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Abstract

This thesis is a study of what it means for a frame to be N-compact. We find that
the frame analogues of equivalent conditions defining N-compact spaces are no longer
equivalent in the frame context; one must be careful in deciding what the appropriate
frame notion is. We show that it is the assumption of a choice principle (the Axiom
of Countable Choice) which provokes this departure from the spatial situation.

We analyze the several possibilities and show how it is the ‘H-N-compact’
frames which best embody the notion of N-compactness. We develop the theory
and construct the H-N-compactification, which uses a frame-theoretic version of the
classical ultrafilter formulation of the spatial N-compactification. We use this com-
pactification to show how these frames relate to the other ‘N-corapact’ frames. Along
the way we construct a 0-dimensional Lindelof co-reflection, and show how this relates

to the H-N-compactification.

Recent works in Abelian group theory have employed the groups C(X,Z) in
the study of reflexivity and duality. The N-compact spaces are important in this
regard because of a theorem of Mréwka which shows how a group homomorphism
from C(X,Z) to Z is determined on a small part of X, if X is N-compact. We use
the H-N-compact frames to lift tius to a result about any group of global sections
of a sheaf of Abelian groups. We then are able to give a sufficient condition for the
local reflexivity of a sheaf to lift to global reflexivity; it is enough that the frame is
HI-N-compact. We show that the groups known to be reflexive (in ZFC) cach appear

as a group of global sections of some sheaf on an N-compact frame, or as the dual
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of such a group of sections. We can then use our generalized Mréwka’s Theorem to
establish their reflexivity.

In the final chapter we apply the techniques of Chapter 1 to the study of
rezlcompact frames. These have been studied, but the definition usually given is
quite restrictive. We construct the H-realcompactification and develop enough of the

basic theory of H-realcompact frames to justify proposing that these be thought of
as the realcompact frames.
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Introduction

0.0.1 Frames

There are several different aspects to the study of frames, each corresponding to moti-
vations arising from topology, logic, and algebra. From the viewpoint of a topologist,
frame theory is topology with the lattice of open sets taken as the primitive notior.
P. Johnstone explicates this idea well in his article [Jol] from which we draw the
following history.

The use of lattices in the study of topological spaces began with Stone’s duality
theorems in 1936-1937. There for the first time an explicit connection was made
between certain algebraic objects (Boolean algebras) and certain topological objects,
(0-dimensional compact Hausdorff spaces.) In an important sense, they are the same
thing. The idea of applying lattice theory to topology was soon developed further;
the Sione-Cé&ch compactification (in its ultrafilter formulation) was one of the fruits.

In the 1950’s Ehressman and his students began to take the equation between
Boolean algebras and Boolean spaces seriously; proposing that lattices with the right
propertics (frames) be viewed as ‘topological spaces’ in their own right, regardless of
whether the lattice was in fact the lattice of open subsets of some topological space.
Much of topology can be extended to these generalized spaces, and where it cannot,
it is often in the frame context that the situation is better. For example, by a result
of Dowker and Strauss [Do,St], the Lindeldf property is preserved under coproducts

of regular frames (the analogue of products of spaces,) whereas it is well known that
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even binary products of (regular) Lindelsf spaces need not be Lindeldf. One even has
a Lindeldf co-reflection for frames, (a ‘Lindeldf-ification’.) We shall spend some time
considering these facts in Chapter 1, where we shall prove some results which bear
upon the study of frames in its logical aspect, which we consider next.

It is well-known that the statement of the classical Tychonoff Theorem is
equivalent to the Axiom of Choice, and that even when the statement is restricted
to Hausdotfl spaces one still requires the Boolean Ultrafilter Theorem. With frames
however the situation is different; there are precise analogues of these preservation

results, but they can be established without the use of any choice principles.

It turns out that many of the results in classical topology which depend on
nonconstructive principles no longer need such principles in their frame-theoretic
versions. Often it is only in showing that these more general results about frames
imply the classical results that one requires the choice principle; usually it is found
in the proof that a particular frame has ‘enough points’, that it is representable
as a lattice of open subsets of some topological space. If one is content to work
with ‘pointless spaces’ then one can even use the Tychonoff theorem in a constructive
context, [Ve]. Much of frame theory has been developed with a constructive approach
to topology in mind.

0.0.2 An Outline

In Chapter 1, we investigate what it could mean for a frame to be N-compact. W= sce
that equivalent notions of N-compactness for spaces separate into inequivalent notions
in the frame setting, primarily due to the preservation of the Lindeldf property under
coproducts. We show how one of these notions, Herrlich-N-compactness, is really
the ‘right’ notion for frames, develop an H-N-compactification, and explore some

interesting consequences.

Members of the other class of ‘N-compact’ frames we call Stone-N-compact;

we show that these are exactly the 0-dimencional Lindeldf frames, and that this fact



is equivalent in logical strength to the Axiom of Countable Choice. We construct
an S-N-compactification, and show that it is the co-reflection to the category of 0-
dimensional Lindelof spaces if and only if the Axiom of Countable Choice holds. We
prove that the S-N-compactification coincides with the H-N-compactification after a
spatial co-reflection.

The class of H-N-compact frames includes many non-spatial examples, but
remains in a connection with some important properties of the groups and rings
C(X,Z) first established for N-compact spaces. We prove some of these facts in
Chapter 1, and leave the proof of others until the next chapter.

Chapter 2 contains some applications of our work in Chapter 1. This thesis was
originally motivated by some results in Abelian group theory concerning the groups
C(X,Z), in which N-compact spaces play a significant role. Such groups C(X,Z)
occur as (particularly simple) examples of groups of global sections of sheaves on
frames. If one is to generalize the results alluded to, one needs a notion of an ‘N-
compact frame.’

We show how H-N-compact frames can be used to lift one such result of
Mréwka up to a result about arbitrary groups of global sections, (adding further
support for our assertion that these are the N-compact frames.) We note how onc
can use this generalized theorem to prove some recent results concerning Boolean
powers and the groups C(X,Z). As another corollary we obtain a ‘sheaf-theoretic’

result; we show how the property of local reflexivity implies global reflexivity.

The book [Ek,Me] contains some important new methods of constructing re-
flexive groups; constructions via ‘tree sums’ and ‘tree products.” We show how a
tree product may be obtained as a group of global sections, and a trec sum as its
dual. Our generalized Mréwka’s theorem can then be used to establish the associated
reflexivity results in [Ek,Mec]. This brings all of the known reflexive groups under one

umbrella; groups of global sections of certain sheaves on N-compact spaces.
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In Chapter 3 we take some of the lessons learned in our investigation of N-

compact frames and apply them to an investigation of frame realcompactness. As

- we did in Chapter 1, we show how the ‘H-realcompact’ frames ‘lift’ the idea of

spatial realcompactness properly, something the ‘S-realcompact’ frames (which have
already been studied) fail to do. We develop the basic theory, including the H-
realcompactification.



Chapter 0

Preliminaries

0.1 Introduction

We briefly review the basic definitions and results we shall need in subsequent chap-
ters. Most of the introductory material concerning frames is well-known, except
perhaps for Theorem 0.2.2. The book [Jo] is a good source for the details and back-

ground we cannot provide here. We give explicit references for anything not covered
there.

In Section 0.3 we introduce the basic notions concerning sheaves of Abelian
groups. The book [Te] is an excellent reference for this. Section 0.4 contains the
few definitions and results regarding properties of Abelian groups we shall need. The
books [Fu] are the best resource for general information about Abelian groups, and

the book [Ek,Me], soon to appear, contains most of what is known about reflexivity.



0.2 Frames

A frame is a complete lattice L which is A-continuous; a AVS = V,c.za A s for
a € Land S C L. We will denote the bottom of L by 0 and the top by e. A
homomorphism of frames is a map L2+ M which preserves finitary meets and
arbitrary joins, (and hence 0 and e.) The category of all frames and frame morphisms
is denoted Frm. Note that the A-continuity of a frame implies that it is a (complete)
Heyting algebra. As is usual, we shall write the Heyting implication by —. The
associated psuedocomplement operator takes u to u* = u — 0. We shall usually
denote frames by upper-case letters, typically L and M, and elements of frames by
lower-case letters such as u and v. If S is a subset of a frame L and ¢ is a frame map
with domain L we will denote the image of S under ¢ by 4[S]. To avoid complicated
notation, we shall often supress the mention of an index set for joins taken in a frame,

writing V u, for the join of a family of elements {u,}, of L.

The canonical example of a frame is the open subset lattice O(X) of some
topological space X. Frame of this sort are called spatial. A complete Boolean
algebra which is not atomic is an example of a non-spatial frame; it cannot be
represented as the open subset lattice of a topological space.

0.2.1 The Connection with Topological Spaces

The connection between spaces X and frames @O(X) is part of a deeper relationship;
there are contravariant functors

Top Frm

b
o

which are adjoint on the right. For a space X, O(X) is the frame of open subsets of
X. A continuous map X—1+Y is taken to the map O(Y)E(—‘QO(X), which sends the
open set U to f~'U. The functor ¥ takes L to the spectrum of L, the space of all



completely prime filters on L; a completely prime filter F has the property that
VSeFifSNF #0,forany S C L. Thesets {F € ELL|u€ F}foru€ L are
the open subsets of LL. For any frame homomorphism L-2+M the corresponding
continuous map L(h) takes a completely prime filter F of M to f -1F, a completcly
prime filter in L. Completely prime filters correspond to prime elements of L; those
clements u with the property that u = v A w only if u = v or u = w. Thus the
spectrum L L can be seen as the space of all prime elements of L; it has a base for
the topology consisting of the sets {p prime | u £ p}, foru € L.

The functors @ and ¥ are adjoint on the right; the corresponding adjunc-
tions are X—5X0(X) and L2%OEL. The first of these takes an clement z to
O(z) = {U € O(X) | z € U}, and the second takes u to {F € TL | u € F}. The
elements of Fix(o_), those frames for which oy, is an isomorphism, are called spatial
or said to have enough points. These are exactly the frames of the form O(X)
mentioned above. The elements of Fix(c..) are the sober spaces. Sobriety is a

property intermediate in strength between the T2 and Tj separation properties.

0.2.2 Separation and Covering Properties

A frame L is compact (Lindeldf) if V,S = e for some subset S C L implies that §
has a finite (countable) subset with the same join.

The Boolean part of a frame L consists of all the complemented clements
of L, a sublattice which is a Boolean algebra. It is denoted BL. A frame is 0-
dimensional if any element of the frame is the join of the complemented clements

below it, or equivalently if the Boolean part generates the frame.

Given two elements u, v of L, we say u < v (‘u is rather below v") if there is a
third element w such that uAw =0 and wVv = e. A frame is regular ifu =V, v
for any u in L. It is a fact that compact regular frames are spatial, a statement
equivalent in logical strength to the Boolcan Ultrafilter Theorem. It is often useful

to know that the prime elements of a regular frame are exactly the maximal



-

elements.

The completely below relation <~ is a strengthening of the <-relation. We
say that u<<uv if there is a family (z;) in L, for i € w and % ranging from 0, - - - V2,
depending on i, with the following properties.

(i) Iog=Uu and Zoa =V,

(ii) Zik = Tikt1, and

(iii) Tik = .‘L“'.‘_]'gk.

This is exactly the sort of situation constructed in the proof of Urysohn’s Lemma.
Indeed one can use the lemma’s argument to show that U=<V for U,V € o(X), ift

there is a continuous function X ir[O, 1] such that ¢ takes the value 0 on I/ and the
value 1 outside V.

A frame is completely regular if for any element u, u = Ve<<u U One can
check without difficulty (using the methods of Urysohn’s Lemma) that a space X is
completely regular iff O(X) is completely regular.

We list some simple but important properties of the <<-relation.

Lemma 0.2.1 (i) u<<u iff u has a complement.
(ii) u~<v implies u < v and hence u < v.
(iii) u < v<=<w < y implies u~<=<y.

(iv) For anyu € L, the set {v € L | v<<u} is an ideal and the set {vel|u<<v}
is a filler.

(v) If u<<v then there cxists a w with u<-<w-~<v. (We say that the ~<-relation
interpolates.)



0.2.3 Compactifications

For any distributive lattice D with zero and unit the collection of all the idecals on D,
3D, is a compact frame.

For any frame L the frame JBL is the universal 0-dimensional compactifi-
cation of L, with coreflection map 3BL-HL taking I to V I. This is the constructive
analogue of the Stone-Banaschewski compactification of a 0-dimensional topological
space. The functor 3B takes a frame morphism L-23M to the morphism J B¢, which
itself takes an ideal I to {¢[/]}, the ideal in BM generated by the image of /

An ideal I of L is completely regular if for any u € I there is some v € [
with u~<<v. For an_ frame L, the subframe of JL consisting of all completely regular
ideals is the universal completely regular compactification of L, or the Stone-
Céch compactification, written L. The coreflection map BL — L takes an ideal
to its join in L. The proof of these facts is entirely constructive. The functor 3 takes
LM to B(#), the frame homomorphism defined as follows.

BL 2% guM
I — {ue M|u<¢v), somevel}

Given a space X, the frame SO(X) is compact and completely regular, and
therefore spatial. (Here the Boolean Ultrafilter Theorem is used.) A simple category
theory argument then shows that the space ZO(X) is the usual Stone-Céch com-
pactification of X. In Chapter 3 we will need a more explicit proof of this, one which

we present after first supplying a few nccessary definitions.

If D is a distributive lattice with 0 and unit, MaxD denotes the topological
space consisting of all maximal ideals of D with a basc for open sets consisting of the
sets {] € MaxD |u g I} foru € L.
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A familiar construction of the Stone-Céch compactification SX proceeds as
follows. Given X, form Coz(X), the (distributive) lattice of co-zero sets in X. (These
are the sets f~1({0, 1]—{0}), for continuous X -‘f—»[ﬂ, 1].) Then BX is MaxCoz(X). (A
yet more familiar version of this is the ‘dual’ construction, using zero sets and filters.)
We connect this with the Stone-Cé&ch compactification SO(X) via the following result.

Theorem 0.2.2 For any space X the spaces 2AO(X) and MazCoz(X) are homeo-

morphic via the maps

TAO(X) % MazCo{ X)
I — {V€CoxAX)| (V) V (IN CoxX)) # Eacoxis}
{U|U==V, someV €T} — J

Before we begin the proof we establish the following simple result.

Lemma 0.2.3 For any space X, and f,g € C(X,[0,1]), such that Cox(f)UCoz{g) =
X, there are continuous functions fy, g, so that

o Cozfi)==< Cox(f), as elements of O(X).
Coz(g1)=< Coxg),

Cox(f1)NCox(g:) = 0,
Cox(f1)UCox(g) = X, and

COZ(g])UCOZ(f) = X.

Proof Set fi = max{0, f — g}, so that Coz(fi} = {z | f(z) > g(z)}, and ¢, =
max{0,g — f}. Then obviously Coz(f1)NCoz(g,) = 0. As Coz(f)UCoz(g) = X, we
have Coz(f,)UCoz(g) = X, and similarly for g,.

Now Coz(f, )<<Coz(f) since the continous function f/Max{f,¢} is1on Coz(f,)
and 0 off Coz(f). (The hypothesis ensures that the function is defined everywhere.)

Of course we can use a similar function to show that Coz(g, )<~<Coz(g). O
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Proof (Theorem 0.2.2) Our main task will be to see that the definition of the maps
in Theorem 0.2.2 makes sense. Once this is done it is straightforward to show that
they are continuous and inverse to each other.

Let I be an element of £AO(X), a maximal completely regular ideal in O(X).
If we can show that ¢(I) is an ideal, it will clearly be a maximal ideal. To do this we
show that ¢(I) is closed under joins. Suppose that

1Coz(f) V (I N Coz(X)) # E and
{Coz{g) v (I N Coz(X)) # E,

and towards a contradiction, that Coz(f)UCoz(g)UCoz{k) = X, for some co-
zero set Coz(h) in I. Note that Coz(f)UCoz(h)UCoz(k) # X for any Coz(k) €
INCoz(X). Note also that if U € I, the complete regularity of I implies that there
is a co-zero set in I which is above U. These two observations together imply that
Coz(f)U Coz(k) UU # X for any U € I. It follows that any V in O(X) which is
completely below Coz(f)UCoz(k) is in I, by the maximality of 1.

However, by the previous lemma, we know that there is a co-zero set Coz(k),
completely below Coz(f)UCoz(h), and hence in I, such that Coz(k)UCoz(g) = X.
This contradicts the hypothesis on Coz(g). Thus ¢(I) must be an ideal, so that ¢ is
a map as shown.

To see that the same is true for ¥, fix J an element of MaxCoz(X). Then ¥(J)
is clearly an element of O(X) and we must show that it is a maximal such clement.
Towards this, suppose that #(J) € K, for K € BO(X), and fix w € K\¢(J). There
is a u in JC so that w~<~<u, and therefore a cozero set Coz(f) so that w~<<Coz(f) < u.
It follows that Coz(f) is not in J. Since J is maximal, there is a continuous function

g such that Coz(g) € J and Coz(g)UCoz(f) = X. By Lemma 0.2.3 there exist f; and
g1 so that

Coz(f1) << Coz(/f),
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COZ(Q]) <= Coz(g) andv
Coz(f) U Coz(g)=X.

Then Coz(g,) € ¥(J) C K, and Coz(f)UCoz{(g;) = X, so that K is not a
proper ideal. Thus (J) must be maximal.

It is straight{orward to show that ¢ and 1 are continuous and inverses one of
the other. O

0.2.4 Quotient Frames

A subspace inclusion X C Y gives rise to a surjective frame map O(Y') — O(X), and
so it is important to understand frame quotients. This is best done with the use of

nuclei.

A nucleus r on a frame L is a (set) map L — L such that

(i) u < r(u),
(ii) r(u) Ar(v) =r(uAv), and

(iii) r*(u) = r(u).

Nuclei correspond to frame congruences: a nucleus r takes u € [ to the largest
element in the u-block of the corresponding congruence. The quotient frame of L
mod r is written [L],, and consists of the r-closed clements (r(u) = u,) with finite
meets as in L and V) ua = r(V,u,).

Corresponding to special sorts of subspace inclusions there are special sorts of
nuclei:

(i) A nucleus L5 L is dense if r{0) = 0.
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(ii) r is co-dense if r(u) = e implies u = e.

(iif) r is open if it is of the form u — (=) for some u € L. The frame [L]; is
isomorphic to [(u).

(iv) r is closed if it is of the form u V (=), for some u € L. In this case [L], is H(u).

In a similar way we define a frame homomorphism L-25M to be dense if

$(u) = 0 implies u = 0, and ¢ to be co-dense if $u = e implies u = e.

We shall frequently make use of the following result. The proof is casy.

Lemma 0.2.4 Suppose L is a regular frame, and L5 Misa frame homomorphism.
Then the following hold:

(i) If ¢ is dense then it is monic in the category of regular frames, and also 1-1 on
the Boolean part of L.

(ii) ¢ is I-1 iff it is co-dense.

(iii) If Af is compact and ¢ is dense, then ¢ is 1-1.

Frame Coproducts We shall need to know nothing more about frame coproducts
than their existence, and so we shall not describe their construction here. We denote
the coproduct of a family of frames {L,}s by @, La, and a copower B.¢r L by
LD, Tt is a fact that the coproduct of regular frames is regular, and likewise for
0-dimensional frames. The Tychonoff Theorem for frames says that the coproduct

of a family of compact frames is compact. There is a constructive proof of this in

[Ve].



T

14
0.3 Sheaves of Abelian Groups

A frame L can be viewed as a category, with objects the elements of I and morphisms
the pairs (U, V), for U < V, with domain U and codomain V. Notice that we write
the frame elements in upper-case, the usual practice when one considers sheaves. A
presheaf of Abelian groups on a frame L is a contravariant functor from L to
Ab, the category of Abelian groups. More descriptively, A attaches to each U/ € L
an Abelian group AU, and to each pair (U, V) a group homomorphism AV — AU
(when U < V.} We describe the action of such a map as taking a € AV toa | U, the
restriction of a to U. The properties of a functor imply that

(i) fa€ AU thena |U =a.
(i) fFUSV<Wandae AW, then (a{V)|U =a|U.

A morphism of preheaves A — B is just a natural transformation. The
category of all presheaves of Abelian groups is denoted AbPShL.

A presheaf A €AbShL is a sheaf of Abelian groups if it satisfies the following
two properties.

(i) U =V, U, in L, a and b are elements of AU and a | U, = b U, for all &, then
a = b. This is the separation condition.

(ii) Suppose that U =V, U,, and a, € AU, for each a. If the a, are compatible,
that is, if @, | Uas AUp = ap | Us A Up for any o and B, then there is an element
a € AU such that a | U, = a, for any a. This is the patching condition.

Note that that the conditions (i) and (ji) imply that A0 = {0}. The group AE
is called the group of global sections. The full subcategory of sheaves of Abelian
groups is denoted AbShL.

"The following is a uscful result we shall often employ in Chapter 2.
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Lemma 0.3.1 If A is a sheaf on a frame L, and U € L is the join of a family
of pairwise disjoint elements U,, then AU = [], AU, via an isomorphism ¢ which

commutes with the projection maps %,,and restriction maps as shown, for any a.

AU—2.11, AU,

resiriction| =,

AU,

Proof Omitted.

The subcategory AbShL C AbPShL is a reflective subcategory, that is, there
is a left adjoint to the inclusion functor. We construct the left adjoint (=) as follows.
For an A € AbPShL, and a cover {C,}, of U € L, let Ac be the equalizer of the

maps f and g shown, which are determined by the restriction maps in the obvious
manner.

Ao —l. AVs=el1. ; AU 7 Up)

The covers of U form a directed set when ordered under refinement, and we can form
a direct system of groups, using the obvious maps Ac — Ap present when D refines
C. Then AU is defined to have value equal to the direct limit of this system. Since
{U} is a cover of U, there is a map AU — AU, for any U € L, and the presheaf
morphism A — A defined in this way is the adjunction for the sheaf reflection.

For any frame L, we denote by Z, the ‘constant sheaf on L, defined to
be the sheaf reflection of the presheaf A which has values AU = Z for all U € I,
with constant restriction maps. We can also view Z, as the sheal defined thus: for
any U € L, Z,U is the group of all frame homomorphisms O(Z} — [(U), where

L is given the discrete topology and the group operations are defined in the obvious
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(‘pointwise’) way. Note that any such frame homomorphism is completely determined
by its values on the atoms of O(Z); the sets {n} for n € Z.

If V < U, the restriction map Z,U — Z,V of the sheaf Z; takes an element
§ of Z,U to that clement of Z,V which takes value £({n}) A V at n, for any n € Z.

Since Z is also a ring, we can view Z, as a sheaf of commutative rings with
identity. Note that when L is spatial (= O(X) say,) then Z,E is (isomorphic to)
the group (ring) of continuous functions C(X,Z), via the map taking a continuous
function f € C(X,Z) to the element f' € Z,E with values f'({n}) = f~1({n}) for
anyn € Z.

0.4 Abelian Groups

If A is an Abelian group, then A" = Hom(A,Z) is the dual of A, the group of
all homomorphisms, under pointwise addition. There is a canonical map AZA A
with value at a the homomorphism o,(a), itselfl with action o4(a)(f) = f (a), (the
evaluation map at a.) The group A is torsionless if o 4 is 1-1 (the homomorphisms

of A separate points,} and reflexive if o4 is an isomorphism.

If A-24Bisa group homomorphism, then the dual map &* takes an element
¢ of B* to the clement %*(¢) of A* which itself takes ¢ to ko 1.

It follows from a classical theorem of Lo$ that the direct sum and direct product
of a family of reflexive groups is reflexive, provided the family is of nonmeasurable
cardmallty This fact depends heavily on the slenderness of Z: Any homomorphism
2v27 has h(e,) = 0 for almost all n € w (i¢, all but a finite number.) Here e,

denotes the clement with values e,(m) = §, .

It is an casy cxercise to show that a direct summand of a reflexive group is

reflexive, and that the dual of any reflexive group is again reflexive,



Chapter 1

N-Compact Frames

1.1 Introduction

Since the work of Stone it has been known that the compact completely regular spaces
are exactly those spaces which are (homeomorphic to) closed subsets of [0, 1}, for I
some index set. Soon thereafter [Hew] the realcompact spaces were defined and it was
shown that the realcompact spaces are the spaces homeomorphic to closed subspaces
of R, (today this property is commonly used as a definition of recalcompactness.)
It was natural step then for Engelking and Mréwka [En,Mr] to define an E-compact
space to be a closed subspace of EY, for a topological space E. The N-compact spaces
(the case E = N, the discrete space of natural numbers) are important in the study of
the groups and rings C(X,Z). The material of [Ed,Oh] is an example we will discuss
in Chapter 2.

In [Her] and in [Mrl1] there were established a number of conditions equivalent
to N-compactness, analogous to those earlier obtained in the case of realcompactness.
We introduce some basic concepts before stating their results, the first being the 0-

dimensional compactification, constructed by Banaschewski in [Ba).

17
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Definition 1.1.1 If X is a 0-dimensional T, space, then B, denotes the eveluation
embedding of X into 26(X?) and B, X the closure of Bo[X], which is the universal

0-dimensional compactification.

Remark In the literature this compactification is often written {X and termed the

‘Stone-Banaschewski compactification’, or just the ‘Banaschewski compactification’

Definition 1.1.2 ({En,Mr]) A topological space is N-compact if it is homeomor-
phic to a closed subspace of the product space NI for some indez set I.

Definition 1.1.3 For a given space X, a clopen ultrafilter on X is an ultrafilter in
BO(X), the lattice of clopen subsets of X. Such an ultrafilter F has the countable
intersection property (cip) if NS # 0 for any countable subset S C F, and is
fixed if NF # 0.

In the following, N* denotes the one-point compactification of the discrete space of
integers N. A subspace X of Y is Cz-embedded if any continuous function from X
to Z extends to Y.

Theorem 1.1.4 Suppose X is a 0-dimensional T, space. Then these are equivalent:

1. X is N.compact.

2. If X is a dense Cz-embedded subspace of a O-dimensional Ty space Y, then
X=Y.

3. For any point T € foX\Bo[X] there is continuous function Bo X —+N" such that
h | Bo[X] €N and h(z) = oo.

4. Every clopen wltrafiller with the countable intersection properly is fized.

5. Any ring homomorphism C(X,Z)—f—»l is the evaluation map al some point

o € X, i.e., h([) = f(zo) for all f € C(X,1Z).
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The equivalences (1)«+(2)«(5) are due to Mréwka and Engelking (En,Mr] and [Mrl]
respectively, and (1) «(3) +(4) to Herrlich, in [Her] and Chew in [Ch].

Of these conditions, (1) and (4) are arguably the most important, and certainly
the most well known. In applications of the theory of N-compact spaces, and in the
study of compactifications, it is the formulation (4) that is most often used. Qur
definition of H-N-compact frames is based on (4).

The known proofs of the equivalence of (1) and (4) pass through the interme-
diate statement (3), and use the Boolean Ultrafilter Theorem in a strong way for the
implication (1)—+(4). The implication (4)—(1) holds in ZF; see the proof in [Her].

We list a few more basic facts about N-compact spaces in Section 1.2.

The definition 1.1.2 of an N-compact space has an obvious interpretation for
frames, and these are our ‘Stone-N-compact’ frames defined in Section 1.3 below,
following the route hitherto taken for realcompact frames. While this is the canonical
translation of the definition into the language of frames, the proof of Theorem 1.3.5
shows that there is a radical departure from the spatial situation; all such ‘N-compact’
frames are Lindeldf, given the Axiom of Countable Choice. (Curiously, it is exactly
the assumption of a choice principle which provokes this departure, as we shall see in
Theorem 1.4.2) For similar reasons, the equivalences in Theorem 1.1.4 break down for
frames. We shall show in Section 1.5 that our definition based on (4) of 1.1.4 captures
the ‘right’ notion of what an N-compact frame should be. It is interesting to note
that some of the other conditions in Theorem 1.1.4 have natural interpretations for
frames. The analogous frame statements separate into two logical equivalence classes,
(1) «(2) (Theorem 1.3.5) and (4) «+(5), (Theorem 1.5.21.) The statement (3) does

not seem to have a natural frame counterpart.

The reasons for this departure from the spatial situation arz quite interesting.
As we have mentioned, the proofs of the equivalences in 1.1.4 pass via statement (3)
there, which makes a seemingly inescapable use of points. Thus the usual proofs break

down in the frame setting. However it is the preservation of the Lindelof property
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under frame coproducts that make such proofs impossible. We show in Section 1.4
that the statement of a particular case of this result is equivalent in logical strength
to the Axiom of Countable Choice.

In Section 1.5 we develop the theory of H-N-compuct frames including the
H-N-compactification, and discuss the relations between H-N-compact frames and
N-compact spaces. Along the the way we find a way to express N-compactness for

topological spaces as a cover condition, see Corollary 1.5.4.

In Chapter 2 we will discuss applications of the theory of H-N-compact frames
to the study of reflexive Abelian groups.

In the spirit of one of the major motivations of frame theory, (see the Introduc-
tion) we pay particular attention to the use of choice principles, following Johnstone

in [Jo] by marking propositions using these with a “*,

1.2 Basic Facts about N-compact Spaces

We here collect a few notions which we shall need later. Further material may be
found in [Her].

Proposition 1.2.1 Any 0-dimensional Lindelif space is N-compact.

Definition 1.2.2 A candinal & is said to be measurable if there is an ultrafilter on

P(x) which has the countable intersection property but is not principal.

Proposition 1.2.3 ([Je]) The first measurable cardinal is strongly inaccessible (2* <

& if X < k), and therefore one cannotl show that such cardinals exist in ZFC.

No one has shown that measurable cardinals do not exist.
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Proposition 1.2.4 A discrete space X is N-compact iff its cardinality is non-measurable.

Proof In this setting a fixed ultrafilter is a principal ultrafilter.O
The N-compactification of a 0-dimensional Hausdorff space X is denoted vX,
and may be constructed in these two ways:
1. Embed the space via the evaluation map into N€(XN) and take the closure of
its image.

2. Form the space of all clopen ultrafilters with the countable intersection property,

with the usual ultrafilter space topology.

1.3 Stone-N-Compact Frames

The definition of an N-compact topological space has a natural translation into the
language of frames. We recall that an I-indexed copower of a frame L is denoted L7
and make the following definitions.

Definition 1.3.1 A frame L is Stone-N-compact (“S-N-compact’) if it is a closed
quotient of the frame O(N)!) for some indez set I.

Definition 1.3.2 A frame L is a Cz-quotient of a frame M, via the quotienl map
M-2L, if any O(Z)-5 L factors through ¢ as shown.
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(Of course, this is the analogous property to one space being Cz-embedded in an-
other.)

Definition 1.3.3 If L is a frame, and I € JBL, we say that I is o-proper if V. S #
e, for any countable S C I, and that I is completely proper if \/ I £ e,.

We will need the following result of [Do,St] below.
Proposition 1.3.4 (*) A coproduct of regular Lindelsf frames is Lindeldf,

The following result, similar to Theorem 2.1 of [Ma,Ve], shows that the “liftings’ of
statements 1 and 2 in Theorem 1.1.4 are still equivalent for frames, and establishes
the equivalence 2 « 3, which we discuss at greater length below.

Theorem 1.3.5 (*) For a 0-dimensional frame L, the following are equivalent:

1. If L is a dense Cz-quotient of a 0-dimensional frame M, then L = M, (ie. the

map is an isomorphism.)
2. L is S-N-compact.
9. L is Lindelaf.

4. If I € JBL is o-proper, then it is completely proper.

Proof (1 — 2) The canonical evaluation map, O(Z)®:E)E, [ is surjective since
L is 0-dimensional. (Here we think of Z,E as the set of all frame homomorphisms
from O(Z) to L, see Section 0.3.) Then L is clearly a Cz-quotient of O(Z)*:E) and
therefore of its closure, with which, as a dense quotient, it must coincide. Since
O(Z) 2 O(N), L is S-N-compact.

(2 = 1) Suppose that L is S-N-compact, and therefore a closed quotient of
O(Z)™ for some set I, via ¢ say. If L is a dense quotient of a 0-dimensional frame

M via v, using the Cz-quotient property of ¥ we can factor ¢ through ¥ as shown.
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Now L is a closed quotient of Im(@) via a dense map 1, so that the restriction of ¢

to Im(@) is an isomorphism. Using the density of ¥ again, it is not hard to show that
t is an isomorphism.

(2 — 3) follows from Proposition 1.3.4 above, and the obvious fact that a
closed quotient of a Lindeldf frame is again Lindelof.

(3 — 4) Trivial.

(4 — 3) If e =V,u,, consider I, the ideal in BL generated by {|(ta)}a.
This is not completely proper and therefore not o-proper. Thus there are w, € I so
that V,w, = e. Each w, is dominated by a finite join u,, V +-+ V ti5,, so that some
countable subset of the u,’s covers e.

(3 — 1) Suppose that L is a dense Cz-quotient of a 0-dimensional frame
M,via M ~2,L. Since M is 0-dimensional and hence regular, it suffices to show by
Lemma 0.2.4 that ¢ is co-dense.

Suppose that ¢(u) = e. Since u = V, v, for some v, € BM, e = ¢(u) =
V. #(ve). By hypothesis, there is a countable subfamily {va, }nez so that Vz ¢(va,) =
e. We can suppose that this is an increasing list, and by subtracting off common
intersections, produce countably many w, € BM, (n € Z), which are pairwise disjoint
with Vzw, = Vz v, Su.

Now let O(Z)—'p—rL be the map determined by requiring ¥({n}) = ¢(wa). By
hypothesis there is a map O(Z)—‘LL so that ¢y = . Since ¢¥p({n}) = ¥({n}) =
#(w,), we must have ¥(n) = w,, since the dense map ¢ is 1-1 on complemented
elements (Lemma 0.2.4.) Then ¢ = Vz¥(n) = Vzw, Su,sothat u=¢ O
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Remark The implications which use choice principles are (4 — 3), which uses
Countable Choice, (see Definition 1.4.1) and (2 — 3), in that Proposition 1.3.4 uses
Countable Choice. In the next section we will show that statement of the implication
2—3 is in fact equivalent to Countable Choice.

Example The frame O(Q)® O(Q) is a nonspatial frame which is Lindelf (as
it is countably gencrated) and is therefore S-N-compact.

We have seen that although it is a natural notion, S-N-compactness is some-
what restrictive. For when one admits the choice principle CC, all S-N-compact
{rames are Lindelof. Thus one can have an N-compact space X, (for instance w, with
the discrete topology,) such that O(X) is not S-N-compact, and the notion hence fails
to be a ‘conservative’ one. That is to say, the spatial notion is not preserved under the
passage to frames, and the concept is not properly lifted (or co-lifted!} from the class
of topological spaces to the larger class of frames. As we will see, (Theorem 1.5.21)
the statement that S-N-compact frames are Lindelof depends upon CC, so that in ZF
it is consistent that there are more S-N-compact frames than Lindeldf frames. But
of course one could show nothing more in ZF about S-N-compact frames than about
Lindelof frames. It is in this sense that the obvious (and historically accurate) notion
of frame N-compactness is ‘restrictive.’

Of course this all follows from the preservation of the Lindelof property under
frame coproducts, a desirable thing to have. But it demands a change in what one
views as the fundamental notion of N-compactness. There are other alternatives
available; the statements of Theorem 1.1.4. We return to this in Section 1.5.

The S-N-compactification can be modelled on the usual spatial compactifica-
tion ((1) following Proposition 1.2.4.)

Given a O-dimensional frame L, we form the evaluation morphism
O(Z)ZeE) L, [ which is a quotient mapping as L is 0-dimensional, and then the
closure of this mapping, g. We obtain the diagram



o@)yusn___E L

N

clL

with & a dense map. (See Section 0.2.4.)

Proposition 1.3.6 For a 0-dimensional frame L, the frame vsL = cl(L) defined
above is the Stone-N-compactification, with coreflection map h.

The proof of this fact proceeds as for the spatial case, and requires no choice principles.0
Theorem 1.3.7 Let X be a 0-dimensional space. Then T(vsO(X)) = vX.

Proof The spectrum functor transfers coproducts to products. O

Remark In Theorem 1.4.12 we will give another version of this co-reflection.

1.4 S-N-Compact Frames and Countable Choice

By the result of Dowker and Strauss mentioned above, (Proposition 1.3.4,) any S-N-
compact frame is Lindeldf. In this section we show that this equation of S-N-compact

frames with Lindelof frames is equivalent in logical strength to the Axiom of Countable

Choice.
We begin by recalling the definition of the Axiom of Countable Choice.
Definition 1.4.1 The Aziom of Countable Choice (CC) slates that, given a countable

Jamily (X, new of arbitrary non-emply sets, there is a choice function; a function
w- Unew Xn such that F(n) € X, for all n.
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Theorem 1.4.2 Every S-N-compact frame is Lindelaf iff the Aziom of Countable
Choice holds.

We will establish Theorem 1.4.2 in a series of lemmas, beginning with the

following observation.
Lemma 1.4.3 Countable Choice holds iff

(t) Given (Xy)new, a countable list of non-empty sets, there is a Junction F so that
F(n) =a non-empty countable subset of X,, for n € w.

(ii) A countable union of countable sets is countable.

Proof (Lemma) Necessity is clear. Given X,,, a list of non-empty sets, let F be a
function as hypothesized in (i). By (i) the set U, F(n) is countable, and so there is
a function w-3+{J,, F(n) which is a bijection. Define w—1+|J,, X, by setting H(n) =
G(m) where m is the first number such that G(m) € F (n). O

The following is a corollary of Theorem 1.3.5.

Lemma 1.4.4 Any 0-dimensional frame L whose unit is the Join of a countable set
of compact elements is S-N-compact.

Proof We will verify Condition 1 of Theorem 1.3.5.

Suppose that L is a dense Cz-quotient of 0-dimensional M , via M-25L, We
must show that ¢ is an isomorphism; it suffices by Lemma 0.2.4 to show that ¢ is co-
dense. Now the unit of L, e, is the join of a set of countably many compact elements,
say {tn | n € 2}). Since L is 0-dimensional each ln is complemented, and by a
simple argument we can assume that they are pairwise disjoint. Define O(Z)—w—rL by

¥(S) = Vs ta- Then by hypothesis there is a map ¥ making the diagram commute.
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‘o

We show first that ¢’ = ¢ | l(¥{(n)}) is a co-dense map into [(¢,). Without a loss of
generality we can assume that n = 0.

Suppose that ¢'(u) = fo for some u < ¥({0}). Now u = V,u, for some
u, € BM, so that ¢'(u) = V_¢'(u,). Since ¢p is compact, there is a finite subcover
8'(2%a,) V +-+ V ¢'(tay) = to. By subtracting off intersections if necessary, we can
suppose that the the u,, are pairwise disjoint, with the same join. Now let (7))L

be determined by requiring

¢'(uq) O N
p({i}) = tifi <0

t;—n otherwise

and denote the resulting extension by 7, which exists by hypothesis.

1 4
sl
\

Then ¢p({i}) = p({i}) = ¢'(ta;) = ¢(us;), for any 0 < i < N. Since ¢ is dense it is
1-1 on complemented elemerts, so that 5({i}) = u,, for 0 <{ < N. Now

¢ ( vV —P({‘})) =t = ¢(¥({0})), so

0<i<N

V #({i}) =%({0})

0gigN



as they are both complemented. Also,
V 2{ih= V t,<u
0KiSN 0<i<N
Thus ¥({0}) < u, and hence %({0}) = u, so that ¢’ is co-dense.

Now towards showing that ¢ is co-dense, suppose that ¢(u) = e,. Then
u = uA Vg P(n), so that e, = gu = VVz $(uAP(n)). Since the ¢, are pairwise disjoint,
$(u AP(n)) = t, for all n, so that u A P(n) = B(n) since each ¢ }%(n) is co-dense.
Thus u > P(n) for all n, which implies that u = V ¥(n) = ey. Hence ¢ is co-dense
and thus an isomorphism.O

We recall the definition of an open nucleus from Section 0.2 and make the
following ad hoc definition.

Definition 1.4.5 For a 0-dimensional frame L, a countable-cover nucleus % on
JBL is the open nucleus H — () determined by some countably generated ideal
H € JBL with\| H = e.

Remark As a simple consequence of Lemma 1.4.4, we see that for any countable
cover nucleus k on JBL, [JBL); is S-N-compact. For if H is the ideal corresponding
to k, then |H is a frame satisfying the hypotheses of the Lemma.

Remark For any frame, the collection of all the nuclei on the frame is itself a frame,

when given the pointwise order. See [Jo, pages 51-52] for details.

Definition 1.4.8 We will denote by C the collection of all countable cover nuclei on
JBL, and its join in the frame of all nuclei on JBL by r.

Lemma 1.4.7 If every S-N-compact frame is Lindelsf, then for any 0-dimensional
frame L, [3JBL), is Lindeldf,

Proof It follows immediately from the definition of r that [3BL], is the colimit

of the diagram in Frm with vertices [JBL)s for ¢ € C and maps the canonical
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[3BL)y — [3BL). obtained when d < e. By a familiar categorical argument, this
colimit can be seen as a coequalizer of a pair of maps

— DPBLs — [BBIL
dec

in which the domain of the coequalized pair is another coproduct involving only the
[JBLl4. (See [Mac, page 109]) By Corollary IIL.1.3 of [Jo], a coequalizer of a pair
of maps with regular domain is closed, so that [JBL), is a closed quotient of the
coproduct in the diagram. By Lemma 1.4.4, all of the [JBL]4 are S-N-compact, and
it follows from Proposition 1.3.6 that S-N-compact frames are closed under frame
coproducts. So the coproduct in the diagram is Lindelof by hypothesis, and as a
closed quotient, [JBL]; is also Lindelof.0

We will need the following two results:

Lemma 1.4.8 Let j be the join nucleus on JBL, given by jI = {u € BL |u < V,I}.
Thenr <j.

Proof We first remark that j is indeed a nucleus, in fact the nucleus corresponding
to the homomorphism JBL—+ L with action {I = V.1

Let d = H — (—) be some countable cover nucleus, for i an ideal generated
by a countable set S with ;S =e. Thenif u e H — J, we have [(u)A H C J, so
that uAs€ Jforalls € 5. Then

u=uAe=uAV,S=\uAsejl
F13]

Thus d < § and hence r < 5.0
Corollary 1.4.9 Any principal ideal Ju in JBL is r-closcd.

Proof This follows immediately {rom Lemma 1.4.8, O
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We construct two examples to show that (i) and (ii) of Lemma 1.4.3 hold.
Lemma 1.4.10 Jf S-N-compact frames are Lindelsf, then CC holds.

Proof Construction (i) Given (X;)ne. 2 list of nonempty sets, (which we can
assume are disjoint,) form X = U, X» and then Y = U e, X x {n}. We will
consider the frame (JP(Y')],, which we know to be Lindelof by Lemma 1.4.7.

For cach n € w, define a 1-1 function f, by

X-223P(Y)
z s [(X x {n})U{(z,n+1)})

Note that any element of fu(z) is principal, and therefore r-closed, by Corollary
1.4.9.

The ideal

V U AlXa)

3P(¥)néu
has a countable subset P = {X x {n} | n € w} whose join in P(Y) is Y. Let d be
the countable cover nucleus < P >— (), where < P > is the ideal generated by P.
Then
d ( vV U fn[Xn]) =P(Y),
JP(Y)nEw

and thus -

V U falXa] =7 ( V U fn[Xn]) = P(Y).
[3P(r)] n€w 3P(y)ne
As [JP(Y)), is Lindeldf, there is a countable subset

6 C U falXal so that \/ & =P(Y).
néw [R#(Y -

Claim 1.4.11 6N f,[X,] £ @ for every n.

Proof (Claim) Suppose this were not the case for some nonzero n, (the casen = 0

is similar,) and let  be some element of X,. The definition of the Jn and the fact
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that the X; are pairwise disjoint ensures that }({(z,n)})} € fm(y) for any m # n and
y € Xm. Then |({(z,n)}) 0 I = {0} for any I € &, and it follows that
r({(z.m)Hnr(V 6)=r({0}) = {0}
IP(Y)
with the last equality holding since r < j, by Lemma 1.4.8. But then

({(zn)}) nP(Y) = {0}

which cannot be the case. We have proved the claim, and we can now define our
desired function F by F(n) = f;}(6), which picks out a nonempty countable subset
of X, for each n € w. So statement (i) of the Lemma 1.4.3 holds.

Construction (ii} To show that (ii) of Lemma 1.4.3 holds, it suffices to show
that a union of a countable set of pairwise disjoint countable sets is countable. Given
a list (X, )new of such sets, form X = U, X, and then the Liudelof frame [JP(X)],.
Consider the collection ® = {}{z} : z € X}, a subset of [JP(X)], by Corollary 1.4.9.
We will show that r(Vyex ) = P{X).

For any n € w, let H, € 3 P(X) be the ideal generated by the sets Uptn Xim
and {z} for all z € X,,. Then H, is a countably generated ideal with Up(x) Hn = X.
We have
X)) < H,— V ® since [(X,)NH, C V 6]
3 F(X) 3 P(X)
as the sets X, are pairwise disjoint. Let d, = H, — (=) be the countable cover

nucleus corresponding to H,. Then
X.€dy(\/ ®)foralln,so
3 P(X)
X,er(\/ ®)foralln
3 P(X)
Now let H be the ideal in 3 P(X) generated by the X, for n € w; a countably

generated ideal with Up(x) H = X. Then d = If — (-) is a countable cover nucleus.
It follows that

r(V ®)=dr({ &)=P(X)

3 P(X) 3 P(X)
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since H C r(V; p(xfB), by our work in the previous paragrapk. Thus V3 ey ® =
P(X).

Since [J P(X)]- is Lindelof, there is a countable subset € C @ such that
Vs e ® = P(X). By reasoning as we did for Construction (i), T must be all of &
so that & and hence X are countable. O

Theorem 1.4.12 (*) The sub-category 0-L-Frm of 0-dimensional Lindeldf spaces is

co-reflective in 0-Frm.

Proof For a 0-dimensional frame L, define 2 map JBL—>JBL by s(I) = {u € BL |
u<V,5,5 C I countable }. It is not difficult to see (using CC) that s is a nucleus,
and that [JBL],-=+L defined by j(I) = VI is a frame homomorphism.

If L is already Lindeldf, then ji is an isomorphism, for if jz = V,J = E for
some I € [JBL],, then there is a countable subset § C I so that V,S = e, and hence
ecsl=1 Sojgis co-dense with 0-dimensional domain and is clearly onto and is

thus an isomorphism, by Lemma 0.2.4.

Given a Lindelof M and a map ML define [JBM],,,—+[3BL],, by BT =
st(TB#(I)). It is straightforward, (but tedious) to verify that % is a frame homo-

morphism. The outer square of the diagram

iL

8L,

L
N
[3Bmsu — M
JM

commutes, and since jj is an isomorphism (as M is Lindel5f), we obtain a

map &' as shown, which is unique since jj, is dense and therefore monic. D

Remarks One can show without trouble that s is equal to =, the nucleus defined
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in Definition 1.4.6. Note also that Theorem 1.3.5 implies that the co-reflection of
Theorem 1.4.12 is equal to the S-N-compactification, (given CC.)

We can now prove Theorem 1.4.2, which we restate for convenience.
Theorem 1.4.2 All S-N-compact frames are Lindelof iff CC holds.

Proof The (—) direction is Lemma 1.4.10, and the other follows from Theorem
1.4.12, since a coreflective subcategory is closed under all colimits, and colimits in
0-Frm are the same as those in Frm. O

1.5 Herrlich-N-Compact Frames

In a search for a natural definition of an N-compact frame, one may take one’s cue
from the several spatially equivalent statements of Theorem 1.1.4. Phrased in the
language of frames, statement (1) is our S-N-compactness, which is equivalent to the
frame version of (2) (Theorem 1.3.5.) The statement (4) suggests the definition of our
‘Herrlich-N-compact’ frames defined in 1.5.2 below, which turns out to be equivalent
to the rendering of (5) for frames (Theorem 1.5.21.) We will see that this notion
is not equivalent to Stone-N-compactness, and that it serves better as a definition
of an N-compact frame. It is conservative, in the sense of our comments following
Theorem 1.3.5, possesses a N-compactification, (Theorem 1.5.12) and consequently is
closed under coproducts and closed quotients. Moreover this notion of N-compactness
preserves a connection with a theorem of Mrowka regarding the groups C(X,Z),

(Theorem 2.2.2) with interesting consequences we explore in the next chapter.

In Section 1.5.1 we introduce the basic definitions and consider a few examples,
and in the next section develop the compactification. As a corollary of the existence
of the compactification, we show that the class of H-N-compact frames includes the
class of S-N-compact frames. We end the chapter by considering some aspects of the

relation between N-compact frames and N-compact spaces.



1.5.1 Definitions

We begin with an extension of Definition 1.3.3.

Definition 1.5.1 An ideal I € JBL is super-og-proper if any proper ideal I' D I

ts o-proper.

We remark that the improper ideal is super-o-proper, since the condition is vacuously
fulfilled.

Definition 1.5.2 A 0-dimensional frame L is said to be Herrlich-N-compact (‘*H-
N -compact’) if any proper I € JBL which is super-o-proper is completely proper.

Remark The definition looks less mysterious if we for the moment assume the
Boolean Ultrafilter Theorem. Then a frame L is H-N-compact iff every maximal ideal
in BL which is g-proper is completely proper. This then resembles the statement (3)
of Theorem 1.1.4, and indeed we have

Lemma 1.5.3 (*) For a space X, O(X) is H-N-compact iff X is N -compact.

Proof (—) Suppose that F is a ultrafilter with the countable intersection property
in BO(X). Then F* = {U* : U € F} is a maximal ideal in BO(X) which is o-proper.
So F* is completely proper, implying that F is fixed.

(<) (*) Suppose that I € JBO(X) has the property of the definition. If
I' 2 I'is some maximal ideal extending I, it is a-proper by hypothesis, and there-
fore completely proper, by considerations like those in (—). This implies that [ is
completely proper. O

Remark Lemma 1.5.3 tells us that this notion of an N-compact frame is a con-

servative one. It is not surprising that we need the Boolean Ultrafilter Theorem to
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show this, since the definition of H-N-compact frames is based on statement (4) of

Theorem 1.1.4, which explicitly mentions ultrafilters.

Note that if one is willing to accept a reference to maximal ideals (no existence
statements are required,) then one could define a frame to be ‘N-compact’ if every
maximal ideal in its Boolean part which is o-proper is completely proper. In this case

one does not require any choice principles to prove that the notion is conservative.

One can use the Lemma and the Boolean Ultrafilter Theorem to provide a
formulation of spatial N-compactness which is a cover condition. We have not seen

this mentioned in the literature, but it is probably not new.

Corollary 1.5.4 (*) A 0-dimensional space X is N-compact iff for every cover § of
X by clopen sets which has no finite subcovers, there is a larger (clopen) cover T 2 5

which also contains no finite subcovers, but does contain a countable subcover.

Remark That any Lindeldf frame is H-N-compact is easy to see. Then by Theorem
1.3.5 any S-N-compact frame is H-N-compact , if we assume CC. As a corollary
of Theorem 1.5.12 we will obtain this result without any additional set-theoretic

assumptions.

One can show that there are H-N-compact frames which are not Lindeldf in

any model of ZF:

Example 1 Let L = P(2¥). Then L is not Lindelof, but is H-N-compact .

The frame L is clearly not Lindelof. Towards seeing that it is H-N-compact , let [
be a proper ideal in BL = P(2¥) which is super-o-proper . We define a sequence of
ideals

ICLChC--CLE -

as follows;
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Forn=0,let Xo:={f €2¥: f(0) =0} or {f € 2*: f(0) = 1} depending on
whether

(i) Iv | {f € 2¥: f(0) = 0} is proper, or
(ii) Iv | {f € 2¥: f(0) = 1} is proper,
and if both are proper, let X; be the first of the two sets. (Clearly at least one
must be proper since I is proper).

Let ¢ be 1 or 0 accordingly, and set Jo = I V |Xp, a proper ideal. Proceed in
this way to define I, and ¢, for every n € w, and let ¢ € 2* be defined by e(n) = €,.
Now the I, are all proper, so their union is a proper ideal containing I and is therefore
a g-proper ideal. Thus IV | (Une, X,) # E, and since Upg, Xn = 2 — {€}, we have
I C }(2“ — {¢}), so that I is completely proper.

Example 2 (*) P(2¥} is an H-N-compact frame which is not S-N-compact. For by
Theorem 1.9.5 any S-N-compact frame is Lindelsf.

We do not know if one can find an H-N-compact frame which is not S-N-compact
working only in ZF.

Lemma 1.5.5 (*) If B is a complete Boolean algebra, then

(i) B is S-N-compact iff any antichain in B is countable.

(i) B is H.N-compact if any antichain in B is of non-measurable cardinality.

Proof (i) If § C B is an antichain which is uncountable, then by adjoining another
clement of B if necessary we have a cover with no countable subcover, so that B is
nol Lindeldf and therefore not S-N-compact. This is necessity. Towards sufficiency,

we suppose that (u,).ex is a cover of eg, for some cardinal k. Define vs = Vacp oy
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and then set wg = vgyy A vj for B > 0 and wg = wo. Then the wg are pairwise
disjoint, so that there is a 4 € & with w, = 0 if a > 7, for -y some countable ordinal.
This implies that vg = v, if 8 > ¢, so that there is a countable subcover of the cover
(%a)eex- By Theorem 1.3.5 (3—2), B is 5-N-compact.

Proof (ii) Suppose B is not H-N-compact . Then there is a maximal ideal / in B
so that I is o-proper but not completely proper. Using Zorn’s Lemma, we can find
a maximal antichain S in I, and we clearly must have VS = e. Let F C P(5) be
defined by requiring X € F iff VX ¢ I. Then F is a non-principal ultrafilter on S
with the countable intersection property, so that | S| must be measurable. O

We know of no counterexample to necessity for (ii), but are unable to show
that it holds.

1.5.2 The H-N-Compactification

We construct the coreflection from the category of frames to the subcategory of H-
N-compact frames. Since a compact frame is H-N-compact, there should be a frame
map from JBL to the H-N-compactification of L. We use this observation to sce the

H-N-compactification as a quotient of JBL.

For any frame L, define JBL—"—»:}BL by

hI ={ue BLNYV, )| 1ICJJ super-o-proper = u € J}
Lemma 1.5.8 The map h is a nucleus.

Proof (i) Clearly I C .

(ii) We have only to show that AINkK C h(INK), since h is order preserving.
Towards this, fix v € AINAK. Then v €V, T AV, K = V.(I N K}, so u satisfics the
first criterion for membership in &(/ N K).
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Suppose that J D IN K is a super-o-proper ideal. We must show that u € J.
Note that JV I is an ideal containing J and is therefore itself super-o-proper . Since
JV I contains I, u € JV I, as u € h(I). We can similarly show that u € JV K, so
that u € J = (JV K)A(J V), as desired.

(iii) Towards showing that AT C hJ, note first that if v € A2J, then u <
Vo hI <V, 1.

Now suppose u € k%I, and I C J, J super-o-proper . Then &I C J, by
definition of . As u € h?I, u € J, and altogether we have u € hI. O

We will eventually define the H-N-compactification of L to be [JBL],. The
coreflection map [3BL],‘-J—”>L will be the join map, defined by jiI = V,I, a frame
homomorphism by an easy argument. When we must be careful to distinguish among

nuclei, we will subscript them appropriately.
Lemma 1.5.7 If L is HN-compact then j, is an isomorphism.

Proof If u € L then [(u}N BL is hy-closed, so that j, is onto. We thus need only to
show that j, is co-dense, by Lemma 0.2.4.

Suppose that I € [JBL), and j.I = V,I = e, so that I is not completely

proper. If I were proper, sinceit is h-closed, there would be a proper super-o-proper ideal

J 2 I. But since L is H-N-compact such a J would be completely proper, which is

impossible as the sub-ideal 7 is not. Thus 7 is not proper, so that j, is co-dense. O
Lemma 1.5.8 The frame [JBL), is H-N-compact .

Proof We first show that

B3BL), = BL via,
J = v,J
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{u)NBL &£ u

Note that the range of a is indeed as claimed, since if J € B[JBL]y with
complement J*, then J N J* = 0,4, so that
aJAhal* =V, JAVJ =V, JNnJ =0,
and h(J \") J-) = EJBL! so that
€, = VL(‘IV J-) =VLJ v VLJ‘ = aJ A QJ-.

One can show in similar fashion that

(i) o, B are both Boolean algebra homoinorphisms, and

(ii) af = idg.

It is also easy to see that Sa = idpypr), For suppose J € B[JBL]s. Then
V.J is complemented (see the paragraph above,) and we must show that V,J € J.
Towards this, assume that J C K and K is super-o-proper . Then KV J* = E3gg

so that v VV,J* = e for some v € K. Since K is an ideal, it follows that V,J is in
K, since V, J* = (V. J)".

Now towards our goal of showing that [JBL], is H-N-compact , suppose that
| € 3JB[3BL), is a super-o-proper ideal. We must show that 1 is completely proper.

First note that the image of | under « is an ideal in BL, ofl].

Claim 1.5.9 afl] is h-closed.

Proof It is cnough to show that afl] is super-o-proper .

Towards this, suppose that afl] € K and that K is proper. We must show

that K is o-proper. First note that 1 C B{K], and since 8{K] is proper, it is o-proper.
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Let {u, | n € w} be a countable subset of K. We know that

V B(un) # El:ﬂl’.h (Inequality 1.5.9)

(38L]s
since B[K] is o-proper. Now if it were the case that \/ u, = e,, we could reason as
follows.

V u) = Y Alwn)) =

[a8L], asL

{ve BLN[\/V/ B(ua) | \V B(un) € H, H super-o-proper v € H} =

L 3}BL J8L

{ve BL|\/ B(u,) C H, H super-o-proper = v € H}

IBL

so that because of Inequality 1.5.9, there must be some proper super-o-proper
ideal H which contains V,5,8(u,). But such an H could not be o-proper, as V,u, =
e;. This is a contradiction, so that we must have V,u, # e,. Hence K is o-proper,

so that afl] is super-o-proper , and thus A-closed.

We finish by observing that | C B[JBL)s N la[l], which implies that | is com-

pletely proper, since afl] # Ejya,, We have shown that [JBL], is H-N-compact .
a

Towards showing that the map [JBL];,—JibL is a universal as a map from H-
N-compact frames to L, we prove the following lemma. Recall the definition of the
functor JB from Section 0.2.3.

Lemma 1.5.10 [f M 2iLisa frame homomorphism, then

@BMh,, -2+ [3BL, defined by,
I — h(3IB4(I))

is @ frame homomorphism.
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Proof It is clear that ¢ preserves finite meets and is thus order-preserving. To see

that it transfers arbitary joins, it is enough to see that, given a collection of elements
{Lo}a of {3BM),,,, we have

'5( V 1.,,) C V ¢L.
(3B, [38L),,

(We will supress mention of an index set for the indices a to avoid complicating the

notation.) We begin by noting that

V3L = V h3BoL)

(aBL), [aBL),

= h(V hIBH(1L))

IBL

= hu(\ IBH(L))

JBL

so it is enough to show that

h(3Bo( V 1)) Chu(V3IBKL))  (Inequality 1.5.10)

ABM],, JBL

Fix v in the left-hand side of the Inequality 1.5.10. From the definition of k, we see
that we have two criteria to verify in order to see that v is in the right-hand side.

Towards the first, we have

v € h(IBY V L))

[3BA1],

= hp(3B¢(hp \/ 1)), so that,

A8

v £ Vqus(hMV!a)

IBM

= V¢[hM V In]

DM

= ¢(¥ har(V 1a))

JBM
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= $(V V L) since hy(-) € IV(-)

M JBM A

= V¢[V L]

L IBM

= V33¢(V Ior)

IBM

= VV3B¢(I-:),

L JBL

so v satisfies the first criterion for membership in the right hand side of Inequality
1.5.10. To see that it satisfies the second, suppose that V.s3B#(I,) € H, for H
some super-c-proper element of JBL. We must show that v € H. If we can show
that ¢[ham(Vianla)] € H, then JBé(ha(Varda)) € H, so that v € H, by hypothesis

on v.
Claim 1.5.11 ¢[hp(V,p0la)] € H.

Proof If H is improper, we are done. Otherwise, fix u € hat(Vipade) and let
K =V;p{L | JB¢(L) C H}. Then K is proper since H is.

We assert that if K’ € JBM is a proper ideal which contains K, then JB¢(K')V
H is proper. For if not, there are elements w € X' and p € H so that gwV p = ¢,.
Then

Hw)Vp = e, so,

$(w") = Sw)A($(w™)Vp)
= ¢(w")Ap,so
$(w") < p

Thus ¢(w") € H. Then [(w*) C K C K', so that both w and w" are in K', so
that e € K’ (since w € BM,) contradicting the propriety of K’,

Thus 3JBS(K") v H is proper for any such X', and since it contains H it is o-

proper. But this implics that K'is also a-proper and hence that & is super-o-proper .
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Now the definition of X and the hypothesis on H imply that V,;da € K, since
IBd(Vieada) = Vis3B¢(1.), and so by hypothesis on u, we have u € K. Thus
¢u € ¢[K] C H, as desired. O (Claim) O (Lemma)

We can now prove the

Theorem 1.5.12 For en arbitrary frame L, the map [3BL];.—JivL is universal as a
map from H-N-compact frames to L.

Proof Suppose that we are given an H-N-compact frame M and a frame homomor-
phism M 2, L. We can form the diagram

[3BL},~Ltv L

b}

....._..-ibl ¢

¢

*

[3BMs, -2 M

and by considering the form of ¢, see without trouble that the outer square commutes.
Since j, is an isomorphism, we can find a map ¢’ making the upper triangle commute.
This map is unique since j, is dense and therefore monic. O

Definition 1.5.13 The full subcategory of H-N-compact frames will be denoted H-N-
Frm. The coreflection from Frm to H-N-Frm supplied by Theorem 1.5.12 we denole
by V.

Corollary 1.5.14 The subcategory H-N-Frm is closed under frame coproducis and
closed quolients.

Proof Any coreflective subcategory is closed under all colimits, and hence by The-

orem 1.5.12 H-N-Frm is closed under frame coproducts. Towards sceing the second
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assertion, we first show that it holds for ‘clopen’-quotients; those of the form f(u) for

some complemented u.

Let L be an H-N-compact frame and u € BL. If I is 2 proper super-o-proper ideal
in B(1(u)), then I’ = {v € BL |vVu € I} is a proper super-o-proper ideal in BL.
By hypothesis I’ is completely proper, and as it contains I, I is also.

Now if L is H-N-compact and u € L is any element, we know that u = V v, for
v, some elements in BL. It follows that the frame f(u) is the colimit in Frm of the
diagram with vertices the frames {(v,) and maps the canonical {{v,) — T{vz) obtained
when v, < vg. Since H-N-Frm is closed under colimits, f(u) is H-N-compact . O

Corollary 1.5.15 Any S-N-compact frame is H-N-compact .

Proof By Corollary 1.5.14 we need only show that O(N) is H-N-compact . This
follows easily (and in ZF) from the fact that any cover of O(N) has a countable
refinement. O.

Theorem 1.5.16 (*) The H-N-compactification is conservative, so that
vO(X) = O(vX) for any 0-dimensional Hausdorff space X.

Proof If we can show that vyO(X) is spatial, then ihe co-universal properties
of vy O(X )-—’.—+0(X ) and the natural map O(vX) — O(X) together imply the
existence of the isomorphism. Since vy O(X) is regular, we can see that it suffices to
show that any proper element I is dominated by a maximal element. Now one of the
following holds;

(1) Voxyd = e.. In this case, since T is ho(x)-closed, there must be a proper
super-o-proper J € JBO(X) so that I € J. Then J can be expandzd to a
maximal element of JBO(X), which is then also super-e-proper , and hence

ho(xy-closed.



(ii) Voxy I # €. In this case there is a maximal clement P of O(X) such that
Vo) I £ P. Then [(P) N BO(X) is ho(x)-closed and maximal in JBO(X),
and is hence a maximal element of vz O(X) containing I. O

Now it is clear that the S-N-compactification of a frame will in general differ from the
H-N-compactification, since the first of these will always be a Lindelof frame. However

we can show that after a spatial reflection, the two compactifications coincide;
Lemma 1.5.17 (*) For any frame L, ZvsL = ZvyL.

Proof We know that vsL = [JBL),, and vgL = [JBL]s,, where st is the nucleus
of 1.4.13. (It was in showing that s, is a nucleus that we used choice principles.) It
is not difficult to show that the the maximal elements of [JBL),, and [JBL},, are
maximal in JBL, and it is easy to see that the sy-closed maximal ideals are exactly
the hz-closed maximal ideals, so that the spectrums coincide. The topologies coincide

since they both have a base consisting of sets of the form {P maximal | u ¢ P}, for
u € BL. O

Corollary 1.5.18 For any frame L, ZvsL ( = TvyL) is N-compact.

Proof We know that vsl is a closed quotient of O(N)!) for some index set I. It

follows that - vsL is a closed subspace of ZO(N)(Y) = N/, and is hence N-compact.
]

An important property of the spatial N-compactification v is that the rings
C(X,Z) and C(vX, Z) are isomorphic, via the restriction map. We have the analogous
property for frames, and for either N-compactification. The analogue of the ring
C(X,Z) is the ring Z. F , defined in Section 0.3.

Lemma 1.5.19 Fora frame L, there are ring isomorphisms such that L, E = 7, [
andZ, L =1,,.E.
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Proof Define Z.,SLE—!—rZLE by f(£) = ko £, where vsL-"4L is the coreflection
map of 1.3.6. It is not difficult to show that f is a ring homomorphism. We know
from Section 1.3 that A is both a dense map and a Cz-quotient map which implies
that f is 1-1 and onto respectively.

For the second isomorphism, we similarly define Z,,, E-55Z,E by g(¢) =
710§, where j, is the coreflection map of 1.5.12. Then g is a ring homomorphism which
is 1-1 since j. is dense. The map g is onto, for given p € Z,F , define O(Z)LVHL
by p(n) = Wp(r)) N BL. Then 3(r) NF(m) = {0} if n # m, and V,ez5(n) =
hp(Vnez P(n)) = E,y1 since Ve p(n) = €. Thus 7 € Z,,,1.E and clearly g(p) = p.
0.

Remark The previous lemma has an interesting consequence. By means of (5) in
Theorem 1.1.4, one can recover any N-compact space X from its ring of continuous
functicns C(X,Z). But if we take any H-N-compact frame L which is not Stone-N-
compact, then vsL % L, vsL is H-N-compact (Corollary 1.5.15), and Z,E = Z, . FE.
So we cannot hope to recover H-N-compact frames from ring theoretic information
about their ‘rings of continuous functions’ Z,E . This stands in contrast to the
situation with compact frames: given a compact 0-dimensional frame M, one can
take the Boolean algebra B of idempotent elements in the ring ZyE and then form
JB, a frame isomorphic to M.

We do not know if one can recover an S-N-compact frame L, from its ring of

"integer valued continuous functions,” Z,E . We conjecture that the answer is no.

Even though one cannot recover H-N-compact frames from the the rings Z,E ,
an intimate connection with group and ring homomorphisms from Z,E to Z is pre-
served. In the next chapter we shall prove Theorem 2.2.2, which extends a classical
theorem of Mréwka’s concerning N-compact spaces. We will then be able to apply

that result and prove Theorem 1.5.21 below.

Definition 1.5.20 For a frame L, a ring homomorphism Z,E I is evaluation
at a prime element p of L if h(€) = n iff £({n}) £ p.
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Remark One can easily check that for an arbitrary prime p, a map defined in this
way is indeed a ring homomorphism. For a spatial frame L = O(X) these correspond

to the homomorphisms C(X,Z) — Z which are the evaluation maps for various
points of X.

Theorem 1.5.21 (*) A 0-dimensional frame L is H-N-compact iff any ring homo-
morphism Z,E —— Z is the evaluation map for some prime element of L.

Proof See page 59.



Chapter 2

Applications to Abelian Group
Theory

2.1 Introduction

If V is a finite-dimensional vector space over some field, then V is isomorphic to
V** via the familiar natural map V — V**, taking an element of v € V to the
evaluation map at v. Changing the underlying ring to Z, the integers, one studys the
Z-modules (Abelian groups) A for which A 2 A** via the analogous map. These are
the reflexive groups. One also studies the the non-reflexive dual groups, those
groups A® which are not reflexive. Inspired by some questions of Reid in [Re], there
has been a considerable amount of research into the structure of these sorts of groups,
with most of the important results being fairly recent. The book [Ek,Me), soon to

appear, contains most of what is known.

One of Reid's questions was whether there are reflexive groups which are not in
the (subsequently named) Reid class, the smallest class containing the integers and
closed under (non-measurably indexed) direct sums and direct products. (It follows

from the results mentioned in Section 0.4 that all the members of the Reid class are

48
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reflexive.) There were some consistency results in the 1970’s but the question was
not answered until 1987, when K Eda and H. Ohta published [Ed,Oh]. There they
established some interesting connections between properties of a topological space
X and the behaviour of the group C(X,Z) and its duals. In particular, the group
C(Q,2) (where Q denotes the rationals with the subspace topology induced from the
reals) was the first to be shown (in ZFC) reflexive, but not in the Reid class. Another
group C(X, Z) was shown to have a non-reflexive dual. Since then, there have been
many examples of reflexive groups and non-reflexive dual groups constructed, mostly
due to the work of Mekler and Eklof. The tree sums and tree products (defined
in Section 2.3) of reflexive groups are all reflexive, and in [Ek,Me] it is shown that
there is a non-free R,-separable group of cardinality &, which is a tree group, (2
tree sum of free groups,) and hence reflexive. (A group is called ®,-separable if every
countable subgroup is contained in a free direct summand.) A non-free group with
this separability property cannot be a group of continuous functions, and therefore
falls outside the class of groups considered in [Ed,Oh). (In fact it is consistent that
all ®,-separable group of cardinality of &, are tree groups.) Thus the groups known
to be reflexive fall into two classes, (with some overlap,) the groups C(X,Z) (which
contains the Reid class ([Ed2]) and the tree groups.!

The results of Eda and Ohta made use of an important thecorem proved by
Mréwka in [Mr3]:

Definition 2.1.1 A group homomorphism k : C(X,Z) — I has compact support
K for K a compact subset of X if f | K = 0 implies h(f) =0 for any [ € C(X,2).

Theorem 2.1.2 {((Mr2]) A 0-dimensional topological space X is N-compact iff any
homomorphism h : C(X,Z) — Z has compact support.

In Section 1, we are able o use our work on N-compact frames to ‘lift’ this

theorem to groups of global sections of a sheafl of Abelian groups (Theorem 2.2.2.)

1\Ve have recently been told that there are now some other constructions of reflexive groups, but
we have not seen these.
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As we noticed in Chapter 0, this class includes the groups C(X, Z), but also much
more, (sce Corollary 2.2.7.) We show in Section 2 that the tree products of [Ek, Me]
can be seen as groups of global sections and tree sums as their duals. We can then
use our generalized Mréwka’s theorem to show both of these sorts of groups reflexive.
Since Eda’s and Ohta’s work depends on Theorem 2.1.2, a special case of 2.2.2, the
scope of the latter includes all the groups known to be reflexive in ZFC, and it is
powerful enough to prove their reflexivity. These results come via a Corollary to 2.2.2
which allows us obtain the ‘global reflexivity’ of a sheaf of Abelian groups from its
‘local reflexivity.' We expect that this will find application in the construction of new

reflexive groups.

In recent years, the behaviour of the duals of global sections of groups in a
Boolean valued universe V(8) has been studied. (See [Ed3, Ed4] for example.) A
complete Boolean algebra B is a frame, and groups in V(&) can be seen as groups in
AbShB, (first established in [Hi], see also [Go).) Theorem 2.2.2 can be used to prove
some the results in [Ed3] and {Ed4), we present Corollary 2.2.7 as a simple preliminary
cxample.

Thus groups of global sections of sheaves on frames (= complete Heyting alge-
bras) include both the groups C(X,Z) and the global sections of groups in a Boolean-
valued universe, which have been recently objects of considerable interest. Theorem

2.2.2 seemns the tool to unify and extend the study of these two classes.

In this chapter all the groups considered will be Abelian, unless otherwise
mentioned. We will write the elements of a frame L in upper-case; the usual practice
when one considers sheaves. To avoid confusion between elements of frames and ideals
we will denote ideals with a Fraktur font.
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2.2 Mréwka’s Theorem

We generalize Theorem 2.1.2 of the Introduction to a theorem which applies to the

class consisting of all groups of global sections of sheaves of Abelian groups on frames.

We remind the reader of the material in Section 0.3 regarding sheaves. Section
0.4 contains the few facts about Abelian groups we will need.

The notion of support in a topological space becomes that of ‘co-support’ in
the frame setting, and that of a compact subset ‘co-compact element.’

Definition 2.2.1 Let L be a frame, A € AbShL, and ¢ €Hom(AE,Z) = (AE)". We
say that S € L is a co-support of ¢ if whenever both VV S = E and{ | V = 0 hold,
then ¢(€) = 0. (For £ € AE.)

An element S of L is co-compact if TS is a compact frame.

Theorem 2.2.2 Let L be a 0-dimensional frame. Then L is H-N-compact iff for any
A € AbShL and group homomorphism AE-27, b has co-compact co-support.

Proof (—) The proof proceeds in a series of claims. We begin by sketching the
general plan:

Let A and h be as given. We employ the frame homomorphism 3BL-‘LbL of
Section 0.2.3 to form the sheaf j.(A) € AbShJBL defined by

jo(A) = A(j 1), for any I € JBL,

with the obvious restriction maps. It is casy to show that this is indeed a sheaf (sec
[Te] for details.) Note that j.(A)E;s.= A(jE;p) = AEL. We will exploit this fact
throughout the proof, for example sometimes viewing % as a homomorphism with
domain j,(A)E,p; Claim 2.2.3 will be that k, viewed in this way, has {~rgest co-
support in JBL, say K, and the remainder of the argument will show that j K is a
co-support for AE-27, (Claim 2.2.6) and co-compact (Claim 2.2.5.)
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The following general result is the sheaf theoretic analogue of a classical result
for the groups C(X,Z), see [Mr3].

Claim 2.2.3 Let G be a sheaf of Abelian groups on a compact 0-dimensional frame
M. Then any homomorphism GE—Z has a largest co-support in M.

Proof We begin by setting & = {U € BM | U is a co-support for g}. Note that
Oa is always a co-support, so & # @. In fact & is an ideal in BM. For suppose
U, U€6,VV (U1 VU,) = E and £ € GE has £ | V = 0. We show that g(£) = 0.

Since V 2 U AU, wehave £ | Uy AU; = 0. Let p be the unique patch in
G(Us vU3) of £ | Uy and 0 € GU;. Since Uy V U; is complemented, p extends to
7 € GE. Then

E1Ur =7 | U and Uy VU} = E, so ¢{¢) = g(p)
since U, is a co-support, and,
0|U;=7|U; and U; VU, = E, so g(0) =0 = g(p)

since U; is a co-support. Thus g(§) = 0 and so U, V U, is a co-support for g. Since S
is clearly an order-ideal, it is an ideal.

Now let T = V,,6, our candidate for the largest co-support. Suppose that
§€GE,E|V=0,and VVT = E, for some V € M. Since M is compact, there is
aset {Uh,Uq,---,Un} C & suchthat VV(Uh VU, V...V Un) = E. Since G is an
ideal, Uy VU2 V--- V Uy € &, so that g(€) = 0. Thus T is a co-support for g.

Now if S is a co-support, S is a join of complemented elements, which, being
below a co-support are themselves co-supports, and are thus in 6. So § < T, and

hence T' is the largest co-support for g. O (Claim 2.2.3.)

Now viewing h as a map from j.(A)E = AE to Z, let & € 3BL be the largest
co-support, supplied by Claim 2.2.3.
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Claim 2.2.4 For any G € 3BL, 16 = E;, implies AV S = E, 5,

Proof Towards a contradiction, assume that j& = Ep, but AV & # E,5 Then
AV & is not completely-proper. Since L is H-N-compact , there is a proper ideal T
extending & V & which is not o-proper. So there are ¥}, V3,--- in T with V,V, = E.
We may assume that this sequence is increasing.

ForanyV € BL,set &,V = [VNBL € JBL. AsRC T, k. V,VR# E,gfor
all n, so that V] € f and hence k, V" € &, for all n.

Then since £ is the largest co-support in JBL, for any n, KV k. V,; is not a
co-support for A, so that there are 20, € JBL so that 20, V (R V k, V) = E and
€n € J.(A)E with &, | 20, = 0, but Ah(&,) # 0. For each n define a new element
€ € j.(A)E by requiring &, { k,V,, = 0 and & | k, V7 = £, | k. V", using the patching
property of the sheaf j.A. Then

& | W ARV, =0=¢, | W ALV,

and,
& W ARV =6, | W ARV,

for all n, so that by the separation property, ¢ | 2, = £, | .. Now & | £, V> =
éa | KLV, by construction, so that &, | 20, V k, Vi = £, | 20, V k, V" for all n, again
by the separation property of the sheaf j.(A). Since RV, V£V, =L and Kisa
co-support, we know that (&%) = h(£,) # 0, for all n.

Thinking now of the £, as being in AE, we have in L an increasing sequence
{Va}new of complemented elements such that V,V, = E and & | V, = 0, (since in
7.(A), & | k.V, = 0.) We will show that h(¢") = 0 for almost all n, contradicting the
results of the last paragraph.

If N is some integer, define 332 5 € to be the patch in AE of the clements
Tk € | Vi € AV, for k> N. (These are compatible, for if N < k< I then

k

! !
[Z(c? [ v;)] Vi = &1V +Y (8| V)

N+1 N+1 kit



k
= Y &|V+0)

N+1

Set p, = LR €. Then p, | V, =0, and so given any f € ZN we can define

31 f(n)p, as above. We thus obtain a homomorphism

N — AE o /4
f — ;f(ﬂ)p,. —_ h(zl:f(n)Pn)a

which we denote by ¢. It follows from the definition that ¢(e,) = k(p,), for all n.
But recall from Section 0.4 that Z is slender, so that ¢(e,) = 0 for almost all n. Then
h(pn) = 0 for almost all n, so that k(£,) = 0 for almost all n, since p, = &, +pn41 for
all n. (To see this, note that both sides of the equation restrict to the same element
of Vi for £ > N.) This is the promised contradiction with the earlier statement
h(£:) # 0 for all r, above. So it must be the case that £V & = E. O (Claim 2.2.4.)

Claim 2.2.5 The frame 1(jR) is compact, ie, jR is co-compact.

Proof Let & CT(jR) be some set of elements, and suppose that \V,& = E;. Let
S € JBL be a collection of ideals so that j[S] = &, which is possible since L is 0-
dimensional. Then j(V,5.S) = V.6 = Ey, so that RV V,,,S = E,;, by Claim 2.2.4.
Since JBL is compact, there is a finite subset T C S so that £V V,,T = E;p, Then
J(RVV,pd) = jRVV,j[T] = V.j[T] = E, and so j[T] is a finite subcover of 6. Thus
JR ig co-compact. O

Claim 2.2.6 The element jR is a co-support for h in L.

Proof Supposc the VV iR = E;in L,and £ € AEhas £ |V = 0. Fix U € JBL
so that jU = V. Then j(BV &) = j(V)VjR=VV j&= E,. Then by Claim 2.2.4,
RVIOVA=VVR=Ep Nwé [D=£|V=¢|V =0, (recall that £ is in
J(A)Eyn= AEL) Thus k(€) = 0, since & is a co-support for j.(A)Eyp—mZ. O
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Claims 2.2.5 and 2.2.6 together provide a co-compact co-support for &, and we
have established ‘necessity’ for Theorem 2.2.2.

Proof () This implication is proved in a manner similar to Mréwka's original result.
Towards the contrapositive, suppose that L is 0-dimensional but not H-N-compact.
Then there is an J € JBL which is maximal and o-proper, but not completely proper,
by the Boolean Ultrafilter Theorem. We recall the definition of the group Z,E from
Section 0.3, and define a map Z,E —+Z by setting k(¢) = n if £({n}) € 3. Using
the maximality of J it is not difficult to see that & is a group homomorphism. (This
is the the frame analogue to ‘evaluation at a point of »X.’)

We claim that % does not have co-compact co-support in L. For if K were
such, then whenever VV K = E;, and ¢ | V = 0, we would have A{(¢) = 0. In other

words, whenever V'V K = E; and V < £(0), £(0) ¢ 3. Now let P be any element of
BL, and define ép € Z, E by

Pifn=0
ép({n})=4 P ifn=1

0. otherwise

Applied to this element of Z, E , the statements above imply that if VvV K = E, and
V < P, then P ¢ 7, and as a special case, if P € BL and PV K = E; then P ¢ J.

Now since V,J = B, K VvV,J = E;. As K is co-compact, thereisa W e J
so that WV K = Ef. But this contradicts the results of the previcus paragraph, so
that h can not have co-compact co-support. O (Theorem 2.2.2.)

Remark It is in the use of the sheaf j.A that our proof differs substantively in nature
from Mréwka’s proof of 2.1.2, which was essentially for the case A = Z;,, L = O(X),
X N-compact . The object which performs a similar duty there can be seen as Z 755,
whereas our proof in this case uses j.(Z).

Remark Note that the proof of the — implication in Theorem 2.2.2 took place in

ZF, but the converse used the Boolean Ultrafilter Theorem.
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We can use Theorem 2.2.2 to prove a result of Eda in [Ed3], and obtain a
plentiful supply of groups A such that A is R,-free (every countable subgroup is free)
but A* = 0. Recall the definition of the ‘constant sheaf’ Z; from Section 0.3.

Corollary 2.2.7 If B is a complete Boolean algebra without atoms, and with no
antichains of measurable cardinality, then ZoE is R,-free but (Z,E }* = 0.

Proof Towards showing (Z,E )* = 0, suppose that Z,E —24Z is a homomorphism.
We know by Lemma 1.5.5 that B is H-N-compact , and so by Theorem 2.2.2 that
h has co-compact co-support K. Now K* is compact, and therefore a finite join of
atoms. Since B has no atoms, this must be the empty join, so that K* =0, K = E,,
and thus A = 0.

We can actually show that for any frame L, Z,E is R,-free. To do this, we
show that for any fixed countable subgroup § C Z,E , if F C S is a subgroup of
finite rank, then F is free. By a lemma of Pontryagin {Fu, page 93], this implies that
S is free.

Let F C S be as given, and fix {f1,---, fv} € F a maximal independent
subset. Each f; induces a certain countable cover of Ep, say P.. (See Section 0.3.)
Let P be a common refinement of the P;. Then we can see f,,---, [y as elements of
a group C which arises as an equalizer:

C H I— H zZ
vep UVer
Now if f € F, since the f;’s form a maximal independent subset, there are integers
n My, Ny, -, 0y such that nf = n,fy + nafs + -+ + nyfy, hence nf € C and so

f € C, by a simple argument. So F C C C [Tyep Z and since a product of copies of
the integers is R;-free, ([Fu, page 94)), F is free. O

Remark Z,E is the same thing as the Boolean power Z(8) (sec [Ed3].)

Remark Such groups Z,E are clearly not of the form C(X, Z).
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We introduce the notion of local reflexivity, and give a condition for passage
to global reflexivity.

Definition 2.2.8 If A € AbSRL, we say that A is locally reflexive if there is a

cover By = VU, so that AU, is reflezive for each a. The sheaf A is globally
reflexive if AE is reflexive.

Theorem 2.2.9 If A € AbSKL is locally reflexive and L is H-N-compact then A is
globally reflexive.

Proof First note that if U < V and U € BL, then U is complemented in [V, so that
AU is a direct summand of AV, by the sheaf laws. It is straightforward to show that
a summand of a reflexive group is reflexive, and so we can assume that the cover of

Ep, in the hypothesis consists of complemented elements.

Let D be the directed set formed by taking all finite joins of the U,. We assert

that if V € D then AV is reflexive. This follows by induction from the following
claim.

Claim 2.2.10 IfU,V € BL and AU and AV are reflexive, then so is A(U v V).

Proof Since U VV is the disjoint join of U and V A U*, we know that A(UV V) =
AU @ A(V AU"), (see Lemma 0.3.1.) Now V A U~ is complemented and below V so
that A(V A U®) is a summand of AV and hence reflexive. Then A(U V V) is a sum

of two reflexive groups, and is thus itself reflexive. O (Claim).

On the directed set D, we form the inverse system of groups;
(AW, W € D, ry,), with maps Ai’Vﬁ'ﬂAV, for V < W the sheaf restriction maps.
It follows easily from the sheaf patching conditions that we have an isomorphism;

AE 2 limAW

W.E D

£ — (€| "V)Web



58

Taking dual groups and dual maps, we obtain a direct system
((AW)*, W € D, r,,). (See [Fu, Thm. 44.2}.)

Claim 2.2.11 The group (AE)" is canonically isomorphic to im(AW)".

Proof (Claim.) The upper triangle in the diagram below commutes, so there is a

unique map r making the lower commute, where j, is the V-th colimit map.

(AB)To2 (Aw)-

IE“(AV)'L(AV)-
veD

This r is our candidate for the claimed isomorphism. Towards showing it 1-1, suppose
that r{g) = 0. Now g = j,(gv) for some V € D and g, € (AV)", (a general property
of direct limits,} so that v, (gv) = 0. Thus r} ,(gv)(k) = gv(rev(k)) = 0 for all
h € AE. Since V is complemented, any £ € AV can be lifted to a ¢ € AE with
§'| V = €. Then gy(rev(€')) = gv(€) = 0, so that g, = 0 and hence g = 0.

Now r is also onto. For given h € (AE)* we know that by Theorem 2.2.2 that
it has co-compact co-support K. Since V,D = E, we must have K VV = E, for
some V € D, since K is co-compact. Define A’ € (AV)* by k'(g) = h(g) where § is
some clement of AE extending g (which exists since V is complemented.) Then &' is
well-defined, for if 7 is another such extension, then §~F | V = 0, so that k(g) = A(F)

since K is a co-support for k. Finally,
rev(B)g) = K (rev(g)) = (g | V) = k(g),
so that r3 ,(A') = &, thus rju (k') = k, and hence r is onto. O (Claim)

A purcly categorical argument implies that (Af)™ 2 lim(AW)™, so that

(AL)™" = limAW = AE, since the AW are reflexive and hence isomorphic to (AW)**
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via the canonical map. It is a straightforward (but tedious) matter to check that this
isomorphism AE = (AE)"" is itsel! the canonical map. Thus AE is reflexive. O

We can now prove Theorem 1.5.21, which we restate here.

Theorem 1.5.21 A 0-dimensional frame L is HN-compact iff any ring homomor-
phism L, E — Z is the evaluation map for some prime element of L.

Proof (—) Suppose that L is H-N-compact, and let Z, E %47 be a ring homomor-
phism. Let K be the co-compact co-support of h supplied by Theorem 2.2.2. Define
,E —"-rZT(x)E by #(£)(S) = £(S) vV K for § € O(Z). One can verifv without diffi-
culty that ¢ is a ring homomorphism. (This is the analogue of the map restricting a

continuous function to a subspace.} We claim that k factors through ¢ as shown.

Z,E—t .7

-

¢ 7;

Zyx)E

To see this, we proceed as follows. First observethat if p € Zyx)E, thereisap’ € Z,E
with ¢(p') = p. (This follows from an argumnent just like the one which shows that a
continuous Z-valued function on a compact subset of a 0-dimensional space extends
to the whole space.) Now define &(p) = k(p’). The definition is independent of the

choice of p’ since K is a co-support, and defines a homomorphism for the same reason.

Since (X) is a compact and 0-dimensional, it is spatial, (sce Section 0.2.2,)
and as we noticed in Section 0.3, this means that there is a ring isomorphism Z ) £ =
C(Z 1(K),Z). Thus k can be scen as a map from C(E T(K),Z) to Z. Theorem 1.1.4
implies that & viewed in this way is the evaluation map at some point p of £ T(K),
and thus, passing via the ring isomorphism just mentioned, % is evaluation at the

prime clement P of T (K) corresponding to p. Thus i(p) = n iff p({n}) € P. It
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follows that
h(€) = n iff $(€)({n}) = E({n}) VK £ P,
and hence that A(§) = n iff £({n}) £ P, since K < P. Thus 4 is the evaluation map

at the prime element P of L.

(+) Towards the contrapositive, suppose that L is not H-N-compact. In the proof
of Theorem 2.2.2 («~) we found a group homomorphism Z,E —%+Z without a co-
compact co-support. But % is also a ring homomorphism (a fact easy to establish,)
and if it were the evaluation map at a prime P of L, P would be a co-compact

co-support. So L is not H-N-compact.O

2.3 Tree groups and Mréwka’s Theorem

In [Ek,Me] the tree product and the tree sum of a ‘tree of groups’ are defined. It is
shown there that both the tree product and the tree sum of a tree of reflexive groups
are reflexive, and that there is a non-free R,-separable group of cardinality R, which
is a ‘tree group™ a tree sum of 2 tree of free groups. Here we show how a sheaf of
groups can be made from any tree of groups so that the group of global sections is
the tree product (Claim 2.3.7.) We can then employ Theorem 2.2.2 to establish the
reflexivity results of [Ek,Me].

Definition 2.3.1 A tree T is q partially ordered set in which v = {peT|u<v}
is well-ordered, for any v € T. A branch is @ mazimal well-ordered subset of T. If
v €T, the height of v is the order type of |v, and the set of elements of height o is
denoted T,. The tree T is said to be of height 8 if B is the least ordinal such that
Ta=0.

We will always restrict ourselves to trees such that | To |= 1 and every element is
contained in a branch of height w 4+ 1. Note that any tree can be regarded as a A-

semilatiice, (if we exclude the meet of the empty set.) See [Ku] for more information
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about trees.

Definition 2.3.2 ([Ek,Me]) If T is a tree of height w + 1, then a tree of groups
is a collection {A, | v € T} of groups indezed by T, along with homomorphisms
{tumsTqe | ¥ < 1 € T}, such that, when v < n < 7,

. ¢y,
(i) A=A, and t,, = t,, 0 4y,
ue Tnw
(ii) A,—A, end x,, =7, 07,,, and

(iii) =,, 0t,,=idy,.

Remark Note that condition (jii) implies that 4, is 2 summand of A, when v < 7.
Indeed, we have A, 2 A, @ Kern,,. We can thus think of a tree of groups as a
collection of nested groups, each a summand of any supergroup, but in the coherent
manner which follows from the conditions (i) and (ii).

We can view the tree T' as a category, with objects the elements of T and
morphisms having the properties (i), (ii), (iii) of 3.3.2. (For example, ¢,, has domain
v and range #.) Then any tree of groups on T corresponds to a functor from T to Ab,
the category of Abelian groups. We will use this approach in the following definition,
which is basically Theorem 2.6 of Chapter XIV in [Ek,Me].

Definition 2.5.3 Given a tree of groups {A, | v € T}, the tree product is the limit
of the diagram in Ab consisting of the groups A, and maps 7, forv <n€T. We
denote this by [[” A,, with projection (limit) maps [IT A~ A,.

The tree sum is the colimit of the diagram consisting of the groups A, and

maps,, forv < 5. We will denote this by 3T A, and the colimit maps by A,,—Lf-»ZTA,,.

Remark Tree products and sums are defined in a different but equivalent way in
[Ek,Me]. Our definition is for our purposes casicr Lo work with, but we will also need

Lo usc the original definition of a tree product, which is expressed in the following

lemma.
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Lemma 2.3.4 Given a tree of groups {A, | v € T'}, denote by B the subgroup of
[luer, Av consisting of elements (a,)uer, such that @, ,..(a.) = %,,.a.(a,) for any
v,u €T,. For any p €T, denote by p, the map B — A, defined by p.((a.)ver.) =
Tuu(@y) where p < v for some v € T,,. (This is well-defined by the definition of B.)

Then there is an isomorphism making the diagram commute;

(a4

1" A, = B

\ /
A,

We show how a sheaf of groups A may be constructed from a tree of groups

Proof Straightforward. O

{A, | v € T} so that the group of global sections AE is isomorphic to the tree product
" A,.

The first step is to define a topological space Xy with the same underlying
set as T, and with the tree topology; the collection of intervals (e, 8) for 8 € T
and @ € TU {—oo} serves as a basis. See S. Todorcevié’s article in [To] for more

information about tree topologies.

Theorem 2.3.5 IfT is a tree of height w+1 of non-measurable cardinality, then Xy

is an N-compact space.

Proof Suppose that F is a clopen ultrafilter on X7 with the countable intersection
property. We must show that F is fixed. We have two cases;

Case 1 There is some U € F such that UN T, = 0.

The ultrafilter F induces a clopen ultrafilter F N [U on the subspace U, and

this induced ultrafilter also has the countable intersection property. Since every point
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in T\T,, is isolated in X7, U has the discrete topology. Ilence by the cardinality
assumption, F N U is principal, so that F is fixed.

Case 2 Forevery U € F, UNT, £ 0.

We first show that for any N < w, there is a unique v € Ty so that v =
{7 € T|n > v}isin F. Towards this, fix an N, and consider the clopen partition
of X7 into the two sets Up<n Tn and U,er, Tv. By the Case 2 hypothesis the first of
these is not in F so the second must be. Towards a contradiction, suppose that for
no v € Ty is the clopen set {v in F. Define a filter £ C P(Tx) by declaring A to be
in € iff the clopen set U,., 1v is in F. One can easily check that £ is indeed a proper
filter. In fact it is maximal, since if A € £, U,ca Tv € F, so that the complement
Useea(1) U Upen T is in F. Since the second set of this disjoint union is not in F
by hypothesis, by maximality the first is. Thus CAisin £, and hence £ is maximal.
Moreover, the ultrafilter £ has the countable intersection property. For if A, € € for
n € w one easily checks that

Utr=N U Equation 2.1

vEA nEW vEAn

where A = [, An. Since F has the countable intersection property, the right-hand-
side of Eqn 2.1 is nonempty, so that A must be as well.

Thus £ is an ultrafilter with the countable intersection property in P(Tx). But

it cannot be principal since for no v € T is v in F, by hypothesis. This contradicts
the non-measurability of | T' |.

So for every level N € w there is a {necessarily unique) vy € T such that
Tun € F, and clearly if N > M then vy > vy Since F has the countable intersection
property, My Tva is nonempty, and thus must contain the onc element v € T,, which
is greater than vy for every N. But then every set in F must contain v, for if U € F
did not, U NNy fva would be an empty intersection of countably many elements of
F. Thus F is fixed, and hence Xt is N-compact. O
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Recall that we wish to construct a sheaf of groups A on O(X7) from the tree
of groups {A, | v € T}. We begin with the special case T' = w + 1, so that X7 is the

usual (interval) topology.
The idea is that A should be a (the) sheaf on O(w + 1) such that
A{0,---,a} =2 A, Equation 2.2

for a < w, with the restriction maps inherited from the tree of groups. If A is to
be such a sheaf, the sheaf laws stipulate certain constraints on the values of AU for
arbitrary U € O(w + 1), and on the restriction maps. The conditions of Definition
3.3.2 will then be exactly what we need to find groups and maps satisfying such
constraints, and hence build a sheaf. To avoid some otherwise necessary intricate
notation and tedious calculations, we shall frequently ignore the difference between

two isomorphic groups.
We proceed as follows.
(i) As for any sheaf, we require 4@ = {0}.

(ii) Theset {0,---,n+1} is the disjoint union of {0,---,n} and {n+1}, so a sheaf A
satisfying Equation 2.2 would have to have A{n+1} @ A{0,---,n} = A{0,- .- n+1},
and hence A{n+1}@A, = A,;,. (See Section 0.3.) From the remark after Definition
3.3.2 we see that setting A{n + 1} =Ker(x,,,..) will do this job, for any n > 0. The
patching laws of a sheaf then entirely determine the value of AS for any § C w;
AS = [],¢s A{n} with restriction maps AT — AS for § C T C w isomorphic to the
appropriate projection maps. (See Lemma 0.3.1.) So we let AS have exactly these
values for these open sets S, with the corresponding maps.

(iif) For any n € w the set {0,.--,w} is the disjoint union of {0, ---,n} and {n +
1,-++,w}. A sheal A satisfying 2.2 must then have A{n +1,.--,w} & A, = A.. The

group Ker(r,,,) is such a group and so we set A{n +1,.--,w} =Ker(, ) for any n.

Now if § € O{w + 1) is any open set such that w € G, we can write § as the

disjoint union of (n,w] and R for some n € w and R C [0, n]. Then if Ais to be sheal
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it must have AS 22 AR@® A(n,w)]. Of course, it should not matter which n and R we
choose, and the following Lemma ensures that this is indeed the case.

Lemma 2.3.6 Suppose that n < m <w. Then

Ker(z,,) 2 Ker(x, ) e"i:[l Ker(®i41.:)

i=n
Proof By induction on m — n using

Ker(m,,) = Ker(f o) ® Ker(r,,..) via
a+ it (b)) — (a,b) o

We have determined AS for any S € O(w +1). The Lemma will let us fix the
remaining undetermined restriction maps.

Suppose that 5,7 € O(w + 1), with § € T. We determine what the map
AT — AS must be, as follows.

Case a; w € T. This was described in paragraph (ii) above.

Case bjw g S,weT. If S = § we must have the 0-map. Otherwise, if n is some
integer in S, we can write T as the disjoint union of (m,w] and R for some
integer m and set R such that n € R. Then the restriction map AT — A{n}
will be (isomorphic to) the appropriate projection map through AR, and hence
the map AT — AS will be the product of all these maps. (Recall that AS =

r[nGS A{n}')

Case ¢; w € S. There is an integer n so that S and T are the disjoint union of (n,w]
and some finite sets Rs and Ry, respectively. Then the restriction map AT —
AS must be (isomorphic to) the combination of the appropriate projection map
Apg — Ap, and the identity.
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We have shown how any sheaf A on O(w + 1} is completely determined by
asserting that A satisfy Equation 2.2, and one can soon convince oneself that we have
in the process actually built such a sheaf A.

Now for an arbitrary tree T of height w + 1 we define a presheaf A on X7 as
follows. For any ¢ € T,, denote the sheaf defined on {0, ¢] (as above) by A,. Then set

AU = AU iU C[0,¢] for someee T,
"~ | {0} otherwise

with the same restriction maps as the sheaf A, below [0,¢] and the trivial maps
elsewhere. The definition of the A, ensures that this definition makes sense (i.e.
that AU = AU if U C [0,]N[0,0).) Then A, the corresponding sheaf on Xy has
A[0,€] = A, for € € T,,, since each A, is already a sheaf on [0,€].

Claim 2.3.7 The group of global sections AXr is isomorphic to the tree product of
{A.{veT}.

Proof This is quite clear. We know that X7 is the union of all the open sets [0, ]
for € € T, and hence that AX7 can be seen as the subgroup of M.er, Al0, €] which
consists of those elements (£).cr, € AXT, such that

| [0,fN[0,v] =& | [0,¢] N [0, ).

{See Section 0.3.) It follows from our construction of the sheaves A and A, that this
is (isomorphic to) the subgroup of [],.r, A. consisting of elements (@c)cer, such that
Toenn(@c) = 7, nn(a,). But this is exactly the tree product of {A, | v € T}, by Lemma
23.4.0

We can now present a simple proof of Mekler’s result [Ek,Me, Thm XIV.2.8(i)].

Corollary 2.3.8 IfT is a tree of nonmeasurable cardinality, then any lree of reflexive

groups on T has a reflezive tree product.
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Proof If {A, | v € T} is a tree of reflexive groups then A, the corresponding sheaf of
groups is locally reflexive (with cover X7 = [J,[0,¢],) on an N-compact frame Q(X7).
Theorem 2.2.9 tells us that the tree product ( = AX7) is reflexive. O

With a little more work we can also prove the following theorem, (Theorem
XIV.2.8(ii) of [Ek,Me].

Theorem 2.3.9 IfT is a tree of nonmeasurable cardinality, then the tree sum of any

iree of reflezive groups on T is itself reflexive.
Before giving a proof of Theorem 3.3.9 we establish a couple of preliminary results.

Definition 2.3.10 ([Ek,Me]) If {A, | v € T} is a tree of groups with maps
{tv.n®as | ¥ < n € T}, the dual tree of groups is the collection {A; | v € T}
with maps {= ,c; | v <n}.

Remark It is not difficult to show that the dual tree of a tree of groups is itself a
tree of groups.

Lemma 2.3.11 If T is a tree of height w + 1 and S C Xy is compact, then S C

Hwi, -+ -, un} for some finite set {v,---,vn} contained in T,,.

Proof Given S, form N{|R| S € IR,R C T}, which must be |R for some R C T,
and is thus the smallest such set containing S. Now [R =),z #,50 S = U, SN .

This is a cover of § with no proper subcover, by the construction of |R, and since S
is compact R must be finite. O

Lemma 2.3.12 IfT is a tree of height w+1, then [{vy,---,vn} is a compact, clopen
subsel of T for any set {v),---, vy} CT.

Proof Clear. O
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Towards a proof of Theorem 2.3.9 we will prove the following, which improves
somewhat on Theorem XIV.2.7 of [Ek,Me].

Theorem 2.3.13 (i) The dual of the tree sum of a tree of groups is the iree product
of the dual tree of groups.

(ii) The dual of the tree product of a tree of groups (of nonmeasurable cardinality) is
the tree sum of the dual tree of groups.

Proof (i) This is just a case of the familiar categorical fact stating that the ’dual’
of a colimit of a diagram is the limit of the 'dual’ diagram.

(i) We first form the associated tree topology Xr and sheaf of groups A, as
above. For any v € T, we have the sheaf restriction maps r, taking AXr to A0, v]
(= A,). Since [0, 7] is clopen in the tree toplogy, the map r, is surjective. We denote
the coproduct maps A7 — TTA:, by j,. We may use these to obtain a map

making the diagram below commute, for any v.

TTA; " (AXr)"

\ re

A.

1

We wish to show that @ is an isomorphism.
Each map r} is injective since the r, are surjective. It follows that @ is injective.

Towards secing that @ is surjective, fix an % in AX7. We know from Theorem
2.2.2 that & has co-compact co-support in O(X7), say K. Since 0K is a compact
set in X7, via Lemma 2.3.11 we can find v, --- vn, clements of T, such that X -

e, un}. Then Yu,---,vn} is a clopen set which is a support for h, (it f |
Ury-+-yon) =0lor f € AE then h(f) = 0.)
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Now if v is any element of T, the set [0, v] is clopen in X7, and so there is
a canonical map k, taking A[0,v)(= A,) to AE; k,(a) is the element of AE which
restricts to @ on [0, 7] and to 0 on the complement of [0, »]. We consider the following
element of (AE)";
N .
S ¥ (-1)Hreki(h) = Equation 2.3

I3
1

N
E z: (—1)"‘"1ho k’\sorﬂs =

hol) (1) ks 0 Tas Equation 2.4

Now it is not difficult to see that for any f € AE, the element of AE,

N

Z (—1)"+1 kas o Tas(f)

agrees with f on the clopen set [{1,---,ux}. (This is entirely analogous to the
‘inclusion-exclusion’ argument used to count the number of elements in a union of a
finite number of finite sets!) Since [{14,---,un} is a support for A, it follows that the
element of (AE)" in Equation 2.3 is just &, and hence that & is a sum of elements
of the form r}(—=). The commutivity of the diagram above then implies that & is
surjective, and hence an isomorphism. O

Remark Statement (i) is exactly Theorem XIV2.7(i) of [Ek,Me], but statement (ii)

there requires that the constituent groups be reflexive.

We are now able to prove Theorem 2.3.9, which we restate here.

Theorem 2.3.14 If T is a trec of nonmcasurable cardinalily, then the tree sum of

any tree of reflexive groups on T is itsclf reflexive.
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Proof The dual of the tree sum is the tree product of the dual tree, by Theorem
2.3.13 (i). By what we have just proved, if we take the dual again, we obtain the tree
sum of the original tree of groups, since the constituent groups are reflexive. O.

2.4 Conclusions and Questions

It is an interesting observation that reflexive groups seem to be associated with N-
compact spaces. For as we noticed in the introduction to this chapter, there are two
classes of groups known to be reflexive (in ZFC). In the first are certain groups of
the form C(X,Z) (and their duals.) The spaces X are N-compact and Mréwka’s
Theorem 2.1.2 is used to establish the reflexivity of the group. In the second there
are the tree sums of free groups (and their duals.) We have just seen how the duals of
the groups in this second class can be seen as groups of global sections of a sheaf on
an N-compact space. In both cases the essential element in the proof of the reflexivity
is Mréwka's Theorem or it’s generalized version Theorem 2.2.2. We wonder if this
connection reflects some deeper facts!

We do not know if one gains any more generality when nonspatial frames
are used to construct reflexive groups as groups of global sections. One can show,
although we do not do this here, that if Z,E is a reflexive group for a H-N-compact
frame L, then it is isomorphic to the group of continuous functions, C(£L,Z), and is
hence a group of global sections on a spatial frame. But what about arbitrary sheaves
A € AbShL? If AE is reflexive can it be seen as a group of global sections of a sheaf
on a spatial frame (in a non-trivial way?)

Eda and Ohta proved that when X is an N-compact kn-space, the group
C(X, ) is reflexive, which can be viewed as result about the group of global sections
of the sheaf Zo(x). It is not difficult to use Theorem 2.2.2 to show that given a space
X of this sort, any subsheafof Zy(x) has rellexive group of global sections. We do not
know if there are groups of global sections of such subsheaves which are not groups
of continuous functions. We conjecture that there are.



Chapter 3

Realcompact Frames

3.1 Introduction

In this chapter we take some of the lessons learned in our earlier investigation of
N-compact frames and apply them to the study of realcompactness for frames. This
has been discussed in the literature, in which ‘realcompact’ means the analogue of
‘Stone-N-compact.” However, as we have seen in Chapter 1 Herrlich-N-compactness
is the notion better suited for discussions of frame N-compactness. Here we pursue a
course parallel to that of the earlier chapter, developing enough of the theory of ‘H-
realcompact’ frames to justify proposing that these be thought of as the realcompact
frames.

We begin with a discussion of realcompact spaces. The following is perhaps

the most familiar of several definitions of these.

Definition 3.1.1 A realcompact space is one homeomorphic to a closed subspace of

R’ for some index set I,

The study of realcompact spaces goes back to the independent works of Hewitt,

71
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and Nachbin in 1947-1948, (hence the fairly common term ‘Hewitt-Nachbin space,’)
and has been furthered by many authors since then. These spaces -  important
in several regards; they play a role in the study of the rings C(X) analogous to
that played by compact spaces in the study of C*(X), and moreover, (barring the
existence of 2 measurable cardinal) they are exactly the spaces admitting a complete
uniformity. For a proof of this last statement and a thorough look at realcompact
spaces, see [We]. We list a few ¢f the more important statements equivalent to the

definition.

Definition 3.1.2 Let X be a topological space. An ideal in Coz(X) is o-proper if
it contains no counteble covers of X, and completely proper if it does not cover

X.
Theorem 3.1.3 (cf. [We]) If X is a Tychonoff space, these are equivalent;

(i) X is realcompact.
(it) If X is dense and C-embedded in a Tychonoff space Y, then X =Y.
(iii) Every mazimal ideal in Coz(X) which is o-proper is completely proper.

(iv) IfC(X)-2R is a ring homomorphism, then h is the evaluation map for some

point p € X; (h(¢) = ¢(p) for any ¢ € C(X).)

The study of realcoinpact frames got its start in Reynolds® 1979 paper [Rey],
entitled ‘On the spectrum of a real representable ring.” Reynolds was primarily in-
terested in realcompact topoi, but certain statements given there restrict to state-
ments about frames; for a given frame L, the topos Sh(L) is realcompact iff [ =
o — 1dl(Coz(L)). (Theorem B and Theorem 2.5 of [Re].) In [Ma,Ve], Madden and

Vermeer proved Theorem 3.1.5, for which we need the following definition.

Definition 3.1.4 A frame L is ¢ Cr-quotient of a frame M, via a quolienl map ¢,
if any frame homomorphism O(R)—=L factors through .
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Theorem 3.1.5 (*) For a completely regular frame L, the following are equivalent;

(i) If L is a dense Cg-quotient of a completely regular frame M, then the quolient
map is an isomorphism.

(ii) Lisa closed quotient of O(R)W! for some index set I.
(iii) L is Lindeldf.

(iv) L = o-Idi(Cox{L)).

The statements (i) and (ii} in Theorem 3.1.5 are clearly the natural frame-
theoretic analogues of (i) and (ii) in Theorem 3.1.3.

We pause to note that of the equivalences in 3.1.5, (iv)—(iii) and (i1)—(iii)
require choice principles, the lztter because it employs Dowker and Strauss’ result
[Do,St] that a coproduct of regular Lindeldf frames is Lindelof. (Sce Proposition
1.3.4.) In fact (ii) — (iii) is equivalent to Countable Choice. For any O(N) is a closed
quotient of O(R), and hence any S-N-compact frame is a closed quotient of O(R))
for some I. Thus if the latter frames are Lindeldf, then so is any S-N-compact {rame,

a statement which implies the Axiom of Countable Choice, by Theorem 1.4.2.

Altogether then, property (ii) of Theorem 3.1.5 seems a natural [rame theoretic
notion of realcompactness. We will refer to this notion as Stone-realcompactness.
However as in the N-compact case, this notion is not a conservative one: A discrete
uncountable (non-measurable) space X is realcompact, but one cannot prove (in ZF)

that O(X) is Stone-realcompact, since assuming CC, it would then be Lindeldf.

Of course this is because of the preservation of the Lindeldf property under
coproducts, which is a desirable thing, but just as for we saw for N-compact frames,
its consequences necessitate a change in what one views as the fundamental notion
of realcompactness. (We note that one could make a definition using L(R), the
constructive frame-theoretic version of the real-numbers. But one would still have

the same problem, since this frame is also Lindeldf.)
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We propose a new notion of realcompactness in Section 3.2, one based on (ii)
of Thm 3.1.3. We show that (assuming some choice principles) it is conservative,
{Theorem 3.2.4) and go on to develop a conservative realcompactification in Section
3.3.

3.2 H-Realcompact Frames
We define the H-realcompact frames, and show that their definition gereralizes the
spatial definition.

We first recall the basic definitions and constructions discussed in Section 0.2.3,

and make the following definitions.

Definition 3.2.1 For a frame L, and subsets S,T C L, we write S<~<T if anys € S
is completely below (<<) some t € T.

Definition 3.2.2 For any frame L, an ideal I € BL is o-proper if for any sequence

T >->-Tpr-Tasb - -

of countable subsets of I, there is some n € w so that V., T,, # e,. An ideal I is
super-g-proper if any ideal J 2 I in BL which is proper is o-proper. The ideal I
is completely proper if \/, I #e,.

Remark Note that the improper ideal qualifies as a super-a-proper ideal since the
condition is vacuously satisfied.

Remark This property has a more complex definition than one might suppose nec-

essary (cf. our definition of o-proper in 1.3.3.) However we need this to avoid an
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otherwise necessary use of choice principles in the construction of the realcompacti-
fication. If we assume CC, then the definition given coincides with the more obvious
notion: VS # e, for any countable S C I. To see the non-trivial half of this, sup-
pose that I € L is o-proper and let S C I be some countable subset. Using CC, for
each u € S pick an element v,>>u which is in I, and call the set of these T. Since
the << relation interpolates, we can find a sequence of sets T;, as in Definition 3.2.2,

all completely above S. As the join of one of them is not e;, the join of S cannot be.

Definition 3.2.3 A completely regular frame L is Herrlich-realcompact
(‘H-realcompact’) if any proper super-o-proper ideal I € BL is completely proper.
In other words, if VI = e, for a proper ideal I € BL, there is a proper ideal J 2 1
in BL which is not a-proper.

Remark This definition looks more familiar if one assumes some choice principles.
With CC and the BUT it would say: A frame L is H-realcompact if the following
holds for any maximal I € BL: If V.S # e, for all countable § € I, then [ is
completely proper. This then resembles condition (iii) of Theorem 3.1.3.

Theorem 3.2.4 (*) A space X is realcompact iff O(X) is H-realcompact.

Proof Recall from Theorem 0.2.2 that we have an isomorphism

Max80(X) = Max(Coz( X))
I -2 {V € Coz(X) | UV) V (I N Coz(X)) # Eacosx}
{U|U=<V, some V € J} - J

Now suppose that X is realcompact, and that I is a proper super-o-proper
element of BO(X). There is a maximal J € FO(X) containing I, and J is then
o-proper. It follows that ¢(J) is o-proper. For suppose otherwise, so that there are
cozero sets V,, € ¢(J) witlﬂ}%&fﬂ = X. By an easy argument, any co-zero set is a
countable union of co-zero scts completely below it. Now, using CC to pick these

covers and to see that a countable union of countable sels is countable, there is a
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countable subset of $¢(J) = J which covers X. Using CC along with our observations
after Definition 3.2.2, we see that J is not o-proper. This is a contradiction, so that
#(J) must be o-proper and hence by hypothesis completely proper. It follows that
¥$(J) = J is completely proper, and hence that I is completely proper.

For the converse, suppose that O(X) is H-realcompact and let J be a maximal
o-proper ideal in Coz(X). If T C 4(J) is countable, using CC we can find a countable
T’ C J such that T<<T". By hypothesis, Voux)T" # Eo(x) = X, and so Voux)T #
X. Thus ¢(J) is o-proper, and since ¥(J) is maximal, it is super-o-proper and thus
completely proper, by hypothesis. The complete regularity of X implies that J is
completely proper, so that X is realcompact. O

Thus the H-realcompact frames ‘include’ the realcompact spaces, at least as
long as we assume some choice principles. It is not surprising that we need the
Boolean Ultrafilter Theorem to show this, since the definition of H-realcompact frames
is based on (iii) of Theorem 3.1.3, which explicitly mentions ultrafilters. However it

is interesting that we require the Axiom of Countable Choice in such a strong way.

We will be able to show that any S-realcompact frame is H-realcompact, after
we have developed the H-compactification.

3.3 The H-Real-Compactification

We show how to construct the H-realcompactification of a frame, and discuss various

corollaries. Qur arguments, on the whole, follow those of Section 1.5.2.
Definition 3.3.1 Given a frame L, define

(i) BL—031 by,
vl ={ugV.I|1CJe€BL,super-o-proper = u € J}, and
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(ii) BL—-BL by

tI = {u | u<<v,some v € rI}.

The methods of Lemma 1.5.6 apply to show that

(i) Icrl,
(ii) rINnrJ =r(INJ), and

(iii) r2I Crl.

Using these facts one can easily show that ¢ is a nucleus. The frame [fL], is our

candidate for the realcompactification, with co-reflection map [ﬁL],i‘hL the frame
homomorphism taking an ideal to its join in L.

Definition 3.3.2 Fora frame L, and u € L, ku is the ideal {v | v<<u}, an element
of BL.

It is a fact that the map kg preserves the <<-relation. (See [Ba,Mu| or [Jo] for a
proof.)

Lemma 3.3.3 If L is H-realcompact then j, is an isomorphism.

Proof Since L is regular, it suffices by Lemma 0.2.4 to show that j, is onto and
co-dense. The first property holds since for any u € L, kzu is t-closed, and j k,u = u
by complete regularity. Towards seeing the second, suppose it does not hold, so
that j.I = V,.I = e,, but I is proper. Since I is t-closed, there must be a proper
super-o-proper J € fL containing I, by the definition of t. Since L is H-realcompact,
J and thus I are completely proper, a contradiction. So j, is co-dense and hence an

isomorphism. O
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Lemma 3.3.4 For any frame L, [BL), is H-realcompact.

Proof We first show that S[SL); and SL are isomorphic, via,

B(5.)
BlBL); T.._L—"‘ BL

where

(i) B8 )3) ={weLl|w<j(V),s0me V €3I} and
(ii) AL(l)={V € [BL]¢ | V < kru,s0me u € I}.

That AL(]) is indeed in B[ L}, follows quickly from the following observations:

o fuelL, kyuis t-closed and thus in [8L);.
o Foranyuw e L, kruV kv < kr(uvv).

¢ The map k; preserves the << relation, as does the frame homomorphism
BL-[BL},.

An easy argument using the complete regularity of I establishes that
B(je) o Ar(I) = I, for any I € BL, so that B(j,) is onto. Since B(j.) is a dense
map with a compact range, it is 1-1, by Lemma 0.2.4. So B(j.) is an isomorphism
with inverse Ag,.

Now towards our goal of showing that [8L], is H-realcompact, suppose that
J € B|BL); is proper and super-o-proper . We first show that B(7.)(J) is t-closed and

proper, and then that 3 C kipr), (8(7.)(3)). We can then conclude that J is completely
proper.

Since J is proper, 8(5.)(3) is proper, as B(j.) is an isomorphism. To show that
B(7.)(3) is t-closed, it suffices to show that it is super-g-proper . Towards this, let
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K 2 £(7.)(3) be some proper ideal in SL. Then A (K) 2 J is a proper and therefore
super-g-proper ideal.

Towards a contradiction, suppose that K is not o-proper. Then there is a
sequence

O>-T»>Ty---

of countable subsets of X such that V,T,, = e, for every n. Since k; preserves the
»>-relation, we obtain a sequence

G1->Gp> -G - - -

of countable subsets of AL(K), where &, = {kLu | u € T,,}. Since A (K) is o-proper,
for some N € w, V &y # Eipr),. Then

[BL):e
EDGL]: # t(VﬁLGN)

= {u|u=<~<v,v € r(V,,Sx)},s0 that,
Epr) # r(VeGn)

{u £V.VuSn | Vo6 C G super-o-proper = u € G}
{u € L|V,6n C G super-g-proper = u € G}

since V T4 = £ and Ty S V,,Gn. Thus there must be 2 proper super-o-proper
(and therefore o-proper) ideal G so that VoSN CG. But V,, Sy 2 Ti for I 2 N+,
so that G cannot be o-proper. This is a contradiction, so that X must be o-proper,
as we had hoped. Hence 85,(J) is ¢-closed.

Finally, we must show that J C kisry, (8(5.)(3)). Towards this, suppose that
I € 3. We must show that J<<8(7.)(3). Thereis a K € J with I<<K, andifw e K
then w < j,.(K), so that K < B(7.)(3). Thus I<<A(;.)(3). O (Lemma 2.3.4.)

We now have a way of making arbitrary frames L into H-realcompact frames

[BL];. In order to make this functorial, we show the following:

Lemma 3.3.5 For any frame morphism M-i*L, the map
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ey, 2 1ail,
I — i;(ﬂ¢(1))

is a frame homomorphism.

Proof It is obvious that ¢ preserves finite meets, since both ¢, and B¢ do. To see
that it transfers arbitrary joins, we have only to show that

1 C V ¥(L),

(oLl
when I = \/ L,, since § is order-preserving. (To simplify the notation we will

{aa],
suppress mention of an index set for the indices .) First note that

w\L/l () = I\/l £ (Bd(1a))

t(V t.(B4(1.))
BL

t.(V(BH(1))
AL

= {u | u~<~<{y some v € f;(VﬂﬁbUa))}
L

On the other hand,

EI = (B V 1))

[8Af],

= {u|u<=v, some v € r,(B( \/ L))}

[oM)y

so it enough to show that
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re(BHV L)) € r,.(‘\,ﬁﬁw,)) (3.1)

[AM);

Fix v in the left-hand side of Inequality 3.1. From the definition of r we see
that we have two criteria o verify in order to see that v is in the right-hand side. For
the first, we have

v € r;ﬁ¢(v Ia)

(8],

72.(Bé(ts(Vpsela))- Then,

v < ViBé(tr(Vorla)}

Vi@lta(Vorla)]

H(Vatre(Vosla))

= $(Vu(Vaela)) (since tu(~) € Wul(-))
= Vi$[Varlol

= V.Bé(Vonla)

= V.VaBé(l),

so v satisifies the first criterion for membership in the right-hand side of Inequality 3.1.

To see that it satisfies the second, suppose that V,, f¢(I,) C H, a super-o-proper clement
of L. We must show that v € H. If we can show that ¢[ry(Vula)] € I, then
Bd(ra(Vonla)) € H, so that v € H, by hypothesis on v.

To obtain ¢fru(Vaule)] C H, we assume in the non-trivial case that Jf is
proper. Fix u € ru(Vanla) and let K =V, {J | 86(J) € H}. Then K is proper
as H is. We claim that if K’ € SM is proper and contains K, then S¢(K') Vv Il is

proper. For otherwise there are w € X’ and p € If so that ¢(w)V p = e,. Then
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$(w)Vp = e,, sothat,

#w) = ¢(w")A(d(w™)Vp)
= ¢(w')l\p 80,
$(v") < p

Thus ¢(w*) € H. This implies kyw* C K, by definition of K. Now since
K' is completely regular, we can find @ € K* with T>>w. Then W <<w", so that
W" € kyw" and hence @ € K C K’. So both @ and @" are in K’. But this cannot
happen in our proper completely regular ideal K. For there is an s € K’ with W~<s,
so that @ < s, with separating element ¢, say. Then ¢ AW = 0, so that ¢ < w", and

hence s V %" = e, contradicting our hypothesis that K" is proper.

So it must be that S¢(K') v H is proper. Since it contains H it is o-proper,
which then implies that K’ is o-proper as well, by a straightforward argument, and
altogether that K is super-o-proper . Now by the definition of K and the hypothesis
on H, K 2 Vyla- Thus u € K, by the hypothesis on u, so that ¢u € $K]C H,as
desired.

We have shown that Inequality 3.1 holds, which finishes the proof. O

We can now prove the

Theorem 3.3.6 For a given frame L, the map [ﬁL],—J—"-»L is universal as a map from
H-realcompact frames to L.

Proof Suppose we are given ar: H-realcompact M and frame homomorphism M- L.
We can form



(8L}, L L
Ry
1My, 2" py

and using the form of ¢ given in Lemma 3.3.5, see without difficulty that the outer
square commutes. Since j, is an isomorphism (Lemma 3.3.3,) we can find a map
¢’ making the upper triangle commute. This map is unique since j, is dense, and
therefore monic (Lemma 0.24.) O

Definition 3.3.7 The full sub-category of H-realcompact frames is denoted HRKFrm .

Theorem 3.3.6 provides us with a coreflection from Frm to HRKFrm , which
we denote vy.

Corollary 3.3.8 The subcategory HRKFrm is closed under coproducts and closed
quolients.

Proof Coreflective subcategories are closed under all colimits, and in particular

under coproducts. To sc. ..at HRKFrm is closed under closed quotients, we reason
as follows.

Let L be an H-realcompact frame, and u some element of L. Denote the map
L — Tu taking v to vV u by ¢. Recall that the induced map AL — B(u) is written

B¢. Let H be some proper super-o-proper ideal in A1(1). We must show that I is
completely proper.

Let K = Vpr{J | Bé(J) € H}, a proper ideal, since H is proper. By rea-
soning just as we did in the latter half of Lemma 2.3.5, we can conclude that K is
super-o-proper , and thus completely proper, by hypothesis on L. Now if v € /7, the
map ¢ takes an clement of kyv = {w € L | w<<,v} into /1. It follows that kv C K,
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for any v € H. Since K is completely proper and L is completely regular, H must be
completely proper. D

Corollary 3.3.9 Any Stone-realcompact frame is Herrlich-realcompact.

Proof By the previous corollary we need only to show that O(R) is H-realcompact.
Suppose that I € SO(R) is proper but not completely proper, so that Vom I = eomy =
R. Since O(R) has a basis consisting of the open intervals with rational endpoints,
there is a countable subset T} = {s, |n € w} C I, consisting of such intervals, such
that Vo Ty = R. Now each s, is an open subset of R and therefore the union of
the intervals with rational endpoints which are completely inside it. These form a
countable set, (say R,.) We can then take T} = U,, R,,, which is countable as it is
a subset of the countable set of all intervals with rational endpoints. Repeating this
process, we obtain
Ti>>-To>>-Tyop--- -

with Vo) Tn = eoqry for any n, so that I is not o-proper. Since it is proper, it is not
supcr-g-proper . O

Remark It is easy to find H-realcompact frames which are not S-realcompact. One
need only take an space X which is realcompact but not Lindeldf, for example w,
with the discrete topology. (Theorems 3.1.5 and 3.2.4.)

We show that the H-realcompactification is conservative.
Theorem 3.3.10 (*) The frames vy O(X) and O(vX) are isomorphic.

Proof If we can show that vy O(X) is spatial, then the co-universal properties of
vy (X)) — O(X) and O(vX) — O(X) imply the result.

Since vy O(X) is regular we need only show that any nonzero element is dom-
inated by a maximal clement (= prime element.) I E £ I vy O(X) then one of
the following holds:
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(i) V.I =e. In this case, since I is t-closed, T C J for some proper supér-a-proper
J € BO(X). We can expand J to J', a maximal element of SO(X) which is
then also o-proper and thus ¢-closed, and so a maximal element of vy O(X).

(ii) V.I # E. Then V,I < p for p some maximal element of O(X). Then I C {v]
v<<p}, 2 maximal element of vy O(X). O

3.4 TUnsolved Problems

In Chapter 1 we saw how the conditions of Theorem 1.1.4 separate into two logical
equivalence classes, (1)++(2), and (4)«~(5). We suspect that the analogous result is
true for realcompact frames. In fact we have already seen that conditions (i) and

(ii) of Theorem 3.1.3 are equivalent in the frame setting, (Theorem 3.1.5.) Is the
following the case?

Conjecture 3.4.1 A completely regular frame L is H-realcompact iff any ring homo-
morphism RLE—‘*—)R is ‘evaluation at a prime element p’ of L. (Where the definition
of ‘evaluation at a prime’ is the analogue of Definition 1.5.20.)

We furthermore conjecture that there are results for realcompact frames en-
tirely analogous to the propositions 1.5.17, 1.5.18, and 1.5.19.
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