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Abstract

This thesis is a report on a series of measurements of ion-bombardment effects on

o-quartz crystals. Damage was produced in o-quartz (sic-gle-crystal SiD:!) by bom­

barding with ions of 4He+ to :109Bi++ in the energy range of 15 - 200 keY, at both

300 K and ~ 50 K. The samples were analysed in - situ with Rutherford backscatter­

ing/channeling, using 1 - 2 MeV "He+ ions; data was obtained from both the oxygen

and silicon peaks, so that damage stoichiometry could be calculated. At low ion

fluences (- 1010 - IOU ions/mrn2) the apparent damage level increases linearly with

fluence, but at rates of about 3 - 19 times greater than predicted by the modified

Kinchin-Pease equation. At higher fluences (- IOU - 1012 ions/mrn:!) the rate of

damage increases with fluenee fur elastic energy deposition rates of less than :::= 0.08

eVtatom, but remains constant for greater elastic energy deposition rates. At even

higher ion fiuences saturation of the damage occurs. It has been observed that the

analysis beam creates damage at a rate dependent on the level of damage already

present in the crystal; furthermore, the damage created by the analysis ions appears

to be predominantly due to the inelastical1.y deposited energy. Strain effects seem to

greatly exaggerate the level of damage indicated by simple channeling calculations.

A simple model is proposed to explain both the high rates of damage production and

the non-stoichiometry of the damage. The model indicates that the effects of elastic

energy deposition, inelastic energy deposition, strain produced by damage, and lat­

tic~ relaxation into a '"quasi-amorphous" state. all contribute to the apparent damage

levels synergistically.
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CHAPTER I: INTRODUCTION

Quartz, silicas, glasses and other silicates have been objects of study for thou­

sands of years. This is not surprising, since silicon and oxygen together make up

;5% of the Earth's crust. Almost as soon as radiation was discovered, its effects on

glasses began to be noticed. It was observed that impact by high-energy particles

and photons made glasses glow, and caused chemical and structural changes. Later it

\Vas noticed that natural quartz crystals which contained radioactive materials (such

as uranium) had developed "quasi-amorphous=: regions. These regions were different

both in density and structure from amorphous silica, and were labelled kmetamict.:Y

A considerable amount of effort has gone into the study of radiation-induced

changes in the optical properties of quartz and silica. This knowledge has been applied

to the manufacture of optical filters, to electro-optics (especially for the formation of

waveguides on electro-optic devices), and to quartz crystals made for use as oscillators

in high radiation environments.

More recently, silicate-based glasses have become candidates for nuclear waste

disposal, the idea being that high-level wastes could be mixed into melted glass. After

solidification the mixture would be sealed in steel drums and deposited in deep vaults

within a stable hard-rock formation of the Canadian Shield, or some similar location.

Hence it is necessary to establish how the radiation damage may affect the structural

stability of the waste-glass matrix and the rate of leaching by groundwater. Since the

glass will be required to contain the nuclear waste over a very long time scale (of the

order of a million years), it is important to determine how the radiation damage builds

up with time (dose). Table 1.1 contains estimates by Tait [1981] of the integrated

doses to waste gl:.dses with 1% elemental fission product loading, the products of
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reprocessing U0 2 fuel or Th0 2 /Pu02 fuel.

Table 1.1: Integrated dose (o/g) for reprocessed waste-glass
(waste from reprocessing partially-burned fission reactor fuel)

Time (y)
Fuel

U02

Th02 /PU02

100

2.9 X 1016

1.93 X 1017

104

1.9 X 1017

1.25 X 1018

106

6.3 X 1017

4.42 X 1018

Typical proposed loading levels of actinides in glass will result in an expected

alpha-decay level of the order of 1018 events/g over the period for which the glass is

expected to retain the radioactive waste. This level would be produced by an average

atom fraction of actinide atoms in the glass matrix of approxim<ltely 3 x 10-5 , resulting

in an average volume of glass per decaying actinide atom of about 4 Xl0- 16 mm3• For

the average alpha-decay we can assume that a particle of atomic mass > 200 and

energy of about 80 keV will be created (for examples, see Table 1.2; data is derived

from the Nuclear Data Sheets [19731). Using appropriate longitudinal and transverse

straggling values [Winterbon, 1975], an approximate cascade v~lume will be about 5

x10-u mm3 , Le. considerably larger than the glass volume per actinide atom.

Table 1.2: Examples of actinides which decay by alpha-emission
Isotope Half-life Decay Products Recoil Energies

uapu 87.74 y or 2J&U 5.50 MeV, 89 keV
~ '»
n·U 4.47 X 109 Y or mTh 4.20 MeV, 68 keV
n ' ~

n·U 2.45 X 105 Y or nOTh 4.78 MeV, i8.5 keV
n 'n

Consequently, over the lifet.ime of the nuclear waste storage system, damage

regions resulting from neighboring actinide decays will overlap many times, result­

ing in a glass matrix that will have radiation damage over its entire volume! unless

the damage produced by one recoil were to fully anneal before another decay event

damaged the same volume element. In addition! the ~IeV c.-particle may make a

2












































































































































































































































































