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ABSTRACT

The effect of cholesteric and smectic liquid crystalline solvent order on the

regiochemical control of a thermal bimolecular reaction has been investigated. The

cycloaddition reaction of cholesta-5.7-dien-3~-ylacetate with rigid enophiles has been

shown to yield several 1:1 cycloadducts. The relative product yields for this reaction

have been determined in a number of isotropic solvents. two cholesteric liquid crystals

and a highly ordered smectic B phase. In ordered media, the relative yield of one

product is enhanced at the expense l)f the others. The magnitude of this effect is highly

dependent on the rod-like shape of the enophile and on the ordered nature of the

solvent. We rationalize these results in terms of how the average orientation of the

reactants within the liquid crystal influences the energetics of reaction. The enhanced

adduct occurs via a transition state orientation that, compared to the other products, is

much more compatible with liquid crystalline order. In ordered media, this pathway

becomes energetically favoured. The largest effects on reactivity are Seen when the

reactants are rod-like in shape, the reactive centres are confonnationally immobile and

the solvent is highly ordered. This is explained in tenns of how reactant shape and

solvent order influence the average orientation of Ute solutes within the liquid crystal.

It appears that more rod-like reactants are better oriented, resulting in a larger influence

on reaction energetics. The more ordered smectic mesogen exerts a larger influence on

regiochemical control than the more fluid cholesteric phases, presumably due to a

better average orientation of the I'C3Ctant(s). Activation parameters and thennal

microscopy data indicate that while the orientati.onal control of reactivity is greater in

the smectic phase, the reactants may experience a heterogeneous environment.
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• CHAPTER 1: INTRODUCTION

1.1. Reactions in Ordered Media

1

Controlling the selectivity of chemical reactions is of great interest to many

chemists. Whether it is an industrial chemist preparing compounds on a large scale or a

synthetic chemist interested in isolating only a few crystals, increasing the yield of

desired products is of prime importance. Altering chemical reactivity has traditionally

been accomplished by utilizing electronic effects and/or steric factors. Molecular

orientation and collision geometry usually remain random.

Another a1>proach to controlling reactivity, that has received much interest

recently. is to restrict molecular mobility and allow reactant interaction only along

specific reaction profiles. Using this method. reactivity is limited to those pathways

compatible with the imposed physical constraints.

A large number of systeqls have been investigated in which the translational

or rotational motions of the reactive moieties are restricted.toS Enzymes for example

bind and orient the reactive species. restricting translational motion.1,2 This reduces the

number of possible transition states to those which are compatible with the restrictions

imposed by the organized medium. Inclusion compounds can also act as a restrictive

medium. These porous materials contain discrete cavities or channel-like structures.3

The reactivity of guest molecules entering such a restrictive environment is altered due

to reduced molecular mobility or limited access to other reactive species while inside

the inclusion compound. Non-reactive surfaces such as silica gel can also be used to




































































































































































































































































































































































