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ABSTRACT

The critical bel;gviour of CsMnBr, has been studied
by nmagnetic neutron scattering, magnetic susceptibility
measurements, and Monte Carlo simulations. The magnetic Mn*>
ions in this insulating material form a simple hexagonal
lattice. In the absence of an applied magnetic field the
Mn*? magnetic moments order in a 120° structure with the
spins coniined to the ab-plane.

Neutron scattering measurements of the temperature
dependence of the paramagoetic critical scattering and the
antiferromagnetic = order parameter have found critical
exponents ¥y = 1.01 & 0.08, v = 0.54 £ 0.03, and 8 = 0.21
0.02. These exponents do not correspond to any of the
standard universality classes. This is a consequence of the
Zz X Sl symmetry of the order parameter arising from its XY
(Sl) and chiral (Zz) degeneracy.

Elastic neutron scattering has been used to
determine the magnetic phase diagram of CsMnBr,. The
application of a magnetic field along the <100> direction
splits the zero field transition and results in a
intermediate phase (II) of spin-flop character. The zero
field transition is a tetracritical point with - cross-over

exponents y, - = 1.21 + 0.07 and Yoy = 0.75 + 0.05. The
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fact that both exponents are less than two reflects the
narrowness of the temperature range over which the
intermediate phase is stable.  These expoments are not in
agreement with the theoretical prediction Vor = ¥p, =
1.04.

* -

Magnetic susceptibility (¥) measurements near the
tetracritical point have shown that the phase tramsition is
marked by a discontinuous change in the slope of x. This is
in contrast ‘:: the predictions of scaling theory that there
should be a singularity at Ty where x goes to zero.

Monte Carlo simulations of CsMuBr, have been
performed to determine to what extent the magnetic
Hamiltonian is consistent with the observed phase diagram.
The results reproduce the qualitative features of the phase
diagram including the tetracriticality of the zero field
transition and the increase of the Néel temperature with
increasing magnetic field. @ A substantial renormalization of
the Néel temperature with the size of the lattice along the
¢ direction due to the quasi-one-dimensional nature of the
system is observed. This is consistent with a strong
suppression of the Néel temperature when the system is

diluted with non-magnetic impurities.
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CHAPTER 1
INTRODUCTION

e

P

1.1 General _Oautline

The study of phase tramsitions in magnetic systems
is of interest both because of the technological importance
of many magnetic materials and because of the more
fundamental questions about the statistical mechanics of
cooperative phenomena.  Although phase transitions are not
unique to magnetic systems much of the current understanding
of the physics of phase tramsitions has come from studies of
magnetism due, in part, to the relative simplicity of the
appropriate Hamiltonians. = This is particularly true in the
case of critical phase transitions where the universality
hypothesis (Kadanoff 1971) states that the bebaviour of
systems nmnear critical points fall into classes defined
according to simple physical criteria. = Consequently results
obtained for magnetic systems can be applied to amy critical
phase transition in the same universality class.

This thesis deals with' studies of the critical
behaviour of the insulating antiferromagnet CsMnBr, by
neutron scattering and Monte Carlo computer simulations.
Although the work deals with the properties of a particular

material it has more general implications arising from its
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relevence to the question of what physical criteria define
the varicvs universality classes.

The remainder of this chapter is devoted to a
discussion of the general features of critical phase
transitions and model r;algnetic systems. It concludes with a
survey of the structural and magpetic properties of CsMnBr.,.
Chapter 2 is a review of neutron scattering as it applies to
the study of magnetic phase tramsitions. The measurement of
the critical exponents for CstBr3 in the absence of an
applied magnetic field is described in Chapter 3. The
determination of the magnetic phase diagram is covered in
Chapter 4 along with measurements of the magnetic
susceptibility. =~ Chapter 5 presents the results of numerical
simulations of the magnetic Hamiltonian of CsMnBr,.
Concluding remarks are made in Chapter 6.

The work covered in this thesis has been published
in the scientific literature (Mason et al 1987, Gaulin et al
1989a, Mason et al 1989, Gaulin et al 1989b, Mason et al
1990a, and Mason et al 1990b). Additional work not covered
in this thesis includes neutron scattering studies of the
heavy fermion superconductor URu zSiz (Mason et al 1990c and
Broholm et al 1990), the Kondo lattice compound CePdZSiz
(Steeman et al 1990), and the high temperature
superconductor YBa Cu,O,  (Tranquada et al 1990) as well as

Monte Carlo simulations of percolation in a two dimensional

triangular antiferromagnet (Harrison and Mason 1990).



1.2 Critical_Phase_Transitions

Phase transitions between different states are
a feature found in systems with many interacting components.
The boiling of water is the tramsition from the liquid to
the gaseous state which occurs over a range of well defined
temperatures and pressures. This is an example of a first
order transition because the first derivative of the
appropriate thermodynamic potential (the Gibbs free energy,
G) is discontinuous at the phase transition. The latent
heat observed for such a transition is a consequence of
this. There are many phase tramsitions in which there is no
discontinuity in the first derivative of G, these cases are
referred to as critical phase transitions and they are
usually signalled by mnon-analytic behaviour of G.  Because
of the absence of a discontinuity in the first derivative of

G there is no latent heat associated with a critical phase

transition. Critical phase tramsitons are found in
magnetism, superconductivity, superfluidity, liquid-gas
transitions and many other systems. The properties of

critical phase transtions have been discussed in detail by
Stanley (1971) and Collins (1989).

The first observation of a critical phase transition
was made by Andrews (1869) inm COz. He found that for a-
particular pressure and temperature (pc,Tc) there was a
continuous tramsition from the liquid to the gaseous state.

Above P, it was not possible to distinguish the two states



and no tranmsition could be said to occur, below p_ there was
a first order transition between the two states at a
temperature that varied with pressure. The critical point
corresponded to the point in the (p,T) phase diagram at
which the distinction between the two phases vanished.

A feature common to most phase transitions of both
types is the existence of a quantity called the order
parameter which is zero at temperatures above the phase
transition and nom-zero below it. The order parameter
appears discontinuously at the transition temperature for a
first order transition while it develops continuously in the
case of a critical phase tramsition. In the case of a
liquid-gas transition as in CO2 the order parameter is the
density difference between the two phases and is a scalar
quantity. For critical phase transitions in magnetic
systems the order parameter is the magnetization (or
sublattice magnetization for antiferromagnets) and it can be
a scalar or a vector of dimensionality D. The appearance of
the order parameter ccrresponds to the breaking of a
symmetry present above the tranmsition temperature. In the
rest of this section the notation and ideas wused in the
description of critical phase transitions in
antiferromagnets will be introduced.

A crucial factor distinguishing critical phase
transitions from first order transitions is that in the

former case there are fluctuating regions of both phases



that exist on a microscopic scale near the critical point.
These fluctuating regions have a characteristic length, ¢
(the correlation length), that approaches infinity at the
critical point. As a consequence of the diverging size of
the fluctuating regions the response time of the system
tends to infinity as the critical point is approached. This
effect is known as critical slowing down.

The correlation length is not the only physical
quantity that diverges at the critical point. Other
quantities that become infinite include the specific heat,
Cn (the subscript H denotes constant magnetic field, the
relevant constraint for magnetic systems), and the
isothermal susceptibility, X, (the subscript s denotes the
sublattice susceptibility, the appropriate response function
for an antiferromagnet). Since the order parameter, n (for
an antiferromagnet #z is the sublattice magnetization, Ms),
goes to zero as the critical point is approached from below
its reciprocal is also divergent at Tc (called T - the Neel
temperature for antiferromagnets). Experimentally it is
found that the diverging quantities follow a power law
(Collins 1989). For example, at temperatures just above T,

the sublattice susceptibility for an antiferromagnet obeys

the relation

x = at? (1.1)



where a and y arc constants and t, the reduced temperature

is defined by

t = —T—N . (1.2)

The numerical constant y is called a critical exponent.
Critical exponents can also be defined for other diverging
quantities; o« for the specific heat, S for the sublattice
magnetization, and v for the correlation length, along with
many others.

In general one might expect that the behaviour above
and below the critical point is mot the same so that below

TN equation (1.1) would become

x, = a7 (1.3)
where a’ and p’ are not necessarily the same as a and y in
(1.1).  While it is generally true that a # a’, scaling
theory (Kadanoff 1966) has shown that y = p’. The same is
true for the other critical exponents defined above and
below TN.

Scaling theory is derived under the assumption that
the functional form of the Gibbs free emergy and correlation
length does not depend on the length scale, L, provided L is
less than the correlation length, & (Kadanoff 1966).



Provided that this is the case G and & are generalized
homogeneous functions of the reduced temperature, t, and the

reduced effective magnetic field,

) g’”BHc

h = -—FBT— . (1.4)

In particular, by considering a length scale change from L

to /A one obtains

£G(t,h)

il

G(/t,/h) 1.5)
and 2E@h) = &(21,4h) (1.6)

where d is the dimensionality of the system and x and y are
indices related to the critical exponents. By making use of
equations (1.5), (1.6), and the results of thermodynamics
various relations between the critical exponents can be
derived including the equality of primed and unprimed
exponents meiitioned above. Relations involving ::iny the

critical exponents are termed scaling laws, for example
Y+ a+ 28 =2 (.7
Relations that involve the dimensionality of the system, and

hence make use of (1.5) in their derivation are called

hyperscaling laws. An example is



y + 28 = dv. (1.8)

The hyperscaling relations do not apply for d > 4 (Fisher
1982). Both the scaling and hyperscaling laws are the
limiting cases for inequalities that can be derived on the
basis of thermodynamics alone (Griffith 1965). The
Rushbrooke inequality (Rushbrooke 1963)

a+28+y=2 (1.9)

is a less restrictive version of (1.7).

Although  scaling theory  predicts  relationships
between the critical exponents it does not make any
predictions as to their values.  The simplest theory that
does so is Ginzburg-Landau or mean-field theory in which it
is assumed that the free energy, F(T,7), can be expanded as
a Taylor series in the order parameter, 7, -near the critical

point:
F(T,n) = F(T) + oM + o M7 + ... (1.10)

There are no odd power terms in the expansion because the
energy doesn’t depend on the sign of 5. The condition for
equilibrium is that F(T,7) bhave a minimum and by applying
this and making use of the fact that 7 = 0 above T and

n # 0 below T, it can be shown that



a(T) = (T-T)a, (1.11)

where o is a constant. Below Tc there are minima in F(T,n)

at

| =

n==% [ii-(—'rc(vi-?] N (1.12)
a4

so that, neglecting the temperature dependence of « (T), the
critical exponent # = 1/2. By making use of (1.10) and
(1.11) other thermodynamic quantities can be calculated from
the free energy and the values for the corresponding
critical exponents can be derived.  Ginzburg-Landau theory
predicts y = 1, « = 0, and » = 1/2.

The critical exponents predicted by Ginzburg-Landau
theory only satisfy the hyperscaling relation (1.8) for d =
4, It turns out that Ginzburg-Landau theory is only valid
for d = 4 or for infinitely long range interactions (as is
the case for ferroelectrics and type I superconductors due
to the long ranged nature of the Coulomb imteraction). This
failure :.Qf the theory for most physical circumstances is not
too surprising since the Taylor series expansion has been
done about a point where the free emergy is non-analytic and
. hence the expansion itself is mnot valid. Physically this
corresponds to neglecting the fluctuations in the critical

region.
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The renormalization group (Wilson and Kogut 1974)
method takes a similar approach to scaling theory but
extends it by determining the scaling properties of 2
microscopic Hamiltonian, This is domne under the assumption
tiat the change in length scale affects the parameters of
the Hamiltonian but not its functional form. If after n
length scale transformations the length scale is &L and the

Hamiltonian is &€, a subsequent change in scale will yield a

length scale #*'L and a Hamiltonian 3 .. The change in
the Hamiltonian is a transformation of the form
r(aﬂf“‘) = az;ﬂ. (1.13)

The correlation length of the system, &, is infinite at the
critical point so that Hamiltonian is unchanged by a change
in length scale. The critical point therefore corresponds

to a fixed point of the transformation 7 that has the

property
() = & (1.14)

where ¢ denotes the fixed point. By examining the
behaviour of the Hamiltonian under the transformation t in
the vicinity of the fixed point the critical exponents of
the system can be evaluated. Although remormalization group

analysis can yield quite accurate preditions of the critical



11

exponents and critical temperature, in practice it is often
quite difficult to carry out and other theoretical methods
such as high temperaturc series expansions (Stanley 1971)
and Monte Carlo simulg}ions (Binder and Heerman 1988) are
used to study critical behaviour.

One important feature of the renormalization group
transformation is that with succesive iterations some of the
variables in the Hamiltonian tend towards zero. Those that
do are termed irrelevant variables while those that do not
are relevant variables. The fact that some variables of a
system may be irrelevant gives some insight into the
physical origins of the universality hypothesis (Kadanoff
1971) which was actually formulated before the developement
of the renormalization group.  The universality hypothesis
as originally formulated, states that the critical behaviour

of a system depends only on three properties:

1. The dimensionality of the system, d.
2. The dimensionality of the order parameter, D.
3. Whether the forces are of long or short ramge. (ie.

whether or not Ginzburg-Landau theory applies)

All critical phase transitions therefore should fall into
universality classes according the above criteria. . The
exact details of the microscopic Hamiltonian beyond the

above criteria are not important, they constitute irrelevant
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variables. In order to include the dynamical critical
bebaviour it is neccesary to add a fourth criteria (Halperin
et al 1972, 1974):

4. The conservation laws of the system. (e.g., whether or
not the order parameter commutes with the Hamiltonian and is

therefore conserved)

The universality hypothesis is of great significance because
of the powerful generalizations it makes  possible.
Theoretical or experimental results obtained on one system
can be applied to others that may be quite different in many

details provided they belong to the same universality class.

1.3 Model_Magnetic_Systems

Since all systems that fall in the same universality
class have the same critical exponents it makes sense to
study the simplest possible case and generalize the resuits
to the other members of the same class. The simplest cases

are magnetic Hamiltonians of the form (Collins 1989):

x=-[); J S-S (1.15)

where Sn is the spin at site n. J. is the interaction

coupling the spin at n with the one at n+i. The prime on

the summation over the interactions is primed to indicate
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that it is resticted to counting each bond once. If the
spins, Sn, are three dimensional vectors then (1.15) is
called the Heisenberg model. For two dimensional spins
(1.15) is called the X:f model while for one dimensional
spins it is called the Ising model.

Model magnetic systems are physical realizations of
the simple magnetic Hamiltonians often  dealt with
theoretically. The spins, S, correspond to the magnetic
moments that come from unpaired electron spins and orbital
angular momentum of valence electrons of ions in solids.
The interactions, J, are the coupling between these
moments. These can arise from the long ramge, dipolar,
interaction. This is usually weak compared to exchange
interaction, which is due to the overlap of the orbitals of
ncighbouring atoms and the Pauli exclusion principle. If
the exchange interaction is mediated by additional ions then
it is referred to as a superexchange interaction.  Exchange
and superexchange interactions are short ranged, often
restricted to nearest neighbours. In metals spin-spin
interactions cam also be mediated by the conduction
electrons, this is known as the RKKY interaction.

In real systems there can also be additional terms
in the Hamiltonian such as external magnetic fields or
anisotropies that favour the alignment of the spins along a
particular axis or plane. These can occur as a result of

the dipolar interaction (which favours spins aligned
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perpendicular to the line connecting them) or the effect of
the crystalline electric field on the orbital angular
momentum. If such an anisotropy is present, then there will
be a crossover from a regime at high temperatures where the
spins are three dimensional vectors to ome at lower
temperatures where the spins are two or ome dimensional
vectors depending on whether the anisotropy is uniaxial or
planar.

It is the interaction between the spins that is
responsible for the transition to long range magnetic order.
If J is positive then it favours parallel or ferromagnetic
alignment of the spins it couples. If J is negative then it
favours antiparallel or antiferromagnetic alignment of the
spins it couples. If we now restict the discussion to the
simple case of mnearest neighbour interactions omn a two
dimensional square lattice, then the type of ordered
structures that occur are shown in Figure 1.1.A for J > 0
and 1.1.B for J < 0. The direction of the spins with
respect to the lattice is arbitrary and it is this
rotational symmetry that is broken by the phase transition
when one direction is selected.

It is easy to see that for all lattices in all
dimensions the ferromagnetic structure with all spins
parallel will satisfy nearest neighbour interactions with
J > 0. For antiferromagnetic interactions (J < 0) it is not

always possible to find a magunetic structure in which all
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Figure_1.1: Magnetic  structure for nearest  neighbour
interactions on a square lattice. In case A (J > 0) there

is ferromagpetic ordering and in case B (J < 0) there is
antiferromagnetic ordering.

nearest neighbour spins are antiparallel. Consider the case
of a triangular lattice in two dimensions illustrated in
Figure 1.2, Two spins are aligned antiparallel, it is not
possible to orient the spin on the third site so that it is
simuitaneously antiparallel to both the others. This effect
is known as lattice frustration because there are bonds for

which the interaction energy is not minimized; the

¢T?

Figure_1.2: If two spins on a triangular lattice with
antiferromagnetic  interactions are aligned antiparallel it
is not possible to orient the spin on the third site such
that both bonds to the other spins are satisfied.
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interactions are “frustrated”. Lattice frustration occurs
in  any system with antiferromagnetic nearest neighbour
interactions on a lattice where there are nearest neighbours
of a site that are _ nearest  neighbours of each other.
Frustration can also occur in systems where there are longer
ranged interactions that favour a different structure than
the nearest neighbour ones or in systems where there are
random interactions.  Frustrated magnetic systems exhibit a
rich variety of bebaviour such as spin glass transitions and
complicated  non-collinear  magnetic  structures for less
frustrated cases. For the triangular lattice considered
above, a non-collinear magnetic structure will result if the
spins are continuous (ie. D = 2). In the ground state the
spins make 120° angles with one another so that, while no
bond is entirely satisfied none is completely frustrated.
There are two degenerate configurations that differ in the
sense of the rotation of the spins moving around the
triangle or the chirality as shown in Figure 1.3. This

chiral degeneracy is in addition to the degeneracy

YW D

Figure 1.3: The two degenerate configurations of the 120°
structure for the triangular antiferromagnet.
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associated with global rotation of the spins with respect to
the lattice mentioned previously for the square lattice.

The presence of this additional degeneracy gives
rise to associated fluctuations that may disrupt the long
range order. These fluctuations take the form of Ising-like
domain walls between regions of differing chirality.  The
long range order can also be disrupted by spin waves as in
unfrustrated systems. Because it is the fluctuations in a
system that govern its critical properties it has been
suggested (Kawamura 1988a) that triangular antiferromagnets
should belong to wuniversality classes distinct from the
conventional ones. The new universality classes would be
defined by the symmetry of the order parameter, nmot just by
its dimensionality.  Using this criteria the XY triangular
antiferromagnet would belong to the szSl universality class
where the Z  denotes the Ising-like chiral degemeracy the S
denotes the XY degeneracy. Similarly the Heisenberg
triangular  antiferromagnet would belong to the SO(3)
universality class rather than the S universality class of
the unfrustrated case.

Because the triangular antiferromagnets belong to
new universality classes, they should bave their own
characteristic critical exponents. Monte Carlo simulations
(Kawamura 1989) and renormalization group analysis (Kawan_'l\_ura
1988b) have been used to study the critical behaviour of the

XY triangular antiferromagnet and the results along with the
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predictions for the standard XY model (S l) (Baker et al
1978), are summarized in Table 1. The predicted exponenis
for the Z XS universality class differ significantly from
those of the XY model particularly the value for « which is
close to zero for the XY model but has the very large

positive value of 0.4 for the Z,X8  case.

Exponent 22 X Sl ) )
Y I.1 £ 0.1 1.310 £+ 0.005
v 0.53 + 0.03 | 0.669 4+ 0.007
B 0.25 + 0.02 | 0.345 + 0.011
@ 0.40 + 0.04 -0.01

Table I: Critical exponents y, v, 8, and «a for the Z,XS§
universality class (Kawamura 1989) and the standard XY model
(S,) (Baker et al 1978)

Similar exponents are predicted for the SO(3)
universality class (Kawamura 1988a) and these are shown
along with the predictions for the Heisenberg model S,
(Collins 1989) and the measured exponents for VCl2 (Kadowaki
et al 1987), a Heisenberg triangular antiferromagnet, in
Table II. The values obtained in the neutron scattering
measurements of Kadowaki et al (1987) are in good agreement
with the predictions for the SO(3) universality class and
substantially different from those expected for the standard

Heisenberg model that applies to the nonfrustrated -case.
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Exponent SO (3) S, vCl,
y 1.1 £ 0.1 1.388 + 0.003] 1.05 £ 0.03
v 0.55 + 0.03 | 0.707 + 0.003] 0.62 £ 0.05
B 0.28 + 0.02 | 0.367 + 0.005} 0.20 + 0.02

Table _TI: Critical expo;cnts y, v, and B for the SO(3)
universality class (Kawamura 1988a), the standard Heisenberg
model (S) (Coilins 1989) and the experimental values for

the Heisenberg triangular antiferromagnet VCl2 (Kadowaki et
al 1987).

The predicted set of critical expoments for both frustrated
cases are not the same as those for amy system that can be

described by the standard universality hypothesis as

described earlier in this chapter.

1.4 Structural _and_Magnetic_Properties_of CsMnBr

CsMnBra is an insulating compound with a hexagonal
crystal structure belonging to the space group P63Immc. At
room temperature a = 7.61 R andc =652 R (Goodyear and
Kennedy, 1974). The crystal structure of is shown in Figure
1.4. The Mn*™® jons in CsMnBr, form a simple hexagonal
lattice with a Mn-Mn separation of 3.26 R along the ¢ axis
and 7.61 & in the ab plane. As is evident from Figure 1.4
the superexchange path for the Mn ijoms along c is shorter
and less complicated than within the ab plane. Consequently
the antiferromagnetic interaction between the spin  Mn™

moments is 460 times stronger along c than in the ab plane




o —]

‘d

20

Figure 1.4: Crystal structure of CsMnBr, (from Gaulin 1986)
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(Gaulin et al 1987). This results in quasi-one-dimensional
behaviour above about 15 K (Gaulin and Collins 1984, Gaulin
1986, Fitzgerald et al 1982). The spims are restricted to
the ab plane below about 20 K by an anisotropy that is
primarily dipolar in origin.

CsMnBr, undergoes a critical phase tranmsition to
long range three dimensional order at 8.3 K (Eibshutz et al
1973). The magnetic structure of the ordered state is the
120° structure described above with the spins in the ab
plane. The maximum ordered moment has been determined
experimentally to be (3.0 + 0.3)u; (Eibshutz et al 1973),
reduced from the Su, expected for spin i by quantum
fluctuations in the frustrated state. The magnetic
Hamiltonian for CsMnBr, has been determined from inelastic
neutron scattering measurements of spin waves in the ordered

state (Gaulin et al 1987, Falk et al 1987) to be :

= R . . Zy2

# = -2 i);j S8, - 2, i);j S-S + D ): (S) (1.16)
where the interaction between nearest neighbour spins along
the ¢ axis, Jc, is -0.88 + 0.01 meV; the interaction between
nearest neighbour spins in the ab plane, J . is -0.0018 %
0.0001 meV and the planar anisotropy, D, is 0.013 + 0.001

meV.

Because the magnetic ions in CsMnBr, form a simple
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bexagonal Ilattice and the spins are restricted to two
dimensions the critical phase transition at 83 K is
expected to belong to the Z X S, universality class.
Since this compound is an insulator with only nearest
peighbour interactions, ._its Hamiltonian is relatively simpile
making it a good candidate for investigations to determine
the effects of the additional chiral degeneracy on the

critical properties.



CHAPTER 2

NEUTRON SCATTERING

2.1 Magnetic_Neutron_Scattering_Formalism
In order to study the microscopic behaviour of
magnetic materials, a probe that is well matched to the
system under study, in terms of wavelength and energy, is
desirable. The neutron, available as a product of the
nuclear chain reaction in a reactor, has these properties.
The spectrum of thermal mneutrons around the core of a
reactor bhas a Maxwellian distribution characteristic of the
temperature of the moderator. This is typically around 300
K, corresponding to an energy, k. T = 6.2 THz = 25.9 meV (1
THz = 4.136 meV). The wavelength of the neutron in

Rngstroms is related to its energy in THz by:

1= /_19.78 @0

so the wavelength for a 6.2 THz neutron is 1.79 K. The
wavelength and energy of a thermal neutron is therefore
comparable to the interatomic spacings and excitation

energies found in solids.

Neutrons interact with solids through the short
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ranged strong force that couples the neutron and the nuclei
of the material under study. In magnetic materials the long
range dipolar interaction couples the magnetic moments in
the solid to that of the mneutron. This interaction is
weaker than the nuci;ar interaction but because of its
longer range, the mean free path for both types of events is
comparable, about 1 cm. The neutron scattering formalism is
covered in great detail in books devoted to that topic
(Squires 1978, Lovesey 1984). This chapter will summarize
the results relevant to the present work.

In a neutron scattering experiment the quantity
measured is the partial differential cross section; the
probability of scattering into a solid angle dQ in a
scattered enmergy range dE‘. For a system of N identical
nuclei with a scattering length b, the partial differential

cross section for coherent scattering is

2 ’
477 - k'\psQ,w) 2.2)
dQdE’ k

where hk and hk’ are the initial and final neutron momenta,
Q is the scattering vector (Q = k - k’), and @ is the energy
transfer (hw = E - E’). S(Q,w) is the scattering function,
the space and time Fourier transform of the nuclear

correlation function



S(Q,w) = ;I{I_): Jmcxp(iwr) dr

R

X < exp(-iQ-Rl(O))exp(iQ ‘Rj(‘t)) > (2.3)

3

where Rj(‘r) is the position vector of the j“‘ atom at time
7.
The magnetic partial differential cross section for

scattering from N identical magnetic atoms has a similar

form to (2.2)

dza = ;k..’.lj. (
dQdE’ k h

m) IFQI* | Gop 0,2 sP@w @4

where the length yr = 5.391 fm is analogous to the nuclear
scattering length, b. F(Q) is the magnetic form factor. It
arises due to the finite spatial extent of the magnetic
moment distribution amd is a characteristic of the magnetic
jon that scatters the neutron. The polarization factor,
waﬁ' 6 aaﬁ)’ reflects the fact that the scattering is from
the components of the moment perpendicular to the scattering
vector.  The scattering function is a second rank tensor.
If the atomic positions are fixed then SO‘B (Q,w) is the space
and time Fourier transform of the spin-spin correlation

function (between a and § components)
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s%(Qw) = LT expliQ-R)
2nr R
o0

X J exp(ior) <Sp,(0) Sga(r)>de (2.5)

where SRﬁ(t) is the 8 c:)mponent of the spin at R at time 7.
Generally the symmetry of most materials ensures that only

the diagonal elements, $%%(Q,w), contribute.

2.2 Magnetic_Critical Scattering

Equations (2.4) and (2.5) above are quite general.
The usefulness of magnetic neutron scattering for the study
of magnetic phase transitions arises from two special cases
for the cross section (Cowley 1987, Collins 1989). If the
magnetic scattering function is integrated over energy one

obtains:

[=+]
J s*#(Q.) dw = T expiQ-R) <SgeSRp> = c*$Q .6
- R

where Caﬁ (Q) is the static correlation function. Near a
critical phase tramsition it depends omn the reduced
temperature, t, and the reduced magnetic field, h (ie.
Caﬁ Q = C“ﬁ (Q,t,h)). If all the weight of the scattering
function is at low frequencies (hew < < E) then the static
correlation function can be obatined by measuring the

differential cross section (Collins 1989). The probability
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of scattering into a solid angle dQ independent of final

energy E’ in this case is

d_a = E 2 2 _ A A aﬁ
a1 7o IFQ@ Z;ﬁ(aaﬂ QQp C¥Quh). @7

The approximation he < < E necessary to obtain this result is
called the static approximation. The real space static
correlation function, cf Rt,0), for T > T is well
approximated by (Ornstein and Zernike 1914, Fisher 1964,
Fisher and Burford 1967)

CR,t,0) a |R|D? 89T exp(|R|/8). (2.8)

For three dimensional systems 7 is close to zero (eg. #n =
0.03 for the three dimensional XY model) and the Fourier

transform of (2.8) becomes a Lorentzian (Ornstein and

Zernike 1914)

CQ0) & ———— 2.9)
q° + K

where K is the inverse correlation lenpgth, & 1 and q is
the displacement from the ordering wavevector, q = Q - Qo.
An approximateform that includes # and has the correct form

at the critical temperature is (Fisher and Burford 1967)
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1
C(Q,t,0 (2.10

where ¥ = (1-7/2)*. This is a broad peak that appears in
thc;, neutron cross-section near the critical temperature. It
is called critical scattering. By determining the
temperature dependence of its width ome can obtain & and

hence v. The peak intensity can be used to determine 7y

since

C(Q,.1.0) « x(Q) . @11

The second special case of interest in the study of
critical phenomena 1is the spin correlation function for
infinite time, <S0 a(O)SR ﬁ(oo)>. In the paramagnetic state
this will be zero but below the critical temperature there
is order for all time so it will be mon zero. This gives

rise to an elastic (@ = 0) part of the cross section

s%%(Q.w) = 5w 2; xPAQ'R) <Sp,OSpa(=)>  (2.12)

which is proportional to the square of the order parameter.
The temperature dependence of the elastic (Bragg peak)

intensity can therefore be used to obtain the critical

exponent 5.
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2.3 Triple-Axis_Neutron Spectrometry

In order to measure the scattering function, S(Q,w),
one needs an instrument capable of measuring the scattered
peutron intensity systematically in the four dimensional
space spanned by Q -c;xd w. The triple-axis spectrometer,
first developed by Brockhouse (1961), has this capability.
Nuclear Bragg scattering (amalogous to the magnetic Bragg
scattering of equation (2.12)) is used to select the
incident neutron energy and determine the scattered neutron
energy. This means there are actually three scattering
events; one to produce a monochromatic beam, one at the
sample, and one to analyze the scattered neutron energy;
hence the name triple-axis.

Nuclear Bragg scattering is an elastic scattering
process that occurs when the momentum transfer, Q, is equal
to a reciprocal lattice vector G. This means that the

scattering function contains terms
() ); 3(Q-G) (2.13)
This condition will be satisfied if

G = 2 sin(}) 2.14)

which is Bragg’s law, where ¢ is the angle between k and k’.

A more familiar form is
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A = 2d sind (2.15)

where 8 = ¢/2, 4 is the wavelength of the neutrons, 1 =
2n/k, and d is the .—spacing between the planes in the
crystal, d = 2n/G. Equation (2.15) can be used to determine
the scattering angle necessary to extract a beam of a given
wavelength (and hence energy) from the Maxwellian spectrum
emanating from the core of a reactor. The d spacing is
determined by the crystal used and the particular reflection
selected. The (111) reflection from Si and the (002)
reflection from pyrolytic graphite (PG) are often chosen to
produce a monochromatic beam. The same process is used to
analyze the final energy of the scattered beam.

The layout of a triple-axis spectrometer is shown
schematically in Figure 2.1. The scattering angles at the
monchromator and the analyzer are denoted 26M and 26 N
respectively.  The scattering angle at the sample is called
¢ while the orientation of the sample with respect to the
incident beam is called y. The divergence of the beam along
its flight path is controlled by Soller slit collimators
which use vertical slits coated with a neutron absorbing
material such as Cd to control the angular divergence in
front of a particular element of the spectrometer. The
detector counts the pulses produced in a “He-"He mixture

from the capture of a neutron by a *He nucleus.
p y
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Raactor

Figure 2.1: Schematic diagram of a triple-axis spectrometer
indicating the monochromator (M), sample (S), analyzer (A),
and detector (D). R
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The static correlation function can be measured in
the static approximation (equation (2.7)) by removing the
apalyzer crystal and positioning the detector directly in
the beam scattered from the sample. 1In this way all the
neutrons scattered in a given direction will be detected.
By setting the analyzer for the same emergy as the incident
beam one measures the elastic scattering cross section
(equation (2.12)). Generally the sample is oriented with a
high symmetry axis perpendicular to the horizontal
scattering plane. By rotating the sample about this axis,
momentum transfers within the plane defined by the vertical
axis can be selected.

Bragg’s law (equation (2.15)) can be satisfied at a
given scattering angle by more than ome wavelength of
neutrons. If ¢ is set so that neutrons of wavelength A will
scatter from planes spaced by d, then neutrons of wavelength
A/m (and energy an) will be scattered by planes spaced by
d/n (ie. the scattering angle for the (002) reflection of PG
for A is the same as the scattering angle for the (004)
reflection for A/2)). In order to remove this higher order
contamination one can select monochromator or analyzer
crystals for which the higher index reflection is absent due
to the symmetry. For example the (111) reflection of Si is
a strong Bragg peak while the (222) reflection is absent so
there will be no A/2 contamiration from Si (111).

Alternatively, a filter that passes the neutrons of
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wavelength A but attenuates those with shorter wavelengths,
may be placed in the beam. PG oriented with the ¢ axis
along the beam direction transmits neutrons with A = 2.37 1
while strongly attenuating neutrons with wavelengths A/2 and
Af3 (Loopstra 1966, Shirane and Minkiewicz 1970).

Real crystais are not perfect, but consist of small
crystallites  slightly misoriented with respect to one
another.  This mosaic spread, typically a few tenths of a
degree, means that the Bragg condition can be satisfied over
a range of angles. The mosaic spread of the monochromator
and analyzer (and also the sample if a single crystal is
being studied) together with the finite angular divergence
of the beam as defined by the collimators, determine the
resolution of the spectrometer (Cooper and Nathans 1967,
Nielsen and Moller 1969). The resolution function for a
triple-axis  spectrometer is an  ellipsoid of constant
intensity contours in the four dimensional (Q,w) space with
a profile that is approximately Gaussian.  Because vertical
slits are wused to. collimate the beam the resolution
perpendicular to the scattering plane is much coarser than
it is in the plane. This is donme deliberately to increase
the intensity without unduly sacrificing resolution in the
scattering plane.

Because of the finite resolution of the spectrometer
what ome actually measures in an experiment is the

convolution of the scattering function with the resolution
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function
Qo) « [ S(Q-Q',0-0) RQ,") do’ ¢'Q (2.1
In cases where one is interested in the detailed lineshape
of §(Q,w), such as measurements of C(Q,th), it is necessary

to include the effects of the resolution. One can determine

the resolution experimentally by looking at a Bragg peak for
which

5(Q,@) a d(w) 4(Q-Q) 2.17)

Substituting (2.17) into (2.16) one sees that the measured

intensity is just the resolution

1Q®) a R(Q-Q_,») (2.18)

in the vicinity of the Bragg peak.



CHAPTER 3
CRITICAL EXPONENTS OF CsMnBr3

3.1 Introduction

This chapter describes measurements of the static
critical exponents; y, v, and S in CsMnBr3 carried out using
the neutron scattering techniques described inm Chapter 2.
The measurements were done using the L3 triple axis
spectrometer of the NRU reactor at Chalk River Nuclear
Laboratories.

The (111) reflection from silicon was wused to
monochromate the beam and the (002) reflection from
pyrolytic graphite was used to analyze the scattered beam
for the elastic and ipelastic measurements. The critical
scattering above TN was measured in double axis mode so as
to integrate over the energy transfer. The mosaic spreads
of the monochromator and the analyzer were 0.2° and 0.4°
respectively.  The collimation was 1.1° from the source to
the monochromator, 0.3° from the monochromator to the sample
and the sample to the anmalyzer, and 2.6° from the analyzer
to the detector. The vertical collimation was 1.3°. For
the critical scattering and the elastic scattering a neutron
energy of 3.3 THz was used so that a pyrolytic graphite

filter could be placed in the scattered beam to remove

35
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higher order contamination.

The inelastic scans were done with the final energy
(E’) fixed. In this mode the measured intensity is
proportional to S(Q,w) since the efficiency of the incident
beam monitor used to normalize the incident neutron flux
varies as k' (therefore the factor of k’/k in equation
(2.4) drops out). The value of E’ used was determined by
the energy resolution required.

The crystal of CsMnBr, was grown at Oak Ridge
Nationai Laboratory by Dr. B.D. Gaulin from stoichiometric
amounts of CsBr and MnBr, by standard Bridgeman techniques.
Great care was taken to eliminate impurities so as to avoid
any effect on the critical properties. The crystal was
irregular in shape with approximate dimensions 2 x 1 x 0.6
cm’. Figure 3.1 is a rocking curve for the (002) nuclear
Bragg reflection. If the sample was a perfect crystal the
profile would be approximately Gaussian with a full width at
half maximum (FWHM) that depends primarily on the
collimation between the monochromator and the sample and the
monochromator mosaic spread.  Figure 3.1 shows that the
sample actually consists of two main crystallites separated
by about 0.95°. [Each of the peaks has a FWHM of 0.5°,
larger than the expected width, 0.3°, indicating mosaic
spread within the crystallites.

The sample was mounted in a helium cryostat with

(6.4,0) in the scattering plane. The temperature was
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Figure 3.1: Rocking curve (y is the sample angle) about the
(002) reflection of CsMnBra.
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monitored using a germanium sensor mounted on the heater
block. The sample was in an aluminum can filled with helium
gas to ensure good thermal comtact. The temperature was
computer controlled and stable to 4+ 0.02 K.

The measurements described in this chapter have been
reported in the scientific literature (Mason et al 1987,
Gaulin et al 1989a, and Mason et al 1989).

3.2 Paramagnetic_Critical Scattering

Near the critical temperature the corrclated regions
of spins give rise to critical scattering with the
Lorentzian lineshape of equation (2.9). In order to measure
the energy-integrated intemsity in double-axis mode it was
necessary to check the validity of the static approximation
for the incident neutron energy used (3.3 THz).  Because
changes in the length of the scattered neutron wavevector,
k’, (and hence ecmergy) involve changes in the momentum
transfer, Q, the static approximation will break down if the
characteristic energy of the critical scattering is large
compared to the incident neutron emergy.

Figure 3.2 shows two triple-axis constant-Q scans
near the ordering wavevector (;,é,l) close to Ty~ The top
panel at (.38,.38,1) for T = 9 K, shows a relatively sharp
peak centred on frequency, v = 0, due to the incoherent
clastic ~scattering and a broad shoulder of critical

scattering that falls off below about v = .35 THz. The
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bottom panel shows a similar scan at (.33,.33,1.03) for T =
9.5 K.

A detailed analysis by Tucciarone et al (1971) has
shown that the static approximation will be valid for a

given scan provided the quantity

_ m nl" )2
a= [—K—x] i G.1)
1

1
where I’ is the characteristic emergy at a distance K from
the antiferromagnetic zome centre, is smaller than 1. For
the scan in the ab-plane at T = 9.0 K the inverse
correlation length is = 0.07 &K Assuming the
characteristic energy decreases linearly as the zone centre
is approached, rx would be about 0.26 THz at 9.0 K (since
~ the characteristic energy is 0.35 THz at (0.38,0.38,1)).

Using these parameters one obtains an estimate of @ = 0.5

It

indicating the static approximation is valid for this case.
For the scans along the ¢ axis the peak cenmtred on 0.39 THz
in the bottom scan of Figure 3.2 will not be fully
integrated but this is the gapped mode of the quasi-
one-dimensional phase which does not correspond to the
Goldstone mode. The lower frequency fluctuations that are
near the central peak of the scan do go soft at the phase
trapsition and thes: are correctly integrated.

Similar scans were performed at various momentum
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transfers and temperatures throughout the ramge of the
measurements described below and the static approximation
was found to hold quite generally for this configuration.
The critical exponents determined in this way (see below)
have been confirmed by measurements using a peutron energy
of 16.3 THz and different ordering wavevector ((§,§,3))
(Kadowaki et al 1988) indicating that the present
configuration was adequate.

The critical scattering above TN was measured in
scans along (£,4,1) from & = 0 to £ = 1 and along (,:,0)
from { = 092 to { = 1.08 for twelve temperature between
845 K and 1190 K. Figure 3.3 shows the scans im
reciprocal space. The crossed and solid circles are strong
and weak nuclear Bragg peaks respectively and the open
circles are the magpetic ordering wavevectors %,%,1) and
(g,g,l). The inset shows the relative positions of the two
crystallites about (§,§,1) as determined from a mesh of
scans over the magnetic Bragg peak at 4.2 K, well below TN.
This information along with similar scans about (.2,1) was
used to define the resolution function necessary for the
analysis of section 3.4.

Figure 3.4 shows the data for three temperatures,
8.45 K, 8.83 K, and 10.90 K. The lines are the results of
fits Jdescribed in section 3.4. The temperature for each pair
of scans was determined by averaging the temperature

readings for each point over the peak in the critical
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Figure 3.3: Scans in reciprocal space for critical
scattering above Ty The solid and crossed circles are
nuclear Bragg reflection, the open circles are the magnetic
ordering wavevectors.The inset shows the relative positions

of the two crystallites (denoted A and B) relative to the
scans.
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scattering. The fluctuations in the temperature readings
were used to estimate the uncertainty in the temperature.
The wuncertainty in the scattered intensity is the square
root of the number of counts due to the statistical nature
of the scattering process. As T is approached from above
the critical scattering grows in intemsity and decreases in
width. The right and left panels of Figure 3.4,
corresponding to scans in the ab-plane and along the c-axis,
have quite different x axis scales reflecting the much
narrower peak for the scans along c¢. This arises because
the spins are already well correlated within the chains upon
entering the three dimensional critical regime as a
consequence of the much stronger interactions in that
direction. = The width of the peak in the c direction is
about twice that of the experimental resolution at the
lowest temperature (8.45 K). The width in the ab-plane is
about ten times larger than the resolution for the same

temperature.

3.3 Elastic_Mapgnetic_Scattering

Measurements of the magnetic Bragg peak intensity as
a function of temperature have been carried out in triple
axis mode with the analyzer set for elastic scatiering. The
peak intensities for three peaks; Q = (31, (,3,3). and
(g,g, 1). Figure 3.5 shows the temperature dependence of the
¢31) peak. The line is the result of the fit described
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in section 3.4. For each temperature the peak imtensity was
determined by averaging at least five counting intervals
after the intensity had ceased evolving with time,
indicating the sample had reached equilibrium.

The phase transiticn is marked by a sharp onset of
the Bragg peak intemsity at about 8.3 K. The sharpmess of
the transition indicates that the sample temperature was at
least as uniform as it was stable. ‘There is also a small
increase in the background above T, due to a small
contribution from critical scattering within the finite
energy resolution of the spectrometer.

The three peaks measured had scattering angles of
25.0°, 70.5°, and 56.2° respectively. The ratio of the
intensities was 11:2.5:1. The effects of extinction on the
peak intensities would be quite different due to the wide
range of scattering geometries and intensities. The fact
that the ratio of the intensities remained constant, within
experimental uncertainty, over the whole ramge of
temperatures measured (from 42 K to T) indicates that
extinction effects were mnot significant for -this crystal,

This is a consequence of the rather poor mosaic of the

sample.

3.4 Data_Analysis
In order to extract the values for the sublattice

susceptibility, x, and the inverse corrclation length, & P
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Figure 3.5: Magnetic Bragg peak intensity as a function of
temperature for Q = (%,%,l). The line is the result of the
fit to a power law described in section 3.4.
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from the critical scattering shown in Figure 3.4, non-linear
least squares fits to the Ornstein-Zernike expression
(equation 2.9) times the magnetic form factor for Mn*?
(Watson and Freeman 1961) convoluted with the spectrometer
resolution function (see equation 2.16) were carried out
for all the scans. A linear background term was also
included. The resolution function within the scattering
plane (horizontal) was determined experimentally from the
mesh of scans over the magnetic Bragg peaks at 4.2 K. The
vertical resolution was calculated from the spectrometer
configuration.  Initially a triangular form for the vertical
resolution function was used since this allows an analytic
integration for the convolution in this direction. The
sample was aligned with one of the two crystallites slightly
above the scattering plane and the other slightly below.
This was accounted for by introducing the estimated offset
into the three dimensional resolution function.

The lines in Figure 3.4 are the results of these
fits for the three temperatures shown. All the temperatures
measured were fitted with comparable success. The
non-linear least squares routine used employed the
Levenberg-Marquardt method (Press et al 1986) with analytic
calculation of the derivatives of the Lorentzian. The
integration over the Gaussian horizontal resolution was done
using Gauss-Hermite integration (Press et al 1986). In this

method the integral over a Gaussian times some function is
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replaced by a weighted summation where the intervals of the
summation arc determined from the zeros of Hermite

polynomials (Abramowitz and Stegun 1965):

o

2 n
J e* f(x) dx = ) wf(x) (3.2)

im=]

This method is accurate provided the number of steps in the
summation is as large as the degree of a polynomial needed
to approximate the function, f(x), over the range that the
Gaussian has appreciable weight. The worst case will
therefore be at low temperatures where the Lorentzian is
narrowest. The number of steps needed to integrate
accurately was determined by calculating the convolution for
test cases where the width of the Lorentzian was comparable
to the resolution width and comparing to the results of a
standard numerical integration method with a tolerance of
10°. It was found that the Gauss-Hermite integration with
ten steps in the ab-plane and twenty steps along the c-axis
(due to the narrower peak in that direction) was accurate to
about 2% for the worst case (lowest temperature, near the
peak). This was the same as the statistical uncertainty in
the data and was therefore deemed to be sufficiently
accurate for the fitting routine.

-L In order to determine the 'importance of the vertical

offset, fits were also performed with no offset; one set
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with the actual spectrometer resolution and another with a
much broader effective resolution to approximate the effects
of shifting the crystallites slightly out of the scattering
plane. The effect of this on the critical exponents is
discussed below. The validity of approximating the vertical
resolution as a triangle was tested by fitting the data
around (%,%,1), with the background and critical scattering
from (g-,g,l) subtracted (as determined from the previous
fits), using a Gaussian vertical resolution and a ten step
Gauss-Hermite  integration. The resuits were mot
significantly  affected  indicating that the  triangular
approximation was valid. Fits were dome in which the
backgrounds and peak positions were independent of
temperature; allowing them to vary at each temperature did
not affect the values of ¥ and K, extracted from the data.

_ The data at the lowest temperature (8.45 K) were
also fitted to the Fisher and Burford (1967) form for the
critical  scattering including the exponent #  (equation
2.10). Fits done with nonzero values of z were not better
than those obtained wusing the Ornstein-Zernike form
(equation 2.9) suggesting that the temperature was too far
from T, to observe any deviations from a Lorentzian.

In order to extract the order parameter (sublattice
magnetization) from the magnetic Bragg peak intensities
(Figure 3.5) it was mnecessary to subtract the temperature

independent instrumental background and make a small
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correction for the critical scattering background near Ty
Measurements made above TN were used to determine these
corrections. The critical scattering correction was made by
fitting the data above T y With a phenomenological polynomial
in T which was reflected about T, This was then multiplied
by an amplitude ratio and added to the temperature
independent instrumentai background. The amplitude ratio
for the critical scattering below T, was varied between 0
and 1 (there is less critical scattering below Ty due to the
lower temperature). The fits for the ecritical exponment S
described below were mnot sensitive to the value of the
amplitude ratio used so 0.5 was used for this correction.

The analysis described above determines the
temperature dependence of the square of the order parameter
(M:) for three Bragg peaks, the sublattice susceptibility
(x) for two ordering wavevectors, (;,;f,l) and (§,§,1), and
the inverse correlation length (x) in two direction (along
¢ and in the ab-plane). The data were least squares fitted
(using the same algorithm as above) to power laws in reduced
temperature (equation 1.1) with a single value of TN. This
meant that TN was constrained above by the critical
scattering data and below by the order parameter data.
Log-log plots of the data and fits for Maz, x, and & are
shown in Figures 3.6, 3.7 and 3.8 respectively.  Exponents
for the same plot were constrained to be the same. This fit

was best for TN = 831K, 8 =021, y = 1.01, and v = 0.54.
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The value of T, is consistent with that obtained from the
magnetic Bragg peak data alone (Mason et al 1987).

Fits were also done in which data sets for each
exponent were fitted with independent exponents [ie. three
B’s from three different Bragg peaks, two p’s from (i,%,l)
and (%,g,l), and two v’s from the c-axis and ab-planc
directions]. = The resulting exponents differed only slightly
from the values given above and the averages were the same.
In the case of the magnetic Bragg peak data this indicates
that extinction was not a significant effect since it would
be manifested quite differently for each peak. The fact
that the two values of v are the same despite the difference
in inverse correlation length of about a factor of eight
throughout the critical region (see Figure 3.8) s
consistent with expectations for a system with anisotropic
interactions (Binder and Wang 1989) and indicates that the
lineshape analysis has been done correctly,

In order to determine the significance of the
approximations for the vertical resolution as discussed
above, fits were done using the values of x and x| obtained
from the resolutions with zero vertical offset. In both
cases the largest effect was on the exponent y which varied
between 0.95 and 1.05, depending on the vertical resolution.
There was a similar effect on v but it was much smaller.

There was a small variation of the fitted -critical

exponents with ‘I‘N. This is shown in Figure 3.9 where v and



10000

Bragg Peak Intensity

1000

52

® (1/3,1/3,1)
A (1/73,1/3,3)
m (4/3,4/3,1)

100}

I l | l 1 | i

—

0.00I 0.0!0 Q.I00
Reduced Temperature

Figure 3.6: Log-log plot of magnetic Bragg peak intensity as
a function of reduced temperature for Q = (é,%,l), 5,;-,3),
and G,;,l). The lines are the results of fit to a power
law in reduced temperature with exponents § = 0.21.
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and in the ab-plane. The lines are the results of a fit to
a power law in reduced temperature with exponent v = 0.54.
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B have been scaled as indicated. The data in this figure
were obtained by constraining the value of Ty and optimizing
the exponents. The quality of the fits deteriorated as T
was changed from the optimum value of 8.31 K and the range
of Figure 3.9 indicates the range over which TN could
reasonably extend given the upper and lower bounds presented
by the data.

Based on the variation of the critical exponents
with TN, the effects of the vertical resolution and the
uncertainty in the least squares fitting procedure it was
concluded that y = 1.01 + 0.08, v = 0.54 + 0.03 and
A = 021 £ 0.02 for CsMnBr,. These results have been
confirmed by independent neutron scattering measurements

(Kadowaki et al 1988 and Ajiro et al 1988).

3.5 Discussion

The static  critical expoments for  CsMnBr,
(including the specific heat expomemt, « (Belanger et al
1990)) are summarized in Table I along | vgigh the
predictions for the Zﬁ'xS1 universality class (Kawamﬁfa 1989)
and the standard XY model (S1 universality class) (Baker et
al 1978). - The experimental values are in good agreement
with the predictions for the szS . universality cliss. They
are not consistent with those for the XY model or with any
other standard model in which the universality class is

determined by the dimens‘onality of the order parameter.
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Exponent Zz><S1 S, CsMnBr,
Y I.T % 0.1 1.31T6 £ 0.009] I.0I £ 0.08
v 0.53 4+ 0.03 | 0.669 % 0.007| 0.54 % 0.03
B 0.25 + 0.02 | 0.345 + 0.011] 0.21 + 0.02
a 0.40 4 0.04 -0.01 0.35 + 0.05

Table TMI: Critical exponents p, v, B, and a for the Z XS,
universality class (Kawamura 1989), the standard XY model
(51) (Baker et al 1978), and CsMnBra. The experimental
valees for y, v, and S are from the present work. The
experimental value for o« 1is from the specific heat
measurement of Belanger et al (1990).

The critical exponents for CsMnBr, are quite similar
to those measured for VCl2 (see Table II), a Heisenberg
triangular  antiferromagnet  belonging to  the  SO(3)
universality class. The additional degeneracy brought about
by the lattice frustration has a larger effect on the
critical properties than the dimensionality of the order
parameter. In the case of VCIz the measured critical
failed to satisfy the hyperscaling relation (equation 1.8)
between y, v, and B by 2.6 standard errors. Failure to
follow hyperscaling indicates that therz is not a single
length scale at the critical point (Binder and Wang 1989),
possibly due to different characteristic lemgths for the
chiral and spin wave fluctuations. The exponents for
CsMnBr, fail to satisfy equation 1.8 by 1.5 standard errors.
Exponents fitted with a slightly higher T, (see Figure 3.9)
are closer to satisfying hyperscaling although the critical
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temperature necessary for exact agreement (8.50 K) is
clearly too high.

There is also a hyperscaling relation between v and
« (Collins 1989):

2-a=dv (3.3)

For v = 0.54 1 0.03 one obtains a value for « of 0.38 + 0.09
which is in good agreement with both the theoretical
prediction (Kawamura 1989) and the measured exponent
(Belanger et al 1990). This agreement, together with the
somewhat poorer agreement with equation 1.8, suggests that
the critical phase transition in CsMnBr, is not inconsistent
with hyperscaling.

y and v can be used to determine the critical

exponent # from a scaling law (Collins 1989):

Y = 20(1-5/2), (3.3)

resulting in a value of 0.13. This is surprisingly large
for a three dimensional system (7 is usually = 0.04 for d =
3). However, the uncertainty is also large (0.18) and
includes the range of expected values for ;. Whether a
large value of 7 is a characteristic of ordering with a
chiral degeneracy could be resolved by careful Ilineshape

measurements closer to T, with a better quality crystal.



CHAPTER 4
MAGNETIC PHASE DIAGRAM AND SUSCEPTIBILITY OF CsMnBr3

4.1 Introduction

The 120° magnetic structure that forms the ground
state for CsMnBr, in the absence of an applied magnetic
field, arises from a balance of competing interactions, a
consequence of the lattice frustration. The additional term
in the Hamiltonian (equation 1.16) that would arise due the
the application of a magnetic field in the ab-plane might
therefore be expected to change the balance resulting in
additional magnetic phases. Measurements of the temperature
dependence of the magnetic Bragg peak intensity in a 3.7 T
magnetic field applied along the (100) direction have shown
a splitting of the zero field transition (Gaulin et al
1987). The nature of the intermediate phase and the the
phase diagram were not determined.

Minimization of the spin configuration energy at
zero temperature taking into account quantum renmormalization
of the spin i- moments has predicted a transition from a six
sublaftice triangular phase to a four sublattice phase
without any chirality at 6.1 T and zero temperature
(Chubukov 1988). Non-local Landau theory has been applied

to the general problem of the magnetic phase diagrams of

59
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uniaxial and planar antiferromagnets in hexagonal crystals
(Plumer et al 1989). For the planar case appropriate to
CsMnBrs, a tetracritical point is predicted for T = T, H =
0. An infinitesimal magnetic field will split the zero
field transition. = Novel multicritical points may also occur
at non-zero magnetic fields depending on the anisotropies
present in the system.

This chapter presents a determination of the
magnetic pbase diagram of CsMuBr3 by elastic neutron
scattering and  susceptibility  measurements near the
tetracritical point. @ The phase diagram measurements were
performed on the HS5 triple-axis spectrometer at the
Brookhaven National Laboratory., The spectrometer was
operated in the elastic mode wusing the (002) reflection of
vertically focussed pyrolytic graphite to monochromate and
analyze the neutrons. The measurements were done using a
neutron energy of 3.3 THz with a pyrolytic graphite filter
in the incident beam to remove higher order contamination.
Collimation before and after the sample was 20°.

The crystal was the same one used in the critical
scattering measurements that were described in Chapter 3.
It was mounted in an aluminum sample can filled with He gas
to insure good thermal contact. The can was mounted in a
cryostat with the (££{) plane of the crystal was horizontal.
The temperature was monitored using a carbon glass resistor

(this sensor is highly insensitive to the presence of a
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magnetic field). The temperature stability was better than
20 mK for 7 K < T < 10 K, and better than 10 mK below 7 K.
A split coil superconducting magnet with the field direction
perpendicular to the scattering plane was used to apply
magnetic fields of up to 6.5 T in the (100) direction.

The measurements described in this chapter have been
published in the scientific literature (Gaulin et al 198%b
and Mason et al 1990a).

4.1 Magnetic_Phase Boundaries

In addition to being proportional to the square of
the intensity of the sublattice magnetization, the magnetic
Bragg peak cross section (equation 2.12) also depends on the
. magmetic structure as does the polarization prefactor in
equation 2.4. The intensity of the (%,%,l) and (§,§,1)
magnetic Bragg peaks as a function of temperature in an
applied magnetic field of 42 T is shown in Figure 4.1.
There is a critical phase transition from the paramagnetic
state to an an antiferromagnetic state at
T, = 9.00 + 0.10 K. In contrast to the smooth temperature
evolution of the order parameter in zero field (see Figure
3.5) there is a distinct kink in the intensity at T, = 7.15
+ 0.10 X indicating a critical phase transition between two
different ordered states. The fact that the Bragg peaks of

the two structures occur at the same points in reciprocal

space (no new magnetic Bragg peaks were observed) indicates
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Figure 4.1: Temperature dependence of the antiferromagnetic
Bragg peak intensity for the (%,%,1) and (%,%,1) reflections
in an applied field of 4.2 T. Successive phase transitions
from the paramagnetic phase to the spin-flop phase and from
the spin-flop phase to the triangular phase occur at T =
9.00 £ 0.10 K and T = 7.15 £ 0.10 K respectively, The
inset shows the field dependence of the (002) and (220)
reflections for T = 7.0 K, indicating the increasing
ferromagnetic component with increasing applied field.
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that the two structures have the same unit cell. The change
in intensity reflects the fact that the spin orientations in
the two phases are different.

The inset in Figure 4.1 shows the field dependence
of the intensity of the (220) and (002) reflections for T =
7.0 K. These are reflections of the nuclear lattice of
CsMnBr, and are therefore sensitive to the ferromagnetically
aligned component of spin. There is a gradual increase of
the ferromagnetic moment with increasing field. There is a
suggestion of a kink in the (002) data at the critical field
although the statistics are rather poor due to the large
nuclear component in the intensity.

Similar scans to the data of Figure 4.1, for various
applied magnetic fields, have been used to map out the phase
boundaries for the two phase transitions. At low
temperatures, scans of the intensity as a function of field
for fixed temperature were used to provided the sharpest
signature of the tramsition between the two ordered pbases.
The resulting phase diagram is shown in Figure 4.2. The
triangle plotted on the T = 0 K line indicates the predicted
critical field of 6.1 T (Chubukov 1988). There is good
agreement between this prediction and the extrapolation of
the finite temperature experimental data (H = 6.2 T).

It is not possible to determine wuniquely the
magnetic structure for this noncollinear system from the

measurements of four Bragg peak intensities; however, it is
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Figure 4.2: The magnetic phase diagram of CsMnl?,r:1 for a
field applied along the (100) direction. P denotes the
paramagnetic phase, I , the spin flop phase, and II the
triangular phase.  The spin configurations for a triad of
nearest neighbour spins is shown for each ordered phase.
The lines are the results of least squares fits to power
laws near the tetracritical point (see section 4.3).
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possible to test the comsistency with the structure
predicted by Chubukov (1988). The intensities for the peaks
measured  [G5,1), G5, G50, and G531  together
with the field dependence of the ferromagnetic component are
consistent with the structures predicted on the basis of the
microscopic Hamiltonian (Chubukov 1988).

The low field, low temperature, phase (I) is a
distortion of the triangular structure with a small cant of
the moments towards the magnetic field and a larger
component  perpendicular to the field direction that
alternates antiferromagnetically from layer to layer.  Both
the cant and the alternating perpendicular component
increase with increasing magnetic field. At the transition
between phase I and II, two of the sublattices coilapse
together resulting in a phase that has no chirality. As the
field is increased in phase II ail the spins gradually cant
towards the magnetic field direction. These magnetic
structures are shown schematically for a triad of spins in
the basal plane in Figure 4.2 for a magnetic field applied
along the positive y axis of the graph. The Monte Carlo
simulations described in Chapter 5 confirm these spin
structures.

All the data suggest that the phase transitions are
continuous (ie. critical phase tramsitions) over the range
of temperatures and fields measured. Temperature scans were

carried out with both increasing and decreasing temperature
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and no evidence of hysteresis (which is usuvally found for
first order phase tramsitions) was observed. The phase
diagram shown in Figure 4.2 indicates that the T = TN, H=0

transition is a tetracritical point.

4.3 Crossover _Exponents_and_Susceptibility

The limes in Figure 4.2 are the results of a least
squares fit of the critical temperatures as a function of
applied field to the functional form predicted to hold near
the tetracritical point for tetragonal XY antiferromagnets
(Kerszberg and Mukamel 1978):

THI -T
i T) N o @, 4.1
N

The fits give crossover exponents Vo = 1.21 + 0.07 and
Yoy = 0.75 % 0.05. The renormalization group prediction
for CsMnBr3 is that Yor = ¥pg = ¢ = 1.04 (Kawamura et al
1990). The fact that both phase boundary lines are scaled
by a single crossover exponent near the tetracritical point
is a unique feature of the chiral fixed point in the
renormalization group analysis.  The disagreement between
the experiment and the theoretical prediction could be due
to the potentially significant nonuniversal corrections to
power law behaviour (Kawamura et al 1990) making a precise

determination of the y’s difficult. The data for the
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critical temperatures was not sufficiently precise to
warrant the inclusion of the leading order corrections in
the fitting procedure. It is also possible that the
discrepancy between the theory and experiment is due to
another unstable fixed point in the vicinity of the chiral
one which may determine the bebaviour of the phase
boundaries away from the tetracritical point.

The scaling analysis of the tetracritical point in
CsMnBr3 (Kawamura et al 1990) predicts that the zero field
uniform magnetic susceptibility (¥) should exhibit singular

behaviour at T N of the form:
xa lt]? 4.2)

where ¥ = -(2-a-¢). Since « has been measured (Belanger et
al 1990) it is possible to determine the value of ¢ by
finding 3. For ¢ < 2-a (= 1.65) 7 is less than zero so the
singularity would be in the form of a cusp, with x
approaching zero as T tends towards Ty Measurement of ¥
would give an indication of whether the disagreement between
¢ and the measured y’s is due to difficulties in the
analysis or a deficiency of the theory. Previous
measurements of the temperature dependence of the magnetic
susceptibility (Eibshutz et al 1973) did not have sufficient
data near T, to address this point. In addition the value

of the applied field used to measure the susceptibility was
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rather large (15 300 Oe). For a field this large applied
perpendicular to the ¢ axis the phase transitions are split
by 0.21 K.

The zero field uniform susceptibility of CsMnBr, was
measured using a Quantum Design squid magnetometer in the
vicinity of T, Two crystals cut from the same piece as the
crystal used in the neutron scattering measurements were
used to determine the susceptibility for a magnetic field
applied parallel and perpendicular to the c-axis. The
results are shown in Figures 4.3 and 4.4 respectively for anm
applied field of 500 Oe. In both cases the temperature
dependence of x is monotonic near T, although the phase
transition is marked by a change in slope. The measurements
bave been performed for magnetic fields of 1000, 500, and
100 Oe and the results are the same for all three fields.
The consistency of the results for the different values of
the applied field indicates that the results are
representative of the ZEero field susceptibility,
Calculating the splitting of the two phase transitions for a
500 Oe field applied perpendicular to the ¢ axis based on
the cross over expoments one obtains 0.0004 K, indicating
how close this field is to the tetracritical point. The
sizc of the temperature steps was 0.02 K so any singularity
in x wo;{ld have to be measurable only for |t| < 103, This
secems unlikely since the critical scattering results showed

that the critical regime extended up to reduced temperatures
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greater than 107 There is no evidence that the
susceptibility exhibits a singularity at the tetracritical
point.

The phase transition is more clearly evident in the
derivative of the susceptibility with respect to temperature
(dx/dT) shown in Figure 4.5 for the two field directions.
The derivative was calculated by taking a weighted average
of the Ax/AT’s near a point in order to reduce the scatter
due to fluctuations in the measured susceptibility. In both
cases dx/dT is independent of temperature above T, and
exhibits a sharp discontinuity at the tetracritical point.
For H parailel to ¢ there is a downturn in dy/dT as T, is
approached from below while for H perpendicular to ¢ there
is an upturn.

The temperature dependence of the magnetic Bragg
peak intensity cam be wused to determine the critical
exponent 8 as described in Chapter 3. Data from the %,%,1)
and (1) reflections for H = 0 and H = 4.0 T were least
squares fitted to a power law in reduced temperature
resulting in § = 0.24 + 0.02 for H = 0 and 8 = 0.29 4 0.02
for H = 4.0 T (spin-flop phase). The results for the
(51-,51-,1) reflection are shown in Figure 4.6. The previous
determination of S in the absence of a magnetic field showed
no extinction effects so these measurements on the same
crystal should also be free from errors due to extinction,

This is confirmed by the fact that there were no systematic
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Ejgm_q_i,_ﬁ: Derivative of the susceptibility with respect to

temperature  (dx/dT) for a magnetic field parallel and
perpendicular to the ¢ axis.
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differences observed for the two Bragg peaks measured.

4.4 Discussion

The results of the determination of the magnetic
phase diagram of CsMnBr, for a field applied along the (100)
direction indicate that in addition to possessing unusual
static critical exponents, the zero field phase tranmsition
1s a tetracritical point. This raises the question of
whether or not the multicriticality of the zero field phase
transition is sufficient to explain the nonuniversal static
critical exponents. This is not a question that can be
addressed  experimentailly but the renormalization group
analysis (Kawamura 1988) indicates the fixed point for this
phase transition is a unique one -and the tetracriticality is
one of its properties. For this reason a determination of
the  magnetic phase diagram of  other triangular
antiferromagnets, such as VCI:l would be of considerable
interest. Holmium metal which has a spiral spin structure
and is predicted to belonz to the Z,XS, universality class
(Kawamura 1988) appears to have a similar magnetic phase‘
diagram (Steinitz et al 1987).

The magnetic phase diagram shown in Figure 4.2 has
several  other  interesting  features. The  critical
temperature for the paramagnetic to spin flop phase
transition increases with increasing magnetic field. This

is in contrast to the decrease usually observed for
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antiferromagnets in a magnetic field. The phase transition
from phase I to phase II involves an increase in the
component of the spins perpendicular to the field much like
what occurs in uniaxial antiferromagnets with a bicritical
point (Shapira and Foner 1970) but, unlike the uniaxial
antiferromagnets, the phase transition is continuous.

The behaviour of the phase boundaries near the
tetracritical point follows a power law with crossover
exponents ¥, = 1.21 + 0.07 and Vg = 0.75 + 0.05. The
fact that both are less than 2 means they cross the H = 0 T
line at an angle of 90° and the range of stability of phase
II vanishes like a power law. This is qualitatively
different from other tetracritical points observed in
stressed L:au‘\lO3 (Muller et al 1983) and GdAlO3 in a magnetic
field (Rohrer and Gerber 1977). It is more like the
tetracritical point predicted (Kerszberg and Mukamel 1978)
but not observed for the tetragonal XY antiferromagnet,
FezAs, in a magnetic field (Corliss et al 1982).

The fact that the magnetic phase boundaries do not
scale with a single crossover exponment, ¢ = 1.04, near the
tetracritical point could reflect a nonuniversal correction
to power law behaviour or a lack of sufficiently precise
data for low values of the magnetic field. The failure to
observe a  singularity in- the zero field uniform
susceptibility suggests that the origin of the discrepancy
may lie in the theory. Although the qualitative features of
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the magnetic phase diagram can be understood in the context
of nonlocal Landau theory (Plumer and Caille 1990) a
detailed quantitative understanding, based on the
microscopic Hamiltonian (equation 1.16) poses a significant
challenge to theory.

The value for the order parameter critical exponent,
B, in the absence of an applied field was found to be 0.24 +
0.02 in good agreement with the more careful measurement of
Chapter 3. In an applied field of 4.0 T the phase
transition from the paramagnetic state in phase II had a
valee of § = 0.29 4+ 0.02. This is significantly larger than
the zero field § and is quite close to that expected for the
three dimensional Ising model (0.31). The application of a
magnetic field within the basal plane has two effects. It
breaks the XY symmetry within the plane and destroys the
chiral degree of freedom (in phase I there is no
chirality). This would lead one to conclude that three
dimensional Ising behaviour is to be expected for the P-II
rhase tramsition, however, the structure maps onto a six
state clock model which should exhibit XY like critical
exponents (Kawamura et al 1990). The value of B for the XY
model is 0.345 + 0.011 (Baker et al 1978) which is clearly
not consistent with the measured value for CsMnBr3 in a 4.0
T magnetic field. This discrepancy could be due to the
cross over from szsl to XY critical behaviour not being

complete for H = 4.0 T. A measurement of 8 in a larger



77

applied field could resolve this point. Whether the
universality class of phase II is threc dimensional Ising or
XY it is clearly within the range of the standard models. §
in this phase is definitely higher than for the chiral

universality classes.



CHAPTER 5
MONTE CARLO SIMULATIONS

1.1 Introduction

Although the qualitative features of the magnetic
phase diagram of CsMnBr3 can be reproduced using Landau
theory (Plumer and Caille 1990) this is a non local
formulation and treats the expansion terms in the free
energy as parameters that are fit to the data. It would
therefore be interesting to see if the magnetic phase
diagram described in chapter 4 can be understood on the
basis of the magnetic Hamiltonian derived from spin wave
measurements (equation 1.16) (Gaulin et al 1987, Falk et al
1987).  Magnetic phase diagrams are often sensitive to the
presence of additional, smaller terms in the Hamiltonian
that may not be sufficiently large to be manifested in the
spin wave measurements. This raises the question of whether
the tetracriticality of the zero field phase tramsition is
inherent in the simple XY triangular  antiferromagnet
Hamiltonian or a consequence of additional, unknown, small
terms.

Monte Carlo simulation is a numerical method that
allows the behaviour of a particular Hamiltonian to be

studied (Binder and Heerman 1988). A computer is used to
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construct a small model lattice of spins with a random
configuration. In the Metropolis algorithm (Metropolis et
al 1953) a series of configurations of the medel lattice are
generated by changing the orientation of a single site
randomly and accepting the new configuration if a randomly
generated number between zero and onme is less than the
Boltzmann factor, exp(—é.;@kBT), for the change in enmergy,
03¢, calculated from the Hamiltonian being simulated.
Iteration of this proceedure results, after sufficient steps
to cquilibrate the system, in a series of configurations
which may be used to calculate ensemble averages of the
quantities of interest such as the internal energy, <U>, or
the sublattice magnetization, <Ms> . The fluctuations in
these quantities can be used to determine the specific heat,
<C,>, and the sublattice susceptibility, <x >. For a
sufficiently large number of steps the averages will
approach the expectation vslues for the finite system being
simulated. Since the model system is generally quite small
it may be ‘mecessary to simulate different sized lattices in
order to del\'i;;j.;'mine the importance of finite size effects and
é;ﬁmate the béhaviour for the infinite system.

This chapter describes Monte Carlo simulations of
the magnetic Hamiltonian of CsMnBr, as a function of
temperature and applied magnetic field. @~ The results have
been published in the scientific literature (Mason et al

1950b). The critical behaviour of the XY triangular
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antiferromagnet in the absence of a magnetic field bas been
the subject of extensive Monte Carlo simulations (Kawamura
1988a, 1989) and it was in this context that the wunusual
critical properties of the system were first discussed.
Further details regarding the Monte Carlo method in general

may be found in Binder and Heerman (1988).

1.2 Monte_Carlo_Simulations_of _CsMnBr

Classical, zero temperature caiculations have shown
that provided the planar anmisotropy D > 3, (see equation
1.16) the spins remain confined to the ab plane wupon
application of a magnetic field within the plane (Chubukov
1988). This is the case for CsMnBr, and no canting out of
the planes was observed in the npeutron scattering
measurements described in chapter 4. Since the spins remain
in the basal plane for the region of parameter space of
interest (H L ¢ and T <-15 K) Monte Carlo simulations have.
been performed for the computationally more tractable case
of XY spins on a triangular lattice with nearest neighbour

antiferromagnetic interactions:

X = -2 S'S -2 ):_ S'S - H ): S} ¢.1)

i>]j )

This Hamiltonian differs from (1.16) because the spins are

now two dimensional vectors and a magnetic field, H, in the
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x direction has been explicitly included. It is simpler to
carry out computations in dimensionless units so J, and the
length of the spin vector have been set equal to ome. All
other variables are scaled relative to these (eg. Jc = 463)
so as to allow conversion back to standard units by
inserting the appropriate values for S and I, The
dimensionless temperature, T, is therefore related to the
temperature in Kelvin by:

k T(X)

T = — - (5.2)
21“3

The Mn*? jons are spin ; so the use of classical spin
vectors should not introduce substantial errors. To lowest
order, quantum corrections are taken into account through
the use of parameters from spin wave measurements which
result from fitting the dispersion to classical spin wave
theory.  The resulting J’s are therefore effective exchange
interactions that are renormalized from the actual ones for
the quantum mechanical system.

Because of the quasi-one-dimensional nature of the
Hamiltonian it was necessary to employ a special algorithm
for generating new spin configurations in order to avoid
extremely long equilibration times. Two types of updating
methods were employed alternately. On the first sweep

through the lattice an attempt was made to rotate each spin
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independently. On every second sweep through the lattice
all the spins in each of the highly correlated chains along
the ¢ axis were rotated by the same amount. In both cases
the total emergy change for a new orientation of a spin or
chain of spins was used in the Boltzmann factor that
determined the success of the new configuration. In this
way detailed balance was maintained. This technique is
simifar to a cluster updating method (Niedermayer 1988) in
which a well-correlated region of spius is determined
according to some criteria and then rotated by some global
amount.  The difference in this case is that the a priori
knowledge that the chains are well correlated throughout the
three  dimensiomal critical region has been used to
predetermine the cluster. It is not possible to extend the
~ cluster to more than one chain due to the frustration of the
in-plane interactions.  The ranges of both the single site
and the chain rotations were tuned to provide a 50%
acceptance rate for new configurations. The one to one
ratio of single site to chain rotations was employed because
the number of Monte Carlo steps (MCS) required to reach
equilibration was dominated by the npumber of chain
rotations.

Simulations consisting of 5000 - 10000 MCS per spin
for equilibration followed by 16000 MCS per spin to
calculate ensemble averages, were carried out for a variety

of random number sequences and starting configurations for
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12 x 12 x 12 lattices with periodic boundary conditions.
The simulations were run on Sun workstations using code
written in FORTRAN 77. The initial configurations were
first brought to equilibrium in zero field by ramping down
the temperature over 1500 MCS per spin followed by 5000 -
10000 MCS per spin at the desired temperature. The
resulting equilibrated configurations were used to start
simulations at other fields and temperatures nearby in the
phase diagram. Each temperature and field was run from two
to five times with different (H,T) starting configurations.
The internal energy, <U>, sublattice or staggered
magnetization, <M >, specific heat, <C_ >, staggered
susceptibility, <X>, and in plane correlation length, <x>,
were calculated using coarse-grained  averaging. The
uncertainties in the calculated quantities were estimated
from the variations between different runs and the
coarse-grained averages of each run. In order to verify

. that the algorithm was working correctly simulations were

carried out in zero field for the case Jc J. = 1. The

ab
results obtained were in good agreement with those of
Kawamura (1988a, 1989) for the same size lattice.

The temperature dependence of the specific heat and
staggered magnetization for zero magnetic field is shown in
Figures 5.1 and 5.2 respectively. The phase tramsition is
marked by the peak in the specific heat, which also

coincides with a sharp increase in the  staggered
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0.45 —— H—— =

Figure 5.1: Temperature dependence of the specific heat in
zero magnetic field. (dimensionless units) The line is a
guide for the eye.
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Figure 5.2: Temperature dependence of the  staggered
magnetization in zero field. (dimensionless units) The line
is the interpolation described in the text.
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magnetization. The line in Figure 5.1 is a guide to the
eye. The line in Figure 5.2 is an interpolation between
three long (500000 MCS per spin) simulations at
dimensionless temperatures of 6.2, 6.8, and 7.4 using the
configurations generated to construct a histogram of the
probability  distribution  function which can then be
transformed to nearby temperatures (Ferrenberg and Swendsen
1988). There is good agreement between the interpolation
and the discrete simulations. The staggered magnetization
does mot go to zero above 'I‘N due to the finite size of the
lattice.

The peak in the specific heat shown im Figure 5.2 1s
on top of a large, almost constant, background due to the
domination of the internal emergy by the J term in the
Hamiltonian. This meant that the transition temperature was
better determined from the temperature dependence of the
staggered susceptibility which exhibited a large peak at T..
The temperature dependence of the staggered susceptibility
in zero field and in a field of 50, in dimensionless units,
is shown in Figure 5.3. The line in the zero field plot is
the probability distribution function interpolation which
allows a precise determination of TN = 6.84 % 0.06. The
application of a magnetic field of 50 §pIits the zero field
transition, resulting in two peaks “in the staggered
susceptibility at Tml = 7.8 + 0.3 and Tm = 6.0 £ 0.2. The
dashed line in the H = 50 plot is a guide to the eye.
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Figure 5.3: Temperature dependence of the staggered
susceptibility for H = 0 and H = 50. (dimensionless units)
The line in the upper plot is the interpolation described in
the text. The dashed line in the lower plot is a guide to
the eye; it shows the splitting of the zero field transition

by the application of a magnetic field in the plane of the
spins.
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At low temperatures it is easier to see the phase
transition by looking at the field dependence of the
staggered susceptibility at constant temperature. This is
shown in Figure 5.4 for T = 2. The line is a guide to the
eye. There is a peak in the staggered susceptibility at
H=68 % 2. Simynlations have been carried out for
temperatures between 1 and 20 and magnetic fields between O
and 150. The location of the phase boundaries determined
from the maxima in the staggered susceptibility are shown in
Figure 5.5. For low values of the applied field (H < 30)
the two transitions could not be separated although the

increase in the width of the peak in X, over the H = 0 case

suggests that the identificaction of the H = 0, T = T,
transition as a tetracritical point is correct. These

points have been drawn haif filled to reflect this. The

lines in Figure 5.5 show the location of the experimentally
determined phase boundaries (see Figure 4.2) with the
temperature axis scaled to agree at H = 0. The zero
temperature classical transition field (H = 744 = 6.1 T)
(Chubukov 1988) is indicated by the triangle. There is good

apreement between this value and the extrapolated T

0

transition field of the simulations.

The spin structure of the two phases are shown in
Figure 5.6 which is a diagram of the configuration for a
region of one layer of the lattice genmerated at low

temperature (T = 1) for magnetic fields of 20 and 90. The
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Figure 5.4: Field dependence of the staggered susceptibility
for T = 2. (dimensionless units)
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100

Figure_5.5: The magnetic phase diagram for the Hamiitonian
(5.1). The structures of I and II are shown in Figure 5.6.
P denotes the paramagnetic phase. The triangle is the
classical zero temperature transition field for CsMnBr,
(Chubukov 1988). The lines show the location of the
experimentally  determined phase boundaries scaled to
agree at H = 0. (see Figure 4.2).

12
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magnetic field is directed toward the right side of the page
as indicated in the Figure. The low field phase (I) is a
slight distortion of the 120° structure in which one
sublattice cants toward the field from 90° while the other
two sublattices collapse towards onc another with increasing
field. In the high field phase (II) these two sublattices
collapse together and all three rotate in the field
direction as the field strength increases. This is 1in
agreement with the classical zero temperature results
(Chubukov 1988) and is consistent with the measurements of
chapter 4. By determining the average spin configuration
over the whole simulation it was possible to verify that
there was a small ferromagnetic component of the spins that
increased with increasing field.  This is not immediately
obvious in Figure 5.6 due to the thermal fluctuations

present for the instantancous configuration shown.

5.3 Discussion _

The gqualitative featuré&; of the magnetic phase
diagram of CsMnBr, {Figure 4.2)'31"0. well reproduced by the
Monte Carlo simulations of the Haniﬁltonian derived from the
spin wave dispersion (Gaulin et al 1987, Falk et al 1987).
In particular the tetracriticality of the zero field phase
transition to long range antiferromagnetic  order s
intrinsic to the XY model on a triangular lattice with the

exchange constants appropriate for CsMnBr,. The structures
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Figure 5.6: The magnetic structure for the low field (I) and
high field (II) pbases. The field diection is indicated in
between the two spin configurations.
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for the two phases are also in good agreement with the
measurements. The Monte Carlo phase diagram also reproduces
the increase of the upper Néel temperature (T, ) with
increasing magnetic field.  This behaviour is not found in
the mean field theory for the Hamiltonian or in Monte Carlo
simulations of the XY antiferromagnet on a triangular
lattice with isotropic interactions (Jc = J.b) (Plumer
1990). The fact that the present simulations do repoduce it
indicates that it is a fluctuation effect brought about by
the very strong coupling between the spins along the ¢ axis.
Although there is excellent qualitative agreement
between the experimental phase diagram for CsMnBraand the
Monte Carlo simulations there is a considerable discrepancy
in the values for the transition temperatures. In zero
magnetic field the simulations found TN = 684 £+ 0.06, in
dimensionless units, or 1.89 K; the actual Neel temperature
was 832 K. Simulations of 12 X 12 X L lattices yielded
Neéel temperatures of 13.1 + 0.1 (3.6 K), 23.0 £ 0.3 (6.4 K)
and 32.0 + 03 (8.9 K) for L = 24, 48, and 96. This
indicates that there is a substantial remormalization of T,
with the number of spins along c¢. The origin of this effect
is the quasi-one-dimensional nature of (5.1). For shorter
chain lengths the enhancement of TN-.— by the strong
one-dimensional correlations is  suppressed. This is
consistent with the sharp suppression of T, in CsMnBr, upon

doping with small amounts of non-magnetic Mg (Visser et al
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1988). A similar finite size scaling effect has been seen
in simulations of L X L x pL lattices of quasi-one-
dimensional Ising spins (Graim and Landau 1981). The size
dependence of T, for the finite lattice was found to be
stronger for small p. In order to obtain the best estimate
for the infinite lattice it is desirable to study the size
dependence of T, for lattices whose shape approximates that
of the correlated regions of spins mear T_.. The anisotropy
of the correlatior lengths in Figure 3.8 is about a factor
of 8 so lattices of size L KX L x 16L would give the best
results (there are two Mn*? along the ¢ axis in onme unit
cell hence the factor of 16). Unfortunately, even for L =
12 this is too large a lattice to be sihmulated on the
available hardware. The trend observed ia the simulations
for p = 1, 2, 4, and 8 suggests that T for the infinte
lattice would be slightly larger than tie experimental
value, probably due to a reduction of the actual TN by
quantum effects (Imry et al 1975). The substantial finite
size effects for these simulations also make it impossible
to make reasonable estimates of the crilical exponments in a

magnetic field.



CHAPTER 6
CONCLUSIONS

Meutron  scattering measurements of the . static
critical exponments y, v, and 8 for CsMnBr, have established
that the phase transition that occurs in zero magnetic field
at T = 83 K does not belong to any standard umniversality
class (see Table III). This gives strong support to the
assertion by Kawamura (1988a, 1938b, and 1989) that this
material belongs to a new Z XS universality class
characterized by the symmetry of the order parameter, not
just its dimensionality. This conclusion, which 1is also
supported by the results for the Heisenberg system VCI2
(Kadowaki et al 1987), has far reaching implications as it
entails a generalization of the wuniversality hypothesis
(Kadanoff 1971).

The deteyminatior of the magnetic phase diagram of
CsMnBr, has shown that this novel phase tramsition is a
tetracritical point quite different from any previously
observed. Monte Carlo simulations have shown the
qualitative features of _the phase diagram can be reproduced
from the simple, nearest neighbour spin wave Hamiltonian
without the introduction of additional terms. The

tetracriﬁcality is lhemforc.zk intrinsic to the same
N
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Hamiltonian that results in the Z x§ critical behaviour.
Although the qualitativé features of the magnetic
phase diagram of CsMnBr3 can be understood theoretically
there are discrepancies between the measured crossover
exponents and the renmormalization group prediction (Kawamura
et al 1990). The magnetic susceptibility mnear the
tetracritical point did not show the singularity predicted
by scaling analysis (Kawamura et al 1990) although the
phase tr'_émsition was clearly evident as a change in the
slope of ‘x. These two disagreements between the predicted
and actual behaviour of CsMnBr3 indicate that a detailed,
quantitative  understanding of the tetracritical point is
still not available.  Until these questions are resolved the

status of the universality of the phase tramsition is

uncertain,



97

REFERENCES

Abramowitz, M. and Stegun, LA. (1965). Handbook of
Mathematical Functions. p. 924. New York: Dover.

Ajiro, Y., Nakashima, T., Unno, Y., Kadowaki, H., Mekata,
M., and Achiwa, N. (1988). J. Phys. Soc. n. §T:
2648.

Andrews, T. (1869). Phil. Trans. R. Soc. 159: 575,

Baker, G.A. Jr., Nickel, B.G., and Meiron, D.I. (1978).
Phys. Rev. B 17: 1365.

Belanger, D.P., Murray, W.E. Jr., and Gaulin, B.D. (1950).
private communication.

Binder, K. and Heerman, D.W. (1988). Monte Carlo Simulations
in Statistical Physics. Berlin: Springer-Verlag.

Binder, K. and Wang, J. (1989). J. Stat. Phys. 55: 87.

Brockhouse, B.N. (1961). Inelastic Scattering of Neutrons in
Solids and Liquids. p. 113. Vienna: IAEA.

Broholm, C., Lin, H., Matthews, P.T., Mason, T.E., Buyers,
W.J.L., Collins, M.F., Menovsky, A.A., Mydosh, J.A,,
and Kjems, J.K. (1990). Phys. Rev. B to appear.

Chubukov, A.V. (1988). J. Phys. C 21: L441.

Collins, M.F. (1989). Magnetic Critical Scattering. Oxford:
Oxford University Press.

Cooper, M.J. and Nathans, R. (1967). Acta. Cryst. 23: 257.

Corliss, L.M., Hastings, J.M., Kunnmann, W., Begum, R.J.,,
Collins, M.F., Gurewitz, E., and Mukamel, D. (1982).
Phys. Rev. B 25: 245.

Cowley, R.A. (1987). Methods of Experimental Physics, 23 C
(K. Sksld and D.L. Price Eds.) p. 1. Orlando:
Academic Press.

Eibshutz, M., Sherwood, R.C., Hsu, F.S.L., and Cox, D.E.
(1973). Magnetism c¢wd Magnetic Materials (Denver,
1972), Proceedings of the 18th Annual Conference on
Magnetism and Magnoetic Materials, AIP Conf. Proc.
No. 10 (C.D. Graham Jr. and J.J. Rhyne Eds.) p.



98

684. New York: American Institute of Physics.

Falk, U., Furrer, A., Gudel, H.U., and Kjems, J.K. (1987).
Phys. Rev. B 35: 4888.

Ferrenberg, A.M. and Swendsen, R.H. (1988). Phys. Rev. Lett.
23: 2635.

Fisher, M.E. (1964). J. Math. Phys. 5: 944.

Fisher, M.E. (1982). Critical Phenomena (F.J.W. Hahne, Ed.)
Lecture Notes in Physics #186, p. 1-139. Berlin:
Springer-Verlag.

Fisher, M.E. and Burford, R.J. (1967). Phys. Rev. 156: 583.

Fitzgerald, W.J., Visser, D., and Ziebeck, K.R.A. (1982). J.
Phys. C 15: 795.

Gaulin, B.D. (19%6). Topics in One Dimensional Magnetism.
Ph.D. Thesis, McMaster University.

Gaulin, B.D. and Coilins, M.F. (1984). Can. J. Phys. 62:
1132.

Gaulin, B.D., Collins, M.F., and Buyers, W.J.L. (1987). J.
Appl. Phys. 61: 3409.

Gaulin, B.D., Collins, M.F., and Mason, T.E. (1989a).
Physica B 156 & 157: 244.7: 244,

Gaulin, B.D., Mason, T.E., Collins, M.F., and Larese, J.Z.
(1989b). Phys. Rev. Lett. 62: 1380.

Goodyeari 6{10 and Kennedy, D.J. (1974). Acta. Cryst. B 28:

Graim, T. and Landau, D.P. (1981). Phys. Rev. B 24: 5156.
Griffith, R.B. (1965). J. Chem. Phys. 43: 1958.

Halperin, B.I., Hohenberg, P.C., and Ma, S. (1972). Phys.
Rev. Lett. 29: 1548.

Halperin, B.I., Hohenberg, P.C., and Ma, S. (1974). Phys.
Rev. B 10: 139.

Harrison, A. and Mason, T.E. (1990). J. Appl. Phys. 1o
appear.

Imry, Y., Pincus, P., and Scalapino, D. (1975). Phys. Rev. B
12: 1?78.



99

Kadanoff, L.P. (1966). Physics 2: 263.

Kadanoff, L.P. (1971). Proc. 1970 Varenna Summer School on
Critical Phenomena (M.S. Green, Ed.), pp. 100-117.
New York: Academic Press.

Kadowaki, H., Ubukoski, K., Hirakawa, K., Martinez, J.L.,
and Shirane, G. (1987). J. Phys. Soc. Jpn. 56: 1294,

Kadowaki, H., Shapiro, S.M., Inami, T., and Ajiro, Y.
(1988). J. Phys. Soc. Jpn. §7: 2460.

Kawamura, H. (19883). J. Appl. Phys. 63: 6086.
Kawamura, H. (1988b). Phys. Rev. B 38: 4916.
Kawamura, H. (1989). J. Phys. Soc. Jpn. 58: 584.

Kawamura, H., Caillé, A., and Plumer, M.L. (1990). Phys.
Rev. B 41: 4416.

Kerszberg, M. and Mukamel, D. (1978). Phys. Rev. B 18: 6283.
Loopstra, B.O. (1966). Nucl. Instrum. Meth. 44: 181.

Lovesey, S.W. (1984). Theory of Neutron Scattering from
Condensed Matter. Oxford: Oxford University Press.

Mason, T.E., Collins, M.F., and Gaulin, B.D. (1987). J.
Phys. C 20: L945.

Mason, T.E., Gaulin, B.D., and Collins, M.F. (1989). Phys.
Rev. B 39: 586.

Mason, T.E., Stager, C.V., Gaulin, B.D., and Collins, M.F.
(1990a). Phys. Rev. B to appear.

Mason, T.E., Collins, M.F., and Gaulin, B.D. (1990b). J.
Appl. Phys. to appear.

Mason, T.E., Lin, H., Collins, M.F., Buyers, W.J.L.,
Menovsky, A.A., and Mydosh, J.A. (1990c). Physica B
to appear.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller,
4;».0?7, and Teller, E. (1953). J. Chem. Phys. 21:

Muller, K.A., Berlinger, W., Drumbheller, J.E., and Bednorz,
J.G. (1983). Multicritical Phenomena (R. Pynn and A.
Skjeltorp Eds.) p. 143, New York: Plepum.



100

Niedermayer, F. (1988). Phys. Rev. Lett. 61: 2026.
Nielsen, M. and Moller, H.B. (1969). Acta. Cryst. A25: 567.

Ornstein, L.S. and Zernicke, F. (1914). Proc. Sect. Sci. K.
Med. Akad. Wet. 17: 793.

Plumer, M.L., Caille, A., and Hood, K. (1989). Phys. Rev. B
39: 4489.

Plumer, M.L., and Caille, A. (1990). Phys. Rev. B 41: 2543,
Plumer, M.L. (1990). private communication.
Press, W.H., Flannery, B.P., Teukolsky, S.A., and

Vetterling, W.T. (1986). Numerical Recipes. Cambridge:
Cambridge University Press.

Rohrer, H. and Gerber, Ch. (1977). Phys. Rev. Lett. 38: S09.
Rushbrooke, G.S. (1963). J. Chem. Phys. 39: 842,
Shapira, Y. and Foner, S. (1970). Phys. Rev. B 1: 3083.

Shirane, G. and Minkiewicz, V.J. (1970). Nucl. Instrum.
Meth. 89: 109.

Squires, G.L. (1978). Introduction to the Theory of Thermal

Neutron Scattering. Cambridge: Cambridge University
Press.

Stanley, H.E. (1971). Introduction to Phase Transitions and
Critical Phenomena. Oxford: Oxford University Press.

Steeman, R.A., Mason, T.E., Lin, H., Buyers, W.J.L.,
Menovsky, A.A., Collins, M.F., Frikkee, E.,
Nieuwenhuys, G.J., and Mydosh, J.A. (1990). J. Appl.
Phys. to appear.

Steinitz, M.O., Kahrizi, M., and Tindall, D.A. (1987). Phys.
Rev. B 36: 783.

Tranquada, J.M., Buyers, W.J.L., Chouw, H., Mason, T.E.,
77 Sato, M., Shamoto, S., and Shirane, G. (1990). Phys.
Rev. Lert. 64: 800. o

Tucciarone, A., Lau, H.Y., Corliss, L.M., Delapalme, A., and
Hastings, J.M. (1971). Phys. Rev. B 4: 3206.

Visser, D., Harrison, A., and Mclntyre, G.J. (1988). J. de
Phys. C8: 1255.



101

Watson, R.E. and Freeman, A.J. (1961). Acta. Cryst. 14: 27.
Wilson, K.G. and Kogut, J. (1974). Phys. Rep. 12: 75.



