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Abstract

This thesis studies two problems for the first Weyl algebra A = Al (C), namely, Ore

localizations and irreducible representations.

Our contribution to the first problem is that we find two collections of torsion

theories which can be determined by Ore sets. The first consists of all torsion theories

generated by classes of simple A-modules which contains either all C[q]-torsion or all

C[P]-torsion simple A-modules, up to an automorphism of A (for instance, any torsion

theory generated by all but countably many isomorphism classes of simple modules).

The second consists of all torsion theories generated by classes of at most linear simple

A-modules.

The second part of the thesis studies the irreducible representations of A, i.e.,

the structure of simple A-modules. We generalize Block's result for linear simple mod­

ules, namely, that every linear simple module can be expressed in the form C[X, Q-l]
for some Q E C[X], to arbitrary simple modules which satisfies two conditions which

are necessary and sufficient. The Second condition is stated in terms of two invariants

of the similarity class corresponding to the given simple module, which are explic­

itly checkable. An important tool is an index theorem which relates two different

realizations of the same simple module.
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Chapter 1

Introduction

In this thesis, we study Ore localizations and irreducible representations of the first

Weyl algebra.

The first Weyl algebra, denoted by A = At = At(C), is defined as a C-algebra

with two generators q and p and a relation [P, q] = pq - qp = 1, where C is the field

of complex numbers. It also may be realized as the algebra of differential operators

with polynomial coefficients, that. is, A = C[q, ~J.

Dixmier studied the first Weyt algebra systematically in late 1960's. His four

lemmas in [3) show how the multiplication in A can be expressed in terms of the

multiplication of polynomials in two variables; he determined that the group of au­

tomorphisms of A is geuerated by ~,,~: p -t p, q -t q + Ap" and ~~,.\: q -t q,

P ~ P + ApR, where A is an arbitrary complex number; an elegant proof of this fact

was provided by Makar- Limanov [10). Dixmier also classified the elements of A

into five classes, and described representatives for two of those, namely the so-called

"'strictly nilpotent" and "strictly semisimple" elements, up to automorphisms of A.

Many aspects of the Weyl algebra A, and its generalizations An' were studied

by numerous people; d. eg. the results and references in [12). Except for basic facts,

Dixmier's work, and the results of Block and Goodcarl (which will be described later),
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we could not find anything particularly arrlicable to our own investigation.

Ore localization in Noetherian rings has been studied by many people. Many

satisfactory results have been obtained for Noetherian rings with lots of ideals, eg.

FBN rings, Noetherian rings with the second layer condition, etc. However the first

Weyl algebra is a simple Noetherian ring, so it has no non-trivial ideals. This makes

10.:41ization in A harder since one cannot use analogues of localizations in commu­

tative rings. Jategaonkar's second layer condition is not satisfied, either. Goodearl

investigated the influence of the :>tructure of the injective modules on localization

questions for noncommutative Noetherian rings. Instead of studying the linkage be·

tween prime ideals, he defined links between uniform injective modules, and obtained

that such links provide obstructions to Ore localization. For the first Weyl algebra, he

proved that the elements which operate regularly on the injective hull of any simple

A-module S, denoted by CES, fonn an Ore set, and the corresponding localization

has a unique simple module. Thus he provided another example of Ore localization

in A, beyond Goldie's localization which is determined by the Ore set A \ {OJ, and

the well known localizations determined by the Ore sets C[q] \ {OJ and C[p] \ {OJ.
This raises the question of finding all the Ore localizations in A.

Block determined the irreducible representations of the first Weyl algebra. He

proved that every C[q]-torsion free simple A-n.vdule can be written in the form A:Ha

for some preserving element a, where B = C(q)[P] is the localization of A at C[q] \ {OJ.

Moreover, he gave another description for linear simple A-modules, namely, S = AtHa

is isomorphic to the A-module C[q, Q-l], where a = QP + f3 with Q, {3 E C[q] is u.S­

regular" (An element is called S-regula.r if it operates regularly on ES' for all simple

S' not isomorphic to S.). At this point two more questions arise: First, is there

always an S-regular element for any C[q]-torsion free simple A-module S of arbitrary

degree n? Secondly, if such an element exists, can S be expressd in a similar form as

in the linear case? In other words, can one generalize Block's theorem from linear to

arbitrary C[q]-torsion frcc simple A-modules?

Chapter 2 contains the basic definitions and facts about the first Weyl algebra,
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which we n<..'Cd in our investigation. In particula.r, we ha.ve a structure theorem for

the set of torsion theories on the category of left A-modules, as an easy consequence

of the fact that A has Krull dimension one, namely, that there is a one-to-one corre­

spondence between isomorphism-dosed classes of simple left A-modules and faithful

torsion theories on A-Mod. This theorem transforms the problem of finding Ore local­

izations in A, to the study of classes of simple A-modules, where Block's classification

of irreducible representations of A provides some useful information. This work of

Block is described in Chapter 2, including the useful concept of indicial polynomial.

In Chapter 3, we study the Ore localization in A. Our contribution to this

problem is that we find two collections of torsion theories which can be determined

by Ore sets. The first contains any torsion theory generated by a class of simple

A-modules closed under isomorphisms containing either all C[q]-torsion or all C[P]­

torsion simple A-modules. (In fact, we prove that any fairly large torsion theory, for

instance, any torsion theory generated by a class of simple A-modules which consists

of all but countably many isomorphism classes of simple A-modules, is a torsion

theory of this kind.) The second contains any torsion theory generated by a class of

at most linear simple A-modules. These two collections provide a fairly large number

of examples of Ore localizations in A, including all the known results.

In general, consider the torsion theory er. generated by a class 6 of simple

A-modules. The natural candidate for an Ore set determining &t is the set n(s) =
nsesCES. In fact, if &C is determined by any left Ore set at all, then n(s) is left

Ore and determines &to We call the elements of n(s) S-regular, and we characterize

them in five different ways.

Unfortunately, the problem of finding all Ore localizations of A is far from

solved, and we do not know even a single example of a torsion theory which is not an

Ore locali7..a.tion.

In Chapter 4, we study the irreducible representations of A, namely, the struc­

ture of simple A-modules. We have given a complete answer to the two questions

which arise from Block's work. First, not every similarity class contains an S-regular
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clement for the corresponding zimple module S. Such an example is given in Sec­

tion 5. Secondly, not every simple module can be expressed in the form C[q,a-tjn.

However, there is a large number of simple A-modules beyond linear simple modules,

which ca.n be c.'Cpressed in such a form. A necessary and sufficient criterion which

consists two conditions is given in Section 4. The second condition is stated in terms

of two invariants of the similarity class, and are the-.refore checkable on any particular

member. The whole machinery which we have developed to study the above t.wo

problems depends on a careful study of the regularity of elements in each similarit.y

class. In fact, similarity classes are originally defined for simple B-modules, that is

two irreducible elements b1 and ~ are similar if and only if :'1 ~ :b::' The class

of elements of B which are similar to b is denoted by [b]. By Block's classification

theorem, every C[q]-torsion free simple A-module is associated with a similarity class.

Unfortunately, there is no good explicit description of the elements of [b], except in

the linear case. We try to find regular elements by studying the A-moduie .tel' for any

element a E A in a given similarity class. The two quantities bott-torpc and top-torpa

are defined naturally at each place p E C. A criterion for bott.torp is given, in which

the associated indicial polynomials play a crucial role. Two impotant invariants of

a similarity class are found, namely, the surplus, and the set of roots of the indicial

polynomials modulo z· at each place p E C.

An index theorem for the first Weyl algebra is established. It gives a quanti­

tative analysis of why Block's result about linear simple A-modules ca.n.not be true

in general, and where the discrepancies are.



Chapter 2

Preliminaries

Throughout the thesis we use Z for the set of integers, Z- and Z+ for the sets of

negative and positive integers, N = {O} U Z+ for the set of non-negative integers, and

C for the set of complex numbers.

2.1 The first Weyl algebra

The main reference of this section is the book by McConnell and Robson [12}.

Let A = At = At (C) denote the C-algebra with two generators q and p and

a relation pq - qp = 1. Note that every element a in A has a unique represen­

h.tion EiJ Cijqipi, with Cij E C for all i, j EN. Define the total degree of a as

ma.x{i + j : Cij =fi O}. Any 0 =fi a E A can be written uniquely as Ei=oQi(q)pi or

Ei=o13j(p)qi with Qi(q) E C[q}, {3j(p) E C[P] and Q n =fi 0, 13m =fi o. \Ve say that a

has p - degrec nand q - dcgree m, denoted by p - deg a = n, q - deg a = m, respec­

tively. This algebra first appeared in quantum mechanics as the algebra generated by

position and momentum operator. The noncommutativity of the generators reflects

the Heisenberg uncertainty principle. The first Wcyl algebra may be realized as the

5
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algebra of differential operators with polynomial coefficients, tha.t is, A = C[q, ~l.

Then it is easy to prove the following:

Theorem 2.1 A is a simple Noetherian integral domain.

There is another integral domain closely related to A, namely, B == C(q)[P] ,

subject to the same relation pq - qp == 1. Every element of B has a unique rep­

resentation Li Qi(q)pi, where Qi(q) E C(q) for all i. Therefore there is an obvious

embedding: A -+ B which we use to identify A with 3. subalgebra of B.

Theorem 2.2 B is a simple Noetherian principal left and right ideal domain.

Since B has such a nice structure, we always try to study the problems about

A that we are interested in, through their study over B.

A is a filtered ring, with the family {Fj I j E N} of additive subgroups of

A, where Fj is the C-subspace generated by the qnp'ffl. with n + m ~ j. This is the

standard filtration of A with respect to the generators q and p. One has

A == U Fj.
jeN

The following lemma shows how to multiply two elements of A, in terms of

the multiplication in the commutative polynomial ring in two variables.

Lemma 2.3 Let

x == L Qijqipi, Y == L fJijqipi, z == I: iijqipi
i,j i,j i,j

in A, and

f == LQijXiyj, 9 == L:fJijXiyi, h == L: iiiXiyi
i,j i,j i,j
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in C[X, Y].

1) If== xy, then

af a9 I a'1 a'Jg
h=f9 + ayaX + 2! a2Ya2x + ....

2) If==xy-yx, then

af ag af ag 1 a'1 a2g a2f a'Jg
h= (ayaX - ax ay) + 2!(a:zY a2x - cr-x cr-y) +....

9) For any <P E C[X}, we haT1e

PROOF. Dixmier ([3], 2.2, 3.2). I

Theorem 2.4 The group of automorphisms of A, denoted by AutA, is generated by

the linear automorphisms defined by

with Ct4 - c;C2 =1 where Ci,~ E C, and the triangular automorphisms defined by

q-q,p~p+f(q)

with f(q) E C[q].

The set of anti-automorphisms of A is the set of u 0 T with u: q ~ p, p ~ q

and T E AutA.

PROOF. Dixmier ((3}, S) and L. Makar-Limanov [IO}.

Theorem 2.5 The global dimension of A is 1, and Krull dimension of A is 1.

PROOF. See the book by McConnell and Robson ([12], 7.5.8, 6.6.15).

I
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2.2 The torsion theories on A-Mod

In this section, we first give some basic definitions. For any undefined notions and

proofs, one can refer to the books by Golan [4] or Stenstrom [14J.

Definition and Proposition 2.6 A hereditary torsion theory on R-Mod is deter­

mined by anyone of the following:

1) A torsion class c.I': a class of R-modules dosed under extensions, rolimits,

and submodules.

2) A torsion free class~: a class ofR-modules closed under extensions, limits,

and essential extensions.

3) A torsion radical T: a functor such that for any MER-Mod, T},-[ ~ M,

T2 =T, T(~) = Q and for anyN~ M, TN=TMnN.

4) A dense filter ~: a set of left ideals of R such that D:r-1 E ~ for any

D E ~ and:r E R, and if I is a left ideal of R for which there exists D E ~ such that

1a-1 E ~ for all a ED then 1 E~.

5) An equivalence class E of injective module E: E1 is equivalent to ~, if

there are embeddings Et ---.. n~ a.nd~ ---.. nE1 •

Remark: For any hereditary torsion theory c.I', there is a quotient functor n
on R-Mod, defined as £l(M)=EI(T~) for any MER-Mod, where E'I(M) is the

c.I'-injective hull of M. (A module X is c.I'-injective if and only if every diagram of the

fonn:

can be completed commutatively by a map {3: Y -- X, provided ~, E c.I'.) In

pa.rticular, nCR) = Snit;) is a ring. It is ca.llcd the quotient ring of R with rcspc<:t












































































































































































