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ABSTRACl'

Uranium !eries dating is a well established technique for dating carbonate

deposits of the la~t 350,000 years. The most common carbonates which have been

dated are cave calcites (speleothem) and corals. The technique relies on the build­

up of 2JO.rh over time by radioactive decay of 238U and 234U, in materials which were

initially free of 2»rh. The ratios of the activities of ~/234U and 234U/238U &e

entered into the standard equation for radioactive decay which is then solved for

time. These ratios have traditionally been measured by counting the aJpha particle

cmissions from each isotope. An alpha counting laboratory was set up in McMaster

in the early 1970s and is still in operation today. The technique has been improved

considerably but the precision of dating by this fllethod is limited by the $tatisti<.:s of

counting small numbers of emissions from the trace quantities of isotopes trapped

in the carbonate cljstallattice. Typically U ratios can be measured to 10' precision

of 1% and Th ratios to 3%. This leads to an error in the estimated date of -10%.

Alpha counting r'~quires a rather large sample, varying from -10 g to -40 g

depending on the U content and age of the sample. It also requires extensive

chemical preparation of the sample to isolate U and Th from the matrix and to

complctely separate U from Th.

lbe development of high resolution and high abundance sensitivity thermal

ionization mass spectrometry in the last decade has allowed for the measurement of

heavy atom ratios to high precision with very small samples. The McMaster geology

departmcnt acquired such a machine in the 19805 and it has been adopted for the
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measurement of 230-yn/23otU and 230tU/238U ratios. The typicalla precision attainable

for U ratio measurement is 0.03% and for Th ratios 0.15%, which leads to an error

in the estimated age of only -0.5%. This is more tha.n an order of magnitude better

than tha~ attainable by alpha counting. The sample size required varies from -0.3

g to -6 g depending on the U content and age of the sample. Thus sampling can be

at higher density or resolution than for alpha counting. The technique requires

rigorous purification of LJ and Th from the matrix but separation of U from Th can

be rough, so the chemical preparation is simpler than that for alpha counting and

usually involves only anion exchange procedures. Because the samples are so small

and the technique so sensitive, contamination must be carefully avoided: aU

operations take place in a very clean environment.

Uranium and thorium ratios cannot be measured directly. Therefore, a tracer

or "spike" of artificial isotopes of U and Th in a known ratio must be added. 2J6U

and~ are used. The spike was made Clnd its concentration and isotopic ratio

calibrated agamst four standards of different origin. The accuracy of U ratio

measurement was tested by measuring NBS U standards. The accuracy of Th ratio

measurcment cannot bc directly tcstcd bccausc no Th :sotopic standards are

available. Instcad it was tested by dating thc McMaster standard speleothem 76001.

The main calcite samplc to be dated was a piece of flowstone from -15 m in

a flooded Bahamian cavc. The many layers of calcite deposition separated by thin

coatings of mud indicate that thc cave was alternately air-filled (during calcite

deposition) and watcr filled (cessation of calcite deposition) over the last 300,000
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years. The drownings occur when sea level rises. The dates on the layers of calcite

immediately below and above the mud-coated hiatuses give limits on the times when

sea level must have been below ·15 m elevation. The periods on non-deposition

indicate when sea level was above -15 m. The dates on this sample allowed the

construction of a sea level curve for this area of significantly higher precision than

was formerly possible. The conclusion was reached that sea level events correlate

with the marine foraminiferal isotopic signature which has been fItted to an orbitally­

tuned timescale. This gives Si'l ".lg support for the orbital geometry theory

(Milankovitch cycles) of climatic change.

The second sample dated was a thermal water calcite crust from Wind Cave,

South Dakota. High resolution dating of this 2 cm thi(;k crust suggested that

degassing is the principai control ora sub-aqueous crust formation and revealed the

behaviour of the aquifer over two glacials and one interglacial. This has bt:en

modelled in terms of aquifer recharge rate and mixing of waters of surface and

deep groundwater origin.

TIle third sample dated was a layered stalactite from Rat's Nest Cave,

Alberta, which promised to yield a record of glacial advance and retreat in the Bow

Valley, Rocky mountain foothills. Dating of the very thin layers simply revealed that

calcite deposition correlates with interglacial periods and hiatuses correlate with

glacials. A sample with thicker layers 3nd a greater number of layers is required for

closer resolution of individual advance and retreat events.

TIle rest I)f the study involved a small amount of test dating of other
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materials. Dating of calcite raft debris from Carlsbad Caverns gave some information

on the rate cf drawdowp. of the water table. Dating of corals established that the

technique works very well on this medium. Finally, dating of tiny samples of ostrich

eggshells from the Sahara demonstrated that U-series dating may work on eggshells

if they can be shown to have been closed to isotopic migration for most of their

history. It also indicated that this now arid ?Tea was wetter during th~ last

interglacial.

Mass spectrometric dating of carbonates is now established at two world

centres: Caltech and McMaster. In the future it may completely replace alpha

counting for Th/U and U/U dating. However, alpha counting is still the best option

for Pa/U dating and other techniques which require the measurement of trace

amounts of isotopes with high activities.
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