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ABSTRACT

Radar clutter, the unwanted radar echoes, has a long history of being modeled

a.s a stochastic process. The main reason for using this model is that radar clutter

appears to be very random to our naked eyes. Due to this stochastic assumption,

radar detection is based on statistical decision theory. More precisely, the probability

distribution of noise or clutter is obtained to derive the likelihood function for making

decision.

In this thesis, we try to justify the stochastic assumption of radar clutter, in

pa.rticular, sea clutter. We find that assuming sea clutter as a random process uses

unnecessarily high degrees of freedom. In other words, sea clutter does not have to be

modeled by a random process to handle its random behavior. Using different real-life

sea clutter data, we show that the random nature of sea clutter is possibly a result

of the chaotic phenomenon.

After showing that sea clutter is not truely random, we then try to model sea

clutter data by a deterministic dynamical system. To construct a useful model for

sea clutter, we need to reconstruct the dynamics of sea clutter, and neural network is

lIsed here as a tool to achieve this purpose. Two novel neural networks are developed

to reconstruct the clutter dynamics. The first one is called ratio~al function neural

network which has an unique local minimum and a rapid learning phase. The second

network, which uses the idea that sea clutter can be embedded as a manifold, does not

require any learning, and is very robust and accurate. Both networks have excellent

performances in reconstructing the dynamics of the real-life sea clutter data.

The model for sea clutter is then used for detection of small targets in ocean

environment. Now detection is no longer a statistic decision problem, but rather a

process of distinguishing two different dynamical systems. One dynamical system
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contains trajectories for sea clutter and targets, and the other describes the motion of

sea clutter only. We use the trajectory matching idea to classify different dynamical

systems, and the result of detecting real-life small targets such as a waverider is very

exciting.
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Chapter 1

Introduction

1.1 Sea Clutter Modeling

Radar clutter consists of radar returns from reflectors that are not of interest, and

often obscures the signals from targets that are of interest. Radar clutter is typically

caused by objects such as rain, birds, sea, woods, and mountains. Examples of radar

targets are ships, aircraft, and satellites. However, there are also cases in which the

clutter itself is the wanted target. One example is the clutter classification problem

in air traffic control radar.

The radar backscatter from the sea surface is called sea clutter. A de,scription of

sea clutter is of interest to radar designers and operators, because shipboard radars

viewing the ocean surface or low-flying targets must often operate at such low eleva­

tion angles that the sea surface is illuminated along with the target.

Early wor!. by Goldstein [16] characterized sea clutter as noise-like and the a.v­

erage radar cross section per unit area of illuminated sea surface, and an associated

distribution function to describe its amplitude characteristic. Because of the central

limit theorem and simple processing architectures, this probability was conventionally
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considered to be Gaussian. This follows the usual assumption that a large number

of independent sca.tters are illuminated by the radar. However, measurements of sea

clutter for very narrow pulse widths have demonstrated that a Gaussian model is

inadequate. Instead, there is an increasing tendency toward high-amplitude spikes

( commonly known as sea spikes) with the result that the tail of the distribution

function is higher than that given by a Gaussian model.

Since then, there have been many subsequent attempts to relate the behavior of sea

surface to the statistical properties of the scattered radar waves. Some progress was

made in the late 1960s, the fluctuations properties of the radar return have generally

been modeled by ad hoc distributions that give a reasonable fit to the dataj lognormal

and Weibull (36] are two examples. During the mid-seventies, the random-walk model

was added to the list. A semi-empirical model, K-distribution, was proposed [24]. The

fitting of this distribution to experimental data was very good, and it is still generally

accepted to be the best model for sea clutter so far.

Before going any further on the modeling of sea clutter, we think we should explain

what a mathematical model is, and how we choose a good model. The complexity

of nature calls for partial descriptions that are sometimes mathematical in character

and then generally called mathematical models. The relation between nature and a

mathematical model can be represented schematically as in Fig. 1.1. Her.e are some

quali ties necessary or desirable for such a model:

1. Consistency with experimental data

2. Consistency with possible ideal physical mechanism

3. Be adapted to the needs of a user I in that it can predict useful parameters from

input measurements accessible to the user

4. Have a minimum number of degrees of freedom ( or independent input mea-
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Figure 1.1: Relation between nature and mathematical models
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surement)

With these criteria in mind, we immediately observe that the convcntionai sea clutter

modeling in the literature mainly emphasizes conditions 1 and 3. Condition 1 is

about the filting of data which is the major work done in sea clutter modeling.

Condition 3 has to do with the power of the model or the usefulness of the model. For

engineering applications, this condition is particularly important since the ultimate

goal of modeling sea clutter is to perform some operations like detection.

K-distribution is unique in that it is the only sea clutter model which considers

condition 2. In other words, the model starts with or tries to relate the model to some

reasonable physical mechanisms describing the backscattering process. 'This point is

important in mathematical modeUng because it gives confidence that the model is

also valid outside of the regions where it has been verified.

Comparatively there is not too much work related to condition 4. The only

progress on this condition is the observation that sea clutter is not suitably mod·

eled by a pure noise process. Nevertheless, this observation is extremely important

since it initiates all researches on sea clutter modeling. In other words, it fOTlns the

basis of modeling of sea clutter. Noise has a totally unpredictable, random behavior,

and hence requires a very high number of degrees of freedom to describe !t. Finding..
out that radar clutter is not merely a noise process is indeed a real breakthrough since

not only the complexity ( or degrees of freedom) can be reduced, but the perforr.lance

will also be improved. Because of the significance of condition 4, we would raise a

question: Do we really have a minimum number of degrees of freedom in sea clutter

modeling by using all these conventional models?

To make this question clearer, let us first point out one important common feature

of all these sea clutter models. That is, all these models are based on statistical meth·

ods. In other words, sea clutter is considered to be governed by some kind of random
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