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Abstract

This thesis studies two problems for the first Weyl algebra A = A,(C), namely, Ore
localizations and irreducible representations.

Our contribution to the first problem is that we find two collections of torsion
theories which can be determined by Ore sets. The first consists of all torsion theories
generated by classes of simple A-modules which contains either all C[g]-torsion or all
Cip]-torsion simple A-modules, up to an automorphism of A (for instance, any torsion
theory generated by all but countably many isomorphism classes of simple modules).
The second consists of all torsion theories generated by classes of at most linear simple
A-modules.

The second part of the thesis studies the irreducible representations of A, i.e.,
the structure of simple A-modules. We generalize Block’s result for linear simple mod-
ules, namely, that every linear simple module can be expressed in the form C[X,a™!]
for some a € C[X], to arbitrary simple modules which satisfies two conditions which
are necessary and sufficient. The second condition is stated in terms of two invariants
of the similarity class corresponding to the given simple module, which are explic-
itly checkable. An important tool is an index theorem which relates two different

realizations of the same simple module.
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Chapter 1

Introduction

In this thesis, we study Ore localizations and irreducible representations of the first
Weyl algebra.

The first Weyl algebra, denoted by A = 4, = A;(C), is defined as a C-algebra
with two generators ¢ and p and a relation [p, q] = pg — gp = 1, where C is the field
of complex numbers. It also may be realized as the algebra of differential operators
with polynomial coefficients, that is, A = Cfg, ;‘-‘q—]

Dixmier studied the first Weyl algebra systematically in late 1960’s. His four
lemmas in [3] show how the multiplication in A can be expressed in terms of the
multiplication of polynomials in two variables; he determined that the group of au-
tomorphisms of A is geuerated by ®,,: p —+ p, ¢ — g+ Ap™ and Q;’A: q — q,
p — p -+ Ap", where ) is an arbitrary complex number; an elegant proof of this fact
was provided by Makar- Limanov [10]. Dixmier also classified the elements of A
into five classes, and described representatives for two of those, namely the so-called

“strictly nilpotent” and “strictly semisimple” elements, up to automorphisms of A.

Many aspects of the Weyl algebra A, and its generalizations A,, were studied
by numerous people; cf. cg. the results and references in [12]. Except for basic facts,
Dixmier’s work, and the results of Block and Goodecarl (which will be described later),

1
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we could not find anything particularly apnlicable to our own investigation.

Ore localization in Noetherian rings has been studied by many people. Many
satisfactory results have been obtained for Noectherian rings with lots of idecals, cg.
FBN rings, Noetherian rings with the second layer condition, etc. However the first
Weyl algebra is a simple Noetherian ring, so it has no non-trivial ideals. This makes
localization in A harder since one cannot use analogues of localizations in commu-
tative rings. Jategaonkar’s second layer condition is not satisfied, either. Goodcarl
investigated the influence of the structurc of the injective modules on localization
questions for noncommutative Noetherian rings. Instead of studying the linkage be-
tween prime ideals, he defined links between uniform injective modules, and obtained
that such links provide obstructions to Ore localization. For the first Weyl algebra, he
proved that the elements which operate regularly on the injective hull of any simple
A-module S, denoted by CES, form an Ore set, and the corresponding localization
has a unique simple module. Thus he provided another example of Ore localization
in A, beyond Goldie’s localization which is determined by the Ore set A \ {0}, and
the well known localizations determined by the Ore sets Cig] \ {0} and C[p] \ {0}
This raises the question of finding all the Ore localizations in A.

Block determined the irreducible representations of the first Weyl algebra. He
proved that every Clg]-torsion free simple A-n.odule can be written in the form —2

AnBe
for some preserving element a, where B = C(g)[p] is the localization of A at C[q]\ {0}.
Moreover, he gave another description for linear simple A-modules, namely, S = -;,%;

is isomorphic to the A-module Cig, a™!}, where a = ap + 8 with «, 8 € C[qg] is “S-
regular” (An element is called S-regular if it operates regularly on ES’ for all simple
S’ not isomorphic to S.). At this point two more questions arise: First, is there
always an S-regular element for any C|g]-torsion free simple A-module S of arbitrary
degree n? Secondly, if such an element exists, can S be expressd in a similar form as
in the linear case? In other words, can one generalize Block’s theorem from linear to
arbitrary Cig]-torsion free simple A-modules?

Chapter 2 contains the basic definitions and facts about the first Weyl algebra,



which we nced in our investigation. In particular, we have a structure theorem for
the sct of torsion theories on the category of left A-modules, as an easy consequence
of the fact that A has Krull dimension one, namely, that there is a one-to-one corre-
spondence between isomorphism-closed classes of simple left A-modules and faithful
torsion theories on A-Mod. This theorem transforms the problem of finding Ore local-
izations in A, to the study of classes of simple A-modules, where Block’s classification
of irreducible representations of A provides some useful information. This work of

Block is described in Chapter 2, including the useful concept of indicial polynomial.

In Cbapter 3, we study the Ore localization in A. Our contribution to this
problem is that we find two collections of torsion theories which can be determined
by Ore sets. The first contains any torsion theory generated by a class of simple
A-modules closed under isomorphisms containing either all C{g]-torsion or all C[p]-
torsion simple A-modules. (In fact, we prove that any fairly large torsion theory, for
instance, any torsion theory generated by a class of simple A-modules which consists
of all but countably many isomorphism classes of simple A-modules, is a torsion
theory of this kind.) The second contains any torsion thcory generated by a class of
at most linear simple A-modules. These two collections provide a fairly large number

of examples of Ore localizations in A, including all the known results.

In general, consider the torsion theory ¢¥ genecrated by a class & of simple
A-modules. The natural candidate for an Ore set determining &% is the set Q(S) =
NsgsCES. In fact, if X is determined by any left Ore set at all, then Q(&) is left
Ore and determines €. We call the elements of Q(S) &-regular, and we characterize
them in five different ways.

Unfortunately, the problem of finding all Ore localizations of A is far from
solved, and we do not know even a single example of a torsion theory which is not an
Ore localization.

In Chapter 4, we study the irreducible representations of A, namely, the struc-
turc of simple A-modules. We have given a complete answer to the two questions

which arise from Block’s work. First, not every similarity class contains an S-regular



clement for the corresponding simple module S. Such an example is given in Sec-
tion 5. Secondly, not every simple module can be expressed in the form Cig,a™!]".
However, there is a large number of simple A-modules beyond linear simple modules,
which can be expressed in such a form. A necessary and sufficient criterion which
consists two conditions is given in Section 4. The second condition is stated in terms
of two invariants of the similarity class, and are therefore checkable on any particular
member. The whole machinery which we have developed to study the above two
problems depends on a careful study of the regularity of elements in each similarity
class. In fact, similarity classes are originally defined for simple B-modules, that is
two irreducible elements b, and b, are similar if and only if 'E%{ = TB%‘ The class
of elements of B which are similar to b is denoted by [b]. By Block’s classification
theorem, every Clg]-torsion free simple A-module is associated witk a similarity class.
Unfortunately, there is no good explicit description of the elements of [b], except in
the linear case. We try to find regular elements by studying the A-moduie <, for any
element a € A in a given similarity class. The two quantities bott-tor,a aud top-tor,e
are defined naturally at each place p € C. A criterion for bott-tor, is given, in which
the associated indicial polynomials play a crucial role. Two impotant invariants of
a similarity class are found, namely, the surplus, and the set of roots of the indicial
polynomials modulo Z at each place p € C.

An index theorem for the first Weyl algebra is established. It gives a quanti-
tative analysis of why Block’s result about linear simple A-modules cannot be true
in geuneral, and where the discrepancies are.



Chapter 2

Preliminaries

Throughout the thesis we use Z for the set of integers, Z= and Z* for the sets of
negative and positive integers, N = {0} U Z* for the set of non-negative integers, and

C for the set of complex numbers.

2.1 The first Weyl algebra

The main reference of this section is the book by McConnell and Robson [12].

Let A = A; = A;(C) denote the C-algebra with two generators ¢ and p and

a relation pg — gp = 1. Note that every element @ in A has a unique represen-
tation 3;; cijq'p’, with ¢;; € C for all 4,5 € N. Define the total degree of a as
max{i +j : ¢;; # 0}. Any 0 # a € A can be written uniquely as %, «i(q)p' or
™ 0 Bi(p)d’ with ai(q) € Clql, B;(p) € Clp] and @, # 0, B # 0. We say that a
has p — degreen and q — degree m, denoted by p —dega = n,q — dega = m, respec-
tively. This algebra first appeared in quantum mechanics as the algebra generated by
position and momentum operator. The noncommutativity of the generators reflects

the Heisenberg uncertainty principle. The first Weyl algebra may be realized as the



algebra of differential operators with polynomial coefficients, that is, A = C[q,%l.

- Then it is casy to prove the following:
Theorem 2.1 A is a simple Noetherian integral domain.

There is another integral domain closely related to A, namely, B = C(q)[p],
subject to the same relation pg — gp = 1. Every element of B has a unique rep-
resentation ¥; i(q)p’, where a;(q) € C(q) for all i. Therefore there is an obvious
embedding: A — B which we use to identify A with a subalgebra of B.

Theorem 2.2 B is a simple Noetherian principal left and right ideal domain.
Since B has such a nice structure, we always try to study the problems about

A that we are interested in, through their study over B.

A is a filtered ring, with the family {F; | ; € N} of additive subgroups of
A, where F; is the C-subspace generated by the ¢"p™ with n + m < j. This is the
standard filtration of A with respect to the generators ¢ and p. One has

A= U s,
JjeN

The following lemma shows how to multiply two elements of A, in terms of

the multiplication in the commutative polynomial ring in two variables.

Lemma 2.3 Let
z=3 aiq'r, y=3 Bid'V, 2= %d'P
tJ i i,J
in A, and

f=2 05XV, g=3 B XY, h=3 7 X'V’
g . iy

g 6J i,J



-1

in C[X,Y].

1) If = = zy, then

of 9g .1_6"'1' g
Y 0xX ' 2A3Y o°X

h=fg+ Foen
2) If = = zy — yz, then

of 8¢ Of dg 1, 8°f 8*¢ &°f d%g

h=(zvax ~axay) T algr #x ~ Ex oy

)4

8) For any ¢ € C[X], we have

#ap)q" = ¢"¢(qp + n), p"é(ap) = é(gp + n)p".

PROOF. Dixmier ([3], 2.2, 3.2). 1

Theorem 2.4 The group of automorphisms of A, denoted by AutA, is generated by
the linear automorphisms defined by

g—cg+ep, p— g+ p

with ¢\c) — cjc; = 1 where ¢;, ¢; € C, and the triangular automorphisms defined by

g—q,p—p+ flg)
with f(q) € Clq].

The set of anti-automorphisms of A is the set of coT witho: ¢g—p, p— ¢
and T € AutA.

PROOF. Dixmier ([3], 8) and L. Makar-Limanov [10]. ]

Theorem 2.5 The global dimension of A is 1, and Krull dimension of A is 1.

PROOF. See the book by McConnell and Robson ([12], 7.5.8, 6.6.15). |



2.2 The torsion theories on A-Mod

In this section, we first give some basic definitions. For any undefined notions and

proofs, one can refer to the books by Golan [4] or Stenstrom [141.

Definition and Proposition 2.6 A hereditary torsion theory on R-Mod is deter-
mined by any one of the following :

1) A torsion class T: a class of R-modules closed under extensions, colimils,

and submodules.

2) A torsion free class F: a class of R-modules closed under eztensions, limits,

and essential extensions.

3) A torsion radical T: a functor such that for any M € R-Mod, TM C M,
T =T, T(3%) =0 and for aeny NC M, TN =TMQN.

4) A dense filter D: a set of left ideals of R such that Dz~! € D for any
De®D andz € R, and if I is a left ideal of R for which there ezists D € D such that
Ia* €D foralla€ D then I €.

5) An equivalence class E of injective module E: E, is equivalent to Es, if
there are embeddings E; — [[ E; and E, — [] E;.

Remark: For any hereditary torsion theory T, there is a quotient functor Q
on R-Mod, defined as Q(M)=Ex(2%) for any M € R-Mod, where Ex(M) is the
T-injective hull of M. (A module X is T-injective if and only if every diagram of the

form: 0 YI Y
Qa
X

can be completed commutatively by a map 8: Y — X, provided -:,L €T) In
particular, Q(R) = E;(T’%) is a ring. It is called the quoticnt ring of R with respect



to T, and denoted by g or Q.

In this thesis, we study hereditary torsion theories on A-Mod. “Torsion theory”

will always mean “hereditary torsion theory”.
Definition and Proposition 2.7 The following are equivalent for a torsion theory
T, with ils quotient ring Q:

1) T is a perfect torsion theory.

2) Q-Mod C 5.

3)2=Q®r -

4) D has a filter base consisting of finitely generated left ideals, and every
D € D is T-projective, i.e., every diagram of the form:
D

N N- 0

can be completed commutatively by a map f: D — N, provided N' € §, and N€F

is T-tnjective.

Corollary 2.8 Every torsion theory on A-Mod is perfect, and there is a one-to-one

correspondence between the sets of torsion theories and their quotient rings.

PROOF. A is a hereditary Noetherian ring, i.e., every left ideal of A is finitely
generated and projective, therefore T-projective, for any T. Hence every dense filter
D satisfies 4) in Definition and Proposition 2.7. This proves that every torsion theory
on A-Mod is perfect.

Let Q22 Qs Thenforany M €%, Q@M 20, @ M =0, thus M € T,
By symmetry, we have ) = T,. I
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Let us study the torsion theories T on A-Mod such that A € §, or equivalently

that A embeds into Q. Golan {4] calls such a torsion theory fazthful.

The following lemma holds for an arbitrary domain.

Lemma 2.9 Let R be a domain and T a torsion theery on R-Mod. If T # R-Mod,
then ¥ is faithful.

PROOF. Let T be not faithful, i.e. 0 £ T(R) € T. Let 0# t € T(R). Then there
exists a dense filter D € D such that Dt = 0. This implies D = 0 because R is
a domain. Since the ideal 0 annihilates everything, T 2 R-Mod, therefore we have
% = R-Mod. 1

Since the first Weyl algebra A is a domain, we have that A-Mod is the only
non-faithful torsion theory. The corresponding quotient ring is 0. Therefore, there is
no loss of generality if we study only the faithful torsion theories on A-Mod.

Definition 2.10 Let & be a class of simple left A-modules closed under isomor-
phisms. The torsion theory generated by & on A-Mod is denoted by &X.

Similarly, let G* be a class of simple righi A-modules closed under isomor-

phisms. The torsion theory generated by &° on Mod-A is denoted by Te-.

In this thesis, whenever we use a class & of simple A-modules, we tacitly

assume that & is closed under isomorphisms.

Theorem 2.11 There is a one-to-one correspondence belween classes of simple lcft
A-modules closed under isomorphisms, and faithful torsion thecories on A-Mod, via
S — F.

PROOF. Let us first prove that for any faithful torsion theory T on A-Mod there
exists a class of simple left A-modules & such that T=¢T.
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Since T is faithful, D £ 0 forall D € ®.
Claim: 4 has a finite length for any non-zero leit ideal D of A.

Let o # d € D, then &; — 4 is onto, therefore the Krull dimension of 5 is

less than or equal to the Krull dimension of ﬁ. Consider the descending chain
ADAIDAL DAL D ---.

It has factors % = A for any i € N. Since A has Krull dimension 1, £ has Krull

dimension zero, i.e., 4 is Artinian. Hence 4 has a finite length.
Let & = {S €T| S is simple}, then & C . Therefore &I is contained in %.

Let Comp(4) denote the set of composition factors of £. We have 6D = {D |
# € 6%} = {D | Comp($) € T}, by Stenstrdom ([14], Chapter 6, Proposition 2.5).
Let D € ®. Then -g- € T, therefore every composition factor of 1—’;- is T-torsion. Hence
Comp(%) C 6. This proves © C &9, therefore T is contained in &T.

Together we have € = &&.

By Stenstrom ([14], Chapter 6, Proposition 2.5}, we have that ¢¥ # A-Mod
for any &%, therefore T is faithful by Lemma 2.9, and any two different classes of
simple left A-modules generate two different faithful torsion theories. ]

In the special case where & consists only of the isomorphism class of one simple
module S, we write sT instead of T.

Definition 2.12 Let R be a ring, £ a multiplicatively closed subset of R, and M be
a R-module. M is called E-torsion, if for anym € M there ezists ¢ € T such that
ocm=0.

It is casy to check that the collection of all T-torsion modules forms a torsion

class. It is denoted by £, and the corresponding torsion free class is given as follows:



M is S-torsion free if for any 0 # m € M, there exists r € R such that orm # 0 for
alle € Z.

Definition 2.13 Let T be a multiplicatizely closed sct in a ring R. T is called a lcft

Ore set in R, if for any ¢ € £, r € R, there exist ¢ €% and r € R, such thal
r'e=0c'r.

Lemma 2.14 Let S be a left Ore set in a ring R and M be ¢ R-module. Then M is
S-torsion free if and only if ¥ operales regularly on M, i.e., om =0 for somec € T
and m € M impliesm =0.

PROOF. (<=) Suppose that ¥ operates regularly on M. For0# me M, taker =1,
then ol m # 0 for any o € E. This proves that M is Z-torsion free.

(=) ¥ M is I-torsion free, suppose that thereexist 0 #mE€ Mand o € L
such that om = 0. Since m # 0, there exists r € R such that o'rm # 0 for any
o € T. Since T is left Ore, there exist r; € Rand oy € & such that rjec = oy,
therefore 0 # oyrm = mom = 0. This is a contradiction. 1

Lemma 2.15 Let & be the class of all simple A-modules, £ = A\ {0}. Then T is

an Ore set, and £ =S. A finitely generated A-module is L-torsion if and only if il
has finite length.

PROOF. Since A is a Noetherian domain, T is an Ore sct by Goldie’s theorem.

Let S = 4 be a simple A-module, where I is a maximal left ideal of A. Take
any0£o€l. Wehaveo e Lando(l+)=c+ 1 = I. Hence T(S) # 0,

and therefore S = T(S) since S is simple. Consequently S is $-torsion. This proves
& C =%

It is clear that A is not E-torsion, therefore v T # A-Mod. By Lemma 2.9, =%
is faithful, therefore £¥ Ce T by Theorem 2.11. Hence we have T =5%.
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Let M be a finitely generated E-torsion A-module. Then the Krull dimension
of M, denoted by |M], exists (cf. ([10], 6.2.3)). Write M = $¢_, Am;. Then

=1
(8] = mas{] Am).

For each 7, we have Am; = anrtm.- . By the claim in Theorem 2.11, Am; is Artinian,
i.e,, |[Am;| = 0. Therefore, we have |M| =0, i.e., M is Artinian. Hence M has finite

length.

Conversely let M have finite length. Since every simple module is I-torsion,
M is X-torsion. |

The torsion theory determined by A4\ {0} is the largest faithful torsion theory.
It is called the Goldie torsion theory. The corresponding quotient ring is the Goldie
quotient ring. It is a division ring, which we shall denote by K. It is the injective
hull of 4, as A-module.

The quotient ring Q, for any faithful torsion theory T on A-Mod, will be
identified with the subring {t ¢ K | Dt € A for some D € D} of K.

Theorem 2.16 Hom(., A(%)) and Hom(., (£),) provide inverse dualities between
the categories of left and right A-modules of finite lengths..

ProoF. By ([8], A.1.5), this holds for every hereditary Noetherian prime ring. 1

Lemma 2.17 Homy(. , £) = Bxty(_, A), on the category of left A-modules of
finite lengths.

PROOF. The short exact sequence
K

0——>A—>I\'—->E——;0
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gives rise the long exact sequence

K
0 — Hom(M ,A) — Hom(M ,K) — Hom(3 ,%)
— EztY(M ,A) — Ext'(M ,K) — -

for any A-module M.

The connecting homomorphisms
Hom(M ,%) — Ext'(M ,K)
constitute a natural transformation (cf. [6] Chapter 3, Theorem 5.2).

If M is Goldie torsion, then Hom(M, K) = 0 since K is Goldie torsion free.
Ezt'(M ,K) = 0since K is injective. This proves that the connecting homomorphism

is one-one and onto. 1

Corollary 2.18 There is a one-to-one correspondence between the class of faithful
torsion theories on A-Mod and the class of faithful torsion theories on Mod-A, where
& corresponds to Tg- , with & = {§* | 5~ = Hom(S, K), S € ©}. Moreover the
quotient ring of & coincides with the quotient ring of Te- .

PrOOF. By Theorem 2.16, G — & is a one-to-one correspondence between iso-
morphism -closed classes of simple left and right A-modules. Together with Theorem

911 this establishes the one-one correspondence between faithful torsion theories on
A-Mod and Mod-A.

Let I be a nonzero left ideal of A. Define I* = {z € K | Iz C A}.

For any & € Hom(I, A), there exists an extension &: A — K, since K is
injective. Therefore Ia(1) = @(I) = a(I) € A, hence &(1) € I". This construction
defines 2 map Hom(I, A) — I".

Foranyt € I", define §: I — A viaz — zxt forany z € I. Then 8 €
Hom(I, A), and we have constructed another map /* — Hom(I, A).
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It is casy to check that these two maps are inverse isomorphisms, and that, if

Iy 2 I, the square
Hom(l;, A —— Hom(hL, A)

p 4 —

I; c I;
(where r is the restriction map) commutes. Consequently

Hom(Ig, A) ~ £
r(Hom(l,, A)) I}

Let ¢ be an element of the quotient ring of ¢&. Ther there exists D € 2 such
that Dt C A, therefore t € D",

Since 4 has finite length, we have a descending chain:
A=Xo2X2---2Xa=D
with 5= € 6, for 1 <i <.

Thercfore we obtain the ascending chain:

A=X6§X1‘g-..gx;=D'.

For each 17, the short exact sequence

gives rise to the long exact sequence

0 — Hom(X;_,/X;:, A) — Hom(X;_,, A) — Hom(X;, A)
- E‘Ttl(xl'—‘lth A) —* EItl(X;_h A) — e,

We have Hom(X;_,/X:, A} = 0since X;.,/X; is simple, and Ezt'(X;_,, A) =

0 since X;_, is projective (since A is hereditary).
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Thercfore we have

gy = Hom(Xe A)
X ’ r(Hom(Xioy, A))

Bzt

Using Lemma 2.17 we have

Xl1

(Kt Hom(X;, A) X‘
X L]

o=

63 Hom r(Hom(Xi—1, A))

= B2, A

DB, A=

This proves that -’-2{- has finite length, with composition factors in &*. Therefore

2 € Ts-, hence D is contained in the quotient ring of Ts-. In particular, ¢ belongs
to this quotient ring.

By symmetry, we have that the quotient ring of Tg-is contained in the quotient
ring of &X. |

2.3 Indicial polynomials

Since the concept of an indicial polynomial plays a crucial role in Block’s classification
of the simple modules of the Weyl algebra, we will study it in detail in this section.

Some generalizations which are used in our work are listed as well.

Recall that for any p € C, the valuation of C(q) at p, denoted by v,, is defined
as the map v,: C(¢) — Z, v,¢ = m, where m is the precise power of g — p in $(q).
This valuation extends to B = C(g)[p} as follows:

Definition 2.19 Let b= 3; b;p' € B, where b; € C(q). Forp € C, define
v,b = min{v,b; — i}.

From now on, we state the definitions and results which involve 2 single place

p € C, only for p =0 (and we usually omit the index p). Corresponding statcments
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for arbitrary p follow immediately by applying the automorphism of A defined by:
qg=tq—=p,Hp—p

Lemma 2.20 v is ¢ valuation on B.
PROOF. We must show that 1) v(a + b} = min{ve, vb}, and 2) vab = ve + vb for
any a, b € B.

Let m be the maximum of the p-degree of @ = ¥ a;p* and b = T bip*. Thus

a+b= Z(Gk + bk)pk.
k=0

Therefore,

v(a + b)

I

mgn{v(ak + b)) — k}

v

rn’.:im]:rnin{mz,c -k, vb. — k}}

v

min{ra, vb}.
This proves 1).

For 2),

ab = Z:a.-p"z by = Zae(z P'b;p’)
- TR ()]s

i F k=0

i i n4m
- D x () )i =E e
T 1 k=0 \ K 1=0
where bgk) = -8%((),-). For each [, vey 2 va + vb + I because of va; + vhpr—i — k 2
va+it+tvb+(I+k—i)~k=va+vb+!foralliand k. Hence vab2> va+vh

Let [y and I, be the largest integers such that va = ve, — 1), vb = vb, —
lo, respectively. We are going to establish the equality vab = va + vb by showing
vey 4ty — (I + ) = va + vb.



We have

ll—l i
k 5
Chi+h z Z ( ) },-)H-»H.-: + z ( ) ai:b§:+k +

=0 k=0

=141 &=0

n { M &
+ a!:bl'.' + z Z ( 3 ) a‘lng-){-f:+k—i'

Forisll—la.ndk20,since1,+lg+k—-i>11+Ig+k—ll=I-;+k2[2,
va;+ubxx+1,+k_.-—k>Va+i+vb+(ll+lg+k—z')-k=ua+vb+ll+12.

FOI'i: I]_ and k>0, since Il+lg+k—i > ll+12-—'12 I]+l'_'i—ll =12,
ua;+ubl,+;,+;,._,-—k>ua+i+vb+(11+12+k—i)—k=ua+ub+ll+lg.

For i > I, and k > 0, since va; > va+1, va; + vby jpiki — k> ve+it+rvb+
([1+Ig+k—i)——k=va+vb+z'1+lg.

But, for the last remaining term, rvay, b, =vay +vb, =vat+h+ vh+ b,

Note that v(a+ 8) = min{ve, v8} = vaif v8 > va, for any a and 8 in C(g).
Therefore the above observations yield vey o, = va+vb+ 1 + 1 as required. |

Lemma 2.21 Let b€ B, and
b=3 bt =3 0,
k=0 k=0

where b and b} are in C(g) for 0 < k < n. Define v°b = vob, where ¢ is the anti-
automorphism of A defined by ¢ — q, p— —p. Then v°b= minggken {vb; — &k} and
vh = v*b.

PRrROOF.

- Suat= 3w (4 ) o

k=0 k=0i{=0



L E41 it n ek
= Zp‘[bk-( )b£131+---+(—1) ‘( )b& 9]
k=0 1 n—k

= > b
k=0

where b¢) = %‘- for0<k<n,¢, jeN.

Note that

n

ob = o3 p*0p) =3 a(p*b})
k=0 k=0
k

k=0 =0

Therefore we have

vh= ozgél“{vb; -k}
Since

vbp 2 min {vb;—J}

> min {vb+(k+j) -7}

0<i<n—k

= vb+k,

v*b > vb. Since ¢? is the identity map on A, this inequality implies

v'b = vob < v'ab = vo’h = vb.

Therefore we have v*b = vb.

= ool = ; b(-p)* = 3 (=1)*53p*.
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Lemma 2.22 1) For j € N, (qp) = Ti_, ding*p*, where djx € N for 1 < k < j,

and d;; = 1.

2) The family {¢'(qp)’}i, jen (or {(gp)q’}) is linearly independent over C.



3) For any k € N, we have

¢o* = gplep—1)---(ap—k+1)
p*¢* = palpg+1)---(pg+k—1).
ProoF. 1) Induction on j.
For j = 1, we have (gp)! = qp, where d;; =1 € N.

Suppose that (gp)’ = Thq dixg*p* with dji € N. Then
. i
(o) = (Z dskq"p") qp
k=1

J
— Zdjk(qk+1p&+l +qupk)
k=1
J+1 ‘
= Y (1 +kdi)g'p
k=1
I+l . &
= Z di41kq P
k=1

where dj4yx = djg-1 + kdje € N, In particular, d;1 541 =d;; +0=1.
2) Suppose we have
X = ZJ: cialap) = (2 cia gy =0,
i I
where ¢;; € C. We have to show ¢;; = 0 for 2l ¢ and j.

Suppose not, let m be the largest integer such that 3; cimg® = cmlq) # 0.
Therefore ¢, (q)g™ # 0. On the other hand,

em(g)(gp)™ = %(Q)dequpk = cm(g)(g™p™ + lower terms in p)
k
= cn{q)g™p™ + lower terms in p,

and therefore

X = (em(g)g™)p™ + lower terms in p.



We conclude ¢,,¢q™ = 0. This is a contradiction.

3) (cf. [3], 3:2). 1

Lemma 2.23 Let a € A. Write a = Th_gaxp® = Troop ap with ax = Tisoaud’
and a; = Tipoaiq € Clgl, for 0 <k <n. Then
g™a = 3 ¢05gp),

320

ag™ = Y, Oj(-pa)d,

20

where

0i6) = 3 ctrmarib(E—1)--(E—k+1),
k=0

03(6) = 2 (-Deirrars€E—1) - (E—k+1)
k=0
are polynomials which are uniquely determined by a. Furthermore,

0;(€) = 8;(—¢ — (va+j +1))-
Proor. We have
q—vaa = Z(q-w—kak)qkpk
k=0

g(q‘”"‘ak)qp(qp ~1)---(gp—k+1).

Note that ¥(¢~**~*ay) = —va — k + va, > —va + va = 0 for each k. This
implies @y = 0 for any ! < ve + k. Therefore g~**~%a; = Tiyoaug"* =

2250 Crpivat;q € Clgl- Hence we have

¢ = 3 (Y erpsversgplep —1)---(gp =k + 1))
20 k=0

= 3 ¢9;(qp),

320



where

0,(6) = 3" anisrari€lE = 1) (E =k +1)

k=0
for all 7 > 0. By Lemma 2.22, such an expression is unique.

Similarly we have
n
aq—ua = E pqu(a:q—-k—uc)
k=0
= S(pa)pg+1)---(pg+k—1)(azg™ ™)

jzo
Note that vajq** = vaf —va—k 2 ve—va=va—va = 0 because va = va
by Lemma 2.21. This implies that aj =0 for any ! < va + k. Therefore g *a} =

« o=va—k+l i
Trodud = 2550 Ok kivati T : Hence we have

a = (3 (pa)pa+1) (Pa+ k= Dofpsrass)?

730 k=0
= ;o(go(—l)k(_m)(_pq - 1) teT (—Pq —k+ l)a;.k+vu.+j)qj

where .
03(8) = L (-1 eippassfE - 1) - (E =k +1)
k=0
for all 7 > 0. By Lemma 2.22, such an expression is unique.
For each 7 > 0, since
Y Oj(-pe)d = ag™
jz0
= ¢*(¢""a)g™"

= ¢ (3 ¢0;i(ap))e™™

iz

= 3 ¢°*0;gp)e™""
iz

= Y 0gp—(va+ )¢
iz

= 3°0;(pg—(va+j+ 1)),

j20
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we have
Q3(—pg) = O;(pg — (va+j +1)),
by Lemma 2.22, therefore
03(€) = 0;(~& — (va+j +1)),
forall 7 > 0. |

Obviously, the definitions of ©;(£) and ©3(£) depend on the choice of the
element a € A. If necessary, we shall indicate this quantity by an extra subscript.

The following is Block’s definition of the indicial polynomial. (In (3.2) of [1],
he states this definition for more general algebras. The special case of our algebra B

is written out in [2], except for a change of variable, A = —£.)

Definition 2.24 Let b€ B, b= Tiy0bip®. The polynomial

Ou(8) = D (g™ be)(0)E(E — 1)--- (6 -k +1)

k>0

is called the indicial polynomial of b.
Note that (g=*b=*b;)(0) is well-defined because vb; > vb+ k, for all k.

Lemma 2.25 Fora € A, the indicial polynomial ©,(£) coincides with the polynomial
©o(€) of Lemma 2.23.

PRrOOF. By definition,

0u(§) = Y (¢ )0} —1)---(E—k+1)

k>0

= Y Ckwatsl(€ = 1)+ (§ = k +1) = Og(¢).

k>0
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We shall call the ©;(¢) of Lemma 2.23 the associated polynomials of the element
a € A

The following is Block’s product formula for indicial polynomials.

Lemma 2.26 Let a, b€ B. Then

Bab(€) = Oa(€ + v)Os(£)-
Proor. ([1], Lemma 3.3.2) |

The expressions obtained in Lemma 2.23 for an element a € A, are very useful

later on. As a first application, we give an easy proof of Lemma 2.26, for the special
case of elements of A:

Let ©_;(¢) denote the associated polynomials for z € A, defined in Lemma
2.23. By Lemma 223 and Lemma 2.3, we have

eb = (Y 70.;(a))e” Y ¢“Osxl(ap))

i>0 k>0

T ¢t (0. 4(ap)g"*)Os(ap)

Jk20

= 3 ¢t 5(gp + vb + K10u(ep)-
320

On the other hand, we have

ab=¢"*Y ¢'Ou(ep)-
120

By comparing the coeflicient of g"°t, we obtain
Oab,0(€) = Ba0(€ + ¥0)Os0(£)-

2.4 The irreducible representations of A

In this section, we will briefly introduce Block’s work on the irreducible representa-

tions. The results from 2.31 to 2.34 are his. Most proofs provided herc are simpler



than his, because we only need the special casc of his results referring to the Weyl

algebra. One may refer to [1] for the general statements and proofs.

Lemma 2.27 Let T = Clq]\{0}. Then T is a two-sided Ore set in A and the quotient

ring of v% is B = C(q)[p]. Furthermore, every S-torsion module is semisimple.

PROOF. Let a € A with p-degree n, 6 # ¢ € Clg]. Then
k
]

n n k
¢n+1a = ¢n+l Z kak = E(Z (
k=0

) P (gm0 (—1)).
=0 j=0

Note that (¢"t1)} = ¢; for some 3; € Clg], where j < k < n. Therefore
é"tla = bo for some b € A. This proves that T is a left Ore set. Similarly, one can
show that ¥ is a right Ore set, hence T is a two sided Ore set in A. It is clear that
the quotient ring is B.

Let M be a C[g]-torsion module. Let 0 # m € M. There is ¢ € Clg] such
that ¢m = 0. By ([11], Theorem 5.7), we have that fé is a direct sum of C[g]-torsion
simple A-modules. Therefore Am = 81134111 is semisimple as a factor module of -;‘%.

Hence Am C SocM. This implies m € SocM. Hence M = SocM is semisimple. 1

We shall simply call a Clg] \ {0}-torsion (or torsion free) module Clg]-torsion
(or torsion free).

It is easy to show the following lemma:

Lemma 2.28 Let T be any torsion theory on A-Mod and S e simple A-module. Then
S is either T-torsion or T-torsion free.

PrROOF. Consider the S-.torsion radical T(S) of 5. T(S) is a submodule of 5,

therefore T(S) = 0 or T(S) = S because S is 2 simple module. Hence S is ecither
torsion [ree or torsion. I
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We will characterize the set of simple A-modules according to whether they

are Clg}-torsion or Cg]-torsion free. The structure of 2 Clq}-torsion simple A-module

is explicitly known.

Proposition 2.29 1) Forp € C, ;—G“-‘_—p)- is a simple Clq]-torsion A-module.

2) If M is a simple Clg)-torsion A-module, then therc ezists p € C such that
M ~

A(q-n)

%) A(qim) A(c ~7y if and only o=

PROOF. 1) Without loss of generality, let us assume p = 0. Let M be a nonzero
submodule of &, and 0 # m € M. Write m = (T2, cp') + Ag with ¢ € C,
0<i<n,and ¢, # 0. Then

m = P agp)+Ag
=0

= EG(Z ( )P""n(n— 1)---(n = k+1)g""*(-1)%) +Aq

i=0 k=0
= eunl(=1)* +Aq € M.

Hence we have 1+ Ag € M, that is, M = ﬁ-. This proves that Z;AT, is simple.

2) Let M be a simple C[g]-torsion A-module. Let 0 3 m € M. There exists
0 # F € Clq] such that fm =0. Therefore 0 9é I = annamNClq) € Clg]. Let F bea
minimal ideal contained in 9-1['-’1 Then a.nncm 7 is a maximal ideal of Clq], thcrel'orc
it has the form C[q)(g — p). Note that 3 C 91[‘-'1 2 Clqlm. Let 0 # z € Clglm be the
image of some element 3. Then (¢—p)z =0, therefore A(g—p) € ann,z. But A(g—p)

is maximal by 1). Therefore we have annsz = A(g — p), hence M = Az & 7\'(7:4-71'

3) ({11}, Proposition 5.6). |

Now let us characterize the C[g]-torsion free simpic A-modules.
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Theorem 2.30 The {wo maps S — B®4 5, T — SocsT cstablish a one-one
correspondence between the isomorphism classes of simple C[q]-torsion free A-modules
S and of simple B-modules T

PROOF. By Corollary 2.8 the C[g]-torsion theory is perfect. Therefore, in particular,
its quotient functoris Q= B®, - [ Sisa Clq]-torsion free simple A-module, then
9(8) is a simple B-module.

If T is a simple B-module, since B is a principal ideal domain there exists
some irreducible element b € B such that T = 2 D 4£8b = 4. As &5 is nonzero
and of finite length, we obtain Socs(T) # 0. Then Q(Soc,.tT) 2= T, and consequently

Soc T is simple.

It follows immediately that the maps are inverse of each other, up to isomor-
phisms. 1

Two irreducible elements by, by € B are called similar, b; ~ b, if B"i‘ = BE:»:
We denote the similarity class of b by [b] and also by [S] where S is the Cjg]-torsion
free simple A-module corresponding to 5; by Theorem 2.30.

We note that the p-degree of b is positive, and is an invariant of {b] (since it
equals the C(g)-dimension of %). Again we transfer this concept to the corresponding
S, and talk of the degree of S. In particular, we call § linear or quadratic, if this
degree is 1 or 2. It is natural to extend this degree to Cf{q]-torsion simple A-modules,
by giving them the degree zero.

There is a stronger equivalence relation, by o b,, dcfined by Bb = Bb,, or
equivalently ¢b; = b, for some 0 # ¢ € C(g). We note that the indicial polynomials
O3, (§) and Oy, (£), for such strongly similar elements, differ only by the nonzero scalar
factor {g~*®$)(0), and therefore have the same roots.

For any irreducible b € B we can find a € A such that a =~ b (just multiply b
by a common denominator of its coefficients). We may choose a to be left-normalized,

ie. a € A\ fA for any nonconstant f € C[g] (remove the greatest common divisor
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of the coefficients). Such a left-normalized a € A is uniquely determined, up to a
nonzero scalar, by being strongly similar to a given b € B. This construction will be

used frequently, to relate an irreducible element of B to a strongly similar element of
A. In particular, [8] = (C(g) \ {0}) - ([ N A).

Definition 2.31 Let b € B, p € C. b is called p-preserving if ©,,(6) = 0 has no

solutions in Z~. b is called preserving if b is p-preserving for all p.

Remark: 1) b is preserving if it is p-preserving for a certain finite set of p’s,
pamely, the set of zeros of the leading coefficient and the set of poles of the coefficients
of b (cf. (1], 3.4).

2) If b is regarded as the differential operator Ti-o ﬁj(a%)j of order n, then
©,.,(£) coincides with the indicial equation relative to the singularity p (cf. {1}, 3.2).
N

3) There is always a preserving element in each similarity class (cf. [1], Lemma

3.4). Obviously one can then also find such an element which lies on A.

Lemma 2.32 Let I be a mazimal left ideal of B. If for every Cl[g]-torsion simple

A-module S, there exists an element of AN I acting injectively on S, then the left
ideal AN T of A is mazimal.

PROOF. Let J D AN, where J is a maximal left ideal of A. The simple module -‘_‘,1
is either C[g}-torsion or C[g]-torsion free. In case 4 is Clgl-torsion free, B 4 = &
is a simple B-module. We have AN BJ = J 2 AN, and this implies I € BJ. But

T is maximal, thus I = BJ and ANI=J. Thus AN T is maximal in this case.

Now let 4 be Cig]-torsion. By the assumption, there exists a € AN such that
a acts injectively on 4. We have therefore a(l + J)#0. Butsincea€ ANICJ,
a(l +J) =a+ J =0. This is a contradiction, so this second case does not occur.

Lemma 2.33 Let a € A. Then a is 0-preserving if and only if the element g~*%a of
A acts injectively on £-.
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PROOF. Write a = ¥}_oa;p’ with a; € Clg]. Since va < va; — j for all j, we have
q~**"a; € Clg], and in particular ¢™*“a € A. For any k € N, we obtain

g pt = ¢y e p

7=0

= Zn: g a; (P )"

=0

= i g**a;(gp)(gp— 1)+ (gp — j + 1)P*

= Zn:q‘“"'aj(qp) - (gp -7 +2)p"(pg — k= J)

=0

T g ia;(qp)-- (p— j +2)p*(—~k —3) (mod Ag)
=0

S griapt(—k — 1)(—k —2) -+ (k= j) (mod Ag)

_‘;(q-“-fa,-)m)(-k C1)(—k = 2) - (=R = )P+
ii-lower terms in p

= O.(~k—1)p* + lower terms in p.

Let @ be 0-preserving. Any nonzero element of _% has a representative 0 # z €
Clp]. If z = zop* + lower terms in p, where 0 # zo € C, then the above observation
shows
g~%a -z = 200,(—k — 1)p* + lower terms in p  (mod Ag).

Since a is 0-preserving, ©,(—k—1) # 0, and therefore ¢~**a-z + Aq # Ag, e, g%

A

acts injectively on =

Conversely, suppose that a is not 0-preserving, then there exists £ € N such
that ©,(—k —~ 1) = 0. The above observation shows that ¢™**a maps the (k + 1)-
dimensional vector space spanned by p* + Aq, p*~! + Agq,---, p+ Ag, 1+ Aginto
the k-dimensional vector space spanned by p*~! + Aq, ---, 1+ Aqg. This proves that
g~*“a docs not act injectively on Aiq. |
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A

Theorem 2.34 Let a € A be irreducible and prescrving. Then 55

is sitmple (and

A~ A+Ba _ B
AnBa —  He SOCABQ)'

therefore
PrROOF. By Lemma 2.33, (¢ — p)™""a € A acts injectively on ;;(-;l_p—], for any p,
and obvious (g — p)~**°a € AN Ba. Thercfore, by Proposition 2.29 and Lemma 2.32,

AN Ba is a maximal left ideal of A. This proves that 2= is simple. 1




Chapter 3

Ore localizations in the Weyl
algebra

From Chapter 1 we know that any hereditary torsion theory on the category of left A-
modules is generated by a class of simple A-modules, and is a perfect torsion theory.
An interesting question arises: which of these torsion theories can be determined by
left Ore sets? Or, equivalently, for which torsion theories does the corresponding
quotient ring have the form A for some left Ore set £ in A7 We will call such a

torsion theory Ore.

In this chapter, we study Ore localization in A. We first state the known
results about this problem, some direct consequences, and a characterization of Ore
localization in terms of regular elements. We then give our own contributions. We find
that two collections of torsion theories can be determined by left Ore sets. The first
consists of all torsion theories generated by classes of simple A-modules containing
cither all Clg]-torsion simple A-modules or all C[p]-torsion simple A-modules. In
fact, we prove that any fairly large torsion theory, for instance, any torsion theory
generated by all but countably many isomorphism classes of simple A-modules, is
a torsion theory of this kind, up to an automorphism of A. The second consists of

all torsion theories generated by classes of at most lincar simple A-modules. These

31
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two collections of torsion theories provide a fairly large number of examples of Ore

localizations in A.

3.1 Definitions and Ore torsion theories

Let R be a domain and 0 € £ be multiplicatively closed subset of R. The left ring of
fractions of R with respect to T is a ring cR containing R as 2 subring such that 1)

o is invertible in g R for every o € I; 2) every element of cR is of the form o~'a for
c€Xanda € R

Proposition 3.1 Let R be a left Noctherian domain and £ be a multiplicatively closed
subset of R. Then cR exists if and only if T is a left Ore set.

PROOF. Stenstrom ([14], Chapter 11, Proposition 6.4). 1

The following are well-known examples of Ore localization in A.

Example 3.2 Goldie’s torsion theory (cf. 2.15).

Example 3.3 Forp € C, let £, = {(¢ — p)"}nen- Then L, is an Ore set. The
corresponding quotient ring is £,A = Clg,(q — p)'1lp]- The torsion theory ¢, % is
generated by the isomorphism class of the simple A-module -A(+_p,—. Oze can obtain
a similar result for p — p, for instance, by using the A-automorphism defined by
q—pp——¢

PROOF. See the proof of Lemma 2.27, letting ¢ = ¢ — p. 1

Example 3.4 Let S be any simple A-module. Then CES, the set of elements in A
which operate regularly on the injective hull ES of S, is an Ore sel. The simple

modules thal generate this torsion theory are the ones nol isomorphic to S.
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Proor. Goodcarl ([5], Theorem 3.2). |

Lemma 3.2 Let © be an isomorphism-closed class of simple A-modules, and let = €

A. Then following statements are equivalent:
1) 2 €CET for cvery T € &.
2) Hom(£-,ET) =0 for every T ¢ &.

3) z #£0, and every composition factor of f:- is conlained in G.

4) 4 €s%.

3) z is invertible in the quotient ring of &¥.

PROOF. 1) = 2): We arc given z € CET for all T ¢ &. Let « € Hom(£, ET) with
a(I) = t. Since 2t = &(F) = a(0) = 0 and = € CET, we conclude t = 0. Hence aa = 0
and Hom(&, ET) = 0.

2) = 3) We are given Hom(-&, ET) = 0 for every T ¢ &. Let
Az=XCX;C---CXn=4

be a composition series of £-. For each i, since the homomorphism 4 — -_,{3‘,- is

onto and Hom(Z, ET) = 0, we have Hom(xi‘,,ET) = 0. Since ix% c ;{-f‘? and ET
is injective, we have Hom(x—;;-—.‘_,‘-, ET) = 0. Heace %‘ﬁ # T. This proves that each

composition factor of <= is contained in &.

3) = 4): This implication follows from the fact that any torsion class is closed

under extensions.

4) = 5): Let Q be the quotient ring of &T. Since % € T and T is a
perfect torsion theory, we have Q ® '.:? = 0. It is easy to show @ ® -j‘; & % Hence
Q = Qx, i.c.,, there exists y € Q such that yz = 1. Note that (zy — 1)z =zyz —z =
z(yz)—z =z—2 =0and Q C K is a domain; therefore zy = 1. Hence z is invertible

in the quotient ring @ of sT.
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5) = 1): Let T be any simple A-module such that T € &. Then we have
T €s 3. Since T is essential in its injective hull ET and g§ is closed under essentiai
extension, ET €s §. Therefore ET is a Q-module because sT is perfect. For any
0 #t & ET, we bave t = (yz)t = y(zt), where y is the inverse element of z in Q.
Hence xt # 0 for any 0 # ¢ € ET. This proves that z operates regularly on ET. [

Definition 3.6 An element z of A is called G-regular if it satisfies the five equivalent
conditions of Lemma 8.5. The set of G-regular elements of A ts denoted by Q(S).

We call these elements G-regular, in spite of the fact that they operate regularly
on the injective hulls ET of the simple A-modules T which are not contained in &.
An G-regular element z belongs to © in the sense that the module £ €g T, and
that it is invertible in the quotient ring of &¥. We also find this terminology useful

later on. In particular, if & contains the isomorphism class of one simple module S
only, we shall call the S-regular elements S-regular, (or [a]-regular, where [a] is the

corresponding similarity class), and the set of S-regular elements will be denoted by
Q(5).

Corollary 3.7 Let z € A be irreducible in B, and S= SOCA%. Then z is S-regular
if and only if £ = S.

PROOF. Since z is irreducible in B, any composition series of % has precisely one
Clgl-torsion free factor. Therefore zis S -regular, if and only if all composition factors

of < are isomorphic to S, if and only if A xS, 1

The following remark provides some examples of S-regular elements:

Remark: Let z € A, irreduciblein B. If z is of the form cp™+lower terms in p,
where ¢ € C\ {0}, then § = £ is simple.

Indeed, since the leading cocflicient of z is a nonzcro scalar, 0, ,(§) = ¢£(€ -
1)---(€ =n +1) for every p, and therefore it has roots 0, 1, ---, n — 1. This means
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z is preserving. Hence A:Bz is a simple A-module by Theorem 2.34. Suppose there
exists an clement b € B such that bz € AN Bz and b € A. Write b = ;-=0 b;p’.

Let £o be the largest integer such that &, € Clg]. Therefore Tio, 41 b;p’ € A. Hence
we have (£%,b;p°)z € A. But the leading coefficient of this element is cby, € Clg].
This is a contradiction. We conclude that such an element does not exist, therefore

A _ _A_ oo
AN Bz = Ax. Hence - = 55 18 simple.

It is easy to prove the following:

Proposition 3.8 Let & be e maultiplicatively closed set in a ring R. The following

are equivalent:
1) T is left Ore.

2) T operates regularly on every (uniform injective) L-torsion free module.

PrROOF. 1) = 2): (cf. Lemma 2.14).
2) = 1): Claim: % is T-torsion for any z € X.

Suppose not. Let us consider the torsion radical T'( -%) of %. Write T(;%) =
fz, then T # R, therefure £/T(£) = £ # 0, and is E-torsion free. Consider
£ — £ — E(E) = @;¢r E: where each E; is indecomposable injective. Since 2
is essential in E(%), En % # 0 for every i. We have that E; " % is I-torsion free
as 2 submodule of £. Therefore T(E;) N (E; N &) = 0. We conclude T(E;) = 0 for
each i, since E; is uniform. Hence each E; is Z-torsion free, and is therefore X-regular
by the assumption. Let % 5 T — (ei)ier € ®icrE;. There exists i € I such that
¢; # 0. Sirce 0 = T — (z¢;); = (0);, we have ze; = 0 for every ¢ € I. Since z operates
regularly on E;, e; = 0 for every i € I. This is a contradiction. Hence -% is L-torsion.
We have proved the claim.

Now, it follows easily that T is a left Ore set in R: for any clements z € £ and
r € R, since % is T-torsion, there exists y € T such that yr € Rx, ic.,, yr =r'z for
some ' € R. 1
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Lemmaz 3.9 The indecomposable injective A-modules are precisely the injective hulls

of simple A-modules and the quotient division ring K of A.

PROOF. It is clear that ES is indecomposable injective for any simple A-module S.

K is indecomposable because it is the injective hull of A and A is uniform.

Let E be an indecomposable injective module, and X' any finitely generated
submodule of E. Then [X| < |A| = 1. Therefore X has either a 0-critical or 1-critical
submodule, say Y, and certainly EY = E. Y is O-critical, Y is simple. If Y is
1-critical, then Y is Goldie torsion free by Lemma 2.15. Therefore E is Goldie torston
free and hence a K-module. Since K is a division ring, E is a vector space over K.

We conclude E = K, because E is indecomposable. 1

Now we are ready to characterize Ore localization in terms of regular clements.

Proposition 3.10 Let & be an isomorphism-closed class of simple left A-modules.
Then &% is Ore if and only if & =q(&)%- Furthermore if & =g T for some left Orc
set T in A, then T C Q(S) and S) is a left Ore set in A.

PROOF. (=>) Suppose that & is Ore, i.e. wehave & =z T for some left Ore set ¥ in
A. Let z € 5. Since & is left Ore, - is I-torsion, and therefore 4 g¢t. We conclude
z € Q(S) by Lemma 3.5. This proves & C Q(6S), and therefore &% =¢ T Cae) -
On the other hand, for every simple A-module T ¢ &, we have T €q(s)5 since Q(G)
operates regularly on ET. Therefore ask CsT, and we conclude ¥ =q()3.

(<=) Let & =q()%. We show that Q(S) is a left Ore set in A. By Proposition
3.8, it is sufficient to show that (&) operates regularly on every uniform injective
Q(6S)-torsion free A-module E. By Lemma 3.9, E = ET for some simple A-module
T or E= K. In case E = ET, we have T ¢a)T =¢ T hence T ¢ &; therefore
Q(G) operates regularly on ET, hence on E. In case E = K, Q(S) trivialy opcrates
regularly. This proves that Q(6) is a left Ore sct in A, and consequently &% is Ore.
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Now let && =g T for some left Ore set & in A. By the first half of the proof,
we know £ C Q(6S) and & =q(6)T- The second half of the proof shows that Q(S)
is a left Ore set. 1

Remark: The above proposition tells us that Q(S) is 2 natural candidate for
a left Ore set, to determine the torsion theory &. In fact, if & is Ore, then Y S) is the
saturation of any left Ore set T such that & =z %, i.e,, Q) ={ze Azt € A}

The following lemma is known.

Lemma 3.11 Let {Ea}oen be a family of left Ore set in a ring R. Then the smallest
multiplicatively closed set T containing all T, is a left Ore set, and

2=V (9.
ax€A

Proor. Letoc € X, r € R. Write ¢ = 0y0n—1 -1 with g; € Z,; for some «; € A.
Since X, is left Ore, there is exist 0] € Lo, and 1y € R such that 0, = o}r. Since
Do, is left Ore, there exist o} € Za, and r2 € R such that 0y = a4r1. Therefore
r2(0201} = om0y = (0h0))r. If one continues this way, one obtains r, € R,c, €5,
such that ro = (¢,0’,_, -+ -0})r. Hence I is a left Ore set.

Since T, C I for every @ € A, £, C =T, and therefore Voep (2.%) S S

By Stenstrdm ([14], Chapter 6, Propositions 2.5 and 3.3) and the fact that Zq
are Ore sets, we have £T C Voea (2. %)

Together we have the equality. 1

The above lemma enables us to construct new left Ore sets from known ones.
For instance, we can apply this to the I,’s defined in 3.3.



3.2 Large classes of simple modules

We have seen some examples of Ore torsion theories on A-Mod with the property that
G is large: the Goldie torsion theory where & is the set of all simple modules (Example
3.2); and Goodearl’s torsion theories where & is the set of all simple modules except
for one isomorphism class (Exzmple 3.4). One can ask whether &€ is Ore if S 1s a set
of all simple modules except for finitely many or even countablely many isomorphism

classes. The answer is Yes! We prove that if & is sufficiently large, then &% is Ore.

The following lemma enables us to construct a left Ore set from another point |
of view.

Lemma 3.12 Let R be o Noetherian domain, & a left Ore set in R,andT=¢ R. If
Tisalefi OresetinT, then (P*xZ)NRisa left Ore set in R and (oug)nrR == T,
where & » £ is the smallest multiplicatively closed set containing @ and L.

PrROOF. Claim 1: @ is a left Ore set in T.

Let) € dandt € T. Writet = ¢"'rwithg¢ € Pandr € R. Since ¥ is left Ore,
there exist 1, € R and ¥, € ® such that ry3p = ¢yr. Therefore t =1 = @,
¥7ir, € T. Hence & is a left Ore set in T..

Claim 2: (& *Z)N R is a left Ore set in R.

First ® + £ is a left Ore set in T by Lemma 3.11. Let z € ($*Z)N R and
» € R. Since ® x I is a left Ore set in T, there exist y € dx%T and t € T such
that yr = tz. Writey = ¢~y and ¢t = ¢7't; where ¢ € &, 1 and t; € R. We
have ¢=lyir = ¢~ 2, Le., 1ar = 11z [t is clear that ;y = @y € (®*Z)N R. Hence
(&= Z)N R is a left Oreset in R.

Claim 3: ¢(oR) coincides with (¢.c)nrB-

Let o~}{¢-'r) €s (¢R) with o € E, 4 € P and r € R. o~ (¢7'r) = (¢o)'r
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and ¢o € ® * T C T. There exists ¢, € ® such that ¢;(éo) € R. Then (éo)~'r =
(¢va‘)-1¢f1(¢;r) = (élg‘)o-)-l (¢1r) €(@+S)NR R. This proves g(¢R) C(e-z)nR R.

Let 2717 €(¢ux)nr R, wherez € (P*L)NRand r € R. Writez = 0idi -+ 161
\Vith ¢i e ‘P a.nd o; e E fOl‘ 1 S i S k- I_IT P -l—lo.l-l _._¢;10,k-1r_ SinCe ¢‘__1,
o7 €g (¢ R) for all i, we obtain z7!r €g (¢ R). This proves (¢.c)nrR Cz (o R). 1

The following lemma is well-known.

Lemma 3.13 Let R be a principal left ideal domain. Then every torsion theory on
R-Mod can be determined by a left Ore set.

PROOF. See Stenstrdm ([14], Chapter 11, Proposition 6.1). 1

As an immediate consequence of Lemma 3.12 and Lemma 3.13 we have the
following:

Theorem 3.14 Let & be an isomorphism-closed class of simple A-modules. If &
contains all Clg]-torsion (or C[p]-torsion) simple A-modules, then X is Ore.

PROOF. Without loss of generality, let us assume that & contains all C[g}-torsion
simple A-modules. Therefore ¢¥ 2 c\()T- Let @ = Clg] \ {0}. It is a left Ore set
in A, and 9A = B = C(g)[pl.

Consider the torsion theory on B-Mod generated by {B®4 S| S € 6}. By
Lemma 3.13, this torsion theory can be determined by a left Ore set, say ¥, because
B is a left principal ideal domain. We conclude £(¢A) =(¢-g)na 4, i€, & =(oug)na
by Corollary 2.8, and ($ *Z) N A is a left Ore set in A by Lemma 3.12. |

Note that Goodearl’s theorem (Example 3.4) is a special case of Theorem 3.14

since the class of all simple A-modules but one isomorphism class certainly contains all
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Cl[g]-torsion or C[p]-torsion simple A-modules (since no simple module is simultancous

Clg]-torsion and C{p]-torsion).
In order to generalize Theorem 3.14, we have to use actomorphisms of A.

Lemma 3.15 Let ¢ be an automorphism of A. Then
1) o(I) is a mazimal left ideal of A for any mazimal left ideal I of A.
2) Define o(4) = a—‘(‘}-)- for any left ideal I of A. This induces a well defined map

of isomorphisms types. In particular, simple modules are mapped to simple modules.

8) a(T) is a left Ore set for any left Ore set T in A.

PROOF. 1) and 3) are straightforward.
2) Let I, and I; be two left ideals of A such that —;’i- = f‘;-; we have to show

A A

IR

o(ly) e(la)”
. A ot 4 a a4 ¢ A
Define 2 map 8: ;4 o Ty N

It is clear that B is well-defined, one-one and onto.

Since o~! is o~!-linear, ¢ is o-linear, and « is an A-homomorphism, 8 is an

A-homomorphism.
Together we proved :(;T) = £~ as A-modules.

If -"} is a simple A-module, then I is maximal. Hence &(I) is maximal by 1),
1

A is a simple A-module.

and therefore o(4) = o)

Lemma 3.16 Let ¢ € Aut A, and & an isomorphism-closed classcs of simple A-
modules. Define o(S) to be the isomorphism-closure of {a(4) | 4 € 8}. Then &X is

Ore if and only if ;s is Ore.
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PROOF. Let & be Ore, i.c., there exists a left Ore set ¥ such that & =g T. Clearly
o(E) is also a left Ore sct. We show ssf =ox) T. It is clear that if § is L-torsion,

then o(S) is o(E)-torsion. This proves (sf Coz) T.

Conversely, let S be o(E)-torsion. Then o=1(8) is E-torsion, and therefore
belongs to & since £¥ = &. This implies § = o(c18) € o(S). Hence ,(5)T Co(s)3-
We conclude that ,(5)T =,(6)F holds.

Using o~! € AutA, one proves similarly that if s¥ is Ore, then &% is Ore. 1

In order to show that &% is Ore, our next strategy is to find an automorphism
o in A such that o(6) contains all Cfp] (or Cfg]) torsion simple A-modules. If this
can be done, then by Theorem 3.14 ,(&f is Ore, and hence &l is Ore by Lemma 3.16.

Let f € qC[q). Define &; to be the class of simple A-modules which are

isomorphic to simple modules of the form m’fm for some p € C.

Theorem 3.17 Let & be an isomorphism-closed class of simple A-modules. If there
ezists an f € ¢C[q] such that &; C S, then ¢T is Ore. In particular, if & contains

all but countably many isomorphism classes of simple modules, then &% is Ore.

PROOF. Define o € Aut Aby g — ¢, p = p— f(q) (cf. 2.4). Since &y C G,
o(S)) € o(S). Note that o(&Sy) consists of all C[p]-torsion simple A-modules, this
implies that ,(gf¥ is Ore by Theorem 3.14. Hence ¥ is Ore by Lemma 3.16.

Claim: If f, g € qC[q] are different, then G, N &, = 0.

It is a well-known fact that two linear elements, say ap — 8 and e1p — By,
arc similar if and only if 8/a — B/ is a logarithmic derivative ¢'/¢ of an element
é € C(q)\ {0} (cf. [11], Proposition 4.5). Note that ¢'/¢ =3, 7=, if ¢ = {g—p)".
In particular, ¢'/¢ € Clq] if and only if », = 0 for all p if and only if ¢ € C\ {0}.

oA~ A
Alp+f+,a) = Alptgtem)

p+ g+ ps, therelore p+ f+pp=p+g+p2+ %' for some ¢ € C(g). This implies

for some p; € C, where t = 1,2, then p+ f + py ~
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%:f—g+p1—pg € Clg}, and thercfore 6 € C. Hence p+ [ +pr =p+g+p2, this

implies f — g = p2 — p1 € CNgClg) = 0 which is a contradiction. We have proved
the claim.

Suppose that & contains all but countably many isomorphism classes of simple
A-modules. Since there are uncountably many f € ¢Clg], and the & are pairwise
disjoint, S; € & for all f implies that & misses uncountably many isomorphism
classes. Thus if & contains all but countably many isomorphism classes, there is f
such that G; C &. Hence ¥ is Ore by the above argument. |

Remark: We could replace &; by {m | p € C} in Theorem 3.17, where
o is any automorphism of A, and the statement still holds. The problem is that we

cannot describe the automorphism images o{p) of p explicitly.

The method obviously requires that & contains 2 isomorphism classes. If
this holds, can one always find an automorphism & of A such that (&) contains all
Clpj-torsion simple A-modules? We do not know at this stage.

3.3 Small classes of simple modules

In the previous section, we have seen that if & is sufficiently large, then &€ is Ore. In
this section, we will study s¥ where S is a simple A-module. These torsion theories
are the most interesting and difficulty ones for the following reason: we recall that it
is unknown whether every torsion theory on A-Mod is Ore. To show that this is true,
it is sufficient to prove that every s¥ is Ore, because any arbitrary torsion theory &
is a join of the s%7s, where S € & and because of Lemma 3.11. On the other hand,

if a counter example exists, there will be one among the s

Unfortunately, we cannot decide this question. What we can show is that if S

is a lincar simple A-module, then s¥ is Ore.

Recall that a simple A-module S is linear if S is corresponding to a similarity
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class of lincar clements in B. Any linear element of A is always irreducible in B. Let

us take a close look of the indicial polynomials of a linear element.

Lemma 3.18 Let a = ap — 8 € A such that (o, ) = 1, where o = Tioad,
B =X;8;¢ € Clgl

1} If 0 is not a root of a, then ©.(€) = apf has the root 0.

2) If0 is a simple root of a, then O4(£) = ayé — By has the root ResyfSfax (the
residue of ffa at 0).

3) If 0 is a multiple root of a, ther ©,(£) = —fBo # 0 has no root.

4) Let 0 be a root of a. If ©,{N) = 0 for some integer N, then there exists
b € A such that aq¥ = ¢N*1b.

Proor. 1) If 0is not a root of &, then ap # 0, and therefore ©,(£) = apé.

2) Let 0 be a simple root of a. Then ap = 0, & # 0, and Fy # 0 since

(e, B) = 1. Hence ©,(§) = &y — By has the root fo/e;, which is the residue of 8/«
at 0.

3) Let 0 be a multiple root of . Then ap = @ = 8, and By # 0 since
(e, B) =1. Hence ©,(£) = —fp # 0.

4) Since 0 is a root of a, if ©,(N) = 0 for some integer NV, then 0 must be a
simple root of a, and therefore N = 3/, by 2). Note ag~! € A. We have

o’ = (ap—~B)¢" = o{"p+ Ng" ') - Bg"
= ¢"{ap+(ag”'N - B))
= ¢™lep+ [(New — Bo) + higher terms in g]
= ¢"(ap~(0+4q)) (for some ¢ € C[g])
= ¢"*(ag?)p - 4.
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Let b= (aq-l p—¢. Then b€ A and an = qi\'-i-lb. 1

Lemma 3.19 Let a = ap — B € A such that (e, B} = 1. Let S be the simple
A-module corresponding to [a]. Then following statements are equivalent.

1) a is S-regular.
2) O,,(§) = 0 has no solutions in Z for every root p of c.

8) Res,B/c & Z for any simple pole p of Bfc.

PROOF. 1) = 3): Given that a is S-regular, that is S = £ by Corollary 3.7. Let
p be a simple pole of 8/e. Since (a, B) =1, v, =1 and v, 8 = 0, therefore p is a
simple root of a. By Lemma 3.18 2), 6.,,(§) bas the root Res,B/c.

Suppose there exists an integer N such that ©.,(N) = 0. By Lemma 3.15,
there exists b € A such that a(g — p)¥ = (g — p)V*'b. If N € Z*, then the equality
implies that <= has a factor which is isomorphic to T:—T)' This is a contradiction. If
N € Z-, again we have a(g— p)" = (¢ — p)N+1b for some element b € A, therefore
(q—p)""la = blg—p)N. Let M = —N — 1. Then MeZt -N=M+1
and (q — p)Ma = b{g — p)*'. The equality implies that 4 has a factor which is
isomorphic to A_(qé—T)' This is a contradiction.

Together we have that the root Res,B/c of 0.,(€) = 0 is not an integer for
any root p of a.

3) = 2) Let 0 be a multiple root of a. By Lemma 3.183),0,(§) = -6 #0
has no roots.

Let 0 be a simple root of @. Then v =1 and v8 =0, and therefore »(B8/a) =

—1, i.e., 0 is 2 simple pole of . Hence Resof/a ¢ Z by 3). This implics that the
root ResoB/c of ©,(£) is not in Z.

Similarly, one can show that, for an arbitrary root p of a, ©,,(§) has no root
in Z.
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2) = 1) By the remark after Definition 2.31, the fact that ©,,(£) = 0 has no

A

solution in Z~ for every root p of & means that a is preserving, thus =55

by Theorem 2.34.

is simple

We show AN Ba = Aa. Since 4222 is Clg]-torsion, it is semisimple by ([11],
Theorem 5.7). It is sufficient to show that 4282 has no submodule which is isomorphic

to 3(—;‘_—” for all p. (The proof provided here is a specialization of the proof for Theorem
4.10 in Chapter 4.)

Suppose there is a Clg]-torsion simple A-module T that is isomorphic to a
submodule of 24282, Without loss of generality, let us assume T = 4. The image of
1+ Ag vields an element z € A\ Aa such that gz € Aa. Write gz = ra for some r € A.
Hence ra = 0 (mod ¢A). Note that » € gA, because r = ¢7 for some 7 € A implies
qz = gia hence = € Aa. Let r = T4 or;p’ (mod gA), where r; € C, r; # 0. We have
0=ra=Tiorip (ap— B) = (ra)p™! + (o1& + re('t — B))p + lower terms in .
This implies that ra is divisible by ¢, therefore 0 is a root of @. We also have that
a't — B is divisible by g, hence a3t — S = 0. If 0 is a simple root of «, then by
Lemma 3.18 2) ©,(£) = a1£ — fo. Therefore the integer £ is a root of ©.(£). Thisis a
contradiction. If 0 is a multiple root of , then by Lemma 3.18 3) 0,(§) = —f # 0.
But 0 = eyt — Bp = — S, this is a contradiction again.

Hence we have AN Ba = Aa. This proves that a is S-regular. |

The following is Block’s structure theorem for a linear simple A-module (cf.
(1), Theorem 7.1).

Theorem 3.20 Let S be a linear simple A-module with the corresponding similarity
class [b]. Then there exists a S-regular element @ = ap — B € AN [b] such that S is
isomorphic to the A-module

(C[q, a~'}; ¢ acts by multiplication, p acts as f/a + d/dq) .

Proor. By Lemma 3.19, an element a is S-regular if and only if a satisfies the
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condition:
v,Bja==1=Res,Bla § T ()

where p € C. Block proves that there is an element a in each lincar similarity class
which satisfies the condition (), and S & Clg,a™?], where g acts by multiplication,
p acts as B/a + d/dq (cf. [1], Theorem 7.1}. 1

Theorem 3.21 If S is a linear simple A-module, then sT is Ore.

PROOF. Let S be the linear simple A-module corresponding to the similarity class
(6. By Theorem 3.20, there exists an S-regular element a = ap — 8 € AN} such
that 4

~ O o -1

- Aa C[Q'la ]

where g acts as multiplication and p acts as D + ¢, where D = .%; and { = g

(Since p acts as D +1, a = ap — B acts asaD + -8 =aD. Hencea™'e
should act as D, and (a~'a)*** should act as D**! and therefore should annihilate

7.

Claim 1: For every k € 7, the element a — ka' belongs to AN [a] and is
S-regular. Moreover a*a = (a — ka')a*.

We have o*e = o*(ap — ) = apaf — ka*~'o/) — o f = (ap - B — ka')ok =
(a — La’)a" If k > 0, from the chain Acfa C Aa C A, we have that <2 has the
factors £ and -A:. From the chain A(a— ka'Yo* € Aok C A, we have that m has
the factors m and 2z. By the Jordan-Halder theorem, we have 4 = A(a_.ka)
Hence a — ko' is similar to @ and S-regular. If k < 0, we have ax -k = a~*(a — ko),

and the same type of argument applies.

Claim 2 For every k € N, the element o**!(a~'a)**! belongs to A. Further-
more

o)t = (a — ka) -+ (@ — 2a')(a — &)a



is S-regular and annihilates ¢¥, and therefore also annihilates ¢, -+, ¢ and 1.
Induction on k.
Fork=0,ale"la)=a€ Aanda-1=aD:-1=0
Supposc the statements hold for & — 1.
For k, using the induction hypothesis and the claim 1 we have

i a e} = o(a*(ala)F) o a)
= of(a—{k—1)a")---(a —2)(a - a)a)(a" a)
= af(a— (k—-1)a’)---(a -2 )(a - c")aac""]a
= ofa"{a—ka')---(a—2a")a —a')]e

= (a—ka')---(a—2a")(a—a')e
and

(a — k) +(a - 26)(a — Yo ¢*
= (a—ka)---(a—2a")(a—o)[aD - ¢"]
= (a—ka')---(a —2')(a — o) [kag"]
= k[(a—ka')---(a —2a")(a —a)a] - ¢*?

= ka[la—(k=1))---(a—2Ya—a")a-¢" =0

Such clements are S-regular because they are products of S-regular elements.

Now take an arbitrary element from Cig,a™!], it has the form a~'¢, where
l € N and ¢ € Clg)- Let deg¢ = k. By the claim 2, we have

(@a—ka')---(e—a)aa! -a~'s =0.
By the claim I, we have

(a=ka')---(a=a)aa = d(a=(k=Da')---(a = (1 - D)) a - (D).



Since Clg, a~'] is C[g]-torsion free, of acts injectively on Clg,a~']. Hence the clement

(a = (k—1a)---(a = (1 = H)a’)(a — {(—1)e"), which is S-regular, annihilates a~lé.

Now we have proved § € q(s). Foranysimple T' # S, Q(S) operates regularly
on the injective hull ET of T, therefore on T. Hence T is Q(S)-torsion free. This
proves that, up to the isomorphism, the simple module S is the only (S)-torsion
simple A-module. By Theorem 2.11, we have sT = qis) . This establishes that %
is Ore, by Proposition 3.10. 1

It is known that if S is a Cg)-torsion simple A-module, sT is Ore (Example
3.3). We deduce the following:

Corollary 3.22 Let G be an isomorphism-closed class of simple A-modules contain-

ing C[q]-torsion and linear modules only. Then & is Ore, and Q(S) is a left Ore set
in A.

PrROOF. This follows from Theorem 3.21 and Lemma 3.11. |

The following discussion will establish that Q(6) in Corollary 3.22 is actually
a two sided Ore set.

Lemma 3.23 For any ¢ € A, Hom(Z&, £y = Ez' (£, A)= 4.
PROOF. By the proof of Corollary 2.18, we have

A .. Hom(Ae, 4) _ (Aa)"
Ext(Zo A= THom(a, 4)) ~ 4

Note that (Aa)” = {t € K | Aat C A} = {t € K|t €a'A} =aA Itis
easy to check “—::—“ 2 £ via the left multiplication by a. Hence we have proved

Hom(4, Ky= 4, i
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Proposition 3.24 Let S be an isomorphism-closed class of simple A-modules cen-
taining C[g]-torsion and linear simple A-modules only, then Q(B) is a two sided Ore

sel.

PROOF. For any simple A-module S, §’ = Ext!(S, A) is 2 simple right A-module, by
Theorem 2.16. By Goodearl (cf. [5], Theorem 3.2), we have CES = CES'. Therefore,

we have

(8) = \CES = () CES' = ( &),
5¢s N
where &' is the isomorphism closure of {5’ | § € &}.

Since each § € & is either Cigl-torsion or linear, by Proposition 2.28 and
Theorem 3.20 there exists a, € A with p—dega < 1 such that § = A/Ae,. Therefore
S’ = Afa,A by Lemma 3.23. Hence & a class of simple right A-modules containing
Clg]-torsion and linear modules only. By the right-module analogue of Corollary 3.22,
Q( &') is a right Ore set.

By the above equality, we obtain that (&) is a two sided Ore set. 1

In general, we do not know whether a left Ore set in A is always two sided.

The above is more or less what we know when & is small. For quadratic simple
A-modules, we had an example such that sT is Ore, namely S = Soc;,‘g?; = %,
where a = p? — ¢>. We found later that a is the image of a linear element under an
automorphism of A.

Dixmier classified the elements of A into five classes. The strictly semisimple
and strictly nilpotent elements form two of them. He describes them in the following
way: an element = € A is strictly nilpotent if and only if there exists an automorphism
o of A such that o(z) = [T;(¢ — &;), where a; € C; an element z € A is strictly
scmisimple if and only if there is an automorphism o of A such that o(z) = Agp+ £
with A £ 0, g € C. (cf. [3], 9.1 and 9.3)

Proposition 3.25 Lei S be a simple A-module corresponding to the similarity class
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[a] , where p — dega > 2. If there ezists = € [a) N A such that I) the total degree of
z is two, or 2) T is strictly nilpotent, or 8} z is strictly semisimple, then s% 1s Ore.

Moreover, T is an S-regular element in [a].

PROOF. 1) Let z = ap®+ PBp+-. Since the total degree of r is two, we have a € C,
degf < 1 and degy < 2. Without loss generality, we may assume o = 1, hence
z=p'+Bp+7

Claim: There exists o, an automorphism of A, such that p — deg o(z) £1.

According to Theorem 2.4, ¢ = eng + G12p, P — ¢ + caop such that cjycz2 —
ciz¢a1 = 1, where ¢;; € C defines an automorphism ¢ of A. Then

a(z) = (ezg + szp)z +(Bo+ Bi(eng + azp))(eng + c22p) +
+(70 + N (cn1g + €120) + v2(eng + a12p)%)
= (S +h czen+ ~2C3,)p* + lo..er terms in p.

Hence p — dego(z) < 1 if and only if
&, + Prarzce + 1263, = 0.

Chosse ¢;; = 0, ¢21 = 1 ¢12 = —1 and ¢, a solution of &, —ben+1 =0. We obtain
11622 — C12ep = —(—1) = 1 and &, + frcrzenz + o2y = Gy — Prez+ 12 = 0.

By the remark after Corollary 3.7, 4 is simple. Hence 5 = A and therefore
o(S) = o(L) = 745 is simple by Lemma 3.15. By Corollary 3.22, we have that

o(5)T is Ore. Hence s is Ore by Lemma 3.16. Note that the element z is S-regular.

2) Let z be strictly nilpotent. Then there exists an automorphism o of A such
that o(z) € Clg]. Write o(z) = [1i(q — ), where & € C. Then z = [Li{c"}q — o).
Note that z is irreducible in B. Therefore all factors but one, o~ lq — «;, say, are
units in B. Hence if = has more than one factor, then for ¢ # ig, 6~'g—a; € Clg] and
o~1q € Clg]. But this implies ¢~ g—as, € Clg] which contradicts p—degz > 2. Hence

we have z = ¢~1(g—a) for some a € C, and o{z) = ¢g—a. Since o(S) = ATA(;-_) = #ﬁ
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2-) = & is simple. Hence z is S-regular and &% is

is simple and ,(5)T is Ore, o7*(

Ore.

3) Let = be strictly semisimple. Then there exists an automorphism o of A
such that o(z) = Agp+ p with X # 0, ¢ € C. We can assume A = 1. By Lemma 3.19,
o(z) = qp + p is o S)-regular iff ©,(z)0(£) = £ + ¢ bas no integer root (Gff p € Z).

If x is not an integer, then o(z) is o(S)-regular. Therefore _4—:(:—) is simple,

and ,(s;¥ is Ore because o(z) is a linear element. Heace 5T is Ore by Lemma 3.16.

A
Ac(z)

Moreover, since o~( ) = 4, we have 2 is simple. Hence § = 4 e, zis

S-regular.

If 4 is an integer, # = N, then ¢"(gp+ N) = (gpg" —~ Ng¥)+ N¢¥ = (qgp)d"-
If N >0, by applying o~*, we obtain a~1(¢" )z = o~ (gp)o~(¢"). Let y = c™*(gp).
Consider factors of Af/Ac~1(¢")z = A/Ayo~'(¢"); we obtain B/Bz = B/By; from
this we can conclude y ~ z. Since y = 0~*(¢g)o~?(p) is irreducible in B, we have either
o~(g) € Clg] or o~!(p) € Clg]. Suppose c~(g) € Clq]. Write 0™(g) = cIIi{q — @)
where ¢ # 0, a; € C. Hence ¢ = c[J;(6g— o). But g is irreduciblein A. Hencez =1,
and therefore 6~1q = (g — @) for some a € C. Let o~ (p) = T; ai(g)p'. We have

1 = o'W} =[""p o7l =cF ap', ¢—af
= ¢} alp, ¢—a]=cY aip™,

This implies a; = 0 for all { > 1, and a; = c~1. Hence 0~(p} = ¢~*p + ao- Therefore
y = ¢(g — a)(c™'p + ap) is linear. But y ~ z implies p — degy = p —degz 2 2;
contradiction. In the same way, one can derive a contradiction if o~1(p) € Clg].

If N <0, a similar argument applies. Thus the case p = N cannot occur. |



Chapter 4
The structure of simple A-modules

In this chapter, we study the structure of simple A-modules. From Block’s represen-
tation theorem, we know that there exists 2 preserving element a in each similarity
class, and for such an element a the corresponding C|q]-torsion free simple A-module

has the form —25=.
The way we study this problem is the following:

First, we consider the larger module, -243-, for an arbitrary element a € A i
the given similarity class corresponding to 2 simple module S. We know that it has a
composition series of finite length with one Clq]-torsion frec factor, isomorphic to S,
and possibly some Clg]-torsion factors. We define top-tor,a and bott-tor,a according
to the location of 42— in A In particular, 4+ is simple if and only if & 2= 8if
and only if a is S-regular. These regular elements play an important role not only
in the study of Ore localization in A but also in the study of the structure of simple
A-modules.

Secondly, we establish a criterion for bott-tor,a in which the associated poly-
nomials play the crucial role. We find that if bott-tor,a # 0, then p must be a root

of the leading coefficient « of a, and ©,,,(£) has a positive integer root.
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Thirdly, we develop some new machinery to calculate tor,a. We find two
important invariants of the similarity class [a], namely, the surplus and the set of
roots of indicial polynomials modulo Z at each place p € C. The p-surplus is non-zerc
only for finite many p’s, a subset of the set of roots of the leading coefficient of a.
One can first calculate the p-surplus, for 2 preserving element, by the criterion. Then
the p-surplus of an arbitrary element can be found by reading off the valuation of
the leaaing coefficient at p. Furthermore, we prove that the p-surplus of [a] is always

larger than or equal to zero.

Finally, we establish an index theorem for the Weyl algebra. An immediate
consequence is a generalization of Block’s result (Theorem 3.20). It gives a quantita-
tive analysis for why his result about linear elements cannot be true in general and

where the discrepancies are. Some examples are given at the end.

4.1 Definitions

Definition 4.1 An element a € A, irreducible in B, is called admissible, if AN Ba
is a mazximal left ideel of A.

If @ € A, irreducible in B, is preserving, then it is admissible, by Theorem
2.34. On the other hand, we shall give an example of an admissible element which is
not preserving, in Section 5.

Let S be a Cig]-torsion free simple A-module with 2 corresponding similarity
class [a]. Then we have S & SocyB/Ba C BfBa. Forany 0 # s € §, anngs is a
maximal left ideal of B, hence it is of the form Bb for some b € {a], because B is a

principal ideal domain. We call b is a minimal annihilator of S.

Proposition 4.2 The set of admissible elements in [b] coincides with the set of min-

imal annihilators of S = SocA-éB—b which lie in A.
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PROOF. Let a be a admissible in [8}, i.e., AN Ba is a maximal left ideal of A. Then

5= is simple, hence isomorphic to 5. Let s be the image of 1+ (AN Ba)in S, then
as = 0. Since a is irreducible in B, a is a minimal annihilator of s €S.

Conversely, let a € A be a minimal annihilator for some s € S. Since S is
simple, we have As = 5§ = ﬁ%ﬁ' Obviously, anngs = AN anngs and anngs = Ba.
Since Ba is maximal in B, AN Ba = annys is maximal in A. This implies that a 1s
admissible. 1

Now, we study the module 2, where @ € A, irreducible in B. £ has a
finite composition series with a unique Clg]-torsion free factor which is isomorphic to

Soca 2, and possibly some C[q]-torsion factors —A(:_,)-

Definition 4.3 1) Let M be an A-module of finite length. For any p € C, the
number of composition factors isomorphic to A_(:—_p)’ in any composition series of M,
is denoted by tor,M. In particular, for eny element @ € A, torpﬁ- is denoted by
tor,a.

2) For0# b€ B, choose $ € Clg] (or v € Clg]) such that b€ A (b € A),
and define tor,b = tor,¢b — v,¢ (tor,b = torybth — 1)

We will deal with p = 0 only, and omit the index 0 whenever convenient.

Remark: 1) Definition 4.3 2) is well-defined.

2) For a, b € B, torab = tora + torb.

ProOOF. 1) Note that for any a, @’ € 4, toraa’ = tora + tora’, since Aaa’ C

Aad' C A and ‘-;%‘?;—. = -% Let ; € Clg], i = 1,2 such that ¢y b, b, € A. We have the
following:

tor ¢b = toryy(¢b) = tordy + torgd = v + toréb,
tor¢b = tord(inb) = torg + torthb = vé + toryn b.
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Thercfore,

tordb — vé = torh b — vy

Similarly,
torbp — vih = torbba — o,

2) For b € B, choose ¢ € Clq] such that ¢b € A. For a¢~! € B, choose
¥ € C[q] such that Yaé! € A. Therefore, Yab= (Pad=")($b) € A.

torab = toryab— torp = tor(z/:aé‘l)(éb) — tory
= tory(ag™!) + torgb — vp = torag™! + tory + torb + v — vy
= tora¢™! + torb+ v¢.

For ¢, choose ¢, € C[q] such that both ¢~'¢; and ag~'¢, € A. Therefore

torag™! = tora(q&'léz) — torg, = tora + tor¢~'¢; — toré,
= tora + v¢~1¢y — v¢y = tora + vé™! + vy — véy

= tora — v¢.
Hence

torab = tora¢™! + torb+vé
= tora — v¢ + tord + v¢ = tora + torb.

We know that for any b € A, there exists a unique left-normalized element
a € A (up to a nonzero scalar in C) such that a is strongly similar to b, i.e., b = ¢(g)a,
for some $(q) € C[g]. Since torb = toré + tore, it is enough to determine tora.
Another reason why we prefer left-normalized elements is that one cannot distinguish
b from the corresponding left-normalized a in terms of roots of its indicial polynomials,

because we have

Ouul6) = (2L )(10(6)

by Lemma 2.26.
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Let a € A be left-normalized. Write @ = ¥7_, ax(q)p*. where o = T, ay;q
with ai; € C for 0 < k < n. We call

(o O 0 e 00
Gn1 Gn-10 0

Qnz  Gr-11 Qn_20 .- 0
Qpn Op-in-1 Qn-2n-2 "°° G0

as the coefficient matriz of a at p = 0.

Note that —n < va < 0 since a is left-normalized. The first non-zero row of
the coefficient matrix of @ at 0 is (@ua—va]y** "> Akk—lwals """ s ®ua0: 0, +,0), and it
displays exactly the coefficients of ©¢(§)-

Let a € A be left-normalized, and ©;(§) be the polynomials defined in Lemma
293 for j > 0. Define ©;(¢) =0if j < 0. Foreach N € N, define the (N +1) x (N +
|val + 1) matrix Ma(N) = (Opajsi-i(7))is» With 0 = i< Nand 0 €j <N+ |val,
namely

Opat(0) -+ Oolval) 0 - 0

M,(N) =
Onspat(0) --- On(lvel) --- --- Go(NV +|val)
We shall call the vector

( Ooljval), Oo(1 +lval), -+, Oo(N + [val})

the ©-diagonal of M, (N).
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4.2 A criterion for bott-tor,

By the definition, a € A is not O-preserving if ©,(£) = 0 has negative integer solutions.
We are interested in the meaning of ©,(£) = 0 having non-negative integer solutions.
We find that if a is left normalized, then the positive integer solutions which are

strictly larger than {va| give some information about bott-tora.

Proposition 4.4 Leta € A be irreducible in B. Then 4052 is Cfg)-torsion and -2

AﬂBu
is C[gq]-torsion free.
PROOF. Since B®, 4082 = Ba _ o, 408 j5 G[g]-torsion. Since ;5 = 42 C £
and & is C[g]-torsion free, 4 is C[q]-tors:on free. 1

In the previous section we defined tora. Now we refine that definition by

separating the contributions coming from the top and the bottom of £

Definition 4.5 Let a € A be trreducible in B and p € C. The number of composi-
tion factors tsomorphic to 3-(:_—”-, in aeny composition series of ﬁ, is denoted by

top-tor,a. The number of composition factors isomorphic to I(TA-T)’ in any composi-

tion series of 4082 is denoted by bott — tor,a.

It is clear that tor,a = top-tor,a + bott-tor,a. In particular: a is [a}-regular
iff tor,e = 0 for all p € C. a is admissible iff top-tor,e = 0 for all p € C, and then
tor,a = bott-tor,a.

As before, whenever convenient, we shall deal with p = 0 only, and omit the

subscript.

Lemma 4.6 Leta € A be irreducible in B. Then the following stetements are equiv-

alent.
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1) bott-tora # 0.
2) There is ¢ € A\ Aa such that gz € Aa.

8) There ist € A\ gA such thal ra € qA.

ProoF. 1) = 2) Let bott-tora > 0. By Lemma 2.27, d%‘—‘- is a direct sum of

C[q]-torsion simple A-modules. Therefore IAE is isomorphic to a direct summand of

A0Be Iffei‘;TB“C_Z%istheimageofl-}-Aq,thenxGA\Aa and gz € Aa.

2) = 1) Let = € A\ Aa such that gz € Ae. Since AT = =4 and Ag € ann,T,
but Aq is maximal, we conclude annsT = Ag and AT = #-. This implies that
bott-tora > Q.

2) = 3) We are given that there is z € A\ Aa such that ¢z € Ac. This means
that there exists r € A such that gz = ra. If r € gA, i.e. r = ¢ for some 7 € A,
then we have gz = ra = gfa. Since A is 2 domain, this implies z = fa € Ae which
contradicts the fact z € Aa.

3) = 2) We are given that there is r € A\ ¢A such that ra € ¢A. This mcans
that there exists z € A such that ra = gz. If € Aq, i.e. x = Za forsome Z € A,

then ra = gz = g¢Za. Since A is 2 domain, this impliesr = Ze € Aa which contradicts
the fact r ¢ Aa. 1

Lemma 4.7 Let a € A be irreducible in B. Then

bott-tor,a = C —dim (annans. (g —p))
= C—dim (ann 4 (a)).

PROOF. By Lemma 2.27, any Clg]-torsion A-module is a direct sum of C[q]-torsion
simple A-modules, hence 4222 has the form @,(z25;)", where n, € N. Consider
p = 0. Note that

o C.-1 ifp=0
an A =
ATl 0 ifpA0



Therefore,

annanneq = @(ann (qA_p)q)(ﬂp) ~ o)
P

That is, bott-torgea = C — dim (ann acna q).

By Lemma 4.6, we have the second equality. |

Lemma 4.8 Let a € A be irreducible in B and left normalized. Then the first row
of the matriz M (N) is a non-zero vector for any N € N.

PROOF. The first row of My(N) is (Ope)(0), ---, Oollval) ). Write a = 2 a;7,
where a; = T, a;¢. Since a is left normalized, we have —n < ve < 0, and therefore
va = —|va|. Recall from Lemma 2.23,
0;(6) = X arp-papib(§ —1)---(E—k+1)
k>0

= 3 CrppaiE—1)---(E—k+1)

k2 |val—j
for all 0 £ 7 < [vd].

If £ = |va| — 7, then £(§ —1)--- (£ — k + 1) equals zero for k > |va] — 7, and
equals (Jva| — j)! for k = |[va| — j. Therefore ©;(|va| — 7) = apa)-jo(lva] ~ 7).

Therefore the first row of M.(N) is zero if and only if ( @go, @10,-- -, Xay0) is
a zero vector. But if a;o = 0, then va; > 0 for all 0 £ j < |va|. Note va; > va+j 2
va+ |val +1 = 1, for any j 2 |va| + 1. Together we have va; > 0 for all 7, hence
a = ga for some @ € A. This contradicts the fact that a is left-normalized. |

Now, let us study the equation ra = 0 modulo ¢A.

Lemma 4.9 Let a = T} o(Tiro@jiq’) P’ € A be lefi-normalized, and r € A with
r=N, Zp* (mod qA) wherer € C for0 < k< N. Thenra =0 (mod qA) if and
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only if
Oa®) -+ Oollval) 0 .- 0

(ro m o ) .
ON4pal(0) - ®~(.lval) GU(N.+1M|)

PROOF. By using induction on i, one can show
P = k(k=1)---(k—i+1)p*" (mod qA)

for any k,i € N. In particular, if ¢ > k, then p*q' =0 (mod gA).

ra = z szzajtq PJ (mOd qA)

k—O 3=0:>0

= ZZ (ZO’MP ‘I)PJ

k=0 J..—.O 20

ZZ (Ea,,k(k—l) (k—i+1)p" )P (mod g4)

k—O =0 k! =0

_ L S S
,§;§u§ A=’
ndN N = 1

= > Zrkaj.k-m+jm p™ (wherem =k —1i+7)

m=0 k=0 ;=0
Hence ra = 0 if and only if
iifk%‘k— +';=0
e S R )
foral0<m<n+N.

For m > N + |va|, we have k—=m+j < N = (N +lval}+n £ 0, and so

&; k—m+; = 0. The above expression vanishes automatically.
For 0 < m < N + |vaj, we have

N n 1

m! PROG e} 7T

ZZ Lk m+J(m_])!

k=0 j=0
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N n
= z Zrkﬁ’j.k—-m+jm(m — 1) (m—j+1)

k=0j=0

N
= Z rk®k—m+[ua[ (m)
k=0

Hence the vanishing of the expressions means that the product of (ro, -+, ™)
with the m-th columa of M,(N) is zero.

Hence we have

One((0) -+ Oo(lval) 0 .. 0
2] H S
Onipa(0) -+ On(lve]) --- ... Oo(N + |val)
iff ra = 0 (mod ¢A). 1

The following is the criterion for bottom torsion.

Theorem 4.10 Let @ = ap” + (lower terms in p) in A, irreducible in B, and lefi-
normelized.

1) If the indicial polynomial ©.(£) has no integer root strictly larger than |val,
then bott-tova = 0. (In particular, bott-tor,e = 0 if afp) #0.)

2) If ©,(£) has integer roots strictly larger than |va|, and if N + lva| is the
largest one, then bott.tom = N + 1 — rank M,(N). Moreover bott-tora St <n,
where ¢ is the number of distinct inleger roots of B,(¢) strictly larger thar |va|. In
particular, if va =0, and ©a(£) has a root strictly larger then 0, then bott-tora > 0.
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Proo¥. By Lemma 4.6 and 4.9, bott-tora # 0 iff thereis r € A\ g such that
ra = 0 (mod gA) iff there is 7 € A\ gA such that

elval(o) e @g(lva]) o --. 0
(To Ty - TN) -; :: .. } : =0‘
eN-{-Ivat(o) .- 0;\.’(11’0’.') cae ees eo(l‘\f + ll’ﬂl)

where r = T o %p" modulo ¢A, r € C.

1) Since a is left-normalized, by Lemma 4.8 the first row of M, (V) is non-zero.
Moreover O,(jval + 1) = Oo(lvaj+ 1) # 0 for all 1 > 0. Therefore the row vectors of
M, (N) are linearly independent, hence rankM,(N) = N + 1. This implies that the

system has no nontrivial solutions for any choice of N. Consequently bott-tora = 0.

In particular, this applies if p is not a root of a, because then v,a = ~—n, and
0.(6) = ap)é( —1)---(§ —n +1) has no solutions larger than {va| = n.

2) Letr = o %p" be a solution of ra = 0 modulo gA. If ry # 0, then the
product of (ro,«--,7n) with the last column of M,(N) produces the equation

rNOo(N + |va]) =G,

and therefore N <+ |va] is a root of ©g()-

We conclude from this observation that, if @4(£) = 0 has integer roots strictly
larger than jval, and if N + |va] is the largest one, then every solution r ofra=0

modulo gA is of the form r = L, Zp* modulo gA (where ry could be 0).

Now, let us consider the rank of Ma(N ). For1 <i< N, if Oo(i + Jval) # 0,
then the i-th row of Mo(N) has length i +va|+1. Fori =0, the 0-th row of M, (N}
is non-zero by Lemma 4.8, and has length at most |va] + 1. Therefore, the number
of linearly independent rows of Ma(N ) is at least N — ¢+ 1, where t is the number
of distinct positive integer solutions of ©4(£) which are strictly larger than |vaj. This
implies bott-tora = N +1— rankM (NS N+1—-(N+1~-1) =t Since Og(€) has

degree less than or equal to n, we havet < n.
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In particular, if va = 0 and ©,(£) has a root strictly larger than 0, then M,(V)
is an N + 1 by N + 1 square lower triangular matrix, and therefore the determinant
is 1'[;-\":0 B©o(7) = 0. Hence rank M,(N) < N + 1, and therefore bott-tora > 0. |

Corollary 4.11 Lel b = Bp" + (lower terms in p) € A be edmissible. Then vf —
loth > 0.

PROOF. Write b = f(q)a, where f(q) € C[g] and a = ap™ + (lower terms in p) is
left-normalized. a is also admissible, and therefore tora = bott-tora. Note 0,{£) =
E(6—1)--- (£ —|va]+1)O for some B € C[£] with degree less than or equal to n—|va].
Hence ©,(£) = 0 can have at most n — |va| many integer solutions which are larger

than [re|. Hence by Theorem 4.10, we have

v —tord

v(Bf!) + vf — torf — tora = va — bott-tora
> (n—|val) - (n ~ [va]) =0.

4.3 Invariants of [a]

First, let us extend the definition of similarity, to not necessary irreducible elements
of B.

Definition 4.12 Let a, b € B be nonzero. We write a ~ b if % and % have the

same composition factors (up to order).

It is clear that if @ and b are irreducible, then a ~ b iff -% = -55—.

o

Next, let us prove a trivial but useful lemma.
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Lemma 4.13 Let a ~ b, both irreducible in B. Then there exist u and v in B such
that au = vb. Furthermore, u and v can be chosen such that p—degv = p—degu <
p—dogh=p—dega.

PrROOF. Let u + Bb be the image of 1 + Ba under the isomorphism -g; = -gg.
Then au € Bb, hence au = vb for some v € B. It is clear that one can choose a
representative v of u + Bb such that its p-degree is strictly less than p — deg b. Since

we know p — deg b = p — deg a, we conclude

p—degv =p—degu <p—degb=p—dega.

Theorem 4.14 Let a and b in B, @ ~ b, a = ap™ + (lower terms in p) and b =
Bo™ + (lower terms in p). Then

va — tora = vf3 — tord.

PROOF. We proceed by induction on n = p — dega.

1) For n = 1. Since a and b are linear elements, they are irreducible in B.

By Lemma 4.13, there exist u = f(g) and v = g(g) such that af = gb. Note that
af = ¢gB and tora+ vf = vg + torb. Therefore,

va —tora = (vg + vB = vf) — (vg + tortb— v f) = vf — torb.

2) Suppose that the statement is true for elements with p-degree less than n.
Let p—dega=nand a~b.

(i) Suppose that a is irreducible in B. By Lemma 4.13, there exist « and v in
B such that au = vb and p— degu < n— 1. It is clear that u ~ v by Definition 4.12.
Let z and A be the leading coefficients of « and v respectively. Then by the induction
hypothesis

vp —toru = vA — torv.



Note tora + toru = torv + torh and au = AB. Therefore

va—tora = (vA+ v —wvpu)— (torv + torb — toru)
= (v8 —tord) + (vA — torv} — (vu — toru) = v — torbd.

(11) Suppose that a is not irreducible in B. Write
a = @yGp---ay, 6=blb2"'bs7

where q; and b; are in B and irreducible. Since a ~ b, the Jordan-Holder Theorem
implies that ¢ = s and for each i there is 7 such that a; ~ b;. Hence a; and b; have
the same p — deg, say m;, write ¢; = a;p™ + lower terms, §; = 8;p™ + lower terms.

Then by induction hypothesis, we have

va; — tore; = vf; — tord;.

Therefore . .
> (vai —tora;) = 3 (v8; — torb;).
=1 =1
But
t £ t t
> va; ~ ) tora; = va—tora, 3. vf; — D torb; = vff — torb.
i=1 i=1 J=1 =1
Hence

va — tora = v — torb.

For an irreducible element a € B, with corresponding simple A-module S,
Theorem 4.14 shows that the difference between the valuation of the leading coefficient
of a at p and tor,a is an invariant of the similarity class [a]. Let us denote this invariant
by o,{a], vr 6,[S], and call it the p-surplus of [a], or of S.

An immediate consequence of Corollary 4.11 and Theorem 4.14 is the following:

Corollary 4.15 For any a = ap™ + (lower terms in p), irreducible in B, we have
ola] > 0. In particular, oll the [a]-regular elements have the same leading coefficient,

up to non-zero scalars.
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PROOF. Without loss of generality, let us assume that a is irreducible in B. By Re-
mark 3) after Definition 2.31, [a] N A contains a preserving, hence admissible clement,
say b = Sp® + lower terms in p. By Corollary 4.11, v — torb 2> 0. By Theorem .14,
we have ofa] = ve — tora = v — torb 2 0.

Now let @ € A be irreducible in B. Let b = 8p™ + (lower terms in p) be $-
regular. Then tor,b = 0 for all p. Hence o,fa] = v,8 — tor,b = .8, and therefore
B = c1,(g — p)°*¥}, where ¢ is a non-zero scalar. |

It is clear that g,[a] # 0 for only finite many p € C, since o,[a] # 0 implies
a(p) =0.

Theorem 4.16 Let a ~ b, irreducible in B, let the degree of ©, be d (< p —dega),
and let &1, Ez,--, & be the roots of ©.. Then the degree of ©, is also d, and the
roots of ©, have the form &, +ny, §2+n2,---, §a+ R4, where n;, no,---,na € Z.

PROOF. We proceed by induction on n = p — dega.

(i) Let p— dega = 1. By Lemma 4.13, there exists f{g) and g{g) in Clg] such
that af = gb. Note that ©.(£ + vf) = cBs(£) by Lemma 2.26, where 0 # ¢ € C.
Therefore the roots of O, are obtained from roots of ©, by shifting with the integer
vf. This proves the theorem for the case n = 1.

(ii) Suppose the statement is true for p-degree less than n. Let p—dega =n.
Again by Lemma 4.13, there exist u and v in B with p—degv =p—degu <n -1
such that au = vh. We have O,(¢ + ru)0,(£) = O, (£ -+ vb)O4(£) by Lemma 2.26. By

using the induction hypothesis on z and v and the equality, we have proved the claim
for n. |

Now, we have obtained another set of invariants of [a!, namely, the set of roots

modulo Z of indicial polynomials at any place p € C. We will call them indicial roofs
of [a] or of S, at p.
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4.4 An index theorem for the Weyl algebra

Block proved the following (cf. Theorem 3.20):
1) Each linear similarity class [S] has a S-regular representative.
2) If a = ap + B € AN (S} is S-regular, then

S=(CX,a"'),¢—=X,p—D- g).

One can ask whether there always is a S-regular element in an arbitrary sim-
ilarity class [S]; if such a S-regular element exists, whether the simple A-module S

has a similar representation as in the linear case.

It is easy to show that every left ideal of A can be generated by at most
two clements. In fact, Stafford proved in {13] that every left ideal of the n-th Weyl
algebra A, can be generated by at most two elements. The first question is equivalent
to asking whether any simple module is cyclically presented. The answer is negative,
and a quadratic counter example will be given in Section 5. Our index theorem will

give a complete analysis to the second problem.

Lemma 4.17 Let a € B, irreducible in B. Write @ = ap™ — otnyp™™ " — -+ — 0.

Then -g; is isomorphic to the B-module
{C(X), ¢—= X, p— P.} = C(X)3,
where the elements of C(X)* are written as column vectors, and

W

(D o 0
1 D ..« 0

ol o8

0 0 ... D &n=
L0 0 - 1 Dt&==
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PROOF. Every element of -!% has a unique representative $0og Bi(q)p' of p—deg <

n—1, and the sum of two such representatives is again such a representative. Therefore

b
Y ap+Ban| O | =5
=0 -

ﬁ;-l

is a well-defined group homomorphism from EI’; to C{X)". Obviously it is onc-one

and onto.

We use 7 to carry the B-module structure of -BQ; over to C(X)", by b- 8=
rbr—1§, where b€ B and § € C(X)". Then, in particular,

n—1

g-8 = tqrt- B—fq(Zﬂ. )—T(Zqﬁ.p)—Xﬁ

n-1 n-1

—

p-B = mpr = T(Z:D(pﬁ,p )= T(Z(ﬁ.p + B)p')
- r("i (Boos + BIF + Baad®) = r(z(ﬁ‘-l B+ Bun Zpp)
( ﬁo + Bn—l pe

ﬁo + IB; + ﬁn—l%

\ Bn—z + 18:._1 + ﬂn—laﬂ;

(Do ---0 = Bo
o T |-e
L0 0 1 D22 )\ B
where 8; = F& 2-(8;) for all j. 1

7 induces an A-isomorphism

B _ B A+Bag - A+Ba
A+Ba Ba'  Ba = C(X)e/m(

).
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As o2 is Clq]-torsion (every element of B can be bought down to A by multiply

some polynomial in C[q]), and any Clg]-torsion A-module is semisimple (cf. Lemma
2.27), we can write
- {72}
C(X)2 ( A )
a0 S = 4.1)
(45 D\aa-» (

4

Now let a € A. We will study the map

A A _A+Ba . ...
Ac  ANBa_ _ Ba = C{X)e

It is clear that the kernel of ¥ is isomorphic to ‘:—f“ = @p(ﬁ)bott-toga, and the

cokernel of 7 is @,(7725)).

Now let us study the two exponents bott-tor,a and 7,a for any p € C. Note
that bott-tor,a can be calculated by the machinery developed in Section 2 and Sec-
tion 3 (in particular, Theorem 4.10). However, v,a is hard to calculate directly, even

for linear elements a. We will prove that these two quantities are related by »,a.

Without loss of generality, let us restrict our attention to p = 0, and we omit

the index whenever convenient.

Lemma 4.18 Let a = ap™ — ap_1p"" ! ~-+- —ag € A, where @ = o, and a; =
Tkzo a;xg* for each 0 € j < n, irreducible in B. If the indicial polynomial of a af 0
has no roots in N, then ya = 0.

PROOF. If 0 is not a root of &, then the indicial polynomial of e at 0 always has

non-negative integer roots; the claim of the theorem is vacuous. Hence we can assume
that 0 is a root of a.

For any 0 # f € Clq], we have Bfa = Ba. Therefore by (4.1) we have yfa =
va. Hence we can, without loss of generality, assume that a is left-normalized, and
therefore —n < va < 0. Recall from Lemma 2.25, ©,(¢) = 210 Xk jepwal(E~1) -+ (E-
k+1). If va <0, then ©,(0) = 0. This contradicts the fact that ©,(¢) has no roots in
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N. Hence va = 0. This means va, > 1, and thercfore a; = a;;:q' + (higher terms in q)
for each 0 < i < n. We decompose a = ¢'&, where &(0) # 0; then t = va = an 2 n.

Note that if vag > 0, then a = qa for some @ € A. This contradicts the fact that a is
left-normalized. Hence vay = 0, L.e. ago # 0.

By localizing
A+ Ba . ( A )h’")
0— —— (X)) — — — 0
Ba (%) @ Alg—p)
at + = C[q] \ (q), where (g) is the ideal generated by g, we have the exact sequence
A, + Ba
Ba

00—

s O — ()

Therefore va = 0 iff C(X)? = r(4:£82). We abbreviate T(45£B2) by M.

Claim: M contains the set {bix, b2k, -~ bnk}rez, Where

1 0 0

0 1 0
blO= ab20= . ) “y bn0= ’

0 0 1

and by = X Fbpofor1 <i<n, kel

It is clear that by = X~*bo = 7(¢"*p* ' + Ba) € M forany k € Z~.

For ¢t < n, and k € N, we have

DO .02
1 D ...0 = '
Puby = ... . s X-*k

0 0 .- 1 Dyom=t :
0



—k Xk

x-k = (—R)bi kg1 + Big1 k-

We prove the claim by using induction on [ = i + k, where 1 < i < n and
ke N.

For I = 1, it is clear that b, = 7(1 + Ba) € M.

Suppose b € M for i + k < I. We have to show by, bouy, <o+, by € M.
The arguments are slightly different according to whether / <nori>n.
Let us deal with I < = first.

Since M is an A-module, ¢ —!> 0, and o(X) = X ‘@(X), we have

M>3b = X*'aP o= X""aP,b.,
Qo

1431

= X_I = QOX-IbIQ + .- Qn_1x_lbno.

Qp_1

For 0 i <1-1, since ve; > i, we obtain

X e = > i X b

Jzi
= D aisbiprac; = oubipry; + > aisbis s
ot >4

Since (i + 1)+ (I -j) < (i + 1)+ (=) = 1+1for all § > i, by the induction
hypothesis, we have Lisi Cijbipr1-; € M.

For i > I, since —={ 45 > ~l+: >0, we have

;X b1 = Yoo X b0 € M.

J2i



Together we have

b= Y aiibipra-i +mu
0<i<i-1

for some my € M.

We obtain a system of { linear equations (modulo M):

0 = Pobyoy=—(1—1)}big+ b2y
0 Poboy2=—(1—2)bopy + 0342

0 = Pabl—l.l = —61_1,2 -+ b!.‘l

0 = b—my=capby+enbya- +o1pabn-

Since
[ aw —(=1) 0 - 0 )
an 1 —(=2) - 0
det : : : . :
Qg2 0 0 |
\ @t-14-1 0 0 =es 1

= ago+ (—am)(=I+ 1)+ -+ + (=) legugpma (1 + 1)1+ 2) -

= ot onll=1)+ - +erya(l—1)1=—0,(1-1) #0,

this implies that by, b2y_q, -+« br-12, bia € M.
Now, let us deal with I > n. Note that, sincet —n 2 0,

M3b = aX*"Pubnion = X "Pabnin
agX -

QIX_’

an—lx-z + (—'I -+ ﬂ)anx-!-l

n=2

(-1)

= z Qix-tbiﬂ.o + (Ofn-1x_l +(—=l+ n)anxnhl)bu.o-

i=0

-1

I~



For 0 €7 < n -2, note that

-1 =43 = ) . b .
X i = 9 @i X " b0 = ibipraci + ) qishivi e
iz F>i

Since (i + 1)+ (-7 <@+ +{I—-1) <I+1 forall j>1i wehave
Zj>i o:,'jb;ﬂ‘,___,- € M by the induction hypothests.
Fori=n-1,

Q"_]-\’“lbng + (—'I + n)X":-lanb,,o
= (an—l.n-l + (—l + n)ann)bn.l—n+1 + Z(an—l.j-—l + (_I + n)an,j)bn.l-i-l—j-

i>n

Sincen+(I+1—-j)<n+(I+1—n)=141 for all j > n, by the induction
hypothesis, we have T, . (an-1-1 + (= + 1)@ ;)bn141-n € M.
Hence
b= 2 @iibig1t-i + (@ncyn1 + (=1 + n)ann)batyr-n + iy
for some iy € M. )

Hence we obtain the system n linear equations (modulo M):

0 = Pubyyy=(=1+41)bys+ by,
0 = Pcbn—l.l—n-i-l = (—! +n- l)bn—l.l—n+2 + bu.l—n+2
0 = b- ™y = aggbyy + - -+ + Qnozn—2bn-1ns2 F (@nornc1 + (=1 + n)ann)baionia
Since
an 1 —I + 2 ...
det : . :
Qp_2n-2 0 0 eer =l4n-—1

\ Cnctnot +{~{+n)awm 0O 0 -.- 1 )



= oo+ (—aar)(=l 4 1) b oot (=) oo (L 1) (=L 7 = 1)
(=1 (L )t (=L + 1)(=1 4 2) -+ (=140 = 1)
= —Oa(l - 1) # 0,

we have by 1, bapqs 0 bngensr € M.

Now we deduce

MD>D fj S Adbi 2 i(z CIXL.X )by = i C(X)bio = C(X)2.

1=1 k>0 =1 k>0 i=1

Hence M = C(X)?, .e, ya = 0. |

Lemma 4.19 Let a € A, irreducible in B, end b = aq. Then

~a + top-tora = b + top-tord.

PROOF. Define r: % —_— -% via the right multiplication by ¢, namely, @ — zgq. It
is clear that r, is 2 B-isomorphism. Therefore, it is also an A-homomorphism.

Claim:
B Tq B
Ba - Bb
Tl lr

cxy I CX)

is a commuting square, where

(x 1 0 - o\
0 X 2 0
W= &t
0 0 0 - (n—1)
L0 0 0 - X

and W acts on the left. Morcover W is a B-isomorphism.
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[$1

Let = = 373 b;(q)p* + Ba be an arbitrary clement in £&. Then

n=1
Trq s = T q - T(Z b:(qp‘ + ip‘-l) + Bd)
=0
n=1
= 7(3_(bg+ (i + 1)bi1) p' + Ba)
=0
( b X + by \

X +2b

_:X -+ (n -_ l)bn_l
\ o BaX

On the other hand,

% ( boX + b, \
01 X + 25>
Wr.z=W bl = .e-
; : 1 bn—2X + (7 — 1)bay
" \ b1 X /
Thus tr, = Wr. It follows that W is 2 B-isomorphism. (Alternatively, one can show
that W is a B-homomorphism, by checking WP, =P, W.)

It °s easy to check that the diagram

A ~ AiBn B ~
AnBe — " Ba < Ba - C(X ):
Tl el W
A ~ A+Bb B -
AnBt = %b < B = C(X )?

commutes. Hence

X/ EE22) = C(X ) mrg(E22)

This implies
A+ Bb A+ Be

or

T
A

A
AnBs “'An Ba
= b+ top-torb — top-tora.

Ya = ~b+tor

= b+ tor



Hence

~a + top-tora = b + top-tord.

We prove now our index theorem.

Theorem 4.20 Let a = ap™ + (lower terms in p) € A, irreducible in B. Then for
any p € C, we have

bott-tor,a — v,a = vya.

PROOF. Without loss of generality, let us prove the claim for p = 0.

Suppose that ©.(£) = 0 has roots in N, let NV be the largest one. Let fb=
ag¥*! for some f € Clg] such that b€ A is left-normalized. Then ©,(£) = 0 has no
roots in N since ©3() = @ p(€) = c0a(§ + N + 1) for some non-zero scalar ¢, and
therefore bott-torb = 0 by Theorem 4.10. Since O 3(£) has no roots in N, by Lemma
4.18, we have vfb=0.

Let b, = aq, by = big, ---, fb=by = bn_1¢- By Lemma 4.19, we have

4a = -b, + (top-tord, — top-tora)
= b, + (top-torb, — top-tord,) + (top-tord; + top-tora)
= ~b + (top-torb, — top-tore)

= by + (top-torby — top-tora)

= ~fb+ top-torfb — top-tora

= top-torfb — top-tora

Since Bfb = Bb, top-torfb = top-torb. Since bott-torb = 0, torb = top-torbh,
and therefcre torfb = v f + torb = vf + top-torb.
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From fb = ag"¥*!, we have torfb=tora+ N+ 1and vb+vf =ve+ N+ 1.
Hence ya = top-torb—top-tora = tor fb—v f —top-tora = tora+N+1—vf—top-tore =
bott-tora+{N+1—vf). Since b is left-normalized and 0 is not a root of ©y(£), vb =0
(cf. the beginning proof of Lemma 4.18), and therefore N +1—vf = vb—va = —va.

Hence we have bott-tota — va = va. |

Now let us consider the A-submodule C[X,a™]" of C(X)? for an element
a = ap" + (lower terms in p) € A. It is clear that (A + Ba/Ba) is contained in
C[X, a~!]". Moreover C[X,a~*]"/7(4}£22) is isomorphic to a Clg}-torsion A-module,

hence it is semisimple.

Lemma 4.21 Let a = ap™ + (lower terms in p) € A, irreducible in B. Then

B A
A'*' °)~ D (m)(-ua)_

pux(p)=0

ClX,a™/7(

PROOF. It is clear that if A_(vé—_n)' is isomorphic to summand of C[X,a™1]"/r(45E),
then a{p) = 0. Write

Cix, o /(A2 =

A s
)= D (m)( ),

pofp)=0

By localizing this expression, and (4.1) at * = C[g] \ (¢ — p), where p is a root

of a, we have

A (me) >~ (X" A,.+Ba A o)
e (X)2/r( )2 ()™
Hence m, = v,a for any root of a. 1

Since Soc, £ = i:fi and r(ig%) C C{X,a™']*, we deduce that r(SocA-B?;)
is contained in C[X,a™|".

Definition 4.22 Let a = ap™ + (lower terms in p) € A, irreducible in B, with
corresponding simple A-module S = SocyE=. Define the p-discrepancy of S as
8,a = tor,(C[X,a~1]*/7(5))-
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Note that the §,a measure how far the simple module S is {rom being isomor-
phic to C[X, a1

Corollary 4.23 Let a be as in Definition 4.22. Then forp € C, ifa(p) #0, 6,a =0;
ifa(p) =0,

§p,a = tor,a — v,a.

PrROOF. Let p€ C. Then

S, = tor,(C[X,a"'I*/7S)

r =1l1n A+Ba A+Bd
= tor,ClX,a " /7( Ba )+tor,(—BT/S)

If «(p) # 0, since the map C[X,a'"/CIX]V¥ — C[X, o~ /T(4E3e) s
onto, and tor,C[X,a '}*/C[X]* = 0, we have tor,C[X, o1t fT(4E82) = 05 since
tor,(‘BLf‘/S) = top-tor,a < tor,a, and tor,a = 0 by Corollary 4.15, we have
tor,(4£22/5) = 0. Hence we obtain §,a = 0.

If e(p) = 0, by Lemma 4.21 and the above equality, we have §,a = 70+
top-tor,a. By the index theorem, v,a = bott-tor,a — v,a. Therefore we have é,a =

bott-tor,a — v,a + top-tor,a = tor,a — va. 1

An immediate consequence of the above corollary is the following:

Corollary 4.24 Let a = ap® + (lower terms in p) € A, irreducidle in B. Ifais
lefi-normalized, then §,a = 0 for all roots p of a iff a is [a]-regular and v,a = 0 for
all roots of c.

PROOF. (=>): Let p be a root of a. Since a is left-normalized, —v,a > 0. By
Corollary 4.23, 6,a = 0 iff tor,a = 0 and v,a = 0. Since tor,a = 0 always holds
for any p which is not a root of the leading coefficient « of a by Corollary 4.15, we
conclude tor,a = 0 for all p, this means that a is [a]-regular.
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{«<): We are given that a is [a}-regular, and v,e = 0 for any root p of a.

Therefore tor,a = 0 for any p. Hence §,a = tor,a — v,a = 0 by Corollary 4.23. 1

Corollary 4.25 Let S be a Clg]-torsion free simple A-module. If there ezists an
element a € [S] N A with the leading coefficient a and p-degree n such that S is
isomorphic to the A-submodule C[X,a™']* of C(X)2, then a is S-regular and v,a =0

for every root p of . Moreover a is uniquely determined by S, up to a non-zero scalar.

PROOF. We are given that § = C[X, e !]*. Hence C[X,a!]" is a simple A-module,
and therefore C[X,a™!]* = r(Soc_ﬁ%), i.e., §,a = 0 for any root p of a by Definition
4.22. By Corollary 4.24, we have that a is S-regular (i.e. tor,a = 0 for all p) and

v,a = 0 for any root p of c.

Moreover by Corollary 4.15, a as the leading coefficient of the S-regular ele-
ment a, is uniquely determined by S, up to a non-zero scalar. i

The following theorem is the main application of the index theorem. It gener-
alizes Block’s representation theorem (Theorem 3.20). The necessary and sufficient
conditions for § = C[X,a™!]" are (roughly speaking) that there is an S-regular el-
ement in {S] and the indicial roots of [S] at each place p € C fall into two extreme
cases, namely, either all roots are integers or no roots are integers.

Theorem 4.26 Let S be a Clg]-torsion free simple A-module. Then S is isomorphic
to the A- submodule C[X, e ']* of C(X)2 for some a = ap™ + (lower terms in p) €
[SINA, if

1) there erists an S-regular element in [S), and

2) for every p € C, cither all the indicial roots of [S] are integers and 5,[S] = 0,
or none of the indicial roots is an intcger.

If so, the elements a giving such isomorphisms, are precisely the S-reqular
elements in [S] N A.
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PROOF. (=) By Corollary 4.25, we have that a is S-regular and v,a = 0 for any

root of a, in particular 1) holds.

First let us consider any p which is a root of a. Since @ is S-regular and

v,a = 0, the indicial polynomial of a at p has no roots in N.

We show that the indicial polynomial has no roots in Z~ for any roots of a.
Since v,a = 0, by Lemma 2.23 we have v;a = 0 2nd 6] (§) = ©a,(—{~ 1). fa=af
for some & € A and f € C[q] \ {C}, then a is not S-regular. Hence a must be also
normalized from the right. Therefore, v5a = 0 implies © ,(0) # 0, i.e., 6, 1) #0.
Any negative integer solution of 6,,(£) which is smaller than ~1, will produce a
positive integer solution of ©; (£) = 0. By the right-module analogue of Theorem
4.10 this means bott-tor, 2 # 0. By duality, top-tor,£- # 0; a contradiction to a

being S-regular. Hence O, ,(£) = 0 has no negative integer solutions for any root of
a.

Next let us consider any p which is not a root of @. Then the solution of
0..,(¢) = 0 are always the integers0, 1, ---, n—1, and o,[5] = vo¢—tor,ea = 0-0 = 0.
Thus 2) holds.

(<) Consider any S-regular element @ = ap™ + (lower terms in p) € [S]n A.
We have toi,a = 0 for any p.

Let p be a root of a. Since a is left-normalized, v,a < 0. fv,a<0,thenOis
a solution of the indicial polynomial of a at p; therefore o,[S] = 0 by the assumption

2). But ¢,a = v,& — tor,a = v, > 0. This is 2 contradiction. Hence v,a =0.

By Corollary 4.24, we have §,a = 0. Hence by Definition 4.22 we have
C[X, ™" = 7(Soca ), and -r(SocA-g;) is isomorphic to S. 1

Remark: Note that the second condition in Theorem 4.26 is stated in terms
of two invariants of the similarity class [S]; hence it can be checked by considering any
element in [S], and it does not matter whether this clement is [Sl-regular. The first

condition is not easy to check in general. In fact, there are some similarity classes [a]
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which contain no {a]-regular element; such an example is constructed in Section 5.

The two conditions are independent of each other. That the first condition
does not imply the second one can be seen easily. That the second condition does

not imply the first one is not obvious (c¢f. Example 4.29).

We now obtain Block’s result (cf. Theorem 3.20) as a special case of Theorem
4.26.

Corollary 4.27 For each linear stmilarity class [S], the corresponding simple A-
module S is of the form (C[X,a™'], ¢ = X, p — Po = & + g-), for some a =
ap—-B €[S]NA.

PROOF. We need to verify the two conditizas in Theorem 4.26. There is always an
S-regular element in each linear similarity class (cf. Theorem 3.20). Therefore, the
first condition is satisfied.

Let a = ap — B be such an S-regular element in [S]. If p is a root of e, then
©,(£) = 0 has no integer solutions by Lemma 3.19. If p be not a root of «, then

©,(£) = 0 has the solution zero, and ¢,fa] = v,a — tor,a =0 — 0 =0, as desired. 1

4.5 Examples

In every linear similarity class [a], there is an [a]-regular element, every admissible
element is preserving, and there is an easy description for similar clements. The
following examples show that all of this is no longer true for quadratic similarity
classes.

Example 4.28 Let a = ¢°p® + ¢ — 2. Then a is irreducible in B, and admissible.
But a is nol preserving.



PRroOOF. First, a is irreducible in B by the Eisenstein criterion ([9], Proposition 5).

Since Q,0() = € — 1) +(-2) = =€ -2=(§=2)(§+1) has the solution
—1, a is not O-preserving, and therefore not preserving by the definition.

Note that voa = min{reg® — 2, v0—1, ro(g—2) - 0} = 0. Thus ©,0(S) has
the root 2 > 0 = va. By the criterion (Theorem 4.10), we have bott-torea = 1. Our

aim is to show that top-torga = 0.
Now let us calculate the invariant og[a] using another element in [a]. Let

@ = ag'=¢Pqt + (g -2
= ¢Hg PP +2A-N)g P +2 ) +1 -2
= ¢p*-2p+1.

Then & is similar to a. We show that & is [a]-regular. By Remark 1) after Definition
2.31, in order to show that & is preserving, it is sufficient to show that & is 0-preserving.

Since O30() = £(& — 1) — 26 = (£ — 3)¢ has no negative integer solutions, & is 0-

A

preserving. Hence = is simple by Theorem 2.34, ie., top-tor,@ = 0 for all p.

Now we show bott-tor,a = 0, for all p. By Theorem 4.10, we only need to check
for p = 0. Since O30(f) has the root 3 strictly larger than |vea] = 1, by Theorem
4.10, bott-tored = (3 ++ 1) — rankM;(3), where

-2 0
-2

M. (3) =

[ B — N = I S
[ T e T )

- o O O
= O o o

1
0
Since M;(3) has rank 4, bott-torea = 0.

Together we obtain that & is [a}-regular. Therefore oola] = oola] = vq —
torg@ = 1 — 0 = 1. Hence, and since bott-torea = 1,

1 = gola] = voq® — torga = 2 — (bott-torea + top-torea) = 1 — top-torya,
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and consequently, top-torga = 0. This proves that A N Ba is maximal, i.c. ais

admissible. 1

The following is an example of a similarity class which contains no regular

clement.

Example 4.29 Leta = qp* —2p+ 7 with 0 # v € Clgl. (Then at p =0, the indicial
polynomial ©, has roots 0 and 8.) Choose -y with degree even and larger then 2, such
that the rank of the 4 by 5 matriz M.(3) is 3 (for instence, y =g+ q*). Thena is
irreducible in B, and there is no [a]-regular element in [a].

Proor. Claim 1: q is irreducible in B.

Suppose there exist u and ¢ in C(g) such that

a=qlp+t)(p+u)=q(p® + (u+t)p+ (v +tu)).

Therefore,
-2 =q(x+1)
v =gy +tu).
We obtain
-2
=——1u,
therefore,

-2
‘Y=qu'+qu(?—“)=qu'—?-u—qu2-

Hu = 0, then v = 0. This is 2 contradiction. Hence u # 0. Write u = f/g, with
0# f, g €Clg}, and (f, g) = 1. Then u’' = (f'g — fg')/g and therefore

g =af'9- fo') - 2fg) — ¢f*.

Let deg f = m, degg = n, degy = . Now, let us compare the degrees degg®y =
20 +1, degqf* = 2m +1 and deg(q(f'g - fg') - 2/9)-
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Observe that degg®y = 2n +1 # 2m + 1 = deg qf*, since I is even. Therefore
q(f'g—fg')—2fg # 0, hence has degree m+n —4¢ for some § € N. Morcoverm+n—2§6
equals 2n + ! or 2m + 1, whichever is larger.

In the first case, 2m + 1 < 2n + ! =m + n — §, we obtain the contradiction

nen+l+éd=m<m+1+b<n.

In the second case, 2n + [ < 2m + 1 = m +n — §, we obtain a contradiction
n<n+lt+td<m=n-1-6<n

This proves that a is irreducible in B.
Claim 2: There is no [a]-regular element in [a].

Note that voa = —1, and O.(£) = £(£ — 3) has a root 3 > |wea| == 1. By the
assumption we know that the rank of M,(3) is 3, therefore bott-torre =4 -3 =1
by Theorem 4.10. Since torpe < vog = 1 by Corollary 4.15, torga = bott-torea = 1.
Therefore agla] = 1 — 1 = 0. For any p # 0, ,]a] = v,q — tor,a = 0. Hence if there
exists a [a]-regular element, say b, at all, then o,[5] = 0 for all p, and therefore it must
have the form b = p? + Dp + C, where D and C are in C[g]- Since b is S-regular,
A = § by Corollary 3.7. Since a is preserving, 7357 = § by Theorem 2.24. Together
we have -4 = & Let 7 be the image of 1 + (4N Ba). Since@ =0, a7 =0in 4.
Since b has leading coefficient 1, 7 has a represcatative of the form u = g + fp with
f, g € Clg). Since T # 0, f znd g cannot both be zero. We obtain au € Ab, namely ,

au=vh

for some v € A.

If f =0, then u, v € Clg], and vb = au = qup® +(2qu’ — 2u)p+ (u" ~ 2u' +qu).
Hence v = qu, vD = 2qu'—2u and vC = qu"—2u’+~yu. This implies quD = 2qu’—2u.
Since quD would have degree strictly larger than the right hand side, we conclude
D = 0; therefore u = cq for some non-zero scalar c. We now have oC = ¢g°C =

—2¢+ ¢yq. But this equation has no solution in Clgq]; contradiction.
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Thus f # 0. It is clear that v ~ u. Therefore

g
v=qu+q9—qf;

for some o € C{q) (cf. the proof of the claim in Theorem 3.17). By substituting in

the equation au = v, we have

(efp+q9+ —‘If%)(Pz +Dp+C)=(gp° = 2p+7)(fr+9)

and
LHS. = of*+afDF +afCp+(ag - [ 2} +
+eg + qf%)Dp +(g9—af %J-)C +¢fD'+ ¢fC’
= ¢fp°+[afD+ (g9 — ql’%)hﬂ2 +
+afC +(q9—of ;)D +¢fD'p+
+l(a9 - af2)C +4fC,
and

RHS. = g¢fp*+2¢f'p*+¢f'p+a9p® + 299" + 99’ +
—-2fp* —2f'p—29p— 29" +1fp+g
= qfp®+[2¢f" + 99 - 2f]p° +
+lof" +2¢¢' - 2f ~ 29 +1flp+
+lgg" — 29" + 7g]-

Hence, we have

efD+ (99 —qf %'-) = 2qf +q9—2f (4.2)
qfC + (g9 - %')D +qfD = qf'+2¢ -2 -29+~f (4.3)

rd
(a9 —qf ;)C +qfC’ 19+ 99" — 24’ (44)



From {4.2)

D = Laf +ag =2 - (g -asZ)
2f 2 o
Tt
and by solving this differential equation of order one, we conclude D = 0 and ¢ =
(g/f)?, and therefore qf % = 2f — 2qf'. Therefore b= p° + C. Since b is irreducible
in B,C #0.

If g = 0, then (4.4) implies C = ;0 for some non-zero scalar ¢;. But C € Cig],
hence o = (g/ f)* € Clg)- This implies f = ¢z  or f =5 14, for some non-zero scalars
¢» and ¢3, and therefore o = (c2g)* or o = &G. Hence C =0 = ai(c2q)? or C = ¢ &.
By substituting in (4.3), we deduce c,;* (c2q)g =€z v or &5 ladg® = =26 + cag,
that is c;c3¢® = 7 or a1c3¢® = —2 + ¢v. Since degy is even, we have a contradiction

in both cases.

Consequently f and g are both nonzero. From (4.4) we obtain

(g9 — 2f +20f)afC = afv9 + ¢ f¢" — 2¢f¢' — (af)*C". (4.5)

As D =0, (4.3) reads
ofC = qf" +29¢' = 2f" - 29 +1f.
We solve this equation for C, and obtain an expression for C’ by diffcrentiation.

Then we substitute these expressions for ¢fC and C’ into (4.5). We obtain an
equation:

0=X + Xo+ X3+ Xy,
where
X, = ¢f*y +2vff + (-3
X2 = ¢*fg"+¢9f" +2¢* f'g +6fg —1afg' —4af'g
Xs = 2499+ (—2)qg"
Xe = GffO+Eff +6ff —aqff"—24f [



[v2]
-1

Note that

deg X,
deg X
deg X3
deg X,

2deg f +degy =2m + |,

1A

IA

deg f +degg=m+n,

I

2degg+1=21 +1,

2m.

A

Let f, gn, and 71 be the leading terms of f, g, and «, respectively.
If deg X; < 2m + 1, then
0 = Ifpm + 2mmfa — 3nfa = fam(l+2m - 3),

which is a contradiction since [ is even. We conclude that deg X; = 2m+1, and hence
deg X < deg X;.

Write deg X; = m + n — §;, where §; € N. i é; # 0, then

0 = n(n - l)fmgn + m(m - 1)fmgn +2mn fugn + Gfmgn
= fmga(n® + (2m — 5)n + (m® — 5m + 6)).

This implies that n =m —2 or m - 3.
Write deg X5 = 2rn + 1 — &2, where 6, € N. If §; #£ 0, then
0 = 2ng} ~ 2¢7 = g(2n — 2),
hence n = 1.
The following two cases could arise:
Case 1: deg X; > max{deg X,, deg X3}, to say,
2m+l2max{m+n—=4§, 2n+1-6}.

If 6, =0, we have 2m 4+ =m + n — § since [ is even, i.e., n = m + [+ §;. We also
have 2m + 1> 2n 4+ 1. Therefore2m+1{>2n+1=2m+213-26 +1 > 2m+!. This
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is a contradiction. So 8 # 0, and thercfore degg=n=1,and 2n+1- §. < 3. Since
[ >4, we have 2m +1 —m4n—=6& =m+1=25§. This impliesl =n = m+{+86 2 3.

This is a contradiction. We conclude that Case 1 cannot occur.
Case 2: deg X3 > max{deg X, deg X.}, to say,
M 41 =8> max{2m <+, m+n—-5§}
If6 =0, wehave2n+l=m+n— &,, and therefore m = n -+ 8, + 1. We also have
n—6>m+l=ntf+1+I>n. This is 2 contradiction. So &2 # 0, and therefore

deg g = 1. Obviously, 2 - 8 < 2m+lsince l 2 4. We conclude that Case 2 cannot
occur either. This complete the proof of Claim 2. 1

The following example gives a description of all clements in the similarity class
of the quadratic element @ = p* — 7.

Example 4.30 Leta = p* —7 € 4, irreducible in B (for instance v = ¢°). Then
b {a] if and only if b= f(up® +vp + w), where 0 £ f € C(q), and
u = F+¢P —¢v—Py

v = —u
w = (¢ +¥NQ2F+¥"+¥7)+
—(p+ VNS + o7 + ¢v +297)

for some ¢, P € C(g), not both zero.
In particuler, b € {a] N A is admissible if and only if b = f(up® +vp+ w) with

u, v and w defined as above, where ¢, ¥ € Clg] and f € d-Cl[q], where d is the
greatest common divisor of u, v and w.

Moreover, if deg is odd, then a is the only [a]-regular element in [a], up to a
non-zero scalar.

PROOF. Letb~a,ie, 'EB'b =] -EB;. Let 5 be the image of 1 + 2b. Since p?=7in -5;,
the coset T has a representative of the form s = ¢+ p for some ¢, P € C(q). Since
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1+ Bb # U, 6 and ¥ cannot both be zero. Write b = up® + vp + w with u, v, and
w € C(g). Then we have (modulo Ba)
0 = (up’ +vp+w)(é+¥p)
= (u)p®+ (ud + v+ 2ud)p’ +
+(vé + wip + 2ug’ + vy + ud")p + (wé + v’ +ug”).

By substituting p* = v, p° = py =P+, we have

0 = u(2d+¢"+%7) +o($+¥) +wd

(4.6)
0 = u(¢"+¢7 +¢r+297) +0(d + ¥} +wé

(47)
We deduce

0 = —(4.6)8+ (4.7

= u(p¢” +P*y — 264" — " + 2P'7) +
+o(p¢’ + PPy — ¢° — ¢P).

Note that if ¢? + ¢’ — ¢’ — 9>y = 0, then ¢ # 0, 1 # 0, and thereforea = p> -7 =
(p — /%)(p + /). This contradicts the fact that a is irreducible in B. Hence we
have, up to a factor 0 # f € C(q),

u= ¢ + ¢ — ¢’ — ¢y, v=-u.

We know that ¢, 1 cannot both be zero. If ¥ # 0, by substituting the ex-
pressions for u and v into (4.6), we obtain the stated expression for w; If we then

substitute the expressions for u, v and w into (4.7), we obtain an equality. Similarly,
we obtain the same expression for w from (4.7), if ¢ # 0.

It is clear that fb~ b for any 0 # f € C(q)-

Conversely, if b is of such a form f{up? + vp + w), then by inverting the above
calculation, one obtains 5(¢ + ¥p) = 0 (modulo Ba). Hence the map 1 + Bb —
(¢ + ¥p) + Ba establish an isomorphism between ‘BBT and £, i.e. b~a.
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Let b € [a] N A be admissible. Note that a is [a]-regular, i.c., 2 is simple. By
Proposition 4.2, b is admissible implies that b is a minimal annihilator 5 € ;—c Since
P =7 in ﬁ, the coset 5 has a representative of the form ¢ + ¥p, for some ¢ and
¥ € C[g]. Then we obtain the same expression for b in terms of ¢ and 1, by the same
calculation.

Let d € Clg] be the greatest common divisor of u, v and w. Then fb € A for
any 0 # f € d~'C[g], and it also annihilates ¢ + 1p. Hence fb is admissible.

Conversely, if b € A is of the such form f(up? + vp + w) for some f € d-2Ciq},
then by inverting the above calculation one obtain ¥ ¢ +¥p) = 0 (modulo Ag), hence

b is a minimal annihilator of S, hence it is admissible by Proposition 4.2.

Now if deg v is odd, we show that a is the only S-regular element in [S], up to
a non-zero scalar. Let b be 2 S-regular element in [S]. By Corollary 4.15 and the fact
that the S-regular element ¢ has leading coefficient 1, the leading coefficient of b is
equal to a non-zero scalar. Without loss of generality, we may then assume that b has
the leading coefficient 1. Since every S-regular element is in particular admissible,
b is of the form fd='(up® + vp + w) with u, v, w and d defined as above, for some
0 # f € Clg]. Hence db = f(up® + vp + w). Since b has leading coefficient 1, we
obtain d = fu. Since d divides u, f must be a scalar, say ¢. We also have that d = cu
divides both » and w. But v = —' has lower degree, hence v = 0, and therefore u is
a non-zero scalar.

Recall that
u= ¢+ ¢ —P¢’ — 3y (4.8)
for some ¢ and ¥ € C|q].

If ¢ =0, then 3 # 0, and u = —tp*y. This is a contradiction since u is a
nonzero scalar. If $ = 0, then u = ¢°. This implies ¢ = u'/2, and therefore w = —uvy

from (4.7). Hence b= p* — v = a.
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Now let us assume that both ¢ and ¢ are non-zero. Let deg ¢ = n, deg¢ = m.
We shall compare degrees in (4.8). If n > m, then deg(@)* =2n>n+m-1=
deg(¢y’ — ¥¢'), and 2n # deg(—¥*v) since deg«y is odd. This is a contradiction. If
n < m, then the largest degree in (4.8) will be 2m + degy = deg(—%"7). Hence it
must be equal to the degree of u which is zero. This is a contradiction since degy # 0.
|
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