishes them from other structures in
nature. The question remains : Is their irregularity completely random or is there
some order behind their irregularity?

Over the last decades physicists, mathematicians, biologists, and scientists from
many other discipline have developed a new way of looking at complexity in nature.
This way has been termed chaos theory.

Chaos theory is the theory of dynamical systems that generate paths of evolution
that appear random to the naked eye and to many statistical tests. Although chaos
puts a limit on long-term prediction, it implies predictability over a short term. Re-
cent research tells us that chaos is quite common, and that in many cases random
behavior is due to low dimensional chaos rather than complicated processes involving
many irreducible degrees of freedom. A computer pseudo random number generator
is the standard example. This is a deterministic dynamical system whose path of
evolutions from a given seed is perfectly predictable, provided you know the dynam-
ics and provided you know the initial seed. This indicates that all the researches on
random signal processing using computer simulation are actually simulated by using
chaos theory rather than a truly random process.

Is there anything useful that chaos theory has to offer radar clutter modeling,
which is the question set for this thesis? In other words, we are interested in whether
the clutter process can be modeled by chaos theory. To the best of our knowledge,
this thesis is the frst research work done on this topic. We are thus confronted with
many fundamental and important questions. The first one that comes lo mind is :
Why do we have an interest in chaos theory? Since statistical models are familar by
now, and we do not feel that this random modeling causes many serious problems,
why do we need to pay attention to chaos theory?

At this point we have to see how statistics comes into our business. We shall

illustrate with a very simple hypothetical scattering model. Consider the example of



a billiard ball moving on a rectangular table with a convex obstacle. The ball moves
in a straight line at unit speed and bounces off the obstacle and the edges with the
angle of reflection equal to the angle of incidence.

The configuration of the system is completely determined by the position and
velocity of the ball. The phase space is the set of all configurations of the system.
Each configuration in the phase space moves along a well-defined trajectory or orbit
in the phase space. Phase space also has a probability structure : every reasonable
( in probability language, measurable ) set in phase space is assigned a probability -
the probability of finding the system in that set. So the statistical methods tend to
derive a probabilistic structure for the system. This is also the reason that statistics
can only give us a partial description of a system being investigated.

To make this point clearer, let us look at the example of motion of the earth again.
Now let us adopt the point of view of some observer who knows nothing about the
underlying dynamics, and suppose that a person would try to describe statistically
what is going on. Especially in models with more than three components, one tries
to determine the directions of maximum variability. Those directions are cailed the
principal components, which is now a widely used technique in signal processing.
More technically, principal components are just the eigenvectors of the covariance
matrix, i.e., the matrix of second-order moments.

But physically speaking, a statistician would not know where his time series came
from and just computes its principal components to get something that pointed {rom
one lobe to the other; principal components are defined up to sign : they indicate
directions. In Fig. 1.2, we see the periodic motion of the earth around the sun.
The speed of the earth at each point on its orbit is given by Kepler’s Law of Areas,
according to which equal areas are swept out by the radius vector in equal periods of
time. In other words, the earth siows down considerably as it comes to aphelion and

it speeds up as it nears perihelion. By symmetry, the mean ( the first order statistic )
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Figure 1.2: Periodic motion of planets



has to lie on the major axis of the elliptic orbit and it will lie closer to the part where
the concentration of points lying equal intervals of time apart is bigger. Thus if you
do not know what law is governing the motion of the earth, i.e, the dynamics, you
would just take successive observations and see that the cloud of observations is much
denser around the aphelion. So the time mean is closer to this point; furthermore
the direction of the first principal component just points from this cloud where it is
thickest to where the fewest points are found near the perihelon. Similarly, in the
case of Fig. 1.2b the direction of the first principal component simply joins the two
concentration maxima in phase space. Comparing to the study of the dynamics of
the system directly, the abilities of statistical methods are very limited.

In our signal processing and communications communities, statistics has been a
major analytical tools. The main reason for this is simply due to the noisy appearance
of a signal in the system. Now, due to the discovery of chaos, our view of complex-
ity and randomness are changed; we see no reason to restrict ourselves to statistics
without seriously considering the possibility of chaotic signal processing.

Aside from the fact that dynamics provides a better description of the system
than statistics, recent development in signal processing, communications, and also
our sea clutter modeling problem tells us that Gaussian statistics is insufficient to
solve all the problems by itself alone. In other words, all the traditional signal pro-
cessing techniques such as power spectrum and Fourier transform based on second
order statistics cannot satisfy the needs raised by the recent observations of nonlin-
carity. Non-Gaussian processes are getting more and more popular and common,
and it implies that a reliable nonlinear statistical method is desperately needed in
these areas. Unfortunately, nonlinear statistics is much more complicated than the
linear one. This is actually not surprising if we look back at the history of determin-
istic mathematics, nonlinearity is really an extremely challenging problem. A simple

example is the differential equation; solution of linear differential equations can be
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obtained easily, whereas solving nonlinear differential equation is still an open prob-
le=n. Thus, even though there is a great deal of work done recently trying Lo attack
these problems by using higher order moments and cumnulants, the results cannot be
regarded as very successful.

First, the determination of a suitable higher order is not easy. Second order, which
was suggested by Gauss, has many nice features. But, beyond this particular order,
it seems that order determination is data-related. Second, if we model the process
as a random process, everything becomes a random variable. This property makes
the analysis even more difficult. Because of these reasons, research on higher order
statistics has always been restricted to third or fourth order. Therefore , even if we
want to follow this path, we should not expect too much.

To summarize what we have discussed, we suggest that the application of chaos
theory in signal processing research is worthy of pursuit. First, it may reduce the
degrees of [reedom. Second, it is superior to statistics. Third, nonlinear statistical
theory is not mature enough for us to use; however, nonlinear dynamics combined
with topology and differential geometry may provide us with a usable mathematical

technique to approach nonlinear signal processing problems.

1.3 Scope of this Thesis

After convincing ourselves why chaos theory is needed in modeling sea clutter ( actu-
ally in signal processing ), we would further consider how chaos theory can be applied.
The answer to this question is the main objective of this thesis. Now let us first go
back to the criteria for mathematical modeling to see what we should do.

The first condition reminds us that our model must be checked by experimental
data. The sea clutter data used in this thesis were collected at a field trip to the

East Coast of Canada by using a highly sophisticated radar system developed in
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the Communications Research Laboratory at McMaster University, called Intelligent
P1Xel (IPIX) radar.

A traditional physicist’s approach to model sea clutter may try to write down
the scattering equation, and solve them with appropriate boundary conditions. This
approach may start from the simple wave equation and the solution is obtained by
the substitution of an appropriate scattering function. Laicr we may extend this to
a nonlinear wave equation and study its behavior. But this is an exceedingly difficult
problem. The effects of many different factors on the clutter process are still unknown
to us; modeling this kind of phenonmena by coupled nonlinear partial differential
equations is probably overambitious. This is the reason that clutter modeling is
usually based on an empirical approach since the model must be definitive enough
for us to use in specific circumstances. Another, more tractable, approach is to
try and build a model directly from the data, without attempting to construct a
universal model and then fitting the data to the model to check the validity. The
model is directly obtained from the experimental data and usually satisfies condition
1 reasonably well.

Condition 2 concerns the underlying physical mechanism of the process. Con-
ventional sea clutter modelings use the idea of random walk. More precisely, the
backscattering of electromagnetic waves is viewed as a random motion. “Almost all
sea clutter models are based on this assumption; the difference may be just the number
of scaltering centers. In other words, the physizal mechanism involves some incoming
particles and some scattering centers to reflect those particles. This is one possible
picture for what is really happening but it definitely is not the only one and perhaps
not even a good one for explaining the real situation. However, it still supports the
validity of the conventional statistical sea clutter models.

The question facing us is : Does chaotic modeling of sea clutter allow any rea-

sonable physical explaination? Consider a string or a wave propagates toward a wall.
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The reflection would be the exactly same wave form for elastic collision and some
other wave forms with distorted characters such as frequency and phase for inelastic
collision. Next consider a particle projected into a convex cavity; we can imagine that
the particle will bounce inside the convex cavity and the trajectory of the particle
will look quite random. If another particle is sent to the convex object with a slight
deviation in the incidence angle from the first particle, we will expect a totally dif-
ferent trajectory for this new particle. The first particle may stay inside the convex
cavity for just a while, but the second particle may stay inside the convex cavity for
quite a long time. One may ask what is the purpose of these two examples. First,
we feel that the backscattering of electromagnetic wave may be modeled by some
deterministic process, since from the simple model of backscattering of a string, we
observe that the backscattering process depends on the incoming wave and the scat-
tering material. Hence the process should not be just a random walk. The second
example tries to illustrate a point that scattering may be chaotic rather than ran-
dom. The slight deviation meets the requirement of sensitivity to initial conditions.
Though the trajectories look random, they follow a simple refiection principle. We
therefore conclude that modeling sea clutter as a chaotic process is consistent with
the possibilty of some ideal underlying mechanism.

Condition 3 is not a problem to chaotic modeling since it is a deterministic model.
Condition 4 is in fact the one of the most interesting points to support the postulation
of a chaotic model. Conventional sea clutter model considers the process as random
and hence an infinite number of degrees is inherently assumed ( all the entries in a
stochastic process are random variables ).

We therefore would like to construct a chaotic model for sea clutter using real-life
radar data. The first thing that we probably should do is to investigate whether
or not sea clutter allows a chaotic description. After that, we may then build a

deterministic model for sea clutter. In Chapter 2, we will explain the basic theory of
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chaos and the modeling technique based on chaos. To investigate whether sea clutter
prefers a chaotic description to a random model or not is analyzed using two popular
chaotic tests, namely, fractal dimension and a local divergence behavior. This task is
undertaken in Chapters 3 and 4. In Chapter 5 we consider the modeling of sea clutter
using conventional neural networks and a new structure called rational function neural
network. In Chapter 6, a new neural network based on memory learning is used to
model sea clutter. This model is then used to detect some small targets in sea clutter.

Discussion of results and conclusions are presented in Chapter 7.

W
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Chapter 2

Model Reconstruction of Chaotic

Dynamics

2.1 Topological Description of Dynamical System

In Chapter 1 the term “dynamical systems” was used. What is a dynamical system?
In simple terms, a dynamical system is a system whose evolution from some initial
state ( which we know ) can be described by a set of rules. These rules may be
conveniently expressed as mathematical equations. The evolution of such a system
is best described by the phase space or state space of the system. An eb-.ca.mple of a
dynamical system, a pendulum, and its state space, is given below.

Consider a pendulum that is allowed to swing back and forth from some initial
state. The initial state can be completely described by the velocity and the position
of the pendulum. The position of the pendulum at any time can be given by the
angle. Under such an arrangement, Newtonian physics provides the equations ( or
rules ) that describe the system’s evolution from the initial state. Let us assume

that the pendulum starts at some point other than the perpendicular position ( the
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jowest point ). The pendulum will move downwards due to the gravitational force and
will keep swinging back and forth as an exercise of exchanging kinetic and potential
energies. Because there is some friction, there will be energy lost, and the pendulum
will come to rest at the lowest point.

Apparently, the time evolution of the pendulum can be completely described by
two variables, namely, velocity and angle. These two variables define the coordinates
of the phase space. If one plots the velocity as a function of the angle, the trajectory
will start off at some point in the phase space and eventually get closer and closer
spirally to a stationary point which represents the lowest position of the pendulum.
This particular point in the phase space is called an attractor. It “attracts” all the
trajectories in the phase space. Apparently, the behavior of the dynamical system in
question can be completely understood. Long-term predictability is guaranteed. The
pendulum will always come to rest at the lowest point of its swing. Point attractors
therefore correspond to systems that reach a state of no motion.

The above example of the pendulum only shows one form of attractors, that is,
a point attractor. The next simplest form of an attractor is the Limit cycle. A limit
cycle in the phase space indicates a periodic motion. This phenomenon is not new
to electrical engineers. For instance, limit cycles can be observed in the design of an
finite-precision infinite impulse response (IIR) digital filter.

Another form of an attractor is the torus. The torus looks like the surface of a
doughnut. In this case, all the trajectories in the phase space are attracted to and
remain on the surface. Systems that possess a torus as an attractor are quasi-periodic.
In a quasi-periodic evolution a periodic motion is modulated by a second motion, itself
periodic, but with another frequency. The combination of frequencies will produce
a time series whose regularity is not clear. The power spectrum, however, should
consist of sharp peaks at each of the basic frequencies with all its other prominent

features being combinations of the basic frequencies. Geometrically, a quasi-periodic
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trajectory fills the surface of a torus, in the appropriate state space. An important
characteristic of such an attractor is that when the two frequencies have no common
divisor, any two trajectories which represent the evolution of the system from different
initial conditions, and which are close to each other when they approach the attracting
surface, will remain close to each other forever. This characteristic can be translated
-as follows. The two points in the state space where the trajectories enter the attractor
can be two measurements which differ by some amount. Since these trajectories
remain close to each other, the states of the system at a later time are going to
differ to the same extent they differ initially. Thus, if we know the evolution of such
a system from an initial condition, we can predict accurately the evolution of the
system from some other initial condition. Again, in this case long-term predictability
is guaranteed.

The above mentioned forms of attractors are “well-behaved” attractors and usually
correspond to systems whose evolution is entirely predictable. Often they are called
non-chaotic attractors. In mathematical terms, the above mentioned attractors are
smooth submanifolds of the available state space. A very important characteristic of
these attractors is that the long-term evolution of the systems they describe is not
sensitive to initial conditions.

When one observes some irregular motion like the spectrum of turbulent motion,
one realizes that there is motion at all frequencies with no preferred frequencies. This
broadband structure of the spectrum indicates that the motion is nonperiodic ( or
strictly speaking is periodic with an infinite period ). This nonperiodic motion was
first observed by Lorenz [26) that a simple dynamical system was able to generate
such a complicated behavior. In such a case, the trajectory in the phase space would
be nonperiodic ( never repeats itself ) and would never cross itself ( since once a
system returns to a state it was in some time in the past, it then has to follow the

same path ). Thus the trajectory should be of infinite length but confined to a finite
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area in the state space. This can only be the case if the attractor is not a topological
manifold but rather a fractal set.

The fractal nature of such an attractor does not only imply nonperiodic orbits.
It also causes nearby trajectories to diverge. As with all attractors, trajectories that
are initiated from different initial conditions soon reach the attracting submanifold,
but two nearby trajectories do not stay close to each other. They soon diverge and
follow totally different paths in the attractor.

Divergence means that the evolution of the system from two sightly different initial
conditions will be ccmpletely different. In other words, the state of the system after
some time can be anything despite the fact that the initial conditions are very close
to each other. Apparently, the evolution of the system is very sensitive to initial
conditions. In this case we say that the system has generated randomness. We can
now see that there exist systems which, even though they can be described by simple
deterministic rules, can generate randomness. Randomness generated in this way has
becen termed chaos. These systems are called chaotic dynamical systems and thetr
attractors are often called strange or chaotic attractors.

From the discussion above, we find that dynamical systems are conveniently de-
scribed in terms of geometrical language like point, circle, torus and fractal. Although
dynamical systems are often specified explicitly in terms of a real space, they can be
generalized to exist on arbitrary manifolds. In a real space, a dynamical system with

continuous-time evolution is specified by a system of ordinary differential equations
x = F(x) (2.1)

where X € R™ is a point in the phase space and F: R™ — R*. This can be rephrased
more geometrically by saying that F is a vector field on R™; F associates a tangent
vector with each point in the phase space. A particular solution to the set of dif-

ferential equations translates into a particular curve through the vector field which
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has a tangent vector at each point equal to that specified by the vector field. Such a
solution curve or integral curve is denoted by the flow ,(xo) which provides the value
of x at time ¢ given an initial condition Xo. In the discrete time case, the dynamical
system is described by a map ¢ : R* — R" and the flow is given simply by ', where
t indexes the discrete time.

The preceding discussion is easily rephrased in terms of manifolds. Let a compact
manifold M be the phase space of a system. A dynamical system on M is « map
0 : M — M for discrete time or a vector field for continuous time. The vector field
associates each point in the manifold with an element of the tangent space at that
point; it is a cross-section of the tangent bundle. The time evolution of the dynamical
system is given by the flow ¢(xXo), and an observable on the dynamical system is a
smooth function y : M — R.

We will need to describe the asymptotic behavior of a system. An invariant set §

of a flow ¢ on a manifold M [32] is a subset of M defined by
S ={x€M]|p(x)€ S VxandVt} (2.2)

The positive limit set L*(x) of a point x is the set of limit points that the flow

approaches with an initial condition of x :
L*(x) = {y € M | 3t; = oo with ¢, (x) = ¥} ' (2.3)

Here the t; are a sequence of values of ¢, and the notation means that as this sequence
tends towards infinity, the flow comes arbitrarily close to y. Negative limit sels are
defined for flows going backwards in time, and frequently positive limit sets are simply
referred to as limit sets.

An attractor adds the notion of a domain of attraction to a limit set. A closed
invariant set S is an attracting set if it has a neighborhood U such that ¢(x) € U

for all ¢ and @(x) — § ( the flow comes arbitrarily close to all the members of 5
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) as ¢ — oo. The domain or basin of attraction is the set of all initial conditions
satisiying the above definition. We will usually consider attractors or limit sets in the
following discussion, because the alternatives of settling to equilibrium or diverging
are of much less interest in modeling complex real-life physical phenomena.

Now we have some basic ideas and mathematical tools to carry on our investi-
gation. We will not give any more rigorous explanation of the concept of attractor;
the reader is referred to [29] for a detailed discussion. To summarize what we have
discussed, we know that a dynamic system is always characterized by an attractor
which generates interesting behaviors that may be stationary, periodic, quasiperiodic,
or chaotic. Traditional techniques of signal analysis are restricted to investigation in
the time and frequency domains. They are based on the statistical procedure of de-
riving the covariance matrix of a time signal as well as the corresponding Fourier
transform, the power spectrum. These techniques are very helpfu! in identifying sta-
tionary, periodic, and quasiperiodic attractor. But the idea of chaotic attractor has
not been explored in signal processing. So the question is : How can we apply chaos
theory? Narrowing down the question to our sea clutter modeling problem : How can
we model the sea clutter phenomenon by chaos theory? Is it possible to do that?

One approach to the problem is to build a model for sea clutter from some well
accepted physical phenomena like scattering, diffusion,. .. etc. This approach is quite
powerful and common in mathematical modeling. For instance, the population model
in ecology is derived by this principle, namely, competition of species. If we use
this strategy to derive a model for sea clutter, we probably should start from the
scattering process. In that case, we may get a partial differential equation, and by
some mode decomposition, we may obtain a set of differential equations from the
partial differential equation. Then we can analyze the set of differential equations to
see whether chaos comes up or not, and hopefully we can find out in what parameter

regions the process will become chaotic and determine the bifurcation process.
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This approach is not the one taken in this thesis. First, the scattering model of
electromagnetic waves in the literature is too immature to be used. For instance,
scatterings from different materials like water, iron, ... etc are modeled by the same
physical scattering model, and so we have no way to distinguish them. Second, the
exact underlying process occuring in the scattering process is still unknown. In fact,
it is not even very clear which factors are involved. This is why the majority of work
done on this area relies on the use of experimental data in the so called empirical
approach, since those hypothetical models are not ready for engineering applicalions
yet.

Therefore, to develop a useful engineering oriented sea clutter model, we will follow
the conventional line of thinking. That is, we try to build a model for the sea clutter
based on experimental data. This is an inverse problem, which is very familar Lo

engineers.

2.2 Embedded Dynamical System

A dynamical system is usually characterized by several components. For example, the
pendulum example given in the last section has two components, namely, the position
( angle ) and the velocity. One may then suspect that to obtain the information about
the dynamics, we need to measure all the relevant quantities. More troubiesome may
be the definition of relevant factors which is always unknown to us. In our case, to
model the sea clutter dynamics, we may need to measure the wind speed, wave motion,
temperature, different properties of the transmitted and received electromagnetic
wave, . .. etc. However, what are the real relevant quantities is still an open question.

If this is really what we need to do, even though dynamics can give us a better
description of the system, dynamics approach will be too complicated to apply. Be-

sides, we need to build a highly sophisticated radar system to perform the dynamical
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study. That is, a radar which can measure all those relevant factors. In fact, data
obtained by a radar system often take the form of a time series; a series of values
sampled at regular intervals. Hence, we would like to build a model that reads a time
serics of data of the physical process, and from that to generate a model describing
the future behavior of that process; that is, the dynamics. In other words, we hope
that even though we just measure one component of a physical process, we can still
use it to reconstruct the dynamics of that process.

At a first glance, such a quest appears to be ambitious and perhaps overopti-
mistic. How can we expect that measuring one factor can replace the measurement
of all other factors? For example, a physical process is characterized by temperature,
wind speed, atmospheric pressure and humidity, we cannot hope that such a process
can be reconstructed by measuring just one of the factors. From the viewpoint of
information theory, we can almost surely conclude that information will be lost if one
component’s measurement replaces many components’ measurement. Fortunately, a
recent theorem by Takens {37] suggests that our hope is not just a dream. In fact, the
Takens Embedding Theorem states in principle that model reconstruction using just
one component should succeed to a certain extent, and the reconstruction is inde-
pendent of which components is used. Although the reconstruction cannot produce a
model exactly the same as the original one, the reconstruction has the same behavior
as the original system up to diffeomorphism.

Having established the type of model we intend to discuss in the previous section,
we are ready to state the Takens Embedding Theorem and indicate the nature of the
proofs. The system to be corsidered is a manifold M in which the system state is
defined, a map ¢ : M — M ( discrete time ) or a vector field F on M ( continuous
time ) , and an observable y : M — R. We will show that M can be embedded in A"
through the observable y, that the limit set of the flow is reproduced, and that the

dimension is unchanged by the process of embedding ( this point will be discussed in
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the next chapter ). Fig.2.1 depicts a simple illustration of the embedding of a limit
cycle.

To see how a model time series arises, consider some initial state x together with
its subsequent states : p(x), P*(x) = ple(x)], ¥*(x) = p{¥*(x)],. .. Suppose that the
observable assigns the real number y(c) to the state o; then a model time series
(@1,82,. -, ...) is given by the numbers y(x), yle(x)), yl@* (X)), - - - ¥l (X)) - -
Examples of this type of model abound. One such example is the damped, peri-
odically forced pendulum, whose equation of motion is given by

d*0 : df .
' + Asin(9) + B-E + Csin(wt) =0 (2.4)

where A, B, C and w are nonnegative constants, 6 is the angular displacement of the
pendulum, and ¢ is time. The phase space consists of all pairs (#,v) where the angular
displacement  is an angle in radians and the velocity v = 6 is a real number { 7 is
the radius length of the pendulum ). A natural observable is the kinetic energy given
by

y(6,0) = v/2 (2.5)

The law of motion or dynamics, ¢ is given by w(flo,vo) = (61,v1) where (01,v1) is
the result of integrating the differential Eq.{2.4). The results from ¢t = 0 to ¢ =
o fw, 47 fw, 67 fw, ... constitute a time series ap = y(6o,v0), a1 = y[go(%', )], a2 =
y[w?(fo,v0)], - -

The problem we want to attack is : If, for some dynamical system with time
evolution ¢, we know the functions ¢ — y(¢(x)), x € M, then how can we obtain
information about the original dynamical system from this? The next two theorems

deal with this problem.

Theorem 2.1 Let M be a compact manifold of dimension m. For pairs (p, y), ¢ :
M — M a smooth diffeomorphism and y : M — R a smooth function, it is a generic
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Flgure 2.1: Embedding of 2 limit cycle: (a) embedding in R*; (b) a mapping which
is not an embedding; () the mapping in (b) becomes an embedding after 2 slight

perturba.tibn '
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property that the map $(,(x) : M — R*™*¥, defined by

Do) (%) = {¥(x), 3(0(x)), - -, (™™ (%))} (2.6)

is an embedding; by smooth we mean at least C2.

To show that & is an embedding it is first necessary to show that it is an immersion,
and this is the case if the covectors span the cotangent space, Tr(M). Here Takens
applies transversality to argue that for a generic M,y and ¢, this will indeed be the
case. This is the key concept of the theory. For only a pathological or trivial choice
of M, and ¢ will the derivatives of the iterates of the map be linearly dependent.
Tf they are arbitrarily perturbed in the space of possible manifolds, [unctions, or
observables, the linear dependence will be removed. The real world of thermal and
quantum noise guarantees the experimentalist this perturbation.

After showing that the map is an immersion { a local property ) it is necessary lo
show that it is injective ( a global property ). Takens makes this leap with a partition
of unity, a technical tool that is frequently used for this purpose. The technical details
are necessary to make the proof rigorous, but remember that the heart of the argument
is the observation that the derivatives of the iterates of the map will generically be
linearlf independent. The theorem says nothing about just how independent the
vectors are; we will later return to this important distinction between v;rha.t is true
mathematically { @ is an embedding ) and what is true experimentally.

The transversality arguments used are quite flexible; a wide variety of functions
will serve just as well as time delays. All that is necessary is to find 2m + 1 functions
that are generically independent. In the next theorem, Takens shows that derivatives

will work. Here o, again denotes the flow of F'; this time smooth means at least cm.

Theorem 2.2 Let M be a compact manifold of dimension m. For pairs (F,y), F a

smooth vector field and y a smooth function on M, it is a generic property that Lhe
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map b, : M — R, defined by

81y = (400 L), Tt} (2.7)

is an embedding.

From the last two theorems, it is clear how a dynamical system with time evolution
i, and observable y is determined generically by the set of all functions ¢t — y(pe(x)).
In practice, the following situation may occur : We have a dynamical system with
continuous time, but the values of the observable y is only determined for a discrete
sel of values of t. This is exactly the situation that occurs in our sea clutter modeling
problem. Also, instead of all sequences of the form {y(wi(x))}20, X € M, we only
know such a sequence for one, or a few values of x. In this light we should know
whether, under generic assumptions, the topology of, and ¢ynamics in the positive
limit set of x is determined by the sequence {y{1i(x))}2o- This question is treated

in the next theorem and its corollary.

Theorem 2.3 Let M be a compact manifold, F a vector field on M with flow v,
and p a point in M. Then there is a residual subset Cr, of positive real numbers
such that for € Ck,, the positive limit sets of p for the flow ¢, of F' and for the
diffeomorphism @, are the same. In other words, for 7 € Crp we haﬁé that each
point @ € M which is the limit of a sequence ¢y (p).ti € R, ti — +00, is the limil of

a sequence py,.(p), ni € N(integer),n; — oco.

Note that this proof provides only a residual subset, not a more desirable full
measure one. The set is almost certainly of full measure for any physical system,
however proving this is more difficult and has not yet been done.

The preceding simple theorem, along with the earlier ones, implies a corollary

that finally gives the central result on observing dynamical systems. We have seen
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that discrete time maps on the manifold lead to an embedding in R?™+! through the
observable and time delays, and we have just seen that the conversion of a continuous
time flow into a discrete time one by choosing a fixed sampling interval gives the same
limit set. These results together imply that a discretely sampled data set embedded

into R2™+! has the same limit set as the real system.

Corollary 1 Let M be a compact manifold of dimension m. We consider quadruples,
consisting of a vector field F, a function y, a point p, and a posilive real number 7.
For such generic (F,y,p, ), the positive limit set L*(p) is diffeomnorphic with the sel

of limit poinis of the following sequence in R*™+1 ;

Srawr = {W(or(P)): ¥(@a1)r (P))s - - - W@ pra2m)- () } oo (2.8)

Here diffeomorphic means that there is a smooth embedding of M into R*"*! mapping
L*(p) bijectively to the set of limit points of this sequence.

Takens Embedding Theorem therefore tells us that the trajectory of the embedded
dynamical system is simply related to the trajectory of the initial system in its full
phase space. In the sea clutter modeling problem, this means that if the experiment
was able to simultaneously measure all the {actors that are relevant Lo the sca surface
backscattering process, a plot of the data would differ from the one generated by the
trajectory of the embedded dynamical system by only a smooth change of coordinates.
This change of coordinates will vary throughout the phase space, but in such a way
that the two plots will differ only by local stretching : qualitative and quantitative
measures of the behavior of the flows will be unchanged. After stating this important

discovery, we can start our discussion on model reconstruction which is strongly based

on the Takens Embedding Theorem.
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2.3 Basis of Model Reconstruction

As we mentioned earlier, in model reconstruction we attempt to develop models for
physical systems by seeking an algorithm that reads a time series of data observed
from a physical process and, {rom that, generates a model to describe the [uture
behavior of that process. This is called model reconstruction or reconstruction of
dynamics. An advantage of the procedure to be described below is that, being highly
empirical, it is uncontaminated by any particular physical preconceptions that may
enter into the derivation of a theoretical model. Thus, comparison of the empirically
reconstructed attractor with a theoretically predicted one offers the investigator a
stringent test of the theory that makes the prediction.
At the most basic level, one applies model reconstruction to a time series a;, @2, @3, - -

by finding an integer N = 1,2,... such that IV consecutive entries a1, Gk+2, Gh+3y -« 3 Th+N

determine the next entry in a fixed manner :

CruN+1 = f (ak+1, Akt2y: 0 ak+N) (2-9)

Of course, major problems with this procedure are immediately apparent. How do
we know such a number N even exists? Even if we know that such a number exists,
how do we find it? And granted that it is known, how do we find the [un(_:t.ion f?
Takens Embedding Theorem tells us that suppose that we have an m-dimensional
manifold M as the phase space, then we may assign to each state x in M a point in

Euclidean N-dimensional space given by

1() = {yle (L ¥ (s -, 3l (X))} = (@1, 22, -, an) (2.10)

provided that N is greater than or equal to 2m + 1. Since the assignment I defines
a bijective correspondence between the phase space M and its image M’, these two

objects are entirely equivalent. In particular, the dynamic ¢ determines an equivalent
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dynamic ¢’ on M’ by the requirement that the equaticn

@' [1(x)] = I[e(x)] (2.11)

be satisified. Upon using Eqs. (2.10) and (2.11), we see that for (a1, @2,...,aN) =

1(x), a point in M’, the equation

@'(a1,a2,....aN) = (az2,a3,.--,6N,GN41) (2.12)

will hold with
ans1 =yl (x)] (2.12)
However, as long as it is in M’, the point (a1, az,... ,an) uniquely determines the
state x, which then via Eq.(2.13) determines ay41. Thus the point (ay,az,... an) of

M! determines the coordinate ay4) and we may write

N4l = f(a;, (15 T ,G.N) (214)

for some uniquely defined function f. And clearly this function is the one required in
Eq.(2.9). Finally, it follows from the Takens Embedding Theorem that this function
is smooth.

Thus the Takens Embedding Theorem enables us to conclude that if our physical
system admits a model with a m-dimensional manifold M as phase space and &
generic transformation ¢ as the dynamic, then for the time series of a:ny generic
observable, an equation of the type in Eq.(2.14) will hold with N greater than or
equal to 2m +1 and f(a1,a2,...,an) a suitable smooth function. In this way, the
Takens Embedding Theorem carries us some way towards the resolution of the first of
the problems outlined above, provided that we know that our physical system admits
a model of known finite dimension.

We turn now to the interesting case in which we have reason to believe that our
system does admit of a finite dimensional model although we do not know the dimen-

sion of the model. On the other hand, we assume that we do have available a very long
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time series of data for an observable, as long a series as we may need, and we assume
that it is a time series of the form given by ao = y(x),a1 = ylo(x)], a2 = yie*(x)].. ..
{or some initial state x. We also assume that both ¢ and y are generic. In a fa-
vorable case, the initial state x may satisfy a condition of ergodic type that re-
quires that the sequence of sucessive states X, (%), p2(X),... visits every neigh-
borhood of every state o in the phase space M. In other words, the sequence
x, @(x), p*(x), ... fills up the phase space M. It then follows that the sequence
of N-tuples (ag,ar,...,an-1), (ay,az2,-..,an), (82,03, -, an+1),-- - fills up the image
phase space M'.

To illustrate this phenomenon, we consi¢er a simple example. Let the phase space

M be the unit circle in the complex plane,
M = {z | z complez and |2| = 1} (2.15)
and we let the transformation ¢ be defined by
o(z) = zexp(2mic) (2.16)

where i and 7 have their usual meaning and « is an irrational number, and for sim-
plicity 0 < & < 1. Then the sucessive states z,¢(2), 9*(2),¢%(z), . . . do indeed fill
up the unit circle. For our observable we use the real-part function y(z).= Re(z) so
that we generate the model time series ag = y(2),a1 = y(p(2)), a2 = y(¥¥(2)),-- -
Now we may take N = 2-1+1 = 3. As one may check easily, the 3-tuples
(aq, ay, az), (a1, 62,03}, (a2, a3, a4),. . fill up a planar ellipse in Euclidean 3-space and
that planar ellipse is a distorted copy of the unit circle. In addition, once we have
reconstructed this smooth copy of our original phase space, we may reconstruct the

dynamic as the transformation
!P'(ak+1, ak42, ak+3) = (ak+2, Q%43 ak+4), (2-17)
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where
arya = faksr, Qre2, ake3)- (2-13)

To find out the function f, consider the trajectory determined by
Znt1 = 2n eXp(2mic). (2.19)
We obtain a time series of observations by using the real part function
o= Re(z)) (2.20)

Write z, = s, + 2l 50 that s, is the real part and t, is the imaginary part. Then

Snpl = Spcos(2ma) — t, sin(2ra) (2.21)
and
Snpz = S cos(4ma) — iy sin(4ra) (2.22)

Using sin(4ra) = 2sin(27a) cos(2ra), we may eliminate ¢, from Eqs.(2.21) and (2.22)
to obtain

25n41 COS(27Q) — Spy2 —Sn =10 (2.23)

Thus, the reconstructed space M’ will lie in the plane defined by the equation
%a, cos(2mc) —az —ay =0 S (2.24)

We have sin(2ra) = [1 — cos?(2ra)]'/? and s2 +12 = 1. From these two relations and

Eq.(2.24) we see that M" also lies in the elliptic cylinder defined by the equation
a? — 24,0, cos(2ma) + aj = sin’(27a) (2.25)

In fact, A’ is the planar ellipse equal to the intersection of the plane and the cylinder.

Eq.(2.23) will hold also with n replaced by n +1, so that

Sn33 = 26042 €08(2T Q) — Say - {2.26)
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Solving Eq.(2.25) for 2cos(27a) and substituting the result in Eq.(2.26), we obtain

finally
Sn + Snp2

)5n+2 — Snti1 (227)
Sn+l

sne3 = (
which implies that the function f(a1,az,a3) is given by Eq.(2.28); that is, by

a,az + a3 ~ a?

flar,a2,03) = (2.28)

aa

To sumr.arize, we may say that the reconstructed phase space M’ is the subspace
of Euclidean N-dimensional space RV filled up by the consecutive N-tuples of the

given time series and that the reconstructed dynamic is given by

SO'(Gk—g-l, Qrg2y-0n Gk+N) = [ak+2, Art3y-- - k4N f(ﬂk+1, Tpg2y 00 ak+N)] (2~29)

where the function f is the function which predicts the next entry in the time series.
The Takens Embedding Theorem assures us that this function exists, and therefore
in principle we may approximate on the reconstructed phase space by using the time
series as data. In the favorable example above, for the sake of simplicity, we were
able to find the function f directly from our knowledge of ¢ rather than from an
approximation algorithm like the one to be described in the Chapters 5 and 6.
There are two conclusions to be drawn from the above example. First, we can
indeed choose any component of the process to perform the dynamics’ reconstruction;
that is, any factor like the real part, imaginary part, amplitude, or phase -.component.
This point is rather intriguing since our radar data are stored in ~omplex form (
which is a result of coherent processing ), and this method tells us that we can just
use either component. The interesting point is that using only one component for
this modeling technique, we can perform the detection of a small target, a problem
in which many people believe that both the amplitude and phase are required. This
is a problem of extracting information from data; a probabilistic approach obviously

is not as efficient as the dynamical method. This observation also opens a new line of
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thinking: extracting more information does not necessarily rely on hardware but may
also be possible through software. More precisely, radar researchers have a tendency
to try to construct more advanced, sophisticated radar systems to achieve better
performance. As in the above example, noncoherent radar is deemed not capable of
detecting small target in sea clutter. So they look for a coherent radar which can
provide more information. This approach is of course a feasible one; but the tradeoff
is the higher expense of building a more comi:licated' radar system. Dynamic theory
tells us that a simple noncoherent radar using just the envelope may also have a good
performance, provided we know how to extract the information from the data!

The second point is that an embedded dynamical system can indeed extract the
underlying dynamics from the data. In the example, the dynamical attractor is a limit
cycle and a diffeomorphic system is reconstructed from the data. The only problem
that we may face ( it dees not appear in this example } is the construction of the map
f. In this particular example, a direct construction is possible because it is simple and
some prior information is given. However, this is not the case in general. In our sea
clutter modeling problem, we have no existing knowledge on this modeling strategy
and hence no prior assamption should be imposed to bias the model. The derivation
of f is then the major and the most important part of this approach, since we nced
a model to perform further research like detection. We will solve this probiem by the
use of a neural network. We will show in Chapters 5 and 6 that it is a very powerful
tool in extracting chaotic dynamics.

Before we can apply this novel model reconstruction technigue to our sea clutter
problem, one assumption of this technige must be justified for the sea clutter data.
This assumption is the finite dimensionality of the model. That is, we have assumed
that the system should admit a finite dimensional model and this dimension deter-
mines the number of variables involved in the process. Determining the dimension of

the sea clutter attractor is covered in the next chapter.
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Chapter 3

The Search for Ati;ractors in Sea
Clutter

3.1 Distingishing Random and Deterministic Sys-
tems

In order to illustrate the type of problem we want to attack in this chapter, we
first discuss an example. Suppose we have some physical apparatus which, once it
is started, gives a number as experimental output after each unit of time. So the
output of running the experiment once is a bounded sequence {a;}. For the moment
we assume that in such sequences A = {g;} of experimental data, i runs through all
natural numbers.

We are interested to know whether, on the basis of such a sequence, our apparatus
is deterministic or not. Of course, to make this question more precise, we need a
definition of a deterministic system. We say that a system or an apparatus as above,
admits a smooth deterministic model if there is a smooth differential equation, or

vector field, X = F(x) on the phase space R", that is, x,x € R" and F: R* = R*
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smooth, and a smooth function Y : R* — R such that

1. for each observed sequence A = {a;}%2, of experimental data there is a point
%o € R such that a; = Y[xo(1)], where t — Xo{t) is the solution of the above

differential equation starting at Xo, that is, with xo(0} = Xo;
9. for each xp € R, the solution xo(t) for t 2 0 is bounded.

In this case we call the system smoothly deterministic. If only for some given sequence
A = {a;}, (F,Y,X¢) as above can be constructed such that a; = Y[xo(7)], we say that
Y admits a smoothly deterministic explanation. The first condition is very obvious. It
s the deRnition that we used in Chapter 2. The second condition may look strange al
a first glance, but it is indeed necessary. Let B = {b;}22, be some bounded sequence.
Then there is a smooth function f : R — R such that for all ¢ € N, f(Z) = b;. Now,
taking as differential equation & = 1, = € R and as initial point zo = 0, we see that,
without the condition of bounded positive integral curves, any bounded sequence
would admit a smoothly deterministic explanation.

Suppose next that the system is not deterministic, or rather, to be more explicit,
that in the sequence {v:}%, of experimental data, each yi is a random variable,
independent of the other yis. We would expect that the data sequence cannot admit
the above definition. In other words, there is a subset belonging Lo the space, which
contains the set of all possible sequences of experimental data, is of measure one that
no element of that subset admits a smooth explanation.

The conventional way to attack this problem is by transforming the experimental
data into a power spectrum. It is the most popular technique in signal processing
and it is good for the analysis of periodicity and quasiperiodicity. However, [or
other aspects of the data it is less satisfactory; for example, there is no way to teil
from the power spectrum the difference between a signal generated by a strange

attractor and a random signal. Therefore, it is very important to find some invariant
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which can distinguish between random and deterministic processes. Starting at the

early cighties, physicists and mathematicians began to use an invariant called fractal

dimension to achieve this goal.

We shall explain what a fractal dimension is in a later section of this chapter.

For now we outline the procedure for distiguishing between a stochastic system and

deterministic system :

1.

o

Measurement, of a system The starting point is the measurement of a signal

from the experimental system, a(t). In our case, the system consists of a radar
and a sea surface for reflection. In order to prevent artifacts from the digitiza-
tion process, the signal must be sampled at a rate equal to twice the highest

frequency present.

Phase Space Reconstruction Since the only information we have about the sys-

tem is an experimental data sequence obtained through a physical apparatus,
the first thing we need to do is to construct a phase space of the underlying dy-
namics. There is no fixed way to perform the reconstruction. Basically, we can
use either differential or difference equations for model reconstruction. The only
requirement is that the chosen variables should represent a phase space of a dy-
namical system. In other words, for an N-dimensional system, we should have
N artificial variables to represent the original system so that the ‘c.:onstructed

system can be diffeomorphic to the old one.

Dimension Analysis Dimension of a dynamical system strictly relates to the

number of independent variables of the system. In later sections of this chapter
we will consider the rigorous definition and the measurement of dimension of
an object given a set of points from the object. There are two reasons for the
determination of dimension. First, the Takens Embedding Theorem holds under

the assumption that the dimension of the underlying manifold is finite. Thus,
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a finite dimension is crucial in showing the possibilty of using the dynamical
approach for experimental data. Second, dimension can delermine the number
of dynamical variables involved in the expermental data received. Although the
exact dimension of the attractor is not strictly equal to the number of dynamical
variables, the number of dynamical variables needed can be guessed by knowing

the dimension of the attractor.

. Dynamics Estimation We can regard model reconstruction as a procedure for

constructing algorithms by neglecting initial terms in the time series, by ex-
tending the series far enough, and by choosing a suitable level of resolution. We
determine which subspace M’ of Euclidean N-space is being traced out by the
resulting N-tuples. Then, on that space one fits approximations of the predic-
tor function to the data provided by the time series. The resulting system will
reproduce an attractor from a possibly unknown finite-dimensional model for

the physical process generating the time series.

3.2 Measurement of Sea Clutter

The Communications Research Laboratory (CRL) of McMaster University is con-

ducting a programme of research to develop improved marine radar techniques for

the detection and classification of icebergs and sea ice. In response Lo the equipment

requirements of this programme, CRL has developed a research oriented radar system

called Intelligent-PIXel (IPIX) radar, tailored specifically to the demand of research

Current marine radars utilize only the amplitude of the radar signal, and therefore

ignore the information contained in polarization and phase. I[P1X is an instrumenta-

tion quality radar system which has the following features. First, it is dual-polarized
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and coherent. So it can provide information on more than just one component. This
property is also useful to our dynamic research study since it provides a basis for
comparison to our one-component dynamics reconstruction method. Second, IPIX
has a built-in calibration equipment, which permits quantitative measurement to be
made with high confidence, and a digital control system which allows experimental
parameters Lo be easily varied, and once selected they remain accurate and stable.
These equipments make the radar measurements highly reliable.

The [PIX radar system was installed at Cape Bonavista, Newfoundland, Canada
in June 1989. Floating ice targets of all sizes commonly pass within radar range of
this site during the Spring season and a wide variety of sea states can be observed
throughout the year. The radar antenna is mounted at a height of about 25 metres
above water, similar to that of a typical ship-mounted antenna.

During the field trip, various radar data such iceberg, fishing vessel and sea clutter
was collected. Calibrations were performed which allow the processing software to
velate any digitized signal value to an absolute power level at the receiver input. Our
ficst job is to test whether the sea clutter is chaotic or not, and later in this thesis,
we will apply the theory to detect some small targets such as a waverider.

To make a more convincing arguinent, we shall use five different types of sea clutter
data collected at that field trip. These five data sets are chosen by the engineer who
is in charge of the IPIX radar, and the author has no control on them. They are
chosen according their variabilities to represent all the data sets collected in the field

trips. Their properties are described as follows:

1. D1:
time | 14 : 56 (06/07/89)
pulse repetition frequency 2000 Hz
polarization HH
pulsewidth 200 ns
seastate 1.57m
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2. D2:

3. D3

4, D4:

5 Db

time | 12 : 48 (06/07/89)
pulse repetition frequency 2000 Hz
polarization HY
pulsewidth 200 ns
seastate 1.30 m
time | 12 : 59 (N6/07/89)

pulse repetition frequency 2000 Hz
polarization VH
pulsewidth 200 ns
seastate 1.80 m
time | 19 : 51 (06/07/89)
pulse repetition frequency 200 Hz
polarization HH
pulsewidth 200 ns
seastate 1.26 m
time | 18 : 25 (06/07/89)
pulse repetition frequency 200 Hz
polarization HH
pulsewidth 200 ns
scastate 2.66 m
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3.3 Phase Space Reconstruction

Before we can apply the nonlinear dynamical method to the data sequencé, we have
to reconstruct the state space of the system. The validity of the reconstruction is
guaranteed by Takens Embedding Theorem discussed in the previous chapter. We
will discuss the way to achieve this reconstruction in this section.

The purpose of the reconstruction is to reinterpret time signals as multidimen-
sional geometrical objects. This allows us to use notions from geometry to describe
and characterize a time evolution. This method is basically different from the clas-
sical approaches using autocorrelation functions and Fourier transforms, which are
based on the underlying paradigm that all temporal oscillations may be decomposed
into harmonic and periodic vibrations. The geometrical view of dynamical processes
is based on the assumption that signals are generated by some deterministic and
finite dimensional dynamical system, which is not necessarily the superposition of
periodic oscillators. The observed signal can then be interpreted as the projection of
a multidimensional phase space trajectory.

To illustrate the idea of phase space reconstruction, we will use a simple periodic
oscillator for demonstration. The trajectory of a simple periodic oscillator in two-
dimensional phase space is described by the equations z(t) = asin(wt) and (t) =
aw cos{wt). A simple trigonometric transformation shows that the velocity #(t) can
be rewritten as : #(t) = awsin(wt + 7) = wz(t + 7). From this simple example we
learn two things. First, for harmonic ocsillatory signals, we can replace one of the
coordinates ( or variables ) with the other by looking at the other variable with a
certain time delay T. Second, there exist specific values of the time delay T for which
reconstructed variables are orthogonal.

Now, it should be clear that the heuristic idea behind the reconstruction is that

to specify a N-dimensional dynamical system at any time, the measurement of any
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N independent quantities should be sufficient. By the Takens Embedding Theorem,
we know that any set of N independent quantities which uniquely and smoothly label
the states of the attractor are diffeomorphically equivalent. One possible set of N
such quantities is the value of the coordinate with its values at N — 1 previous times,
that is, the time delayed version of the time series a,@¢—r, @127, ..., @canT 85 WC
illustrate in the above simple example. Therefore, to reconstruct dynamics is simply
a job of choosing a suitable time delay 7. In the ensuing flood of applications of
this reconstruction idea, researchers found that some reconstructions are betler Lthan
others. Usually a bad reconstruction is one that is not invertible, that is, points in
the reconstructed phase space do not uniquely identify points in the original phase
space.

The Takens Embedding Theorem tells us that the probability for making a bad
choice is essentially zero; bad choices are those, for instance, that are commensurate
with an aspect of the system’s dynamics and hence restrict the region of phase space
which is sampled. This is 2 mathematical statement however, not a practical one. In
practical situations, especially in our radar or signal processing problem, noise which
's unavoidable makes all reconstruction non-invertible and whether a reconstruction
is good or bad is a question of degree. Also, the finite precision available to us will
set a lower limit on the precision with which phase space can be viewed, and so
trajectories that are mathematically distinct may be observationally identical. For 7
near zero the trajectories will lie near the diagonal of the embedding space, and as
7 is increased they will expand away from the diagonal. This implies thal the besl
choice for T is one that maximally separates nearby trajectories in phase space.

To obtain a good choice for 7, we first need to have a measure of goodness.
Following the idcas of independence of state vectors, we can borrow some idea [rom
statistics. To be more precise, we ars looking for a delay so that the state vectors are

as independent as possible. A good measure of this dependence in statistics would
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be the widely used autocorrelation function between two random variables and ¢ :

I= [sqpuls,q)dsda (3.1)

If a time series of the observable a(n) is given, we can simply apply the definition
of autocorrelation function given above to the preblem by choosing a(n) as s and
a(n + 7) as ¢. In this way, a(n) and a(n + 7) can be choosen as independent as
possible. A naive choice is then the value for which the autocorrelation function first
passes through zero.

There are several reasons that we decide to use the autocorrelation function. First,
the estimation of this function is well-analyzed, simple and unbiased. This means that
the estimated value is reliable. Second, the dimension used in this thesis is the corre-
lation dimension which is the second-order one :n the information dimensions. Thus,
the linear independence would be the most important and even the only information
involved in the calculation of the dimension. Third, this method is less sensitive to
noise. The autocorrelation function of the five data sets are plotted in Figs. 3.1-3.5.
We can see that they have quite different behavior. D1 has its first zero-crossing at
r = 5, and D4 is almost completely uncorrelated. The dynamic reconstruction will

be performed for each data set according to its first zero-crossing value.

3.4 Attractor Dimension

Not only does the concept of attractor dimension serve to select the correct embedding
dimension N, but it also serves as a means of illuminating the complexity of attractor
structure. In this section we will be concerned with two definitions of dimension that
are appropriate for attractors, the Hausdorff and correlation dimensions.

We begin with the Hausdorff dimension.To motivate the definition of Hausdorft

dimension, we consider a cube in Euclidean 3-space. If we cover this cube with k
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balls of radius r, we know that the number k4nr3/3 is an overestimate for the volume
of the cube; moreover, if k. is the minimum number of balls of radius r necessary to
cover the cube, then k,47r3/3 is a better overestimate of the volume of the cube. In
fact, we know that the limit of these overestimates as the radius r approaches zero is
the volume itself of the cube. Thus lim,_o k,r* exists and is finite. It is easy to see
then that the number 3 is a critical threshold for the cube. Mathematically, we can
express this fact as

lirrék..r” =0 for p > 3 (3.2)
linak,-r"’: 00 for p <3 (3.3)

The same procedure is carried out for a square in the plane produces a threshold of
2. In general, for the hypercube in Euclidean n-space the threshold is n, and for a
compact m-dimensional manifold, the threshold is m. Thus one is led to the following
definition. Let J, be the minimum number of balls of radius r necessary to cover the

compact space A. If there exists 2 threshold d; such that
lirré.f,'rp =0 for p > d; (3.4)

‘l'i_l"% JarP=co  for n< df (3.5)

then we say that d; is the Hausdorff dimension of the space A. It is a routine matter
to show that the number d; determined by Eqgs.(3.4) and (3.5) is given n‘llore directly
by the equation

d; = lim —LIL- (3.6)

A serious difficulty still remains. The limits in Eqs.(3.4) and (3.5), may not
exist and to resolve it we must introduce the limits inferior and superior. The limit
inferior of a possibly nonconvergent sequence of real numbers is simply the smallest
limil point of the sequence, and the limit superior of a sequence is the largest limit

point. Because co and —oo are allowable as such limits, the limit superior and the
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limit inferior of a sequence always exist : they are equal if and only if the ordinary
limit exists. We usually call the dimension with inferior and superior as lower (d})
and upper dimension (d}), respectively. Now, although these dimensions dy and df
always exist, Lhey are not always integers. For example, the Cantor set in Euclidean 1-
dimensional space has the Hausdorff dimension :%% The set is obtained by removing
the open middle third from a unit interval, the open middle thirds from the resulting
intervals, and so on ad infinitum. The set is dense, totally disconnected and closed. In
somne sense,it is fractured nature that the fractional part of the fractional dimension
measures, and it is a similar fractured nature that is shared by most attractors.

To compute the Hausdorff dimension, assume that we are given a sequence of
observables, a(t). One can generate the complete state vector by using the recon-
struction method described in the last section. For an N-dimensional phase space,
a cloud or a set of points will be generated. The fractal dimension of this set can
be estimated by covering the set by N- dimensional cubes of side | and determining
the number of cubes A(l) needed to cover the set in the limit [ — 0 [13]. This is
the so called box-counting algorithm and if this number scales as Nxildasli—=0
then the scaling exponent d is an estimation of the fractal dimension for that set.
In a log A(1), log! plot the exponent d can be estimated by the slope of & straight
line. If the original data sequence is random, then d = N for any N ( a random
process embedded in a /N-dimensional space always fills that space ). If, };owever, the
value of d becomes independent of N, ( that is, it reaches a saturation value Dp ), it
means that the system represented by the time series has some structure and should
therefore possess an attractor whose fractal dimension is equal to Dy.

The above procedure for estimating Do is a consequence of the fact that the actual
number of variables present in the evolution of the systerm is not known and thus we
do not know a priori what N should be. We must, therefore, vary N until we observe

a structure which becomes invariant in higher embedding dimensions.
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The above numerical approach to estimate the dimension of an attractor from
a time series is, however, very limited. The reason is that an enormous number of
points on the attractor is required to make sure that a given area in the phase space
s indeed empty and not simply visited rarely. It has been documented [19] that a
box-counting approach is not feasible for phase space dimension greater than two.

An alternative approach avoids the above metric thinking, and the idea is based
on the use of probability. The most popular one in this approach is the correlation
dimension, which is defined for a sequence of vectors aj,as,as,... in the space A.
The assumption is that this sequence is dense in the space A. Then one expects
that the proportion of these points within a ball of radius r should be equal to the
m-dimensional normalized volume of that ball, so that the normalized volume of the
whole space A is equal to one. On the other hand, one also expects that the volume
of a ball of radius r should be proportional to r as r — 0. Accordingly, after fixing

a point ag in A one is led to define first :

P. = lim

T=—00

{number of integers k < n such that lag — ak| < r} (3.7)
- .

so that P, is the proportion of the sequence ag, 21,2z .- that lies in the ball of
radius 7 centered at the point ag. Then since one expects that this proportion P is
proportional to r,

P, ~ 7 (3.8)
we may define a dimension d by setting

. In(P)
d=lim 1o (3.9)

Next we modify the definition above to match that introduced in [17]. The defini-
tion we have just given really defines a dimension at the point ag. The dimensions we

seek are global; they must apply to the whole space. Therefore, we replace P, with
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its average over the whole space,

A = lim {number of pairs k,m < n suchthat |ay —am| < r}

fl.—'OO

(3.10)

n?

Then the definition of Grassberger and Procaccia for the correlation dimension is

given by

d. = lim In(4;)

lim —— (3.11)
Any difficulties with the existence of this limit may be eliminated by replacing the
limits in Eqs.(3.10) and (3.11) with limits superior and limits inferior as appropriate.

To decide which of the modified limits is appropriate, we recall that Grassberger
and Procaccia gave a heuristic argument to show that d. < d;. Here we replace
that argument with a short but rigorous proof of the same fact and simultaneously

determine which modified limits are appropriate in Eqs.(3.10) and (3.11).
We begin by expressing A, in terms of the quantity given by

N(r,n) = {number of pairs k,m < n such that jak — am| < 7} (3.12)

so that A, = liMyae ’—V—%ﬂ, provided that the limit existe. ( Note that the counting
in BEq.(3.12) includes the order of a pair, that is, double counting. ) For brevity, write
p = Jg. Then there exist p balls of radius § covering the space A, and a.ny two points
in a single one of these balls are within distance r of each other. Some a; may lie in
the overlap of two or more balls; we choose one of these balls and say a, definitely
lies in that ball but not in the others. Let n; be the number of integers k < n such

that a, definitely lies in the ith ball. Then clearly we have
n2+nd+...+nl S N(rn) (3.13)

and

4t +ng=n (3.14)
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d calculus that the absolute minimum

It is easy to see by using the methods of advance
+ ...+ nZ, subject to the constraint of Eq.(3.14), is equal to 22 Upon

of n? + n3
recalling that p = J; we see that
n?
7 < N(r,n) (3.15)
or
1 N(r,m)
—_— 16
Jg_ - n? (3 )
It follows that we have the inequality
1 N m)
— < N
7; < lim inf 7 (3.17)
or
Lca (3.18)
.I%. =T '

where we define A, = limy— inf Mﬂ%—'ﬂ if the actual limit does not exist. By taking

the natural logarithm of both sides and carrying out a few elementary operations, we

see that
In(Ar) In(Jt)
< ——-3 3.19
b = () (319
for which it follows immediately that Grassberger Procaccia inequality is valid in the
form .
d < df (3.20)
if we define d} and d_ by setting
. In(A,)
+ T
df = lim sup Tn(r) (3.21)
and
.. oIn{(As)
d. = _— 2
c = lira inf ) (3.22)

The existence of the limit is a rather theoretical consideration. In general for typical

attractors, the upper and lower dimensions will be identical. It is possible to prove
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this rigorously for some sets. So henceforth we will not specify whether we mean the
upper or lower limit in determining the dimension.

We should stress that the correlation dimension is not the only one available
for experimental determination. There are other dimension measures such as the
information dimension and the generalized dimension. There are several reasons thal
the correlation dimension is the most popular one. First, the ergodic characterization
of dynamic system involves partitioning the phase space into cells and the probability
of observing the orbit falling in the ith cell is given by #, where ¢; is the number
of times the orbit falls in the ith cell out of T points in the data sequence. The
existence of such a probability is guaranteed by the existence of an ergodic natural
measure, and in fact that probability is just the integral over the measure in the cell.
It has been shown [18] that for finite T', there is a bias introduced in the calculation
of dimension by using the naive estimate of probability described above, except for
the correlation dimension. That is, the estimate & can be used in computing the
correlation dimension without producing yet another source of bias. Second, most
dimension estimates are based on the assumption of the validity of the least squares
relation as described in the computation of the Hausdorff dimension. This means that
the deviations of data points from the least squares line are assumed to be normally
distributed random fluctuations that arise because a finite sample of points are used
to represent the attractor. To our knowledge this assumption is seldom acknowledged
and, despite ils wide use, has not been proved to be valid generally. However, this kind
of statistical analysis has been performed on the correlation dimension {6], and has
demonstrated the consistency and asymptotic normality of the correlation dimension.

Third, the determination of dimension using experimental data usually requires
many data points. Correlation dimension is the only one that has been shown to
work for a short data sequence. We are also aware of a negative result of using

correlation dimension for small data sets [28]. Reference [28] has derived a formula
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for the minimum number of vectors needed for correlation dimension calculation, in
support of the assertion that large data sets are required, though no numerical results
are provided in support of the formula. The central idea is that many loops of the
attractor must be sampled to adequately represent its structure. This idea seems
reasonable, but it strictly contradicts the use of a small data sequence. The problem
in Lheir derivation is the assumption that vectors are very closely spaced in time,
which conflicts with the need for independent vectors and optimum sampling. The
argument in [28] against small sets does not appear to overcome the other results [1]
which support the use of dimension analysis on small data sets.

Having outlined the concepts of model reconstruction, attractors, and dimension,
and having established the Grassberger Procaccia inequality, we are ready to test

these concepts by applying them to the sea clutter data described in Section 3.2.

3.5 Correlation Dimension of Sea Clutter

‘The definition and elementary properties of the correlation dimension of Grassberger
and Procaccia were given in the preceeding section. In this section we address its
numerical determination from empirical data.

We begin with a set of points {a; | k = 1,...,N}. It is in the nature of most
strange attractors that pairs of trajectories that are initially close will eventually
become temporally uncorrelated. However, both trajectories will still be on the at-
tractor and remain spatially correlated. This cumulative correlation was defined by
Grassberger and Procaccia as

N .
Clr) =z 2 HO —lav =) (k#3) (3.23)

ka=1
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where H is the Heaviside function

0 ifz<0
H(z) = (3.24)

1 otherwise

The norm|ai—a;| may be any kind of norm measure. The Euclidean norm is probably
used most often, as it is the usual way to calculate the distance between two points.
While this norm has the advantage of being familiar, it is the most time consuming
to calculate.

The relationship between the correlation dimension and the cumulative correlation
function is based upon the power law Eq.(3.8) which is derived from the geometric
considerations previously discussed. The result is valid for * small enough” values
of 7. There are several examples given in [17] that illustrate the region in which the
power law holds. A determination of the correlation dimension is found by ploiting
C(r) vs r on a log — log graph. The region in which the power law is obeyed appears
as a straight line, and the slope ( which is an estimate of the correlation dimension
) is found by fitting a least squares line to this part of the graph. If the sequence of
estimates converges, then we have an estimate of the attractor dimeusion d..

The algorithm can be summarized as follows :

1. Form a matrix whose columns are the embedded dynamical vectors constructed

from the experimental data by the method outlined in Section 3.3.

o

Form a matrix of the Euclidean distances between the columns. The matrix is

symmetric, and hence only the upper triangular part is needed by the algorithm.

3. With this matrix available, the correlation matrix may be calculated directly

from its definition.

4. The final step is to plot the results on log-log paper, and fit a least squares
straight line to the lower part of the data. The slope of the line is then the
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correlation dimension.

Assume that there are T data points in the data sequence, determining the cor-
relation index for a set in N-dimensional space requires us to calculate Eq.(3.12).
The Grassberger-Procaccia algorithm requires storing T' vectors ( TV numbers )
and ~ T2N? operations. Therefore, we use the optimized algorithm for correlation
integrals proposed in [15] to compute the correlation. The algorithm simplifies calcu-
lations and reduces considerably their time requirements.

Note that the Grassberger-Procaccia algorithm is designed for multidimensional
dynamical systems. It follows from Takens Embedding Theorem that we need not
consider a sel of N-dimensional vectors which are characterized by the collection of
all the coordinates of the point in the phase space of the dynamical system, but just
one coordinate. Another point is that in deriving the log-log plot, we need to increase
the embedding dimension to let the correlation dimension converge. The computation
of the distances between vectors for each embedding dimension will therefore produce
many repetitions. The optimized algorithm in {15] is developed to take care of these
two points and results in a much faster computation. Since the detailed development
is quite long, we will not explain it here and refer it to {15). There are also other
algorithms such as the so called prism box assisted algorithm [38] which can reduce
the time consuming problem for large T', but it does not optimize the ébmputation
procedures discussed above.

Now we are ready to apply the algorithm to our sea clutter data. Because sea
clutter data come from a real experiment, it will be contaminated by noise. We will
not do anything on this external noise for the following reasons. First, the dimension
analysis itself has the ability to identify external noise. More precisely, those curves
on the log-log plot will bend. Thus, the dimension will be higher in some regions and

the effect is due to external noise. Second, when the signal to noise ratio is higher than
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95 dB, it is believed that the correlation dimension estimation is valid [31]. Third,
one may suggest to filter the sea clutter data to suppress noise. A common technique
would be to use low pass filtering. We should remember that this concept is based
on the paradigm of Fourier analysis, that is, the relevant information is contained in
signals of a more or less well defined frequency. This approach is reasonable when all
the relevant signals occur with frequencies below the cutoff frequency of the low pass
filtering. When wehavea broadband signal as in the case for chaos, we have to be very
careful with the inl;.erpreta.tion of the observed results. Intuitively, we would expect
that the filtered time series will have a lower dimension than the unfiltered one since
it has been cleaned from the noise which admits infinite degrees of freedom. In fact,
the opposite is observed [3]. In this reference, an increase of the [ractal dimension
from 2.5 to 3.2 of the Duffing attractor has been obscrved. This is because if the
underlying process for the time series is deterministic, low pass filtering is actually
adding a new dynamical variable to the original motion. Thus, iiltering of noise is
not recommended in our sea clutter data analysis.

The results of the correlation dimension analysis for data set D1 - D5 are plotted in
Figs. 3.6 - 3.15. In obtaining these results, 10,000 data points were used. The analysis
performed on all five data sets shows an encouraging result, namely, saturation of the
slope in the log-log plot. The fractal dimensions of the data sets analyzed are different.
D1 has a dimension around 6.5; the dimension for D2, D3, D4, and D3 i‘ies between
7.2-7.5, 7.9-8.2, 8.7-9 and 7.4-7.7. The dashed curves in Figs. 3.11 - 3.15 correspond
to a Gaussian random process, which have been included for the sake of comparison
with the real radar data. These curves were obtained by applying the correlation
dimension analysis to a computer generated random Gaussian white noise sequence.

We may conclude from these five examples that the correlation dimension of sea
clutter is between 6 and 9. However, it seems impossibie to make any conclusive

remark about the relationship between the correlation dimension and properties ol
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sea clutter data by simply observing this correlation dimension.

Care must be exercised in applying this technique; especially for real data. First,
the number of data points used in the experiment is a very crucial factor for obtaining
a reliable result. We believe that it is not necessary to have too many data points,
but the number of data points used must be enough to allow the orbit to go through
a neighborhood sufficiently many times as explained in [1]. Second, fitting the least
squares line in the linear region must be done very carefully. This is the part where
it is easy to introduce errors. The main problem is that the linear region may not
be very clear. The shorter the linear region is, the easier it is to generate an error.
Some methods have been suggested to take care of this difficulty, such as using the
generalized dimension to determine a suitable linear region [32]. Fortunately, in our
situation the log-log plot has a very smooth appearance, and the linear region does
not seem tc be very difficult to locate. In the process of fitting a straight line, we
performed a least squares fit to various portions of the region that appear to be
straight to our naked eyes. It was found that the fits were quite close. Another
observation from these figures is that an immediate saturation does not happen. For
instance, the estimated fractal dimension of D1 is about 6.5, but saturation does not
oceur until the embedding dimension is raised to 11 or 12. This may look a little bit
strange at first glance. However, there is no contradiction to the theory implied here,
since it does not violate the Takens Embedding Theorem. )

In this chapter, we have introduced a very important concept, namely, the fractal
dimension, Lo be used to study the behavior of a dynamical system. This invariant
is so specfic that not only can it indicate the behavior of a dynainical system (
periodic, quasiperiodic, or fractal ), but it also tells us the number of dynamical
variables involved in the process. It is believed that the dimension analysis is the
most powerful analytic tool since the power spectrum. A special kind of fractal

dimension, that is, correlation dimension, is applied to our sea clutter data. We have
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made a very important discovery that sea clutter data behave differently from what
we expect to observe from a purely stochastic process. Specifically, for the radar data
analyzed in this thesis, sea clutter has a fractal dimension varying between six and

ten, depending on the physical circumscvances of the sea surface.
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Chapter 4

Predictability of Sea Clutter on
Attractor

4.1 Basic Concepts

As we mentioned in Chapter 1, a crucial point in the study of randomness of a complex
system is that of predictability. Predictability is not only a very useful factor in many
applications like stock market analysis, weather forecasting, and predictive modeling
of sea clutter. It also provides a very clear indication of the existence of cl'{aos. Many
people even use some measure of the predictability of a dynamical system in the
definition of chaos [41]. Our goal in this chapter is to study the predictability of sea
clutter data to further confirm the existence of chaos in sea clutter ( we will elaborate
on this point later in the chapter ). Before studying the predictability of our sea
clutter model, we should understand some fundamantal issues about predictability.
Consider two observers looking at a system, observer A sees the system at time
t; and the observer B at time t2 > t;. If observer A knows more precisely the state

of the system at t,, the system is said to be predictive. For such a system, earlier

69



observations convey more information than later ones. In other words, predictions
are more accurate than observations. Information is destroyed in a predictive system.
If observer B knows more precisely than observer A at 2, the system is called unpre-
dictive. In an unpredictive system, the later the observation, the more information is
gained.

When we apply this idea to a dynamical system, we can say thal a predictive

system is one where all the trajectories approach one another in the sense that

| @ea(y) = 20X} <l 20 (¥} = 0 () |l (4.1)

for any x and ¥, X # ¥, and any ?; and &3, ty < l2. In other words, the flows
are contracting. On the other hand, an unpredictive system is one where all the

trajectories diverge

| 26 (¥) — @ (x) |>]| wu(y) —eu(x) |l (4.2)

for any x and y, X £ ¥, and any t; and iy, t; < t2. Similarly, these flows are called
expanding.

Now we see that a deterministic system can be unpredictive if it contains an
expanding flow, since the expansion can create information, that is, increase the
phase volume. However, we have not addressed the question of how the steady state
behavior of a dynamical system can be unpredictive.

To answer this question, let us take a look at a very common and important dy-
namical structure - the Smale horseshoe. Basically, Smale horseshoe comprises three
actions : stretching, squeezing and folding as depicted in Fig. 4.1. The stretching
expa.nds the phase space volume of the dynamical system, and hence the dynamical
system become unpredictable. Squeezing and folding are just two other operations
to keep the phase space in the desired base space. This structure illustrates the fun-

damental idea of how a deterministic system exhibits unpredictive behavior; namely,
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Figure 4.1: Basic structure of Smale horsehoe



the existence of both expanding { stretching ) and contracting ( squeezing and folding
) operations. Although it is nct likely that all unpredictive systems must come from
the Smale horseshoe, there is no doubt that the Smale horseshoe does illustrate a
very important idea in explaining the unpredictability of deterministic systems.

Based on the discussion so far, we can conclude that the unpredictive behavior of
a deterministic dynamical system is due to the expansion of the phase space, that is,
increase of information. Therefore, predictability can be defined by the divergence of
initially close pieces of trajectories and estimated by the cumulative distance distri-
butions of expanding pairs of points. Consider the difference between two states of a
deterministic process at a given time. If this difference is small initially and becomes
larger in the future, the deterministic process is unpredictive or unstable. Thus, a
relevant measure of predictability is the rate at which initially small errors grow.

Now consider the time evolution of the sea clutter or scattering system. It can be
simulated by partial differential equation describing the underlying physical processes.
These equations may be conveniently transformed to a set of ¥ ordinary differential
equations :

d—;f- = f,-(:rl,:cg,...,mN), i=1,2,...,N (4.3)

or a set of difference equations :
zi(t + 1) = filz(t), zat), - .., 2w (), t=12,...,N (4.4)

with NV suitably normalized variables z;. In our model reconstruction problem, these
equations are constructed from the data and 1\1 is then a suitably embedding dimen-
sion of the dynamical system. Thus the phase space containing the time evolution
is spanned by the N different variables z;, i = 1,2,..., V. A sea clutter state at
an initial time is realized by a vector Xp = (.cl-(to),:rz(to), ..., Zn(to)) in phase space.

Another realization Xo + 6% may be defined by an initially small vector or deviation
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from the basic state xg :

6x = (6z1,022,...,02zN) (4.5)

The difference between two states can be measured by the distance D(#) = (8x-8x)'/2
which evolves as time progresses.

| One way to evaluate the predictability is to solve the nonlinear equation Eq.(4.3)
twice with slightly different sets of initial conditions. Then D(t) can be evaluated for
a sequeﬁce of time steps. Beyond the time limit of predictability, D(t) would osciliate
about a value not greater than the difference between two randomly selected states
of the system. If D(¢t) stays below this threshold, one can expect predictability for a
large time range.

Although this approach works in principle, we find it unfavorable to our problem
for at least Lwo reasons. First, the computation of this procedure is too heavy. Second,
this approach requires an accurate model Eq.(4.3) for the underlying experimental
system. In our problem, what we have is just the experimental data, and the model
is just an estimated one. Hence the reliability of evaluating the predictability by an
estimated model is questionable.

Another approach is to evaluate the growth rate of error éx in the system, which

is governed by the set of differential equations

%‘- = 2/1,','51‘5, 1=1,2,...,n ) (4.6)

j=1
The coefficeints A;; are the elements of the Jacobian matrix of f = (f1, fa,..., fa)s

defined by the partial derivative of Eq.(4.3)

_ afi(z1,z2,. .-, Zn) |

Ay 0z;

2= (4.7)

They are determined at the basic state x = xp changing with each time step; therefore,
the elements A;; are, in general, time dependent coefficients which vary with the time

evolution x(t) of Eq.(4.3).
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If a state is stable ( unstable ), D(¢) |x=x, remains bounded ( grows quasi-
exponentially ) for all time. The local stabilities of the sea clutter evolution are
determined by the eigenvalues A;, ( or characteristic exponents ) of the Jacobian
matrix which change with time. I[ at least one eigenvalue X has a positive real part,
the evolution is unstable and D(t) grows proportionally to e*!-t}; otherwise the
evolution is stable.

The magnitudes of the positive characteristic exponents can be used as a measure
of unpredictability. They define, in a time average sense, the mean rate of divergence
of initially close trajectories separated by an infinitesimally small vector §x. In this
sense, they describe the system’s sensitivity on initial conditions. Thus, the intrin-
sic unpredictability is characterized by the magnitudes of the positive characteristic
exponents to be deduced from obscrvations.

The following section introduces the concept of characteristic exponents and how
unpredictability of sea clutter can be estimated by the growth rate of infinitesimally

small errors using observed data.

4.2 The Characteristic Exponent as a measure of

Predictability

First we consider the one-dimensional case. The dynamic is described by a difference

”

equation
a(t+1) = f(z(t) (4.9

and z(Zo) the initial condition generating the reference trajectory {z(t)}. The stability
of this trajectory is determined from the evolution of a neighboring trajectory starting

at Z(to) = z(to) + 6z(to). After one iteration, we have

(t1) = z(t) + 6z(ts) = f(=(to) + 6z(t0)) = f(z(to)) + f'(z())0z(to),  (4.9)
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f' being the derivative of f. The derivative is then given by
sz(t1) = f'(=(to))dz(to) (4.10)

Afler a second iteration, by the chain rule of differentiation, we get

Sa(ta) = £(z(t))8z(k) = f(2(t))f (z(ta))éz(to), (4.11)
and at the nth step .
sa(ta) = (1 £a(tNbz(to) (4.12)

The evolution of the distance between the two trajectories is obtained after taking the
absolute value of this product. Because of an exponential convergence/divergence of
the trajectories, we assume |8z(tn)| ~ (7es £)*|8z(to)l, where s is an effective rate

per iteration step obtained from

) § T n—1
ers = B (152 = (I 17 (e())® (4.13)
i=0
which, once logarithms are taken, gives
n—l
= log(sy) = Jim, — 3 log(Lf (z(t)D) (4.14)
noico

This limit, called the Lyapunov exponent, clearly presents itself as the time average
of log(|f']), the local divergence rate. After the transient has decayed, all physicaily
relevant trajectories belonging to an attractor are expected to yield equivalent time
averages. The so-defined Lyapunov exponent is thus expected to exist and to be
independent of the initial condition taken in the basin of atiraction of the attractor.
Fufthermore, it is easily seen to be invariant under smooth changes of variables.
Indeed, instead of measuring the state variable itself, we may measure an observable
a = y(z), where y is a diffeomorphism. Then, from the time series of the observable
a, that is,

a(tme1) = 9la(ta)) = (v © F 3™ )alts) (4.15)

(6]



Using (y~1)'(a) = ['(2)]~?, by the chain rule of differentiation we obtain easily

e = vt (T 17D ™) aeo (4.16)

=0

or, taking the logarithms as in Eq.(4.14), we have
M= lim [-' Z log(1f'(=(ta))D}
|°"0

+ lim ;(log(ly'(m(tn)l) + log(l(y™") (a(ta))})) (4.17)

where the “boundary terms” on the second line become negligible when n tends to
infinity, so that we have A(®) = A®). that is, the Lyapunov exponent derived from an
observable is the same as the original system.

To generalize the above idea to higher imensional maps, we consider an N-
dimensional map X(tns1) = f(x(t2)). Around a given iterate, we have

N
6zi(tnsr) = 2 3; fi(x(tn))b;(tn) (4.18)

where 8; f; denotes the partial derivative of component f; with respect to variable z;.
The N x N matrix J{t:) = [8;fi(x(ta))] is by definition the Jacobian matrix of [
evaluated at x(l,) and, by analogy with Eq.(4.12), in vector notation we have

HJ )) 6x(0) o (4.19)

=0

where the product must remain time-ordered I(taz1),- .., J(t1), I(to) since matrix
multiplication is not commutative in general. The stretching of the distance between
two neighboring trajectories is given by the average evolution of the length [6x(tn)i

or, preferably by |6x(t,)1? :

16x(ta)]? = 6x7(tn) 8x(tn)
- [(EJ(t:\)éx(to)]T [('ils(t.-)) 5x(1o)]

557 (o) 3T (10)I7 (1) - - 37 (a1} (tact) - - - I(t2) I (20)] Ex(20)4-20)
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The effective evolution rate is now defined by
162 (ta)? = (Yess)*"16x(t0)® (4.21)

and we have to study the limit

¥ = lim (4.22)

n—co

,d6xTUoNJTUO)_.JTUn_JJqu).“J(hﬂﬁde
§xT(tg) - 6x(Lp)
or rather its logarithm A = log(7).

A takes one of the N values Ar, Az, ..., Aw, which are related to the V eigenvectors
of the Jacobian matrix. Thus, the characteristic exponents represent the expansion
or contraction of different direction in the phase space. A key remark is thut the
largest Lyapunov exponent, A;, measures the divergence rate of the length of an
infinitesimal one-dimensional element in phase space, i.e., the line segment joining
two points, one on the reference trajectory, the other on the perturbed trajectory,
see Fig. 4.2. Considering two perturbed trajectories with linearly independent initial
conditions §x()(tg) and 6x()(to), at any time the two vectors 5x()(¢,) and §x()(t,)
define a parallelogram in tangent space. The evolution rate of the length of these
two vectors is still given by the largest Lyapunov exponent A; since they both have a
nonvanishing projection onto the most unstable Lyapunov direction. However, besides
this “longitudinal” deformation, the parallelogram also experiences a “transverse”
deformation at a rate governed by the next-largest Lyapunov exponent. After one
iteration, its surface is multiplied by a factor that tends asyinptotically to 1172, so
that, taking logarithms to get the evolution rate p; of a two-dimensional element, we
obtain pz = A; + A2. More generally, for a p-dimensional parallelogram (p <d, the

dimension of space ) we have
P
pp=2 N\ (4.23)
=1
which provides a quantitative measure of predictability; it describes the expansion
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Figure 4.2: Divergence of trajectories
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of an infinitesimal ellipsoid to which only the diverging components of the principle
axes contribute.

Each positive exponent describes a direction in which the system realizes stretch-
ing or divergence, decorrelating nearby states. Therelore, the long-term behaviorvof
an initial condition x(fo) cannot be predicted; this characterizes a chaotic system
with sensitive dependence on initial conditions. Each positive Lyapunov exponent
\; > 0 contributes to the divergence or expansion of a phase space volume element
surrounding the initial state x(to), and their sum defines an exponential growth rate
of initially small errors.

To summarize the above discussion, traditional predictability analysis determines
the error growth from the evolution of an assumed true state disturbed by a randora
error perturbation. This provides an estimate of the largest Lyapunov exponent. The
expansion of an initial sphere of infinitesimal errors growing into an ellipsoid corre-
sponds to all positive Lyapunov exponents, which give more complete information
of the dynamical system’s sensitive dependence on initial conditions. However, Lo
apply this idea to all sea clutter data, we have to analyze the predictability of the
reconstructed phase space dynamics which has an identical Lyapunov spectrum to
the original attractor.

Calculation of the largest Lyapunov exponent ), is based upon the definition and

the Oseledec Theorem [30] given below

Theorem 4.1 (Oseledec) Let ' be C*. Let F' and ils atiracior A\ possess an ergodic
invariant measure p. Then there is ¢ p-measurable set Ay € A such that gl{A) =

#{A\), and such that for all x € Ay, Lyapunov exponents exist.

We briefly explain the Wolf, et al. [41} algorithm which is by far the most reliable,
widely used and efficient method for numerically computing Lyapunov exponents.

For each embedding dimension N we use the time series {a:} to form a recon-
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structed phase space with a set of vectors {a;} of N histories. The algorithm is
started by locating the ncarest neighbor a;, # a; to the initial N-history a;. Let
di" = |ja;, — al|. Note that d{V is the smallest positive distance |ja;, — ai|l. Select
a positive integer ¢ and set dV = ||ai,+q — @il and store gi(q) = %’; We shall
call ¢ an evolution time. This ends the first iteration. We are now r:e.a.dyl Lo enter the
main program loop.

Ideally, in order to start the second iteration, we would like to find a new N-history
a;, near aj4, whose angle 8(a:; — a14g 5 Aiy4g — Aidg ) is close to zero. In this way we
mimic the definition of Lyapunov expenent given in Eq.{4.17) as closely as possible.
The validity of this equation is also guaranteed i)y the fact that the difference of
the direct sums of the eigenspace corresponding to various Lyapunov spectra has fuil
Lebesegue measure.

Motivated by this strategy we choose ¢ = i to minimize the penalty function
p(ai = A1y Qiy4q — arg) = llai - Al + B|0(ai = Args Aiyag — Ange)|  (4.24)

subject to the nondegenerate requirement a; # a14q. Here u is a penalty weight on

the deviation |0} from zero. Store

)
92(q) = 5(2—) ) (4.25)
1 N
where
d? = [lag — argelly 657 = lai+e — Avsayll (4.26)

This ends iteration two. Continue in this manner. For iteration k, store

d)
9(9) = -5 (4.27)
di
where
dgk) = |la;, - al+(""l]l?"1 dtzk) = [|@ite = a“"k?“ (4.28)
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and i = 7, minimizes
pla; — Arp(k-t)s Bigorbg — B1+(k-1)q) (4.29)

subject Lo a; # a14(k-1)g- Continue until k rea:hes the end of the time series. Set

o _ L& [l (89741 (430)
g I.r k=l q .

Thus, through a simple replacement procedure that atlempts to preserve orientation
and minimize the size of replacement vectors, we have monitored the long term be-
havior of a simple principal axis vector. Each replacement vector may be evolved
until a problem arises, and so on. This leads us to an estimate of A;. ( Fig. 4.3)

This approach can be extendéd to as many nonnegative exponents as we care to
estimate : k+1 points in the reconstructed attractor define a k-volume element whose
long-term evolution is possible through a data replacement precedure that attempts
to preserve phase space orientation and probe only the small scale structure of the
attractor. The growth rate of a k-volume element provides an estimate of the sum of
the first & Lyapunov exponents. Since our interest is to measure the unpredictability
and confirm the existence of chaos, we will not discuss the estimation of the whole
spectrum of Lyapunov exponents anymore. A more detailed explanation can be found
in [12]. _

The procedure above discussed the theoretical idea of estimating A;, one major
practical implementation problem that is the choice of a suitable evolution time,
should also be considered. The distance function or length element is propagated
through the attractor for a time short enough so that only small scale attractor is
likely to be examined. If the evolution time is too large we may see the distance
function shrink as the two trajectories which define it pass through a folding region
of the attractor. This would lead to an underestimation of A;. We therefore look

for a new data point that satisfies two criteria reasonably well; its separation from
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Figure 4.3: Computation of the largest Lyapunov exponent
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the evolved point is small, and the angular separation between the evolved and re-
placement elements is small. In actual computation, a fixed evolution time is usually
employed since it would be extremely inefficient to include a varying evolution time.

We have considered the basic theory and computation of Lyapunov exponent, bul
we have not explained why this computation is important. Not only can this factor
measure the unpredictability of sea clutter which is of interest to us, but it is also
necessary in determining the existence of chaos.

In distinguishing random process and deterministic chaos, the calculation of the
fractal dimension of the attractor which underlies the system evolution in phase space
has probably received the widest attention. In fact, most of the studies on chaotic
theory in sciences such as economics, physics, atmospheric science and medicine are
concentrated on the calculation and explanation of the fractal dimension. Tradi-
tionally, a system whose dynamic is governed by a stochastic process is thought to
be associated with an infinite fractal dimension in phase space. This is because ran-
dom noises are generally expected to fill very large dimensional regions of the available
phase space. By contrast, finding a finite non-integer value of the dimension is usually
considered to be a strong indication of the presence of low-dimensional deterministic
chaos. In particular, the precise value of the fractal dimension of the attractor has in
addition an important physical significance; the attractor dimension is strictly related
to the number of variables needed to describe the dynamics. This is why fractal di-
mension has drawn a great deal of attention and it is frequently used as an indicator
for the presence of strange attractor.-

Although the fractal dimension points out the the dimensionality of the experi-
mental data, we feel that it is not sufficient lo conclude that a set of experimental
data is generated by deterrﬁinistic chaos solely by a finite non-integer fractal dime-
nion. The reason is that the fractal dimension is developed from ergodic theory and

the computation relies on the existence of invariant measure and the computations
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are based on box counting technique or correlation measure. These theories and
computations are independent of the ordering of the points in the signal and it is
not able to test the differentiablity of the experimental data under study. Whether
fractal dimension can distinguish between stochastic and deterministic processes in
every situation or not is still an open question. Therefore, it would be wise to pul
ihe ordering of the data into consideration; that is, the evolution of the reconstructed
vector in the embedded phase space.

We therefore recommend the uss of Lyapunov exponent discussed above. In the
computation we allow two nearest points in the phase space to evolve and keep on
tracking them along the trajectory. This would lead us to a clearer picture of the
dynamical behavior occurring in the phase space, because the ordering of the points
in the phase space has been taken into consideration. If an exponential divergence
of local points is observed, that is, Ay is positive, we conclude the existence of deter-
ministic chaos since a random process cannot have a uxiforin divergent/convergent
evolution. If it is in fact the case, the process should not be called random.

Moreover, it is shown recently [10] that two frequency quasiperiodically forced
systems can exhibit a new class of dynamical behavior which is termed strange non-
chaotic. In this instance, the word strange refers to the geometry of the underlying
attractor as exhibiting a fractal structure, while the word nonchaotic refers to the
particular dynamics of orbits on the attractor. A chaotic attractor is an é.tt.ractor {or
which nearby orbits diverge exponentially in time, displaying sensilive dependence on
initial conditions. A nonchaotic attractor, however, is an attractor for which nearby
orbits typically do not diverge exponentially in time. Consequently, a strange non-
chaotic attractor is an attractor that is geometrically strange, but for which nearby
trajectories do not diverge exponentially. This explains_why we consider the Lya-
puncv exponent since we trust that fractal dimension and Lyapunov exponent are

the necessary and sufficient measure for the existence of deterministic chaos.
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4.3 Local Divergence Analysis

Lyapunov exponents measure the long term average exponential rate of divergence
or convergence of initially adjacent phase space trajectories of an attractor, and thus
quantify average predictability properties. When at least one Lyapunov exponent is
positive, the attractor is chaotic and initially nearby trajectories diverge exponen-
tially on the average. For these attractors, the largest Lyapunov exponent defines a
predictability time scale - the average time beyond which deterministic predictions be-
come meaningless owing to the propagation of initial errors over the entire attractor.
.An increase in the magnitude of the largest Lyapunov exponent implies a decrease in
the predictability time scale.

In general, nearby trajectories need not diverge at the same rate on all parts of a
chaotic attractor. It has been shown [22] quantitatively for the Lorenz attractor that
adjacent trajectories converge in some parts of the phase space, even though these
trajectories will separate eventually. This variability of the local divergence rate in
the phase space can result from the proximity of trajectories to unstable fixed points
and their stable and unstable manifolds. This phase spatial inhomogeneity in the
local divergence rate of nearby trajectories is equivalent to a phase spatial variability
in the predictability time scale. Clearly, if predictability on a chaotic attractor is
a function of time and thus of phase space position, and if short time scales are of
interest, then the local divergence rates are the more relevant empirical measures of
predictability than the classical Lyapunov exponents. In such cases, an understanding
of the temporal and phase spatial variations in the local divergence rate is necessary
for a complete quantification of the predictability of the system.

The Lyapunov exponents are not local quantities in either the spatial or temporal
sense. Each exponent arises from the average, with respect to the dynamical motion,

of the local deformation of various phase space directions. Each is determined by the
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long time evolution of a single volume element. Attempts to estimate exponents by
averaging local contraction and expansion rates of phase space are likely to fail at
the point where these contributions to the exponents are combined. Moreover, the
evolution time is not necessarily a constant, and hence the estimation based on a fixed
evolution time will introduce errors into the estimation. Other factors including finite
data can also be a very serious problem to the estimation procedure. We conclude that
Lyapunov exponent calculation by averaging local divergence estimates is a dangerous
procedure.

In the computation of the Lyapunov exponent described in the last section, we
know that the Lyapunov exponent is just the average of the local divergence rates
along a particular trajectory of the dynamical system, and only part of the exper-
imental data is involved. If we obtain a positive Lyapunov exponent, then it must
be the result of divergence of local points in the phase space. Thus, evaluating the
local divergence can also conclude whether the system is chaotic or not. In other
words, local divergence can give us what we want to know by computing the largest
Lyapunov exponent. Moreover, there are several advantages in using local divergence
instead of the Lyapunov exponent. First, no error is introduced because the evolution
time is fixed for each nearby points. As we will show later, the evolution time is quite
different for different points. Second, using local divergence can help us to under-
stand the structure of strange attractor. More precisely, knowing the evolution of
nearby points on an attractor can give us some information on the topological change
of an attractor such as the torsion number. Third, local divergence analysis uses all
the given data and hence gives us a better description of the dynamics. Fourth, the
computation of Lyapunov exponent is strongly dependent on the stationarity of the
experimental data. For slightly nonstationary data which may be an observation of
adiabatic dynamical system and hence the attractor may be in fact a union of many

attractors ( this is very close to the actual sea clutter situation ), the estimation
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of Lyapunov exponent can produce a completely wrong result. In local divergence
analysis, on the other hand, this problem can be handled easily by evaluating the
evolution of a neigbourhood of a point rather than just a single point.

Now we perform the local divergence analysis of the sea clutter data. The methced-
ology is quite simple. Assuming that the embedded phase space is constructed ( the
embedding dimension for each data set is chosen according to its correlation dimen-
sion ), the experimental data give us a lot of points on the reconstructed manifold.
We cvaluate each of these points by finding another point in the given set which is
very close to it. Then we look at their evolution and evaluate the evolution of the
distance between two trajectories.

The result of the analysis are depicted in Tables 4.1 - 4.5. Since there are too many
points in the reconstructed phase space, we cannot record the results of all points.
We therefore report the local divergence analysis of some points on the attractor only.
For data sets D2 and D3, we report points which have a regular time distance of 500
time units; that is, the points correspond to data point on the time series which differ
by 500 time units. For D1 and D4, this time step is raised to 1000, and the time step
is changed to 2000 for data set D5. The purpose of using points with different time
distances is to allow the sea clutter trajectory to have various lengths. For D2 and
D3, the attractor’s divergence is evaluated in a rather short tirne period. For D5, the
time period is fairly long. Performing analysis on different scales can givé us a betler
understanding of the sea clutter attractor than using a fixed scale. The analysis is
performed using an evolution time of 50 time units. This evolution time is sufficient
for all the points used in our analysis. We do not record the divergence for all 50 time
steps since the behavior becomes random after the distance of two nearby trajectories
reaches a maximum value, and this is what we expect.

There are several observations that are quite interesting.
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fime || x(1000) | x(2000) | x(3000)
T || 16.76305 | 17.66352 | 26.58147
2 |l 30.13304 | 31.17691 | 63.16645
3 || 45.38722 | 37.13489 | 98.81802
4 {| 88.37986 | 65.04613 | 110.7475
5 || 107.3452 | 99.25724 | 119.1679
6 [l 126.2181 | 129.3522 | 119.5868
7 || 130.7937 | 157.5786 | 132.0492
8 | 136.5394 | 169.5612 | 147.6211
9 184.4017 | 163.4289
10 192.4266 | 165.4237
11 189.1904 | 171.0029
12 212.0259 | 181.6453
13 958.2305 | 205.7377
14 206.3157 | 252.2519
15 321.8929 | 321.2050
i6 337.2343 | 373.2653
17 379.2453

fime || x(4000) | x(5000) | x(6000)
1T 16.52271 | 21.42429 | 11.13553
9 || 15.39480 | 44.45222 | 29.98333
3 || 21.28380 | 81.78019 | 35.35534
4 || 26.62705 | 81.93290 | 35.80503
5 || 26.92582 | 82.80701 | 48.69202
6
7
8
9

36.06938 | 85.40491 | 51.56549
46.94678 | 89.25245 | 53.55371
46.70118 | 96.28603 | 53.88877
47.38143 | 103.8027 | 55.00000
10 || 47.38143 | 118.8024 | 61.52235
11 || 76.28803 | 139.3593 | 66.50579
12 || 88.00096 | 152.3844 | 74.08104
13 || 116.3400 | 158.6852 | 75.63068
14 || 118.8907 | 160.5740
15 || 123.6528
Time || x(7000) | x(8000) | x(9000)
14.83240 | 11.00054 | 7.071068
24.57641 | 43.42810 | 24.69818
30.31501 | 48.02083 | 24.61707
38.97435 | 47.65501 | 24.61707
58.23229 | 54.73573 | 25.70992
86.80437 | 63.39558 | 26.62705
99.67949 | 70.71068 | 28.03725
103.9760 | 74.92446 | 30.54565
106.0896 | 68.09552 | 31.33688
112.4944 | 70.58328 | 35.18522
39.07685

[+ NN S

-t
— O 00 =1

Table 4.1: Local divergence analysis of D1
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Time ]| x(500) | x(1000) | x(1500)
17.52142 | 18.33030 | 9.797959
32.12476 | 18.97367 | 12.60952
45.35416 | 35.21363 | 13.56466
62.39391 | 40.98780 | 15.26424
75.15318 | 41.07310 | 14.69694
89.26366 | 42.33202 | 15.19868
95.83319 | 46.55105 | 25.92296
98.30565 | 46.76537 | 33.22649
100.1399 | 48.40454 | 33.18132
10 || 103.2327 | 49.89990 | 32.75668
11 || 108.8899 38.05260
12 || 111.7318 39.44617
13 42.37924
Time || x(2000) | x(2500) | x(3000)
1 || 8.062258 | 10.14869 | 6.633250
2 |l 8.062258 | 12.96148 | 8.888194
3 || 8.062258 | 13.85641 | 10.58300
4 | 14.31782 | 13.85641 | 13.26650
5 || 13.45362 | 13.56466 | 17.88854
6

7

8

9

0 00 =1 N LR AWK -

15.62050 | 16.82260 | 17.97220
17.43560 | 14.79865 | 20.68816
21.07131 | 14.76482 | 21.30728
25.69047 | 16.46208 | 20.54264
10 7.40438 | 27.47726 | 25.72936
11 {1 29.37686 | 32.83291 | 27.23968
12 || 27.71281 | 35.00000 | 25.84570
13 || 29.79933 | 35.00000 | 34.97142
14 || 32.86335 | 35.34119 | 38.88445
15 # 41.13393 | 38.13135 | 39.05125
16 42.54409
time || %(3500) | x(4000) | x{4500)
1| 7.281102 | 7.280110 | 8.485281
2 || 12.80625 | 11.18034 | 18.97367
3 || 12.49000 | 11.18034 | 19.87461
4 || 13.74773 | 12.24745 | 20.46949
5 {1 18.13836 | 12.20656 | 20.83267
6
7
8
9

20.24846 | 12.32883 | 22.22611
21.33073 | 23.76973 | 23.62202
23.13007 | 26.62705 | 26.88866
31.52777 | 29.25748

10 33.73426
11 34.91418
12 34.91418
13 47.26521
14 50.56679

Table 4.2: Local divergence analysis of D2
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time || x(500) | x(1000) | x(1500)
9.055386 | 12.84523 | 13.85641
15.32971 { 12.84523 | 14.38750
17.66352 | 27.20294 | 17.86057
19.79899 | 27.40438 | 15.09567
24.16609 | 26.98148 | 20.49390
24.26932 | 26.98148 | 25.07987
7.89265 { 31.28897 | 28.08914
28.17801 | 35.87478 | 33.36166
30.57777 | 35.74913 | 37.85499
10 33.28663 | 37.32291
11 36.71512 { 40.02499
12 38.31449 | 42.48529
13 40.45986 | 4.95583 |
14 46.34652
15 47.50789
Time | %(2000) | x(2500) | x(3000)
1§ 7.615773 § 7.211102 | 11.53256
2 i 14.07125 | 24.08319 | 17.11724
3 || 14.17745 | 27.83882 | 20.90454
4 | 20.02498 | 29.18904 | 21.37756
5 || 23.25941 | 30.52868 | 21.54066
6
7
8

W o0 =) Oy TN L3R~

30.52868 | 31.04855 | 21.54066
42.09513 | 31.82766 | 22.27106
43.40507 | 33.21144 } 23.38803
9 || 45.02222 | 38.75565 | 24.67971

10 28.53069
11 29.49576
12 32.40370
13 33.37664
14 36.42801
15 40.18706
16 41.71331
17 50.00000

Time || x(3500) | x(4000) | x{4500)
1 ([ 6324555 | 7.615773 | 6.480741
9 | 20.02498 | 11.40175 | 11.09054
3 || 20.80865 | 11.26943 | 11.26943
4 || 21.93171 | 13.67479 | 15.06652
5 || 23.15167 | 17.94436 | 18.22087
6
7
8
9

23.23790 | 18.22567 | 21.61018
24,26932 | 18.24829 | 22.22611
24.35159 | 21.04757 | 22.33831
27.14774 | 24.20744 | 23.13007
10 || 27.42262 | 20.54657 | 25.53428

11 27.20294
12 33.94112
13 33.94112
14 39.28104
15 40.34848

Table 4.3: Local divergence analysis of D3
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g.
n

x(1000) | x(2000) | x(3000)
8.660254 | 8.888194 | 6.633250
9.165152 | 8.888194 | 6.682763
12.12436 | 21.04757 | 8.485281
29.84732 | 20.46184 | 9.219544
22.84732 | 20.34280 | 9.643651
95.65151 | 29.88311 | 11.31371
26.51415 | 30.41381 | 12.20656
26.58047 | 30.80584 | 12.20656
27.47726 | 33.82307 | 16.85230
10 || 20.44486 | 34.53983 | 18.65476

W0 =1 b DM -

11 || 31.44486 19.57038
12 25.19921
13 26.64582
14 27.14774
15 28.30194

time j| x(4000) | x(5000) | x(6000)
1| 8.717798 | 7.071068 | 8.124039
2 Ut 11.87434 | 7.681146 | 9.000000
3 || 16.88194 | 8.660254 | 15.23155
4 || 17.88854 | 29.29164 | 15.52417
5 || 20.02498 | 30.34798 | 20.00000
6 || 29.73214 | 30.34798 | 22.80351
7 || 30.28201 | 33.00000 | 24.51530
8 || 37.37646 | 36.55133 | 31.00000
9 37.88139 | 34.00000

10 39.33192 | 33.82307
11 39.58535 | 34.77018

{ime
1
2
3
4
5
6
7
8
9

=(7000) | x(8000) | x(9000)
10.14889 | 8.717798 | 6.928203
10.19804 | 9.380832 | 7.549834
10.63015 | 9.848858 | 7.071068
12.04159 | 9.848858 | 21.18962
13.00000 | 12.72792 | 22.02271
16.40122 | 13.19091 | 21.93171
26.53300 | 14.45683 | 22.13594
28.70540 | 18.13836 | 22.67157
20.81610 | 18.78820 | 24.16609
10 || 20.86637 | 19.20037 | 24.26932
11 || 44.00000 | 22.29350
12 || 44.27189 | 22.89105
13 || 46.07173 | 27.42262
14 27.58623

Table 4.4: Local divergence analysis of D4
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<(1000) | x(3000) | x(5000}
9548858 | 7.810250 | 7.874008
11.13553 | 9.000000 | 7.874008
10.90871 | 10.63015 | 8.544003
12.00000 | 16.79286 | 13.60147
13.37909 | 17.14643 | 19.51922
13.26650 | 10.26136 | 24.61707
94.49490 | 10.77372 | 32.29551
32.32646 | 24.14539 | 43.22037
32.37283 | 24.93093 | 50.39841
10 || 38.43176 | 30.16623 | 55.82114
11 || 52.65528 | 31.79623 | 55.79427

e
-
-
=2
"

O on U S R

12 {f 55.20869 57.79427
13 j| 55.93747 59.69087
14 || 62.93648 68.60758
15 69.93568

time || %(7000) | x(9000) | x(11000)
T178.000000 | 6.925203 | 9.539392
2 Il 10.90871 | 6.928203 | 12.40967
1 || 14.76482 | 20.19001 | 17.94436
4 || 14.66288 | 21.28380 | 19.62142

5 || 16.12452 | 27.58623 | 19.39072

6 || 16.16452 | 27.73085 | 25.78759

7

8

17.08301 | 27.87472 | 28.42534
17.32051 | 29.68848 | 27.78489

g9 || 20.12461 | 30.23243 | 37.72267
10 || 20.19901 | 39.17908 | 36.86462
11 || 22.58318 | 30.97499 | 39.52214

12 || 24.61707
13 || 25.86503
14 || 26.15339
15 || 29.18904
16 | 32.26453
17 || 32.68027

fime || x(13000) | %(15000) | x(17000)
T 19110434 | 5.47:226 | 7.483315
2 || 9.165152 | 11.22497 | 9.165152
3 I 12.12436 | 20.34699 | 14.31782
4 || 28.67054 | 21.21320 | 14.42220
5 || 29.08608 | 22.69361 | 16.37070
6
7
8
9

98.82707 | 35.25621 | 18.43909
33.08529 | 36.09709 | 18.54724
34.45287 | 46.93613 § 19.10497
31.95712 | 49.58831 | 20.68816
10 || 36.95944 | 50.35872 | 21.35416

11 || 37.17526 27.92848
12 38.52272
13 38.32754
14 39.42081
15 42.88356
16 43.43961

Table 4.5: Local divergence analysis of D5

92



1. All sea clutter data under test were found to have a local divergence behavior.
( For convenience of presentation, however, only selected points were included
in Tables 4.1-4.5. ) This implies that the computation of the largest Lyapunov
exponent based on the algorithm described above will give us a positive number.
However, we want to stress that this analysis does not give us all the informa-
tion about the true theoretical Lyapunov exponent value. The local analysis
performed here cannot identify whether the divergence is exponential or not.
More precisely, we do not observe a smooth exponential divergence behavior
in our data. This is because in our experimental study, the data sequence was

noisy and of finite length.

2. All sea clutter attractors exhibit variation of predictability on various portions
of the attractor. In other words, the rate at which adjacent trajectories diverge
on a sea clutter attractor is, in general, not constant, but rather this local
divergence rate depends on time and therefore location in the phase space. All

five sea clutter data strongly indicate this nonuniform divergence property.

3. The initial distances of the all data sets are pretty close. However, the ex-
tents of the divergence are quite different. Comparatively, D1 has the strongest
divergence behavior where the divergence value may go up to 38q ( x(3000)
). D1 also has a richer dynamical behavior compared to the other data sets;
%(2000) and x(3000) have a strong divergence and x(8000) and x(9000) diverge
in a very slow manner. We can understand that at time instant 9000 or 8000,
the trajectory has gone to some part of the attractor which has a weak local

divergence behavior.

4. Except for D1, the divergence of the other data sets is not very strong. The
reason for this observation is not clear. It may be due to the sea state or some

other effects. No conclusion should be drawn by simply using this analysis.
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5. Although the divergence of D2 to D5 is not very strong, they all exhibit the
nonuniformity of divergence. For instance, x(7000) in D5 takes 17 time units
to reach its maximum of 32, and x(9060) and x(11000) take only 10 time steps.
Their initial values are comparable, and the maximum divergences are quite
close. We may then imagine that x(9000) and x(11000) are very close on the
attractor and they have a similar dynamical behavior in this portion, whereas
x(7000) though close to x(9000) in time but is in the region of the attractor
which has a different dynamical behavior. It is very interesting and useful to
partition an attractor into several pieces based on their dynamical properties
( Fig. 4.4 ), since we can predict the behavior of the process by observing its
spatial position ( see Chapter 6 for a more detailed discussion ). However, it
seems our understanding about sea clutter attractor is not mature enough to

achieve this goal.

This yields a more global picture of how predictability varies on the attractor. Ideally,
we would somehow isolate various regions of the phase space that contain portions of
the attractor.

In this chapter, we first explain the importance of Lyapunov exponent, and then
discuss some of the difficulties in computing this invariant. To understand the di-
vergence behavior of sea clutter, we introduce the use of local divergence analysis.
The local divergence analysis is applied to our sea clutter data, and we observe that
sea clutter has a local divergence behavior and the evolutions shown correspond to a
deterministic { nonrandom ) system. Although this observation is not equivalent to
knowing the theoretical Lyapunov exponent, local divergence analysis provides an-
other strong evidence that sea clutter should not be considered as a purely random

process.
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Figure 4.4: Local divergence on various portions of an attractor
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Chapter 5

Rational Function Neural Network

5.1 Dynamic Estimation

In the last two chapters, we have demonstrated the potential of modeling sea clut-
ter as a chaotic process. The central problem in applying the theory of dynamical
systems is identifying the deterministic, and possibly chaotic, component in a set of
observations and distinguishing it from the effects of the ever-present measurement
uncertainty, extrinsic noise, and uncontrolled degrees of freedom. This is the inverse
problem in nonlinear dynamics : inferring the deterministic equations of motion, il
any, underlying observed random behavior in physical systems. Therefore, the next
step of our study is to fit a model to the data. There are several approaches available
to us. The simplest and most suitable one is to make time discrete and assume that

the dynamics can be written as a map in the form
x(n + T) = F(x(n)) (5.1)

where the current state is x(n), and x(n + T) is a future state. F and x are both
N-dimensional vectors. The problem is to estimate x(n + T') as we have discussed

in Chapter 2 to reconstruct the dynamics. We will call this estimate %(n,T), and
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approximate the dynamics by a map F of the form
%(n,T) = F(x(n)) (5.2)

The random behavior generated by deterministic systems is due to the nonlinear
interaction of a small number of degrecs of freedom. This raises one of the difficulties
in attempting to construct a model of the underlying generator of the observation
sequence, since most of contemporary physics and engineering relies on the superpo-
sition principle which is a property of linear systems.

The goal in estimating the deterministic equations of motion is to deduce a min-
imal model that reproduces the behavior. To do this we first need a nonlincar ap-
proximating function £. Second, we need a measure of deviation of the data from a
given dynamic F. There are many measures developed for this purpose such as the
J-measure, Kullback-Leibler information measure, and mean squares error criterion.
Each of these measures has its own advantages and disadvantages, and hence none of
them is the best. The one employed here is the mean squares error criterion which is
the most popular one. Also, signal processing is a real-time operated problem; thus
we must consider an estimation process that can be operated in real time. The con-
ventional linear adaptive filter is one such example. In that sense, a highly complex,
nonadaptive dynamic estimation method should be neglected in our application even
though it may be very accurate. |

Therefore, we attempt to construct the model by learning from the environment.
Our goal is to detect and model deterministic structure in noisy data. This is exactly
where learning theory can contribute since one of its mandates is to formalize learn-
ing paradigms. Computational learning theory has formalized a range of learning
paradigms for inductive inference. In this it provides a language and a collection of
complexity theoretic methods appropriate to the inverse problem. When integrated

with the geometric and statistical techniques of dynamical systems theory, the result
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is a framework for consistently distinguishing between deterministic chaotic behavior
and extrinsic information sources to which it is coupled.

To specify the inverse problem as a problem in inductive inference, several com-
ponents need to be defined. The basic components of an inductive inference problem
are a rule space, a hypothesis space, an example set, an inference method, and its
success criterion. The rule is the underlying dynamical mapping F. The hypothesis
space is the space of noisy discrete-time dynamical systems. The example is the set
of examples for learning, that is, the observations. The inference method is the model
reconstructed from the data, that is, F. The success is a criterion to measure the
goodness of fit. We now see that the inverse problem of chaotic modeling can be for-
mulated as an inductive inference problem in learning theory. The general question
is then, given a set of noisy observations, how to infer that some portion of the noise
is due to the fluctuating force and how much is due to the deterministic chaos.

The classical procedure for estimating the dynamics uses Bayesian statistical in-
ference to estimate nonlinear models from reconstructed chaotic data series. When
approached from this point of view, the estimation of dynamics can be reduced to the
model-fitting problem suggested at the beginning of this chapter. This type of learn-
ing problem found in dynamical systems is of a different character than the symbolic
Al problem traditional in learning theory. They are more akin to problems in the
area of neural networks. g

Recent developments in artificial neural network have drawn the attention of many
researchers. Of all the practical information processing operations that neural net-
works can currently carry out, one of the most useful is the ability to learn a math-
ematical mapping by adaptation in response to examples of the mapping’s action.
This property is important since it has applications in many areas such as function
appreximation, data compression, speech and pattern recognition. A very important

class of applications is nonlinear signal processing, particularly the prediction problem
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for a chaotic time series. In this case a network learns input sequences and produces
an approxXimation to an unknown mapping for a deterministic system on its attrac-
tor. Such systems may tell the difference between purely random and deterministic
processes, and in the latter case allow longer time prediction.

Typically, we are presented with a set of examples (x(£1), ¥(41)), (x(t2), ¥(t2)),. ..
of the action of a function .f : R™ — R®, where y(t;) = f(x(tx)). The requirement
is to design a neural network that implements an approximation to the function f;
such a network is called a mapping neural network.

The 1nost commonly used mapping neural networks employ an underlying model
and adjust the weights of the networks to retrieve the useful information from the
inputs. The backpropagation network and the radial basis function network are two
examples. The backpropagation network is usually implemented by employing multi-
ple layers of sigmoidal nonlinearity [25] as shown in Fig. 5.1. The radial basis function
network has several versions : fixed centers [§] ( Fig. 5.2 ), nonlinear {§] ( Fig. 5.3 ),
and hybrid [30}, see Fig. 5.4.

The backpropagation network, is by far the most popular neural network in use
today. However, the backpropagation network suffers from many shortcomings. For
instance, the issue of convergence, that of picking a suitable structure, and the issue
of obtaining a global minimum are ali important factors in designing a -useful neu-
ral network. Unfortunately, the analytic resolution of these issues in the context of
the backpropagation network is still lacking. But, the most serious limitation of the
backpropagation network is its inefficiency. More precisely, a backpropagation net-
work has a very slow rate of convergence, and it requires repeated presentation of the
training data. While this property may make sense for solving “off-line” problems, it
is usually unacceptable for solving real-time problems found in such areas as adaptive
signal processing or biological information processing.

Researchers have recently begun to re-examine the method of radial basis functions
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Figure 5.1: Multilayer backpropagaiion neural network
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to build a more efficient neural network. The radial basis function approach constructs
a linear function space that depends on the position of the known data according to
an arbitrary distance measure. Hence, it has the potential of achieving an efficient
learning process. Also, a radial basis function provides a technique for interpolation
in high dimensional space. As pointed out in [34], the generalization ability of a
neural network is strongly related to the interpolation property of the approximation
method used in its design. Unfortunately, a radial basis function is nonlinear in
the centers’ parameters. Although these parameters can be determined by gradient
optimization as in the backpropagation network, and this approach gives a slightly
better performance than the backpropagation network [30), it suffers from the same
problem as the backpropagation network does. One way to handle this problem is to
fix the centers either randomly or by the use of some prior information if available [8].
In such a case, the convergence rate is greatly improved since the function is totally
linear in its parameters. However, the performance obtained in this way is worse
than that of backpropagation network, in general. Indeed, this new network is not
a univérsal approximator any more as the backpropagation [23] or nonlinear radial
basis function network. The behavior of a radial basis function network with fixed
centers can be improved by choosing more centers ( at least in principle ). However,
the price o pay here is that of a slow learning process due to the large number
of parameters ( tap-weights ) used in the network. This raises an interesting open
problem, namely, that of choosing a suitable number and positions of the centers.
Recently, it has been suggested that the positions of the centers can be estimated by
using the k-means algorithm, and the combination forms a hybrid structure. This
appears to be a good idea, but such a hybrid network needs not only lots of examples
to estimate good positions for the centers but also a large number of hidden units so
as to achieve a good result, as reported in [30]. More seriously, however, the learning

is quite slow because of the k-means algorithm ( k- means involves a lot of distance
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computations and comparisons ). Nevertheless, the network can still perform learning
without repeated training.

We would therefore like to devise a neural network such that its parameters can
be fitted in a linear least squares [ashion, and yet it is still a universal approximator.
The Kolmogorov-Gabor polynomial is a good representation that car satisly these
requirements. Indeed, neural networks using polynomials have recently attracted
attention [4]. However, polynomials have the disadvantage that there are too many
parameters to be determined when the degrees of the polynomial is high. Also,
polynomial networks do not extrapolate very well beyond their domain of vaildity,
since the norm of a polynomial approached infinity as the norm of the variables tends
to infinity. The implication of the second point is that polynomial neural networks
may have a poor generalization ability.

In this thesis we propose a network architecture that uses a rational function {27
to construct a new mapping neural network. Here we recognize that rational ap-
proximations extrapolate better than polynomials. This is particularly so when the
numerator and denominator are of the same degree, since they remain bounded as the
norm of the variables approaches infinity. Besides, rational functions contain polyno-
mials as a subset and hence retains sonie modeling advantages of using polynomials.
For instance, in optics, it has been shown (33] that the quadratic term describes
many optical transformations. This is, in fact, due to the inherent bilinearity in op-
tics, which results from the quadratic relation between the optical intensity and the
optical field. Thus, the polynomials method works well in image enhancement, edge
detection, and interpolation of TV image sequences. We can also expect that rational
functions will work well in these cases, while other networks such as the backpropa-
gation network may not be able to perform as well as them. Rational functions can
also reduce the complexity problem of polynomials. Furthermore, like polynomials,

--the parameters ( tap-weights ) can be estimated by a linear adaptive algorihm such
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as the Least Mean Squares ( LMS ) algorithm or the Recursive Least Squares ( RLS
) algorithm. We consider this property as a major advantage of using rational func-
tions, since it is the only well-known nonlinear function approximation technigue to
the best of our knowledge that can be trained linearly without any modification of

the function.

5.2 Rational Function Approximation

Function approximation by rational {unctions was first considered by Chebyshev, al-
though rational interpolation was considered by other mathematicians earlier. This
nonlinear approximation technique is still one of the most important techniques in use
today. We usually think of the representation of special functions by rational approx-
imation for use in a computer. However, the use of rational function approximation
is more profound. In particular, rational approximation arises quite naturally in the
numerical solution of ordinary and parabolic differential equation, and in the study
of other numerical methods. Furthermore, the Stieltjes and the Hamburger moment
problem can be well understood via methods based on rational approximation. These
applications confirm the significance of rational functions in approximation theory,
and therefore their suitability in the design of a mapping neural network:

A rational function R : R™ — R is a quotient of two Kolmogorov-Gabor polyno-
mials, as shown by

_ @ + E;’;l a1;%; + z:‘:l Z?:l Q2T Tk +...
bo + Ty bijzs + Tk Lk b2jk®ize -

y (5.3)

where z,,z3, . .., Tm are the scalar input to the system. The set (z1,%2,...,%m) forms
a vector in R™, and y is the value of the mapping of that vector in the range R. The
representation Eq.(5.3) is unique, up to constant factors of the numerator and the

denominator polynomials. The rational function must clearly have a finite order for
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it to be useful in solving real-life problems. If the order of the numerator polynomial
is o, and the order of the denominator polynomial is 3, then we say that the rational
function has order (e, 3), and so denote it by Rag.

Each continuous function may be approximated by a rational function; this is an
immediate corollary of the Theorem of Weierstrass. Its generalization to multivariate
functions then asserts that any continuous multivariate function can be uniformly
approximated by a rational function of sufficiently large degree [27]. Therefore, if our
neural network is constructed to implement a rational function, it should retain this
important property. We can summarize this important observation in the following

theorem :

Theorem 5.1 (Network Approximation Theorem) Rational function neural net-
works are dense in the space of contiuous functions on compact sels of Euclidean space,
in the sense that for any continuous function f, there ezists a sequence of rational

network functions R, that converges uniformly to f.

Proof: We consider the Banach space C{X) whose members are the continuous
functions on /. Let R be the subspace of C(K) which consists of the restriction to
K of those rational functions. We claim that the closure of R, R, is all of C(K).

By the Hahn-Banach Theorem [35], there is a bounded linear functional on C (K),
say L, which vanishes on R and R and is not identically equal to zero. The Riesz

Representation Theorem [35] then tells us that this bounded linear functional L is of

the form
L= [ fdn (5.4)
where p is a Borel measure on K, f is any function belonging to C(IK). Thus what

we need to prove is the following problem : If x is a Borel measure on K such that
]K Rdp = 0 (5.5)
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for every rational function R, and if f belongs to C(XK), then we also have

]h fdp =0 (5.6)

Instead of considering an arbitrary compact set K, it is sufficient to consider a square.
The extension is guaranteed by the Tietze theorem [27]. For a N-dimensional Eu-
clidean space, we can then choose a Nth-order Bernstein polynomial [27] as an ap-
proximation to f. Eq.(5.8) is valid and since polynomials are dense in C(K), R is

dense in C{K').

Now that we know a rational function neural network approximation is possible,

we are confronted with the following questions :

1. Is there a rational network R € Rap which is the best approximation to some

specified function f ?

o

Can we say anything about how fast the approximation error tends to zero ?
3. How can we calculate 1 ?

These fundamental questions about rational function approximation were actually
studied around the turn of the century; however, not all of them have been solved
completely, at least to the best of our knowledge. _

The first question was answered a long time ago. Although the original proofl
given by Walsh [39) assumed that the base space was a compact real interval, from
the abstract viewpoint of Banach space theory, the extension to multivariate approx-
imation does not introduce any serious difficulty to this particular existence problem.
The existence of best approximation is a very important problem in function approx-
imation. A model which has this property is usually considered to be superior to
those without this property. For instance, the conventional multilayer backpropaga-

tion network is one which does not have the existence of best approximation property
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though it can approximate any continuous functions. This fact can be illustrated by

a simple example. The functions fi(z) =

1 1 1
ey — 1+tz:p(—[w-z+8+i})) belong to
the class of sigmoidal functions. However, the limit function as i approaches infinity

is obviously not a member of sigmoidal functions. Hence, the set is not a closed set
and hence it is not possible for the backpropagation network to have the existence of
best approximation property. Question 2, relating to the degree of rational approxi-
mation or the speed of approximation, can only be determined in some rare cases like
the exponential function, absolute function, ... etc. A general and explicit formula is
still lacking, although some partial solutions to this problem exist [27]. We feel that
they are not well developed yet for giving us the information on how fast the rational
function approximations with different orders converge.

As for question 3 pertaining to the composition of the best approximation, there
are certainly many techniques in the literature of function approximation theory to
accomplish this job. However, these methods are not applicable to our problem,
since our objective is to build a network that can learn the underlying environment
adaptively. Any “off-line” technique is unfavourable. Therefore, we would like to
apply the adaptive estimation technique to compute the rational function R,g, which
is closest to the desired function.

Assume that we have an (e, 8)-rational function and the desired function is d. To
get the best approximation means that a rational function belonging to 1?:‘,9 is sought

so as to minimize the following integral :

min j (d(z) — Rap(z)]? du(z) (5.7)

over some region. Since continuous waveforms of the functions are usually not avail-

able, we can interpret the above minimum mean square error criterion in discrete

form :

min ij |d(5) — Rap(i)? (5.9)

i=1
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where ¢ is the total number of examples available for learning.
Since all components inside the summation sign are positive, the criterion given

in Eq.(5.8) can be written as
min |d(i) — Rep(i)? i=1,2,...,1 (5.9)

Substituting Eq.(5.3) into Eq.(5.8), we have

. N(i) :
min |d(i 1=1,2,...,¢ 5.10
) - 53 (5.10)
where
N(i) = a0+ Z EROEDY > azxs(i)ai(d) + ..+ PR Y Cajpi(i) - 2p(3)
Jj=1k=1 J=1 p=1
m m m m
D(i) = bo + Z biyzi(3) + D O bajexj()an(?) YD bpspzi(E) L Tp(2)
J=1 J=l k=1 =1 p=1

The estimation problem is to find the coefficients {a;} and {;} so as to achieve
the minimum.

If Rap(i) in Eq.(5.9) is replaced by a linear function, then we have the case of
a single neuron, and the LMS and RLS algorithm can be used to perform the opti-
mization. Returning to Eq.(5.10), we see that the rational function does not provide
a linear approximation, that is, the function is nonlinear in the parameters of the
numerator and denominator polynomials. In general, to estimate the pa:i:é.meters of
the function, a nonlinear learning procedure should be used. Fortunately, when we
take a closer look at Eq.(5.10), we observe that Eq.(5.10) is equivalent to the following
problem

min |[d(@)DE) — NEP  i=1,2,...,% (5.11)

Eq.(5.11) is valid because a rational function is unique up to a constant. Substituting

the expressions of D(i) and N(3) into the objective function in Eq.(5.11), we have
min |d(i){bo + ... + L5 L bp5.pTi(2) - - - Tp(2)}
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=G0~ ... — Lty o Lpey Gajp®i(i) . 2 () (5.12)
t=1,...,1
Without loss of generality, bp can be assumed to be unity, and so Eq.(5.12) becomes
min |d(i) — {ao+ ...+ L, Ton Gajp®;(8) - 2p(d) — DT, bijd(i)z;(3) - . ..
| = Lin e L bpspd(i)zi (1) o2 (D)% i = 1,00t (5.13)

Since the quantity inside the brackets is linear in the parameters, we can express

Eq.(5.13) using matrix notations as follows
min |[TARGET] - [DATA|WEIGHT]| (5.14)

where [DAT A)] is the matrix consisting of all the d(z) and z;{i) combinations in
Eq.(5.14), and [WEIGHT)] is the column vector consisting of all the unknown pa-

rameters ¢; and b;. In particular, we have

(1 z(1) ... 22Q) 21()2(l) ... 22(1) —zi(1)d(1) ... =8(1)d(1) )
I o2(2) ... 2}(2) z(2)z2(2) ... 22(2) —z:(2)d(2) ... zf(

[DATA] =

\ 1 za(t) ... 2R(t) m(t)ze(t) ... 25(t) —m(t)d() ... =B (L)d(E) )
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and o | :
( ag \

an

a2

C1m
a1

[WEIGHT) =

Gam..m

= bll

\ "‘bﬁm...m }
" and
[ d(1)
d(2)

[TARGET] =

\ )

So we have converted the learning process of the nonlinear rational function neural
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network to a linear problem. It is well known that the minimum norm solution of the

least squares estimation problem described in Eq.(5.14) is given by [18]
[WETGHT) = [DAT AMT ARGET] (5.15)

where [DATAJ! is .he pseudo-inverse of the input data matrix, and [TARGET) is
the desired response vector.

In supervised learning for which the desired response d(z) is provided, Eq.(5.14)
can be viewed either by finding the pseudo-inverse method as shown in Eq.(5.15), or
by some linear adaptive filtering algorithm [21,40] that tries to solve the lincar least
squares problem by developing a recursive procedure. For the purpose of building a
learning machine and from a computational viewpoint, the latter procedure is to be
preferred.

The crucial point to note is that the error surface is in the form of a hyper-
paraboloid with a single global minimum. This is in sharp contrast to more standard
neural network models in which the shape of the error surface is not known and it is
not possible, therefore, to determine whether the model has converged to a local or
global minimum. Another noteworthy point is that the learning phase of a rational
function neural networ' can be accelerated by using variations of the RLS algorithm
( e.g. fast recursive least squares, recursive QR-decomposition least squares ) at the
expense of additional computational complexity (21].

An application for which neural networks are well suited is that of classification.
The main difference between function approximation discussed above and classifica-
tion is that the range of classification mapping is finite. A classification funclion is
thus non-continuous in the Euclidean sense, and so the above discussion cannot be
applied directly. Since classification tries to divide the input data into several classes,
it is natural to consider a classification function as a real-valued measurable function

on R™. The reason is that any function having a finite range can be expressed as
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a finite linear combination of some indicator functions. An indicator function for
classification purposes may be considered to be measurable. Next, we restrict the
classification functions to belong to £2(g), the square integrable function space; if
this condition is relaxed, then the mean square erior criterion cannot be used. Now

we may presenl the following result :

Theorem 5.2 (Network Classification Theorem) Rational function neural net-
works can approzimate any classification function on compacl sets of the Fuclidean

space.

Proof: To prove this theorem, what we need to do is to show that continuous
functions form a dense subset in the £2? space. Then we can conclude that rational
function neural networks can approximate any classification function by the Network
Approximation Theofem. More precisely, this means that for any f € £2 on [a,b],

and any € > 0, there is a function g, continuous on [a, 5}, such that

If—gli= { f b(f - g)zdm}u2 <e (5.16)

We shall say that f is approximated in £2 by a sequence {gn} if [[f — gnl| — 0 as
n — 0o.

Let A be a closed subset of [, 5], and K4 its characteristic function. Put

t(z)=inflz—y| yE€A (5.17)
and
1
gn(:l:) = m n= 1,2,3, ‘e (518)

Then g, is continuous on [a,b], ga(z) = 1 on A, and gn(z) — 0 on B, where B =
[a,b] — A. Hence

low = Il = { [ g2z} 0 (5.19)
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by the Lebesgue's Dominated Convergence Theorem [35]. Thus characteristic func-
tions of closed sets can be approximated in £? by continuous functions. The same is
true for the characteristic function of any measurable set, and hence also for simple
measurable functions.

If f>0and f € L? let {s,} be a monotonically increasing sequence of simple
nonnegative measurable functions such that s,(z) — f(z). Since |f — s.]? < f?,
|.f —sall = 0 by the Lebesgue’s Dominated Convergence Theorem again. The general

case follows and the proof is completed.

Next we want to show how a neural network based on rational functions can be
used to represent real-valued functions. The network has m input units and n output
units. There are hidden layers that form all the polynomial combinations needed to
construct the rational function of interest. Each output unit combines all the hidden
and input neurons to form a rational function representation as shown in Eq.(5.3).

The input layer of a rational function neural network consists of a set of m nodes,
into which we feed the components of the m-dimensional vector (z;,z2,...,zn). The
first hidden layer is designed to form all the second-order components that are com-
mon to the numerator and denominator polynomials. We should note that the desired
response is also fed to the hidden layer to form the second-order components with the
input vector in the training period. The second hidden layer is then assigned for the
formation of the third-order componrents, and so on for all the other hidden layers. If,
for example, a rational function with a highest order of seven in either the numerator
or denominator polynomial is used, then we will have six hidden layers to get all the
polynomial’s combinations. For the purpose of illustration, a second-order ( cither o
or () rational function neural network is depicted in Fig. 5.5.

Comparing this rational function neural network to the conventiona! multilayer

neural network, we find that there are some basic differences between their structures.
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Figure 5.5: Rational function neural network
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First, the rational function neural nctwork does not backpropagate the error signal
but rather the desired response. Second, adjacent layers are not fully connected in
rational function neural network as they are in backpropagation and radial basis
function networks. Third, the connections are not restricted to the layer-to-layer
structure. For instance, the output layer is connected to all the hidden layers and the
input layer. Another point of interest is that all the hidden layers are used to form
the rational function, and learning takes place only in the output layer. This feature
is similar to the fixed-centers radial basis function neural network, which is the reason
for these two networks having a {ast learning process. The main disadvantage of this
approach is the complexity problem. In other words, if a rational function with a
high order is used, we have to deal with too many parameters. This will cause the
network to converge slowly and may affect its performance. Although the problem
described herein is not as severe as that in a polynomial network, it is still the major
handicap of this network. Fortunately this problem can be overcome by a method
called the self-organized modeling technique [14], which optimizes the complexity of
the model as well as the goodness of fit { mean squares error in this thesis ). The
network that we usually work with assumes a fixed structure; the self-organization
technique suggests that the objective function or cost function should also include the
complexity of the model. This argument makes sense, since the model order ( or the
number of available parameters ) will appear explicitly in the measure of goodness
of fit for the model. Hence the network does not only adapt the parameters but
also changes the structure of the network. We will leave this self-organized rational
function neural network for future study.

As for implementation, a rational function neural network is well suitable for a
fully parallel and pipelined structure. Since the discovery of systolic arrays, many
linear algebraic techniques have been mapped onto this fully parallel machine to

achieve a fast computation. One such technige is the numerically stable, efficient QR-
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decomposition which has also been modified by Gentleman and Kung [21] to perform
the recursive least squares operation. Since the learning of a rational function neural
network can be performed by recursive least squares method, this network may then
be easily implemented by a systolic array ( Fig. 5.6 ). The main modification is just
a preprocessor that generates the order of basic components in a Kolmogorov-Gabor

polynomial.

5.3 Application To Sea Clutter

We now apply the rational neural network to the sea clutter modeling problem. In
the last two chapters, we have shown that sea clutter allows a chaotic description, and
based on the dynamical theory, we know that a predictive function can be constructed
to model the sea clutter. Although this sounds straightforward, one problem is that
the study in chaotic analysis so far has been very ideal in the sense that the exper-
imental data set is usually assumed to be extremely long, noise free, and simulated
from some deterministic equations. Now when we are confronted with our sea clutter
data, we have to accept the fact that we have no control on the data. More precisely,
we can only perform the analysis purely on the data we receive from the radar and
make no prior assumptions. '

Our radar is a high quality instrumentation and we can believe tha.t“ our clutter
data set has a very high signal to noise ratio. However, noise will still be present
in the data. The noise has the effect of forcing the actual low-dimensional behavior
back into a high dimensional space. To compensate for this effect, we choose the
embedding dimension to the the smallest integer which is larger than the correlation
dimension. This is simply some compensation in the computation, and it is very
hard to prove it theoretically. Since the Takens Embedding Theorem only gives us a

sufficient condition for the embedding dimension, and hence it has no direct conflict

118



input preprocessing unit

triangular
systolic

amay output

Figure 5.6: Systolic implementation of rational function neural network

119



with our choice of embedding dimension.

The modeling begins by using the neural network as a predictor. The way to
do it is very simple. The number of input neurons depends on the embedding di-
mension of the process, and the output layer is usually chosen to obtain a single
neuron that provides the predicted value. Note that if we want to use the network to
model the dynamical system exactly, then the network should also have N input units
to implement the discrete dynamical system. However, using prediction to get the
next value of the process is basically the same, and can simplify the computations.

Mathematically, the following equation
z(n) = f(z(n - 1},z(n = 2),...,z(n — N}) (5.20)

is mapped onto the neural network, where the function f is the underlying predictive
process that the rational function neural network tries to approximate. In the learning
period, z(n — 1),z(n — 2),...,z(n — N} are fed to the input layer, and the desired
response z(n) is fed to the input neuron as well as the output neuron as shown in
Fig. 5.7. After the learning phase is completed, the network is frozen, that is, the
connection weights will not be changed any more because the dynamical process is
assumed to be time-invariant. This network strcture is then an approximation to
Eq.(5.20), and so we may apply it to model the sea clutter data.

The rational function neural network used here has a (2,1) structure. The reason
for choosing this specific structure is not totally ad hoc, although this order is not
obtained by optimizing some information criteria. Obviously, (1,0) cannot be used
since it is just a linear model. (1,1) is also not suitable by a recent discovery [9] that
this structure cannot produce chaotic behavior since it is not sensitive to the initial
condition. Thus, the simplest rational function which can generate chaotic behavior
would be the (2,1) structure. Of course, a higher order structure also has the potential

to produce chaos but the complexity would be greatly increased especially when the
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Figure 5.7: Second order rational function neural predictor
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dimension of our data is resonably high ( remember that the number of parameters
is exponentially proportional to the order ). Introducing too many parameters is not
recommended by the informational Occam’s razor, which suggests that the number of
parameters used in a model should be minirnized to keep the generality of the model
provided that the performance will not be degraded.

‘The number of input nodes is determined by the embedding dimension found in
Chapter 3. For example, the data set D1, which has a correlation dimension about 6.5,
should at least have an embedding dimension seven. The second layer then contains
forty nine elements which form the second-order components of the polynomials.
'Thus, there are a total of sixty five parameters for estimation in this structure. The
learning can be done by any adaptive algorithm for linear adaptive filter as described
in Section 5.1, but the LMS algorithm is chosen because of its simplicity, stability and
its performance is basically the same as that obtained by a least squares technique.
One thousand data points were applied to the network for training, and the result is
shown in Fig. 5.8. We observe that the network does indeed converge very rapidly
to an optimum level. The convergence is obtained after about 100 data points have
been exposed to the network. Our computer experiment takes less than one minute
on a VAX8300.

To establish that the model is good, we cannot simply just look at the training
error. A small training error can only tell us that the network fits the t;-a.ining data
which can be done in principle by any model provided that sufficient parameters are
used. Hence, after the learning is completed, we have to study the ability of the
network to generalize. To do this, we feed some new data to the network to observe
its performance. If the prediction error is reasonably small, we can then say that
the model is an appropriate one. In this thesis, we pick the “recursive prediction” to
demonstrate the generalization ability of the network model. The recursive prediction

uses a new input ( not in the training set ) to start the prediction, and then uses
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the predicted point to predict the next one, and so on. In other words, the neural
network predictor operates in an autonomous fashion. Ordinarily, this is a very
difficult task, since there is no new information supplied to the network except for
the initial starting point. The result of this operation is depicted in Fig. 5.9. We
observe that the prediction errors are indeed quite small; that is, they are comparable
to the training errors. We therefore conclude that this model is acceptable for the
situation at hand.

The same procedure has also been applied to different neural networks for com-
parsion. The first one we considered is the backpropagation neural network. We
may input, for example, 100 epochs each consisting of 500 data inputs. Instead, we
chose to input 50,000 data points into the network so as to be consistent with the
processing of data by the rational function approximation method. Unfortunately,
this attempt did not seem to be successful. The recursive prediction behaves poorly.
Sometimes the network produces a straight line ( in dynamics theory, this means that
the system has a stable fixed point as the attractor, which is impossible for our data
), and sometimes it produces some behavior that is totally unrelated to the actual
process.

The second comparison is based on the radial basis function neural network.
Among the three versions of this network, the nonlinear structure is similar to the
backpropagation network; hence it is ignored. For the purpose of comlpa.rison, we
chose the hybrid network, since it usually has a better performance than the fixed-
centers network. The result is plotted in Fig. 5.9 to provide comparison with the
performance of the rational function neural network. We observe that the perfor-
mance of this approach is about the same as the rational function neural network.
However, the complexity is much higher in the hybrid radial function network than
in the rational function network. Not only does the radial basis function network

need to compute the complicated Euclidean distance of high dimensional vector, and
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a time consuming k-means algorithm is involved, but the hybrid structure also uses
300 to 400 hidden units to obtain the performance plotted in Fig. 5.9. On the other
hand, the rational function network only needs sixty five parameters. Therefore, the
learning rate of the hybrid radial basis function network is much slower than the
rational function network.

The last comparison is based on the polynomials method. Here we chose a second-
order Volterra structure in light of the complexity of the problem at hand. ( With
the dimension of the input vector heing seven, a third order structure needs 343 more
unknown parameters. ) We fini that the performance is not very consistent. More
precisely, the recursive prediction sometimes works ( though not as good as the other
two ), but sometimes the recursive prediction can make the the network diverge as
shown in Table 5.1. This phenomenon may be a result of the poor extrapolation
property discussed in Section 5.1.

In this chapter, we try to build a model for sea clutter. The way to reconstruct the
dynamics is to employ a neural network as a predictor. After the network predictor is
trained, the dynamics of sea clutter is described by the recursive prediction. There are
many neural network structures existing in the literature, and the most popular and
powerful one is the backpropagation network. However, this network in its present
form is not suitable for real-time application. There is definitely a need for an efficient
neural network structure for the use in signal processing. In regard of this need, we
construct a novel neural network structure called rational function neural network,
which has the same computational power as the backpropagation network, and it
can be trained linearly { that is, there is only one local minimum ). We apply this
network to our sea clutter, and the experiment results tell us that rational function
neural network forms an excellent reconstruction of sea clutter dynamics, and the

training of this network is just as cffficent as the training in any linear adaptive filter.
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¢ | prediction error

1 19.50423

2 20.71204

3 7.791940

4 0.731318

5 384.0915

6 36.48622

7 271.5546

8 0.619229

9 303.0548
10 414.9706
i1 528.2668
12 868.3160
13 1295.218
14 1927.697
15 5877.921
16 5894.656
17 14689.86
18 15952.43
19 51228.14
20 56549.02
21 225036.3
22 354819.8
23 1352786.
24 709412.4
251 1.4326E-4-08
26 2.1683E+11
271 4.0574E+17
28 | 1.5038E430

Table 5.1: Prediction error sea clutter using second order adaptive Volierra filter
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Chapter 6

Memory Based Neural Network

6.1 Memory Based Reasoning

The prediction discussed in the last chapter relies on a fundamental concept, that is,
the assumption of the existence of an underlying rule which can be approximated by
some functions. A neural network attempts to extract this underlying rule from the
experimental data by its functional structure. This approach has its root in human
beings’ prediction. We call this approach prediction by learning. Human beings
increase their knowledge by learning the underlying concept and hence try to predict
the problems by this learned concept. However, when we think about ourselves more
carefully, we know that we also have another ability to perform prediction and 1t is
based on the ability of memorization.

Most of the research done in neural network theory is concentrated on the learning
approach. The backpropagation network, perceptron, radial basis function network
and the rational function neural network developed in Chapter 5, are examples of
neural networks based or this learning idea. More precisely, these networks assume

some kind of functional form and try to make it a universal underlying rule to retrieve
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or approximate the exact cause of a particular problem. We do not reject the utility
of this approach. But, we believe that the theory using memory warrants further
studies. First, it is difficult to conceive of thought without memory. Second, a
human being can perform many tasks by the use of so-called common sense which is
based essentially on undigested memories of past experience.

The basic idea of using memory to construct a neural network can be roughly
described as follows. First, we count the number of times various {eatures or combi-
nations of features occur. For example, in the context of a medical application, if we
have a patient with a high fever, we would want to find out how often the high lever
occurred in combination with various diseases. Mathematically, this step constructs
a relationship between the target or desired response with the given inputs. Second,
we use these feature counts to produce a metric to compare the distance between
two features. The reason for this is to find the closest feature in the past experience
to match the new feature which is the fundamental idea of memory approach. So
the third step is to calculate the dissimilarity between each itemn in memory and the
current case, and the last step is retrieving the best matches. In the real world, there
may be no exact matches, so the best match is called for.

Although the basic idea of memory based approach is simple, its implementation
is somewhat complex. First, the storage of a large amount of data is quite expen-
sive. Second, there is no general way to search memory for the best match without
examining every element in memory. On a Von Neumann machine, this makes the
use of large memories impractical. Fortunately, with the development of new parallel
architectures, specifically the connection machine system, the operations necessary
to implement this appraoch have become sufficiently fast to allow experimentation.

To illustrate the memory based idea, consider the task of solving simple algebraic
equations in one variable. Each instance of this task is an equation involving only

one variable and the four arithmetic operators. A solution is an equation of the form

129



y = [, where E is an expression containing only constants. For example, given
the problem 6 = 4 X y, the solution is y = 6/4. A simple memory system would
memorize the pair (6 = 4 x y,y = 6/4). We can also make the system to mermorize
the generalized pair (A = B x y,¥ = A/B). To this pair, we must attach three
applicability conditions : A and B must be constants and B must not be equal to
Zero.

When a new problem, 3 = 2 x y is presented to the system, it matches the
stored pattern ( with substitution {A/3, B/2} ). Furthermore, the three applicability
conditions are satisfied. Therefore, the solution can be constructed by retrieving the
stored solution pattern to obtain y = 3/2. If there is no memorized pair that matches
the new problem, then the network would look for one in the stored pattern which is
very similar to the new problem.

From the four basic steps described above, we can see that our memory based
neural network is basically accomplished by searching a database of worked problems
for the the best match to the problem at hand. This requires a means of judging
how closely two situations match, leading to the topic of metrics. A metric is a
measure of distance and retains the same meaning used in mathematical analysis.
The implementation of memory based neural network depends on finding a suitable
definition of the metric function. _

Before we can discuss the metric, we need to define a record as a structured object
conlaining a fixed set of features. The simplest metric would then be the number of
features for which two records have different values. Although this metric makes a
convenient starting point, it is not very useful because it assigns equal weights to
all features. A better metric would incorporate the importance of features by giving
different weights to different {eatures. _

We will not go any further on the discussion of measuring similarity between two

general objects since our attention is given to systems that learn using entries other
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than symbolic onss. More precisely, our entries, sea clutter data, are formatted as
vectors to be reconstructed as points on a manifold embedded in Euclidean space.
From now on, we will develop the memory based neural network in the Euclidean
space. We mention the importance and construction of metric for gencral objccts
simply by highlighting the fact that this approach is not restricted to numerical data
only.

When we apply the memory approach to our sea cluiter problem, the following
geometrical picture should be kept in mind. By phase space reconstruction, the data
are supposed to form a manifold in the Euclidean space. The training data are then
the database and form the memory. When we get a new entry, we then look for the
“closest” one in the memory to the new entry, that is, two points very close in the
Euclidean space. Hence, the metric function can be any metric in Euclidean space
such as absolute norm, Euclidean norm, or Minkowski norm. The one used here is
the Euclidean metric since it is smooth and most popular. The use of other norms
should have some advantages over the Euclidean metric in certain applications and
it is left for future research.

The basic idea of adaptive filtering is to obtain the relation between the input and
the desired response. Thus, the target value of a new entry should be strictly related
to the desired response of the corresponding closest element in the memory database.
A simple choice would be direct substitution. That is, the desired resl;onse of the
closest element is taken to be the target value of that new entry. This choice seems
valid because these two points are supposed to have similar behavior and that is why
a good metric function is needed.

In our case, sea clutter data are known to lie on an attractor or an invariant
manifold. The above approximation is simply an approximation which tries to ap-
proximate the underlying rule locally. In other words, we believe that two points

which lie very close on a manifold have similar behavior. Putting it in mathematical
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language, if we have |a — b| < § where é is a very small number, then the target values
of a and b given by c and d respectively should also be very close, |c—d| < e where ¢ is
a very small number. Assuming some functional relationship between the target and
input, we have ¢ = f{a) and d = f(b) and the above closeness argument is similar to
the continuity definition of a function. We can now accept that this memory based
approach applied to our problem would produce a reasonable approximation to the
underlying rule.

There are some comments we would like to make at this stage. First, the assump-
tion of the continuity of the function f is a very mild one in adaptive filtering and
neural network applications. The classical adaptive filter, that is, the linear model,
and the most popular multilayer perceptron inherently assume that f is infinitely dif-
ferentiable. Second, in a dynamic reconstruction problem or prediction problem, if we
know that an attractor exists in the data, the above closeness argument even makes
more sense. The reason is that an attractor is attracting the evolution of a dynamical
system, the target values of two close points would get even closer as illustrated in
Fig. 6.1. Our sea clutter data admit an attractor even though it is a strange one. We
can still believe that the next evolution of two close points should be quite close too.
Third, because of the existence of noise in our data, taking simply one closest point
may be very dangerous. We therefore suggest the use of several points that are very
close to the new entry Lo compensate the noise effect. In other words, we attempt to
construct a neighborhood of the new entry rather than a single point. Fourth, with
a set of points in the memory database, we can then perform approximation by some
better technique such as linear regression.

Roughly speaking, the memory approach does not attempt to build a closed func-
tional form to fit the data but rather approximate the underlying rule by having a
good local fit. The basic idea is to break up the domain of the underlying rule, which

is known to be a nonlinear function f in our chaotic problem, into local neighbor-
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Figu'e 6.1: Evolution of nearby trajectories around an attractor
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hoods and fit different parameters in each neighborhood. Fitting different parameters
in each neighborhood means that we can perform different fitting techniques in a local
neigzhborhood such as averaging, linear fit and quadratic fit. When f is smooth the
neighborhoods can be small enough so that f does not vary sharply in any of them,
making the constraints of a particular representation less important.

Comparing the memory based neural network to the learning based neural net-
work, we have the following observations. First, the memory approach is more gen-
eral than the learning approach in the sense that fewer statistical and geometrical
assumptions about the data are required. Consequently, the memory method can be
successfully applied to a wider class of behavior. Second, to increase the accuracy in
the learning method, we require a higher order approximation, and it often strongly
increases the complexity. However, statistical estimation theory and computational
experience tell us that the performance would quite often be degraded. In the memory
approach, adding more local neighborhoods is used instead of adding higher order,
and adding more neighborhoods is obviouly more robust and efficient. Third, the
memory approach usually produces better fits for large data sets, and the learning
method would have a better performance when the size of the training set is small.
Fourth, the memory approach does not provide a closed form expression and therefore
is not as convenient as the learning method for performing further analysis. Fifth,

memory approach is more trouble to implement than global approximation.

6.2 Prediction on Manifold

Memory based approach makes it possible to use a given functional representation
efficiently and hence it can be used to predict the sea clutter evolution. The four
general steps listed in the previous section can be summarized into the following

procedure for the application to our problem. First, we need to assign neighborhoods
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and next, we look for a mapping that maps the points in each neighborhood into their
future values. To make a prediction we evaluate the chart at the new entry.

There are many ways to assign neighborhoods. One way is to pactition the domain
of f into disjoint sets. So when there is a new entry presented to the network, the
network will locate the new entry to a suitable region and hence the neighborhood is
defined. The advantage of this assignment is a fast searching procedure. Comparing
distances is the most time consuming process in the memory approach; this partition
can efficiently locate a new data point according to its coordinates and hence those
training vectors in this region can be retreived from the database quickly. The dis-
advantage is that this partition may give poor performance, since there is no overlap
between the neighborhoods, and therefore no continuity between charts. A point near
the boundary of its neighborhood will be poorly approximated.

Although the above assignment is convenient, it does not match the memory idea
very well. The memory approach requires the search for those points in the database
‘that are closest to the new data point but not just some points quite close to it. Also
the approximation ability using a fixed partition is reduced. Therefore, we would
construct the neighborhood for a new point by choosing data points in the database
which are closest to the new entry. Let {&;} be the training vectors. We want Lo
find a neighborhood for a new input vector . Assuming that the number of elements
in the neighborhood is m, the criterion is to search for m vectors belonging to {a;}
which minimize ¥ || — &;||.

One remark is that although this criterion seems to provide a set of “closest”
data points in the training database, does it mean that the prediction based on this
neighborhood is optimal? We suspect that the answer is negative. Consider a point
in a two dimensional plane; if a three-point neighborhood is chosen and the point
does not lie inside the triangle formed by those three points, the approximation may

be poor. This tells us that a neighborhood formed purely from a closeness criterion
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may not give us the best performance. To overcome this problem, we may try other
metrics or put constraints on the cost function. However, we will use the closeness
criterion in this work only, since in general it will give us a reasonable result. Adding
constraints will greatly increase the complexity of the problem. This situation is
similar to that in linear regression which has a poor performance when the predicted
value does not lie in the region spanned by those regression points, and this problem
is usually neglected in general applications.

The second problem is to find an efficient way to locate all of the points closest to
a given reference point. The dynamical embedding method imposes st-ingent require-
ments on any nearest neighbor algorithm. The storage overhead for the corresponding
data structures mnust be small, because there are tens of thousands of attractor points.
The algorithm must be fast, since there is one nearest neighbor problem for each new
entry.

Finding the k& nearest neighbors is a time-consuming procedure, particularly for a
large number of training samples. Hence there are several strategies that have been
proposed to reduce the complexity of this process. One way to do it is to introduce a
preprocessing step to reorder the training samples so that each sample tends to be far
[rom its predecessors in the ordered list. The nearest neighbor of a test sample is found
by the training samples in the listed order. The list can also be ordered according
to their projection values on a given coordinate axis. Then the search proceeds by
examining the training samples in the order of their projection distances from the
test sample until the projection distances becomes larger than the full N-dimensional
distance to the kth nearest neighbors among the training samples already examined.
Other well-known techniques such as the ordered partition technique, which partitions
the training samples by their coordinate values along each axis and uses the branch-
and-bound search method, resulting also in a considerable reduction of the number

of examined samples. All these techniques attempt to reduce the number of distance
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calculations and show considerable reduction in the computation effort.

The neighborhood finding technique used in this thesis is the well known k—d tree
method (5]. A k-~d tree corresponds to a decomposition of a k-dimensional Euclidean
space into hyper-rectangles. It is an ordinary binary tree, but each internal node has
room for both a discrimination value and a dimension number. The root of the tree
represents the entire space. The dimension number assoicated with the root specifies
the first dimension along which the space is cleaved. The discrimination value specifies
the location of the cut along this dimension. If the root’s dimension number is ¢ and
its dimension value is v, then the decomposition of the space is by the hyperplane
defined by z; = v. Its left child represents the half space of all points satisfying
z; < v, and its right child the half space of al! points satisfying z; > v. In general,
each node of a k — d tree corresponds to a hyper-rectangular piece of the space in
which some of the dimensions may be infinite. The set of nodes at a given level of the
tree correspond to a set of hyper-rectangles which partition the space. The leaves of
the tree correspond to hyper-rectangles {forming the finest partition of the space.

Searching a k — d tree for the leaf bucket containing a query point is easily accom-
plished in a single traversal of the tree from root to leaf. At each node, we compare
the value of the point’s coordinate in the dimension specified in the node with the
discrimination value stored in the node. The traversal proceeds to the left or to the
right depending on the outcome of this comparison. A well-built tree will have only
logan levels when there are n hyper-rectangles in the leaf partition. The search time
is then logarithmic in the number of stored entries.

If we want to find the nearest neighbors this make it possible to eliminate many
points from consideration without actually computing their distances. The & — d
tree has the nice property that it fiexibly partitions only the parts of the space that
actually contain data, adding partitions only where they are needed. This is a crucial

| point that makes this memory based method suitable for real-time signal processing
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applications.

Once we have chosen neighborhoods, the next step is to find a way to perform
prediction. There are many ways to achieve this goal. In those chosen neighborhoods,
the future values of al] the neighbors are known because all the data points in the
given time series have a point coming after except the last point, and hence the exact
future values of all the training vectors are known. We can also think of this as a
supervised training scheme, where the desired response is given. Since all points in
a neighborhood are very close and by the memory idea or the attracting property
of dynamical theory, we can expect the future value of the new entry to be strongly
related to the future values of those neighbors. By the intuitive memory idea, the
future value of the closest training point is taken to be the prediction of the new
entry. Now, we have a set of close points and hence the prediction can be taken as
the average of the future value of the training points in a neighbor.

Remember that our embedded dynamical system is 2 manifold in Euclidean space.
A neighborhood is a very small region on the manifold and hence can be considered
to be a subspace of curvature zero. In other words, it is just a normal Euclidean space
where the dimension is lower than the one in which the manifold embeds. Fitting
a local chart becomes a very standard statistical regression problem. Therefore, the
future value of the new entry can be taken as the average of the future values of
the training vectors in the neighbor. This approach can give us a very robust and
fast prediction of a new entry. There are many other techniques which can be used
to perform the regression. For instance, the most popular is the linear regression
technique which usually has an acceptable performance. The quadratic fit is another
alternative, which is also reasonable. Other mors sophisticated data fitting methods
such as the spline technique, or the radial basis function can also fit the scattered
data accurately.

The elegance of proving that sea clutier data is chaotic is in the smooth mapping
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found to generate the data. The estimation can then be improved by increasing the
order of approximation, at least in principle. For instance, a quadratic polynomial can
approximate an unknown function better than a linear polynomial. However, there
is a tradeoff in the sense that higher order approximatlions need more data points.
In other words, a larger neighbor is required to provide sufficient data for high order
approximations. The theory that the higher the order, the betier the performance is
true in mathematical theory only; that is, assuming that an infinite number of points
are provided. In practice, the number of data points is an important decisive factor
in choosing a suitable fitting method. In our situation, the correlation dimensions
are quite high and hence the embedding dimensions would be high also. Therefore,
we need many points to have a very “nice” neighborhood. That is, we need many
such neighborhoods to fill up the embedded manifold. Because of the nonstationarity
property of sea clutter and our limited data sets, we should not use a very long data
sequence and hence only averaging and linear regression are used in this thesis. In
fact, since the model is built on real data which cannot be noise-free, it would be wise
to decrease the accuracy so as to retain robustness {7}.

To summarize the procedure, first we find a neigborhood and then we construct
a map for the data in the neighborhood to perform prediction. For those who are
familiar with topology, they will find that this procedure is closely allied.to differen-
tial topology. In signal processing applications, the most widely used mathematical
techniques are statistics and algebra. The possiblity of using topology has never been
exploited. Actually this is a result of the common assumption thal processes in signal
processing are random. To see the relationship between our method and differential
topology, we will briefly explain some basic topology ideas which are strictly related
to the memory method. A set M is given the structure of a differentiable manifold
if M is provided with a finite or countable collection of charts, so that every point is

represented in at least one chart. A chart is an open sei U/ in the Euclidean coordi-
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nate space § = (q1,42,- - -, qn), together with a one-to-one mapping ¢ of U onto some
subset of M, o : U - oU C M. We assume that if points and ¢ in two charts
U and U’ have the same image in M, then § and g have heighborhoods V C U a.ndl
V' C U’ with the same image in M. In this way we get a mapping ¢ ' : V — V.

This is a mapping of the region V of the Euclidean space § onto the the region V'
of the Euclidean space ¢, and it is giver by N functions of N variables. The charts
U and U’ are called compatible if these functions are differentiable. An atlas is a
union of compatible charts. Two altases are equivalent if their union is also an atlas.
A differentiable manifold is a class of equivalent atlases. A neighborhood =f a point
on a manifold is the image under a mapping @ : U — M of a neighborhood of the
representation of this point in a chart U.

Now we see that the conventional characterization of a manifold by neighborhoods
and charts is surprisingly equivalent to the idea of using memorization. In other
words, the memory method tries to construct a local characterization of the manifold
containing the data. Note that this is not always the case since the existence of the
manifold is based on the Takens Embedding Theorem which applies to data with finite
dimension only. For a purely stochastic process, the merﬂory idea may still be used
but this geometrical figure may not be a valid indication of the real picture ( we may
need to use more complicated geometric theories such as the stochastic manifold and
stochastic differential geometry ). ‘.

In this thesis what we are attempting to do to the radar data is to perform dynamic
reconstruction. So, what are we exactly doing with this memory method from the
point of view of differential topology? To answer this question, we need to know what
a dynamical system is. One of the most important ideas in differential geometry is
that of a tangent space to a manifold which is based on the intuitive geometric idea
of a tangent plane to a surface. We define that two curves are tangent to each other

at a point p in M if they both cross the point p and in some local coordinate system
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around the point the two curves are tangent in the usual sense as curves in RV,
A tangent vector at p is an equivalence class of curves in M where the equivalence
relation is that two curves shall be tangent at the point p. The tangent space T, M
to M at the point p is the set of all tangent vectors at the point p. The union of all
these tangent spaces TM = Upep TpM is called the tangent bundle, which is a very
special case of the general idea of a fibre bundle. The importance of a tangent is that
a tangent vector can be used as a directional derivative of a function on M, which
enables the equivalence class of curves to act as a type of differential operator on the
space C°(M) of real-valued differentiable functions on M. We then think of C*°(M)
as a ring over R, and of a tangent vector as a derivation map from this ring into .
Therefore, a dynamical system is described by the tangent vector or more generally
the tangent bundle.

What we do is look locally at the invariant manifold M and attempt to follow
the dynamics in various regions of the manifold by projecting the orbit into the
tangent space T, M of M at various points p of M. The basis in each tangent space
will be chosen according to some algorithms and will reflect the particular dynamics
taking place on that part of the attractor. The transition matrices, which describe
how the coordinate systems are related in regions of overlap of the charts, will tell
us how the nature of the dynamics is changing. In part of the attractor where a
particular set of spatial structures dominate, the tangent space will be spémned by the
optimal basis which will be the generators of the infinitesimal motions of the modes
characteristizing the mutual and self interactions of these dominant structures. As
the orbit traverses the invariant manifold, the chosen bases will undergo a sudden
change from one set of structures to another. The transition matrices identify the
change in the dynamics. When the change is dramatic, the transition matrices diverge
maximally from the identity. They serve therefore to help us understand both the

geometry of the attractor and the physical nature of, for example, the rare heteroclinic
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like transitions between different regions of the attractor. To apply this topological
structural idea to experimental data, we require a hugh number of data to perform
the transition analysis. The reason is that the transition can be described by matrix
theory only when we look at the manifold in a very flat region. If the data are not
cloud enough, the transition on a manifold requires the use of an affine connection
and the search for geodesic, which will greatly complicate this topological study. Due
to the practical problems and nonstationarity of sea clutter, we will not study this
interesting transtion problem in this thesis.

Now the topological picture is quite clear. The experimental data can be re-
constructed to form a manifold, and the memory method can be considerd to be a
procedure to estimate the tangent bundle. Because of the quality of the experimental
data, constucting a good local coordinate of all points on a manifold seems impracti-
cal ( in other words, it is very difficult to get the dynamics completely ). However, the
prediction based on this topological method usually has an acceptable performance.

The proof that the memory method applied to the dynamics reconstruction prob-
lem always works in principle for smooth dynamical system relies on the Morse
Lemma. Suppose that f represents a smooth real-valued function on M, that is,
f: M- — R. Al a particular point x € M, f is either regular or dfy = 0. I it
is regular, then we can choose a coordinate system around x so that f is simply
the first coordinate function. Thus we really know all about the loca.l-‘ behavior of
[ at regular points, at least up to diffeomorphism. The problem then comes from
those critical points. By Sard’s Theorem, we know that the set of critical values of a
smooth map on a manifold has measure zero. However, critical points always exist for
every function. In our discussion we will only consider nondegenerate critical points
since any bounded smooth function can be uniformly approximated by a smooth
{function, which has only nondegenerate critical points. The Morse inequalities place

restrictions on the number of critical points that the function f can have due to the
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topology of M, and the local behavior of a function at a nondegenrate critical point

is completely determined, up to diffeomorphism, by the Morse Lemma.

Lemma 6.1 (Morse) Sunpose that the pointa € RV is a nondegenrate crilical point

of the function f, and

*f
() = (50@) 6.1)
is the Hessian of f at a. Then there ezists a local coordinate system (X1,...,Xn)
around a such that
J=fa) + 2 hiyxix; (6.2)

near a.

Thus every function near a nondegenerate critical point is locally equivalent to a
quadratic polynomial, the coefficients of which constitute the Hessian.

The Morse Lemma can be applied to any smooth map f and hence this topological
idea is not only restricted to prediction. The function f can be chosen to perform
any filtering operation. Conventionally, filtering, no matter it is linear or nonlinear,
is modeled by a stochastic equation, since some stochastic factor must be used to
model the random behavior of natural physical process. However, chaotic theory tells
us that dynamical system itself can generate highly random behavior without intro-
ducing any pure stochastic noise. In view of this, filtering can now be formulaied
into some deterministic dynamical system, and those conventional stochastic differ-
ential/difference equations can be replaced by some differential/difference equations.
In particular, adaptive filtering, in conventional language, is a technique which tries
to find a functional relation between the input random variables and the desired re-
sponse ( another random variable ). Taking the unnecessary statistical assumption
out, adaptive filtering is just an adaptive technique which tries to find a mapping
between input data and desired response; that is, a function approximation problem.

By the Morse Lemma, if the data input can be embedded on a manifold, the filtering
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function can be estimated accurately ( a quadratic polynomial is sufficient; of course,
other more advanced approximation technique such as radial basis function may be
better in practical sense ). We call this filtering method as adaptive filtering on
manifold. The key issue is the possibility of finding an embedded manifold. This can
be guarantecd by using Takens Embedding Theorem when the data exhibits determin-
istic behavior. This new approach for adaptive filtering is called chaotic adaptive

filtering to highlight the underlying deterministic assumption.

6.3 Prediction on Simplices

The chaotic adaptive filtering discussed above assumes that the received data form
a manifold. Although the existence of a manifold is true in principle, it may not be
exactly the case in practice. The reason is that the data set must be a finite set,
and the marifold and topology theory assumes continuity. What we really have is a
sequence of vectors which is often treated as merely a cloud of points in /N-dimensional
space. So we are confronted with an immediate question : Can the theory be applied
to a finite set of vectors rather than a manifold? We may also consider this finite
sel of vectors as an approximation to the actual manifold, and try to understand the
validity of this estimation. As this stage we would like 1o introduce the simplicial
approximation to a dynamical system. ..

Consider the problem of explaining the difference between a sphere and a torus.
The difference, of course, is apparent : the sphere has one hole, and the torus has
two. From the homology viewpoint, every simple closed curve on the sphere is the
boundary of the portion of the spherical surface that it encloses and also the boundary
of the complementary region. However, & meridan or parallel circle does not separate
the torus. Thus any simple closed curve on the sphere is homologous to zero, but

meridian and parallel circles on the torus are not homologous to zero.
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Figure 6.2: A polyhedron
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The following intuitive example will make more precise this still vague idea of
homology. Consider the configuration shown in Fig. 6.2, consisting of triangles <
abec >, < bed >, < abd >, and < acd >, edges < ab >, < ac >, ... < ef >,
and < fg >, and vertices <a >, <b>, <c>,...and < g >. The interior of the
tetrahedron and the interior of triangle < def > are not included. This type of space is
called a polyhedron. Polyhedron does not only provide an approximation to a surface,
but it is also the most fundamental and common technique in algeraic topology. So far
we have only mentioned the relationship between differential topology and dynamics;
in fact, differential topology connects the dynamics and the chain complex description,
and algebra can relate the chain complex description with homology. In particular,
if the dimension is greater than five, we should convert the dynamical study into
the algebraic topology of the manifold. Our sea clutter attractors have been shown
to have a dimension higher than five, algebraic topology would therefore be a very
poweful tool in studying the sea clutter manifold. We will leave this for a future
study.

A polyhedron can be regarded as a subspace of some Euclidean RN which is
obtained by properly gluing together certain elementary spaces called simplexes. A
m-simplex ( written o™ ) is a generalized triangle in m-dimensions. Thus o is a
triangle and o® a tetrahedron. The simplexes are glued together in such a way that
two simplexes, il they meet, have a common vertex or edge. More p.recisely, an
m-simplex, o™ , is the set of points x in RV given by :

m+1 m+1
o‘"‘:{x: EA;X,-| Xi 20, ZA.-:I} (6.3)

i=1 i=1
where Xi,Xa,...,Xmnq1 are distinct points in RN which are independent. We often
write o™ = {X;,X2,...,Xm41] and call X1,...,Xm41 the vertices of the m-dimensional
simplex ( or m-simplex ) ¢™. The ); are called the barycentric coordinates of the

simplex.
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We note that the point x contained in m-simplex, o™, corresponding to a given
set of barycentric coordinates Ay, Az, ..., An4) can be regarded as the centre of mass
of the system with masses Ay, As,...,Amys placed at the vertices x;,Xa,...,Xm4
respectively. This physical analogy leads us to expect that if all the ); are non-zero,
then the corresponding set of points x represent the interior of o™, while if any A; = 0
then the set of points x represents a face of o™ opposite to the vertex x;

Assume that we are given an /N-dimensional manifold, and that the manifold is
mapped to itself by the dynamical system. In constructing a simplicial map, the man-
ifold is first divided into a chosen grid of N-dimensional hypercubes. Each hypercube
is in turn conceptually divided into N! simplices. A simplex in an N-dimensional
space is a “triangle” with IV -1 vertices. The N 41 vertex vectors of each simplex are
a subset of the 2V vertices of the hypercube they lie in. Suppose the map is known
at each point on a grid. Then there is a unique way to extend the map to the interior
of the simplex S whose vertices are grid points. Given a point p in the interior of 5,
let {b;}}L, be its corresponding barycentric coordinates. Let f(v;) be the map at the
ith vertex. The dynamical system at p is iterated by computing

N

flp) = Z:O bif(vi) (6.4)
Linear approximation is usually used since a triangle is a linear object, buf we find no
serious restriction why other approximation cannot be used. Although the underlying
approximating object of other approximation is not linear anymore, the topological
and the dynamical properties can still be retained. Geometrically, we still have an
object which looks like a polyhedron, but the faces are some curved surfaces rather
than some planes. The homological and homotopic properties will not be changed by
these smooth deformations.

We can then apply the approximation at each vertex, using a small neighborhood

of that vertex. In this way, the dynamics is regularly approximated by a simplicial
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mapping. We call this regular because the simplex constructed is based on uniform
partition. There are some remarks about this approach. First, since a dynamical sys-
tem is now understood by qualitative behavior and simplicial approximation can keep
the topological properties of the original manifold, we know that this approximation
can retain the dynamical properties of the original system. Second, this approxima-
tion requires a hugh number of training vectors to achieve a good performance. The
second point is indeed a serious restriction of this approach. In both the partitioning
and neighborhood construction process, many training vectors are needed to get a
successful approximation. The final point is that the computation of this method is
very heavy and hence the computational speed is too slow for signal processing.

To modify this approach, let us first look at a simple example. Let 5! be the
circumference of a circle of unit radius in two dimensional Euclidean space ( in a
dynamical sense, a limit cycle ), and xo € S'. We first approximate S' by some
polyhedron. A lopological space which is homeomorphic to a polyhedron is said to
be triangulable and the polyhedron is called a triangulation of that topological space.
Since S! is a one dimensional space, this means finding a collection of suitably joined
1-simplexes which is homeomorphic to S'. Pictorially we might try to open up the
circle S? to get Fig. 6.3a.

This is not a permitted triangulation because a 1-simplex must have two distinct
vertices. We remedy this in Fig. 6.3b but this is still not permitted because the
2-simplexes in Fig. 6.3b are supposed to be distinct but have identical vertices.
This leads us to Fig. 6.3c which is a proper triangulation of S'. The polyhedra
K, associated with S! obtained in Fig. 6.3c, totally ordered can be written as :
Ko = {11U{2} U{3} U{1,2} U{1,3} U{2,3}; that is, Ky is the union of 3 0-simplexes
and 3 1-simplexes ( note that the fundamental group generated by this triangulation

and the circle are exactly the same and are isomorphic to the group of integers under

addition ).
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Figure 6.3: Triangulation of a circle
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If we consider this as a dynamical system; that is, the attractor is a limit cycle. It
is obvious that the triangulation discussed above can be applied directly. From Fig.
6.4, we see that if we partition the cycle into two pieces, the dynamics of this new
structure will be totally different from the original limit cycle. If we cut the limit
cycle into three or four pieces, the dynamics into each region is roughly equivalent
to the original dynamics at that part of the limit cycle. If we increase the number
of sections, the approximation gets better and better, till the secants match the tan-
gents. In this case, the polyhedron is exactly the same as a circle and the dynamics is
completely recovered. This example not only tells us that triangulation can approxi-
mate dynamics, but also indicates that a minimum number of vertices can be used to
obtain a reasonable approximation. When a circle is approximated by two parts, the
dynamics properties cannot be retained by the new geometrical objects. However,
when we have three vertices, the approximation becomes acceptable. Although more
vertices can give us better approximations, three vertices are indeed a crucial number
in approximating a limit cycle.

When we use the embedded dynamical system, we have many points on an at-
tractor and they are not all needed in the above sense. More clearly, we can reduce
the number of the training vectors used for memorization in some way so as to reduce
the computational complexity. The problem we have now is the determination of this
critical number. The mathematical techniques that are usually used for Athis purpose
are homology and homotopy theories. However, the application of these techniques
to an unkaown surface is quite difficult, and even harder for experimental data. In
particular, we do not have too much knowledge about the sea clutter manifold; the
use of these theories to sea clutter would te another challenging research problem for
future study. Actually, we do not need to know the exact critical number. As long
as the number of stored training vectors is greater than that number, the dynamical

approximation should be acceptable. This makes us believe that the reduction of the
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number of training vectors is possible in our sea clutter problem. First, we have about
20,000 training vectors and it is obviously more than necessary ( the critical number
for a limit cycle is only 3 ). Second, the sea clutter manifold is not totally irregular
since the dynamical atiractor is strange. In the following application of the memo-
rization method to sea clutter prediction, we will use about 2,000 to 4,000 training
vectors as the memorizing database for constructing neighborhoods and charts.

An immediate question would be how do we choose these training vectors for
memorization? One simple way to do this is to choose the most recently recetved
training vectors. This approach is simple but it completely loses the information
carried by those previously received training vectors. This approach is suitable for
data exhibiting nonstationarity or varying statistics. Although our sea clutter is
believed to be nonstationary, the stationarity period is longer than the time covered
by 2,000 to 4,000 training samples. In our situation, we find that the data remain
essentially stationary within 20,000 data points.

The rule we use here to find these 2,000 to 4,000 vertices is quite simple. Let
{x;} be the set of training vectors received from the radar system. z may be any
positve integer and in our experiment it is usually about 20,000. Our goal is to find
some vectors {v;} called vertices ( 2,000 to 4,000 ), which can roughly represent the
dynamical information carried by the whele set of training vectors ( 20‘,000 ). Let
the number of vectors v; be m. We can choose the first m vectors x; from the radar
to be v;, and then try to modify these vectors by those new inputs. We adjust these

vectors by the following rule :
vi(n + 1) = vi(n) + 6(n)(x(r) - vi(n)) (6.5)

where 7 ranges from 1 to m representing the m new vertices and n goes from 1 to
20,000 representing the total number of received inputs. At each iteration n, not all

the vectrices are updated, only the one which is closest to the input at that instant
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in the Euclidean sense learns that particular input. This is the well known k-mean
algorithm. This algorithm can efficiently reduce the number of the vertices used in
this simplicial approximation. It tries to find a new vertex which lies in the centroid
of the cloud of data close to it. It is proven that this algorithm does indeed converge
to the centroid. The only question is whether this algorithm will alter the actual
dynamical properties or not.

Imagine that there are some points on a manifold. The points are governed by the
motion equation (6.5). Since the motion is continuous, the fundamental group of the
new object generated by those points are homomorphic to the original fundamental
group. Topological properties are preserved ( homotopy and homology ), and hence
we know that this simplicial approximation is equivalent in topological sense to the
original simplicial approximation.

The second point about the modification is the use of a varying neighborhood.
Conventional simplicial approximation uses a fixed partition of a manifold, and those
vertices without given values are first approximated. This partition is similar to
the suitation in constructing a neighborhood. We do not use the fixed partition to
construct vertices but rather a non-uniform simplicial construction. We can think of
at least two advantages. First, those points near the boundary of a fixed partition
will perform very poorly. Second, the approximation at the unknown grid point may
not be very good and will greatly degrade the performance. "

We may now summarize what we have discussed above. First, the k-mean algo-
rithm is used to obtain some vertices for approximation. Second, the desired values
of these new vertices are approximated by some estimation techniques. The con-
struction of a new database is then completed and hence we can apply the memory
method.

Now let us apply this method to the sea clutter prediction problem. The results of
the prediction of D1 are plotted in Figs. 6.5 and 6.6. Figure 6.5 uses sea clutter data
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received from I-channel and Fig. 6.6 uses the Q-channel sea clutter data. Again the
prediction is performed recursively; that is, the predicted value is used as the input
for next prediction. The prediction is carried out for 100 iterations. It i;o, obvious that
the prediction does indeed capture the underlying dynamics.

We next extend the prediction to 500 iterations to see the performance. Figures
6.7 and 6.8 compares the prediction and the actual data using I and Q channel data
respectively. The results, of course, are not as good as those plotted in Figs. 6.5 and
6.6, but it is still a reasonable prediction. The prediction can follow the trends of the
sea clutter evolution.

After seeing these exciting recursive predictions results, we have two remarks
that we want to make. First, all the predictions reported above are based on the
zeroth order approximation; that is, averaging the desired response of the training
vectors. In principle, if the data are generated from a deterministic rule, then higher
order approximations should give a better performance. We have applied the first
order approximation by using singular value decomposition to data set D1, and the
comparsion of mean squares prediction error is plotted in Fig. 6.9 which obviously
performs better than the averaging method. When we go to the second order case, we
find that special attention must be paid to obtain a reasonable prediction due to the
robustness problem mentioned earlier in this chapter. We therefore recommend the
use of the zeroth and first order prediction for the sea clutter data we have, and based
on the experience [rom computer experiments, we prefer the zeroth order method to
the first order because of its efficiency.

Second, Takens Embedding Theorem has a very important implication that mea-
suring any experimental observable would not produce any loss in information in the
qualitative sense of a dynamical system. In other words, we should obtain a simi-
lar result by using either amplitude, in-phase component or quadrature component.

We perform comparisons of recursive prediction errors of data sets D2 to D5 using
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these three observables. The prediction is based on the zeroth order method, and the
resulls are plotted in Figs. 6.10 to 6.13.

We also take the average of the errors of these one hundred itcrations, and the
results are listed in Table 6.1. We can see that the prediction errors based on different
input observables are indeed very closed. This observation confirms the importance
of this single observable measurement idea which we have explaind more clearly in

Chapter 2.

6.4 Chaotic Detection of Small Targets in Sea
Clutter

So far we have only discussed the modeling of sea clutter. The final objective is to
apply this model to practical problems like detection. The problem of detecting small
targets in sea clutter is a very challenging and practical problem. By a small target
we mean a small boat, a growler ( small piece of ice ) or a waverider; in each of these
cases, the radar cross section is small. Conventional detection schemes applied to
this situation do not seem to be successful. Therefore, it is our intention to apply the
chaotic approach to this problem. Before doing that, let us briefly review the basic
detection theory, and how chaos can be introduced into this classical tech-nique.

In a radar system whose soie purpose is to detect the presence or absence of a
target, the signal set consists of only elements, s;(t), corresponding to target present,
and so(t), corresponding to target not present. Because of factors such as the ran-
domness of the disturbances in the channel, it is believed that there is in general
no deterministic mapping from the elements of the signal space to the observation
space. This randomness is dictated by the statistics of the channel noise. Hence,

in the classical detection theory, it is believed that for a given element in the signal
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D2 Imean Squares error D3 mean squares error
I-channel 48.39086 I-channel 58.12121
W-channel 44.95568 Q-channel 49.72115
Amplitude 41.22416 Amplitude 50.65550

D4 mean squates error Db mean sguares error
I-channel 48.50023 I-channel 91.16909
Q-channel 46.33153 Q-channel 126.0261
Amplitude 59.12655 Amplitude 91.03349

mean value ~ 130

mean squares value ~ 1.7 x 104

Table 6.1: Comparison of averaged prediction error using amplitude, I and Q as input

|
f
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space the values that observed data may assume can at best be represented proba-
bilistically. Putting this in mathematical lanaguage, detection is formulated into a

statistical decision problem on the two hypotheses:

H, : s(t) + n(t)
Hy : n(t) (6.6)

where s(t) and n(t) represent the signal and noise processes at time ? respectively.
Classical detection is based on the statistics of the noise process ( more precisely, we
use the probability density of n(t), and then obtain a likelihood to determine which
hypothesis is more likely ).

This detection is developed on the assumption that random behavior must be
described by statistical methods. Now we know that chaos theory has strongly shaken
this assumplion, and we may reformulate the radar detection problem in a totally
new fashion. The main difference is that the noise process n(t) is not necessarily a
randoem process, which can be described by a nonlinear dynamical system with the
ability to generate any kind of noise, white, colour, or wide-band. Detection can be
viewed as a process of distinguishing two dynamical systems rather than hypthoeses
testing using statistics. Now the question is: How do we distinguish two different
dynamical systems?

It is supposed to be a simple question. If we have two dynamical systems, say
Hy and H,, trajectory from system Ho cannot match to the trajectory from H,
and vice versa. For instance, it is very easy to see that a periodic curve cannot
be matched to a quasiperiodic motion. There are many ways to distinguish two
dynamical systems. For example, Fourier transform techniques would be good enough
to identify the systems in above simple example. For chaotic system, we may use
dimension, divergence or many other invariants. In this thesis, we would like to use

the basic idea of “matching trajectories”; that is, trajectories from different dynamical
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systems do not match. In other words, if we can somehow obtain the dynamics of
one system ( for example, noise only ), and fit the trajectory or data from the other
system ( noise plus signal } to the first system. A very “unfitted” situation will come
up, and we can use it to tell which system the trajectory should belong to. We are
now going to explain this idea more clearly in terms of radar detection of small targets
in sea clutter.

In order to establish a framework for detection, a target can be viewed as an
object embedded in sea clutter. When the electromagnetic wave from the radar hits
this object, the dynamical property or the statistics of this return is expected to be
different from those scattered by an ocean surface. In our problem, no property of
the background ( ocean surface ) is assumed. Therefore, the detector must learn
from the environment to identify the existence of a target. This requires the use
of an adaptive detection. This problem is similar to the problem of detecting small
regions of an image which differ from their surroundings in areas such as optical aerial
reconnaissance, radar imaging, and medical diagonosis through imagery.

The basic procedure for performing this adaptive detection can be described by
the following steps. First, we choose a model. Second, this model is exposed to
the environment to learn the underlying statistics or dynamics. Third, we freeze the
model and use it as a detector with new entries to the model. Since the underlying
processes for target and ocean surface are different, we will observe an abrupt change
in the model behavior when new data representing a target are fitted to the model.
One may question whether the back scattering from targets and ocean surface are
indeed different or not. We think the answer is positive, based on the success of
classical adaptive detection or clutter suppression techniques, although there is no
strict theoretical physics or mathematics to support this assertion.

Our detection derives from the fact that a constant false alarm rate ( CFAR )

significance test can be transformed to a test involving error residuals of an adaptive
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predictor. In other words, a small prediction error implies a good detector. We
choose a threshold based on the prediction error from the learning data and use
it as a detection criterion. Basically, our detection is very similar to a conventional
adaptive detection scheme. The main difference is the replacement of linear prediction
by nonlinear prediction.

The background data used for the detection are D4 and D5. The target for D4
and D5 is a sparbouy and a waverider, réspectively- The sparbouy is a very strong
target. Thus, wheu the data received contains this target, the prediction error will
immediately appear to be very large. We report this observation in Tables 6.2 and
6.3. Table 6.2 contains the square of the prediction error when the trained predictor
meets some data which consist of backscattering from the sea surface alone. The
prediction errors are pretty small. The magnitude of the data lies between 0 and
255, and the mean value is about one hundred thirty. The mean square prediction
crror of sea clutter data has a mean of about one hundred twenty. The occurrence
of a mean square value of prediction error greater than 600 is extremely rare. Table
6.3 illustrates the prediction error for backscattering from the sparbouy. The mean
square prediction error is much larger than those listed in Table 6.2. *1 e choose the
mean square error equal to 1000 as the threshold, the existence of a target is easily
identified.

Tables 6.4 and 6.5 contain results similar to Tables 6.2 and 6.3, except the back-
ground clutter is D5 and the target is a waverider. This is the most difficult targel
we have in the data collected at the field trip. It is difficult to detect because the
target is too small and hence it is often blocked by the presence of sea waves. So
even though the radar is pointed directly at the targst, most of the data received is
just sea clutter data. In view of this fact, we have to choose a threshold by using the
training date and check the data received by direct target pointing to see whether

any portion of the data sequenc=~ has an abrupt change of behavior or not.
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i | prediction error i | prediction error

1 69.77770 51 7.222205

2 20.11108 52 8.888862

3 278.7778 53 527.2220

4 205.0000 54 25.88894

5 9.444421 55 58.88885

8 27.22218 56 115.2222

7 49.44445 57 59.22230

8 37.771776 58 57.77776

9 15.22218 59 82.77779
10 193.7776 60 139.7777
11 46.22218 61 307.35657
i2 74.88882 62 222.7T77
13 28 88889 63 43.77780
14 367.2221 €4 29.88886
15 149.0000 65 4.444441
16 5.555564 66 57.77782
17 92.11108 67 217.8889
18 6.777770 68 124.8889
19 22.22220 69 72.55550
20 81.11111 70 187.7778
21 43.77780 71 25.11111
22 100.1111 72 7.222205
23 44.44447 73 41.88882
24 43.77780 T4 129.7779
25 5.777785 75 26.77778
26 145.8890 76 93.44441
27 180.5556 T 94.77785
28 22.44448 78 1581.1111
29 32.22228 79 4.000000
30 29.88886 80 59.22216
31 21.44446 81 1134456
32 86.44446 82 62.44448
33 80.55562 83 128.5556
34 54.77780 84 182.2222
35 75.22218 85 85.88808
36 38.44443 86 154.8838
37 18.00000 87 49.44448
38 46.77776 88 473.1112
39 26.77778 89 43.22216
40 108.5555 20 36.11111
41 325.5554 91 277.55565
42 1220000 92 32.00000
43 45.55550 93 47.22228
44 121.4444 94 284.8890
45 165.5657 85 329.4444
46 1.888897 96 548.4446
47 250.7777 97 87.22213
48 78.44449 98 49.88883
49 37.44447 99 135.2222
50 82.71773 100 50.77779

Table 6.2: Prediction error of D4
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i | prediction error i | prediction error
i 10800.11 51 7034.000
2 11025.00 52 7570.000
3 10370.00 53 8177.000
4 9257.000 54 10588.89
5 10369.00 55 1143222
6 10485.00 56 10118.44
7 8765.000 57 8709.444
8 10116.00 58 7825.000
g 8244.000 59 7397.000
10 8146.000 60 8616.000
11 7738.000 61 5378.778
12 11317.89 62 §553.445
13 8685.000 63 6691.556
14 9797.778 64 7218.888
15 10760.00 65 7297.000
16 8594.000 66 10389.78
17 10092.22 67 6963.777
18 8320.000 68 7905.890
19 8721 444 69 7298.000
20 7361.000 70 7367.223
21 7457.000 71 6805.000
22 8273.890 72 9081.000
23 6772.000 73 8820.000
24 7298.889 74 6505.000
25 6025.888 75 7804.111
26 8780.556 76 6724.000
27 10610.00 77 7261.000
28 12273.45 78 7156.000
29 11833.00 79 9424.557
30 11765.00 8O 9189.000
31 7555.7177 81 10484.00
32 B675.777 82 8009.000
33 9540.000 83 8825.000
34 11956.00 84 9565.000
35 9810.000 85 6501.557
36 9896.000 86 6055.557
37 10673.00 87 6221.000
38 11077.45 88 5320.888
39 0614.224 89 6073.888
40 8792.557 80 7413.555
41 11355.11 91 6697.888
42 11880.00 92 7696.555
43 9034.000 93 £026.000
44 10422,78 94 10322.00
45 8545.000 95 7289.000
46 9105.778 96 6909.444
47 9006.222 a7 7973.556
48 7978.000 98 8410.000
49 7445.000 99 8874.000
50 7345.000 100 9872.000

Table 6.3: Prediction error of sparbouy in D4 environment
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Table 6.4 records some typical prediction error of sea clutter data. In our computer
experiment, we find that the mean square prediction error seldom goes beyond 600
and almost never becomes greater than 700. We therefore choose 1000 as the threshold
and detect whether some part of the target data sequence has an error larger than
this threshold. The result is depicted in Table 6.5. We use 5000 data points for
the experiment which is approximately 25 seconds long, and we find that a certain
number of points in the data do exceed the threshold.

In this chapter, we first introduce the idea of using memory to construct a neural
network rather than using learning. Surprisingly, this idea has a very strong math-
ematical foundation in differential topology. Based on differential topology, we have
a deeper understanding about the sea clutter manifold, and obtain a new way Lo
perform filtering and prediction by treating data as ¢ manifold rather than a set of
random variables. We further extend this dynamics and manifold idea to detection,
and derive a deterministic approach to detection problem. The method is more pow-

erful than those based on probability density function, and we apply this method to

detect some small targets in sea clutter.
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prediction error

i | prediction error
1 17.77776
2 6.77T7770
3 76.55563
4 18.22227
5 4.444441
6 B.888923
7 139.7777
8 68.00000
9 24.55561
10 233.0000
11 152.5655
12 74.77785
13 47.22215
14 455.2225
15 3.771795
16 5.444421
17 249.4445
18 17.00000
19 50.88897
20 98.22223
21 1777764
22 105.4445
23 87.22213
24 1.888892
25 13.88892
26 13.00000
27 168.1112
28 305.1112
29 12.38889
30 180.5556
31 16,1111
32 156.5555
33 43.11114
34 2.222236
35 112.2223
36 65.88888
37 16.00000
38 88.11116
39 95.22233
40 241.7778
41 04.44443
42 25.88894
43 61.00000
44 144.0000
45 228.1112
46 123.2222
47 221.0000
48 42.88882
49 82.88879
50 86.22215

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
B2
83
84
85
86
87
88
89
90
g1
92
93
94
95

96 |

97
98
99
100

0.4444512
3.777795
B2.77779

0.0000E+00
22.44448
47.11108
32.44447
127.2222
40.55560
30.22223
28.88883
16.55555
89.00000
53.44437
128.8888
128.8888
145.0000
34.00000
1.888877
89.88805
100.1111
10.88888
130.0000

227.2221
87.22213
25.11111
19.77773
43.55558
418.8890
169.0000
49.88883
28.88892
51.22218
60.55564
b47.7779
22.22219
12.55552
74.88882
75.55862
45.00000
0.111112
41.44442
34.88888
61.88880
101.7778
153.1112
280.1112
5177777
70.777176

85.77782

Table 6.4: Prediction error of D5
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prediction error
304 2348.444
655 1040.444
673 1485.445
2025 1227.222
2503 1058.889
2631 1110.222
2643 1519.222
3432 1381.445
3713 1808.444
3776 1045.889
4242 1024.111 |

Table 6.5: Prediction error of waverider in D5 environment
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Chapter 7

Discussion and Conclusion

Radar clutter has a long history of being modeled as a stochastic process. Surprisingly,
we cannot find any researci: work in the literature which tries to justify the validity
of this fundamental aésumption. More precisely, nobody has attempted to prove or
disprove the argument that radar clutter is indeed random. What most people try to
do is to find a better stochastic model than the existing one. “Better” may be closer
to some physical phenomenon, or matching closer to experimental data. It seems to
us that the assumption that radar returns come from a purely random process has
been taken for granted. It has been our intention to consider this fundamental issue
in this thesis.

What we have attempted to do here is to challenge the premise that radar returns
arc samples of a stochastic process. We suggest that although radar returns have a
highly random appearance, they do not imply that the random appearance must be
the result of a purely random process. The mathematical theory which backs up our
thinking is the recent breakthrough in dynamics; namely, deterministic chaos. More
precisely, the random appearance of radar returns may be the result of a chaotic

phenomenon. This is a very important idea, since if a process is deterministic and we
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model it by statistical method, useful information will be destroyed. Therefore, we
need to show whether radar returns can be described by chaos or not.

Our chaotic analysis is based on experimental radar data rather than scattering
theory. This is the conventional modeling procedure used in radar. Moreover, being
based on real-life data, the results of our chaotic analysis should be of more practical
value to engineers. Two conventional techniques, dimension and local divergence,
are performed on five different sea clutter data sets. Both analyses on all five data
scts point to the direct+ - that modeling sea clutter as a deterministic model is an
appropriate method.

To get a model or extract the underlying deterministic dynamics of sea clutter,
we consider the inverse problem as a problem of inductive inference. The model-
ing problem can then be viewed as a problem of prediction by learning from the
environment. The use of a neural network provides a powerful tool in solving the
prediction/modeling problem.

We first tried to use conventional neural networks such as the backpropagation
network, and found that they are not suitable for our problem. The major difficulty
in the use of the backpropagation algorithm is that it is not designed for real-time
applications. A novel neural network structure based on rational functions is proposed
to solve our modeling problem. This network has a unique local minimum; and hence
has a rapid learning speed. Moreover, it does not require repeated training as the
backpropagation. We also find that it can model the sea clutter dynamics by a low
complexity structure, and the performance is quite good.

We have also attempted to model sea clutter by another neural network based on
the idea of memorization. This approach uses the result that sea clutter can form a
manifold in Euclidean space, and hence the complicated filtering problem is converted
to a linear filtering or simple averaging process on a manifold. The prediction of sea

clutter evolution using this method is very good and robust. From our experiment,
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we find that this chaotic adaptive filtering technique is even better than the rational
funclion neural network with respect to both performance and robustness. Thus,
we have used this method to detect small targets in sea clutter to see whether this
dynamical modelng approach is useful or not.

Our detection method is totally different from the conventional ones. Conventional
delectors use the idea of probability distributions and likelihood functions to perform
decision on the presence or absence of targets. In our theory, the two hypotheses
are no longer just two random processes which can only be described by probability
distributions. Instead, they are two different dynamical systems. Detection becomes
a process of distinguishing dynamical systems. We apply this idea to our real-life
data, and we have demonstrated that the method can indeed detect small targets in
ihe presence of sea clutter.

Aside from engineering applications, a predictive model also serves the purpose of
a chaotic test for sea clutter. The results of this prediction analysis tell us that pre-
diction can indeed capture the motion of sea clutter. This is another strong evidence
that sea clutter is not purely random.

Sea clutter is known to have a continuous power spectrum with a strong low-
frequency content. This, therefore, rules out the modeling of sea clutter by a fixed
point, periodic motion, or quasi-periodic evolution. At present, we only !mow of five
possible models for a waveform: fixed point, periodic, quasi-periodic, random, and
chaolic. We have ruled out the applicability of the first four models. This therefore
suggests the possible use of a chaotic model as a mathematical descriptor of sea
clutter, which is the premise of this thesis.

In order to be definite on whether sea clutter is chaotic, we recommend that

additional work be undertaken as follows:

1. More sea clutter data sets in different environments, and longer data sequences
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should be used to obtain more convincing results. Also, other tests such as
the generalized dimension analysis [32] and unstable periodic orbit analysis {2},

which have been demonstrated to be quite powerful, should be applied to test

the sea clutter data.

o

A theoretical chaotic scattering model should be established. The basic idea of
the model is as described in Section 1. The main point is to combine the chaotic
scattering theory [11] with the existing scattering model for sea clutter, that is,
K-distribution. We want to stress the point that the K-distribution is based on
a random walk model which is obviously different from our approach. However,
this model gives us a clue that sea clutter may be considered as consisting
of a few scattering centers; this is exactly the same situation for a chaotic
scattering model described in [11]. We strongly recommend the development

of this theoretical approach to further substantiate the chaotic modeling of sea

clutter.

To summarize the thesis, our main idea is to apply nonlinear dynamics or chaos
theory to the theory of signal processing. Conventionally, signal processing problems
are solved by statistical methods. Now, we know that chaos theory can model behavior
that appears to be random, and it provides a deterministic treatment of the problem.
We therefore have an idea of replacing the role of statistics in signal pl:ocessing by
chaos theory. We coin the term “chaotic signal processing” for this novel idea in signal
processing.

We first tested our idea in chaotic signal processing by using some real-life radar
data. Sea clutter, a process usually modeled by probability distribution, has been
the basis of our first experiment. We have found that chaos theory provides a useful
tool in describing sea clutter. We then developed signal processing techniques such

as detection, filtering, prediction and modeling based on a deterministic approach
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rather than the conventional statistical method. These techniques not only have very
profound and interesting theories to support them, but they are also very promising
in their applications to real-life situations.

To conclude, we find the idea of chaotic signal processing to be both theoretically
interesting and practically useful. Indeed, the use of chaos in signal procssing has a lot
of potential. However, we stress the need for more extensive research on chaotic signal

processing, in both theo stical and experimental terms, to make it fully convincing.
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