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Abstract

Structural properties and solar radiative fluxes for broken, inhomogeneous
cloud fields (primarily fairweather cumulus) are examined from the poin: of view
of sub—grid parameterization for global climate models (GCMs). AVHRR satellite
visible and infrared radiances (256x256 km images) display almost identical one
and two—dimensional wavenumber spectra. For scales greater than ~4 km,
radiance spectra follow k! to k™°/3 where k is wavenumber (at scales greater
than ~40 km, radiance spectra for stratocumulus and stratocumulus of open
polygonal cells behave as white noise). At scales between ~4 km and ~2 km,
spectra follow it Aircraft observations of cloud microphysics and temperature,
however, suggest that these fields follow closely Kolmogorov’s classic k_‘s/ 3 Jaw
down to at least ~120 m. The dramatic scaling change in radiance fields may,
therzfore, be due to horizontal variation in the vertical integral of liquid water
content.

Based on the empirical data, a phenomonological scaling cloud field model
which produces three different forms of a cloud field is developed and
demonstrated. The cloud fields produced by this model are used ultimately in a
three—dimensional atmospheric Monte Carlo photon transport model which is
developed and validated. Also, two methods of including an underlying reflecting
surface are developed and validated.

Using the models mentioned above, fluxes for various scaling, random,



regular, and plane—parallel broken cloud fields are compared. Scaling cloud fields
span a spectrum from white noise fields to plane—parallel. If most cloud fields scale
between k_o‘5 and k_5/ 8 over regions the size of GCM grids, as they probably do,
neither the plane—parallel nor the random array models yield adequate flux
estir.ates.

If a scaling cloud field with horizontally variable optical depth is
transformed so that all cells with optical depth greater than zero are replaced by
cells with optical depth equal to grid—averaged optical depth, reflectance is
increased by 10 to 20%. This is due to the non—linearity of radiative transfer and
the fact that photons are more likely to encounter liquid water in the homogenized
case. Accounting for variable geometric depth of cloud may be important in warm
regions where substantial towering clouds occur regularly. Also, at GCM gridbox
scales it is probably just as important to account for low frequency whitish noise in
cloud fields as it is to account for high frequency smoothing at scales below typical
cloud cell diameter. .

The convenient Lambertian surface approximation is probably adequate for
most broken cloud scenarios. Expected errors in fluxes probably will not exceed a
few percent. A method is developed for calculating cloudbase reflectance in a
Monte Carlo simulation. For the widely used geometric sum formulae for flux
calculation to be applicable, cloudbase reflectance must be independent of the

‘number of internal reflections. For broken scaling clouds, however, this is violated.
‘Fortuitously and fortunately, if cloudbase reflectance in the geometric sum
formulae is set to the spherical albedo of the cloud field, errors in flux estimates
should be small (g 5%) in most cases. Finally, it is shown analytically that
reduction in system albedo due to the introduction of broken, non-absorbing

clouds is possible but highly unlikely to occur with any importance on Earth.
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CHAPTER 1

Introduction

1.1 Background

Giobal Climate Models (GCMs) indicate that climatic change ard stability
are intimately related to FEarth’s radiation budget (Ramanathan, 1987, 1988;
Mitchell, 1989) which itself is dominated by clouds. In turn, clouds are governed
by Earth’s radiation budget and thus by climate (Somerville and Remer, 1984;
Roeckner, 1988; Mitchell et al, 1990). The potential importance of this feedback
has initiated research to develop accurate and computationally quick methods for
calculating cloud dynamics and radiation transfer through clouds. However,
different GCMs have different cloud—radiative dynamics (Cess and Potter et al,
1989) which produce different climatic equilibrium (and presumably transient)
responses to perturbations.

The diiferences between cloud—radiation interactions within é:dsting GCMs
is compounded by the complexity and non-linearity of climate and GCMs. Both
probably contain chaotic tendencies (Lorenz, 1969; Somerville, 1987). If so, the
small scale detail of the climate system should not be ignored, for in chaotic
systems small scale variability can modulate significantly the overall state of the
system {Ruelle, 1989). The current generation of GCMs, however, has horizontal
resolutions typically between 60 to 600 km. Hence, there is much unresclved

physics. Clouds are observed to be extremely variable over large ranges of scale.



Chapter 1 2

Recent studies (e.g. Stephens, 1985) suggest that solar radiative transfer in clouds
depends very much on the distribution of liquid water. One of the pressing
problems in climate modelling, therefore, is the description of sub—grid spatial
structure of realistic cloud fields and the efficient calculation of radiative transfer
through them.

At present, many climate models compute the fraction of cloud in a grid

using the gridbox’s value of relative humidity RH as

o

||l 1-rE
A= (11)

where RE_ is clear—sky relative humidity. If 7 = 1, RH being becomes a linear
weighted average of relative humidity in the cloudless and cloudy (saturated)
portions of the grid. Both RH, and #, and Eq.(1.1) for that matter, are ad hoc and
probably very scale dependent. Typical values of R.E[c and 7 are 0.9 and 1 or 2,
respectively (e.g. Slingo et al,, 1989).

" Once A is determined, cloud liquid water content (LWC) and effective
radius of cloud droplet size distribution are calculated by semi—empirical functions
of humidity and temperature (e.g. Fouquart et al, 1990). More realistic
parameterizations of cloud fraction and atiributes treat liquid water as a
prognostic variable. Such models are still in the formative stage and not widely
used (Sasamori, 1975; Sunqvist, 1978; Smith, 1990).

Climate modellers have yet to address the problem of sub—grid geometry
(distribution) of cloud. Not only is this due to lack of theory, but it has only been

during the last ten years that detailed observation of cloud geometry has come into
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vogue. Even if techniques existed for describing cloud geometry, there are no
radiative transfer procedures which could use the information. In the meantime,
climate modellers assume that clouds are ‘fractionally’ plane—parallel and use
multi-layer, plane—parallel solutions of the radiative transfer equation to compute
solar fluxes (e.g. Wiscombe, 1977; Fouquart and Bonnel, 1980; Blanchet and
Morcrette, 1985).

Plane—parallel clouds are flat, homogeneous slabs of infinite horizontal

extent. Fluxes for a gridbox containing plane—parallel clouds are calculated as
F=AF (1.2)

where Fp comes from a plane—parallel radiative flux model (see Meador and

Weaver, I;QSO and Zdunkowski et al, 1980 for reviews). Although many
plane—parallel flux models are computationally efficient and accurate (King and
Harshvardhan, 1986), their true accuracy is limited because clouds are never
plane—parallel.

One route for investigating the radiative properties of non—planar clouds is
to solve the radiative transfer equation with appropriate boundary conditions.
Davies (1978), Bradley (1981), and Preisendorfer and Stephens (1984) have
derived solutions that describe the radiance fields of isolated, homogeneous
- cuboidal clouds. Smith (1988) has developed the mathematical foundation for an
analytic radiance solution for isolated cylindrical clouds. Stephens (1988) has
derived a two—dimensional Fourier expansion/interaction principle (Grant and
Hunt, 1969) solution which in principle could handle arrays of variable cloud. To
study radiative transfer in clonds that are extremely inhomogeneous in
three—dimensions, Lovejoy et al (1990) and Gabriel et al (1990) constructed

semi-analytic models based on a three—dimensional form of the interaction
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principle. While the analytic models developed so far are potentially useful for
detailed studies of various samplings of cloud radiation fields, they are too limited
and cumbersome for studying extensive cloud fields and too computationally
demanding for use in climate models.

The Monte Carlo method of photon transport offers a different approach to
studying radiative transfer in non—planar, inhomogeneous clouds. The roots of this
procedure lie in neutron tramsport theory for nuclear reactors (e.g. Spanier and
Gelbard, 1969). To date, most studies of radiative transfer for inhomogeneous
cloud have been conducted with Monte Carlo methods. They allow fluxes and
radiances to be computed fairly easily for any cloud geometry. As such, Monte
Carlo models can provide a wealth of information on how cloud inhomogeneity at
various scales affects radiative transfer. The primary drawback with Monte Carlo
simulations is the excessive computation demands. Although Monte Carlo models
may never appear in climate models, the latter may well incorporate
parameterizations of Monte Carlo resulis.

The first Monte Carlo simulations of photon transport in ron—planar clouds
focused on fluxes due to isolated, homogeneous clouds (e.g. Busygin et al, 1973;
McKee and Cox, 1974; Davies, 1978). They showed that radiative fluxes for finite
clouds can differ greatly from those due to plane—parallel clouds because finite
clouds have sides that intercept and leak photons. During the same period, Van
Blerkhom (1971) and Wendling (1576) showed that regular striations (turrets)
appended to the top of plane—parallel clouds reduce cloud albedo below that due to
plane—parallel clouds with equal vertical optical depth.

Attention then shifted to the middleground between plane—parallel and
isolated finite clouds: regular arrays of identical, homogeneous clouds. The original
studies by Busygin et al. (1973) and Aida (1977) (nine cubic clouds) suggested that

enhanced illuminated area, cloud—cloud interaction of photons, and cloud
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shadowing are important for flux calculations. Similar investigations where
conducted by Claussen (1982), Wienman and Harshvardhan (1982), Schmetz
(1934), Harshvardhan and Thomas (1984), Welch and Wielicki (1984) and others.
These studies confirmed and elaborated on the importance of enhanced
illumination, cloud—cloud interactions, and shadowing for fluxes in regular cloud
arrays. Kobayashi (1988) extended these findings to include arrays of various cloud
fortns positioned at random in a 10x10 checkerboard. These studies have shown
that, at high sun, non—planar clouds reflect less radiation than plane—parallel
clouds while at low sun they reflect more.

Kite (1987) (see Rawlins (1990) for corrections) and Cretel et ol (1988)
examined how a cloud size distribution placed in a regular array affects solar
fluxes. These studies followed from the work by Welch and Zdunkowski (1981) and
observational studies (Plank, 1969; Wielicki and Welch, 1986). The results of
Cretel et al and Rawlins imply that cloud refleciance is not very sensitive to cloud
size distribution.

In general, Monte Carlo results of photon transport for regular arrays of

‘clouds show that plane—parallel models are at best only a first order
approximation that introduces biased radiative forcing at various spatial and
temporal scales. Given that the climate system is a vast network of non—linear
feedback processes, it is impossible to speculate on how fundamental systematic
biases involving clouds and radiative transfer manifest themselves and cascade
through the system.

In contrast to broken cloud fields examined thus far, most cloud fields the
size of GCM gridboxes are as distinct from regular and random arrays of
homcgeneous clouds as they are from plane—parallel. Rather, clouds (LWC) tend
to clump and cluster at all scales: cloudy patches, with optically thickest regions

towards the centers, separated at times by large tracts of cloud—free space. Theory



Chapter 1 6

maintains that over a vast range of scales the lower atmosphere is often in a
turbulent state (e.g. Richardson, 1926; Kolmogorov, 1941). Wind and temperature
observations confirm this (e.g. Gage and Nastrom, 1986). Liquid water
concentration depends very much on temperature and over many scales can be
considered as a passive variable that is shunted around by the wind field. Thus, it
is not surprising that cloud observations (in situ sampling and satellite radiances)
exhibit features intrinsic to chaotic turbulence: random fractal properties
(Mandelbrot, 1974; Lovejoy, 1982; Gabriel et al, 1986; Cahalan, 1989; and
Cahalan and Joseph, 1989); and continuous wavenumber spectra that decay
algebraically as a function of wavenumber (frequency) (King et al, 1982; Cahalan
and Snider, 1989). Clouds exhibit ’scaling’ or spatial autocorrelative structure as
is clearly visible at all scales in the form of clumping and clustering.

In response to theoretical and observational evidence which links clouds and
turbulence, Davis et al. (1990) used a simple random mono—fractal cascade model
to simulate highly irregular isolated cubic clouds and overcast clouds. Radiative
fluxes were calculated with a simplified discrete {six) angle approach for overhead
sun only. They demonstrated that compared with plane—parallel clouds,
three—dimensional inhcmogeneity can dramatically reduce cloud reflectance. They
suggested that this might explain the long standing disagreement between theory
and observation regarding anomalous absorption of solar radiation by clouds
(Wiscombe et al, 1984). Cahalan (1989) used a two—dimensional Monte Carlo
model to simulate photor transport in quasi—fractal, two—dimensional,
horizontally inhomogeneous overcast cloud. His results are similar to those of
Davis et al. Thus, inter—loud inhomogeneity reduces cloud albedo. A simple
qualitative proof of this statement is given in Appendix A. As yet, however,
properties of radiative transfer for GCM grid size cloud fields that exhibit realistic

autocorrelative structure have not been studied.
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1.2 Purpose and Outline of Study

The purpose of this thesis is to explore properties of solar radiative transfer
transfer (fluxes) for large arrays of realistic, scaling, broken clouds (fairweather
cumulus) above reflecting surfaces. Using satellite radiances and in situ aircraft
measurements within cloud fields as empirical guides, realistic cloud fields are
generated stochastically. Then, their grid—averaged solar fluxes are determined by
the Monte Carlo technique of photon transport.

The second chapter reviews Fourier spectral analysis and the scaling and
fractal nature of atmospheric turbulence. Then, several satellite radiance and
aircra’t datasets are analysed for spectral properties. Last. three phenomonological
scaling cloud field models are developed and demonstrated.

In chapter three, a three—dimensional Monte Carlo atmospheric radiative
transfer model is developed. Also, two gemeral procedures to account for an
underlying reflecting surface are presented. These models are validated in chapter
four.

The fifth chapter contains results on the statistical significance of fluxes for
large arrays of cloud; representativeness of single realizations of the cloud field
mo:le's;. intercomparison of fluxes for various kinds of broken cloud fields; and
analysis Bf radiative properties of scaling cloud fields. Finally, some properties of

fluxes for broken clouds above reflecting surfaces are examined.



CHAPTER 2

Scaling Cloud Fields: Observational Evidence
and Model Development

This chapter consists of four main sections. The first section, briefly reviews
one— and two—dimensional discrete Fourier transforms and power spectra. The
second section presents a qualitative model of two—dimensional turbulence (Frisch
et al., 1978) which demonstrates the scaling nature of turbulence and the relation
between scaling and fractal geometry. In the third section, observational evidence
is given to support the hypothesis that the distribution of cloud liquid water is
scaling. The last section presents and demonstrates three siniple phenomonological
scaling cumulus cloud field models. Cloud fields generated by these models are
used ultimately as boundary conditions in the Monte Carlo radiative transfer

model which is presented and discussed in the next chapter.

2.1 Discrete Fourier Transformations and Power Spectra

In this thesis, extensive use is made of one— and two—dimensional Fourier
analysis. This section introduces discrete Fourier analysis.

First, consider one-dimensional fields. Assume that a function f(x) is
defined on —o < x < m, where x may be time or distance. This function can also be
expressed as a superposition of waves with frequency w (either Hertz or inverse

wavelength). The amplitudes of the waves characterizing f(x) are given bv the
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continuous Fourier transform:

F(w) = f f(x)exp [- 21riwx]dx , < w<ao , (2.1)

which has an inverse of

i(x) = f_ch(w)exp [2mwx] dw , (2.2)

where i = y —1. Suppose we have a sequence of N ‘observations’ of {(x), denoted

as fn (n = 0,...,N—1), and that the observations are defined as either

1 xn+1
fn = Zf f(x)dx , (n=0,.,N=1) . (2.3a)
X
n
or

f, = f(nA) , (2.3b)

where
A=x . 1-% (2.3¢c)

which is constant and referred to as the sampling frequency. At this point it is
assumed that f(x) on x € [0,(N-1)A] is representative of the entire function f(x).
This is because fn is assumed to be periodic with wavelength NA. The discrete

frequencies of the waves making up fn are

w, = k/(N8) , (k=0,..N-1) , (2.4)
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where k is wavenumber (the number of complete sine and cosine waves in the
interval [0,(N-1)A]). Therefore, the continuous transform in Eq.(2.1) is

approximated as

@ N—1
F ()= f i(x)exp [— 21liwx]d.x v A z £ exp[— M] . (2.5)
The discrete Fourier transform is then defined as
N—1 .
F. = E f expl- 27ink
k n N
n=0
_ (2.6)
= llk + lvk N (k = 0,...,N—1) N

where u; and V) are the amplitudes of the cosine and sine waves of wavenumber k.

Therefore, the discrete and continuous transforms are related by

F » AF(w) . (2.7)

The inverse of Fk is

) erxp[h;“k] , (n=0,.,N-1) . (2.8)

Efficient computation of Eq.(2.6) and Eq.(2.8) is performed by standard Fast
Fourier Transform (FFT) programs (e.g. Press ef al, 1986).
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Note that

N—1

Fo= J £, =NO , (29)
n=0

where (f) is the mean of { . Furthermore, it is straightforward to show that when

f11 € R,
*
Fk = FN"“k ) (k = 1’...’N/2_1) 3 (2.10)

where the asterisk denotes complex conjugate. Thus, Fy is conjugate symmetric
about k = N/2 which is the wavenumber associated with the Nyquist critical
frequency given by 1/(24) [see Eq.(2.4)].

The discrete power spectrum of fn is defined simply as
5, = |F |2 (2.11)
k ki :

where the vertical bars represent the modulus of the complex number Fk' Note

that when f_€R, Eq.(2.10) implies that
S, =Sy » (k=1..N/2-1) . (2.12)

Thus, the power spectrum is symmetric about the Nyquist frequency.
One form of the Wiener—Khintchin theorem is now stated without proof

(Bergé et al., 1988). Define the discrete autocorrelation function of f as

1l
Lt

|
N
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1
E 2 fiim - (2.13)
It can be shown that the Fourier transform of ‘bm is equal to the power spectrum
Sk of fn' This implies that the power spectrum of a function that is correlated with
fn will have some similarities with 5.

By extension, consider a two—dimensional field fn which has forward and

backward discrete Fourier transforms (Rosenfeld and Kak, 1982) defined as

N—1 N—1 -
Fy= ) Efmnexp[—‘zvri[——;—]] (2.14a)
m=0) n=0 ~
= Uyt oiveg o
and
N—1 N—1 T
i =N2 EFklexp[zm[ ; ]] (2.14b)
k=0 1=0

where k and | are orthogonal wavenumbers making up the wave vector k = ki+1j.
Two—dimensional FFTs efficiently evaluate Eq.(2.14a and b). For example, for
N=256 they reduce CPU time from hours to seconds.

This study uses two methods for computing power spectra of a
two—dimensional field. First, an ensemble of one—dimensional spectra (transects
across a field) are computed and averaged to yield a smoothed spectrum denoted
as (Sk). This provides an estimate of the typical one—dimensional power spectrum
one would expect to measure along a transect of fmn' The second method involves
finding the total power as a function of modulus of wavenumber |k| and as such is

an integration over all directions, not just ore direction as is the case in the first
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method. Thus, define the continuous two—dimensional power spectrum as a

function of | k| as the line integral
- 2 ’
5)x| =§c|Fk'1'| d|x’| , (2.15)

where < represents closed curves about the origin in Fourier space. If the field is
isotropic, ¢ represents circles of radius [k|. If the field is anisotropic, ¢ may
represent an ellipse. In fact for some fields, ¢« may represent some homotopic set of

curves. For discrete, isotropic data, glkl may be approximated as

2

L 1Tyl

. | s €| k7| €Ki
S ~ 2.16
Ikll Ni H ( )

where N, is the number of terms in the annulus defined beneath the summation

sign.

2.2 The Scaling Nature of Turbulence

This section introduces the concept of scaling by showing how it arises in
fully developed, two—dimensional, homogeneous turbulence, and how it is related
to fractal geometry of sets. A field is said to be scaling if typical fluctuations at
different scales of observation are related by a scale changing factor only. This
section is essential {0 acquaint the reader with properties of scaling fields since
such fields are referred to extensively in this thesis. The formulation of the
turbulent scaling law is essentially the simple dynamical model of Frisch et al
(1978) which relies implicitly on rather complex derivations found in Kraichnan
(1967).
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Schertzer and Lovejoy (1985) have convincingly argued that there is no
transition scale below which the atmosphere is three—dimensional and above which
it is two—dimensional. The manner in which Frisch et al’s model is presented,
however, assumes that the atmosphere is two—dimensional at scales greater than
about 0.5 km (Kraichnan, 1967; Charney, 1971; Gage and Nastrom, 1986).

For simplicity, consider the size of turbulent eddies to be defined for a

sequence of space scales

~n
L=42", (@=012,..N), (2.17)
where lN is the scale at which energy is injected into the system (e.g. by
convective cells). Thus, the sequence of wavenumbers for which eddies are defined

sk =¢ n_l. Define the kinetic energy/unit mass at scales ~é, to be

l“n+1
.= f E(k)dk , (2.18)
kn

where E(k) is the energy spectrum describing the distribution of kinetic energy per
unit mass per unit wavenumber. Assuming statistically stationary turbulence,
energy is introduced at scales ~£N and is transferred to successively smaller
wavenumbers (downward cascade) by local shear deformation of the velocity field.
Also, assume that at all scales, eddies fill the available space. Thus, intermittancy

of energy transfer is neglected. Then, the kinetic energy per unit mass of n—scale
eddies is

E, ~ AVE(L) (2.19)

N ,
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where Av(ln) represents the typical velocity difference across a distance £ with
the frame of reference being that of the largest eddies. The eddy turnover time is

defined as

b
tn ~
Av(L))

: (2.20)

where tn_1 is the typical rate at which energy is fed from eddies of size £, into
eddies of size tn—l' In other words, t  is the typical lifetime of n—eddies.

In the energy inertial range of fully developed, two—dimensional,
homogeneous turbulence, the rate at which energy/unit mass is transferred from

one scale to the next is

2 3
E Ave(L AvU (¢
€ w—2 n (4) ~ (4) , (2.21)

n
by ty ¢

with insignificant loss of energy due to viscous dissipation. Since no energy is lost
e =%, Vn, (2.22)

where & may be thought of as either the rate of energy injection or the rate of

energy transfer down the cascade. Manipulation of Eq.(2.21) yields

av(g)~ &3 13 (2:23a)
and

_2/3, 2/3
B ~ 32 (2.23b)
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These relations imply that typical fluctuations at scale tn in velocity and energy
per unit mass are proportional to £ nll 3 and £n2/ 8 respectively. Since k = f;l,
Eq.(2.23b) becomes

-2/3,-2/3
E ~ 223 (2.24)
which upon substitution into Eq.(2.18) yields
-2/3,-5/3
B(k,) ~ e/ 217, (2.24b)

which is the Kolmogorov 5/3 scaling law for kinetic energy cascade in turbulent
flow. Note that this is also the power spectrum of the velocity field. This
formulation works equally well for fully developed, isotropic, three—dimensional
turbulence with the exception that energy cascades upwards in k to the dissipation
scale.

This law is also expected to apply to the concentration of a ’passive scalar’
riding or the turbulent eddies. A passive scalar is a scalar, such as liquid water,
whose concentration differences are due largely to advection only and whose
non-linear effects on turbulence are negligible.

Making the above results more general (Schertzer and Lovejoy, 1987), any
field f that exhibits typical fluctuations at scale £ like

Afy~ e (2.252)
has a power spectrum s
5 » k(2B (2.25b)
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Thus, the relations

H

"_(2H+1)Sk , (2.26)

Sk =

immediately follow and demonstrate unambiguously the nature of scaling. Hence,
it is clear that for a scaling variable, the statistics at one scale £ are related to the
statistics at another scale A{ by a scale dependent multiple AH only. This result
can now be compared to the definition of a fractal set.

Assume that a set of points ¢ is imbedded in a region of D—dimensional
space of size to. Divide this region into D—dimensional ‘cubes’ of size { = £0An
where A<1 and n>1. Hence, the region is divided into a total of NT(.! n) = ’\—nD
D—dimensional cubes. Let the total number of cubes required to ‘cover’ & at
scale { be N(¢,). IEN(4) 2™ o nooanddis noninteger, then ¢ is a fractal
set and has a Haussdorf dimension of d. Note that the scale dependent probability

of a cube covering o is

N(4) _ _ﬂ_ -n,D—d _ ,-nc
N Pr[ei’(l )] - 5" (P _ yme (2.27)

where ¢ is the codimension of ¢/. Thus, the probabilities of ¢ being covered by a

D—dif\‘r.nensional cube at £ and /_ are related by
Pr[ @'(zm)] = (e Pr[ d'(ln)] , (2.28)

which follows immediately from Eq.(2.27) and where A" g the ratio between
scale 4 and £ . This is the same form as Eq.(2.26). Therefore, if a variable
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exhibits scaling over a range, it is fractal-like in that range. Hence, the velocity
field in turbulent flow and its power spectrum are fractal-like over a finite range
of space scales. By the same token, a fractal object exhibits scaling over an infinite
range of scales. Not surprisingly, observations have shown that cloud fields
(passive scalars) have fractal-like area—to—perimeter relationships and scaling
liquid water content (e.g. Lovejoy, 1982; Welch et ol, 1988; Cahalan and Joseph,
1989; Cahalan and Snider, 1989).

2.3 Evidence That Horizontal Distribution of Cloud Liquid Water is Scaling

Satellite images and aircraft datasets are analyzed for scaling properties.
The two types of data are presented and discussed in turn. These data are used
primarily because of availability but also because they are reliable and span about

3.5 orders of magnitude.

2.3.1 Satellite Image Analysis

The satellite images discussed here are 256x256 pixel arrays obtained by the
Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA-9
satellite. This instrument has five narrowband radiometers all of which have a
nominal resolution of about 1 km at nadir viewing. This study utilizes the 0.63 ym
visible (VIS) and 11.5 um (IR) thermal bands. Data were extracted and calibrated
at the Aerospace Division of AES. Eight images were examined. The images are
for areas 500 — 1000 km off the east coast of North America extending from
Florida to Labrador. The data were recorded during the first half of March, 1986.
Results of three representative images are presented here in detail. These images
are shown in Figs.2.1 — 2.3 using the AVHRR VIS band and a relative grey scale.
Satellite tracking direction is towards the top of the page. This is approximately
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Table 2.1
NOAA-9 (AVHRR) satellite information

Scene A Scene B Scene C

Date 5/3/86 8/3/86 13/3/86
Time (GMT) 1939 1909 1637
Orbit Number 6325 6367 6436
Latitude (N) 29.5° 36.0° 54.0°
Longitude (W) 75.0° 69.5° 40.5°
Solar Zenith Angle 50.7° 52.9° 61.7°
Viewing Zen. Angle  32.6° 26.4* 6.0°

Relative Azimuth 31.8° 35.8° 45.4°

19
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due north for NOAA-9 is a polar orbiting satellite. Information pertaining to these
images are summarized in Table 2.1. Following Garand’s (1986) examples, scene A
is of scattered cumulus; scene B appears to be stratocumulus; and scene C appears

to be something between stratocumulus and open polygonal cells.

2.3.1.1 Spatial Coherence Analysis

Since information about layered cloud fields is sought, the first stage of the
analysis is to establish whether a satellite image is of a single layer of clouds only.
This is achieved by applying the spatial coherence method (Coakley and
Bretherton, 1982) to the AVHRR IR band.

In the spatial coherence method, pixel radiances are grouped together into
nxn arrays. The mean and standard deviation of the radjal}ces in the nxn arrays
are calculated and plotted as ordered pairs in Cartesian co—ordinates with the
mean on the x—axis. If the sea—surface temperature and the cloud—top
temperatures do not vary much over the image, the pattern of ordered pairs will be
a broad arch with two well defined ‘feet’. The reasons for this are as follows. Pixel
arrays with no cloud have a large mean radiance (warm ocean; warm foot of arch)
and negligible variance amongst the constituent pixel radiances. Similarly, a pixel
array of completely overcast sky will have a small mean radiance (cool cloud—tops;
cool foot of arch) with little variance amongst the constituents. Pixel arrays that
contain similar patterns of broken cloud in each constituent pixel will have an
intermediate mean and moderate variance (lower mid—arch). Lastly, pixel arrays
with highly variable broken cloud will have an intermediate mean and large
variance (upper mid—arch). Figures 2.1 — 2.3 show IR spatial coherence
scatter—plots for the three respective images using 4x4 pixel arrays. Clearly, each

image gives rise to a single broad arch with two fairly well-defined feet thus
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Fig.2.1. (a) Relative brightness image of scene A using AVHRR VIS data.
Minimum and maximum reflectances are 0.031 ard 0.561. Below the image is its
spatial coherence scatter—plot using AVHRR IR imagery. 4x4 pixel arrays have
been used. ‘
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Fig.2.1. e%)) As in (a) except for scene B where minimum and maximum
reflectances are 0.039 and 0.652.
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Fig.2.1. (c) As in (a) except for scene C where minimum and maximum are
0.02 and 0.588.
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signifyine a single layer of cloud. Had a second cloud layer been present, another
foot would have appeared at the base of a second arch emanating from the first
arch (Coakley, 1983).

Let I + AIC be the IR radiance associated with the warm foot of the arch
(clear—sky) and I, + AL be the cold foot’s IR radiance (cloud tops). Al and AT
are errors in Ic and IO. Their magnitudes are determined by the dispersion of
points at the base of the arches. Making the extreme assumption that when clouds
occur they are unconditionally very thick in the IR, the average (measured)

radiance of the image is
I=(1- As)Ic +AlL (2.29)

where As is cloud cover fraction presented to the satellite. Hence, inferred cloud

fraction of the image is

I-1,
A = . (2.30)
I, -1
The error associated with As is
A 2 911/2
Aag=s— [AIc(l -As)] + [AIOAS] . (2.31)

AS for the images in Figs. 2.1 — 2.3 are listed, along with other spatial coherence
information, in Table 2.2. The pl'dbiem, however, with this approach is that cloud

fields are inhomogeneous and parts of clouds, unresolved by AVHRR, have very
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Table 2.2
Summary of Spatial Coherence Aralyses of Scenes A, B, and C

Scene A Scene B Scene C
I c 99.9x0.5 93.6=0.9 78.3x0.8
I0 76.9+1.8 54.2+0.3 37.320.9
Torit 0.378 0.728 0.764
N c 190 146 282
N0 10 268 335
A 0.28+0.06 0.77+0.02 0.38+0.02

I: Clear—sky radiance (W/m?/um/sr)
I Overcast radiance (W/m?/um/sr)

Oerit’ Maximum standard deviation a collection of pixels may have to be
considered as being a constituent of one of the arch’s feet

N Number of points in clear—sky foot of arch
NO: Number of points in overcast foot of arch

At Inferred cloud fraction using Eq.(2.30)
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Fig.2.2. Spatial coherence scatter—plots for scenes A, B, and C using
AVHRR VIS imagery (reflectance in %). 4x4 pixel arrays have been used.
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thin regions that are not thick in the IR (see Parker ef al.,, 1986). Since the surface
is detected to some extent through thin cloud, A  estimated by Eq.(2.30) will be
too low by an unknown amount (see Appendix B for a proof of this statement).
Horizontal variability in vertically integrated cloud mass is not very
apparent in the IR due to limited multiple scattering of photons by cloud droplets
and the very rapid reduction in transmittance with increasing cloud optical depth
7 above ~1. In the visible, however, horizontal variability is apparent. Using the
AVHRR 0.63 pm (VIS) band this time, the spatial coherence procedure is repeated
for the three images. The resulting VIS scatter—plots are shown in Fig. 2.2. It is
immediately clear that sea—surface albedo is very well defined in all cases (equal to
about 0.04), yet there is no characteristic cloud albedo; standard deviation does
not taper off as reflectance increases. This implies high variability in horizontal

distribution of cloud thickness (mass).

2.3.1.2 Spectral Analysis of Satellite Images

The next step is to determine an ensemble averaged one—dimensional power
spectrum (S, ) for each of the images. This is achieved by taking ten horizontal
and vertical lines of pixels from the images, finding the power spectrum for each
line, and averaging the twenty spectra to give ome representative smoothed
spectrum. Cahalan and Snider (1989) applied a simi'ar method for two 60x60 km
LANDSAT visible images (30 m resolution) from July 7, 1987 off the coast of
Southern California.

Figure 2.3 shows the smoothed spectral for the VIS band of the images in
Fig.s 2.1 — 2.3. None of the spectra display dominant peaks. This implies that the

jimages are quite isotropic (not much orientation). The most distinguishing feature

1All spectra plotted in this thesis are normalized by the total power in the image.
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Fig.2.3. Ensemble averaged one—dimensional power spectra for scenes A, B,
and C. Solid and dashed Lines are for VIS and IR imagery respectively. Spectra are
normalized to the total power in the image. The IR spectra are shifted up one
decade. Straight lines that are labelled are best—fit lines.



Chapter 2

29

o
o o

Normalized Power
o
o
2

100
Wavenumber

1E-06 T—T—T"TTTTT T T TTTTYY
1 10

1000

Normalized Power
o
o o
a o
Q Q
= =

1E-05

g rgateme roreayms i NSpieem  J RACHIME P RALMGE P 114

32 km 4.25 km

1E£=-06 T T TTTIT —TT Tt
1 10 100
Wavenumber

1000

o

o o

= = -
FRTIT T A Ealitem L l!l‘ll._- A4 dsn

Normalized Power
[»]
o
<

0.0001

1E-05 &
3 54 km 5 km

1E-06 F—— T T——T——rTrrrTT ———rr
1 10 100

\Tavegumber



Chapter 2 30

in all three plots in Fig.2.3 is the unmistakable change in scaling at about 4 km (k
~ 60 — 70). Examination of the images reveals that 4 km is approximately typical
cloud cell size. Furthermore, many of the larger clouds (» 4 km) appear to be
conglomerates of bright cells which measure about 4 km in diameter. For scenes A

and B, the spectra follow k 3

approximately for scales less than about 4 km.
Over the same range of scales, the spectrum for scene C follows k_3. For scales
between about 4 — 30 km and 5 — 60 km for scenes B and C respectively, the
573

spectra follow . For scales larger than those just mentioned, the spectra of

scenes B and C appear to imply random (white noise) fields of reflected radiance;
k0. The spectrum for scene A follows Kt (1/f—noise) from about 4 km to at least
256 km, '

These results are very similar to Cahalan and Snider’s resulte. Though the
two (Sk) radiance spectra they showed ranged only from 60 m to about 15 km,
their scattered cumulus case followed k™ 0- down to about 0.5 km and k™ for
smaller scales, and the stratocumulus case foliowed k“5/ % down to about 200 m
and then followed k™56, For their scattered cumulus case it is clear that typical
cloud size is about 0.5 km. Hence, the steeper portion of the spectra correspond to
- radiance variance across cloud cells. It is interesting that similar cloud types in
different oceans and different seasons show very similar scaling exponents before
and after the break in scaling. Especially since the scaling breaks in scenes A, B,
and C occur at a space scale about one order of magnitude greater than in Cahalan
and Snider’s cases. This, however, is consistent with diurnal observations of clouds
(e.s. Plank, 1969); small clouds in the morning (LANDSAT) and larger
conglomerated clouds in the afterncon (AVERR).

‘Cahalan and Snider also showed the spectrum of vertically integrated liquid
water for the July 7 stratocumulus obtained by an uplooking microwave

radiometer on San Nicolas Island, California which was near the LANDSAT
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tracking line. Assuming frozen turbulence (advected turbulent field), the spectrum
followed k_5/ 3 for scales between about 600 m to at least 100 km; the same as for
stratocumulus reflected radiance. This appears to verify that for large scales the
structure of the reflected radiance and liquid water fields are very similar. If all
clouds behaved as isolated plane—parallel media, this result would not be
interesting because reflectance would be a one—to—one function of, and highly
correlated with, liquid water amount. Hence, by the Wiener—Khintchin theorem,
the power spectra of reflectance and liquid water would be expected to be largely
similar. Reflectance of real clouds, however, depends on the local
three—dimensional distribution of liquid water and, thus, a unique relation between
reflectance and liquid water is not expected.

The important point regarding many of the scaling exponents just
mentioned is that they arise in the theory of two— and three—dimensional
homogeneous, space—filling turbulence (e.g. Kolmogorov, 1941; Kraichnan, 1967).
Following Cahalan and Snider’s reasoning, a possible explanation for the reflected
radiance scaling patterns may be that convective energy is injected at scales of
about 4 km (in their two cases about 0.5 km), energy cascades downwards in k (up
in real space) following a k_5/ 3 {wo—dimensional turbulence law and enstrophy
(vorticity squared) cascades upwards in k following approximately a Ko
two—dimensional turbulence law (Kraichnan, 1967; 1970). Assuming cloud droplets
to be passive scalars in the range of satellite resolution, cloud structure would then
follow a scaling law similar to the turbulent field which in turn would give rise to a
reflectance field with again similar scaling. For scales less than about 5 km,
however, it is difficuli to see how two—dimensional turbulence theory can describe
atmospheric motion. At this stage it is difficult to attribute dynamical mechanisms

to the k ™+ and k43 regimes.
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Regarding Cahalan and Snider’s results, Wiscombe (personal
communication, 1990) has hypothesized that the change to the —3 to —4 power
laws for scales below typical cloud size may possibly be due to photon transport
rather than to a structural change in cloud liquid water distribution. The basis of
his argument is that multiple scattering of photons serves to make inhomogeneous
cloud look smooth {(more homogeneous) and this leads to a rapid reduction in the
amplitude (power) of waves, of wavelength less than typical cloud diameter, which
make up the radiance field. This argument simply recognizes that multiple
scattering of photons acts as a low—pass filter suppressing detail and, thus, high
frequency wave amplitudes.

If the breaks in scaling of the VIS fields are due io dynamics (cloud liquid
water) rather than multiple scattering, a similar break in scaling might appear in
the power spectrum of an image’s corresponding IR radiances. This is because of
limited multiple scattering and short photon mean—free (absorption) pathlength at
thermal wavelengths. Therefore, using the lines of pixels used to create the VIS
spectra in Fig.2.3, smoothed power spectra of the IR fields are shown on the same
plots. VIS and IR spectra have much in common. This was expected for the low
wavenumber regime (where they are almost identical), but the break in scaling at
~ 4 km to a new regime is clear in the IR fields too: the slopes are the same, but
with minor differences in detailed structure. It appears, however, that the scale
changing transition is less abrupt in the IR case than in the VIS case. Thus, in all
three cases, it appears that the breaks in scaling are not due to the smoothing
effects of multiple scattering of photons. If the changes in scaling are due to
dynamics, the nature of the dynamics is as of yet unclear. Similar results where
obtained for six other satellite images analysed (see Appendix C).

Assuming that the IR radiance of the (ij)th pixel Iij is approximated by
Eq.(2.29) with A, replaced by the cloud fraction in the pixel, implies that Fourier
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transforms of Iij and cloud fraction [Eq.(2.30)] are equal to within a constant
factor. Therefore, if cloud amount was the only variable modulating clear—sky IR
emission to space, the results in Fig.2.3, imply that cloud amount is scaling. While
cloud amount is certainly not the only variable modulating IR to space, this is a
reasonable suggestion since observations show that clouds tend to clump together
and that clumps are separated by substantial cloud—free areas (see Randall and
Huffman, 1980; Fouquart ef el, 1990). In fact, this is the reason why the spatial
coherence method works at different scales. However, as mentioned above, the
problem is compounded beyond cloud fraction by horizontal variation in cloud
optical thickness. Unfortunately, there seems no way to directly and
simultaneously assess the impact of cloud fraction and optical depth on radiance
fields.

IR radiance is also modulated by changes in cloud temperature with height.
A general idea of the magnitude of this effect is attainable. Following Cahalan and
Snider (1990), begin by calculating the cumulative frequency of the IR images (see
Fig.2.4). Then, find the radiance that exceeds 100A, % of the radiances in the
image where As is the image averaged cloud fraction as determined by the spatiai
coherence method. This radiance is a first order estimate of the cloud—base
radiance (temperature) I, Using the AVHRR radiance—~to—temperature
conversion, one has an idea of the range of cloud temperature which is
approximately proportional to I, —I . Using the values of I, (Table 2.2) and I
(Fig.2.4), the cloud—tops in Figs.2.1 — 2.3 may vary in temperature by up to 15 K.
Assuming cloud temperature decreases with height along a moist adiabat, cloud
geometric thickness (assuming a constant lifting condensation level) may vary by
as much as 2 km. As such, much of the variation in cloud reflectance and
emittance across an image may be explained by variations in cloud geometric, and

thus optical, thickness. Perhaps cloud liquid water content scales similar to k_5/ 8
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Fig.2.5. Directionally integrated two—dimensional power spectra for scenes
A, B, and C. Solid and dashed curves are for VIS and IR imagery respectively.
Spectra are normalized to the total power in the image. The IR spectra are shifted
up one decade. Straight lines that are labelled are besi—fit lines.

-
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in three—.imensions and the vertical integral of liquid water is smoother and scales
more like k_4. Exploration of this hypothesis is beyond the scope of this thesis.

This analysis supports the claim that the scaling break is due to dynamical
effects and not radiation effects only. Again, however, it is stressed that the scaling
changes in Cahalan and Snider’s examples occur below 1 km which is both below
the resolution of AVHRR data and closer to the average photon mean—free
pathlength in the visible. Thus, the results presented here do not necessarily
negate Wiscombe’s hypothesis. Better confirmation will come with a comparison of
LANDSAT visible and IR spectra.

As a final note regarding power spectra of satellite imagery, consider the
directionally integrated spectrum glkl' Figure 2.5 shows glkl for the VIS and IR
fields of scenes A, B, and C. These spectra bear many expected similarities to their
one—dimensional counterparts shown in Fig.2.3. In the intermediate |k| and k
ranges, all spectra for scene A scale approximately as |k|_2 and k“l, respectively,
while for scenes B and C they scale approximately as |k|_8/ 3 and k_5/ 3 It is
interesting that all specira in Fig.2.5 show gentle, gradual increases in slope over
the range where spectra in Fig.2.3 shows distinct changes in slope. Furthermore,
the specira in Fig.2.5 display distinct changes in slope at |k| = 128 and follow
straight lines up to |k| =y 2-128.

2.3.1.3 Multifractal Analysis of Satellite Images

In addition to Fourier analysis, cloud and radiation fields can be examined
with fractal concepts. The relation between scaling and monn—fractal sets has been
alluded to already in Section 2.2. The radiation field in a satellite image, however,
defines a three—dimensional graph and not a set; two dimensions for location and
one for magnitude. Thus, the first problem is to transform the three—dimensional

graph into sets by imposeing radiance exceedance thresholds: if a radiance exceeds
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the threshold it is in the set, otherwise it is not. This casts the problem into the
standard fractal framework.

With fractals, one is concerned with what sets look like at various scales of
measure. Therefore, attention must be directed towards what a field looks like at
different scales; that is, when measured at different resolutions. As resolution
decreases, a variable field appears smoother since it is averaged over larger areas.
Conversely, as resolution increases, the field may become more variable. Hence,
care must be taken when imposing exceedance thresholds on an image at vario;m
scales because specific thresholds have different meanings at different scales.
Furthermore, one may generally expect that the low and high intensity regions of
an image scale differently. This gives rise to multifractals which are characterized
by many (perhaps an infinity of) codimensions (Frisch and Parisi, 1985; Schertzer
and Lovejoy, 1986).

Schertzer and Lovejoy (1986) and Lovejoy and Schertzer (1990) have
stressed the use of simple, phenomonological multiplicative cascade models to
simulate turbulent and random multifractal fields. A multiplicative cascade model
begins with a homogeneous field of size £, which is then repeatedly subdivided.
Upon each subdivision, the value of offspring cells (eddies) equals the value of the
parent cell times a number whose value is determined by a well defined probability
rule. Schertzer and Lovejoy (1986) showed that as the size of cells £ and thus the
scale factor A = t/to, decrease, the resulting ‘bare’ quantities of the cascade fz
tend to cluster and behave like f, ~ ¢ ~7 where 7 is an order of singularity. In other
words, the emerging field develops a hierarchy of singularities. As such, the

ensemble average of realizations of a multiplicative cascade yields the approximate

v

relation v

Pr [ft > t""] w7 (2.32)
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where Pr is probability and c(7) is the scale independent co—dimension function.

In non—dimensional form, Eq.(2.32) is
Pr[f)‘ > (1) ,\"T] 3¢ (2.33)

where (f) is the mean of f over the image (which is independent of scale). Note the
similarity between Eq.(2.33) and Eq.(2.27) and also that the exceedance thresholds
(£ 27 depend on scale. Schertzer and Lovejoy (1986) also showed that

(1 =c¢, [:,—3 + 1] °, (2.34)

where Cor Yo and « are constants. Hence, for multiplicative processes, the scale
independent co—dimension function is a power function of 7, the parameter that
governs the magnitude of the scale dependent thresholds used to form sets out of
the field. _

It is important to note that Eq.(2.33) applies to the ensemble average of the
so—called ‘bare’ quantities of the cascade. I a cascade is allowed to develop to its
inner scale Ai, Eq.(2.33) does not strictly apply to the ’‘dressed’ quantities: the
fully developed bare quantities averaged (measured) at scales A > A, If
atmospheric turbulence is assumed to behave as a multiplicative cascade with
liquid water for the most part being a passive scalar, observations with the 1 km
resolution AVHRR instrument (and even the SPOT satellite with ~10 m
resolution) are well above the viscous cui—off (inner scale of turbulent cascade)
and are thus sﬁbsta.ntia.lly dressed. Furtuermore, radiation fields are surrogate
measures of the cloud field. Thus, the inferred c(7) function of a satellite image

depends on wavelength of radiation and viewing and illumination geometry. This
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complicates the problem for relations between c(«) for remotely sensed radiation
and the corresponding cloud field are unknown. Nevertheless, Gabriel et al. (1988)
and Lovejoy and Schertzer (1990) have shown that visible and IR satellite
radiances of mostly overcast scenes of northeast North America have well defined
¢(+y) functions over scales from 8 to 256 km.

Now, consider estimation of c¢(v) with the Probability Distribution/
Multiple Scaling (PDMS) method (Lovejoy and Schertzer, 1990). For the time

being, assume that Eq.(2.32) is an equality. It may, therefore, be rearranged as

In pr[,, , ‘“(fz\ﬂ]
In(A)

e(y) = ey . (2.35)

This equation is calculated (histograms are tabulated) for many values of 7 and A
(by averaging, and thus degrading, the satellite data). Figure 2.6 shows Eq.(2.35)
averaged for A = 1/256, 2/256, 4/256, 16/256, and 32/256 for the VIS images in
Fig.s 2.1 — 2.3. Also plotted are estimated best—fit curves of ¢{7) in the form of
Eq.(2.34). The constants for Eq.(2.34) are listed on the plot. The obvious method

for finding c and « is non-linear regression, but often this was unsatisfactory.

o) 70!
So too was the graphical method presented by Lovejoy and Schertzer (1990). A
new graphical method was, therefore, developed (see Appendix D) and used in this
study. It worked fairly well in the cases used. Evaluations of Eq.(2.35) at A =

8/256 were excluded demonstrate that c(7) can be applied to a scale not used to

derive it.
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Equation (2.33) can be written as

f p,(f,)df, = A%) ) (2.36)
(Ha~7

where py(fy) is a normalized, scale dependent demsity function of radiance
measured at scale A. Assuming that Eq.(2.36) is an equality and f,\ = (DA77,
P, (f,) is defined as

. e(fy)
6 = aln(A)e(f, )AL | -
£y [ 7510 - 1n(£,/¢0)

Figure 2.7 shows p, at A = 8/256 using the constants listed in Fig.2.6. Also
plotted in Fig.2.7 are the derivatives of the cumulative density functions of the
VIS images in Fig.s 2.1 — 2.3 as averaged at 8 km resolution. Clearly, the
theoretical descriptions are excellent given that A = 8/256 was not used to
estimate c(y) and that only one realization of the cascade, mot an ensemble
average, is being considered. These examples show, for apparently the first time,
that radiances from single layer, non-overcast (broken) cloud fields may at times
be characterized by multifractals.

Finally, it should be mentioned that the multifractal framework provides a
potentially attractive approach to parameterization of sub—grid processes in
climate models. The scale independent co-~dimension function may provide a way
of getting around re-tuning parameterizations as the resolution of a climate model
changes. Currently, many parameterizations are bogged down with parameters

that are seemingly very dependent on model resolution. If the parameters in the
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Fig.2.7. Cumulative frequency curves of AVHRR VIS imagery averaged at
8 km resolution for scenes A, B, and C (solid lines). Thus, they are approximations
to the radiance demsity functions at 8 km resolution. The dashed lines are
theoretical density functions predicted by Eq.(2.37) using A==8/256 and the
parameters listed in Fig.2.6.
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codimension function can be estimated and explained physically, ¢() may become

a useful diagnostic variable in climate modelling of sub—grid phenomena.

2.3.2 Aircraft Data Anpalysis

Attention is now turned toward in situ observations of cumulus cloud fields
as measured by instruments mounted on an aircraft. Four level fiights between
Muskoka and Dorset, Ontario (45°N, 79°W) through scattered cumulus during
August, 1988 are considered. All data were measured by the Cloud Physics
Division of AES (personal communication; Dr. R. Leaitch, 1990). Table 2.3 lists
flight data. The Twin Otter aircraft flew at approximately 60 ms 2. All data are
one second integrations, hence, their resolution is about 60 m. This study makes
use of air temperature, liquid water content (LWC), and up—welling and
down—welling ultra—violet (UV) solar radiation. Liquid water content
measurements for flights 25, 32, and 49 were obtained with a forward scattlering
spectrometer probe (FSSP) while for flight 43 a hot—wire probe was used. UV
radiation was measured with a quartz—domed radiometer active at wavelengths
between 0.29 and 0.385 um and accurate to within +2% at solar zenith angles less
than 80°.

Figure 2.8 shows composite time series of LWC and temperature. The series

are superimposed such that the following implication holds approximately:

T2 Toye ¥ LWC, 50, (2.38)

where Tn and LWCn are the values at the nth

second and Tcrit is approximately
the upper bound of temperature for which a measurable amount of liquid water
exists. For flights 25, 32, and 43, Tcrit is about 8.8*, 13.0°, and 12.7°C,

respectively. The correlation implied by Eq.(2.38) is especially good for flight 32
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Table 2.3
AES Twia Otter flight information

flight 25 flight 32 flight 43 flight 49

Date 6/8/88 15/8/88  24/8/88  29/8/88
Start Time (GMT) 1643 1942 1528 1841
Altitude (m) 2000 1240 1100 2180
Pressure (mb) 792 870 880 780

46
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Fig.2.8. a)wFlight 25 time series of simultaneously measured cloud liquid
water content (L 03’
as

upper plot, solid and

temperature, and upwelling UV radiative flux. For the
hed lines are temperature and LWC.
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where with few exceptions, LWC = 0 when T > 13.0°C. Note that for flight 49 a
well defined T _ ., value does not exist (~ 2° C was the closest).

Assuming frozen turbulence (Taylor’s hypothesis), one should expect that
temperature measured at a stationary point on the flight—path would produce a
time series very similar to those shown in Fig. 2.8. This is the case with
temperature measured at 2 point slightly above Earth’s surface {Oke, 1978). Near
the surface in unstable conditions, however, temperature enhancements are
associated with rising eddies while reductions are due to descending eddies. Figure
2.8 shows that the reverse can be true at cloud altitudes. Cumulus clouds form
when bouyant eddies ascend past the lifting condensation level. Hence, clouds form
in updrafts. Therefore, the time series indicate that, at a given level, cool
temperatures are associated with updrafts and warm temperatures are associated
with space between clouds or holes in clouds which are most likely regions of
downdraft given anti—cyclonic synoptic conditions. Similar results have been
presented elsewhere. For example, Warner (1969) showed simultaneous time series
of LWC and vertical wind speed (Pruppacher and Klett, 1978). His results are
qualitatively the same as those inferred above in that they show a strong
correlation of the form: updraft 2 LWC > 0; downdrait 2 LWC = 0.

An explanation for the form of Eq.(2.38) is as follows. Air leavirg cloud
tops and sides is much drier than it was during it’s condensation phase (ascent).
Hence, as the air descends outside the clouds, it warms at the dry adiabatic lapse
rate. Thus, at a given level, an eddy’s temperature upon descent is greater than it
was on ascent for then it was cooling along a moist adiabat. |

The time series for flight 49 (Fig. 2.8d,e) suggest that the lower atmosphere
was very unstable relative to the other flights and characterized in spots by

relatively deep convection. The down—welling radiation time series (Fig.2.8e)
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shows that high and low fluxes can be be measured within a few seconds of each
other. This is due to direct solar beam and scattered radiation from the side of an
approaching towering cloud reaching the radiometer just before the radiometer
enters the cloud. Also, there are several simultaneous occurrences of large
up—welling and down—welling fluxes and LWC = 0. This is due to cloudtops below
the flight path. Evidently, the reasoning used in the previous paragraph to explain
the temperature series for flights 25, 32, and 43 and the existence of T crit does not
apply well in the case of flight 49.

Figure 2.9 shows wavenumber spectra of the temperature time series (curve
A) in Figs. 2.8. The temperature spectra for flights 25, 32, and 43 follow very
closely the k¥™/3 law for all k in the first two flights and for k < 200 in the last.
For scales between about 300 m and 120 m (Nyquist frequency), the temperature
spectrum 1or flight 43 follows k. These results are similar to those of Gage and
Nastrom (1986) and Nastrom and Gage (1985) who used data from over 6900
commercial aircraft flights to show that the spectral signatures of wind and
potential temperature are both very close to k_5/ 3 over scales from ~ 1000 km to 2
km regardless of altitude and geographic location. The temperature spectrum for
flight 49 is close to K for k < 10 and k18 for smaller scales. This is similar to
the k™2 spectrum for vertical wind measured by Warner (1969).

Also plotted in Fig. 2.9 are spectra for LWC (curve C) and the following

truncated temperature series:

(2.39)
;T <T. . . |

& is spectrally analyzed because for flights 25, 22, and 43 it is the part of the

. temperature field associated with non—zero LWC.
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truncated temperature (B), and liquid water content (C). Spectra (B) and (C) are
shifted up one and two decades respectively. Labelled straight lines are best—fit
lines. Flight number is indicated in the upper right corner of the plots...
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For flights 25, 32 and 49, LWC spectra (and the spectrum of J for flights
25 and 32) have nearly identical slopes and structure to their respective
temperature spectra (save for the low k regime of flight 49 where for LWC §; «~
ko). In fact, the slope of the LWC spectra for flight 49 is almost identical to that
measured by King et al. (1982) for scales between 2 m and 45 m. For flight 43,
spectra for LWC and & are similar for scales greater than about 300 m where they
closely approximate k'"l. For scales less than 300 m, the 5 field seems to continue
with kK while the LWC field scales similar to the full temperature field at K3,
Thus, at most scales for flight 43, LWC and & are less smooth than the full
temperature field. This is interesting for it suggests that fields of liquid water
(cloud) with distributions that do not abide by standard theories of turbulence
may exist in a temperature (wind) field that scales in accordance with classical
turbulence theory. This may be what is occurring in the cumulus satellite image of
Cahalan and Snider (1989) as well as in scenes A, B, and C; especially scene A.
Furthermore, note that breaks in the power spectra of LWC and T are less
pronounced (if they exist at all) than breaks'in the power spectra of the satellite
images. This result, coupled with the fact that spectra of satellite IR and VIS
radiances show similar scaling behaviour, supports the hypothesis mentioned
earlier regarding the smoothness of the vertical integral of liquid water relative to

that of liquid water content.

2.3.2.1 Time Series of Up—welling UV Fluxes

Consider the time series of up—welling UV radiation fluxes (Fig. 2.8).
Although it is one—dimensional data, it is the projection of a three—dimensional
field. Unlike temperature or LWC, up—welling flux at a point can be influenced
strongly by clouds far from the flight—line. Furthermore, a cloud within the field of

view of a radiometer influences several sequential measurements uniquely.
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Conversely, deep inside a cloud the flux is largely independent of neigbouring
clouds and governed primarily by the clouds three—dimensional distribution of
liquid water, solar illumination and the position of the aircraft in the cloud. For
the cases considered in this study, surface reflection should have minimal influence
on the structure of the flux times series. Though the scaling pattern of shadows on
the ground cast by clouds may introduce some variance, the surface is quite dark
and homogeneous (mixed deciduous/coniferous forest and lakes) and the aircraft is
too high for any significant high frequency oscillations to exist. The time series
show that up—welling flux from the surface and lower atmosphere ic generally
between 2 to 4 Wm for all flights. To remove as much of the surface signal as
possible, all fluxes less than 3 Wm-2 were set to this value.

Figure 2.10 shows the power spectra of the four up—welling flux time series.
They exhibit some remarkable similarities. For scales greater than about 5 km for
flights 25 and 43 and 10 km for flight 49 (k < 15) the spectra are nearly horizontal
implying white noise. Then, for about 2n order of magnitude increase in
wavenumber (up to k ~150), the three .pectra exhibit an increasingly precipitous
fall which reaches a k5 to kﬁé;scéﬁng. Flights 25 and 43 reach k38 for scales
less than about 600 m while flight 49 reaches k36 for scales less than about 1 km.
The power spectrum for flight 32 is significantly different. The decrease in slope at
scales greater than about 3 km is more gradual and eventually reaches k23 for
smaller scales.

In their study on holes in clouds, Parker et al (1986) made the point that
time Serics of LWC cannot yield information on the size of clouds or holes in
clouds. This is because when LWC goes to zero, one cannot be sure whether a hole
in the cloud or a space between two individual clouds has been encountered.

Since the up—welling flux from the surface has been largely removed (set to

3 Wm-3), the flux spectra at large wavenumbers is associated with the interior of
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Fig.2.10. One—dimensional power spectra for time series of up welling UV
radiative flux. Straight lines that are labelled are best—fit lines. Flight number is
indicated in the upper right corner of the plots...
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clouds. Flux inside clouds is expected to be a slowly varying field (the diffusion
domain), and consequently, the spectra are steep. In the cases examined here, the
steep, constant slope, regime of the up—welling flux spectra starts at about 0.5 to
1.0 km. It is interesting that virtually the same large scaling exponent beginning at
the same space scale occurs for both the inter—cloud fluxes examined here and
cumulus LANDSAT scene examined by Cahalan and Snider (1989). As mentioned
before, the space scale at which the change to the steep spectrum occurred in their
case was indeed about typical cloud size. Thus, while time series of LWC cannot
yield information on cloud size, perhaps inter—cloud up—welling flux can;
particularly if the flight line is near cloudbase.

The similarity between power spectra for up—welling inter—cloud flux and
satellite radiances may be coincidental. What is interesting, however, is that this
may help to support Wiscombe’s hypothesis regarding smoothing of the visible
radiation field due to multiple scattering. Obviously, work still needs to be done to
clarify the nature of the scaling changes observed in satellite radiance spectra.

Parts of this discussion are speculative since the structure of cloud
bi—directional reflectance fields has not been related to cloud—top and inter—cloud
flux fields for inhomogeneous cloud fields; all three are profoundly different
samplings of the visible radiation field. The consistency of the inter—cloud flux
spectral slopes in the small space scale regime, however, may be of value when
validating Monte Carlo radiation codes applied to inhomogeneous cloud. This type
of model validation is certainly much more accessible then validation using
satellite data since far fewer phiotons are required to get statistically significant

fluxes than statistically significant radiances.
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2.4 Model Development: Two—Dimensional Scaling Cloud Fields

Data presented in the previous sections have suggested strongly that
distributions of cloud liquid water are scaling. Therefore, a phenomonological
model is presented which produces cloud fields characterized by continuous power
spectra. Attention is restricted to producing cumulus—like cloud fields. This
section begins by developing a one—dimensional version of the initial stage of the

cloud model. This helps significantly in understanding the cloud model.

2.4.1 One—Dimensional Example

The intention is to produce a sequence of measurements f 2 which has a

power spectrum like
Sy 4 (2.40)

where d > 0. This does not mean that Sk is a straight line. Rather, S(k) is quite
noisy with k"d as a best—fit line.

The method used in this thesis for producing a stochastic sequence fn that
is scaling, begins by distributing two white noises M and Yo OVer half the domain

in Fourier space (e.g. Schertzer and Lovejoy, 1986); one each for u_and v;:
F, = 7y(k) +irg(k) , (k=1,..,N/2) . (2.41)

The orly restriction on the noises is that they are symmetric about zero. To ensure
that the mean of f_is zero also, set FO = 0 [see Eq.(2.9)]. At this stage, the power
spectrum of Fk follows 0. Hence, inverse transformation would produce a field

with no autocorrelation; white noise.
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The next step is to invest the process with autocorrelation. This is achieved

k_d/2

by multiplying (filtering) Fy by where —d is the desired slope of the power

spectrum of {, when plotted on a log—log graph. Then, the new power spectrum is
k_d/2|2 ~x

2 -
S~ P %= 1Py (2.42)

§) has a best—fit line of the form k9 because F) varies about zero with constant
variance and is independent of k. Note that filtering the white noises with a
negative power function of k suppresses the amplitude of high frequency waves.
The final step is to assign values to the other half of the domain in Fourier space
as Fyyy = F: [Eq.(2.10)], and then substitute F, into Eq.(2.8) and inverse
transform to get 1 . Figure 2.11 shows the result of this process using d = 5/3.
Therefore, the sequence of fn in Fig.2.11 is qualitatively similar to time sequences
of wind speed, temperature, etc... This example shows clearly that fn has a high

degree of autocorrelation.

2.4.2 Cloud Model Development

The cloud pattern model begins with the above procedure except that it is
done in two—dimensions. The ultimate intention is to produce a field of broken
clouds with vertically integrated optical depth varying in the horizontal. The first
intention, however, is to produce an NxN array of f ~ € R (m=0,...,N-1 and
n=0,...,N-1) which has forward and backward two—dimensional discrete Fourier.
transforms given by Eq.(2.14).

Basically, the kinds of cloud fields sought after are those for which transects
actoss them (fy_ o/, and fn n=const) Yield (S,) and §|k| of vertically

integrated optical depth that follow k4 and |k|_(d+1). Thus, the process begins .

by distributing noises in Fourier space. This time, however, the noises, still with



0]

R

=

Chapter 2 64

0.4 .
SkN k l
0.21
i l
l N “I\ i J f
01 |‘! ! li Il‘ i Jw'!L f i 11Tt Tiflid
0.2 1 |
—0.41
Sy~ k373
=0.6 1 |
—o.a-\u
—1 T T T T T T T T T
0 100 200 300 400 500

Fig.2.11. Sequences of data points generated by scaling a white noise in
Fourier space such that their power spectra go like k-0 and k-! ¢,
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means of zero, are generated in the upper—half of the complex matrix Fkl =l +
i¥y) for k = 0,..,N/2 and 1 = 0,...,N—1. Furthermore, Fao = 0 ensures that {f_ )
= 0. (The end product appears quite insensitive to the kind of noise used. A
Gaussian noise with mean of zero and unit variance is used throughout this study).
Then, Fy, is scaled (filtered), depending on radial distance from the origin
[generalization of Eq.(2.42)], by

PREE
1/2
Iy = {[kz + L2] ] , (2.432)
where

1 ; 1le[0,N/2

= [ /2] (2.43b)
N-1; lg[N/2+1,N-1] ,

which gi.ves

Fy=Jgfa - | (2.43¢)

Thus, fields produced with this procedure are isotropicﬂand tend to lack dominant
frequencies and, therefore, orientation. Note that the term in braces in Eq.(2.43a)
is just the modulus of the wave vector ki + 1j. In general, more than one scaling
can be applied to the white noise matrix. However, if one wishes the power
spectrum to be piecewise continuous, care must be taken to ensure that additional
scalings are multiplied by the correct constant factors.

The reason why the noises are distributed into the upper—half matrix only
is for the same reason as in the one—dimensional case: symmetry laws must be
obeyed in order that fmn € R. Therefore, the following assignments are performed
which map the upper—half of Fkl into the lower—half and carry out other necessary

symmetry relations:
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fork =1,.,N/2-1 and 1=1,..,N/2-1:

*®
Fony2+1 = Fonyo
*
FN/24k,0 = FNj2—x,0
*
Fn/o.N/2+1 = Fny2,N/24 (2.44)
*
PNje+k,N/2 = Pk N/2

*
PN /24K N/2:1 = Fivja—x N/2s1

Substituting F, into Eq.(2.14F) and evaluating yields the scaled field f .

At this stage, the field fmn may be thought of roughly as a representative
of either the vertical wind speed (fmn > 0 3 updraft) or temperature averaged |
through a layer of the atmosphere. Based on the findings within aircraft data
presented earlier, truncation of fmn at a critical value fcrit’
fcrit conditions are not conducive for condensation, or maintenance, of cloud
droplets, should produce two—dimensional fields of vertically integrated optical

such that if fmn <

depth that resemble real cloud fields. Hence, fcrit can be thought of roughly as a
kind of moisture parameter; the drier the air, the larger is fcrit'
Thus, the next step is to find the value of fcrit such that the vertically

projected cloud fraction is

N—1 N-1
E 2 ¢[fmn - crit]
A . m=0 n=0

c
N2

; (2.45)
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where

0;z<0
olz] = [ (2.46)

1;z>0 ,

is the Heavyside step function which in this case behaves as a threshold or cut
function. Since by definition the mean of {  is zero and the white noises making

up Fkl are distributed equally around the origin in the complex plane, { erit = 0

leads to A = 0.5 on average. Given a particular value of Ac, f .. must be found

crit
using Eq.(2.45) iteratively. This is achieved using Brent’s root finding method
(Press et al, 1986).

Next, having obtained fcn‘t’ fonis transformed into b such that all f
less than fcrit are zero and all fmn greater than fcrit are proportional to fnm -

fcrit:

Brn = (onn = Terig)? [fmn - fcrit] : (2.47)

Define the mean of hmn when it exceeds zero as

N—1 N—1 N—1 N—-1
Y Y B L )lm
E=N — T:o n=0 _ m=0 121=0 : (2.48)
—1 N— N°A,
2 E q’[fmn - fcrit]
" m=0 n=0

By the Wiener—Khintchin theorem (Eq.(2.13)], the fact that b can be
highly correlated with fm implies that their power spectra can be similar. The
resemblance between the power spectra of f ~ and b, denoted as le1|2 and

|Hkll2 respectively, depends, however, on the magnitude of n and on the form

fori
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of fmn’ For example, if {crit is near the maximum of {fm n}’ most hm 0 = 0.
Therefore, regardless of the form of £, b and f  will often have little in
common. The same goes for their power spectra. Likewise, if {mn is dominated by
low frequency oscillations [large d in Eq.(2.43)], most values of f.5¢ will cause
]Hkll2 to differ significantly from IFkl|2 due to loss of information upon
application of Eq.(2.47). If, on the other hand, d is small (< ~1) which implies that
f, o has substantial high frequency oscillations, one might expect [Hkl|2 to
resemble ]Fk1|2 for values of { ., significantly greater than the minimum of
{fm} As will be shown later, this statement holds for d ~ 1 to the extent that for
A, 202 (80% of f  set to zero), the ensemble average of one—dimensional power

spectra of fmn and hm11 often have very similar structure and slopes.

a) Cloud Model 1: Horizontally Inhomogeneous, Single Layer

This model produces a horizontally inhomogeneous single layer cloud field.
Thus, all clouds in the field have the same vertical geometric extent yet the
horizontal density of LWC can vary significantly. Tiius, cumulus cloud fields
represented by this model are those which form over cool continents and oceans.

Designate the mean extinction coefficient of clouds in the field to be
(km”l). Like A, the value of B is set. Using Eq.(2.47) and Eq.(2.48), the
extinction coefficient of the (mn)th cell is

hmn
B = [T]a . C (a9)

Note that for cells with fmn < fcrit’ ﬁnm = 0 and the cell is cloudless. Otherwise,
the cell is assumed to be filled with cloud with extinction coefficient of ﬁmn‘ Power

spectra of ﬁmn and hmn are identical, to within a constant of proportionality.
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The vertical optical depth of the (nm)th cell is just 8 an multiplied by the
vertical geometric thickness of the cloud layer. As such, it is assumed that clouds
are vertically homogeneous and of constant vertical extent. Cloud fields generated
with this model are referred to as ‘variable cloud’.

Frequent use will be made of a cloud field’s ‘identical cloud’ format. In
this case, the extinction coefficient of a cell is either zero or g only. This is

achieved by masking §_  [defined in Eq.(2.49)] as

Bn =B ¢[ﬂm] - ~ (2.50)

Regardless of whether the cloud field is defined by Eq.(2.49) or Eq.(2.50), cloud
amount and mass of liquid water in the entire grid are the same. Thus, comparing
solar fluxes obtained by the two cases will illustrate some effects of horizontal

inhomogeneity of vertically integrated optical depth in irregular cloud fields.

b) Cloud Model 2: Variable Vertical Extent

This model produces three—dimensional fields of clouds which have similar
extinction coefficient, identical cloudbase elevation (constant lifting condensation
level), but vertical geometric extent varies horizontally. Thus, vertically integrated
extinction coefficient (total vertical optical depth) varies horizontally as well. The
types of cumulus cloud fields represented by this model are common over warm
continents and tropical seas.

As cited previously, vertical velocity is a scaling field over many orders of
scale. Thus, this model assumes that cloud vertical extent is scaling also.
Therefore, beginning with Eq.(2.47), assume that the cloud field is composed of
cubes. This time, however, the mean number of unit cloud cubes in the vertical is

k and the (mn)"11 grid cell is discretized such that it is
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& =INT(h__+1—¢) (2.51)

cells thick where ¢ is a small number and INT( ) indicates rounding down to the
nearest integer. Designate the uppermost layer of the cloud field to be k = 1 and
the bottom layer to be k = NL where NL is the maximum number of vertical cells
in the field (this k is not to be confused with wavenumber). If 3 is the average

extinction coefficient per cube, the cloud field matrix is filled up as follows:

0 ; k=1,...,(NL-4 )

Bk =1 g . (2.52)
Jmn ; k= (NL-#_ +1),...,NL
mn

Hence, the tallest cloud in the field has vertical optical depth of NLﬁlz where tz is
the geometric length of the side of a cube. Cloud fields produced by this model will
be referred 10 as ‘textured cloud’.

If the ﬂmnk field is collapsed down to 2 single layer with geometric

thickness tz, the cell extinction coefficients are

b ﬁmn'—" J’Ennﬁmnk : (2.53)

Th:is field is equivalent to that produced with Eq.(2.49). Consequently, an
id;ﬁtical cloud field could be produced from Eq.(2.53) by applying Eq.(2.50). As
such, all three cloud fields have identical vertically projected cloud fraction and
average vertical optical depth.
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2.4.3 Properties of the Clond Models

This section examines some properties of the cloud models. Figures 2.12 to
9.14 are examples of both the variable cloud model [Eq.(2.49)] and the
corresponding identical cloud mode! [(Eq.(2.50)]. Each field consists of 256x236
cells. Though unintentional, the variable cloud images are similar to satellite IR
imagery where bright areas (large §) are cold cloud—tops and dark areas (small §)
are thin cloud or ocean. However, the images in Figs. 2.12 — 2.14 are just
choropleth maps of vertically integrated optical depth.

Comparing the full scaling images to the identical cloud images reveals
some interesting properties which are not clear from the variable cloud images
alone. First, small clouds tend to have small optical depth. This is consistent with
three—dimensional homogeneous turbulence where eddies are close to spherical.
Second, large clouds have thin edges with maximal optical depth in their interior.
' Third, as the magnitude of the scaling exponent increases, clustering or clumping
becomes more prevalent. Fourth, holes in the interior of large clouds are not rare.

Figure 2.15 shows the one— and two—dimensional power spectra of the
images shown in Figs. 2.12 — 2.14. Figure 2.15a,b shows that for d = 1.0 with Ac
as low as 0.25, the intended scaling properties are retained well. The image in
Fig.2.13 was created with d = 1.0 for |k| < 70 and d = 5.0 for |k| > 702nd A =
0.5. Comparing Fig.2.12 to Fig.2.13 shows that the rapid attenuation in power of
high frequency waves results in smoother edged clouds. The two—dimensional
spectra in Fig.2.15¢,d shows abrupt breaks in scaling. These breaks in scaling show
up well in the corresponding one—dimensional spectra, however, they are slightly
smeared relative to that observed in the two—dimensional counterpart. Figures
2.15a,b,c,d show that the truncation in Eq.(2.47) unintentionally ‘whitens’ the
image for large |k|. The image in Fig.2.14 was created with d = 0 for |k| < 10 and
d = 3 for |k| > 10, and A, = 0.5. The spectra in Fig.2.15¢,f show clearly the
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Fig.2.12. (a) False grey image (256x256 pixels) of vertically integrated
optical depth. This image was produced by Eq.(2.49) and has {Syx) ~k1V k, A =
0.25, and average § of 10 km-l. Assuming cloud geometric thickness is 1 km,
minimum and maximum optical depths are 0 and 60. Note that this field, and all
other fields created with the scaling cloud models, all periodic. (b) Identical cloud
;ersiﬁnfof (a). Black regions signify no cloud and white regions signify optical

epth of 10.
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(2) As in Fig2.12a except (Sk) ~ k™ for k < 10 and k-3 for k > 10,
and A¢ = 0.5. Minimum and maximum optical depths are 0 and 53. (b) As in



Chaopler 2 76

0.01

0.001

/

0.0001

Normalized Power
m
S
wn

1£-08

1E-07 T T TTTIT T T T T T TT7T
1 . 10 100 1000

Modulus of Wavenumber

0.1

0.01

i~
P

Normalized Power
o
o
=}

0.0001

1E_05I L] T LI LR REI 1 1 TR RTRT T L SR L B
1 10 100 1000

Wavenumber

Fig.2.15. (a) Directionally integrated two—dimensional power spectrum for
the image in Fig.2.12a. (b) Ensemble averaged one—dimensional power spectrum -
(10 samples) of the image in Fig.2.12a.
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Fig.2.16. Perspective plots of the textured version of the lower left 100x100
pixels of Fig.2.12a. Tallest cloud is five cells high. Viewing zenith angles are (a)
80* and (b) 60°.
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Fig.2.17. (a) As in Fig.2.12a except {Sk) ~ k0 V k (white noise). Minimum
and maximum optical depths are 0 and 69.5.
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break at [k| and k at 10.

Figure 2.16 shows two perspective plots of the textured clond model. The
field is the lower left quarter of Fig.2.12 (100x100 array). The view in Fig.2.16 is
from the lower left corner of Fig.2.12 towards it’s center. Maximum cloud
thickness is five cells thick. Note that for the larger viewing zenith angle
significantly less clear—sky is visible.

Figure 2.17 shows 2 white noise field of 4. The cloud fraction and masg in
this field are identical to those in Fig.2.12. The white noise field, however, displays
no pattern, coherence, or clumping. Indeed, if real cloud fields resembled this
pattern, the spatial coheremce method would not work (most points on the
scatter—plot would be near the top of the arch). Clearly, application of this cloud
field to GCM grid boxes measuring hundreds of kilometers is a serious error. It is
conceivable, however, that portions of grid boxes could have white noise
arrangements of scattered cumulus. Similarly, one can imagine what a regular
array of cloud would look like and if applied to a GCM grid box would also be in

serious error.

In summary, this chapter has reviewed Fourier analysis, shown the relation
between turbulence, scaling, and fractals, presented empirical evidence that broken
cumulus cloud fields exhibit scaling structure, and presented and demonstrated
three phenomonological scaling cloud models. In the next two chapters, Monte
Carlo photon transport models are developed and validated. In Chapter 5 output

from the cloud models will be used as input to the Monte Carlo codes.
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Monte Carlo Photon Transport: Model Development

This chapter develops the physical and computational structure of the
three—dimensional Monte Carlo atmospheric/underlying reflecting surface
radiative transfer model to be used in this study. The model is presented in five
sections. First, the fundamental structure is described. Second, the physics and
numerical modelling procedures of photon transport through an inhcmogeneous
atmosphere are discussed. Third, a general theory for implementing realistic
underlying reflecting surfaces is developed. Forth, two methods of accounting for
absorption of radiation by particles and surfaces are presented. Last, some
straightforward extensions of the model, not implemented in this study, are

discussed.

3.1 Basic Architecture

In this Monte Carle simulatica study, all photons in a single simulation
have the same wavelength A which is unaltered by collisions with particles.
Therefore, only elastic, monochromatic radiative transfer is considered.

The fundamental elements of the model atmosphere are homogeneous
cuboids of scattering and absorbing particles. All particles are assumed to be
spherical cloud droplets. A cloud or cloud field is made up of many elemental

cuboids of geometric size £, £y, and £ inthex, y, and z Cartesian directions. Each

83
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cuboid is assigned a volume scattering coefficient ﬁijk’ where i, j, and k are cell
indices. Note that ﬁi ik may be obtained from the cloud models presented in the
previous chapter or directly input such as in the case of regular arrays of clounds. If
a single layer of clouds is used, the set of coefficients take the form ﬁijl' The

orthogonal scattering optical depths of a cell are defined as

7305k = Pijilx
715 = Bijily (3.1)

Tisks =Pl -

Clouds and cloud fields consist of cuboids which act as homogeneous cloud blocks
(8, ik # 0) or empty blocks (ﬁijk = 0).

Figure 3.1 shows the right—handed Cartesian co—ordinate system to be used
as well as a rectangular region 2 having N_, Ny, and N, cuboids in the i, j, and
k directions. The model may interpret ® either as an isolated region of the
atmosphere or as the ‘generator’ of a horizontally infinite array of ccnnected
(periodic) regions & The first case is referred to as open boundary conditions while
the second case is referred to as cyclic boundary conditions. These cases are

considered in turn.

3.1.1. Open Boundary Conditions

Open boundary conditions are used to obtain information about the
radiative characteristics of an individual cloud or isolated group of clouds. Because
the region is isolated, it must be uniformly irradiated by photons on the top face
and at least one of the side faces when the solar zenith angle 8. > 0°. Figure 3.1
shows the photon injection plane. The ratio of the areas of sub—surface 1 and 2 on

the injection plane defines the fraction of photons to be injected into the top and
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Incident
Photons
Injection Plane
X /
f
2
% y
ok N,
S !
\Qc.:]— Ny ——=

Fig.3.1. @ is an isolated region of atmosphere (open boundary conditions)
with Ny, Ny, and N elementary cells in the x (i), y (j), and z (k) directions. 0, is
.;ollar zenith angle. Incident photons are uniformly distributed over the Injection

ane.

7
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Fig.3.2. Ten bins into which photons exiting % (open boundary conditions)
are accumulated for flux calculations.
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side of & . Therefore, if N photons are injected, the number of photons injected

into the top face is

Ntop = INT

N
LN, 9} ’ (3.2)
1+ TN tand,

vy

where INT indicates rounding down to the nearest integer. The remaining N-N, op
photons are then injected into the side of #. The co~ordinates of the photon entry

points on £ are given by position vectors

4 )
(RN-lxNx,RN-tyNy, 0)" ; Ntop times

Xp = (xo:Yo:zo)t =

t ;N—N, _ti
(RN-{N_, 0, RN.£N ) top ©1Mes

(3.3)

where RN are pseudo-random generated numbers uniformly distributed on (0, 1)
and ‘t’ denotes transpose. The random number generator used throughout much
of this study is the RND() intrinsic function in Lahey’s 32-bit extended memory
FORTRAN compiler.

The underlying surface in open boundary conditions ié assumed to be black.
Therefore, after a photon exits £, it cannot re—enter. A photon’s point of exit and
the zenith angle of it’s trajectory determine which flux bin it goes into. Figure 3.2
shows the bins associated with open boundary conditions. The fractions of the
total incident flux leaving £ in the upward direction (reflectance) and downward |

direction (transmittance) are calculated from
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4
[ =Fp+ Y Fiio (3.4)
and

4

T, = . .

F| FB+-21F1,1, (3.5)
1=

where the components on the RES of Eq.(3.4) and (3.5) are identified in Fig.3.2.

3.1.2. Cyclic Boundary Conditions

Cyclic boundary conditions are used to obtain radiative characteristics of
extensive cloud fields. Unlike open boundary conditions, an underlying reflecting
surface is included. Cyclic cloud fields are simulated by allowing the region 2
(Fig.3.1) to be repeated infinitely many times in all four horizontal directions. The
resulting region is denoted as 2”. Because & " lacks sides, photons can enter the
~ experiment through the top face of £ and exit through the upper and lower faces
of %. Thus, in cyclic conditions, photon entry points x, into £ are described by
the top row of Eq.(3.3) with NtOp = N.

Cyclic boundary conditions are simple to model. To begin, assume that &
in Fig.3.1 is a generator for a cyclic cloud field &°. If a photon trajectory contains

a point which is in the set

X=0,{,N; Y=0,4{ N,

C 2,
xe(0,4N_); ye( 0,£yNy); 2€(0,4,N,) ] )
3.6

P = { (X|Yaz)t: (anaz)t

which makes up the sides of &, the photon is transferred into an adjacent cell
which takes it outside £ but still within £®. When this occurs, the capitalized

co—ordinate of the point in # is changed to its other value. All else in the
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experiment remains the same. This mirror reflection process is illustrated in
Fig.3.3. It is important to realize that in both cyclic and open boundary
conditions, photons may enter and exit the sides, top, and base of a cloud if the

cloud is a subset of &.

3.2 Photon Transport: Scattering and Tracking

In this section, theoretical and modelling aspects of photon transport are
presented. This includes: initial photon injection, determination of free pathlength
between scattering events, photon tracking, and scattering geometry. For
simplicity, in this section, droplets are assumed to be non—absorbing. Unless
specified, the material presented here applies to both open and cyclic boundary
conditions.

We begin with some definitions. The ‘number’ of a cell cor aining a
photon can be defined by the position of the photon. If a photon is at any point x
= (x,y,z)t € % (and £%), it is in cell number

(1,5k) = [INT(x/tx +1), INT(y/4, + 1), INT(a/4, + 1)].
(3.7

. Define the angle between any photon trajectory and the x—, y—, and z—-axes
as;ﬂx, By, and Bz. The cosine of these angles are denoted as Byr By and L,

y
respectively. These are direction cosines of the photon’s trajectory and have the

property

2, 2, 2
pptpg =1 (3.8)

A useful way of interpreting direction cosines is to consider them as the i , j, and k
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Yoo

(x, 0, 2) 7 (x, Y, 2)

e e

Fig.3.3. Schematic diagram showing the trajectory vector of a photon when
cyclic boundary conditions are used. Photon exits £ through the y = Y plane at
x,Y,z)t and is reinjected into & through the y = 0 plane at (x,0,z)t. Note that
the photon’s direction cosines do not change.
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co—ordinates of photon trajectory vectors (see Fig.3.4). The convention in this
thesis maintains that downward directed photons have B, > 0 and upward directed
photons have B, < 0. By the definitions set forth in the last section, initial photon

trajectory vectors are of the form
Ho = sinﬁocosgooi + sinﬂosingooi + cosfok , (3.9)

where ¢, is the solar aéimuth angle measured clockwise form the x—axis while
looking down from the zenith.

Once the entry point x.€ & is defined, the photon travels into the cloud a
distance fp before being scattered by a cloud droplet. This distance is a stochastic
function of the volume scattering coefficient associated with the cell containing x,
and is determined exactly as free—pathlengths between scattering events are
determined. Since the latter procedure is more general, it is presented in detail
while recognizing that the initial entry, or pre-scattering, distance is a special case
in which the entry point x, may be considered as the first scattering event.

The essence of determining photon free—pathlengths between scattering
events rests on the assumption that cloud droplets in any cvboid are distributed at
random. Hence, the probability that a nhoton will traverse an optical length 7
greater than 7’ before encountering a droplet is exactly the same as the

probability that a photon will travel an optical distance 7 (Beer’s law):

Prir>7']= e, (3.10)
where
=Bl (3.11)

and fp is the corresponding geometric length. It can be shown using Eq.(3.10) that
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Fig.3.4. Photon trajectory and scattering geometry. Lines with large
arrowheads indicate photon path. Initial photon direction angles are O, Oy, and 0.
Scattering deflection angle is 65 and scattering azimuth angle is ¢s. New direction
angles are f;, 6y, and 87
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the mean of fp in cell number (i,jk) (photon mean free—pathlength) is ﬁi}llc‘ For
example, the photon mean free—path in a typical fairweather cumulus cloud is
thought to be about 20 m (Welch et al, 1980). Assume that a photon in cell
number (i,j,k) is scattered at x = (x,:,r,z)t into direction g = (ux,uy,pz)t. Choosing
a random number RN¢(0,1) to represent Pr{ 7 > 7‘] in Eq.(3.10), and solve for {p

as

log(RN
£ = o&(RN) , (3.12)
Bk

the tentative point at which the next scattering event takes place is given by

Xiont = X+ fpy . (3.13)

To avoid division by zero in Eq.(3.12), empty cells have B ik set to an arbitrarily
small value of 0.00001 km L. If the number of the cell containing x, . is (i,3,k),
the next scattering event will be at Xy erit® In general, however, the trajectory from
x 10 Xpo04 will take the photon through N cells, each having a unique scattering
coefficient. In this case, Eq.(3.10) becomes

N
RN=¢" = exp|: - 2 fn [ﬁuk] n:I , (3.14)

n=1

where fn and [ﬁijk] are the geometric pathlength through and the associated
n

scattering coefficient of the nth cell traversed by the photon. Note that we are
accumulating scattering coefficient—weighted pathlength wuntil the random

generated transmittance r is attained. When stepping through Eq.(3.14), two
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possibilities exist: either the photon exits 2 or &% before RN is accumulated, or
RN is achieved in the Nth cell and the next scattering event occurs. Directly
solving for N in Eq.(3.14) within the code would be especially difficult. Therefore,
pathlength is accumulated by iteratively moving and checking each photon’s
position.

I it is established that the photon scattered at x is to move outside the cell
containing x, the photon is moved in direction £ to an infinitesimal distance past
the exit point of cell (i,j,k). This is achieved by recognizing that the distance to
the edge of the cuboid and the plane containing the exit point is the minimum
distance to three planes, which form half the cuboid’s boundary, that the photons
trajectory line passes th:ough.' The three planes of concern are dictated by the
signs of the components of g For example, if the i1 component of g is positive, the
* photon will not intersect the yz—plane defined by x = £ (i — 1). Rather, it will
intersect the yz—plane defined by x = £ (i). The opposite holds if p < 0. If o =
0, the photon is travelling parallel to all yz—planes. Likewise for the other
co—ordinates. Figure 3.5 illusirates this three—plane trajectory intersection

theorem. Therefore, the equations of the planes that are of interest upon exiting a

cell are
x, = INT(x/4 + 1) + §(n)
¥p = INT(y/4, + 1) + $(uy) (3.15)
2, = INT(z/t, +1) + §(s,)

where

0:2>0
$(x) =1 M:2=0

-1:z<0,
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Fig.3.5. Three-plane theorem: In this example, 2 photon is scattered at
(x,y,2)t with resulting trajectory vector (px>0,’:;>0,4,<0)* and a free path that
takes it outside of the cell in which it was scattered. Hence, the planes making up
the cell containin (x,y,z%t which are intersected by the extended photon trajector
are xp = £x[INT%x/£x+1 l; yp = &[INT(y/é+1)]; and zp = QleT(z/&,,H)—-l :
The yp plane is the one of concern because 1t is intersected first. Therefore, the
photon is moved to the point on the y, plane, the optical pathlength through the
cell containing (x,y,z)! is accumulated, and the remaining pathlength is
determined to see if the next scattering event should be in the newly entered cell.
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in which M is an arbitrarily large number. Thus, defining p = (xp,yp,zp)t, we have

the system
p=x+Dp, (3.16a)
where
fx 0 0
D=|0 fy o}, (3.16Db)
0 0 f§

in which the main diagonal entries are the distances from x to the planes Xpr Vg

and zp. These distances are solved for as

X —- X

f =B |

X Py

Y. -J
=P - 17

and

f =EP_—_Z,

Z by

Hence, using the three plane theorem, the distance to just outside the cell

containing x in the g direction is

£ =MIN(f,f,5,)%¢, (3.18)

- where e is arbitrarily small and used to nudge the photon an infinitesimal distance

out of the cell containing x. The new position of the photon is, therefore,
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xl =x+ flﬂ. ) (3.19)

where subscript 1 refers to the first time the process of updating position is

executed. At this point we have accumulated a weighted pathlength of fl [ﬁijk] .
1

Assume that this process of moving just beyond cell boundaries in direction
p is repeated N times. The residual pathlength left to go before scattering ,

obtained by decomposing and rearranging Eq.(3.14), is

- N
~ In(RN) -} fn[ﬁijk]
£ = =1 - , (3.20)
[ﬁijk] N+1

where {_ is distance travelled through the 2t cell and [ﬁ.- ] is the scattering
1 k) N1

coefficient of the cell containing the photon. The current position of the photon,

given by repeated application of Eq.(3.19), is

xy=x+p (3.21)

If the number of the cell containing x, equals the number of the cell containing

X1 = 3N+ ek o (3.22)

there is a scattering event at XN4+1 for the required optical pathlength has then
been obtained. If the cell numbers do not match, fres is discarded and the updating
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process is again repeated. Note that this checking procedure is done at every
incremental movement fn of the photon.

To illustrate the process, three simplified examples are considered. The first
case is for homogeneous £ with scattering coefficient fo in every cell. The

equation defining residual pathlength is

N
- In(RN) - ﬁo 2 fn

n=1 N
f o= . =1, - DR (3.23)

n=1

Here it is clear that the photon is just crossing through cells until fp, calculated by
Eq.(3.12), is accumulated. In this case, the scattering event will take place at
Xt BiVeD by Eq.(3.13) provided x, . € & (#®). Next, consider what happens
when an empty cell (ﬁijk ~ 0) is encountered. From Eq.(3.20), { . is very large,
hence, the cell is traversed. The optical depth accumulated by crossing this cell is
fn[ﬁijk]n ~ 0 and contributes almost nothing to the accumulated optical depth.

Finally, assume that [ﬂ.

1jk] N+1 is large enough that f res 2 0 Therefore, xy +1 is

almost certainly in the same cell as xy. In fact, by Eq.(3.22), XN % XN4U the
scattering event occurs shortly after entering this cell because of the small mean
free—pathlength.

Once the photon accumulates the required optical pathlength (whether
before the initial scattering event or between scattering events), a scattering event
occurs and the trajectory vector is updated. These two processes are now discussed
in the order just mentioned.

The radius of most cloud droplets is significantly larger than the

wavelengths of solar radiation. Hence, scattering of solar radiation by cloud
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droplets is due mostly to diffraction, refraction, and reflection, and thus, is
approximated well by conventional Mie theory. Single—scattering patterns are
characterized by strong forward scattering (due primarily to diffraction). The
distribution of radiation scattered by a cloud droplet depends on A and droplei
size, shape, and refractive indices. Scattering functions are determined by solving
the three—dimensional wave equation in spherical co—ordinates (Mie, 1908; van de
Hulst, 1957; Wiscombe, 1979). The probability of a scattering angle being between
§ and 0+d0 and around the resulting cone with an azimuth angle between ¢ and

p+do (see Fig.3.4) is

Pr{6,¢] = Z_:r p(6,)sinddody , (3.24)

where p(f,y), called the scattering phase function, is obtained from Mie theory.
Note that p(8,p) is for monochromatic radiation integrated over the number size
distribution of cloud droplets. The factor 4« is for normalization over the sphere
and sinf represents the circumference oi a cone of angle 6. If Eq.(3.24) is

integrated over p € [0, 27], the probability of scattering with an angle between ¢
and 64-ddis

Pr[f] =  p(6)sinfd0 , (3.25a)

where

2T
p(6) = 57 fo p(6,p)dy , (2.25b)

is the azimuthally averaged phase function. Integration of Eq.(3.25a) over ¢ € [0,

7] yields the phase function normalization condition (conservation of energy):
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T
,}J; p(f)sinbdf=1 , (3.26a)

or

1
yf Pld1 (3.26b)

where g = cosf.

p() can be represented as

N
()= ) wPp(k) » (3.272)
n=0

where P_(p) is the *® order Legendre polynomial, and

1
2 1
oy =B tl [ PP (3.27)

Substituting n = 0 in Eq.(3.27b) gives wy = 1 due to Eq.(3.26b). If w, # 1, this
implies that 1 — w, of the incident radiation is absorbed by the droplet. Thus, w,
. is the single—scattering albedo. Hereafier, we will denote w, a5 wo. Substituting n

= 1 into Eq.(3.27b) yields the first moment of p(u):

1 .
W
gs —% = % J: lup(n)du : (3.28)

g is referred to as the asymmetry factor. It is the mean value of the cosine of the
scattering angle for the phase function p(y).

The scattering deflection angle 4 (Fig.3.4) is computed in the Monte Carlo
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code by solving [see Eq.(3.26b)]

=% f (W)dn . (3.29)
S

Solving Eq.(3.20) for §, amounts to inverting the cumulative density function of
p(u). Cloud droplet phase functions obtained by Mie theory are non—analytic and
often require n > 200 in Eq.(3.27a) to capture much of the detail (e.g. King and
Harshvardhan, 1986). If these kinds of p.hase functions are used in Monte Carlo
codes, the inverse of Eq.(3.29) must be either tabulated or approximated by a
function before the simulations are done. It is common in atmospheric radiative
transfer studies, however, to approximate p(u) with an analytic phase function. In
this study, the Henyey—Greenstein phase function PHG(‘”) is used (Henyey and

Greenstein, 1941). It is given as

1- g2
PralW) = ” 73 - (3.30)
[1 +8& - 2gﬂ]

In a later chapter it is shown that use of PHG(,u) rather than a full Mie function
amonnts to only slight differences in radiative flux estimates. The attractiveness of
using PHG(p), beyond giving accurate flux estimates, is two—fold. First, it
depends on only one free parameter; the asymmetry factor g. Second, substitution

of Pp(s) into Eq.(3.29) leads to

Q

cos =P - ——5 , (3.31)}
(BN -R)

where
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and

2g

g, and thus P, Q, and R, remain constant during a simulation. Hence, Eq.(3.31) is
very efficient for computing 05. This expression for cos 05 is similar to one used by
Harshvardhan and Thomas (1984). Their equation, however, facilitates ge(0,1),
while Eq.(2.31) facilitates ge{(—l,O) u (0,1)}. Using L'Hopital’s rule, it can be
shown that éi%l Leesf =1~ 2(RN).

A cone of angle Bs has now been defined into which the photon is scattered.
Recause the phase function exhibits azimuthal symmetry, all points on the cone

occur with equal probability. Thus, the azimuthal angle of scattering (see Fig.3.4)

is simply

v, = 27(RN) , (3.32)

where again, RN is a uniform random number on (0,1).

Having determined the scattering angles Bs and r;os, the direction cosines of
the scattered photon may now be adjusted (see Fig.3.4). Recall that the photon
trajectory vector before scattering is p = (px,py,pz)t. Using spherical
trigonometry, the components of the trajectory vector p’ = (p&,p},u&)t after

scattering are
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by = smﬂscos g
p.;, = sinfsing, + p, = =1, (3.33a)

p,; = 14,08 ﬂs

and for all other b,

[ ,uysimps + o COSP ]sinf)s

[l-ﬂi]lﬂ ’

B, = ,uxcosﬁs -

[ uxsincps - py,uzcoscps ]sin(}s

,u.:'r = ,uycost')S + ) (3.33b)

[ . _#2]1/2

2

1/2
By = ,uzcosﬁs + [ 1-p, ] cosr,ossint‘)S .

3.3 Including Underlying Reflecting Suriaces

Most previous Monte Carlo studies of radiative transfer in broken clouds
assumed a black underlying surface. This is to approximate clouds over dark
oceans. Only the studies of Welch and Wielicki (1989) and Kobayashi (1989) have
considered in depth the effects of underlying reflecting surfaces on radiative fluxes
for broken clouds. Both studies, however, used the same erroneous representation
of a Lambertian surface. This section develops general methods for including
realistic underlying reflecting surfaces .in Monte Carlo atmospheric radiative
models. o

Surfaces generally exhibit complex albedo (e.g. Barker and Da.vies,. 1989;
Cess and Vulis, 1989) and bi—directional reflectance functions which depend on the
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direction of incident radiation. For each incident direction, there exists a unique
probability function for emerging directions into the up—facing hemisphere.
Mathematical and computational representation of this trait complicates the task
of including realistic surfaces in Monte Carlo codes.

There are three obvious methods of accounting for realistic surfaces in
Monte Carlo photon transport simulations. First, the surface can be viewed as a
simple extension of the atmospheric model: photons enter the surface and are
scattered and absorbed by surface elements accordingly. Second, if analytic
functions for bi—directional reflectance and albedo are known a priori, reflectance
angles could be obtained by a statistical method similar to the one used to
compute scattering angles in Section 2.2. Third, if there are enough bi—directional
reflectance measurements for one surface, a tabular look—up approach may be
feasible. Tkis is not the case at present, however.

This section has three main parts. First, two general methods for including
a lower boundary condition in an atmospheric Monte Carlo radiative transfer
model are developed: the Monte Carlo and statistical bi—directional methods
mentioned above. In the second section, the statistical bi—directional method is
applied to the highly idealized Lambertian and Fresnelian surfaces. Also in this
section, it is shown that Welch and Wielicki (1989) and Kobayashi (1989) used a
surface quite different from Lambertian. Third, the bi—directional method is

developed for non—vegetated land surfaces composed of particles.

3.3.1 Method 1: Monte Carlo Photon Transport

In both the Monte Carlo and bi—directional methods, « signifies the
plane—parallel surface below an atmospheric region % which is the generator of
cyclic region ®® (see section 3.1.2). In the Monte Carlo method, 4’ signifies the

sub—surface below 4.
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Let an incident photon at the surface pass through a point like (x, y, lzNz)
and have a trajectory vector of the form (,ux, p.y, B, > 0). These are the
components of the trajectory vectors with which photons begin their trace through
4’. Photon mean—free pathlengths between scattering events by surface particles
and scattering geometry are calculated as in Eqs.(3.12), (3.31),and (3.32)
respectively. If, however, we assume the surface to be semi-infinite, pathlength
becomes arbitrary and we can neglect the scattering coefficient 4 and set it to
unity. However, the single—scattering albedo and phase function of surface
particles are required.

Since the surface is assumed to be semi—infinite and plane—parallel, few
checks regarding photon position are required. The only necessary checks are:
photon exittance across 4; and photon absorption. Thus, photon trajectories are
calculated much faster than in the inhomogeneous atmosphere model. Note that
only vertical depth in 4 need be monitored. As such, it is assumed that photons
exit and re—enter the atmosphere at the same point on 4. This approximation is
entirely adequate since the smallest scale of atmospheric homogeneity considered
in this thesis is on the order of hundred of metres. If and when a photon emerges
from «’, the only specific condition attached to the new trajectory vector is B, <
0. This method allows for horizontally inhomogeneous surfaces (Diner and
Martonchik, 1984).

The opposition effect applies to single-scattered photons that undergo near
perfect backscatter (Hapke, 1981). These photons are in essence no longer part of
the transport process for they exit the media along almost the exact path by which
they entered. This effect, however, is not restricted to single—scattered photons.
Rather, it applies to all photons at all times whenever near perfect backscatter
occurs. However, since only fluxes are being considered in this study, all opposition

effects are neglected.
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3.3.2 Method 2: Statistical Bi-directional Reflectance Functions

This section establishes a general procedure to be used in a Monte Carlo
code for determining statistically the trajectory vector of a photon as it is
scattered and reflected by an underlying surface. Assume a beam of photons arrive
at the surface with zenith angle 4, [= arccos(u,)] and azimuth ¢, (relative to the
x—axis). If the photon (beam) has unit intensity and cross—sectional area, then the
incident energy per unit area is simply the projection; p,. Denote the reflected
radiance from the surface into the unit solid angle around the direction (—g,¢) as
I(—p, 0 z,tpz). The reflected radiance per unit solid angle per unit surface area is,
therefore, ﬂl(—ﬂ,(p;,!l.z,tpz) (see Fig.3.6). The directional surface albedo, defined as
the ratio between total reflected radiation/unit area and incident radiation/unit

area, is then given as

27 1
A K~ it 000, )dpdyp (3.34)

sl

a(p,,) =

SVZ'TZ 7 Y
Note that both ¢ and p, 2re relative to the x—axis. The first step, therefore, is to
determine whether a photon incident at the surface is reflected or absorbed. If RN
is a random number generated between 0 and 1, and as(pz,zpz) < RN, the photon
is absorbed and a new one injected. If as(uz,cpz) > RN, the reflected angles (8,y)

are determined as follows.

Defining the total radiance reflected into a narrow azimuthal band as

2T
(—thiyyp,) = _I; H{—on,0,)de , (3.35)

leads to
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Fig.3.6. Surface reflection geometry. Photon trajectory is indicated by the
line with the large arrowhead. Photon is incident with a zenith angle §, and
azimuth angle relative to the x—axis of y,. Upon emerging from the surface, the
photon has a zenith angle of ¢ and azimuth of .+, Scattering angle is 1. Note
that the photon emerges from the surface at the same point it entered.
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1
1 -
a(1,:9,) =% J:) pL(—mp,,0,)d0 - (3.36)

Therefore, the conditional cumulative probability density function of p, given g

and Py is
p -
f 1= 5,000, )00
0
P (—blo,¥,) = =3 , (3.37a)
A W (=g s, )00
or

I
J; w1 5,5 0,000
P (—#lp,0,) = - (3.37b)
Cc 22
TN (N

Equation (3.37) essentially defines the conditional probability of a photon being
reflected from the surface at a zenith angle whose cosine is greater than —p. By
setting Pc(—,ul [J.z,(pz) equal to a uniform random number RN generated on the

interval (0,1), and solving for —u gives the zenith angle of the reflected photon, as
0, = arccos(—g) . (3.38)

IRN=0(P, = 0), — in Eq.(3.37) is also 0 and the photon is reflected along the
horizon with 4, = 7/2. Similarly, if RN = 1, — = —1 and the photon is reflected
towards the zenith with 01_ =T

The azimuth angle ¢ of the reflected photon is obtained in a similar
manner. By assigning the cumulative probability function of Pps given — [which is
now known from Eq.(3.37)], s, and ¢, a value of RN (a random number), we get,
in a slightly rearranged and more direct form than Eq.(3.37),
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Pr 27
J; I(—u, 0 5p,0,)d9’ = RN _I; (=m0 )d0" (3.39)

which is then solved for Op- Again, if RN =0 or 1, o = 0 or 27 and the photon is
scattered forward in conjunction to the Sun. All other values of RN result in
off—forward scattering.

From the definitions given in section 3.2, the incident azimuth angle

relative to the x—axis is given by

7 7
p, = Arccos —X | = 172-r+ arccos| —L- | . (3.40)
sinf, sing,

Therefore, the direction cosines of the photons reflected by the surface are given by

u, = sind cos(y, + )

b

y = sind cos(p, + ¢ -3 (3.41)

B, = cosﬂr .

where § and ¢, are determined from Eq’s.(3.38) and (3.40).

While this procedure is straightforward, it is difficult to implement. There
is no reason to assume that real surfaces have functional forms of I(—p,qo;,u.z,tpz),
and even the simplest realistic analytic forms lead to substantial amounts of model
computation or prior parameterization as will be seen later. For now, however, two
highly idealized surfaces are considered in the general framework; Lambertian and
Fresnelian surfaces. The later surface is theoretically justifiable but rarely
observed, and the former surface is theoretically unjustifiable but is often a good

first order approximation in plane-paratlel cloud conditions.
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3.3.2.1 Lambertian Surface

If a surface is irradiated by a collimated beam from an arbitrary direction
and the reflected intensity field is equal in all directions, the surface is Lambertian
(Lenoble, 1977). Because of this simplicity, it is the surface of choice in most
climate studies. Equal in all directions implies that I and f in Eq's.(3.34) through
(3.37) and Eq.(3.39) are constant. Hence, from Eq.(3.34), the intensity function

associated with the Lambertian surface is

e €t
L (e, 0,) = —— (3.42)

where the incident beam has unit intensity. This property is occasionally relaxed
in climate studies to the extent of having solar zenith angle dependent albedos
as(,u.z), though it does violate principles of reciprocity (see Lenoble, 1977). The
procedure begins by generating a random number RN and if o, < RN reflection
takes place, otherwise the photon is absorbed.

Letting Eq.(3.37) equal a random number RN, and substitution of Eq.(3.42)
into Eq.(3.37) reduces Eq.(3.37) to

b
f ' dp!
0

———=RN, (3.43)

f p'dp’
0

which leads to reflected zenith angle of
1/2
9, = axccos(-RN/?) . (3.44)

\,‘E'_L_
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Inserting I; into Eq.(3.39) leads to the simple solution
v, = 2x(RN) . (3.45)

The new direction cosines are calculated using Eq.(3.41). Thus, including a
Lambertian surface in Monte Carlo models is computationally extremely efficient.
Welch and Wielicki (1989) and Kobayashi (1989) claimed to have used a
Lambertian surface in their studies of fluxes in broken cloud fields. Both, however,
used something different. What they did [personal communication, Dr. Ron Welch,
1990; and Kobayashi’s Eq.(11)] was to assign the trajectory angles of reflected

photons using ar even distribution of ¢, and 0

6 =21 + RN) )
¢, = 2r(RN)

At first glance, this set of assignments appear to make logical sense with respect to
the ‘equal in all directions’ requirement of the Lambertian surface. However,
working backwards using Eq’s.(3.46), (3.37) and (3.38) shows that the intensity
function implicit in Eq.(3.46) is given by

ap
L{~pp) = ——2— . (3.47)
) =

. Compared with IL, reflected radiance is underestimated when 10 is used for
reflected zenith angles between ~ 110° and 160°* and overestimated for all others.

In essence, I g fails to account for surface projection and proportional circumference

on the hemisphere as a function of zenith angle.
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The validity of Bq.(3.42) can be demonstrated simply. Assume a cloud field
is irradiated by a field of radiation whose intensity I{z) depends on zenith angle
only. If Rc(‘"’) is the azimuthally averaged zenith angle dependent reflectance of
the cloud field to radiation incident from the § = cos—'l,u direction, cloud field

reflectance to the entire field of radiation is

1

f R (1)I(p)pdp
()= 2— : (3.48)

(w)pdp

I
0

If I() is constant, the field is isotropic and Eq.(3.48) reduces to the familiar Bond
(spherical) albedo given by

1
@ =2 [ Rlun (3.49)

which is usually used to represent sky reflectance to surface reflected radiation
(Lacis and Hansen, 1974). Note that insertion of Iy into Eq.(3.48) yields precisely
Eq.(3.49) (denote as (r)y) as it should since Lambertian is synonymous with
isotropic. Insertion of I into Eq.(3.48), however, yields

xf2
() y= %j; R (6)d8 . (3.50)

A correction can be assigned to Welch and Wielicki’s and Kobayashi’s
non—Lambertian based results. Defining the difference between Eq.(3.49) and
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Eq.(3.50) as A{r) = (r)1, — (r) p and expressing R (1) in a power series expansion

as
@
n
R = ) ay® (3:51)
n=0
where a are constants, it can be shown that

sy = Jaf 2 - TCF)

amo "Ln + 2 v ICED)

(3.52)

where ['(x) is the gamma function. In most cases, an excellent approximation of

R,(p) is

2 3
Ro(i) 2 ag + ap + agn” +agu” , (3.53a)
with
a,= lim R_(p) |
0 50 c : )
) 3.53a
im 9B.()
a, = lim v
1 50 n

The other coefficients have less straightforward meanings. Using Eq.(3.53a),
Eq.(3.52) is approximated as
A{r) = 0.03a, —0.02a . (3.54)

Assume that the cloud-surface system reflectance after infinitely many

internal reflections is



Chapter § 114

[l — R (m)][1 - (D))o
1 - a/(r)

R(po) = R (o) + (3.55)

Later on it is shown that this expression is valid for regular arrays of cubes with
base height of 1 km (as used by Welch and Wielicki). Differentiating Eq.(3.55)
with respect to (r) and substituting Eq.(3.54) for A(r) approximates closely the

error in system reflectance due to use of I PES

—a 1 - ag)[1 - R(s)]

AR(po0) = e (r)\z —(0.03a, —0.022,) . (3.56)
s ’

In all cases tested, AR(so) was negative meaning that use of I, rather than I
reduces system albedo. Though this correction is almost always less than 5% of
R(p0), it is often enough to nullify the phesomenon noted by Welch z;.nd Wielicki
(1989) that non—absorbing clouds act to reduce system albedo.

3.3.2.2 Fresnelian Surface
The second ideal surface is the Fresnelian surface. It is characterized by

perfect specular reflection and has an intensity function

Ip(=tpits,e,) = () 6u—p,) 8 v-p,) (8.57)

where {(y,) is the zenith angle dependent albedo (van de Hulst, 1957). This is the
case for perfectly flat, clear, deep water. Again, a random number RN is generated

and if f( ) < RN the photon is reflected. Inserting Eq.(3.57) into Eq.(3.37) leads

to
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I
I b = ow (3.5
0 =RN ,

by
which results in the following set of implications:

,u<,u.zﬁr=0
p>p r=1 (3.59)
p=p =1e01) .

Since the probability of generating RN = 0 or 1 is essentially zero, all reflected
angles are 6, = arccos(—p,) = 7— 4.

Furthermore, it is implicit in Eq.(3.56) that v, = 0. The new direction
cosines are calculated using Eq.(3.41).

3.3.3 General Solution for a Particulate Surface

The radiation intensity field emerging from a surface consisting of particles,
irradiated by direct beam from the (,uz,cpz) = Qz direction, has been extensively
documented by Chandrasekhar (1960) and Hapke (1981). For convenience, much
of the general solution, neglecting the opposition effects (preferential escape), is
derived here.

Consider a volume element of soil at depth z which is irradiated by

radiation from all directions. Denote the amount of radiation incident from the &

direction as

I(z0)= ) I (z9), (3.60)
n=0
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where J 1 is the amount of radiation making up J that has already undergone n
scattering events. We wish to know how much of J will be scattered by the
elemental volume of soil into the Q direction. If 4 is the cosine of the zenith angle
of the scattered beam, f_ is the soil volume scattering coefficient, and dz is the
vertical thickness of the elemental volume, then the amount of radiation scattered

from Q* to O is

dJ”( Q' )= ’ PS(Q',Q) dz ’
2,8, )-——-J(Z,Q )_ﬁ—ﬁs-ﬁdn ) (3.61)

where Ps is the soil scattering phase function defining the probability of radiation
scattered from the Q’ direction into the Q direction. Assuming the soil particles
are randomly packed, the probability of dJ’(z,Q’,Q) getting out of the soil is
exp(—ﬂez_/u) where ﬁe is soil volume extinction coefficient. Thus, the amount of
radiation cxiting the soil in direction Q which was travelling in direction Q at

depth z is

w
a3 (r,9) == Py )I(ra)e H T aqr (3.62)
T

where d7 = ﬁedz (r= ﬁez) is optical depth, and w_ is soil particle single—scattering
albedo. Integrating Eq.(3.62) over all Q’ gives the amount of radiation incident on

the volume element at depth 7 that exits the soil in direction £ as
w
ax(r,0) = 2 T/RIT f J(r,0/ )P’ 0)dn’ , (3.63)
4ir LA

Finally, integrating Eq.(3.63) over all depths gives the total amount of
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radiation exiting the soil in the direction {1 as

1]

tw ’
10,0 =—Sf e T/k f 3(r,0 )P (0,0) ¥ g 3.64a
(2.8,) 4770 Ar S a (3642)

Substituting Eq.(3.60) into Eq.(3.64a) gives

1(9,9,) = :—; [J; Jo(r,ﬂz)e_T / ”-d—;Ps(Qz,ﬂ) + (3.64b)

) [f Tle j; WJn(r,ﬂ’)Ps(Q’,ﬂ)%drH

n=1 0

= IS(Q,QZ) + Im(ﬂ,ﬂz) .
where is and im are the single and multiple scattering contributions to I(Q,Qz).

JO(‘T‘,ﬂz) is the fraction of the direct beam incident at the surface that arrives

unscattered at depth 7. It is given as
Iyr0) =k (3.65)

where 4 is the cosine of solar zenith angle of the incident photon. Substituting

Eq.(3.65) into Eq.(3.64b) and evaluating the integral yields

. wWe #
i(0Q)=——2-p(2,9). (3.66)
47 B, t+ B

The I mq term in Eq.(3.64b) represents radiation exiting in the Q direction that’
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has already been scattered at least once before undergoing it’s final scattering
event. Assuming PS(Q) = 1.0 (isotropic scattering particles), Chandrasekhar
(1960) showed that

@) =——2—[H)EwW-1], (3.67)
47 B, 4+ u
where
1
B(p) = 1+ 5 wsiH(p) fo ;H—%}du' . (3.68)

This is an exact solution but must be solved numerically. Hapke (1981) showed
that if I (@0,) is solved by the two-stream approximation (Coakley and
Chylek, 1975) with P(Q) = L0, the result is again Eq.(3.67) but with

H(p) =L+ 2 (3.602)
1+ 29
where
7=(1- ws)ll 2. (3.69b)

For our purposes (ws < 0.7), Hapke’s formulae are satisfactory. Problems are
apparent, however, near ws = 1.0 where it becomes clear that conservation of
energy is violated when particle asymmetric phase functions are used.

Substituting Eq.s (3.66) and (3.67) into Eq.(3.64b) yields

Ha

(0.0,) = Wiy = ——— [ 22,0 + Hu 8GR -1 ]

Th, + 4
| (3.70)
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where (2,0 z) represents the scattering angle i, which, by spherical trigonometry,
can be written as cosy = —pp +y{I-p?)(T—pZ)cosp, (see Fig.3.6).

In order to relate the scattering angle 1 to the zenith and azimuth angles,
P s(cosv,b) is expanded in a series of Legendre polynomials and the addition theorem

of spherical harmonics is used to give

@ (n—m)!
n<+m m m
Y w Eu) @%gj;-mwumam

P_(cosy) =
° n=0 m=0 ( )

(3.71)
where w_ are phase function expansion coefficients (w,=1; w =3g) and PrI?(p,) is
the associated Legendre polynomial of order n and degree m. Here, the relation
Pm(—,u.) = (—1)n+um(,u) has been used since all z of concern are of opposite sign

to . Inserting Eq.s (3.33) and (3.32) into Eq.(3.4) gives

L ' o

[ EEE) + § PP |aw

0 p +‘u’z n_l

T = RN .
‘u" 11

— | H(p)B(') + -1 ‘) 1d

Lw+%[(m é() P (1P, (1) o .

Note that upon integration around the full azimuth, the m > 0 terms in Eq.(3.71)
vanish. Unfortunately, no useful simplifications appear possible in Eq.(3.72). An
analytic solution was found for the integrals involving the H—functions when H(y)
is given by Hapke’s formula. The sclution, however, consists of two unruly
functions; the choice of which to use depends on values of ws and #,. For this

reason Eq.(3.72) is left as it is in unsolved form. If the commonly cited
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Henyey—Greenstein phase function is assumed to apply to soil grains, w = (2n +
1)g" where g is asymmetry factor (Joseph et al,, 1976).
Due to the obvious complexity of Eq.(3.72), this study is limited to phase

functions with & = 0forn > 1. In this case, Eq.(2.72) becomes

By
[ [ mm) - opn, o
0 ,u’ + uz

=RN , (3.73)
f [ H(p,)H(p') — wyp'n, ]du’
0p +p,
which simplifies to
p ' &
pH(p )H(p')
[ = - Ay
£ )”‘z ) =RN , (3.74a)
p H(p, JH(p
f - Afn)
B+ o,
where
1+ p
Alp,) = wlpz[%—-pz+p§1n[ 7 z]] : (3.74b)
zZ

For isotropic scattering particles, Eq.(3.73) is used except with w; = 0. Since the
objective is to choose RN and solve for p, Eq.(3.73) must be solved either
numerically, or by parameterization. This problem is addressed in Chapter 4.
Regardless of how g is obtained, the conventional transformation is applied to it to
get reflected angle: § = 7 — arccos(g).

Having solved for £, we must now solve for .. Inserting Eq’s.(3.70) and

(3.71) into Eq.(3.39) gives the general solution as
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n n
=1 ! m=1 (n+m)! m

1 n—m)! in(m
2} g ) DT (——)Pm(uz)Pm(u) —ii)]

2r| H(p)H(g) + ) (-1)nwnPn(ﬂz)Pn(u)}
_ =t (3.75)

For the most complex case considered here, Eq.(3.75) becomes

v - pf)(1 = p?) sing
RN =gh1 g + 0 z Ll (3.76)
H(p, )H(s) — wyp,p

This equation, like Eq.(3.73), can be solved either by parameterization or

numerically. Note that if Ps(cos'qb) = 1 the Lambertian solution is retrieved:

¢, = 2a(RN) . (3.77)

3.4 Absorption of Radiation by Droplets and Surfaces

Absorption of photons by droplets or the underlying surface can be
computed by either the on—line or off—line technique. Choice of which technique
to use depends on the type of experiment being conducted. The techniques are
discussed in turn and followed by a proof of their statistical equivalence.

On-line absory!‘on is characterized by explicit absorption events. Assume
the single—scattering albedo of droplets (or soil particles) is wo. At each scattering
event, before the scattering angles are determined, a uniform random number
RNe(0,1) is generated. If RN < w, the scattering event is carried through. If RN >

wo the photon is absorbed, its trajectory terminated, the cloud absorption counter
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is incremented, and a new photon is injected. Similarly, assume a photon arrives at
the surface with a cosine of zenith angle i, and that the zenith angle dependent
surface albedo is as(pz). As in the droplet case, RN is generated before the
reflectance angles are determined. If RN < as(;.c z) the photon is reflected, but if
RN > o (y,) it is absorbed.

Separate bins are used to accumulate photons absorbed by droplets and the
surface. Thus, if one wishes to know system reflectance, transmittance, and cloud
and surface absorptance, the on—line method is used. Furthermore, if surface
albedo it a function of incident zenith angle or if w, varies in space, the on—line

method must be used. With this method, system reflectance is calculated as

R=10—-Agm00 = Aqug | (3.78)

where A and A rare atmosphere and surface absorptance (defined by the

atmos
ratio of absorbed photons to the total number of photons injected). For

non—uniform or zenith angle dependent surface albedo, total transmittance, or

surface irradiance, is

T= m o, (3.79)

=1

| &~ 2

1
N.
where m, is the number of times the ith photon encountered the surface. Hence,

grid—averaged surface albedo of a simulation is

A
surf
¢ =1- ; : - (3.80)
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The drawback of using the on—line techrnique is that the results of a
simulation apply only to that simulation.

In the off-line technique, photons are represented as ensembles of many
photons to a greater extent than in the on-line technique. Simulations are
conducted with Q= Wo = 1.0; no absorption takes place during the simulation.
The algorithm keeps track of the total number of droplet and surface scattering
events experienced by each ensemble of photons. Each ensemble begins with unit
weight (as in the on—line method). When the ensemble encounters « droplet or the
surface, fractions w, and ay of the photons in the ensemble are assumed to be
absorbed. Thus, when the ith ensemble of photons emerges from the system, its

weight is

W= wo e, (3.81)

where n; and m, are the total number of droplet and surface scattering events. The

system reflectance is given as

R= W, . (3.82)

1
1

il o~1 2

1
N;

If open boundary conditions are used, all fluxes shown in Fig.3.2 are
weighted like Eq.(3.82) except m; = 0 for all i. The drawback of this method is
that with cyclic boundary conditions, overall system reflectance and absorptance
are the only quantities that can be obtained with confidence. Also, only unrealistic
surfaces with albedo independent of incident zemith angle are admissible (e.g.

Lambertian). Furthermore, this method can take significantly longer to run than
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the on—line method. The attractive aspect of this technique is that for a single
simulation with o, = W = 1.0, results may be efficiently generated for any
number of combinations of a < 1.0 and w, £ 1.0 since n, and m; are stored.

It is now shown that the on-line and off-line methods are statistical
equivalent for cases in which as(u) = a and w, does not vary in space. First,
consider the on—line method. Each time a photon strikes a droplet or the surface it
has a probability of success (scattering) wo or & . All interactions are mutually
exclusive. If all numbers of droplet and surface scattering events, n and m
respectively, are possible for a given photon, we can define the conditional
probabilities P(n|m) (read as: the probability of a photon having n droplet
scattering events given that it had m surface encounters). The mean survival

(system reflectance) is thus given by

m [

R= E 2 P(nlm)[wg-a?] . (3.83)

=0 m=0

Assume that N photons are used and that

N
1
P(n|m) :E E 6nn.6mmi ) (3.84)
i=1
where n, and m. are the number of droplet and surface encounters of the ith
photon. Substituting Eq.(3.84) into Eq.(3.83) yields
1 0 0 1 1

(NDo 4 NDupa® + oo 4 NDWBaD 4 oo ) o ] ,
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where Nii are the number of occurrences of photons that had i and j droplet and
surface scattering events. Upon careful consideration of Eq.(3.85) one sees that it
is equivalent to Eq.(3.82) and this concludes the proof. In Chapter 4 the statistical
equivalence of the two techniques is demonstrated numerically using a variety of

demanding simulations.

3.5 Extensions of the Model

The purpose of this section is to document some of the capabilities of the
Monte Carlo model. The capabilities outlined here are not crucial to understanding
the remainder of the thesis. Therefore, this section may be bypassed. What this
section does provide, however, 2rve indications of the models versatility and
possible future applications.

First, the geometric pathlength traversed by each photon is saved just as
the number of scattering events and surface encounters are saved. This is necessary
if one wishes to investigate the effect on fluxes due to variable amounts of water
vapour in and around clouds. Assuming a homogeneous distribution of water

vapour, system reflectance is given as [see Eq.(3.82)]

wo a g Tr(p;) , (3.86)
1

R=

i b~ 2

1

N;
where P is the pathlength traversed by the ith photon and Tr is a spectral H,0
vapour transmittance function. With only minor modification to the code, variable
vapour concentration and temperature and pressure effects on spectral line shapes
can be included. This would be useful for testing gaseous absorption routines used
in climate models {e.g. Fouquart and Bonnel, 1980; Kratz and Cess, 1986) if and

when parameterizations of broken cloud are incorporated into climate models.
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Another intriguing possibility is spatial variability of cloud drop size
distributions. For example, the effective radius of droplets in cumuliform clouds is
greatest in the core and at the top due to coalescence and radiative cooling.
Droplets tend to be smallest at the cloud sides due to entrainment of dry
(cloud—free) air (Rogers, 1976). Changes in drop size distribution enter the Monte
Carlo code through the scattering coefficient, wo, and g. I w, varied from
cell-to—cell, on-line absorption is required. If one were to avoid droplet absorption
bands, however, and only let g vary, the off-line technique would be suitable. This
would require parameterizing g as a function of drop size only.

It would be a relatively straightforward, though tedious, exercise to include
the effects of air molecules and ozone above cloud tops {Welch and Wielicki, 1985).
Total reflected solar flux at the top of the atmosphere could be approximated by
running only two simulations. Drop size integrated g for a cloud drop distribution
are often closely approximated by (e.g. Wiscombe et al., 1984): g = 0.85 for 2.0um
< A < 1.5zm, and g = 0.95 for 1.5um < A < 2.0pm. Because wo, O3, and water
vapour absorption are rapidly varying functions of A, spectrally integrated net

solar reflectance at the top of the atmosphere could be approximated as

-1L

(R(so)) = [[ S(p) — S() ]N] ) [[ S(hgpp) ~ S0 =
- =1
N

Y expl-fip (st + D] () ()
L

m, )
m[—ﬁﬂzo('\)Pi] *

[t - R ()] [1 - R, o) +Rr(i,uo)} : (3.87)
where e

;_A£+1 + Al
= 3
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N is the number of photons used, ﬁOg and ﬁHzO are ozone and water vapour
spectral absorption coefficients, D is vertical depth of O3 L is the number of
spectral intervals, S()) is the fraction of the solar constant at the top of the
atmosphere at wavelengths less than A, R, is reflectance of the Rayleigh
atmosphere and I is the cosine of the zenith angle at which the ith photon leaves
cloud top. All other variables are as previously defined. Note that multiple
reflections of photons between the upper molecular atmosphere and clouds have

been neglected.

N



CHAPTER 4

Monte Carlo Photon Transport: Error Analysis
and Model Validation

This chapter consists of three main sections. First, a method for assigning
statistical error to radiative fluxes determined by a Monte Carlo code is derived.
Second, the Monte Carlo code, presented in the previous chapter, is validated by
comparing its flux estimates with published estimates for standard cloud
configurations. Also, the model’s ability to handle underlying reflecting surfaces is
tested and the equivalence of the on-line and off-line droplet/surface absorption
methods are demonstrate numerically. Third, a minor weakness of the code which

was exposed by ‘failure testing’ the model is documented.

4.1 Error Analysis

In principle, the Monte Carlo technique of modelling radiative transfer is an
ezact method (Lenoble, 1977). On the other hand, it is essentially a statistical
method; finite number of photons lead to random unbiased error in flux estimates.
In this section, a simple method for predicting errors in Monte Carlo estimates of
radiative flux is developed {Spanier and Gelbard, 1969; Davies, 1978).

Assuming that each photon history can be viewed as a Bernouili trial, this

implies

128
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1. that photons (trials) are statistically independent,

2. that photons have two possible outcomes: succeeding with probability p
(exiting the cloud at a specific region and direction); failing with
probability 1 — p (the complement of a success),

3. that the probability of success remains constant for all trials (constant
boundary conditions).

Assume that N photons are injected into the cloud or cloud field. Thus, the set of
photons represent a random sample of size N. The values of the sample X{s Xo
s+, Xy may be interpreted as respective values of a set of independent random

variables Xl, X2, N XN such that

X, =

1 (4.1)

0; failure
1; success .

In random sampling, the density functions of all Xi equal the density function of
the population. Hence, the sample mean, or best estimator, is also a random

variable which is denoted and given by

N
Y X;=1-p+0-(1-p)=p, (4.2)

E(l?’):E[%.): xi] =§E[ ) xi] , *9)

which from Eq.(4.2) becomes
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E(P) =-§Np =p . (4.4)

Since P is a random variable, its standard deviation is

. N 1/2 . N 1/2
c(P) = | Var| =) X, ==1 Var| ) X, (4.5)
(FIx]] -gvllx]
This can be further reduced to
. N 1/2 N 1/2
a(P):l[ y Var(Xi)] =l{ ) [E(X?) -—Ez(Xi)]] .
N i Nl
(4.6)

From Eq.(4.2) it is clear that Ez(Xi) = p2. Also, since X; = 0 or 1, so too daes X?.
Hence, E(X?) = p and Eq.(4.6) simplifies to

a(f’) =

— p)1/2
g ["‘1_.!’1} . (4)

CR

Z |-

By virtue of the central limit theorem, when N is large, P will be distributed
Gaussian—wise about p, the population mean, with standard deviation
- ay q1
(B — )
c(P)s | ———— , (4.8)
- N
where p is the model predicted fractional flux. Equation (4.8) still holds when

droplet and surface absorption are comsidered. a(f’) is concave down, has a
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maximum of (4N)"1/ 2 at p = 0.5, and a minimum of 0 at p = 0 and 1. Equation
(4.8) may be used as an indication of error around the estimated fractional flux. In
this study, errors are expressed as p + o(P).

Fractional error is defined as

o 2 ) 1/2
£(P) = (lj) - [1 E;} . (4.9)

P

It is 0 at D = 1.0 and infinite at p = 0. A rough indication of the maximum

fractional error encountered in this study is for p = 0.1 and N = 15,000. This

yields about a 2.7% error. Most often, however, the fractional error is less than
1.5%.

As pointed out by Davies (1978), Eq.(4.8) may be solved for N if one wishes

to set an upper bound to o(P). For example, if one desires ¢(P) to be at most

0.001, this requires at least 250,000 photons/simulation.

4.2 Model Validation

The objective of this section is to validate the Monte Carlo code developed
in this study. This is done by comparing its flux estimates with previously
published Monte Carlo estimates. A series of increasingly elaborate tests are
conducted in which each test incorporates and extends the previous test. The tests
span a wide range of optical conditions and cloud configurations including tests of
the model’s ability to represent an underlying reflecting surface. The effects of
droplet absorption on fluxes, however, have not been systematically studied.
Therefore, droplet absorption is validated by comparing fluxes computed with the

on-line (physical) and off-line (statistical) techniques (see section 3.4).
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4.2.1 Isolated, Homogeneous Clouds
a) Cubic Clouds

The essence of the Monte Carlo code used in this study is photon transfer
through individual, homogeneous, non—absorbing, cubovidal clouds. Two studies,
frequently quoted as benchmark studies, that considered these conditions are those
due to McKee and Cox (1974) and Davies (1978). McKee and Cox considered f, of
0°, 30°, and 60° while Davies used 0° and 60° only. There are two minor
differences among the three models. First, all three models use different
single—scattering phase functions. This model utilizes the Henyey—Greenstein
scattering phase function (see section 2.2). McKee and Cox used the non—analytic
Dermendjian (1969) C.1 function which is an exact solution of Mie scattering for
radiation at 0.45 um incident on a droplet size distribution representative of fair
weather cumulus. The asymmetry factor of the C.1 function at 0.45 um is about
0.859. Davies employed the double Henyey—Greenstein phase function given by

PDH(;(F-) = bPH(;(Fs 81) +(1- b)Pﬂg(ﬂ: 89) > (4.10)

with b = 0.98, g, = 0.89, and g, = —0.66 which gives an asymmetry factor of
0.859. Davies used this to mimic the strong forward scattering and slight backward
scattering peaks displayed by the C.1 function. Due to the non—aralytic equition
which results from substituting their phase functions into Eq.(2.29), both McKee
and Cox and Davies must have computed scattering angles based on either
look—up tables or regression of the cumulative density function of scattering angle.
Figure 4.1 shows a plot of Ppyp~(p) (which has gross features similar to the C.1
function though it lacks the narrow forward peak) used by Davies and PHG(p,)
with g = 0.86 used here by our model. The important differences are that

PDHG(,u.) has more pronounced forward and backward scattering peaks and less
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Fig.4.1. Solid line and dashed line are double Henyey—Greenstein phase
function at g;=0.89, gs=—0.66, and b=0.98, and Henyey—Greenstein phase
function at g=0.86 plotted as a function of scattering angle.
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side scatter than does PHG(;L). Second, McKee and Cox (1974) failed to accounted
for photons that traverse the cloud space without encountering a single droplet.
That is, they neglected direct beam transmittance. This is critically important at
small cloud optical depth. The implications of this omission are apparent in their
Figures 4, 5, and 6 where for 7 € 10 the total flux exiting the six cloud faces is less
than unity. This violates conservation of energy since they used unit irradiance
and w, = 1. Also, for decreasing 7 < 10 with f, = 607, their estimates of flux
through the cloud sides decrease well below 0.60, while Davies’s corresponding
results remain constant at about 0.63. For 7 > 20 these problems are alleviated for
McKee and Cox’s and Davies's results azree. We, therefore, prefer to use Davies
(1978) as the standard test for isolated clouds.

Table 4.1 contains results from nine tests of which the first six apply to
cubic clouds. Listed are values of flux estimates obtained by our Monte Carlo code
as well as the corresponding values read from Davies’s Fig.4—7. The error
associated with Davies’s estimates as listed in Table 4.1, due to reading them from
his figures, is about 0.01. Each of our simulations used 25,000 photons. This
usually leads to relative uncertainties in flux estimates of less than 1%. For g =0
(isotropic scatter) with overhead sun and 7 = 1.0 (test 1) and 10.0 (test 2), there
are no noticeable differences between the two models estimates. This validates the
code in extreme scattering conditions. For g = 0.86, yio = 1.0, and 7 = 5.0 (test 3),
there are marked differences between our results and those due to Davies (which
are very similar to those of McKee and Cox). Our estimates of flux out the top and
base of the cloud are significantly less than Davies's estimates. Subsequently, our
estimate of total flux out the sides exceeds Davies’s estimates. These differences
can be explained by referring to differences in the phase functions (see Fig. 4.1).
Evidently, at small 7, multiple scattering of photons is unable to completely

eliminate subtle differences between phase functions.
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Table 4.1

Radiative fluxes for isolated, homogeneous clouds predicted by the Monte Carlo

code developed in this study (MONTE CARLO) and by Davies’s (1978) Monte

Carlo code EDAVIES). Errors associated with DAVIES are approximately 20.01.

Ty and 7y, ate vertical and horizontal cloud optical depths. 7celt is optical depth of

the cubes which makeup parallelepiped clouds in MONTE CARILO. For a list of

the flux symbols see Fig.3.2. Note that FST =3 FT ; 2ud Fg 1= IF l
i b i

.
1]

Test 1: g = 0; p. = 1.0; 7= 1.0; cube

Flux MONTE CARLO DAVIES
Fp 0.1234 = 0.0021 0.12
FB 0.4558 + 0.0031 0.46
FST 0.1978 = 0.0025

FSl 0.2230 + 0.0026

FS 0.4208 + 0.0031 0.42
FT 0.3211 = 0.0030

Fl 0.6789 = 0.0030

Test 2: g = 0; p. = 1.0; 7= 10.0; cube

Flux MONTE CARLO DAVIES
FT 0.5059 + 0.0032 0.50
FB 0.0165 = 0.0008 0.015
FST 0.2142 % 0.0026

FS | 0.2634 = 0.0028

FS 0.4776 + 0.0032 0.48
FT 0.7201 = 0.0028

F | 0.2799 + 0.0028
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Table 4.1 (cont’n)

Test 3: g = 0.86; p. = 1.0; 7 = 5.0; cube

136

Flux MONTE CARLO DAVIES
Fp 0.0497 = 0.0014 0.07
Fg 0.3697 = 0.0031 0.40
FST 0.1140 = 0.0020
FS l 0.4666 = 0.0032
FS 0.5806 = 0.0031 0.53
FT 0.1637 = 0.0023
F 1 0.8363 + 0.0023

Test 4: g = 0.86; p. = 1.0; 7= 20.0; cube
Flux MONTE CARLO DAVIES
FT 0.1984 = 0.0025 0.22
Fg 0.0727 = 0.0016 0.08
FST 0.2369 + 0.0027
FS ! 0.4920 = 0.0032
FS 0.7289 + 0.0028 0.70
FT 0.4353 = 0.0031
F l 0.5647 = 0.0031

Test 5: g = 0.86; g = 0.5; 7 = 5.0; cube
Flux MONTE CARLO DAVIES
Fop 0.0618 + 0.0015 0.065
Fg 0.3086 = 0.0029 0.31
FST 0.1453 = 0.0022 0.14
Fg 1 0.4843 + 0.0032
FS 0.6296 = 0.0031 0.63
FT 0.2071 + 0.0026 0.205
F | 0.7929 = 0.0026
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Test 6: g = 0.86; p. = 0.5; 7 = 20.0; cube

Table 4.1 (cont’n)
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Flux MONTE CARLO DAVIES
FT 0.1708 = 0.0024 0.17
FB 0.2046 = 0.0026 0.20
FST 0.2355 £ 0.0027 0.24
FSl 0.3873 + 0.0031

FS 0.6228 = 0.0031 0.63
FT 0.4063 = 0.0031 0.41
Fl 0.5937 + 0.0031

Test 7: g = 0.86; po = 1.0; 7,y = 5.0, Ty = 10.0, v, = 100.0

Flux MONTE CARLO DAVIES
FT 0.3511 = 0.0030 0.35
Fp 0.5197 + 0.0032 0.52
FST 0.0444 + 0.0013

FSl 0.0848 + 0.0018

FS 0.1292 + 0.0021 0.125
FT 0.3955 = 0.0031

F l 0.6045 + 0.0031

Test 8: g = 0.86; p. = 0.5; Teell = 10.0, Ty = 50.0, Ty = 20.0

Flux MONTE CARLO DAVI‘ES
Fp 0.0910 = 0.0018 0.09
FB" 0.1035 + 0.0019 0.105
FST 0.3312 + 0.0030 0.33
FS | 0.4743 + 0.0032
FS 0.8055 = 0.0025 0.805
FT 0.4222 + (.0031

0.5778 + 0.0031
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Table 4.1 (cont’n)
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Test 9: g = 0.86; p, = 0.5; Teell = 1.0, Ty = 50.0, Th = 20.0

Flux MONTE CARLO DAVIES
Frn 0.0911 = 0.0018 0.09
Fg 0.1019 * 0.0019 0.105
FST 0.3299 + 0.0030 0.33
Fg | 0.4770 + 0.0032

FS 0.8070 = 0.0025 0.805
FT 0.4210 % 0.0031

0.5790 = 0.0031
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Test 4 shows that if 7 is increased to 20 with all else as in Test 3, the
differences in fluxes predicted by the models are preserved qualitatively but their
magnitudes have diminished significantly. It appears reasonable to assume that
this trend is due to enhanced multiple scattering. On the other hand, returning to
7 = 5.0 but with g, = 0.5 (test 5), our estimates are virtually identical to Davies’s
estimates. This implies that for off—normal solar incidence, subtle differences in
single—scattering phase functions are not important for flux calculations. With
respect to test 5 conditions, McKee and Cox’s estimates of flux out the base and
sides of the cloud are significantly less than the other two model estimates. This is
caused by neglect of direct transmittance which is important near the thin cloud
edges. When 7 is increased to 20 (test 6), however, significantly thin edges account

for very little area and all three models are in excellent agreement.

b) Rectangular Clouds

Photon transfer in isolated, homogeneous, rectangular clouds is now
considered. Reference is made to Davies’s (1978) results exclusively since McKee
and Cox (1974) only considered cubes. The following tests examine the ability of
the Monte Carlo code to transport photons in media composed of contiguous,
identical elemental cubes. Thus, we are testing both radiative transfer in a general
cuboidal cloud as well as that part of the code which handles movement of photons
amongst cubes. In all cases g = 0.86.

In the first case (test 7), radiation is normally incident on a moderately
deep and horizontally extensive cloud (vertical optical depth 7, = 10; horizontal
optical depth Ty, = 100 in both directions). The cloud consists of cubes of optical
depth 5.0; two cell layers thick and 20 cells in each horizontal direction (800 cubes
in total). Qur model and Davies’s model are in excellent agreement. Note that

clouds in Davies’s model are single rectangular blocks and not construcied of
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elementary cubes. Our model was re—run using individual rectangular clouds and
the results (not shown) were statistically identical to those shown in Table 4.1.
Tests 8§ and 9 in Table 4.1 are for a deep, narrow cloud with Ty = 50.0 and Ty =
90 in both horizontal directions and g, = 0.5. The cloud in test 8 consists of 20
cubes of optical depth 10.0. The cloud in test 9 consists of 20,000 cubes of optical
depth 1.0. The fluxes estimated using both cloud compositions agree with Davies’s
results to within experimental error. Test 9, however, required 46% more computer
time than did Test 8.

In this sectior, it has been demonstrated that our Monte Carlo code can
reproduce Davies’s {1978) benchmark results for a wide variety of isolated cuboidal
cloud forms irradiated at solar zenmith angles of 0° and 60°. Though the model
results tend to diverge in the case of solar radiation normally incident on cubic
clouds of small optical depth, this divergence can be attributed to subtle

differences in single—scattering phase functions.

4.2.2 Horizontally Infinite Arrays of Homogeneous Broken Cloud Above Reflecting

Surfaces

In this section, the ability of the Monte Carlo ccde to compute reflected
fluxes in horizontally infinite arrays of broken cloud above a reflecting surface is
tested. This validates the cyclic boundary conditions of the code as well as the
code’s ability to represent photon transfer between clouds and the surface.

Welch and Wielicki (1989) and Kobayashi (1989) are the only Monte Carlo
cloud/radiation studies that have focused on how surfaces affect fluxes for broken
cloud. If their surface reflection function [Eq.(3.47)] is included in our code, it
should reproduce their results. We refer exclusively to Welch and Wielicki’s work
on account of their more straightforward presentation of results. Welch and

Wielicki’s Monte Carlo model was constructed to specifically examine horizontally
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infinite regular arrays of clouds (see ¥ig.4.2). As such, their code is very different
from ours in that it contains one cloud, a cloudless region around the cloud, and a
well defined shadow region on the clouds side cast by the neighbouring cloud. They
used wp = 1.0 and Henyey—Greenstein phase function at g = 0.86. Their clouds
were 1 km cubes of optical depth between 5 and 50 with constant base height of 1
km. Solar zenith angles were 0° and 60°. Scattering and absorption by atmospheric
gases were neplected. Welch and Wielicki did not indicate how many
photons/simulation they used. In our simulations 15,000 photons are used in the
off-line absorption mode.

Twenty different conditions are considered: y, = 1.0, 0.5, and a, =0, 0.1,
0.2, 0.3, 0.5 for r = 5 with Ac = 0.735, and 7 = 20 with Ac = 0.25. Table 4.2 lists
the results of the comparison. Welch and Wielicki’s values were read irom their
Fig.3. We, therefore, assume an error of about +0.01. The comparison shows that
the models agree on reflected fluxes to within experimental error for a wide variety

of cloud and surface albedo scenarios.

4.2.3 Fquivalence of On—Line and Off-Line Absorption

Three examples are used to demonstrate numerically the statistical
equivalence of the on-line and off-line methods of accounting for absorption of
radiation by droplets and the surface (see section 3.4).

All clouds are 1 km homogeneous cubes with base height of 1 km over a
simple reflecting surface of the type used by Welch and Wielicki (1989) and
Kobayashi (1989).. Table 4.3 shows the cloud field generators used in the tests and
lists the experimental attributes and results for both on—line and off-line

techniques. Cle‘é.rly, both techniques yield statistically identical results.
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Fig.4.2. Diagram at the top is a schematic of a cyclic generator £ for a
regular array of cuboidial clouds (shaded region). If % is repeated infinitely many
times in all horizontal directions, £ = .is generated of which only a portion is
shown in the lower part of the diagram.
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Table 4.2

Reflected fluxes predicted by this study’s model (MONTE CARLO) and Welch
and Wielick’s (1989) model {(WW). Clouds are 1 km cubes with wy = 1 and 1 km
base height arranged in an infinite regular array above the surface defined by
Eq.(3.46). Errors associated with WW are approximately 20.01.

1 7=20,A =025

g = 1.0
Surface Albedo MONTE CARLO WWwW
0.0 0.118 = 0.003 0.12
0.1 0.189 = 0.003 0.19
0.2 0.263 = 0.004 0.26
0.3 0.339 = 0.004 0.33
0.5 0.503 = 0.004 0.49
. =0.5
Surface Albedo MONTE CARLO WwW
0.0 0.266 = 0.004 0.26
0.1 0.324 = 0.004 0.31
0.2 0.383 £ 0.004 0.38 ‘
0.3 0.446 = 0.004 0.44 o
0.5 0.580 = 0.004 0.57 T
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Table 4.2 (cont'n)
2.7=5 A =0.735

u = 1.0
Surface Albedo MONTE CARLO WwW
0.0 0.145 = 0.003 0.14
0.1 0.206 + 0.003 0.20
0.2 0.270 = 0.004 0.27
0.3 0.339 + 0.004 0.34
.5 0.493 £ 0.004 0.49
pe = 0.5
Surface Albedo MONTE CARLO WWwW
0.0 0.341 = 0.004 0.35
0.1 0.386 = 0.004 0.38
0.2 0.435 = 0.004 0.43
0.3 0.487 = 0.004 0.49
0.5 0.605 + 0.004 0.60
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Table 4.3
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Reflected radiative fluxes estimated using the on-line and off-line absorption
techniques. The conditions in simulation A, B, and C are listed below the table.

simulation 1 (on—line) 2 (off-line)

A 0.5653 + 0.0040 0.5613 = 0.0041

B 0.3021 = 0.0037 0.2985 + 0.0037

C 0.2403 + 0.0035 0.2353 = 0.0035
A B C
w, =0.99 w, =09 w, = 0.99
=10 =30 =5
Ac = 0.5 Ac = 0.25 A_c = 1.0
e =0.5 fho = 0.5 fte =1.0
= 0.5 o, = 0.75 as_;= 0.1 )
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4.3. Failure Testing

Johnson (1976) maintained that validation of a numerical model is only
partially fulfilled by comparing its performance with existing results. Even if the
comparison is perfect, conditional typographical, numerical, and logical errors may
still exist in the code. Furthermore, fundamental logical errors in the approach to
modelling the processes may exist and go unnoticed indefinitely in an otherwise
working code. Johnson proposed that the code should be pushed to unrealistic
extremes, for often logic can predict what the outcome should be. If the code fails,
either sometkhing is wrong with the logic used to construct the code, or something
is wrong with the logical deduction of what the extreme outcome should be. The
Monte Carlo code was pushed in a number of extreme directions and only one
logical shortcoming was found.

The extreme and unrealistic cases reported here have to do with
unconditional forward and backward scattering particles. There is no problem with
perfectly forward scattering particles (g=1.0). The transmittance predicted by the
Monte Carlo code is identical, within experimental error, to that which leads

directly from the radiative transfer equation:
T(WOJ‘O:T) = e—(l—wo)r/uo . (4.11)

Reflectance predicted by the Monte Carlo code is, as expected, zero.
When g=-1.0, particles are completely backscattering. In this case,

common sense leads to expression for transmittance and reflectance of

Tutontiort) = € 10, (4.122)

and
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R(wostto,T) = wp [1 —e—T/‘u"] . (4.12b)

Since photons are either absorbed or scattered directly backwards, the only
photons that penetrate to cloudbase are those that do not interact with matter.
Hence, transmittance must follow Beer’s Law. The reflectance expression is
rationalized as follows: photons that are not directly transmitted [the bracketed
term in Eq.(4.12b)] and survive their one and only collision (with probability of
wo) will escape unattenuated back along their line of entry. This is an extreme case
of the opposition effect. This, however, is not what occurs in the Monte Carlo
code. Instead, a photon that is not directly transmitted to cloudbase penetrates the
cloud to random depth s where it undergoes a scattering event. The photon is
scattered backwards and traverses a random length s’. If s* < s, a second
scattering event occurs and the photon is scattered back into the cloud along it’s
original path. If s’ > s, the photon escapes by the preferential escape mechanism.
In general, a photon will trace out a jitlery back and forth trajectory along a
line—of—sight before emerging from the cloud. Note that photons can escape
through cloudbase after undergoing many scattering events. This contradicts the
logic which lead to Eq.(4.12b). In fact, reflectance and transmittance are
independent of 7.

The magnitude of this logical oversight decreases sharply with increasing g.
Since g ~ 0.85 for clouds, we expect no difficulty (see Fig.4.1). It does, however,
suggest that a small correction should be made to the model: if the scattering angle
85 is close to 180°, instead of moving the photon a random distance, it should be
moved directly back to its previous scattering event and rescattered. This may be

important for Monte Carlo simulations of radiation transport in stars.
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In summary, this chapter established a means of assigning statistical error
to radiative fluxes predicted by a Monte Carlo code. Also, an extensive validation
process was carried out on the Monte Carlo code which was developed in the
previous chapters. In all of the tests, ranging from simple isolated cubic clouds to
fields of interacting clouds, the model was able to reproduce published results to
within experimental error which is generally less than 1%. Furthermore, when our
model was equipped with the surface used by Welch and Wielicki (1989) [and
Kobayashi (1989)], it reproduced their results to within experimental error. The
equivalence of the on-line and the ofi-line techniques of accounting for droplet
and surface absorption was demonstrated numerically. Finally, we discussed the
performance of the code to failure festing and showed that it is logically unsound in
the regime of near—perfect backscattering. While the problem is trivial for our
purposes, the failure testing process nevertheless exposed a conditional logic error

in the code.
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Results and Discussion

The models presented in this thesis are employed in this chapter to
calculate solar radiative fluxes for various cloud fields. This chapter consists of
three main sections. The first section addresses concerns regarding statistical
significance of fluxes for extensive model cloud fields and the representativeness of
individual realizations of the scaling cloud field models. The second section
presents results of an intercomparison of fluxes for various cumuloform cloud field
configurations. Also, it examines some radiative properties associated with the
scaling cumulus cloud models. In the third section, some properties of fluxes for

broken cloud above reflecting surfaces ars examined.

5.1 Statistical Considerations
5.1.1 Required Number of Photons per Simulation

Whenever analytic solutions are abandoned and Monte Carlo simulations
adopted, experimental accessibility is gained at the expense of computation (CPU)
time. Therefore, before experimentation, one should try to assess how many
photons per simulation are required to achieve satisfactory estimates of fluxes.

The number of photons per simulation used in previous studies varies from
1,000 to 100,000. In Chapter 4, the Monte Carlo code was validated using 15,000 —

25,000 photons per simulation. Such a small number was justified since the

149
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reference data were either computed with a similar number of photons per
simulation or read from graphs which incurred a fairly large error. The simulations
proposed in this chapter involve cloud fields consisting of up to 65,536 pixels
(256x256 arrays) in a horizontal plane. Since 105 photons per simulation injected
into a 256x256 array means that on average each cell is irradiated by about 1.5
photons only, one may be concerned whether adequately sampling of the fields is
tractable.

To test sampling adequacy, ten simulations with 103 photons/simulation
were conducted using a very irregular 956x256x1 cloud field array produced by the
variable cloud model [Eq.(2.49)]. Figure 5.1 shows the inhomogereous cloud field
and two horizontal transects. The field was produced such that at large scales (k <
10) vertical optical depth is approximately white noise while at smaller scales (k >
10) (S,) follows k125 Each pixel represents a cube with an average cloud
optical depth of 10 (maximum is 60). Normal projected cloud amount is 0.5.
Single—scattering albedo and asymmetry factor for cloud droplets are 1.0 and 0.86.
Two cases are considered: f,= 0* and 60°. During each simulation, reflectance was
calculated every 103 photons. Then, the average and standard deviation of the ten
simulations were computed after every 103 photons.

Figure 5.2 shows the mean reflectances plus and minus experimental
standard deviation (solid lines) and theoretical standard deviation (dashed lines).
Theoretical standard deviations were calculated by assuming that each phdton is a
Bernoulli trial [see Eq.(4.8)). The plots suggest that the fields are sampled
adequately for the experimental errors are systematically less than the theoretical
errors. Figure 5.3 shows the theoretical and experimental standard deviations. In
—-1/2

theory, the standard deviation is proportional to N , where N is the number of

photons injected. Figure 5.3 suggests that experimental error decreases faster with

N—0:6

respect to N (v~ ) than does the theoretical error. Similar results were
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Fig.5.1. (a) False i ey image of a variable cloud field with (Sx) ~ k-0 for k ¢
10 and k- 1 2 for k > 10. A, = 0.5 and average optical depth is 10. (b Transects of
optical depth along scan lines indicated on% )- Transects start at the base of the
image. :
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Fig.5.2. (a) Mean reflectance (centre line) for ten simulations using the
cloud field shown in Fig.5.1a. Solid lines on either side of the mean indicate the
width of one standard deviation for the ten reflectances. Dashed lines represent the
width of the standard Monte Carlo error as expressed in Eq.(4.8). Solar zenith
angle is 0°. (b) As in (a) except solar zenith angle is 60°.
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Fig.5.3. (a) Variation of standard deviation of reflectance as a function
number of photons injected. Solid straight line is the theoretical standard
deviation of reflectance for the ten simulations in Fig.5.2a. Jagged curve is the
experimental standard deviation and the dashed line is its best—fit line. (b) As in
(a.fexcept refers to Fig.5.2b.
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obtained for other experiments. Thus, it appears that satisfactory flux calculations
for detailed cloud fields can be achieved using as few as 50,000 phoions per
simulation. This is an important result which should dispell the myth (e.g.
Fouquart et al, 1990) that Monte Carlo simulations are restricted to studies of

regular arrays of clouds.

5.1.2 Representativeness of a Single Realization of the Cloud Model
The cloud models presented and used in this study are essentially
stochastic. Therefore, several cloud fields generated by the same scaling filter, and
having the same vertically projected cloud amount and mass of liquid water, can
have different configurations. It would be convenient, especially for
parameterization purposes, if all realizations of a particular cloud field yield
statistically the same radiative fluxes. One method for testing whether this is the
case involves; (1) generating several cloud fields all of which have the same
spectral properties, liquid water mass, and cloud amount; (2) computing
reflectance for each field; (3) calculating the standard deviation of reflectances; and
(4) comparing it with the theoretical standard deviation for a single experiment
[Eq.(4.8)]. If they are comparable in magnitude, individual realizations of a cloud
field adequately represent the typical cloud field.
This procedure was carried out using ten realizations of two substantially
different cloud fields. The first set of clouds were generated using (S, ) ~ Ky k,
¢ = 0.25, and (7) = 10. The second set of clouds has (8y) ~ X0 for k <5 and
R elsewhere, A, = 0.4, and {r) = 15. In both cases, individual clouds are
cubes and the fields are of the variable cloud type. Figure 5.4 shows mean
reflectance plus and minus the standard deviation for the two experiments. Each
simulation used 50,000 photons. The magnitude of the reflectance standard

deviations are almost identical to the theoretical standard deviations associated
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Fig.5.4. Solid curves indicate the width of one standard deviatior about the
mean reflectance of ten realizations of the variable cloud field model in which the
cloud fields are all characterized by (Sx) ~ k1 V¥ k, A; = 0.25, and average optical
depth of 10. Dashed curves are the same as the solid curves except they apply to
cloud fields with (Sk) ~ k-0 for k < 5 and k-t 3 for k > 5, Ac = 0.4, and average
optical depth of 15.
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with the Monte Carlo simulation of one realization (0.0015 and 0.002 for curves 1
and 2). This suggests that the fluxes for 2 single realization of a particular cloud
field should be representative of all realizations.

A more demanding test for the representativeness of a single realization
involves comparing fluxes associated with a cloud field produced by one of the
models presented in Chapter 2 with fluxes associated with a cloud field produced
by an altogether different model where both fields have similar attributes. The
alternate model used here is a modified version of the two—dimensional discrete
mono—fractal f—model (Mandelbrot, 1974). This model begins with a uniform
region which is subdivided successively such that after M subdivisions (2)2M cells
exist. As each parent cell divides into four off-spring, the probability of an
off—spring surviving (not setting extinction coefficient to zero) is (0.5)¢ where ¢ is
the co—dimension of the fractal set that would emerge if M - o. Figure 5.5a and b
show realizations of the f~model (¢ = 0.25) and the identical cloud model in which
both fields have A_ = 0.27 and (S,) ~ k_>-°°. Although the fields in Fig.5.5 have
similar spatial statistics, they look different.

Figure 5.6 shows reflectances for the fields shown in Fig.5.5. The curves
labelled 1 refer to cloud cells as cubes with 7 = 10 while the values for curves
labelled 2 were computed using the cells as rectangles with horizontal and vertical
optical depths of 3 and 10 respectively. Hence the cloud fields in simulation 2 have
effective aspect ratios over three times those in simulation 1. For each value of y,,
50,000 photons were injected and the solar azimuth was allowed to vary randomly.
The fact that both fields produce almost identical reflectances suggests that solar
radiative fluxes are fairly insensitive to specific arrangements of cloud. These
results are remaniscent of statistical mechanics where different configurations of 2
systems elcmentary constituents (cloud cells) do not influence macroscopic

properties (fluxes).
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Fig.5.5. (a) Single realization of the identical scaling cloud model in which
Ac = 0.27 and (Sx) ~ k0 88, All cloudy pixels {white) have optical depth of 10. (b%
As in (a) except the field was produced with the modified mono—fractal mode
using ¢ = 0.25.
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Fig.5.6. Reflectances of the cloud fields shown in Fig.5.5 as a function of .
Dashed and solid lines are for the f—model and the identical scaling model
respectively. The pair of curves labelled (1) are for individual cloud cells as cubes
with 7 = 10. Curves labelled (2) are for rectangular cloud cells with aspect ratio
3.33 and vertical optical depth still 10.
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5.9 Solar Radiative Fluxes Associated with Broken, Scaling Cloud Fields

This section has two main parts. First, radiative fluxes due to scaling
cumulus cloud fields are compared with fluxes associated with broken cloud models
used in previous studies. Second, properties of fluxes for broken, scaling cloud

fields are examined in detail.

5.2.1 Intercomparison of Fluxes for Various Broken Cloud Models

Cloud fields examined in this section are plane—parallel, regular (e.g. Welch
and Wielicki, 1984), random (e.g. Kobayashi, 1988), and scaling [Egs. (2.49) and
(2.50)] arrays. The potential range of experiments involving these few types of
cloud geometry is vast and an exhaustive investigation is not attempted here.
Instead, this section presents a limited, yet representative, set of results
highlighting the important differences and similarities between fluxes predicted for
the various cloud geometries. Attention is restricted to fields that are homogeneous
at scales less than about 0.3 km. Therefore, internal variability of clouds is not
considered. Inclusion of small scale variability appears to be very important (Davis
et al., 1990) and is presently being investigated by the author outside the realm of
this thesis.

All cloud fields in a singlc intercomparison have the same vertically
projected cloud fraction and all cells in a cloud field with 8 # 0 are assumed to be
uniformly filled with the same cloud droplet size distribution. Hence, differences in
optical depth of cells are attributed to variable density of liquid water; this implies
that w, and g do not vary from cell to cell. In all cases wo, = 1.0, g = 0.86, and the
Henyey--Greenstein phase function is used. Also, in a single experiment all
non—plane—parallel geometries have the same total mass of liquid water in the
field and are characterized by cyclic boundary conditions. This, taken with the

restriction on vertically projected cloud fraction, implies that all geometries have
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the same vertically integrated optical depth averaged over the entire field. By
definition, plane—parallel clouds have infinite mass and no sides. Thus, when they
are used as an approximation to broken cloud, their fluxes are calculated with the
average optical depth of cloud in the truely broken cloud cases and multiplied by
the vertically projected cloud fraction. In this study, all plane—parallel fluxes are
calculated with the delta—Eddington model (Joseph et al, 1976) because it is
computationally efficient and used throughout climate studies. These specifications
ensure that only differences in cloud field geometry are being compared.

Wielicki and Welch (1986) used high resolution (~ 30m) LANDSAT data to
show that in large images (greater than about 150x150 km) containing cumulus,
clouds with diamters less than about 0.5 km often contribute little to the total
cloud amount. Therefore, it may be expected that small clouds often contribute
little to radiative fluxes for the cloud field also. Thus, because of Wielicki and
Welch’s results, the aims of the thesis to study clouds fields about the size of GCM
grid—boxes, and computer limitations, standard photon transport experiments will
be conducted with no more than 256x256 (cyclic) arrays of cells with each cell
representing about 0.3 to 1.0 km horizontally. In actuality, specification of the
spatial scale is irrelevant here since extinction coefficient is arbitrarily variable and
the radiative transfer process does not depend directly on geometric length. The
only reason space scales are mentioned is because of the aims of the study, and
because, to some extent, cloud fields will be generated to loosely mimic the
AVHRR results of Section 2.4.

First, before beginning the full intercomparison, consider the following
example which illustrates the wealth of unexplored (or unreported) radiative
properties of broken cloud. It involves the simple, commonly étudied, regular array
of identical cubic clouds. Experimenters have shone the sun down the clear streets

between clouds with a solar azimuth of ¢, = n7/2 (n=0,1,2,...). Figure 5.7 shows
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Fig.5.7. Reflectance as a function of solar zenith angle at several solar
azimuth angles for a regular array of cubic clouds with optical depth-15 and A¢ =

0.25.
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an example of how reflectance for a regular array varies with ;. The cloud field is
periodic and symmetric in ¢, with period =/2 rds. Hence, ¢, = 0, 7/8, v/4, and
the azimuthally averaged case are shown. At p, < 0.5, reflectances for ¢, = 0
exceed plane—parallel estimates by about the same amount that they are exceeded
by the azimuthally averaged case. Since the azimuthally averaged case may be
interpreted as the typical case, it is doubtful that results from previous studies
satisfactorily represent fluxes for regular arrays of cubes. Thereiore, even simple
regular arrays exhibit much more variability than has been recognized previously.

The first experiments in this intercomparison examine the effects that
different cloud patterns have on reflected fluxes. Thus, the identical scaling cloud
model will be used and horizontal variability is not considered. Figure 5.8 shows
reflectances as a function of ug with Aé = 0.25 and 0.45 and 7 = 10 and 50 for two
different scaling fields ((Sk) o k! and K5/ 3); a random array (k'_o); a regular
array (o = 0) of cubes; and plane—parallel clouds. Some common features of the
plots are now discussed.

At overhead sun, the regular array always has the smallest reflectance while
the plane-parallel cloud has the largest; all scaling fields have reflectances between
these extremes with reflectance increasing with the magnitude of the scaling
exponent. Within the regular array, all clouds have four exposed side faces and
thus the effective cloud aspect ratio averaged over the field is 1.0. Davies (1978)
and Welch and Wielicki (1984) showed that the larger a cloud’s aspect ratio, the
greater the proportion of radiation that escapes through the sides. Also, most of
the escaping photons travel downward and either pass to the surface and are
absorbed or are intercepted near the base of neighbouring clouds and thus stand a
strong chance of being transmitted to the surface. Thus, due to a large area of
cloud sides, regular arrays of clouds are very effective in channelling photons to the

surface at high sun. Plane-parallel clouds, on the other hand, have no sides so
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Fig.5.8. (a) Reflectance as a function of y, for several different cloud fields
each with A; = 0.25, vertical optical depth of 10, and individual cubic cells. The
scaling fields are of the identical format. Dashed line is plane—parallel reflectance.

b} As in (a) except T = 50. (c) As in (a) except 7 = 10 and A = 0.45. (d) Asin
¢) except 7 = 50...
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albedo cannot be reduced by side leakage. A significant number of photons that
exit the sides of finite clouds would still be in a plane—parallel cloud and,
therefore, have a greater probability of being scattered eventually through the top
of the cloud.

While random arrays of clouds (k"’o) have no coherent patterns, there are
some large clouds that have aspect ratio less than 1.0. As such, the random field is
slightly more plane—parallel than the regular array. The examples in Fig.2.12 to
2.14 show that, as scaling exponent increases, clouds tend to conglomerate or
coagulate. This reduces the area of cloud sides and hence the regionally integrated
aspect ratio. Therefore, as scaling exponent increases, cloud fields become more
plane—parallel. This explains the increase in reflectance with scaling exponent at
high sun. Also, as scaling exponent increases, the average separation distance
between clouds increases. Therefore, photons that leak through cloud sides have
less chance of entering another cloud and possibly being reflected. This effect,
however, is minor compared to the decrease in aspect ratio.

As the solar zenith angle increases, side illumination of finite clouds comes
into play. Hence, an increasing fraction of incident radiation is intercepted by
clouds and given at least a chance to be reflected. This effect has been documented
extensively for individual clonds and regular arrays (e.g. McKee and Cox, 1974;
Davies, 1978; Kobayashi, 1988). Plane—parallel clouds have no sides so as po
decreases their reflectance increases slowly, only because photons stand a greater
chance of being redirected into an upward direction near cloud—top. Note that for
to < 1, reflectance of the regular array with 7 = 50 increases very quickly. This is
because each cloud is isolated and enhanced side illumination is very effective.

As po decreases further, reflectance by the regular array increases at a rate
which is substantially less than its rate of increase at g, near 1 and substantially

less than the rates at which reflectances due to the k_o and k"1 fields increase. As
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the solar zenith angle increases, the sun reaches a point [0, = tan_l(Azll 2_ 1)]
for the regular array where all clouds begin to cast shadow on their neighbour.
When this occurs, enhanced side illumination ceases to increase and the cloud field
presented to the solar beam is effectively a set of infinitely long bars. In all four
graphs, reflectance due to the scaling and random cloud fields increase steadily as
Lo decreases because, unlike the regular array where enhanced illumination reaches
a maximum quite quickly, side illumination of scaling fields continues to increase
for larger ranges of p,. However, as the scaling exponent increases, reflectance
increases at a much reduced rate with decreasing go. This is attributed to the
increased number of large cloudless regions between cloud clusters which even at
very low po can still admit to the surface a significant fraction of directly incident
photons. This effect becomes so prevailent that even for fields that scale like
k_5/ 3, reflectances at most i, are only slightly higher than the corresponding
plane—parallel values. On the other hand, side illumination is so effective for the
Kt case that by o = 0.2 reflectance either rivals (Ac = (.25} or exceeds (A ¢ =
0.44) reflectances due to the regular array. Enhanced illumination is so effective in
the k0 case that reflectance exceeds that due to the regular array for all g, < 0.5
to 0.6.

Figure 5.9 shows the ratio of broken cloud field reflectance to plane—parallel
reflectance as a function of A, This is the ratio which some researchers believe
may be useful in parameterization for it relates broken cloud fluxes back to easily
calculated plane—parallel fluxes. Again, only the identical cloud fields are used.
The scaling cloud fields used to create Fig.5.9 were all created with the same
initial white noise but using different scaling exponents and threshold values of
for4 to set A . While the optical depth of clouds in the field is 20 (intermediate to
those used to create Fig.5.8), the results in Fig.5.9 augment those just discussed.

For example, Fig.5.9a shows that for g = 0.5 the random array has the largest
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reflectance for essentially all A c due to substantially enhanced side illumination.
Figure 5.10 explicitly shows the value of enhanced cloud amount for gy = 0.2 and
0.5. This is calculated by setting wy, 1o 0 so that cloud absorptance equals
approximately the fraction of the direct beam intercepted by cloud. For k—o, at o
= 0.2 and A ¢ 0.4, enhanced cloud amount is almost overcast and very little
direct beam gets throught to the svzrace.

Figure 5.9b shows that at g == 1.0, the regular array is the most effective
at trapping photons for A c > 0L The sudden increase (decrease) in flux ratio for
the K field for g = 0.5 (1.0) at A_ < 0.1 is due to the cloud model. At A_ =
0.05, 95% of the initially generated k! field is set to zero. As such, much
information is lost and the field has fairly little to do with a “1/f noise’. The very

large fcrit

value has produced a field whose power spectrum is approximately
k03 This “whitening” of the field at low A (see section 2.4.3) is a shortcoming
of the model. Regardless the general result is that as the scaling expoaent
increases, side leakage and illumination become less important, and therefore,
reflectances approach the plane—parallel limit.

Figure 5.11 shows reflectances for the variable cloud versions of the
identical cloud fields used to produce the reflectances shown in Fig.5.8. Again, the
basic pattern is that for uo > 0.8 to 0.9, reflectance increases with scaling exponent
while for smaller puq, reflectance decreases with scaling exponent. The explanation
for this is exactly the same as that for the identical cloud case: as scaling exponent
increases, finite clonds behave more like plane—parallel clouds. Figure 5.12,
however, shows that horizontal variability in optical depth reduces albedo below
that due to the identical cloud fields by between 10 — 15%. This is because of the
non-linear nature of reflectance as a function of optical depth (see Stephens, 1988,

and Appendix A) and also because the probability of photons encountering mass is
reduced. The identical cloud field reflectances exceed the plane—parallel values for
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Lo £ 0.9. With horizontal variability, scaling cloud field reflectances exceed the
plane—parallel estimates for go € 0.7 (k’o), Lo € 0.55 (k"l), and g, € 0.35 (k—sl 3).
This is quite a dramatic qualitative difference: accounting for broken clouds but no
horizontal variation in 7 primarily enhances cloud albedo, but when variable T is
admitted, broken cloud albedo is smaller than albedo for the plane—parallel case

(especially for large scaling exponents and small cloud amounts).

5.2.2 Radiative Properties of Scaling Cloud Fields

In this section, some properties of fluxes associated with scaling cloud fields
are examined.

Figures 5.13, 5.14, and 5.15 show how identical and variable scaling cloud
fields reflect azimuthally averaged direct—beam radiation as a function of clond
field scaling exponent d; that is, the cloud field behaves as (Sk) ~ k9, For all
cases in Fig.5.13, averaged vertical optical depth (7) is 20 and Ac is 0.25. The
cloud cells in Fig.5.13a are cubes while in Fig.5.13b they are horizontally square
rectargles with aspect ratio 3.33 with (r) = 20. The same distinction applies to
Fig.5.14a and b except () = 10 and A, = 0.5. Cloud cells in Fig.5.15 are cubes
with {r) = 50 and A, = 0.3. Each cloud field in Fig.5.13 and 5.14 was generated
with a different white noise. The cloud fields in Fig.5.15 were all generated with
the same white noise.

All five plots reveal that the reflectance of cloud fields with continuous
spectra are bounded between random, white noise arrays of clouds at one extreme
(d = 0) and plane—parallel clouds at the other (d - o). In all cases, reflectance for
the identical cloud fields approach the plane—parallel limit defined as Rpp('""’)*Ac’
where Rpp(po) is plane—parallel cloud reflectance. Note that because of the finite
nature of the clouds in the generated fields, the plane-parallel limit is not
approached strictly. In the cases considered here, cloud aspect ratio beyond d = 4
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is about 1/100 which yields very nearly plane—parallel results (Davies, 1978). The
variable cloud fields appear to at least level off at reflectances less than the
plane—parailel values. It is presumed that as the scaling exponent approaches
infinity the variable cloud field will cease to be variable for virtually all oscillations
\a;"ill be damped out. Thus, in the true limit of infinite scaling expomnent, the
variable field reflectances may asymptote to the plane—parallel values. The
greatest deviations from plane—parallelism occur at d = 0; white noise. All cloud
fields with intermediate scaling exponents, and thus probably all realistic values,
have reflectances that fall between these extremes. This was also implied by the
results in the previous section. These results are reasonable for as scaling exponent
increases the size distribution of clouds narrows, the mean area of individual clouds
increases, mean separation between clouds increases, and variability across
individual clouds decreases. All of these factors act to produce plane—parallel-like
clouds.

In all plots for both gy = 0.2 and 1.0, reflectance for both identical and
variable cloud fields varies almost linearly for d < 1.5 to 2.0. Then, there is a
transition regime out to about d = 2.5 {most visible for o, = 0.2) and beyond d =~
2.5, reflectance appears to approach the limits asymptotically. With fairly
remarkable consistency, reflectances of the variable cloud fields are less than the
identical cloud field reflectances by a constant amount. Hence, at small d for py =
1.0 and large d for o, = 0.2, the fractional differences between the reflectances for
the two cloud types are greatest.

Based on the satellite radiances and aircraft samplings presented in Chapter
2, it is conjectured that at scales greater than about 0.5 km to 4 km and less than
about 50 to 100 km, vertically integrated optical depth of cumulus cloud fields
scale between (S,) ~ k0> and k2. If this is true, the results in Fig.5.13, 5.14,

and 5.15 show that reflectances can vary substantially in this range and that the
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range of reflectances may often be significantly different from those due to white
noise and plane—parallel arrays of clond. Furthermore, the cloud field skown in
Cahalan and Snider’s (1989) Fig.3 has a near infrared spectrum like (S;) ~ K06
They referred to this field as a ‘nearly wavenumber independent (white noise)
spectrum’ (p.104). While their statment is not incorrect, Fig.s 5.13 through 5.15
show that with a scaling exponent of 0.6, reflectance at g, = 1.0 can be at least
10% greater than the white noise value and at gy, = 0.2 it can be at least as much
as 20% smaller thar the white noise value. These are significant and important
differences. |

The next set of experiments concern the efects of vertical texturing on
cloud field reflectances. All fields in these experiments are arrays of 128x128 cells
in the horizontal. Figure 5.16a shows reflectance as a function of y, for three cloud
fields all created with the same white noise, scaled with |k|_2, A, = 0.25, and {7)
= 20. The maximum vertical optical depth in the variable and textured cases is
99.6. Each field consists of cubes of equal volume. The clouds (or parts of clouds)
in the textured case with the greatest vertical geometric thickness arc 5 times
thicker than the clouds in the variable and identical fields. The average cloud
thickness in the textured case is about 1.5 times thicker than the other fields.

As in previous experiments, reflectances for the identical cloud field exceed
those of the variable cloud field by about 10 to 20% for all u,. At overhead sun,
reflectance due to the textured field is slightly less than that due to the variable
field. Thus, at high sun, the overall effect of texture is to trap photons and reduce
albedo. Photons tend to leak out the sides of the towering parts of cloud and
shower down on shallower clouds at an effective zenith angle greater than 0°.
Thus, pﬁotons tend to escape from regions of large vertical optical depth easier
than if the massive columns were compressed to a single cell thick. Also, photons

reflected by shallower clouds cannot escape as easily as in the single layer variable
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cloud case due to interception by towering clouds. Enhanced solar zenith angle due
to photon leakage through cloud sides is an insignificant reflection enhancement
mechanism compared with the albedo reduction mechanisms just mentioned.

Van Blerkom (1971) and Wendling (1976) found that periodic striations on
top of plane—parallel clouds reduced albedo, erpecially at gy = 1.0. (Though not
reported, their results where reproduced). However, they found that striations
reduced slightly the albedo for all g, since they only considered overcast. The
cloud field used to produce reflectances in Fig.5.16a is more cumulus—like than
stratocumulus. Hence, as u, decreases, reflectance of the textured field quickly
exceeds that due to the variable field as side enmhanced illumination bocomes
rapidly a factor. By po = 0.2 the textured reflectance exceeds the identical cloud
reflectance. This is due simply to super—enhancement of the illuminated area of
the textured field as p, decreases and easier escape upwards as photons exit the
sides of towering clouds.

Figure 5.16b shows reflectances for the same cloud fields used to produce
Fig.5.16a except that the cells are rectangles (not cubes) with x, y, and z lengths
0.3, 0.3, and 1.0 times those of the cubes in the first experiment. Thus, the cloud
fraction and average vertical optical depth are the same, but the clouds used to
create Fig.5.16b are narrower and have an effective aspect ratio 3.33 times that of
the clouds in the first experi:nent. Figure 5.16b shows that for overhead sun,
texture suppresses reflectance below that due to the variable field by the same
amount as the identical field’s reflectance exceeds that due to the variable field.
Hence, photon trapping by texture has been amplified. The enhanced illuminated
area effect has been amplified as well since textured reflectance exceeds that due to
identical clouds for u, < 03 as oppossed to 0.2 in the first experiment. In fact,
note that at uo = 1.0 all reflectances are reduced slightly in the second example

while for most x, reflectance is increased. Welch and Wielicki (1984) have already
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decumented this effect for regular arrays. It is due to enhanced trapping and
illuminated area respectively as aspect ratio increases. Thus, the effect uf texturing
can be easily understood by referring to experiments that have investigated how
aspect ratio affects cloud field reflectance since texturing is a more subtle, but
realistic, way of exploring the effects of aspect ratio.

Figure 5.17 is like Fig.5.16a and b except that the cioud field was produced
by scalings [k| ™0 for k ¢ 5 and [k| 288 ((5.) » K% for k 35, A_ = 0.5, and
() = 20. The pattern of reflectances in Fig.5.16a and b is preserved: texturing
reduces reflectance below that for the variable model at large p, (20.85) and
enhances reflectance to match or exceed the identical cloud reflectances for g, <
0.2. Since reflectances for the textured case can excced the others by more than
10%, accounting for texture may be desirable, especially in simulations of photon
transport through towering tropical cumuli.

The final experiinent in this section concerns the reilectance effects of
applying different scaling factors to different scales. This experiment was
motivated by the satellite radiance power spectra shown in Section 2.4.1.2. For
example, it may be that clouds in scene A scale as k! but vertical integral of
liquid water across cloud cells scales closer to k™%, This kind of variable scaling
can be accounted for with the cloud models and reflectances investigated with the
Monte Carlo codes.

Figure 5.18 shows four cloud fields created with the same white noise
matrix. All images have A, = 0.25 and () = 30 and are single layer cloud fields
consisting of cubes. Field A was created by applying |l:|_2 ¥ |k| to the white
noise. Field B was created the same way except with |lc|_4 for |k| > 70. Thus, the
vertical optical depth spectrum, especially <Sk>’ of field B is very similar to the
radiance spectra of AVHRR scene A (if cell size is assumed to be about 1 km).
Note that field B has smoother edged clouds and fewer small clouds relative to
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_ Fig.5.18. Four images of 256x256 arrays of clouds each created with the
same white noise and having A = 0.25 and (7) = 30. (a) (Sx) ~ k1 V k;
maximum 7 is 209.
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Fig.5.18. (c) As in (a) except {Sx) ~ k- for k ¢ 10; maximum 7 is 220.
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Fig.5.18. (d) As in (c) except (Sx) ~ k-3 for k > 70; maximum 7 is 221.
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Fig.5.19. Reflectance as a function of y, for the images in Fig.5.18.
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field A. Field C was created with |k| ™ for |k| ¢ 10 and |k| ™2 for |k| > 10. This
field differs significantly from fields A and B though some general similarities are
discernable. The most distinguishing feature of field C is the lack of extensive
clouds and cloud—free regions. Field D is created like field C except that |1r.|"'4 is
applied to |k] > 70. Thus, like field B relative to A, field D is similar to field C.
but cloud edges are smoother, fewer small clouds exist and as a result, spaces
between clouds are on averaged greater in field D than in field C.
Figure 5.19 shows reflectance for the four cloud fields discribed above. For

o > 0.7, differences are small and reflectances are less than plane—parallel
reflectances. For po < 0.7, reflectances of the four fields begin to diverge. For this
range of sun angles, the |1c[_1 scaling at low frequencies tends to enhance
illuminated area and thus reflectance by about 15% over the counterpart with
|]:|'_2 low frequency scaling. On the other hand, over the same range of sun
angles, the |lt.'|_4 scaling at high frequencies tends to reduce reflectance by about
8% below the counterpart with |lc|—2 high frequency scaling. Therefore, it is most
likely that accounting for low frequency ‘whitish’ noise is more important than

accounting for attenuation of detail at high frequency.

5.3 Radiative Fluxes for Broken Clouds Above Reflecting Surfaces

Almost all previous studies of solar radiative transfer in broken cloud have
considered siugle layer fields of identical, homogeneous clouds irradiated from
above by a direct beam with an underlying black surface. Including a reflecting
surface or multiple cloud layers complicates the problem significantly. This section
investigates some aspects of solar radiative transfer for broken clouds above
realistic reflecting surfaces. It consists of three main parts. The first assesses the
applicability of the Lambertian surface approximation for calculating fluxes in

broken cloud. The second tests the validity of the geometric sum form of flux
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calculation in a multiple reflecting system. Both approximations are ubiquitous in
climate studies (e.g. Schneider and Dickenson, 1976; Fouquart, 1988; Barker and
Davies, 1989a,b). The third examines the phenomenon of system albedo reduction

by non—absorbing clouds.

5.3.1 Applicability of a Lambertian Surface for Flux Calculations

When using remotely—sensed radiance data to infer properties about
reflecting surfaces or to extrapolate flux estimates, it is very important to account
for the bi—directional reflectance nature of surfaces (Gerstl and Simmer, 1985;
Pinty et al, 1990). This section explores the question: how important is it to
include explicit bi—directional surface reflection functions when caleulating solar
fluxes for broken cloud? To do this, a non—Lambertian surface, whose qualitative
reflectance characteristics do not differ much from natural surfaces, and two
Lambertian surfaces are considered. While examination of one surface does not
provide a definitive answer, it is at least a stringent test and settles the question

for many surfaces.

5.3.1.1 Non—Lambertian Test Sucfce

The bi—directional reflecting surface for this study is assumed to be
plane-parallel, homogeneous, and consisting of particles (e.g. individual or
consolidated grains). Reflectance is accounted for by the statistical bi—directional
model (see section 3.3.2). The effective single—scattering albedo of the particles is
wg = 0.6, and the effective scattering phase function is given by

P (cosy) =1+ wcosy ,

or (5.1)

P-mein,) =1+ w [—#uz + V(T=E2(1—¢2) cosw] ,
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where all terms are explained in section 3.3.3 and w1=—1.0 which implies that the
effective asymmetry factor of the particles is ~1/3.

Figure 5.20 shows the normalized intensity function I(—p,go;pz,zpz)/
I(-Lpin,0,) [Eq.(3.70)] for this surface in the solar—zenith plane for 2 number of
different g, values. The surface zenith angle dependent albedo as(‘”z) shows
(Fig.5.21) a greater dependence on y, than expected for many natural surfaces
(e.g. Barker and Davies, 1989). The formula

) 0.25107 + 0.902064,
a\p )= )
ST 0.70416 + p,(3.78902 + p)

(5.2)

fits the curve in Fig.5.21 with maximum error of 0.8% at p, = 0.1 and average
error of 0.24%. The spherical albedo of the surface is 0.236. Equation (5.2) is used
in the Monte Carlo code to decide whether a photon incident at the surface is
reflected or absorbed (see section 3.4).

Figure 5.22 shows the cumulative density function for reflected photon
zenith angle [Eq.(3.73)] wit> w, =0.6 and w,=-1.0 for several values of p,. This
plot shows the values of a random number RN which satisfies a particular t?r. For
the non—Lambertian surface with p,=1.0, the expression for the reflected angle 0r
is almost identical to the Lambertian formula given in Eq.(3.44) (dashed line in
Fig.5.22). This implies that for the test surface, normal incident photons undergo
near isotropic reflection. The family of curves produced by Eq.(3.73) (of which
those in Fig.5.22 are a subset) have been parameterized such that 19r of reflected

photons is given by

er=cos—l{..mtaw+bcuz>ln(RN>l], (5:39)
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Fig.5.20. Normalized reflected intensity in the solar plane for the test
surface defined by Eq.(5.1) as a function of #—0; for several incident angles 0,.
Right side of the plot corresponds to forward scattered radiation and the left side
corresponds to backscattered radiation.
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Fig.5.21. Zenith angle dependent albedo for the test surface. Solid line is
actual albedo while dashed live is the approximation givenby Eq.(5.2).



Chapter 5 _ 196

0.9
_.0.81
z.
0.7
s 0 -
4 0.6 Cosine of Incident
E s Zenith Angle
3o.
E 0‘4- 0.01
5] 0.2
0.3 05
8 0.8

0.24 1.0

90 100 110 120 130 140 150 160 170 180
Reflected Zenith Angle (degrees)

Fig.5.22. Random number RN that satisfies 4 = —cos(%;) in Eq. (3.73) when
ﬁ)‘.“a) =(30£1 )ai.nd wy = —1.0. The dashed line is the solution for the Lambertian surface
q.(3.44)).



Chapter 5 197

where

3 4

2 an‘u]z:l 2 cn'u'lzl
=1 =1

a(u) =2E— i ) =F— (5:35)

n n

E bn""z E dnp'z
n=1 n=1

and the constants an, b and dIl are listed in Table 5.1. The maximum

n Sp
absolute error in using Eq.(5.3) is approximately 0.345* for K, > 0.03. These errors
are tolerable given that the alternative is to numerically solve Eq.(3.73) each time
a photon is reflected by the surface

The reflection azimuth angle ¢ is calculated by Eq.(3.76). This is done by
generating a random number RN and solving Eq.(3.76) by the Newton—Raphson
root—finding method. For the surface under consideration, only about six iterations

are required to calculate ¢, to an accuracy of 0.065°. Due to the nature of

£q.(3.76), this solution is very efficient and reliable.

5.3.1.2 Non—Lambertian verses Lambertiau Surfaces

In this section, radiative fluxes for broken clouds computed with the
non—Lambertian surface are compared with fluxes computed with two versions of
the Lambertian surface. The albedo of Type 1 Lambertian surface is given by
Eq.(5.2) evaluated with the zenith angle of the solar beam incident at cloudtop
and applies to all photons incident at the surface regardless of by Reflection for all
photons, however, is still isotropic. This is the type of surface most likely to be
used by the next generation of solar radiation codes in global climate models. Type
2 Lambertian surface is characterized by isotropic reflection and albedo of 0.236
(the spherical albedo of the non~Lambertian surface) for all incident angles and all
initial solar beams. This surface is currently used by global climate models. The
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Table 5.1
Coefficients for a{g,) and b(x,) in Eq.(5.3).

n ' a, bn

1 —1.5352009 —1.6915608

2 —4.1125995 -—9.3491408

3 3.6841510 6.1237881

4 0.0 1.0

n < u:l11

1 | —3.4940378E-06 2.9685703E—04
2 2.3009754E—03 6.3977135E—02
3 3.2009885E—03 6.3105142E-01
4 -—4.1986237E—03 3.5494985E—2
5 0.0 1.0

)
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cloud fields used in this section are random arrays of identical cubic clouds with
base heights equal to cloud thickness.

Table 5.2 indicates the differences in cloud/surface reflectance when

non—Lambertian and Lambertian surfaces are used. The table contains a
representative sample of a large number of computations. Clearly, ihe reflectance
differences between surfaces are small; less than 5% with maximum differences
occurring with no cloud. 1t is important to note that although the differences
between non—Lambertian and Lambertian surfaces could be greater than those
portrayed in this case, they are probably typical of many surfaces. Compared with
the non—Lambertian surface, results for the Tyrpe 1 Lambertian surface
underestimated reflectance at large cloud amounts and small #, and over estimated
reflectance at large cloud amounts and large f,. The reason for this is simply that
the Type 1 Lambertian surface albedo is strictly 05(90)- In the non—Lambertian
case, clouds diffuse radiation such that as cloud amount increases, the effective
surface albedo approa~hes the intermediate spherical albedo. Thus, the
corresponding surface albedo for the Type 1 Lambertian surface is too large at high
6, and too low at small at low §,. For small cloud amount the differences are
negligible.
_ The opposite is true for the Type 2 Lambertian surface which has constant
albedo equal to the intermediate spherical albedo. Hence, for large cloud amounts
(with 7 > ~5), differences between the non—Lambertian and Type 2 Lambertian
surfacés are negligible. But for small cloud amounts the surface and system albedos
for Type 2 Lambertian are larger than the non—Lambertian case for small 4, and
smaller for large 6.

It should be mentioned that the experiments for which results are listed in
Table 5.2 were also conducted using the Monte Cailo method of photon transport

in the surface (section 3.3.1). Scattering by soil grains was described by the
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Table 5.2

Cloud/surface reflectances for random arrays of clouds above three different
surfaces. NL is the non—Lambertian surface defined by Eq.(5.1); L1 is Type 1
Lambertian with albedo given ty Eq.(5.2) evaluated only at the zenith angle of the
initial solar beam 6o; L2 is Type 2 Lambertian with albedo equal to 0.236 which is
the Bond albedo of the NL surface. Cloud fields consist of identical, homogeneous,
non—absorbing, 1 km cubic clouds of optical depth 7, arranged at random over a
10x10=1 cyclic generater. Cloudbase height is 1 km. A; is the fraction of the
generator filled with clouds. Errors in reflectances range from 0.001—0.003.

7=10
Bo(deg.) A c NL Ll L2
0 0 0.2100 0.2100 0.2360
60 0 0.2465 0.2465 0.2360
0 0.1 0.2238 0.2227 0.2452
60 0.1 0.2981 0.2959 0.2893
0 0.3 0.2632 0.2572 0.2787
60 0.3 0.3946 0.3975 0.3913
0 0.5 0.3115 0.3071 0.3135
60 0.5 0.4796 0.4914 0.4872
0 0.8 0.4075 0.3929 - 0.4145
60 0.8 0.5944 0.5956 0.5927
0 1.0 0.4774 0.4675 0.4727
60 1.0 0.6394 0.6469 0.6367
7=250
Bg(deg.) A c NL L1 12
0 0 0.2100 0.2100 0.236
60 0 0.2465 0.2465 0.236
0 0.1 0.2444 0.2449 0.2679
60 0.1 0.3321 0.3326 0.3250
0 0.3 0.3356 0.3300 0.3506
60 ¢.3 0.4934 0.5015 0.4943
0 0.5 0.4500 0.4426 0.4601
60 0.5 0.6389 0.6389 0.6271
0 0.8 0.6523 0.6461 0.6512
60 0.8 0.7906 0.7944 0.7929
0 1.0 0.8137 0.8018 0.8125
60 1.0 0.8659 0.8716 0.8698
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Henyey—Greenstein phase function [Eq.(3.30)] with g = —1/3 and w, = 0.6. Thus,
the surface was very similar to that defined in Eq.(5.1) through (5.3). As expected,
the results using the Monte Carlo surface are virtvally identical to the
non—Lambertian values listed in Table 5.2.

In conclusion, this comparison shows that for many cases of broken cloud,
use of either type of Lambertian surface is adequate. This is very convenient for
both analyses and parameterization of fluxes for broken clouds and for climate
modelling. In the rest of the thesis, Type 2 Lambertian surface wili be used

exclusively.

5.3.2 Multiple Reflections of Radiation Between Surface and Broken Clouds
Attention is now turned toward multiple reflections of photons between
reflecting surfaces and broken cloud fields. First, a review of the multiple reflection
process is given. Second, a method is developed and implemented for
demonstrating the ranges of applicability of the multiple reflection geometric sum

formulae for conditions of broken cloud above Lambertian surfaces.

5.3.2.1 Review of Multiple Reflections Between Atmosphere and Surface

Consider a reflecting and transmitting layer, such as a layer of broken
cloads, situated over a reflecting ground surface. For simplicity, scattering and
absorption by molecules between the layer and the surface are neglected. Assume
that the layer is irradiated from above by a collimated beam of monochromatic
solar radiation of unit intensity and that fractions Rc and Tc of this beam are
reflected and transmitted respectively. Designate the albedo of the underlying
surface to the initially transmitted flux (diffuse and direct beams) as %1 Thus,
Tcas,l of the original beam irradiates the base of the layer. Assume that the layer
reflects a fraction r; of the upwelling radiation back towards the surface and
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transmits a fraction t, out its top. Therefore, T %, 1ty emerges out the top while
the return flow of radiation downwards, T %, 171 is reflected again by the surface
which this time has an albedo of & o Reflectance and transmittance of the layer
to the second stream of upwelling radiation are denoted Iy and to. The reason why
surface albedo and layer albedo and transmittance may differ on each internal
reflection is because the angular and spatial distribution of the radiation fields may
differ. Allowing this process to repeat indefinitely leads to overall system

reflectance and surface irradiance of

k= R'*'Tc:o‘s11""1‘c°‘sl52"21""' + Tt ]___[ ,JHr+"'

m k-1
=R, + T, ) {tkH :J+lr]
k=1l 720

Ip=1, (5.4a)
and
T=T,+Teag 17y + T, 1% 9T Tg + oo + T H 5,55t
J_
© k
=T, E {H as,jrj] . (5.4b)
=1 = . |
If the conditions

= ag
(r) tVi#], (5.5)
(t)
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are satisfied, then Eqs.(5.4a) and (5.4b) become geometric series conveniently

expressed as
T (t)a
R=R, +——>, (5.6a)
1 - e (r)
and
T
T —— (5.6Db)
1 - alr)

These expressions are used throughout climate studies and implicitly
assume that clouds are either distributed evenly across the sky or completely
overcast. The plane—parallel forms of Eq.(5.6) are obtained by letting R, =
AcRpp' T, = Achp, (1) = Ac(rpp), and {t) = Ac(tpp), where A, is cloud
amount and terms with subscript ‘pp’ are plane—parallel values (e.g. Schnieder
and Dickinson, 1976). For true plane—parallel slabs of cloud, multiple reflections

are confined to regions beneath clouds and Eq.(5.6) becomes

AT (t Y
R=AR_+(1—A)o +——PP PP S (5.7a)
C pp c/‘"Ss 1 — a(r )
sV pp
AT
T=(1-A)+ € PP __ (5.7b)
1 - as(rpp)

The differences between Eq.(5.6) and (5.7) are very small; generally < 2%. It is not
known yet, however, whether the conditions listed in Eq.(5.5) are satisfied for true
broken cloud. If the leap from Eq.(5.4) to Eq.(5.6) is valid, the geometric sum
formulation can be applied in climate models using parameterizations 6f fluxes for

broken cloud. This seems more desirable than including the effects of surface
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albedo in some o:lher manner (e.g. Welch and Wielicki, 1989).
5.3.2.2 Applicibility of the Multiple Reflection Geometric Sum Formulae for

Broken Clouds

This section examines the range of validity of Eq.(5.6a) and Eq.(5.6b) for
broken cloud conditions. A technique is presented for verifying Eq.(5.6a) and
(5.6b) using the Monte Carlo code developed earlier. The technique is then
employed using examples which illustrate the applicability of Eq.(5.62) and (5.6b).

To test the applicability of Eqs.(5.6a) and (5.6b), the Monte Carlo models
are used with a, = wo = 1.0 and reflectances of a cloud field to upwelling photons
that have encountered the surface 1, 2, 3, ..., M times are calculated. If the
conditions in Eq.(5.5) hold, all reflectances should be equal to within experimental
error.

Besides being a satisfactory approximation to realistic surfaces, the
Lambertian surface leads to the following property which helps simplify
experiments. Equation (3.48) defined the albedo of a cloud layer irradiated by a
field of radiation that varied only as a funciion of zenith angle. Radiation incident
on cloudbase after having been reflected by the surface can vary in both zenith and
azimuth angle as well as in space. This is because of shadows cast by broken clouds
and perhaps inhomogeneous surface. The reflectance of a cloud field to upwelling
radiation that has interacted with the surface n times is a surface area integral

over a hemispheric integral and given by

- fd J;TRC(Q 1 0)K (R, 0)dQdo | 59)

ffK Q,0)dQdo
d"2r n( -

T
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where ¢ signifies the surface and do is an elemental area of 4, d{? represents
elemental solid angle, R, is cloud reflectance to radiation incident from the
direction reflected at do, and K_ defines the areal and angular distribution of

radiation reflected by the surface for the nth

time. A similar expression can be
written for cloud transmittance to- For the simple Lambertian surface, radiation
reflected at do is equal in all directions and albedo a, is constant and independent

of incident angle. Thus, for 2 Lambertian surface
K (Q,0)=al (o) , (5.9)

where LIl defines the areal distribution of radiative flux incident at the surface for

the nt'h

time. Substituting Eq.(5.9) into Eq.(5.8) shows that r_ is independent of
a, when the surface is Lambertian. Note that for a Lambertian surface below a
plane—parallel overcast cloud, Ln(cr) is constant over 4 for any given n and
Eq.(5.8) reduces to Eq.(3.48). In broken cloud conditions, however, L (o) varies
over 4 especially for n=1 due to cloud shadows. The point of this demonstration is
that for a Lambertian surface, I, apd th do not depend on ag; any variation in
them is due to spatial distribution of radiation.

The overall reflectance of a cloud/Lambertian surface system to a

monochromatic solar beam in a Monte Carlo simulation can be expressed as

N N
1 n 1 I,
— — lo — l. » -
R= { N ‘z Wy 60m1 } + { N S Z Wo 61ml } -+ (5-10)
i=1 =]
N
1 n,
k i
" e + {-.na w -6 }+ asn
N 8 2 0 kmi
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1 @ . N n;
= E g E Wo '6km. !
k=0 i=1 !

where N is the total number of photons used, n, and m, are the numbers of
scattering events and surface encounters experienced by the ith photon, and 61. is
the Kronecker delta. The first term on the right hand side of Eq.(5.10) represents
the fraction of incident photons weighted for droplet absorption that are reflected
without ever encountering the surface. This is equivalent to cloud reflectance to
the initial direct beam; R in Eq.(5.42). Subsequent terms on the right hand side
of Eq.(5.10) represent the weighted fraction of reflected photons that have
encountered the surface at least once. Thus, Eq.(5.10) is just a term~by—term
discrete analog of Eq.(5.4a) provided the first condition in Eq.(5.5) is satisfied.
Having established a term—by—term correspondance betweem Eq.(5.4a) and

Eq.(5.10), the quotients between successive terms in both equations are

N k-1
k i k
s E Wo *&r. Tety o T i
i=1 1 - 1=1 o k r
. N 1 = k-2 T T tk k-1
-1 i -1 -1
s 2 Wo '5(1: 1)m ctk-1% Hrl
i=1 i=
(5.11)
Dividing this expression by «_ leaves
N n, )
. L o by )
k i=1 !
—I._q = . (5.12)
tk‘l n :
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From the second term on the right hand side of both Eq.(5.41) and Eq.(5.10),

when w, = 1.0,

N
_1
Tct1=§ Y b - (5.13)
i 1
i=1
Also for wy = 1.0,
N
= =1-1
Te=l-Ro=1-~ ) Bom, (5.14)
i=1
and
no=1—t, . (5.15)

Therefore, it follows from Eq.(5.13) and Eq.(5.14) that

| o1

N
1
E 61m ; z 51m
b= i= _ i=

17 [1 %Ig JOmJ ] [N -ig

i=1

(5.16)

Hence, substituting Eq.(5.16) into (5.15) gives r,. Substituting Eq.(5.15) into

Eq.(5.12) with w, = 1.0 gives the recursive formula for cloudbase reflectance as

e (5.17)
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This is calculated easily in the Monte Carlo code. From this, the set {rl, Tpy oony
rk} can be generated and if I rj for all i # j then the geometric sums are

applicable. Errors associated with estimates of I) are given as

Ar &% k—I1 , (5.18a)
k N{ 0z }
n=0
where I, designates

N

=11 _ —

El- ) fom. =1-R,=T, . (5.18b)

i=1 *

Note that the denominator in brackets in Eq.(5.18a) is just the number of photons
that experienced at least k encounters with the surface.

=3 Before applying this technique to broken cloud fields, it is demonstrated for
plane—parallel homogeneous overcast cloud layers above a Lambertian surface
defined by I; [see Eq.(3.42)]. For this case it is known a priori that all ;. should
be within experimental error of each other. In this test, as in all that follow, only
six internal multiple reflections are considered because the flux leaving cloud—top
that has undergone at least six internal reflections is almost always less than 0.01
of the initial input. Table 5.3 shows the results for 2 cloud of 7 = 5, w,=1.0, and
p.=1.0. As expected the values of I all very similar. Furthermore, direct—beam
reflectances of the cloud R (o) were determined for 10 values of y,. The points
were fitted with a cubic polynomial (2 = 0.999) ard the spherical albedo was
computed to be 0.371 which is in excellent agreement with the values of 1, in

Table 5.3. This demonstrates the valid.ity of both the method of finding r, and the
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Table 5.3

Demonstration of the procedure developed in Egs.(5.10) through (5.17) for
estimating the reflectance of a cloud field to upwelling radiation ry on successive
orders of internal multiple reflections. Cloud is of infinite horizontal extent,
homogeneous, and has an optical depth of 5 and Rc(y) is the zenith angle
dependent albedo of the cloud.

k I + Ark

0.3710 = 0.002
0.3702 = 0.004
0.3791 = 0.007
0.3690 + 0.011
0.3877 « 0.017
0.4034 + 0.028

O e 0O B =

1 B
(r) =2 j(; R (#)udp = 0.371
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use of I; to describe a Lambertian surface.

Figure 5.23 shows cloud layer reflectance to upwelling radiation for the first
six internal reflections for three broken cloud fields. The cloud fields consist of
cubic clouds 1 km thick, average vertical optical depth of 30, and Ac = 0.25.
Figure 5.23a applies to a cloud field produced by the variable cloud model scaled
with Ikl_2 V [k| and Fig.5.23b applies to its identical cloud field counterpart.
Figure 5.23c applies to a regular array of identical cubic clouds. Solar zenith angles
of 0° anf 60° and cloudbase heights of 0, 1, and 5 km are coasidered.

The curves in Fig.5.23a and b are similar. The most striking feature is that,
even at base height of 5 km, I, is not independent of k. Hence, strictly speaking,
the geometric sum forms are not applicable. Later on it is shown that this,
however, is not a serious problem. First, the curves in Fig.5.23 have some

“interesting properties that deserve mentioning.

The reflectance of the scaling cloud fields to radiation that has encountered
* the surface once I, increases with base height. This is because most radiation
reflected by the surface is direct—beam radiation that is incident on cloudless parts
of the surface. Because the surface is Lambertian, reflected radiation spreads out
as it travels upwards. If the clouds are high, a large fraction of surface reflected
radiation spreads out and encounters cloud. If, on the other hand, base height is
low, a relatively large fraction of reflected photons escape through the cloudless
space they entered by. This is also why I, for 6, = 60" is slightly greater than for
6 = 0°. At 8, = 60", some direct—beam is incident below clouds and
proportionaly less irradiates surface below cloudless areas.

Cloudbase reflectance to radiation that has encountered the surface twice Iy

is much greater than Iy This is because initially incident radiation reflected by
regions of surface beneath cloudless sectors is easily lost leaving much of the

radiation still involved in multiple reflections directly beneath clouds. Hence, layer
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Fig.5.23. Cloud field reflectance for the first six up—welling streams of
surface reflected radiation. Clouds are 1 km thick and base heights are indicated
on the plots. Solid and dashed lines correspond to p, = 1.0 and 0.5. Cloud fields
are characterized by: (ag Variable clouds with {Sx) ~k-i1¥ k, Ac = 0.25, and {7) =
30; (bll Identical cloud field counterpart to (a); (c) Regular array of identical cubes
with A. = 0.25 and 7 = 30. Short horizontal lines indicate the spherical albedo of
the cloud fields (for (c) it lies on top of the 1 and 5 km curves).
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reflectance to the second upwelling stream of radiation is governed to a greater
extent by cloud optical attributes than by cloud amount. As base height increases,
the spreading out of up— and down—welling radiation is quite efficient and the
difference between I, and Iy decreases. For subsequent internal reflections, I
increases at an attenuating rate for all base heights and levels off at k ~ 5, and
memory of §, is lost. The magnitude of the limiting reflectance is governed by
cloudbase height: 0 km base has the largest reflectance because radiation involved
in multiple reflections is almost exclusively beneath extensive (horizontal and
vertical) cloud. For 5 km base height, the internal reflecting radiation field is well
diffused, hence, a significant fraction of upwelling radiation escapes on each
encounter with the cloud field.

The horizontal line on Fig.5.232 and b signifies the spherical albedo of the
cloud fields. If internally reflected radiation was perfectly diffused, this would be
the cloudbase reflectance. Though the reflectance values on the plots have been
joined with lines, regions between the integer reflection numbers are meaningless.
It may, therefore, be a coincidence that the reflectance curves for different
cloudbase heights intersect at the value of the cloud field spherical albedo.

Figure 5.23c shows that for base height of 0 km, reflectance of tie regular
array depends on reflection number but less than it does for the scaling cloud
fields. By base height of 1 km, however, 1, is independent of k and §, and equals
the regular array’s spherical albedo of 0.287. This is because of the regularity of
the array: radiation reflected by the surface is sufficiently diffused after cily one
reflection and remains as such due to the regular spacing of non—extensive clouds.

The geometric form of the flux equation [Eq.(5.6a)] can be rearranged to
solve for the effective cloudbase albedo required for the geometric formula to be

true as



Chapter 5 _ 214

[t = Ry(sollay — R{po) + R (ko)
a[1 = R(po)] '

(O g = (5.19)

(1) ofs 15 plotted in Fig.5.24 as a function of a, for the identical scaling cloud field
used to produce Fig.5.23b. Figure 5.24a shows that for base height of 0 km, (r) off
depends on o for all ye. It has already been shown that 1) does not depend on a
for a Lambertian surface, hence, the fact that (r) off depends on a is just another
indication that the geometric forms are imperfect descriptions. Note that the
values of (r) eff 3t small o are almost identical to the values of r, shown in
Fig.5.23b. This is because with &, 50 low, internal reflections beyond the first one
are insignificant. For large as’ however, (r) off has increased to approximately the
cloud fields spherical albedo. This is because more radiation is undergoing multiple
reflections and so the larger valued higher order cloudbase reflectances are mors
important. The same can be said for (r) off With cloudbase height of 5 km
(Fig.5.24b) except that the dependance of (r) eff O0 & is much reduced. The
dependence of of (r) eff O 0o is governed primarily by the dependence of r; on f
as discussed above.

What value of (r) . should be used in multiple reflection calculations for
broken cloud? If a simple procedure for choosing an appropriate (1) off Cannot be
found, the usefulness of the geometric formulae is reduced. Before attempting to
broach this question, consider how others have dealt with it. Welch and Wielicki
(1984) parameterized albedo for a regular array of identical, homogeneous,
non—absorbing cuboidal clouds irradiated with direct solar beam parallel to cloud

sides (shining down clear rows between clouds) as

Reglko) = AR, (o) (5.20)
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where Rpp is plane—parallel cloud albedo using the vertical optical depth of the
cuboids and A e is effective cloud fraction. They parameterized A o by extending a
procedure by Weinman and Harshvardhan (1982), as a function of A o cloud 7 and

aspect ratio, and f,. Welch and Weilicki (1989) accounted for surface albedo by

Rcf(po) = AeRpp(,uo) + (1 — N’ ’).cu:s , (5.21)
where
A 1+ (E/D)tand,, A_ < A*
N’/ =_2_C 14+ ( / ; 0 c :
Ai/ , Ac > A*

and A* depends on cloud aspect ratio and 0, In Eq.(5.20), AR » p(uo) is
equivalent to R (u) in Eq.(5.6a). Therefore,

T, (ho)(t)

1-N'*)= .
( 1 — a(r)es

(5.22)

Thus, Eq.(5.22) does not account explicitly for multiple reflections. Furthermore,
it applies to regular arrays with 7 < 50 and ¢, = n#/2 (n=0,1,2,3) only.

Kobayashi (1989) explicitly accounts for multiple reflections and used
random arrays of clouds. His fundamental equation is the same as Eq.(5.62) in

which he defines
Rc(,uo) = IaEfACR(l) . (5.23)
where R(1) is albedo of an isolated cuboidal cloud with a;=0,and [, and B, are

cloud—cloud interaction and area enhg.ncement ratios (Kobayashi, 1988),

respectively. He uses the following approxfmations:
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= 5.24

and

R(l) = e"'fluﬂ ’

where ¢, d, e, and { are parametric constants. He defines (r} ;- as (his notation)

2
Ry =2 J; IEA R(1)d6 , (5.25a)

where 4 is zenith angle. He then maintains that Bq.(5.25a) is

2

R, =gA, +g(h—1)A7 , (5.25b)

where
g=(e+iI}Ep ,
and
/2 i
_2 ¢ 4+ dcos
h"v_r.]; [e —cos8) 97

in which (Ey) is the hemispherically—averaged area enhancement ratio. The author
has not been able to reproduce Eq.(5.25b). Not knowing exactly what Kobayashi
means by (Ef), his expressions cannot be accepted or rejected. What is important,
however, is that in his notation, the parameterization requires six parametric
constants and one numericai integration. His parameterization requires more work

than is necessary and warranted.
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For the same identical cloud field used in Fig.s 5.23 and 5.24, Fig.5.25a
shows the fractional error, as a function a, betwesn system reflectance calculated
by the Monte Carlo code and the geometric sum flux equation using (r) eff €qual to
the cloud field spherical albedo (0.227) with base altitude of 0 km. Maxmimal
errors of ~ —5% occur at high sun near a; = 0.3. Use of () g = R (20=0.5) =
0.25 generally sﬁifted down all the curves in Fig.5.252 resulting in a maximum
error of —6.5%. Figure 5.25b is the same as Fig.5.25a except that cloudbase height
is 5 km. This time, use of cloud spherical albedo in the geometric sum formula
produces errors that are generally less than 1%. Use of (1) eff = R (#0=0.5) pushed
down all curves in Fig.5.25b resulting in maxi:num error of —2.5%.

To augment these results, consider a scaling variable cloud field consisting
of cubes with (S, » X3 fork > Sand w K P fork ¢ 5, {r) = 10, A_ = 0.4, and
base height equal to cloud thickness. Figure 5.26 shows reflectance of this cloud
field as a function of a, for three solar zenith angles. Solid lines are Monte Carlo
results and the dashed lines are from the geometric sum formula using Monte
Carlo results with . = 0. Figure 5.25a used (1) off €qual to the spherical albedo of
the cloud field which is 0.20. Figure 5.25b used (r) off €qual to cloud fields
direct—beam albedo for uy = 0.5 which is 0.226. Clearly, both estimates of (r) off
yield accurate results. Maximum relative errors due to the geometric sum formula
with (1) ¢ of 0.20 and 0.226 are —1.9% and —3.6% respectively. Based on these
results, renresenting (r) eff 0 the geometric sum flux equations by eit!.cr a cloud
field’s spherical albedo or its direct—beam albedo evaluated at po » 0.5 is adequate
in most cases. The most troublesome cases involve broken clouds at the surface

which is unrealistic.
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Fig.5.25. Fractional error in system reflectance due to use of the spherical
albedo of the cloud field used in Fig.5.23b and 5.24 (({r) = 0.227) in the geometric
sum multlple reflection equation [Eq.(5.6a)]. Fractional error is defined as FE =
100[R({r)) — R(MC)}/R q(MC), where R (r) =0.227) and R{MC) are system
reflectances due to Eq.(5.6a) using the spherical cloud albedo and the Monte Carlo

model respectively.
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Fig.5.26. System reflectance of a variable cloud field consisting of cubes
with {Sx) ~ k-1 35 fo k > 5 and k- for k ¢ 5, Ac = 0.4, and (r) = 10. Cloud base
height equals cloud thickness. Solid lines are Monte Carlo results. Dashed lines are
the geometric sum formula using a) (r) = 0.20 (cloud field spherical albedo) and
b) (r) = 0.226 (cloud field reflectance at g, = 0.5). Labels on curves indicate solar
zenith angle.
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5.4 System Albedo Reduction due to Non—Absorbing Clouds

Welch and Wielicki (1989) noted that comservative scattering, broken
clouds can reduce system albedo below surface albedo. They referred to this
situation as "extremely counterintuitive" and examined it at length. They
concluded that reduced albedo is due to enhanced surface irradiance and hence
absorption. This point is raised for three reasons: first, this phenomenon has been
studied for sometime with regard to aerosols; second, it is not necessarily
counterintuitive as it {follows directly from the multiple reflection geometric sum
formula; and third, it is not restricted to broken cloud but applies to overcast as
well.

It has been known for sometime (e.g. Rasool and Schnieder, 1971; Ch:;'lek
and Coakley, 1974; Russell and Grams, 1975) that introduction of an aerosol into
the atmosphere can reduce {increase) or increase (reduce) the albedo (temperature)
of Earth. What surprised Welch and Wielicki (1989) was the system albedo
reduction (warming) produced by non—absorbing broken clouds. The geometric
form of the multiple reflection flux equation provides an approximate indication of
whether system albedo is reduced by cloud (or any atmospheric constituent that
attenuates solar radiation).

If R (ko) is albedo of a cloud field to direct beam radiation and R(go) is
albedo of the cloud/surface system, albedo reduction below the case with no cloud
is mathematically stated as R{uq) < a, where o is surface albedo. Assuming that

§
the geometric flux equation [Eq.(5.62)] holds, this implies that

T (o) (t) e

R(po) = R(pto) + 1o < o

, (5.26)

where (t) and (r) can assumed to be equivalent to (t) off 20d {r) ofp 35 used in the
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previous section. For non—absorptive clouds, this inequality can be rearranged to

give

Rolto) _ (5.27)

Rlw) <o, & = A

For large po (> 0.6), it is common to have Rc(uo)/ (1) < 1 for both overcast and
broken cloud conditions. Hence, for large o, values, it would not be surprising to
find R(o) < a. Quite simply, the presence of any cloud (absorbing or not) serves
to reflect a fraction of surface reflected photons back to the absorbing surface
where they have additional opportunities of being absorbed. Therefore, under
certain conditions, approximately those in Eq.(5.27), non—absorbing clouds can be
expected to reduce system albedo. The conditions are small solar zenith angle and

high underlying albedo. Simultaneous occurence of these conditions, however, are

rare on Earth.

NS
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Summary and Conclusion

The primary objective of this study was to investigate solar radiative
transfer through realistic fields of broken cumulus with horizontal dimensions
similar to GCM gridboxes. The thesis consists of three main components: empirical
evidence demostrating the ‘scaling’, fractal-like nature of cloud liquid water
distribution and the presentation of a model to generate such fields; development
and validation of three—dimensional atmospheric and underlying reflecting surface
Monte Carlo photon transport models; and numerical exploration of radiative
fluxes for scaling cloud fields using the models just mentioned.

In the first part, several AVHRR satellite images of broken, single-layer
cloud fields were examined for scaling properties primarily. Spectra of shortwave
reflectance and longwave emission showed very similar form. Of particular interest
was the finding that one—dimensional spectra (Sk) of both waveband images
exhibit distinct changes in slope at space scales corresponding to ~3 to 4 km. This
appears to be typical cloud cell diameter. These changes in slope are remarkably
similar to those found by Cahalan and Snider (15%9) in LANDSAT near-—infrared
imagery from the FIRE experiment. They, however, found that the changes in
slope occurred at less than 1 km (but still typical cloud cell size). For scales larger
than ~ 4 km, (Sk> can range from at least k_0'5 to k_5/ 8 It is likely that for
scales greater than perhaps 50 km, cloud fields (especially stratoform clouds) may

225
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be completely random. For scales less than typical cloud cell size, it appears that
radiance fields are generally smoother than k3. The fact that the AVHRR VIS
and IR specira display the same form suggests that the scaling changes are due to
dynamics, as hypothesized by Cahalan and Snider, and are not entirely a radiative
phenomenon. However, since Cahalan and Snider’s explanation for the scaling
changes stem from two—dimensional turbulence theory, it is difficult to see how it
could apply at scales less than a few kilometers where the atmosphere is not even
approximately two—dimensional.

Examination of cloud liquid water content (LWC) and temperature time
series obtained by aircraft flying through fairweather cumulus showed that these
fields tend to follow a single scaling law, often very close to k"'sl 3, from at least
~50 km down to ~120 m. While slight increases in slope are seen below 1 km, the
change in slope seems much less pronounced than those seen for satellite radiance
fields. It may be that LWC follows closely a three—dimensional turbulence law at
most scales greater than the viscous cut—off and that the vertical integral of liquid
water is much smoother. If the radiation fields are represented by the vertical
integra; of liquid water more so than by the LWC, this, in conjunction with
smoothing by multiple scattering, may explain the relatively smooth radiation
fields at scales less than typical cloud cell size.

Of the four spectra of upwelling inter—cloud flux of UV radiation examined,
three of them showed remarkably similar spectra (~k_3'6) at scales which appear
to be less than typical cloud cell size. This scaling structure is similar to that
observed for shortwave satellite radiances.

Clearly, a comprehensive explanation of the spectral structure of satellite
imagery does not exist. It is widely recognized that detailed coordinated
observations of cloud fields by satellite (radiances), aircraft (radiances, irradiances,

and microphysics), microwave radiometers (columnar mass of water), and lidar
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(cross—section of LWC) may be required to solve the problem.

As a result of the scaling behaviour of one and two—dimensional fields of
LWC and thermal radiances, and the observation that for large transects LWC =
0 when temperature is above a fairly well defined critical va.lué, a stochastic,
ph_enomonological, scaling, broken cloud field model was proposed. The basic
model produces two—dimensional fields of vertically integrated optical depth with
significant horizontal variability. Cloud fields have constant vertical extent and,
hence, variable LWC. These are referred to as variable scaling fields. A second
type of field can be produced in which all cells in the variable field with non—zero
optical depth have optical depth set to the grid average. These fields are called
identical scaling. By extension, a third field can be produced in which the original
- field is drawn upwards creating a new field with variable geometric thickness of
clouds but near constant LWC. These fields are referred to as textured. All three
fields possess the same cloud cover fraction and spatial distribution of vertical
optical depth. Several examples of the models were shown. The fields are clearly
distinguishable from random, regular, and plane—parallel clouds and tend to
resemble non—oriented fields of cumuli.

In the second part of the thesis, a Monte Carlo atmospheric photon
transport model was presented which is capable of computing solar radiances and
fluxes for extremely variable and extensive three—dimensional cloud fields. Also,
two underlying reflecting surface models were developed. The first was a trimmed
down version of the atmospheric Monte Carlo model and the second was a general
statistical bi—directional model. It was shown that the surface used by Welch and
Wielicki (1989) and Kobayashi (1989) was not Lambertian. A semi—analytic
correction, however, can be applied to their results. Fortunately, in most cases the

correction to the system albedo is small. In Chapter 4, the Monte Carlo models
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were validated by comparing their flux estimates with accepted published results
for standard cloud scenarios.

In the third part of the thesis, model generated scaling cloud fields were
used as input for the Monte Carlo transport models. The vbjective was to compare
fluxes for various models of broken cloud fields and to explore some radiative
properties of scaling cloud fields. First, however, it was demonstrated that
statistically meaningful fluzes for extensive cloud fields are attainable with as few
as 50,000 photons/simulation and that an individual realization of a cloud field
represents its population well. These are important points especially for
parameterization purposes.

An intercomparison of reflectances for scaling, random, regular, and
plane—parallel arrays of clouds was conducted. Only cloud fields with constant
vertical-optical and geometric depth were considered. The findings showed that the
cloud fields considered transfer solar radiation very differently. The governing
factors seem to be enhanced illuminated area of cloud sides and effective aspect
ratio of the cloud field. Cloud fields that are strongly scaling (e.g. 15/ 3) reflect
radiation like a plane—parallel cloud. This is because many ciouds are fairly
extensive in the horizontal and often large tracts of cloud—free space exist between
them. Random arrays of cloud and weakly scaling fields difier significantly from
plane—parallel. This is because few clouds are extensive (large aspect ratio) and
most spacings between clouds are small (< 2 cloud diameters).

Introduction of horizontal variability into the scaling cloud fields tended to
reduce reflectance by between 10 to 15%. This is due to the non—linear transfer of
radiation in clouds and also to the fact that the probability of a photon not
encountering liquid water is enhanced. This is in accord with results due to
Cahalan (1990) and Davis et al (1990). Clearly, the extent to which horizontal

variability is introduced is somewhat arbitrary at this stage. Taken to the absurd
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extreme, there would be a fractal set of points of infinite LWC which would give
rise to zero reflectance because the probability of a photon encountering a
denumerable set of points is zero. Furthermore, because the horizontal distribution
of vertical optical depth is not attainable from satellite radiances, we must rely,
for the time being, on one—~dimensional time series of vertically integrated LWC
obtained by microwave emission. It is suspected, however, that for the scales
considered in this study, the scaling cloud models probably provide a fair estimate
of horizontal variability in fairweather cumuli.

Next, the dependence of cloud field reflectance on the scaling exponent of
optical depth was studied. Here it was clearly demonstrated that scaling cloud
fields span a spectrum from white noise to plane—parallel and that only a minor
degree of scaling in optical depth (e.g. k—O.S) is required to produce reflectances
that differ substantially from those produced by white noise and plane—parallel
fields. Since all cloud fields exhibit scaling to some extent, it is likely that neither
extreme is a good approximation.

The effects of vertica) texture on reflectance was predictable in terms of
existing studies which examined the effects of cloud aspect ratio. At high sun,
towering clouds have an overall trapping effect on photons while at low sun, the
enhanced illumination on the sides of towers leads to enhanced reflectance. In some
cases, most notably in tropical fields containing some very tall clouds, inclusion of
vertical texture may be impoitant for propetly accounting for the feedback
between solar heating of the surface and cloud development.

The fact that the break in scaling of satellite radiances occurred at ~4 km in
the AVHRR data (afternoon) and at ~1 km in the LANDSAT data (mid—morning)
may be due to coalescence of individual cloud cells later in their life cycle. If the
only difference between clouds in the morning and afternoon is average cloud size,

then based on the results in Fig.5.18 and 5.19, there will be a slight reduction
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(enhancement) in reflectance (surface absorptance). Given, however, that other
variables such as vertical extent, cloud fraction, and optical depth will change over
the same period, diurnal migration downward in wavenumber of the scaling change
(increased cloud diameter) is likely to be a minor factor only. In fact, for
grid—averaged flux calculations it is probably more important to account for low
frequency white noise.

The final set of experiments involved reflecting surfaces beneath broken
cloud fields. First, it was demonstrated that for a wide variety of surfaces, the
Lambertian approximation will lead to accurate estimates of system fluxes. Next, a
meth-1 was developed for estimating cloud base reflectance in a Monte Carlo
simulation as a function of the number of internal reflections k between surface
and cloud. It was shown that for scaling broken cloud fields, cloudbase reflectance
depends very much on k due to efficient depletion of radiation out extensive
cloud—free regions: photons that undergo multiple reflections are confined to
regions beneath extensive clouds; even when base altitude is five times the cloud
thickness. While this condition violates that needed to use the geometric sum
formulae for flux calculation, it turns out that use of the cloud field’s spherical
albedo, or its direct—beam albedo evaluated near p, = 0.5, to represent cloudbase
albedo in the geometric formulae often, though fortuitously, leads to small errors
(< 2%) in overall reflectance. This is fortunate for climate models that employ the
geometric formulae already. When a comprehensive parameterization of
direct—beam cloud albedo is developed, it should, thercfore, be a much simpler
task to parameterize cloud field spherical albedo. Last, it was shown that the
geometric sum formula for system albedo predicts that in some cases
non—absbrbing cloud will reduce system albedo below surface albedo. The
necessary conditions required for this phenomenon to occur, however, are rare and

rot important to climate modelling.
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There are several recommendations for future research. First, a concerted
effort should be made to develop a flux parameterization for broken clouds for
GCMs. Several avenues were followed during the course of this thesis but none
were sufficiently satisfactory to report. Due to the clear theoretical and
observational indications that clouds are intimately related to the turbulent state
of the atmosphere, sub—grid distribution of cloud should be accounted for by some
kind of scaling law. It may be possible to parameterize radiative flux from scaling
cloud fields as a function of scaling exponent (e.g. Fig.5.13 to 5.15). Also, radiative
transfer in extremely inhomogeneous three—dimensional clouds should be studied
carefully. Such experiments were beyond the scope of this thesis. Finally, effects on
fluxes for broken inhomogeneous cloud fields due to absorption by cloud droplets
and water vapour should be investigated, for ultimately broadband fluxes are

desired. To date, only conservative scattering has been examined.
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APPENDIX A

Cloud Inhomogeneity and Reduced Cloud Reflectance

This appendix presents a simple proof showing that the introduction of
inhomogeneity into a plane—parailel cloud leads to reduced reflectance.

Let the extinction coefficient § be distributed in a horizontally infinite
cloud in such a manner that the optical depth  along trajectories of the incident

beam has a density function p(7) where

h
r=[ a2 (A1)

hc i3 cloud geometric thickness, and gy = cosf, where &, is solar zenith angle. The

direct beam transmittance averaged over the entire cloud is, therefore,

{t) = J; e 'p(r)dr . (A.2)

For homogeneous (plane—parallel) media, p(1) = &7—1o) where 7ouo is the
vertically integrated cloud optical depth. Thus, for plane—parallel clouds, Eq.(A.2)

becomes
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{t) = J; e 61~ To)d7 = exp[—7o] , (A.3)

which is simply Beer’s law.

Now, introduce inhomogeneity into the cloud and represent it as

2% ; TE€[To—€, Tote]

p(7) = (A.4)
{ 0 ; elsewhere .

This is the ‘top—hat’ approximation of the Dirac function. In the limit as e = 0,

Eq.(A.4) approaches §(7—r,); homogeneity. Note that the average optical depth of

the cloud is the same as in the plane-parallel case. Substituting Eq.(A.4) into
Eq.(A.2) gives

Slllh( E) - (A:s)

(t) = exp[-r,] -
For all possible ¢, sinh{¢)/e > 1 and il%l sinh(¢)/e = 1. Hence, this shows that the
slightest inhomogeneity leads to enhanced direct beam transmittance relative to
that associated with plane—parallel conditions.

If the cloud is scattering conservatively, enhanced direct beam
transmittance implies less scattered (diffuse) radiation. Since a diffuse radiation
field is just infinitely many direct beams, then by the same argument, the
proportion of scattered radiation transmitted through a plane—parallel cloud of
optical depth 7, will be less than the proportion of scattered radiation transmitted
through all heterogeneous clouds of average optical depth 7,. Since less diffuse
radiation is produced by inhomogeneous clouds, and a greater proportion of -that is

transmitted, inhomogeneity reduces reflected flux. This is in accord with Cahalan’s
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(1989) and Davis et al’s (1990) study’s Monte Carlo simulations of photon

transport in heterogeneous clouds.

b,
%



APPENDIX B

Systematic Bias in Retrieved Cloud Amount: The Role of the
Black Cloud Assumption

The purpose of this appendix is to show that the spatial coherence method
underestimates systematically cloud amount. Assume all quantities apply to a
narrow waveband. Let Ic be the Planck radiance received by a sensor at the top of
the atmosphere looking at an isothermal sea—surface at the nadir. Let I o be the
Planck radiance received by the same sensor but associated with the temperature
of an isothermal cloud. If € and 7 are cloud emissivity and vertically integrated
optical depth respectively, then the radiance measured by the sensor is

approximately
(r)=Ie "+ (1~¢") . (B.1)

If p(7) is the normalized density function of cloud optical depth over an area A,

the measured radiance for A is
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I=f p(n)I(7)dr
0 (B.2a)

1]
_ _ —e€T
=1, + (I, IO)J; p(r)e “'dr ,

where

o

J; p(r)dr=1, (B.2b)

has been used.

Assume that 2 fraction (1 — A ) of A has 7= 0 (no cloud). Therefore,

p(7) = (1 - A)é) + B(7) , (B.32)
where p(0) = 0 and by Eq.(B.2b)

j;] p(r)dr=A, . (B.3b) .

Thus, Ac is the true cloud fraction. Hence, Eq.(B.2a) becomes

I=(1-AJI +AL +(I,—1) f p(r)e Tt
0 (B.4)
= (l—Ac)Ic+ ACIO+ (Ic—IO).z'[f)('r);e] ,

where % [---]is the Laplace transform of the optical depth density function.

If it is assumed that

I=(1-A) +AJ , (B.5)
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where Ac is cloud amount retrieved by the spatial coherence method, it is

implicitly assumed that .# [p(7);¢] ~ 0 and that p(7) is of a form like

0 ;7r< 7

r) = [f(r) - (B6)

eT*

where € ' << 1. Thus, the assumption in Eq.(B.6) is stating that there is no

thin cloud, only extremely thick cloud. This is rarely true.
Equating Eq.(B.4) and Eq.(B.5), because regardless of any assumptions the

measured radiance I is unchanged, and rearranging gives
A=A+ Z[B(rhe . (B.7)
Since p(7) 2 0, so to is its Laplace transform, and so

A 2A . (B.8)

Hence, assuming Eq.(B.6) leads to a systematic underestimation in cloud amount.



APPENDIX C

Additional AVHRR Images

In this Appendix, five of the eight AVHRR images examined in this study
are presented. Table C.1 summarizes the imagery. The images are shown in
Fig.Cla — Cle along with their spatial coherence scatter—plots created using
AVHRR IR radiances in 4x4 pixel arrays. Note that the scatter—plot for image E
appears to indicate the presence of two cloud layers (two cold arches). When the
scatter—plot generates on the screen, however, the cooler arch forms right at the
end of the plot. Therefore, it is due to the single layer of clouds in the upper 1/ Sth
of the image.

Figure C2 shows (S ) for the VIS and IR fields of each image. Each (5)
curve was created using ten scan lines. Note the remarkable similarity between

these spectra and those in Fig.2.10.
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Table C.1
NOAA-9 (AVHRR) satellite information

Scene D Scene E Scene F

Date 5/3/86 5/3/86 8/3/86
Time (GMT) 1939 19‘_10 1908
Orbit Number 6325 6325 6367
Latitude (N) 30.0° 31.2° 35.5°
Longitude (W) 73.5¢ 72.8° 71.3°
Solar Zenith Angle 52.1 53.3° 51.5°
Viewing Zen. Angle  45.3° 45.2* 14.7

Relative Azimuth 30.9* 31.9* 36.3°
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Table C.1 (cont’n.)
NOAA-9 (AVHRR) satellite information

Scene G Scene H

Date 13/3/86 13/3/86
Time (GMT) 1639 1639
Orbit Number 6436 6436
Latitude (N) 58.5° 56.6°
Longitude (W) 54.5° 48.8°
Solar Zenith Angle 63.0° 62.0°
Viewing Zen. Angle 36.2° 23.2°

Relative Azimuth 130.3 131.9
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Fig.Cl. (a) Relative brightness image of scene D using AVHRR VIS
imagery. Minimum and maximum reflectances are 0.036 and 0.61. Beneath the
image)is its spatial coherence scatter—plot using AVHRR IR imagery (4x4 pixel
arrays).

i
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Fig.CL. (b) As in (a) except for scene E where minimum and maximum

reflectancss are 0.036 and 0.657.
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Fig.Cl. (c) As in (a) except for scene F where minimum and maximum
reflectances are 0.036 and 0.668.
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Fig.Cl. (d) As in (a) except for scene G where minimum and maximum
reflectances are 0.034 and 0.473.
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Fig.Cl. (e) As in {a) except for scene H where

reflectances are 0.022 and 0.551.
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Fig.C2. Normalized ensemble—average one—dimensional wavenumber
spectra for scenes D—H. Solid and dashed lines are for VIS and IR imagery
respectively. The IR spectra are shifted up by one decade.
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APPENDIX D

Graphical Technique for Estimation of Parameters in the
Codimension Function of a Multiplicative Cascade

This appendix presents a graphical technique for estimating the parameters
in the codimension function associated with a multiplicative cascade model.
Schertzer and Lovejoy (1986) showed that the codimension function of the bare

quantities of a multiplicative cascade is given by

al
) =cofzL+1] ", (0.1
where Cor Yo and o’ are constants that must be determined em'pirically. Since ¢,

is just c(0), it can be estimated easily from the graph of poirts (7, c(7)) obtained
by evaluation of Eq.(2.35).
Differentiating Eq.(D.1) with respect to 7 results in

c'(7) =

= . (D.2)
T+ 1

From this equation, ¢/(7) = 1 at
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y=a'e(R) -1, , (D.32)
and
a’ €y
¢’ (0) = . (D.3b)
%o

Plotting the approximate derivative (finite difference) of the points (1, ¢{7)), again

obtained by evaluation of Eq.(2.35), makes for simple estimation of % and c¢’(0).

Using Eq.(D.3),
¢’ (0)e()]
(%) = co[ c , (D.4)
(o
which upon solving for o’ gives
o(3
1n _E_)]
%
o = —. (D.5)
¢’ (0)c(%)
ln[ S ]
0
7, can be obtained from Eq.(D.3a) by
To=a'c(N -7 . (D.6)

Since all of the variables in Eq.(D.5) and Eq.(D.6) have been estimated
graphically, first order estimates of all the parameters in c(v) now exist. At this
point, one may be satisfied with the estimates of oy Tor and o’ or use them as

initial guesses in a non-linear regression attempt to find more accurate estimates.



