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ABSTRACf

The critical b~viour of CsMnBr
3

has been studied

by magnetic neutron scattering, magnetic susceptibility

measurements, and Monte Carlo simulations. The magnetic Mn+2

ions in this insulating material form a simple hexagonal

lattice. In the absence of an applied magnetic field me

Mn+2 magnetic moments order in a 120 0 structure with the

spins coniincd to the ab-plane.

Neutron scattering measurements of the temperature

dependence of the paramagnetic critical scattering and the

antiferromagnetic order parameter have found critical

exponents }' = 1.01 ± 0.08, v = 0.54 ± 0.03, and p = 0.21 ±

0.02. These exponents do not correspond to any of the

standard universality classes. This is a consequence of the

Zz x 8
1

symmetry of the order parameter arising from its XY

(81) and chiral (Zl) degeneracy.

Elastic neutron scattering has been used to

determine the magnetic phase diagram of CsMnBr
3

• The

application of a magnetic field along the <100> direction

splits the zero field transition and results in a

intermediate phase (ll) of spin-flop character. The zero

field transition is a tetracritical point with . cross-over

exponents V'p_u = 1.21. ± 0.07 and V'U_I = 0.75 ± O.OS. The
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fact that both exponents are less than two reflects the

narrowness of the temperature range over which the

intermediate phase is stable. These exponents are not in

agreement with the theoretical prediction 'IIP.II = 'II11.1 -
,,-

1.04.

Magnetic susceptibility (x) measurements near the

tetracritical point have shown that the phase transition is

marked by a discontinuous change in the slope of X. This is

in contrast \:. the predictions of scaling theory that there

should be a singularity at TN where X goes to zero.

Monte Carlo simulations of CsMnBr
3

have been

performed to determine to what ext:nt the magnetic

Hamiltonian is consistent with the observed phase diagram.

The results reproduce the qualitative features of the phase

diagram including the tetracriticality of the zero field

transition and the increase of the Neel temperature with

increasing magnetic field. A substantial renormalization of

the Neel temperature with the size of the lattice along the

c direction due to the quasi-one-dimensional nature of the

system is observed. This is consistent with a strong

suppression of the Neel temperature when the system is

diluted with non-magnetic impurities.
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CHAPTER 1

INTRODUCTION
..-

1.1 GeneraLQutline

The study of phase transitions in magnetic systems

is of interest both because of the technological importance

of many magnetic materials and because of the more

fundamental questions about the statistical mechanics of

cooperative phenomena. Although phase transitions are not

unique to magnetic systems much of the current understanding

of the physics of phase transitions has come from studies of

magnetism due, in part, to the relative simplicity of the

appropriate Hamiltonians. This is particularly true in the

case of critical phase transitions where the universality

hypothesis (Kadanoff 1971) states that the behaviour of

systems near critical points fall into classes defined

according to simple physical criteria. Consequently results

obtained for magnetic systems can be applied to any critical

phase transition in the same universality class.

This thesis deals with" studies of the critical

behaviour of the insulating antiferromagnet CsMnBr
3

by

neutron scattering and Monte Carlo computer simulations.

Although the work deals with the properties of a particular

material it has more general implications arising from its

1
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relevence to the question of what physical criteria define

the varir-~i universality classes.

The remainder of this chapter is devoted to a

discussion of the general features of critical phase
~-

transitions and model magnetic systems. It concludes with a

survey of the structural and magnetic properties of CsMnBr
3

•

Chapter 2 is a review of neutron scattering as it applies to

the study of magnetic phase transitions. The measurement of

the critical exponents for CsMnBr
3

in the absence of an

applied magnetic field is described in Chapter 3. The

determination of the magnetic phase diagram is covered in

Chapter 4 along with measurements of the magnetic

susceptibility. Chapter 5 presents the results of numerical

simulations of the magnetic Hamiltonian of CsMnBr
3

•

Concluding remarks are made in Chapter 6.

The work covered in this thesis has been published

in the scientific literature (Mason et al 1987, Gaulin et al

1989a, Mason et al 1989, Gaulin et al 1989b, Mason et al

1990a, and Mason et al 1990b). Additional work not covered

in this thesis includes neutron scattering studies of the

heavy fermion superconductor URuzSiz (Mason et al 1990c and

Broholm et al 1990), the Kondo lattice compound CePdzSi
2

(Steeman et al 1990), and the high temperature

superconductor YBa CU
3
0

6
(Tranquada et al 1990) as well as

2 +x

Monte Carlo simulations of percolation in a two dimensional

triangular antiferromagnet (Harrison and Mason 1990).
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1.2 CriticaLPhase Transitions

Phase transitions between different states are

a feature found in systems with many interacting components.

The boiling of water is the transition from the liquid to
>--

the gaseous state which occurs over a range of well defined

temperatures and pressures. This is an cxample of a first

order transition because the first derivative of the

appropriate thermodynamic potential (the Gibbs free energy,

G) is discontinuous at the phase transition. The latent

heat observed for such a transition is a consequence of

this. There are many phase transitions in which there is no

discontinuity in the first derivative of G, these cases are

rcferred to as critical phasc transitions and they are

usually signalled by non-analytic behaviour of G. Because

of the absence of a discontinuity in the first derivative of

G there is no latent heat associated with a critical phase

tran~ition. Critical phase transitons are found in

magnetism, superconductivity, superfluidity , liquid-gas

transitions and many other systems. The properties of

critical phase transtions have been discussed in detail by

Stanley (1971) and Collins (1989).

The first observation of a critical phase transition

was made by Andrews (1869) in CO
2

• He found that for a·

particular pressure and temperature (p,T ) thc:re was a
c c

continuous transition from the liquid to the gaseous state.

Above p it was not possible to distinguish the two states
c
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and no transition could be said to occur, below p there was
c

a first order transition between the two states at a

temperature that varied with pressure. The critical point

corresponded to the point m the (p,T) phase diagram at
"-

which the distinction between the two phases vanished.

A feature common to most phase transitions of both

types is the existence of a quantity called the order

parameter which is zero at temperatures above the phase

transition and non-zero below it. The order parameter

appears discontinuously at the transition temperature for a

first order transition while it develops continuously in the

case of a critical phase transition. In the case of a

liquid-gas transition as in CO
2

the order parameter is the

density difference between the two phases and is a scalar

quantity. For critical phase transitions in magnetic

systems the order parameter is the magnetization (or

sublattice magnetization for antiferromagnets) and it can be

a scalar or a vector of dimensionality D. The appearance of

the order parameter corresponds to the breaking of a

symmetry present above the transition temperature. In the

rest of this section the notation and ideas used in the

description of critical phase transitions m

antiferromagnets will be introduced.

A crucial factor distinguishing critical phase

transitions from first order transitions is that in the

former case there are fluctuating regions of both phases
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that exist on a microscopic scale near the critical point.

These fluctuating regions have a characteristic length, ~

(the correlation length), that approaches infinity at the

critical point. As a consequence of the diverging size of.-
the fluctuating regions the response time of the system

tends to infinity as the critical point is approached. This

effect is known as critical slowing down.

The correlation

quantity that diverges

length is

at the

not the only physical

critical point. Other

quantities that become infinite include the specific heat,

C
H

(the subscript H denotes constant magnetic field, the

relevant constraint for magnetic systems), and the

isothermal susceptibility,

sublattice susceptibility,

for an antiferromagnet).

X (the subscript s denotes the
II

the appropriate response function

Since the order parameter, 71 (for

an antiferromagnet 11 is the sublattice magnetization, M),
II

goes to zero as the critical point is approached from below

its reciprocal is also divergent at T
c

(called TN' the Neel

temperature for antiferromagnets). Experimentally it is

found that the diverging quantities follow a power law

(Collins 1989). For example, at temperatures just above TN

the sublattice susceptibility for an antiferromagnet obeys

the relation

x - af"
II

(1.1)


































































































































































































