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Abstract

Array processing has been successfully applied in many areas such as radar, sonar and
wireless communications. Most conventional array processing techniques are based
on idealistic assumptions that are not valid in many practical situations. This thesis
contributes to the development of novel array processing techniques for direction
finding and parameter estimation in the presence of complicated spatio-temporal
sources.

We address the problem of estimating the Directions-Of-Arrival (DOAs) of weak
desired sources observed in the background of strong interference. We develop a
new approach to beamspace preprocessing with improved robustness against out-of-
sector interfering sources. Our techniques design the beamspace matrix filter based
on proper tradeoffs between the in-sector (passband) source distortion and out-of-
sector (stopband) source attenuation. We also introduce the novel concept of adaptive
beamspace preprocessing that offers a significant improvement in the DOA estimation
performance. Computationally efficient convex formulations for these beamspace ma-
trix filter design problems are derived using second-order cone (SOC) programming,.

We also develop a generalized Capon spatial spectrum estimator for localizing
multiple incoherently distributed sources in sensor arrays. The proposed generalized
Capon technique estimates the source central angles and angular spreads by means of

a two-dimensional spectral search. The proposed method has a substantially improved

v
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performance compared to several popular spread source localization techniques.

A new search-free ESPRIT-type algorithm for estimating the DOAs of multiple
chirp signals using Spatial Time-Frequency Distributions (STFDs) is developed. An
averaged STFD matrix (or multiple averaged STFD matrices) is used instead of the
covariance matrix to estimate the signal and noise subspaces. The proposed algorithm
is shown to provide significant performance improvement over the traditional ESPRIT
algorithm for FM sources, specifically in situations with closely-spaced sources and
low Signal-to-Noise Ratios (SNRs).

We also develop a new algorithm for estimating the parameters of multiple wide-
band polynomial-phase signals (PPSs) using sensor arrays. Our approach is based on
extending the high-order instantaneous moment (HIM) concept by introducing a new
nonlinear transformation called the spatial high-order instantaneous moment (SHIM).
We apply this transformation to multiple wideband PPSs and employ the resulting
SHIM to provide recursive estimates of the PPSs parameters. The data received at
each sensor yields a different estimate of each frequency coefficient. Employing the
multiple estimates simultaneously, the proposed algorithm removes the outliers and
obtains a better final estimate. STFD-based methods are used in conjunction with
the SHIM to estimate the DOAs of the observed signals. The proposed algorithm
is shown to have an improved performance compared to the well-known chirp beam-
former approach [31]. Furthermore, our algorithm is computationally more attractive

as it requires multiple one-dimensional searches instead of a multi-dimensional search.
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List of Notations

Boldface lowercase letters are used to denote column vectors.

Boldface uppercase letters are used to denote matrices.

the conjugate operator

the transpose of a vector or a matrix

)
)
HH the Hermitian transpose of a vector or a matrix
) the inversion of a matrix

It the pseudo inverse of a matrix

Vi the ith element of a vector

the ¢jth element of a matrix

|- the determinant of a matrix

|-l the Euclidean norm of a vector

e the Frobenius norm of a matrix

E{} the statistical expectation operator

L{} the log—likelihood function

N() the normal distribution

©) the Schur—Hadamard (elementwise) product of two matrices
® the Kronecker matrix product

M the number of sensors

L the number of source signals

N, the number of snapshots
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rs the position vector that describes the location of an emitting source

T the position vector that describes the location of the mth sensor
P the spacing between the first and mth sensors

u the unit vector that describes the direction of wave propagation
Tm the time required for an incident wave to travel from the reference

point to the mth sensor

0, the DOA of the lth signal
a(6) the array steering vector
o? the signal power

o2 the noise power

1 the identity matrix

A the direction matrix

R, the true convariance matrix

Ry the sample convariance matrix

Py the projection matrix onto the space spanned by A

Py the projection matrix onto the nullspace of A

diag{a} the diagonal matrix with the ith diagonal element a;

tr{-} the trace of a square matrix

vec{-} the vectorization operator stacking the columns of a matrix
on top of each other

Omax{'} the maximal eigenvalue of a matrix

B the beamspace matrix

S} a continuum of all in—sector directions

©) a continuum of all out—of—sector directions

a(9) the array steering vector after beamspace transformation
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Chapter 1

Introduction

“As far as the laws of mathematics refer to reality, they are not certain; and as far
as they are certain, they do not refer to reality.”

—~Albert Einstein

The focus of this thesis is the development of advanced array processing algorithms
for parameter estimation of complicated spatio-temporal sources. Sources with com-
plicated spatio-temporal characteristics are frequently encountered in many practical
situations. Modern array processing techniques are based on exploiting presumed
array signal models. However, as far as the array signal models refer to practical
situations, they are not certain, i.e., they do not exactly describe the actual charac-
teristics of signal environments. The theme of this thesis is to approach the parameter
estimation problem by considering more accurate signal models that best describe the
characteristics of complicated spatio-temporal sources. Then, novel ideas and elegant
manipulations that fully exploit the underlying signal model are used to solve that
problem.

In this chapter, we give a brief introduction to the array signal processing topic
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and highlight some of its applications. We also give an overview of the motivations
and aims of the thesis. At the end of the chapter, we provide an outline of the thesis

and point to our main contributions.

1.1 Array Signal Processing

Array signal processing finds applications in many different areas such as radar, sonar,
wireless communications, tomography, seismology, radio astronomy and medical di-
agnosis. Historically, antenna arrays were first used in the radar area in the 1940s.
Sensor array signal processing has received significant interest in the literature and
has been the subject of numerous research papers and books (see [36], [45], [50], [99]
and references therein). In what follows we briefly describe some of the array signal

processing applications.

Radar

Antenna arrays are widely used in many radar systems such as airborne radars and air
traffic control radars. They are also used in surface wave radars that can be used for
low angle tracking {1], [25], [89], [106]. The use of adaptive arrays in airborne moving
target indication (MTI) radars has been reported in [17]. Radar systems can either
be active or passive [99]. In active radar systems, antenna arrays are used to transmit
electromagnetic energy and to listen for the echo of the transmitted signal. When the
radar works in passive mode, antenna arrays are used to receive the energy radiated
by other sources. The signals captured by the antenna array enable the estimation
of the spatial and temporal characteristics of the observed signal field. For example,
the received data can be used for estimating parameters such as velocity, range and

Directions-Of-Arrival (DOAs) of targets of interest. Antenna arrays are also used in
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radars for interference/jamming cancellation and ground clutter suppression [50].

Sonar

The use of antenna arrays in sonar systems goes back to World War I when a
towed /hull array sonar system was devised [55]. Similar to radar systems, sonar
systems also work in one of two modes of operation; active or passive. In active sonar
applications, arrays of hydrophones are used to transmit acoustic energy into the wa-
ter and to listen for the returns. A major difference between active radar and active
sonar is that the propagation of acoustic energy in the water is much more compli-
cated than the propagation of electromagnetic waves in the atmosphere [99]. Due to
complicated propagation characteristics, designing a sonar system may require more
complex signal modeling [50]. On the other hand, passive sonar systems listen to in-
coming acoustic energy transmitted by other sources. The acoustic energy received by
the sonar system can be used for estimating parameters such as range, bearings, and
velocity of targets and for detecting and locating distant sources [97]. For example,
Matched-field processing techniques typically exploit acoustic propagation models to
perform range-depth localization (see [5], [51], [101] and references therein). The ap-
plication of hydrophone array-based sonar to real data has been successfully reported

in [32], [51], [61], and [84).

Wireless Communications

Antenna arrays are widely used in many communication systems, e.g., satellite com-
munications [48], [56]. In this kind of communications, the antenna array can be used
in either the earth terminal or onboard the satellite. This allows the satellite not

only to communicate with the base station on earth, but also to communicate with
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other satellites. This satellite-to-satellite communications is commonly referred to as
inter-satellite communications. Inter-satellite communications are expected to play
an important role in mobile communications, particularly with the use of low-orbit
satellites [35], [48]. The relative positions between these low-orbit satellites change
quickly. Hence, antenna arrays can be used to track the satellite of interest as well as
to reject any interference that might arise due to the transmission of other satellites.

Another application that has received growing interest is the use of antenna arrays
in mobile communication systems. The advantages of using antenna arrays in mobile
communications include increasing the channel capacity, i.e., increasing the maximum
data rate that can be reliably transferred between the mobile and the base station
[35], [104]. In addition, the use of antenna arrays in mobile communications offers the
ability to extend the range of coverage, combat fading and provide more robustness
against co-channel interference [35], [79]. Antenna arrays are capable of reducing
co-channel interference by focusing a beam in the direction of the desired signal
[22]. However, reducing co-channel interference using this technique requires prior
knowledge about the signals DOAs. When the DOAs are not known, they have to be

estimated which motivates doing more research on this topic.

1.2 Overview of the Thesis

1.2.1 Motivations and Aims of the Thesis

Most conventional parameter estimation and direction finding techniques are based

on one or more of the following assumptions [50], [62]

1. The signal and noise processes are stationary over the observation interval and

are uncorrelated to each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ph.D. Thesis - Aboulnasr Hassanien McMaster - Electrical & Computer Engineering

2. The emitter is a point source which means that the source energy is concentrated

at a distinct discrete angle.
3. The received signals are narrowband.

However, when applied to practical problems, these techniques may suffer from severe
degradation in performance because of their high sensitivity to mismatches between
the presumed assumptions and the actual characteristics of the environments and/or
the sources. In this section, we will touch on three complicated spatio-temporal sce-
narios that are frequently encountered in practical situations. In subsequent chapters
we will address the parameter estimation problem in the presence of these non-ideal

environments.

Sources with Substantially Different Powers

In sensor arrays, interfering sources may take different forms and have widely varying
impacts. Jamming is a typical interfering example that takes the form of high power
transmission that might result in impairing the receiving system, e.g., in radar. Inten-
tional jamming may be used to disrupt a guidance system, e.g., a guided missile, via
obscuring the display of potential sources of interest at the front end of the receiving
system.

On the other hand, friendly interfering signals can be used to protect certain
targets from being located and tracked. This can be done by emitting false signals
that make the receiver of the tracker take ineffective measures. Interfering problems
can also arise in civilian applications. For instance, localized radiation sources may
interfere with commercial aviation and landing systems.

For decades, the problem of DOA estimation of weak desired sources in the pres-

ence of severe interfernce/jamming has received much interest. It is known that the
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performance of conventional array processing techniques degrades in the case of a
mixture of high signal-to-noise ratio (SNR) and low SNR signals [99]. Hence, new
efficient algorithms that can handle this case, in particular the case of weak signal

sources observed in the background of strong interference, are of great interest.

Polynomial-Phase Signals

Polynomial-phase signals (PPSs) arise in many practical applications such as radar,
sonar and wireless communications. For example, in communication systems that use
continuous-phase modulation, the phase can be modeled as a finite-order polynomial
within a finite duration in time [81]. Furthermore, frequency-modulated (FM) signals
are intentionally transmitted in synthetic aperture radar (SAR), synthetic aperture
sonar (SAS), Doppler radar and sonar imaging and mobile communications. PPSs can
also arise as a result of the relative radar-target motion or the relative transmitter-
receiver motion.

Much interest has been given to the problem of estimating the parameters of PPSs
impinging on a sensor array (see for example [31] and references therein). PPSs are
nonstationary signals and most of the time they can not be modeled as narrowband
signals. Therefore, traditional array processing techniques can not efficiently handle
the parameter estimation problem in this case. However, the rich structure of the
PPS model can be exploited in developing new algorithms that can efficiently deal

with the PPS parameter estimation problem.
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Spatially Dispersed Signals

In practice, the source signal may be transmitted through a reflective medium. If this
medium is dispersive, it can cause the reflected wave to be scattered in space. In wire-
less communication systems, for the information-bearing signals to reach physically
distant receivers, the ionosphere is typically used as a reflector for the sky electro-
magnetic wave. However, due to the nonuniformity of the ionosphere, the travelling
wave reaches the receiving array as a spatially distributed source.

Spatially distributed sources can also arise as a result of multipath propagation.
Multipath propagation phenomena are very typical in practical applications such
as radar, sonar and wireless communications. For example, in the case of a radar
performing low angle tracking, the multipath propagation caused by the reflection
from a rough sea surface usually results in a distributed source [63]. Distributed
sources are also common in mobile communications, particularly in urban areas [68],
[69] and in audio signals propagating in a reverberant room [62].

The problem of estimating the parameters of spatially distributed sources has
received considerable attention in the literature; see for example [21], [49] and [54].

More efficient algorithms that can handle this problem are still of great demand.

1.2.2 Thesis Outline

In this thesis, we address the topic of direction finding and parameter estimation in
complicated environments using sensor arrays. We develop advanced array processing
algorithms for estimating the spatial and temporal characteristics of complicated
spatio-temporal sources. The main body of the thesis consists of Chapters 3 through
to 6. In each of these chapters we address one of the complicated spatio-temporal

scenarios given in Section 1.2.1 and develop an approach that properly addresses
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the parameter estimation problem in that scenario. In what follows, we give a brief
overview of our work. Detailed definitions and background are given in individual
chapters as appropriate.

In Chapter 2, we give a brief overview of conventional array processing and param-
eter estimation techniques. We briefly describe the array signal model that has been
widely used in the array signal processing area over the last few decades. We also
present a concise description of several optimal and suboptimal estimation techniques
that have been widely used in array processing. At the end of the chapter, we present
the Cramér-Rao Bound (CRB) which provides a lower bound on the performance of
any unbiased estimator, i.e., it provides a baseline standard that can be used to assess
the performance of suboptimal estimation techniques.

In Chapter 3, we address the DOA estimation problem in the presence of sources
with substantially different powers where the general locations of the sources-of-
interest are assumed to be located within a certain sector. We propose a novel
approach to beamspace preprocessing with application to DOA estimation that offers
improved robustness against out-of-sector sources. The beamspace matrix is designed
as a matrix filter that satisfies a certain tradeoff between the in-sector (passband) and
out-of-sector (stopband) requirements. Furthermore, the novel concept of adaptive
beamspace preprocessing is introduced which extends the beamspace formulations by
assuming that the beamspace matrix can be driven by the array data. Computation-
ally efficient convex formulations for these problems are derived using second-order
cone (SOC) programming. Simulation results are presented that illustrate the ro-
bustness of our techniques compared to traditional beamspace techniques.

In Chapter 4, we develop an algorithm for localizing multiple incoherently dis-

tributed (ID) sources’. The popular Capon spectral estimator is generalized to the

!For more information on ID sources see [85], [86] and [98].
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case of multiple ID sources without imposing any approximation on the covariance
matrix of the received data. The proposed generalized Capon technique estimates
the central angles and the angular spreads by means of a two-dimensional parame-
ter search. Simulation results are given, showing that the proposed method has a
substantially improved performance compared to several popular spread source local-
ization methods.

Chapter 5 presents a new time-frequency ESPRIT-type algorithm for DOA esti-
mation of multiple narrowband chirp signals. Improved estimates of the signal and
noise subspaces are obtained by using an averaged spatial time-frequency distribu-
tion (STFD) matrix (or multiple averaged STFD matrices) in lieu of the covariance
matrix used in the conventional ESPRIT algorithm. The presented method enables
separating the signals in different averaged STFD matrices prior to DOA estimation
and, therefore, makes it possible to estimate the source DOAs in the case when the
number of array sensors is less than the number of sources. Simulation results are
used to validate the effectiveness of the proposed technique. It is shown that signifi-
cant performance gains can be achieved by the proposed algorithm compared to the
conventional ESPRIT technique.

Chapter 6 addresses the problem of parameter estimation of multiple wideband
PPSs in sensor arrays. A nonlinear transformation called the spatial high-order in-
stantaneous moment (SHIM) is introduced. The SHIM is used to transform the
wideband PPSs data snapshots into a new set of snapshots, which have a rich struc-
ture that is easy to deal with. The SHIM is employed to provide estimates of the
PPSs frequency parameters. The estimation process is done in a recursive manner
starting with the highest order coefficients. STFD-based techniques and the SHIM
are used jointly to provide estimates of the DOAs. The proposed technique is com-

putationally attractive as it requires multiple one-dimensional searches instead of a
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multi-dimensional search to estimate the required parameters. Simulation results are
provided to validate the effectiveness of the proposed algorithm.
In Chapter 7, we draw some conclusions and point to possible extensions for future

research work.

1.2.3 Contributions and Related Publications

The author has contributed substantially to the following original developments pre-

sented in this thesis:

1. A new approach to beamspace preprocessing with improved robustness against

out-of-sector sources.

2. A generalized Capon spatial spectrum estimator for localization of multiple ID

sources.

3. A new time-frequency ESPRIT-type algorithm for DOA estimation of multiple

narrowband chirp signals.

4. A computationally efficient subspace-based approach for estimating the param-

eters of multiple wideband PPSs.

The contents of Chapter 3 have been published in the IEEFE Transactions on Signal
Processing [41]. An earlier exposition of some parts of Chapter 3 was also presented at
the IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM’04) [40].
The contents of Chapter 4 have been published in the IFEE Transactions on Signal
Processing [44]. The contents of Chapter 5 have been presented at the IEEE Sensor
Array and Multichannel Signal Processing Workshop (SAM’02) [43]. The contents of

Chapter 6 have been summarized in [42] and will be submitted for journal publication.

10
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Chapter 2

Conventional Array Processing and

Parameter Estimation Techniques

2.1 Introduction

Sensor arrays have been widely used to solve the direction finding problem. In fact,
array processing is mainly understood as direction finding. The most notable appli-
cation of direction finding is source localization in radar and sonar. Emitting sources
can be localized by finding their DOAs using two separate arrays followed by finding
the intersection for the two lines of bearing of each emitting source.

The problem of estimating the DOAs of multiple signals impinging on sensor
arrays has attracted much attention for several decades [35], [45], [50], [99]. It is
remarkable that the DOA estimation area has links to the area of time-series analysis.
Several parameter estimation techniques have originated in time-series analysis and
then they were borrowed and applied in array processing. For instance, conventional
beamformer, that dates back to the 1940s, is a mere application of Fourier-based

spectral analysis to spatio-temporally sampled data.

11
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As a result of intensive research during the last three decades, many high-resolution
optimal and suboptimal DOA estimation techniques have been developed. For exam-
ple, the MUltiple SIgnal Classification (MUSIC), proposed by Schmidt [82], is one
of the most popular high-resolution approaches to the direction finding problem. A
similar approach has been independently proposed by Beinvenu and Kopp [15]. Most
of the developed high-resolution direction finding techniques are based on parametric
modeling. However, most of these techniques make some idealistic assumptions that
might not be valid in practice. Hence, more advanced techniques for the direction
finding problem, especially in complicated environments, are of great interest.

In this chapter, we give a brief description of the conventional array signal model
as well as a brief review of the most popular parameter estimation techniques that
have been widely used in the array processing area. We classify these techniques
into two main categories: nonparametric techniques and parametric (model-based)
techniques. We further divide the parametric techniques into two sub-categories:
subspace-based methods and maximum likelihood (ML) techniques. All these meth-
ods will be explained in the context of DOA estimation. At the end of the chapter,
we briefly describe the CRB that provides a lower bound on the performance of any
unbiased estimator. In subsequent chapters, the CRB will be used as a standard

measure to assess the performance of suboptimal estimation techniques.

2.2 Array Signal Model

Consider an array of M sensors located in three-dimensional coordinate space. The

sensors locations are defined by the position vectors

Pm = [XM)YM7Zm]T7 m=12,..., M,

12
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where ()7 stands for the transpose. The sensors spatially sample an external signal
field that is assumed to be generated by a finite number of emitters. The generated
waves are assumed to be travelling in a homogenous medium at a constant speed c.
The signals received by the array sensors due to the incident wavefields are given by

the M x 1 vector
T

x(t) = [x(t, r1),...,z(t,rar)| s (2.1)
where z(t,r,,) is the signal received by the mth sensor. In the following, we analyze

the response of the array to the incident wavefields and provide the mathematical

signal model that has been widely used in the array signal processing literature.

2.2.1 Near-Field and Far-Field Wave Scenarios

Propagating waves are classified into spherical waves and planar waves according to
the ratio of the total aperture size of the array to the distance between the array and
the location of the emitting source. The wavefield will be spherical in shape if the
emitting source is located relatively close to the sensor array. This case is also termed
as the near-field case. If the location of the emitting source in three-dimensional space
is known, then the signal received by the array due to a spherical wavefield can be
uniquely identified [18]. For example, if the signal emitted by a near-field source is

denoted by 3(t), then the signal received by the mth sensor of the array is given by
z(t,tm) = Bn(t, @)5(t — Tn) + nn(t), m=1,2,..., M, (2.2)

where B,,(t, ¢) is the direction pattern of the mth sensor, ¢ is the parameter vector
that can be associated with several scalar parameters such as frequency, azimuth
angle, elevation angle and polarization of the wave impinging on the mth sensor, and
nm(t) is an additive noise term that represents the background and/or thermal noise

associated with the mth sensor. In (2.2), 7,, is the time required for the propagating

13
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wave to travel from the location of the emitter to the location of the mth sensor.

That is,

s ltm = xS
m = ] 2.3
7 . (2.3)

where || - || denotes the Euclidean norm of a vector and r, is the position vector that
describes the location of the emitting source.

On the other hand, if the distance between the location of the emitting source and
the array is large compared to the total aperture size of the array, then the wavefronts
are modeled as plane-waves. This case is also referred to as the far-field case. Assume
that the plane-wave is propagating with frequency w in the direction u, where u is a
unit vector. Assume also that §(¢) is the signal that would be received by a virtual
sensor located at the origin of the coordinate system. Then, the signal captured by

the mth sensor of the array is given by [99]

x(t, ) = Bin(t, @)5(t — 7)) + nm(t), m=1,2,..., M, (2.4)
where
ulr,
T = — (2.5)

is the time required for the plane-wave to travel from the origin of the coordinate
system to the location of the mth sensor.

Usually, the direction pattern of the sensors is assumed to be constant over the
observation interval. We also assume that the sensors are omnidirectional and identi-
cal and that the direction pattern is constant over the frequency range of the received
signals. Hence, 8,,(¢, ¢) is a constant and will be omitted from the equations for the
sake of mathematical convenience.

To give a simple illustrative example, consider the case of a far-field signal that
impinges on a linear array as shown in Figure 2.1. Without loss of generality, we

take the position of the first element of the array as the reference point and denote

14
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Incident
plane-wave

“Msﬁ\(e)

Figure 2.1: Linear array with plane-wave input.

the signal that impinges on that element as 3(t). We also assume that the emitting
source and the receiving array are in the same plane. Therefore, the elevation angle
can be assumed to be equal to 0° and the incident plane-wave will be characterized
by its azimuth DOA, e.g. €, where 6 is measured relative to the broadside of the
array. In this case, the position of the mth sensor with respect to the location of the

first sensor can be described by the translation vector

tm 20,0, —hm]”, (2.6)

15
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where h,, is the spacing between the first and mth sensors of the array. The propa-

gation direction of the incident plane-wave can be expressed as
u £ [0, —cos(d), —sin(9)]7. (2.7)

Substituting (2.6) and (2.7) into (2.5), we obtain that the time required for the
incident wave to travel from the location of the first sensor to the location of the mth
sensor is given by

Tm = hTm sin(6). (2.8)

Therefore, the signal received by the mth sensor is given by

Tm(t) = 3§ (t - h—msin(9)> +n,(t), m=1,...,M. (2.9)

c

2.2.2 Narrow-band Snapshot Model

The signal observed at the sensor array is modeled as a complex bandpass signal [99]

(t) = s(t) exp {jwot}, (2.10)

W

where s(¢) is the informative (base-band) complex envelope signal and w, is the carrier
frequency. Therefore, the noise free part of the signal received by the mth sensor is

given by

Sm(t) = st — Tm)exp {jwo(t — Tm)}
Rem
= s(t — Tn) exp{jwot} exp {-ijo sm(ﬁ)} . (2.11)
A typical underlying assumption in array signal processing is that the signals are
narrowband which means that the spectrum of the signal is bandlimited and that

the signal bandwidth is much smaller than the carrier frequency. In other words, we

assume that the bandwidth of the base-band signal s(t) is much less than 1/7y,. The

16
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narrowband assumption implies that the source signal s(¢) changes very slowly in the
sense that it remains constant during the time required for the incident wave to travel

across the entire aperture of the array. Hence, the approximation

o

s(t——sin(@)) ~s(t), m=1,....,.M (2.12)
C

is fairly accurate and it can be used to obtain a convenient signal model for the array

output signal.

Making use of the above approximation, the pure signal part of the signal received

by the mth sensor is given by

5m(t) ~ s(t) exp{jwot} exp {—j%"lwo sin(@)} . (2.13)

In practical array processing applications, the signal is usually down-converted to
base-band before sampling [50], [99]. Dropping the term exp{jw,t}, the array output

signal is modeled as

1
—jh20, si
x(t) £ s(t) exp { = ¢ osin(6)} +n(t), (2.14)
| exp {—jﬁ%wo sin(&)}_
where
n(t) £ [y (t), ..., mu ()" (2.15)

is the M x 1 vector that represents the additive noise term.

In the general case, there are L different signals {s;(t)}£, that impinge on the
array. By applying the principle of superposition, the array snapshot vector is simply
a linear combination of the received vectors due to individual signals. That is,

L
x(t) = > si(t)a(d)+n(t), (2.16)
I=1

17
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where 6; is the DOA of the [th signal and

a(f) £ [1, exp {——j%wo sin(e)} , .., EXP {—thMwo sin(@)H ! : (2.17)

is the array manifold vector! associated with the direction 6.
For an algebraic characterization of the array snapshot model, we express (2.16)

in a more compact form as follows
x(t) = A(0)s(t) + n(t), (2.18)

where

0 =1[01,0,,...,00]" (2.19)
is the L x 1 vector that contains the DOAs of the received signals, and
s(t) = [s1(t), s2(t), - .., sp()]" (2.20)
is the L x 1 vector that contains the signal waveforms. In (2.18), the matrix
A(0) £ [a(6,),...,a(0L)] (2.21)

is the steering matrix which is assumed to be full rank, i.e., the columns of A(8) are

assumed to be linearly independent.

2.2.3 Statistical Characterization of the Array Output Signal

Let us assume that the array output signal is temporally-sampled in time with sam-
pling interval At and that N, different snapshots are available. In this subsection,

we describe the statistical characterization for both the signal and noise terms in

!The array response vector and the steering vector are other names that are commonly used to
define the array manifold vector a(8).

18
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(2.16) that has been commonly used in the array signal processing area. This statis-
tical characterization allows us to express the signal model by means of its sufficient
statistics.

The random noise term {n(t)}Y:, is modeled as a zero-mean circularly complex
Gaussian process. We assume that the noise is temporally and spatially white, i.e.,

the noise covariance matrix is a scaled version of the identity matrix. That is,
R, = E{n(t)nf(s)} = 0214, (2.22)

where I is the identity matrix, o2 is the noise variance, 0+ s is the Kronecker delta,
and (-)¥ stands for the Hermitian transpose. The above assumption means that the
noise at different sensors is uncorrelated. It also means that the noise at different
snapshots is uncorrelated. Another common assumption that has been widely used
in the array signal processing literature is that the noise and the signal waveforms
are uncorrelated.

Two different models are commonly used to statistically characterize the observed
signals {s;(t)}f,. These are the stochastic signal model and the deterministic signal
model [94]. In the stochastic signal model, the received signals are sample functions

of a zero-mean Gaussian random process. That is, the source signals are modeled as
s(t) ~ N (0, S), (2.23)

where N (-) denotes the complex multivariate Gaussian distribution and S is the

source covariance matrix that is given by
S = E{s(t)s"(t)}. (2.24)
In this case, the received signal snapshot is modeled as
x(t) ~ N(0, A(8)SAH(0) + o1). (2.25)

19
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In the deterministic signal model, the received signals are assumed to be either
deterministic or unknown random signals. We make no assumptions on the statistics

of the waveforms. In this case, the signal snapshot model is written as
x(t) ~ N(A(8)s(t), o°T). (2.26)

There are many parameter estimation problems in the array processing area that
can be of interest. For example, the objective of array signal processing might in-
volve detecting the number of emitting sources, estimating the range of a target (in
the near-field), source localization and DOA estimation, channel characterization, or
estimating the optimal positions of the sensors in the array. In this thesis we assume
that the number of signals L is known and that the emitting sources are located in
the far-field. Hence, our main objective will be focussed on estimating the signal

parameters, e.g. the DOAs, of the plane-waves arriving at the array.

2.3 Nonparametric Estimation Techniques

Nonparametric DOA estimation techniques do not make any assumptions on the
properties of the covariance matrix of the received data snapshots. The basic idea
behind these methods is to obtain a spatial spectrum and to estimate the parameters
of interest, e.g. the DOAs, by searching for the locations of the highest peaks of this
spatial spectrum. Consider the generic structure linear beamformer shown in Figure
2.2. The signal received at each sensor is multiplied by a complex weight. Then,
the beamformer output is obtained by forming a linear combination of the weighted
signals. That is,

y(t) = wix(t), (2.27)

20
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where

w = [wy, wy, ..., wy]" (2.28)

is the complex weight vector. For a given weight vector w, the mean output power

of the array is given by [36]

P(w) = E{y(®)y (1)}
= wHE{x(t)x"(t)}w

= wiR,w, (2.29)
where E{-} is the expectation operator, and
R, = E{x(t)x"(t)} (2.30)

is the spatial correlation matrix of the received snapshots. In practical situations, the

sample covariance matrix

" 1 2 H
R, = A ;X(t)x (t) (2.31)
is used instead of the true covariance matrix Ry. In the sequel we will give a brief

description of two popular nonparametric estimation techniques.

2.3.1 Conventional Beamformer

Conventional beamformer is a classic (w does not depend on the input/output array
signals) direction finding technique that scans the beam to evaluate the received power
in each direction. It maximizes the output power received from a certain direction
such that the norm of the weight vector is fixed [36], [50]. Let us consider the scenario

of a single source signal observed in the background of white noise. That is,

x(t) = s(t)a(8) + n(t). (2.32)
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Figure 2.2: The generic structure of linear beamformer.
Using (2.29), the beamformer output power can be written as

P(w) = w7E{(s(t)a(8) + n(t))(s(t)a(6) + n(t))" }w
= wi {cZa(0)a”(0) + 021} w

= ailwa(9)]? + o flwll?, (2.33)

where o2 = E{s(t)s*(t)} is the signal power.
The unit norm weight vector w that maximizes the output power is obtained as

the solution to the following optimization problem [50]
maximize oZjwa(@)|? + o2||w|?
w
subject to  ||w]|? =1 (2.34)

The objective function in the above optimization problem will be maximum when w

is a unit vector that has the same direction as the steering vector a(f), i.e.,

G
W= 2@ (2.35)
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Substituting (2.35) in (2.29), we obtain the conventional beamformer spatial spectrum

2o a¥ (6)R.a(0)
a@F

Note that in practice, the sample covariance matrix R, is used in lieu of the true co-

Pepr(f) = (2.36)

variance matrix Ry in order to obtain the conventional beamformer spatial spectrum.

In addition to its simplicity, conventional beamformer provides good robustness
against model mismatch. In the case of uniform linear array (ULA), conventional
beamformer enjoys efficient implementation via FFT. However, in the presence of
multiple sources, conventional beamformer is no longer optimal and has low resolution

capabilities. Hence, its performance is limited by the aperture size of the array [73].

2.3.2 Minimum Variance Distortionless (MVDR) Beamformer

Based on point source modeling, the MVDR spatial spectrum estimator has been
developed in [19]. This estimator can be considered as a spatial filter (beamformer)
which passes the signal of a hypothetical point source arriving from the direction
6 while maximally rejecting the signals coming from other directions. The M x
1 beamformer coefficient vector wyp: is obtained as the solution to the following
optimization problem [93], [99]

minimize wHiR,w
w

subject to  wfa(g) = 1. (2.37)

In adaptive beamforming, (2.37) is commonly referred to as the minimum variance
distorionless (MVDR) beamforming problem, see [99].
The solution to (2.37) is given by [50], [99]

R, 'a(é)

Wons(9) = G RTa) (2.38)
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For any direction 8, the spatial spectrum is defined through the output power of the
MVDR beamformer as [93], [99]

~

w (0)Rywops(6)

opt
1

. S (2.39)
af (9)R3'a(0)

(1>

Po()

Note that in (2.39), the sample covariance matrix Ry is used instead of the true
covariance matrix R,. It is clear that if the energy of the Ith point source impinges
on the array from a direction 6;, then Pc(6) is expected to have a separate peak at
8 = 6,. Hence, the point source DOAs can be estimated from the L highest maxima

of (2.39) which can be obtained by means of a one-dimensional spectral search.

2.4 Subspace-Based Methods

Subspace-based DOA estimation techniques have been studied extensively in the lit-
erature and were proven to have high-resolution capabilities (see [36], [50], [99] and

references therein). These methods are based on the following properties [36]:

1. The space spanned by the received data vectors may be partitioned into two

subspaces, namely, the signal subspace and the noise subspace.

2. The steering vectors associated with the DOAs are orthogonal to the noise

subspace.

The array output signal is assumed to obey the stochastic signal model (c.f. 2.25).

In this case, the array covariance matrix is written as
R, = A(0)SA?(0) + o1 (2.40)

Eigen-analysis techniques have been widely used to obtain the signal and noise sub-

spaces from the array covariance matrix. Let {\,}*_, be the eigenvalues of
y m=1 g
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arranged in descending order, i.e.,
M2X> . 2> A =...= Ay =02 (2.41)

The first L eigenvalues {)\,, }Z _, are referred to as the signal subspace eigenvalues and
the rest are referred to as the noise subspace eigenvalues. Hence, the array covariance

matrix can be rewritten in the form
R, = UAU? + U A UE, (2.42)

where the L x L diagonal matrix A, contains the signal-subspace eigenvalues and the
columns of the M x L matrix Uy are the corresponding eigenvectors. Similarly, the
(M — L) x (M — L) diagonal matrix A, contains the smallest (noise-subspace) eigen-
values while the M x (M — L) matrix U, is built from the corresponding eigenvectors.

Multiplying equations (2.40) and (2.42) by U, from the right and comparing the
results we obtain

A(6)SAT(6)U, = 0. (2.43)

Since A(0)S is a full column rank matrix, it follows immediately that
A7 (@)U, =0. (2.44)

The orthogonality between the steering matrix and the noise subspace in (2.44) is the

basis for all subspace-based direction finding techniques.

2.4.1 Spectral-MUSIC DOA Estimator

The first developed parametric subspace-based method was Pisarenko’s method which
was derived in the context of time-series analysis [75]. However, the introduction

of the MUSIC algorithm has inspired a tremendous interest in the subspace-based
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approach to the direction finding problem {15}, [50], [82], [83], [95]. In what follows,
we provide a brief review of the spectral-MUSIC DOA estimator.
Equation (2.44) can be rewritten as [50], [82]

af(9)U, U a(4) =0, I1=1,... L (2.45)

Based on (2.45), the spectral-MUSIC spatial spectrum is defined as

1 1
Suusic(9) = af (9)U,UHa(f) - af (9)[I - UUH]a(d)

(2.46)

Since the steering vectors {a(6;)}£.; are orthogonal to U, the spatial spectrum (2.46)
is expected to have sharp peaks at values of # that correspond to the DOAs {6} ,.
In practice, the sample covariance matrix Ry (c.f. 2.31) is used instead of the true
covariance matrix Ry. Using eigendecomposition we have

Ry = U A U7 £ U,A, U, (2.47)
Hence, estimates of the DOAs can be obtained by searching for the L highest peaks
in the spectral-MUSIC spatial spectrum [50], [82]

1 = L . (2.48)
af(9)U,Ufla(0) af(6)[I - U, UH]a(0)

It is worth mentioning that the spectral-MUSIC algorithm is a high-resolution DOA

Fuusic(8) &

estimator that is applicable to any array with arbitrary geometry. However, the main
disadvantage of this algorithm is that it requires a one-dimensional search that could
be computationally expensive if the MUSIC estimate is evaluated on a fine angular

grid.

2.4.2 Root-MUSIC DOA Estimator

Root-MUSIC is a computationally efficient search-free direction finding algorithm

that was originally introduced in [6]. This algorithm is only applicable to ULAs. For
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the case of a ULA, the steering vector is given by
T

A A
a(d) = |1, exp{—j—c——w0 sin(6)}, ... ,exp{——j;(M — Dw,sin(8)}| (2.49)
where A is the interelement spacing of the array. Letting
A
z = exp{—j —Wo sin(6)}, (2.50)
we can rewrite (2.49) as
a(0) =[1, z,...,2M YT, (2.51)

Making use of (2.45) and (2.51), the root-MUSIC characteristic equation is defined
as

al(271)U,Ua(z) = 0. (2.52)

Note that the characteristic equation (2.52) is of order 2M —2, hence there are 2M —2
roots for it. The roots form M — 1 pairs where one root is the conjugate reciprocal
to another, i.e., if z is a root, then 1/2* is also a root [6], [50], [99]. Among the roots
that are located inside the unit circle there will be L roots that are exactly located on
the unit circle. Each one of the roots that are located on the unit circle corresponds
to one of the true DOAs.

In practice, the estimated noise subspace is used instead of the true one. Therefore,

the root-MUSIC characteristic equation is given by

al(z7 1)U, U a(z) ~ 0. (2.53)

n

In this case, the locations of the roots that correspond to the true DOAs will deviate
from the unit circle. Among the roots inside the unit circle, let {}Z, be the L

closest roots to it. Then, the root-MUSIC algorithm estimates the DOAs as

A . c A
learcsm{—woAargzl}, I=1,...,L. (2.54)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ph.D. Thesis - Aboulnasr Hassanien McMaster - Electrical & Computer Engineering

It is worth mentioning that the root-MUSIC algorithm is not only a search-free tech-
nique, but also it enjoys efficient implementation via any of the existing numerically

efficient rooting algorithms [52].

2.4.3 ESPRIT DOA Estimator

Another search-free and computationally efficient direction finding technique is the
ESPRIT algorithm [80]. This algorithm requires an array structure that consists of
two identical subarrays separated in space by a known displacement vector>. The
ESPRIT algorithm is based on the so-called shift structure of the steering matrix A.
This shift structure describes the relationship between the steering matrix of the first
subarray and the steering matrix of the second subarray.

Without loss of generality, we consider the case of two linear subarrays aligned
parallel to each other and separated by a displacement ¢ as shown in Figure 2.3.
We assume that L narrowband signals are impinging on the two subarrays from the
DOAs {#;}£,. Let x;(t) be the signal received by the first subarray due to the Ith
narrowband signal that impinges on the array from direction 6;. Then, the signal

received by the second subarray due to the same signal is given by

ri(t) £ x,(t) exp{—jwo¢}, (2.55)
where
o & S0 CO:(GI) (2.56)

is the time delay required for the Ith signal to travel from the first subarray to the
second subarray. Let x(¢) and r(t) be the array signals received by the first and the

second subarrays respectively and assume that the location of the first sensor of the

2The two subarrays are allowed to overlap. For example, a ULA of M sensors can be thought of
as two subarrays of M — 1 sensors each.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ph.D. Thesis - Aboulnasr Hassanien McMaster - Electrical & Computer Engineering

Subarray # 1 0;
o --- ®
Subarray # 2 ‘(;o& 6; ;
(€
-/
o --- °

Figure 2.3: ESPRIT array structure.
first subarray is the reference point. Then, by making use of (2.55) it follows that
x(t) = As(t) + ny(t), (2.57)

and

r(t) = A®s(t) + n, (%), (2.58)

where n,(t) and n,(t) are the additive noise terms associated with the first and the
second subarrays respectively. In (2.58), ® is the L x L diagonal matrix that is defined
as

¢ cos(6y)
c

b exp{—jw, (2.59)

® = diag {exp{——jwo g_c_gsc@}} .

Let Uy be the M x L matrix whose columns span the signal subspace associated
with the first subarray. Recall that U, and A span the same signal subspace, and

therefore, we have the relationship
U, = AT, (2.60)

where T is an L x L arbitrary full rank matrix. Similarly, if the M x L matrix U,

spans the signal subspace associated with the second subarray, it follows that
U, =A®T. (2.61)
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By substituting (2.60) in (2.61), we have
U, = UT'eT
= U,¥, (2.62)
where
U =T7'9T. (2.63)

From (2.63), it follows that the diagonal elements of ® are the eigenvalues of ¥. Now
let ﬁs and ﬁr be the estimates of the signal subspace matrices that can be obtained
from the measurements x(t) and r(¢). Then, we can obtain an estimate of ¥ from

U, and U, by solving the following equation

U, =00, (2.64)

There are two criteria that can be used to solve (2.64), namely the least square (LS)
approach and the total least square (TLS) approach [50], [99]. If the LS method is

used, then ¥ can be estimated as [99]
U g = (U0, 10T, (2.65)
On the other hand, the TLS solution for ¥ is given by [37, Section 12.3], [99]
s = -V V), (2.66)

where Vi3 and Voo are L x L matrices defined by the eigendecomposition of the

2L x 2L matrix

. LO 0 B vV, V VH vH
U2 | [Us Ur] | TRATE A (2.67)
U# Vo Vo Vi V§

Once ¥ is obtained, the ESPRIT algorithm estimates the DOAs as

élzarccos{—cc arg/fq}, {=1,...,L, (2.68)

o]

where {{}£, are the eigenvalues of U,
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2.5 Maximum Likelihood Techniques

The ML technique is the most well known and widely studied approach to the problem
of parameter estimation in array processing. Its importance arises because it fully
exploits the underlying statistical signal model. Unlike subspace-based techniques,
the ML technique is known to have an optimal performance for both uncorrelated
and coherent sources but at the price of higher computational cost. In this section,
we briefly describe the ML technique in the context of DOA estimation.

The general approach to obtain the ML estimates is to define the likelihood func-
tion which is the joint probability density function (pdf) of the sampled data under
the assumption that the DOAs are given. Then, the approach involves maximizing
the likelihood function with respect to the unknown parameters, e.g., the DOAs.
Hence, the ML criterion signifies that the signals impinging on the array from these

directions are most likely to cause the given samples to occur.

2.5.1 Stochastic Maximum Likelihood

The stochastic maximum likelihood (SML) algorithm is based on the assumption that
the received data snapshots obey the stochastic data model given in (2.25). That
is, the observation vector x(¢) is a circularly symmetric zero-mean white Gaussian

random process. Recall that the covariance matrix for this case is given by
R, = A(8)SA?(0) + 021

The multivariate pdf for a single snapshot is expressed in terms of 8, S, and o2 as
follows

f(8,8,0%) = exp { —x" ()R 'x(8)} (2.69)

1
M| Ry|
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where || denotes the determinant of a matrix. Assuming that N, successive statis-
are available, the joint multivariate pdf is

tically independent snapshots {x(t)}
(2.70)

given by
H R exp { —x"(t)Rg'x(t)} .
IR |

BSG

The negative log-likelihood functlon is given by

- log(f(07 S’ 0721))
N,
N,M log(m) + Ny log(|Rx|) + Z T (ORIx().

L(8,S,d?)
(2.71)

t=1

Since L(-) is monotonic, the negative log-likelihood function (2.71) can be minimized

instead of maximizing the likelihood function (2.70) [73]. Ignoring the constant term

and dividing through by Ny, we have
log(|Rx|) +tr{ Zx (RS x(t )}

L(8,S,02)
XH(t)}
(2.72)

log(|Ral) + tr {R;lzﬁsxu)

log(|Rx]) + tr{R'Rx},

where Ry is the sample covariance matrix given in (2.31) and tr{-} denotes the matrix
2
n

X
trace. Fortunately, the above problem is solvable for S and o2 so that we can obtain

an explicit function in @ [16] [47], [99]
The maximization of (2.71) over S yields [99]
3 (2.73)

S = A'(6)(Rx — 021)(A7(6))

(AFA)1AH is the pseudo-inverse of A. Similarly, the maximization of
(2.74)

where AT =
(2.71) over o2 yields [99]
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where P4 = I — AAT is the projection matrix onto the nullspace of A. Substituting
(2.73) and (2.74) into (2.71), we obtain the SML estimator [16], {47], [99]

1
Bsroc = arg min  log PaR. P, + N tr{P R, }Px/|, (2.75)

where P, = AA' is the projection matrix onto the space spanned by A.

2.5.2 Deterministic Maximum Likelihood

The deterministic maximum likelihood (DML) algorithm is based on the assumption
that the received data snapshots obey the deterministic signal model given in (2.26).
That is, the observation vector x(t) is a circularly symmetric white Gaussian random

process with mean A(8)s(t) and covariance matrix
Ry = o’L (2.76)

Once more, we assume that N, successive statistically independent snapshots {x(¢)}¥s,

are available. Then, the joint pdf is given by

T 9
16,500, =1 1)Mexp{~”"“) ”““} 277

o2
Hence, the unknown parameters can be sought by looking for the values of the pa-
rameters that minimize the negative log-likelihood function®
L(8,s(t),0%) = Mlogo? + = Z Ix(t) — A(0)s(t)]|. (2.78)
o t=1 N
The number of parameters involved in the minimization of (2.78) can be reduced by
finding the separate ML estimates of the nuisance parameters s(t) and ¢2. This can

be done by fixing @ and solving for o2 and s(t) which yields [50], [95]

1 .
2= 77 (PARx), (2.79)

3Note that all constant terms are omitted as they do not affect the optimal solution.
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and

8(t) = Afx(t). (2.80)

By substituting (2.79) and (2.80) into (2.78), we obtain the DML DOA estimator [50]

Oper = arg max tr{PAf{x}. (2.81)
It is worth noting that, for the single-source case, the DML simplifies to

R a(8)a(9)

fppr = arg max tr {WRX}

af (9)R,a(h)
la@)i*

From (2.82), it is interesting to note that the DML for the single-source case is

= argmax (2.82)

equivalent to conventional beamformer (c.f. 2.36).

2.6 Cramér-Rao Bounds

In this Section, we will briefly describe the bounds on the performance of the DOA
estimation techniques that are based on both the deterministic and the stochastic
signal models. The CRB provides a lower bound on the performance of any unbiased
estimator. Hence, it provides a baseline standard that can be used to assess the
performance of suboptimal estimation techniques.
For any unbiased estimate of 6, the covariance matrix of the estimation errors is
given by
E@)2E {(é —8)(6 - 9)T} , (2.83)

where 8 is the estimate of #. The CRB states that [99]

E(9) > CRB(6) £ F, (2.84)
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where the matrix inequality means that E(8) — CRB(8) is a positive semi-definite
matrix, and F is the so-called Fisher Information Matrix (FIM). The (i, j)th element
of F is given by [99]

dL(6) OL(6) } | (2.85)

[Flij =B {a—ei o8,
where L(0) is the log-likelihood function of the joint multivariate pdf. From (2.84),

a bound on the variance of any unbiased estimate 6; is given by
var{f — 0} > [F~']... (2.86)

The FIM for a circularly Gaussian process with mean m(f) and covariance Ry is

given by [99]

SRy _,0R s om (0)_ _,0m(8)
— . -1 XR-1 X -1
[Fli; = N, tr{Rx 55 R 5 }+2Re{t=l 5. R 50 [ (2.87)

Stochastic CRB

If the array data vector x(t) is defined using the stochastic signal model (c.f. 2.25),
then the CRB is given by [92], [95], [99]

0.2

CRB(0) = 7 {Re [(DP;D) @ (SA”R;*AS)"] [ (2.88)

where @ is the Schur-Hadamard (elementwise) product of two matrices and

D [aa(el) da(6,) da(fr)

T (2.89)

Deterministic CRB

If the array data vector x(t) is defined using the deterministic signal model (c.f. 2.26),
then the CRB is given by [94], [95], [99]

= 2‘;\3}3 {Re [(DHPiD) ® ST] }"1 . (2.90)

CRB(6)
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2.7 Conclusions

In this chapter, the array signal models that are commonly used in array process-
ing have been presented. The statistical characterizations of the signals observed by
sensor arrays have been provided. Both the stochastic and the deterministic signal
models have been described. A concise description of several well known array pro-
cessing techniques has been provided. The CRB that provides a lower bound on the

performance of unbiased estimation techniques has been presented.
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Chapter 3

Robust Beamspace Preprocessing

for Source Localization

3.1 Introduction

Beamspace preprocessing has been widely used to reduce the problem dimension in
array processing and to lower the computational burden of high-resolution direction
finding algorithms [3], [4], [26], [28], [39], [53], (88], [100], [107]-[109], [115], [116].
In addition to substantial computational improvements, beamspace preprocessing
is able to offer visible performance improvements such as enhanced source resolu-
tion, reduced sensitivity to array calibration errors and reduced DOA estimation
bias [28], [39], [53], [108], [109], [116]. However, a significant shortcoming of the
existing beamspace transformation design approaches and criteria is that they essen-
tially ignore interfering sources that are located outside the beamspace sectors-of-
interest. As a result, the robustness of conventional beamspace preprocessing tech-
niques against such out-of-sector sources may be insufficient.

In this chapter, we propose a novel approach to beamspace preprocessing with
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application to DOA estimation that has improved robustness against out-of-sector
sources. The beamspace matrix is designed as a matrix filter that satisfies a certain
tradeoff between the in-sector (passband) and out-of-sector (stopband) requirements!.
Several matrix filter optimization problems are proposed based on this approach and
computationally efficient convex formulations for these problems are derived using
SOC programming.

Furthermore, a novel concept of adaptive beamspace is introduced which extends
these formulations by assuming that the beamspace matrix is not necessarily fixed
but can be driven by the array data. Although the proposed adaptive beamspace
approach does not lead to any substantial reduction of the computational burden
of direction finding methods, it offers significant improvements of the DOA estima-
tion performance in the presence of weak in-sector signal sources observed on the
background of strong out-of-sector interferers.

To further reduce the complexity of the obtained SOC programming-based beams-
pace design problems, we propose to replace the conventional stopband constraints
with a much smaller number of parsimonious constraints without losing the quality
of beamspace matrix design. The latter constraints use the idea similar to that of the
spheroidal sequences approach of [26], but apply it to characterize the out-of-sector
angular areas rather than the sectors-of-interest.

At the end of the chapter we provide simulation results that illustrate the ro-
bustness improvements achieved by our techniques over the traditional beamspace

methods.

!Related formulations for the array interpolation design problem were considered in [74].
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3.2 Problem Formulation

3.2.1 Elementspace Array Signal Model

Let us consider a linear array of M sensors that receive the signals from L narrowband

sources. The M x 1 array snapshot vector can be modeled as
x(t) = xq(t) +x(t) +n(t) (3.1)

where x4(t) is in-sector desired signal component, x;(t) is out-of-sector interfering
signal component, and n(t) is the additive noise term. The desired signal and the

interfering signal components?® are, respectively, modeled as

L
xa(t) = > _ di(t)a(6), (32)
=1
D-L
xi(t) = Y L(t)a(bry), (3.3)
=1

where {d;(t)}£, are the waveforms of the L in-sector desired signals, {I;(¢)}27 are

the waveforms of the D — L out-of-sector interfering signals, and

h h ’
a(f) = \/LM [1, exp{jfwo sinf},..., exp{j——c]\—/f—wo sin @} (3.4)

is the unit norm steering vector associated with the direction 6.

The signal model given in (3.1) can be expressed in a more compact form as follows

x(t) = A(0)s(t) + n(t), (3.5)
where the D x 1 vector

021[6,,...,00,00.1,...,0p]7 (3.6)

2Note that we assume that all desired sources are located inside the sector-of-interest while all
interfering sources are located outside the sector-of-interest.
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is the vector that contains the source DOAs {6,}2, and the D x 1 vector
s(t) £ [di(t),...,d(t), L(2),..., Ip_L ()T (3.7)
is the vector that contains the signal waveforms. In (3.5), the matrix
A(6) = [a(b),...,a(0L),a(fL+1),--.,a(fp)]. (3.8)

is the M x D direction matrix. The M x M array covariance matrix can be written

in the familiar form (2.40), which is repeated here for convenience
R, 2 E{x(t)x(t)} = A(0)SAT () + 71,

where S is defined in (2.24).

3.2.2 Beamspace Array Signal Model

The M’ x 1 beamspace snapshot vector z(t) of a reduced dimension (M’ < M) is
defined as a linear transformation of the original (elementspace) data snapshot x(¢)

as

z(t) = BHx(t), (3.9)

where B is the M x M’ beamspace matrix. If B is not orthonormal, an additional

noise prewhitening operation is required and (3.9) should be modified as
z(t) = (B¥B)V2Bx(1). (3.10)

As such a noise prewhitening can be done straightforwardly after the matrix B is de-
signed, this operation will be ignored in our subsequent formulations of the beamspace

matrix design problem.
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The M’ x M’ beamspace array covariance matrix is given by [28], [53], [116]

>

R, E{z(t)z" (1)}

— (BHB)—1/2BHRXB<BHB)—1/2

= (BYB)"'?2B7A(6)SAT(6)B(B¥B)/? + 42I. (3.11)
From (3.11), it can be seen that the beamspace transformation changes the array

manifold as
a(0) = (BfB)~1/2BHa(9), (3.12)

where a(0) is the new steering vector after the beamspace transformation.

The sample estimate of (3.11) takes the following form
) 1 & 3
R, = A Z z(t)zf (t) = (BIB)"V2BHR,B(BB) /2. (3.13)
S =1

Note that the dimension of the matrix ﬁz is less than that of Rx. This fact is exploited
in all beamspace high-resolution direction finding methods to obtain substantial com-

putational savings relative to the conventional (elementspace) algorithms.

3.2.3 DOA Estimation in Beamspace

Let us assume, for the time being, that the beamspace transformation given in (3.9)
is ideal in the sense that the interfering signal component is completely attenuated
during the transformation process. In other words, we assume that the transformed
data contains only the in-sector desired signal component as well as the additive noise

term. Then, the eigendecomposition of (3.11) can be written as

R, = UAU? + U,A,UH (3.14)
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where the L x L diagonal matrix A, contains the largest (signal-subspace) eigen-
values and the columns of the M’ x L matrix U, are the corresponding eigenvec-
tors. Similarly, the (M’ — L) x (M’ — L) diagonal matrix A, contains the smallest
(noise-subspace) eigenvalues while the M’ x (M’ — L) matrix U, is built from the
corresponding eigenvectors,

Using (3.12) and applying the principle of the elementspace MUSIC estimator [82],
we obtain that the beamspace spectral-MUSIC estimator?® can be expressed as [26],

53], [108], [109]

_ aloae) _ af (6)B(BYB)~'Ba(6)
f(0) = af (9)Pa(d) ~ af(0)B(BEB)-12P(BHB)-1/2BHa(h)’ (3.15)

where

P £ U,(UHu,'UH

= I-U,(Ufu,)~tuf (3.16)

is the projection matrix onto the noise subspace.

3.3 Conventional Approaches to Beamspace De-
sign

Given the beamspace angular sectors-of-interest ©, several powerful techniques have
been proposed to design the beamspace matrix B. In this section we briefly describe

two of these conventional beamspace design techniques.

3Throughout this chapter, we assume that the number of signals observed within the sector-of-
interest is less than the dimension of the beamspace vector. That is, L < M’.
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3.3.1 Spheroidal Sequences-Based Beamspace Preprocessing

Let {b,,}M_, be the columns of the beamspace matrix B that is supposed to be

orthonormal. We define the energy of the mth beam within the sector-of-interest ©

as
£, = / IbHa(0)2df
— ACb,, m—1. . A (3.17)
where
C— /@ a(8)a (6) do. (3.18)

The principle of the discrete prolate spheroidal sequences-based (DPSS) approach
[26], [99], [100] is to maximize the ratio of the beamspace energy within © to the
energy within [—m, 7]. That is, the DPSS approach is based on maximizing

bHCb,,

i ™ biTa8)Fd8’ m=1,...,M, (3.19)
subject to the orthonormality constraint
BB =1 (3.20)
It can easily be shown that [99]
/7r IbH a(9)|2df = 27b4b,,. (3.21)
Substituting (3.21) in (3.19), we have
=, = buCbn (3.22)

" 2rblb,’
The maximization of {Z,,}M_, subject to the orthonormality constraint (3.20) cor-
responds to finding the eigenvectors of C that are associated with the largest M’
eigenvectors [99].

Hence, the DPSS-based method for beamspace design can be stated as follows:
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1) Build the positive definite matrix C as given in (3.18).
2) Form the beamspace matrix as
B = [u1,uy,...,up, (3.23)

where {u;}} are the M’ principal eigenvectors of C.

3.3.2 Optimal Dimension Reduction-Based Beamspace Pre-
processing
The optimal dimension reduction (ODR) approach to the beamspace matrix design

was proposed in [3]. It was shown in this paper that the element- and beamspace

DOA estimation CRBs coincide if

range{[A(6),D(0)]} C range{B}, (3.24)
where
D(0) = [d(61),. .., d(6z)), (3.25)
and
0
d(81) = z5a(0)lo=; - (3.26)

Based on this result, it was proposed in [3] to design the beamspace matrix as B = U
where UT'V# is the SVD of the matrix [A(0),D()]. Here, the M’'/2 x 1 vector
6 captures the M’ /2 different angles {5,}?;1'1/ ? which properly represent the sectors-
of-interest © and the M x M'/2 matrices A(8) and D(8) contain, respectively, the
corresponding steering vectors and their derivatives.

Unfortunately, both techniques considered in this section ignore interfering sources
located outside the beamspace sectors-of-interest (such sources can frequently occur

in practical scenarios because not all sectors of potential interference may be known).
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Therefore, the robustness of these techniques against such out-of-sector sources may

be insufficient.

3.4 Beamspace Preprocessing with Stopband Con-
straints

To provide robustness against out-of-sector sources, let us approach the problem of
beamspace matrix design as a matrix filter optimization problem.

One meaningful formulation of this problem is to upper-bound the acceptable
difference between the actual and quiescent responses of the beamspace transforma-
tion within the beamspace sectors-of-interest while maximizing the worst-case out-
of-sector (stopband) attenuation. The corresponding optimization problem can be

written as

mini}ranize max IB¥a(@)|, v8ec®©

subject to  ||(B —By)?a(@)|| <e, VO€O, (3.27)

where © combines a continuum of all out-of-sector directions (i.e., directions lying
outside the sectors-of-interest ©), B, is the quiescent response beamspace matrix,
and € > 0 is the parameter which bounds the passband distortion of the designed
beamspace matrix B with respect to Bq. The choice of the parameter ¢ in (3.29) is
determined by the required accuracy of the approximation of the quiescent response
in the sector-of-interest region, and is conceptually similar to the choice of passband
parameters in the classic bandpass filter design problem.

The concept of quiescent response has originally emerged in adaptive beamform-
ing, see [99] and references therein. According to it, the matrix B, corresponds

to a properly designed beamspace matrix without taking into account out-of-sector
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sources. For example, proper choices of the quiescent response matrix B, are the
matrices obtained via the conventional beamspace designs described in the previous
section. In particular, the matrix (3.23) can be used as a proper choice of By
Another alternative robust approach to the beamspace matrix design is to min-
imize the worst-case difference between the actual and quiescent responses of the
beamspace transformation within the beamspace sectors-of-interest while keeping the
stopband attenuation bounded by some constant. This gives us the following opti-

mization problem:

minigﬂze max (B ~By)"a®)|, voéco

subject to  ||B7a(f)|| <7, V€O (3.28)

where v > 0 is the parameter of the user choice that characterizes the worst accept-
able stopband attenuation. The choice of this parameter is conceptually similar to
the choice of stopband attenuation parameters in the classic bandpass filter design
problem.

Examining the optimization problem (3.27), the objective function is the maxi-
mum of an infinite set of quadratic functions in B; one for each direction § € ©. Also,
the constraint set contains an infinite number of inequality constraints imposed at
each direction 6 € ©. The problem of representing the infinite number of quadratic
functions and/or the infinite number of inequality constraints in a finite manner can
be handled through direction discretization. For this purpose, several discretization
techniques are available, see for example [46], [64].

Let 6, € ©, k = 1,...,K be the angular grid chosen (uniform or nonuniform)
which approximates the stopband region © by a finite number K of directions and
0, € ©, n=1,..., N be the angular grid chosen which approximates the sector-of-

interest region © by a finite number NV of directions. Then, the optimization problem
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(3.27) can be rewritten as

mini}r}nize max IB#a(;)|l, 6,€0, k=1,...,K

subject to  ||((B —By)"a(8,)|| <e, 0,€6, n=1,...,N. (3.29)
Similarly, the optimization problem (3.28) can be expressed as

miniénize max [|(B —By)?a(d,)|, 6.€©, n=1,...,N

subject to  [|Bfa(f)| <, 0€®, k=1,...,K. (3.30)

Note that, the choice of K and N is determined by the required accuracy of approx-

imation of © and © via the sets of discrete angles 8;, and 6, respectively.

3.5 Adaptive Beamspace Preprocessing

Traditional formulations of the beamspace preprocessing design problem assume that
the beamspace matrix B does not depend on the array snapshot data (this is also true
for all the approaches considered above). An obvious reason for such a convention
is to make the beamspace matrix design an off-line problem. Indeed, if B does not
depend on the array snapshot data, it can be designed in advance and does not require
any updating when the new data arrive.

However, if more computationally demanding on-line beamspace operations are
acceptable, it becomes meaningful to consider data-adaptive beamspace techniques
because they can be designed to include additional adaptive out-of-sector interference
cancellation features and, therefore, can potentially provide better performance than
the off-line beamspace techniques.

Let us develop a data-adaptive formulation for the beamspace matrix design prob-

lem based on minimizing the output power of the transformed data. This power can
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be written as

E{z7(1)z(t)} = tr{B{z()z"(t)}}
tr{B¥R,B}, (3.31)

where tr{-} denotes the trace of a square matrix. Using (3.31), the data-adaptive

beamspace matrix design problem can be formulated as
minimize tr{B¥R,B}
subject to  ||(B —By)?a(8,)||<e, 6,€©, n=1,...,N. (3.32)

In (3.32), the matrix B is designed by minimizing the array output power in the
beamspace domain while bounding the allowable difference between the actual and
quiescent beamspace response by €. Solving this problem will cancel the out-of-sector
sources while preserving (up to a small distortion characterized by ¢) the sources
located within the sectors-of-interest. However, the stopband attenuation in the out-
of-sector areas © is not controlled in (3.32) and this can lead to a severe performance
degradation in the case of unexpected (i.e., suddenly appearing) interferers [9], [58].
If we additionally control the stopband attenuation, the problem (3.32) can be further

modified as
mini]13nize tr{B7R,B}
subject to  ||(B —By)?a(8,)||<e, 6,€0, n=1,...,N
IB¥a(fi)|| <7, 6,€O, k=1,...,K. (3.33)
In practical applications, the true covariance matrix Ry should be replaced in (3.32)
and (3.33) by the sample matrix Ry (where Ry may be updated whenever a new
snapshot is received).

Although the parameters € and + in (3.33) have the same meaning as in (3.29)
and (3.30), an important difference is that the problems in (3.29) and (3.30) remain
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feasible for any choice of ¢ and v , respectively, whereas not any choice of these
parameters leads to a feasible problem in (3.33). Therefore, the values of £ and v
should be jointly adjusted off-line to warrant feasibility, and, at the same time, to
obtain an acceptable tradeoff between the stopband and passband requirements.
Although the formulations (3.29), (3.30), (3.32) and (3.33) all lead to the beamspace
designs that are expected to provide an improved robustness against out-of-sector in-
terferers, the question that remains is whether these optimization problems can be
efficiently solved. This question is answered in the next section where we show that
(3.29), (3.30), (3.32) and (3.33) can be reformulated as convex SOC programming

problems that can be efficiently solved using interior point algorithms [96].

3.6 SOC Programming-Based Implementations

In this section, we will derive the SOC formulations of the optimization problems
(3.29), (3.30), (3.32) and (3.33). Note that (3.32) is a specific case of (3.33) and,

therefore, the problem (3.32) is not considered in the sequel.

Preliminaries

The dual standard form of the convex SOC program can be written as [96]
maxiymize ply
subject to ¢; —Fly € SOC%, 4i=1,...,J (3.34)

where F; are arbitrary real-valued matrices, p and c; are arbitrary real-valued vec-
tors, the real-valued vector y contains the design variables, J is the number of SOC

constraints, and g; is the dimension of the ith SOC that is defined as
SOC* = {¢ e Rx RW™V | ¢ > |Ig||},
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where
¢ = [£E)
= Ci“F’{Ya
£ = &6, .., (3.35)

Let us introduce the notations
b = vec{B”},

where vec{-} denotes the vectorization operator stacking the columns of a matrix
on top of each other. The following property for arbitrary matrices X, Y and Z of

matching dimensions will be frequently used throughout the text:
vec{XYZ} = (27 ® X)vec{Y}, (3.36)

where @ denotes the Kronecker matrix product.

SOC Formulation of Problem (3.29)

Making use of (3.36) we obtain

B7a(6;) = (aT(6;) ® I)b (3.37)
and
(B - By)"a(8,) = (a”(,) ® Db — a(4,,), (3.38)
where
a(6,) = BZa(9,). (3.39)

Using (3.37) and (3.38), we can reformulate (3.29) as

minilronize max (@ B) @D)b|, 6,€8, k=1,...,K

subject to  [|(aT(6,) ® Db~ a(8,)|| <e, 6,€©, n=1,...,N. (3.40)
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Introducing a new auxiliary variable 7, we can rewrite (3.40) as

maximize T

7,b

subject to  [|(a” () ®b|| < =7, G €O, k=1,... K
(@7 (6,) ® )b —a(8,)|| <&, 6,€0, n=1,...,N. (3.41)
This problem can be further reformulated in terms of real-valued variables. Let (-),

and (-); hereafter denote the real and imaginary parts of a matrix/vector, respectively.

Defining the vectors

p = [1,0,...,07, (3.42)
y & [r,(bT),, (b")]7, (3.43)
. £ [0,0,...,07, k=1,...,K, (3.44)
cn & e, 3%(0.)r, BT6))]T, n=1,...,N, (3.45)

and the matrices

1 07 or ]

Fi £ 10 @T(@)®I), —(@7@)eI);|, k=1,...,K, (3.46)
0 (@"(k) @1 (a"(Bk) ®I), |
[0 07 or ]

FL 2 |0 (a7(6,) ®1), —(aT@,) ®I);|, n=1,...,N, (3.47)
0 (@7(0,)®1); (aT(0,) 1), |

we can rewrite (3.41) as the following SOC programming problem:

maximize ply
y
subject to ¢y —Fiy € SOC?™*! [ =1,... K

¢, —Fly e SOC™M*1 n—=1,...,N. (3.48)
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SOC Formulation of Problem (3.30)

Making use of (3.37) and (3.38), we can reformulate (3.30) as

maximize T
7,b

subject to  [|(aT(G) @ Db|| <7, V6, €O, k=1,....K

(@' (6,) @ Db —a(4,)|| < -7, V0, €0, n=1,...,N.(3.49)
Redefining the vectors ¢, (k=1,...,K)and ¢, (n=1,...,N) as

c £ [1,0,...,0%, k=1,... K, (3.50)
Cn 2 [0’ (aT(Hn))rv (aT(Hn))z]Ta n=1,...,N, (351)

and the matrices Fy (k=1,...,K)and F, (n=1,...,N) as

o or 0T
Fi 2 |0 @7(@)®D, —(aT@)oI);|, k=1,...,K, (3.52)
0 @B D (aT(6) 1), |

1 o7 oT
0 (a7(6,)®I), —(al(6,)®1I)|, n=1,...,N, (3.53)
0 (a7(6) ®I); (aT(6n) ®T), |

we can rewrite (3.49) as the following SOC programming problem

maximize ply
y
subject to ¢ — Fiy € SOCM'+  k=1,... K

¢, —~Fly € SOCM* pn=1,...,N. (3.54)
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SOC Formulation of Problem (3.33)

Using (3.36) and the properties of the Frobenius norm, we can reformulate the ob-

jective function in (3.33) as

tr{B’RB} = tr{BYGGB}
= |B*GJ;
= |lvec{IBZG}|?

= [(G"®Db|?, (3.55)

where G £ RY/?. Noting that minimizing ||(GT ® I)b||? is equivalent to minimizing

(GT @ I)b|| and making use of (3.37) and (3.38), we can reformulate (3.33) as

maxilglize T
subject to  [|(a”(6,) ® )b —a(8,)|| <&, V6,€0, n=1,...,N
@' @)@ Dbl <7, V8e®, k=1,.. K

I(GT @ Db|| < —. (3.56)

Redefine the vectors ¢, (n=1,...,N)and ¢c; (k=1,...,K +1) as

cn 2 [6,(@7(6n))r, @T(6n))i]", n=1,...,N, (3.57)
c 2 [1,0,...,07, k=1,...,K, (3.58)
cky1 = [0,0,...,0]T. (3.59)

We also redefine the matrices F,, (n=1,...,N) as

0 07 0T
Fo 2 10 @0) 00, ~@ )i, n=1...,N,  (3.60)
0 (a’(6,)®I); (aT(6,) ®I),
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and the matrices F (k=1,..., K +1) as

0 or o7
Fi £ |0 @70 D), —@T@0)®1);|, k=1,...,K, (3.61)
0 (@70 ®I) (@76 1),
1 o 0T
Fikii 2 |0 (GT®I), —(GT®I)|, (3.62)
0 (G"®I): (GT®I),

we can rewrite (3.56) as the following SOC programming problem

maximize p’y
y
subject to ¢, — Fly e SOC?*M*1 n=1... N

cr —FIy e SOCM* p=1,... K

cir1 — F% .,y € SOCMM'+1, (3.63)

The derived SOC problems (3.48), (3.54), and (3.63) can be efficiently solved using

modern interior point algorithms [96].

Computational Complexity

The number of iterations required to solve the SOC problem (3.34) using the interior-
point method is bounded by O(v/J) [65]. The computational complexity associated
with each iteration is of O(n® Y7, ¢;) [59], [65], where n is the number of design
variables contained in y. For each of the SOC programming problems (3.48), (3.54),
and (3.63), the number of design variables is n = M’M. Hence, the worst-case
computational load will be of O((M’¢)35), where ¢ = max{M, (K + N)}.

It is worth mentioning that the optimization problems (3.48), (3.54), and (3.63)

involve sparse matrices. Obviously, this sparsity can be further exploited to reduce
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the computational burden of solving these problems.

3.7 Parsimonious Formulations of Quadratic Ineqg-
uality Constraints

In the interest of better stopband attenuation accuracy, the number of inequality
constraints K in (3.29), (3.30) and (3.33) should be as large as possible. At the same
time, in the interest of low computational complexity of the resulting SOC programs,
K should be reduced as much as possible. Therefore, in practice the parameter
K should be obtained by finding some desired tradeoff between the complexity and
accuracy. In this section, we propose an approach that allows us to reduce the number
of inequality constraints (the complexity) substantially without greatly affecting the
accuracy of stopband attenuation in the obtained SOC programming-based matrix
filter design problems. We use the idea similar to that of the spheroidal sequences
approach [26] but apply it to characterize the out-of-sector angular areas rather thah
the sectors-of-interest. Towards this end, let us introduce a Hermitian positive definite

matrix

C= /e a(6)a (6) do. (3.64)

The eigendecomposition of (3.64) can be written as
C =QAQ", (3.65)

where A = diag{dy,ds,...,dn} is the M x M diagonal matrix of the eigenvalues of C
(which are positive and assumed to be sorted in the descending order as §; > &, - - - >
Op) and Q = [Q1,...,qa] is the M x M matrix of the corresponding unit-norm

eigenvectors.
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We propose to replace the K inequality constraints
IB¥a(@)ll <v, k=1,....K (3.66)

by a substantially smaller number P (P < M) of the spheroidal sequences-based

constraints
IBYqpll <v, p=1,...,P. (3.67)
We also propose to replace the N inequality constraints
(B -Bg) a(@,)| <e, n=1,...,N (3.68)
by a single constraint that is given by
IB - Byl <. (3.69)

With such new set of constraints, we can rewrite the problems (3.29) and (3.30) as

mini}gnize max IB¥qll, p=1,...,P

subject to  ||B — By|lr < ¢, (3.70)
and

mini]gnize B — Byllr

subject to  |Bfq,|| <7, p=1,...,P (3.71)

respectively. Similarly, the problems (3.32) and (3.33) can be rewritten as
minilr?'nize tr{BfR,B}
subject to  ||B — Byllr <, (3.72)
and
minilrgnize tr{B?R,B}
subject to  ||B — Bgjlr <,
IB¥qll <v, p=1,...,P, (3.73)
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respectively.

Note that the forms of SOC programming implementations of the problems (3.70)-
(3.73) are similar to that of the problems (3.29), (3.30),(3.32), and (3.33), respectively.
However, provided that P < K is chosen, the SOC programs corresponding to (3.70),
(3.71), and (3.73) have much lower computational burden than the SOC programs
(3.48), (3.54), and (3.63).

3.8 Simulation Results

Throughout our simulations, we assume a ULA of M = 16 omnidirectional sensors
spaced half a wavelength apart. The beamspace dimension M’ = 4 and the number
of snapshots Ny = 400 are taken. The conventional beamspace design approaches
described in Section 3.3 are compared with the robust techniques based on (3.29),
(3.30), (3.32), and (3.33) (and in some examples, with their parsimonious modifica-
tions (3.70)-(3.73)). All robust techniques have been implemented using the SOC
programs derived in Section 3.6. In all examples, the matrix B is calculated using
the spheroidal sequences-based method (3.23). That is, the matrix B, is orthonormal
and ||Bg||2 = M'. The SeDuMi convex optimization MATLAB toolbox (e.g. [96]) has

been used to solve the corresponding convex SOC programming problems.

3.8.1 Example 1: Beamspace Attenuation Gain

In the first example, we assume that there are two signals-of-interest with the DOAs
6; = 16° and 6, = 18° and two out-of-sector (interfering) sources located at 83 =
—20° and 04 = —5°. The signal and interfering sources have the SNR equal to —10
dB and the interference-to-noise ratio (INR) equal to 40 dB, respectively. In this

example, the sector-of-interest area is © = [10°,25°] while the out-of-sector area is
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I I I 1 1
 SPHEROIDAL SEQUENCES-BASED ALGORITHM [22]
: S Lo ~+~ OPTIMAL DIMENSION REDUCTION ALGORITHM [2]
20 A o ..« ROBUST BEAMSPAGE ALGORITHM (3.29)
: : : — — ROBUST BEAMSPACE ALGORITHM (3.30)
-—- ADAPTIVE BEAMSPACE ALGORITHM (3.32)
— ADAPTIVE BEAMSPACE ALGORITHM (3.33)

Figure 3.1: Beamspace attenuation versus angle; first example.

© = [-90°,0°] U [35°,90°]. A uniform grid is used to obtain the angles {6, }X_, with
N = 100 and {6;}£, with K = 100. The parameters ¢ = 1.0 and v = 0.166 have
been chosen to warrant feasibility* of the problem (3.33). Figure 3.1 displays the

beamspace attenuation

o [BTa@)[? _ a¥(9)BBa(s)
9O TRer = e @a0

(3.74)

for different beamspace design methods. In this figure, the function (3.74) is normal-
ized to its maximal value. From this figure, it can be clearly seen that the proposed

robust beamspace design methods provide better out-of-sector attenuation than the

“Note that the optimization problems (3.29) and (3.30) are always feasible regardless of the choice
of the values of ¢ and ~.
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conventional beamspace design methods. Moreover, it can be seen that the adaptive
beamspace method further attenuates the interfering sources by means of providing
deep nulls towards their directions. In particular, the adaptive beamspace method
with stopband constraints (3.33) is not only robust against out-of-sector interfering
sources but also robust against sensor noise as it provides deep nulls towards the
interfering sources directions while at the mean time it provides low sidelobe levels

over the whole out-of-sector areas.

3.8.2 Example 2: DOA Estimation RMSEs Versus INR

In the second example, we have chosen the same scenario as before but fix the SNR
at 0 dB and vary the INR and compare the performance of the elementspace MUSIC
estimator [82] and the beamspace MUSIC DOA estimator (3.15) that is computed
using different conventional and robust beamspace matrix designs®. The root-mean-
square errors (RMSEs) of these algorithms versus the INR are shown in Figure 3.2.
In this figure, the RMSE curves are averaged over the signal sources and over 1000
independent simulation runs. For all beamspace MUSIC algorithms, the dimension
of the signal subspace is assumed to be equal to two (unless otherwise is noted). As
beamspace MUSIC makes use of the information about the signal source sectors and
elementspace MUSIC does not, we make our comparison of these two techniques more
fair by taking the dimension of the elementspace signal subspace equal to four, while
restricting the elementspace MUSIC search to the sector-of-interest, provided that
there is a sufficient number of maxima in this sector. Otherwise, the search in the
whole field-of-view ([-90, 90]) is used.

Figure 3.3 displays the probabilities of source resolution versus INR for the same

5As all the compared beamspace approaches apply to the general (nonuniform) linear array case,
spectral-MUSIC is used for comparisons rather then root-MUSIC.
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© | =%~ SPHEROIDAL SEQUENCES-BASED ALGORITHM [22] |
© | -~ OPTIMAL DIMENSION REDUCTION ALGORITHM [2] [
: : * | -=- ROBUST BEAMSPACE ALGORITHM (3.29) »
1ok SURUURRURRNY. .| -&~ ROBUST BEAMSPACE ALGORITHM (3.30) L

: : *| =5~ ADAPTIVE BEAMSPACE ALGORITHM (3.32)
. | -o- ADAPTIVE BEAMSPACE ALGORITHM (3.33)

RMSE (DEGREES)

INR (dB)

Figure 3.2: DOA estimation RMSEs versus INR; second example.

example and the same methods tested. Similar to Figure 3.2, all curves are averaged
over both signal sources and 1000 simulation runs. The signal sources are said to be

resolved in the ith run if [28]
2 ~
D 16:0) ~ 6] < 162 — 6],
i=1

where (1) is the DOA estimate of the ith source in the Ith run. From Figures 3.2
and 3.3 it can be seen that in the example tested, the beamspace MUSIC algorithms
using the proposed robust beamspace designs have much better robustness against
out-of-sector interference than the conventional beamspace MUSIC methods. They
also perform much better than the elementspace MUSIC which in this scenario has
quite poor performance at any INR simply because the value of SNR = 0 dB is
below the elementspace SNR threshold. Among the robust beamspace design-based
algorithms, MUSIC based on the data-adaptive beamspace matrix design has the

best performance. Indeed, the performance of the latter algorithm is similar to that
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without any interferers for all the values of INR tested. Such a high robustness against
strong out-of-sector sources is due to the adaptive interference cancellation feature of

this approach.

T T

B T
: { - ELEMENTSPACE
: | —%- SPHEROIDAL SEQUENCES-BASED ALGORITHM [22] |
. | - OPTIMAL DIMENSION REDUCTION ALGORITHM [2] |
. | -~ ROBUST BEAMSPACE ALGORITHM (3.29)

: | & ROBUST BEAMSPACE ALGORITHM (3.30)

: | - ADAPTIVE BEAMSPACE ALGORITHM (3.32)
. | -©- ADAPTIVE BEAMSPACE ALGORITHM (3.33)

PROBABILITY OF SOURCE RESOLUTION

20 30 40

10
INR (dB)

Figure 3.3: Probabilities of source resolution versus INR; second example.

3.8.3 Example 3: DOA Estimation RMSEs Versus SNR

In our third example, the INR is fixed to 20 dB while the SNR varies. All other
parameters of the scenario tested are the same as in the previous example. The
experimental RMSEs and probabilities of source resolution are displayed versus the
SNR in Figures 3.4 and 3.5, respectively. From these figures, we observe that, similar
to the previous example, the MUSIC DOA estimators based on the proposed robust
beamspace designs have much better robustness against out-of-sector sources than

the MUSIC estimators based on the conventional beamspace designs. Interestingly,
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in this example the elementspace MUSIC has better asymptotic and threshold per-
formance than all non-adaptive beamspace methods. This fact can be explained by
a relatively high value of INR taken in this example. However, it is noteworthy that
the data-adaptive beamspace design-based MUSIC estimator has substantially lower
SNR threshold than the elementspace MUSIC technique. Furthermore, it can be seen
from Figure 3.4 that the asymptotic (high SNR) performances of these two estimators
are nearly identical. This fact provides a strong motivation to use and further develop

data-adaptive methods of beamspace design.

T

T T
—x— ELEMENTSPACE

:| %~ SPHEROIDAL SEQUENCES-BASED ALGORITHM [22] H
;| =%~ OPTIMAL DIMENSION REDUCTION ALGORITHM (2]
-8~ ROBUST BEAMSPACE ALGORITHM (3.29)
—A- ROBUST BEAMSPACE ALGORITHM (3.30)
-7~ ADAPTIVE BEAMSPACE ALGORITHM (3.32)
-6~ ADAPTIVE BEAMSPACE ALGORITHM (3.33)

RMSE (DEGREES)

SNR (dB)

Figure 3.4: DOA estimation RMSEs versus SNR; third example.
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—%~ OPTIMAL DIMENSION REDUCTION ALGORITHM [2]
-8 ROBUST BEAMSPACE ALGORITHM (3.29)

‘—A- ROBUST BEAMSPACE ALGORITHM (3.30)

-7~ ADAPTIVE BEAMSPACE ALGORITHM (3.32)

-©~ ADAPTIVE BEAMSPACE ALGORITHM (3.33)

PROBABILITY OF SOURCE RESOLUTION

—4i _,_1'._ _*_._.i..__v__._*_.:‘: .............. , ........... H
-10 -5 0 5 10 15 20 25 30
SNR (dB)

Figure 3.5: Probabilities of source resolution versus SNR; third example.

3.8.4 Example 4: Parsimonious Versus Non-parsimonious

Beamspace Methods

In our fourth example, we compare the performances of the non-parsimonious (equa-
tions (3.29)-(3.30) and (3.32)-(3.33)) and parsimonious (equations (3.70)-(3.73)) ap-
proaches to robust beamspace design. In this example, we assume that the sectors-
of-interest area is © = [~10° 10°] and the out-of-sectors area is © = [—90°, —20°] U
[20°,90°]. We assume that there is one interfering source that impinges on the array
from the DOA 6 = —40° with INR = 40 dB. The sources of interest are assumed to
be absent. The parameters € = 1.0 and v = 0.0866 are used for all methods.

Figure 3.6 shows the beamspace attenuation (3.74) of the robust beamspace de-
sign methods tested with the non-parsimonious type of constraints. In that figure,
a total of N = 16 and K = 16 inequality constraints are used to control the pass-

band distortion and the out-of-sector attenuation level respectively. Figure 3.7 shows
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Figure 3.6: Beamspace attenuation versus angle non-parsimonious robust beamspace

design methods (K = 16 and N = 16); fourth example.

the beamspace attenuation of the robust beamspace design methods tested with the
parsimonious type of constraints where only a total of P = 12 inequality constraints
are used to control the out-of-sector attenuation level. Note that the computational
complexities required to produce Figures 3.6 and 3.7 are of the same order. It can be
observed from these figures that the methods with parsimonious constraints perform
much better than that with non-parsimonious constraints in having more firm out-of-
sector attenuation control®. Therefore, the parsimonious constraints-based beamspace

methods should be preferred to the non-parsimonious ones.

5Note that the out-of-sector attenuation of the methods with non-parsimonious constraints can
be improved by increasing the value of the parameters K and N. However, this improvement will
be at the price of increased computational complexity.
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BEAMSPACE ATTENUATION

Figure 3.7: Beamspace attenuation versus angle for parsimonious robust beamspace

design methods (P = 12); fourth example.
3.9 Conclusions

In this chapter, a new approach to beamspace preprocessing with a substantially im- -
proved robustness against out-of-sector sources has been developed. Our techniques
design the beamspace matrix filter based on proper tradeoffs between the in-sector
(passband) source distortion and out-of-sector (stopband) source attenuation. More-
over, the novel concept of adaptive beamspace preprocessing that offers a significant
improvement in the DOA estimation performance has been introduced. Convex op-
timization formulations of such robust beamspace matrix filter design problems have
been proposed using SOC programming. Simulation results have been provided to

validate robustness of the proposed techniques.
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Chapter 4

Localization of Spatially Spread

Sources

4.1 Introduction

Most of conventional direction finding techniques are based on the assumption that
the source energy is concentrated at discrete angles which are referred to as the
source DOAs. However, in several applications such as sonar, radar and wireless
communications, such a point source assumption can be irrelevant because signal
scattering phenomena may result in angular spreading of the source energy [11], [13],
[14], [63], [68], [69], [77], [85], [90], [98], [112]. In such cases, a distributed source model
is more realistic than the point source one.

In wireless communication systems with antenna arrays at base stations, one of
the central problems is the fast fading due to a local scattering in the vicinity of the
mobile [68], [69], [112]. In the presence of such fading, the source can no longer be
modeled using the point assumption. In particular, depending on the environment of

the mobile, the base-mobile distance and the base station height, angular spreads up
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to 10° can be commonly observed in practice [68], [69]. Depending on the relationship
between the channel coherency time and the observation period, the sources can be
viewed either as coherently distributed (CD) or incoherently distributed (ID) sources.
A source is called CD if the signal components arriving from different directions are
replicas of the same signal, while in the ID source case, all signals coming from differ-
ent directions are assumed to be uncorrelated [85], [86], [98]. Indeed, if the channel
coherency time is much smaller than the observation period, then the ID model is
relevant [85]. In the opposite case, if the channel coherency time is comparable to the
observation period, then the CD model or a partially coherent model can be used [77].

Furthermore, source localization in the presence of angular spreading (or, equiv-
alently multiplicative noise) is one of the main problems in SAR interferometry
(see [34], [60], [78] and references therein). This problem arises when different height
contributions collapse in the same range-azimuth resolution cell, due to the presence
of strong terrain slopes or discontinuities in the sensed scene [34]. Again, in such
cases, the distributed source model is more appropriate than the point source one.

Recently, ID source localization has been a focus of intensive research. Many
techniques have been developed for scenarios with a single source, e.g. [13], [14], [77],
[90]. Several other techniques have been presented to estimate the angular parameters
of multiple ID sources [11], [33], [63], [85], [86], [98]. Unfortunately, all techniques
developed for multiple source localization are based on certain approximations of the
array covariance matrix, and hence, the resulting parameter estimates are biased.

In the present chapter, we develop a new algorithm for ID source localization
which does not use any approximation of the covariance matrix. The popular Capon
spectral estimator [19], [93], [99] is generalized to the case of multiple ID sources. The
proposed generalized Capon technique estimates the central angles and the angular

spreads by means of a two-dimensional parameter search. The proposed technique is
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shown to substantially outperform the popular DISPARE algorithm [63] as well as
the root-MUSIC based estimator for spread sources [11], [85].

4.2 Problem Formulation

Assume that the signals of L narrowband stationary sources impinge on an array of

M sensors. The complex envelope of the array output can be written as
x(t) =Zsl )+ n(t), t=0,...,Ny—1, (4.1)

where x(t) is the M x 1 array snapshot vector, s;(t) is the M x 1 vector which describes
the contribution of the Ith signal source to the array output, n(¢) is the M x 1 vector
of sensor noise, and N; is the number of snapshots available.

In point source modeling, the baseband signal of the lth source is modeled as

si(t) = si(t)a(y), (4.2)

where s;(t) is the complex envelope of the lth source signal, §; is its DOA, and a(4,)
is the corresponding steering vector.
In distributed source modeling, the source energy is considered to be spread over

some angular volume. Hence, si(t) is written as [85], [98]

si(t) = / ., 1)a(0) 0, (4.3)

where 3;(6,,,t) is the angular signal density of the lth source, 1, is the vector of its
location parameters, and © is the angular field-of-view. Examples of the parameter
vector v, are the two angular bounds of a uniformly distributed source, or the mean

and standard deviation of a source with Gaussian angular distribution [85].
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Throughout the chapter, we will consider the ID source model!. For the ith ID

source, we have [85]

E{§l(9, 11bl7 t)gik(gla ¢l7 t)} = Ulz p(ea wl) 5(6 - Hl)v (44)

where E{-} denotes the statistical expectation, §(§ — &) is the Dirac delta-function,

o? is the power of the Ith source, and p(8,,) is its normalized angular power density

/ (0, 4,)d6 = 1. (4.5)

We assume that different sources have the same (known) shape of the angular power

density but different (unknown) vectors of location parameters.

4.3 DISPARE Algorithm: A Review

The covariance matrix of a spatially distributed source (SDS) is theoretically full
rank, i.e., the signal subspace occupies the whole observation space. However, it
has been shown in the literature that most of the energy of an SDS is concentrated
in the first few eigenvectors of the source covariance matrix [14], [62], [63]. The
essence of the DISPARE algorithm is to decompose the received signal covariance
matrix into a quasi-signal subspace of dimension L. (L, > L) and a quasi-noise
subspace of dimension M — L. The effective dimension of the quasi-signal subspace
is characterized by the number of significant eigenvalues in a noise-free environment.

Heuristic methods that can be used to determine the value of L. can be found in [63]

'The assumption of ID sources has been theoretically and experimentally shown to be relevant
in wireless communications in the case of rural and suburban environments with a high base station
(68, [69], [112].
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and [98]. Hence, the array covariance matrix can be written as

>

Rx = B{x()x"(t)}

= UAUY 4+ U,A,UZ, (4.6)

where A is the L, x L, diagonal matrix that contains the largest (quasi-signal sub-
space) eigenvalues and the columns of the M x L, matrix Uy are the corresponding
eigenvectors. Similarly, the (M — L) x (M — L) diagonal matrix A, contains the
smallest (quasi-noise subspace) eigenvalues and the columns of the M x (M — L)
matrix U, are the corresponding eigenvectors.

Let R, = o} Rs(v,) be the covariance matrix of the th ID source, where

mw0=meamawﬁwme (4.7)

is the covariance matrix of the ID source with the parameter vector 1 [85]. Then,
using the fact that the quasi-signal subspace Us is orthogonal to the quasi-noise
subspace U, and the fact that the space of R; is approximately spanned by the

quasi-signal subspace Us, we can say that [63]
R,U, ~ 0. (4.8)

In practical situations, the statistically expected covariance Ry is replaced by the

sample covariance matrix

A 1
R, = — Y x(t)x"(t)
S =0
& U,A00 1 0,40 (49)

Using (4.8) and (4.9), the unknown parameters of the /th distributed source can be
estimated as [63]

"ﬁl = arg H1l/)i,n “R'S(wl)fjn”%" (4.10)
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Based on (4.10) the DISPARE multi-dimensional spectrum is defined as [63]

1
PO = OmRE R )0} (1)

where the fact that
IRs()Ullf = tr{ ORI () R4 (1) Un} (4.12)

has been used. Hence, the DISPARE algorithm [63] estimates the unknown parame-
ters contained in the unknown vectors {4,}£ | by searching for the L main maxima of
the d-dimensional spectrum (4.11) where d is the number of the unknown parameters

contained in the vector 4.

4.4 Generalized Capon Parameter Estimator

The essence of the conventional Capon DOA estimator that was briefly described in
Section 2.3.2 is to maintain a distorionless response to a hypothetical point source
arriving from the direction # while maximally rejecting any other sources. That is,
the Capon estimator is based on solving the constrained optimization problem (2.37)

which is repeated here for convenience
. . . H
minimize w R, w
subject to  wa(d) = 1. (4.13)

From the solution of the above optimization problem, the Capon pseudo-spectrum is

given by (2.39) which is also repeated here for convenience

1
~ af(§)R;1a()’

Hence, the point source DOAs can be estimated from the L highest maxima, of (4.14)

Pc(9) (4.14)

which can be obtained by means of a one-dimensional spectral search.
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In order to estimate the parameters of ID sources, the conventional Capon DOA

estimator can be generalized by generalizing the problem (4.13) as

minimize wiR,w
w

subject to  WIR,(¢)w = 1. (4.15)

According to (4.15), the generalized Capon spatial filter maintains distortionless spa-
tial response to a hypothetical source with the vector parameter 1 while maximally
rejecting the contribution of any other sources. Such a response is now represented
by means of the covariance matrix Rs(1p) (which can be full rank in the general case)
rather than the steering vector a(#). In other words, in contrast to (4.13), the distor-
tionless response is maintained in (4.15) in the mean power sense rather than in the
deterministic sense. The solution to (4.15) can be found by means of minimization

of the Lagrangian function
L(w, ) = wHRw + A\(1 — wHR,(yp)w), (4.16)

where ) is the Lagrange multiplier. Taking the gradient of (4.16) and equating it
to zero, we obtain that the solution to (4.15) is given by the following generalized

eigenvalue problem
R,w = AR (¢))w, (4.17)

where the Lagrange multiplier A plays the role of the corresponding generalized eigen-
value of the matrix pencil {Ry,Rs(1))}. Note that the matrices R, and Ry(v) are
both positive semidefinite and, therefore, all generalized eigenvalues of the matrix
pencil {Ry, Rs(%)} are nonnegative real numbers.

Multiplying (4.17) by w¥ from left and using the constraint

wIR(¢)w = 1 (4.18)
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we obtain that

A =wiR,w. (4.19)

Therefore, the minimal value of the objective function w# R,w is equal to the smallest
generalized eigenvalue of the matrix pencil {Ry, Rs(10)}. Mathematically, this means
that if wR;(y)w = 1 then

min W/R,W = Apin{Rx, Rs(¥))}, (4.20)

where Apin{:, -} denotes the minimal generalized eigenvalue of a matrix pencil.
Similar to the point source case, we define the generalized Capon pseudo-spectrum

as the beamformer output power when the beamformer is “steered” to an ID source

with the parameter vector 1p. Hence, using (4.20), the generalized Capon (GC)

estimator can be written as

PGC('l»b) - )‘min{Ron RS(¢)} (421)

Let us rewrite (4.17) as follows

_ 1
(RS Ry())w = yw. (4.22)
Using (4.22), the generalized Capon estimator can be redefined as
Pac() = - (4.23)
e Tmax{ RF T Rs (1)} '

where 0umax{-} stands for the maximal eigenvalue of a matrix. The parameter vector
estimates {pl (l=1,2,...,L) can be obtained by searching for the L main maxima
of (4.23). Generally, a d-dimensional search, where d is the length of the vector 1,
is required. However, it is common to characterize spread sources by two parameters
only (the central angle and the angular spread, see [63], [85], [98]). In this case, a

two-dimensional search is required in (4.23) to estimate the source parameters.
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It is worth noting that the conventional Capon estimator (4.14) is a nonparametric
estimator, whereas the generalized Capon technique (4.23) is a parametric (model-
based) one.

In a point source case, the vector 1 reduces to the scalar § and Rs(v)) transforms
to the rank one matrix a(f)af’(f). In this case, the generalized Capon estimator

(4.23) can be simplified as follows

1
Umax{R;lla(H)a(e)H }
tr{R¢ 11a(9)a(9)H }

- G (4.24)

Pac()

Therefore, in the point source case (4.23) simplifies to the conventional Capon esti-

mator (c.f. 4.14).

4.5 Simulation Results

In our simulation examples, we consider a ULA of M = 10 sensors spaced half
a wavelength apart. The number of snapshots used to estimate the sample array
covariance matrix f{« is Ny = 500. Each simulated point is obtained as an average
over 100 independent simulation runs. The performance of the proposed method
is compared with that of the DISPARE method [63] and the root-MUSIC based

technique [11] with additional improvements introduced in [85].

4.5.1 Example 1: Uniformly Distributed Spread Sources

In the first example, we consider two equipower uniform ID sources with central

angles 0° and 10° and the corresponding angular spreads 4° and 5°, respectively. The
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Figure 4.1: Two-dimensional spectrum of the proposed generalized Capon estimator

for uniformly distributed sources; first example.

angular spread of a uniform source is defined as the total width (support interval) of
its angular power density. The two-dimensional pseudo-spectrum of the generalized
Capon estimator for SNR = 35 dB is shown in Figure 4.1. The RMSEs of the central
angle estimates are shown versus the source SNR in Figure 4.2. The RMSEs of the
angular spread estimates are displayed versus the SNR in Figure 4.3. As it can be
seen from these figures, the proposed generalized Capon estimator has a substantially
better estimation performance as compared with the other two methods tested. It
is worth mentioning that both the proposed algorithm and the DISPARE algorithm
involve performing a two-dimensional search over the parameter space. However, the
proposed algorithm is computationally more expensive than the DISPARE algorithm
as it requires to perform eigen-decomposition at each point on the two-dimensional

search grid.
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Figure 4.2: RMSEs versus SNR for the central angle estimates; first example.
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Figure 4.3: RMSEs versus SNR for the angular spread estimates; first example.
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Figure 4.4: Two-dimensional spectrum of the proposed generalized Capon estimator

for Gaussian distributed spread sources; second example.

4.5.2 Example 2: Gaussian Distributed Spread Sources

In our second example, we assume two equipower Gaussian ID sources with central
angles 0° and 15° and the angular spreads (standard deviations) 2° and 3°, respec-
tively. The two-dimensional pseudo-spectrum of the generalized Capon estimator
for SNR = 35 dB is shown in Figure 4.4. Figures 4.5 and 4.6 show the RMSEs of
the central angle and angular spread estimates, respectively, versus the SNR. Similar
to the previous example, the proposed generalized Capon estimator can be seen to

substantially outperform the other two techniques tested.
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Figure 4.5: RMSEs versus SNR for the central angle estimates; second example.
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Figure 4.6: RMSEs versus SNR for the angular spread estimates; second example.
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4.6 Conclusions

In this chapter, we have developed a new method for estimating the angular pa-
rameters of ID sources. The proposed technique is based on the generalization of the
well-known Capon estimator. Our method involves a two-dimensional search over the
parameter space and shows a substantially improved performance relative to several

popular spread source localization techniques.
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Chapter 5

Time-Frequency Subspace-Based
Localization of Chirp Signals Using
the ESPRIT Estimator

5.1 Introduction

The problem of DOA estimation in the presence of chirp and FM signal sources in sen-
sor arrays arises in SAR, SAS, inverse SAR and SAS (ISAR and ISAS), Doppler radar
and sonar imaging, as well as in mobile communications, where FM signal waveforms
can be intentionally transmitted [8], [12], [20], [24], [27], [31], [72], [87], [105]. In con-
ventional array processing, subspace methods (for example, MUSIC and ESPRIT) are
commonly applied and achieve excellent performance at a moderate computational
cost. However, conventional subspace methods are based on the assumption that the
received signals are stationary. As a result, the performance of conventional subspace-
based DOA estimation techniques can degrade when dealing with nonstationary chirp

signals.
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Recently, STFDs have emerged as an efficient means of array processing in the
case of multiple FM signals [2], [10], [30], [113], [114]. Spreading the noise power
while localizing the sources in the time-frequency domain helps to improve the DOA
estimation performance and enhance robustness against sensor noise. However, the
existing narrowband STFD-based DOA estimation techniques (2], {10], [113], [114]
are based on a spectral search and, as a result, have high computational costs.

In this chapter, a search-free STFD-based (time-frequency) ESPRIT algorithm is
developed. In order to obtain improved estimates of the signal and noise subspaces,
we use an averaged STFD matrix (or multiple averaged STFD matrices) in place of
the covariance matrix which is used in the conventional ESPRIT algorithm. This
averaging involves time-frequency points that correspond to source signatures with
a maximal energy. The source DOAs are then estimated using either the LS or the
TLS ESPRIT approach [38], [67], [80].

The proposed technique enables to separate the signals in different averaged STFD
matrices prior to DOA estimation and, therefore, makes it possible to estimate the
source DOAs in the case when the number of array sensors is less than the number
of sources. Moreover, closely spaced sources with well separated time-frequency sig-
natures can be efficiently resolved by separating them in different averaged STFD
matrices and applying the ESPRIT algorithm to each of them independently.

To validate the effectiveness of the proposed technique and compare its perfor-
mance with the conventional array processing methods, simulation results for chirp
sources are presented. It is shown that significant performance gains can be achieved
by the proposed algorithm compared to the conventional LS- and TLS-based ESPRIT

techniques.
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5.2 Signal Model

Consider L chirp signals impinging on a ULA of M sensors. The array output (data

snapshot) vector x(t) € C**! is modeled as
x(t) = A(@)s(t) +n(t), t=1,...,N,, (5.1)

where s(t) € €**! and n(t) € €”*! are the vectors of signal waveforms and sensor
noise, respectively. Recall that, for point source modeling the direction matrix can
be expressed as

A =l[a(6y),...,a(6;)], (5.2)

where a(f) is the steering vector that is given in (2.49). Note that this model corre-
sponds to the assumption of narrowband chirp signals where changes of the central
frequency within the observation interval are negligibly small (i.e., the matrix A is
time independent) [2], [10], [113], [114]. The case of wideband chirp signals is ad-
dressed in [30] and [102].

The sample Spatial Pseudo-Wigner-Ville Distribution (SPWVD) matrix is given
by [2], [10], [113], [114]

(K-1)/2

Do (t, f) = Z x(t +7)x(t — 7)e 947, (5.3)
r=—(K-1)/2

where K is the odd window length. Taking the expectation, and assuming that the

source waveforms and sensor noise are statistically independent, we have that [10], [30]

Dxx(ta f) = E{ﬁxx(t7 f)}
ADgyq(t, A" + 621, (5.4)
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where
Daa(t, f) = E{Daa(t, )}, (5.5)
(K-1)/2
Daat, /) = > d(t+r)d"(t~r)e . (5.6)
T=—(K-1)/2

The relationship (5.4) holds true for each (¢, f) point. However, the STFD matrix at
a single (¢, ) point may be low rank. In order to make sure that the STFD matrix is
full rank and to reduce the effect of the sensor noise, an averaging over multiple (¢, f)
points (corresponding to the autoterms of the STFD) can be used. The eigenstructure
properties of the averaged STFD matrix can be exploited to estimate the signal DOAs
in a similar way as in the conventional subspace-based array processing techniques
[2], [10], [30], [113], [114].

In practical situations, the sample STFD matrices (5.3) are used instead of the
exact (statistically expected) matrices (5.4). In the case of sources with distinct
time-frequency signatures, it is possible to construct the averaged STFD matrices
over time-frequency points belonging to a subset of the sources in the field-of-view.
Using this approach, sources with close angular spacing can be efficiently resolved by
separating them in different averaged STFD matrices and applying a DOA estimation

algorithm to each matrix independently.

5.3 Time-Frequency ESPRIT

Let the averaged STFD matrix Dyy be formed by averaging of multiple SPWVD
matrices computed at PJ different time-frequency points {t,, f;} (» = 1,...,P;

i =1,...,J) that belong to the time-frequency signatures of Ly source signals (Ly <
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L<M):

Zzﬁxx(tp,fi)' (57)

p=1 i=1

f)xx
Note that the values of P and J may vary with time and can be determined by
means of detection of the source time-frequency signatures, see [23] and [30]. Let us
divide a ULA of M sensors into two identical subarrays of M — 1 sensors shifted by
the interelement spacing A, as shown in Figure 5.1. As in the conventional ESPRIT

case, define the sub-matrices A; and A, by deleting the last and first rows from A

respectively, i.e. let

A first row
A= = . (5.8)
last row A,
Then, A, and A, are related as
A2 = A.l(I), (59)
where
® = diag{exp{jm},...,exp{jpr, }} (5.10)
and
= (wo/c)Asin 6, (5.11)

are the source spatial frequencies.

Let Ug be the matrix formed from the eigenvectors of ﬁxx that correspond to the
L, eigenvalues with the largest magnitude. As the columns of the steering matrix A
and the matrix Ug span approximately' the same (signal) subspace of the dimension

Lo, there exists a nonsingular Ly X Ly matrix T such that

Ug ~ AT. (5.12)

!Note that Ug is obtained from the eigendecomposition of the sample STFD matrix Dy.
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.1 .2 ® [ . o [ L QM
I |
subarray #1
subarray #2

Figure 5.1: Array structure for ESPRIT; two subarrays with maximum overlap.

Applying this transformation to the sub-matrices A; and A,, we obtain

Us: ~ AT, (5.13)
Uss ~ A,T, (5.14)

)

where Ug; and Ug are formed by deleting the last and first rows of Ug, respectively.

That is,

Usq first row
Ug = = . (5.15)
last row Usg

Using (5.9) and (5.13)-(5.14) yields

Use ~ U, T, (5.16)
where the matrices ¥ and ® are related as

¥ =T"'9T. (5.17)

This means that {exp{ju}}/°, are the eigenvalues of the matrix ¥ [38], [67], [80].

Now, we can formulate our time-frequency ESPRIT algorithm as follows:

e Step 1: Compute the sample SPWVD matrices Dy (¢, f) for all time-frequency
points of interest and select the maximal energy points that belong to the source

signatures.
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e Step 2: Compute the averaged STFD matrix Dy for a previously selected part
of sources (for Ly < L sources) by means of involving in the averaging process
only the time-frequency points that belong to the spatial signatures of these L

sources.
e Step 8: Compute the eigendecomposition of Dy and obtain Usg.

e Step 4: Obtain an estimate W of the matrix ¥ by solving (5.16) using either
LS or TLS approaches.

e Step 5: Obtain estimates of the spatial frequencies y; from the eigenvalues of

¥ and use them to find the estimates of the source DOAs 0;.

e Step 6: Repeat Steps 2-5 for other (selected) parts of sources.

Note that algorithms are available to classify auto- and cross-terms in STFDs [23].
These techniques can be used in Step 2.

The possibility of separating sources in different averaged STFD matrices prior to
DOA estimation can essentially improve the performance of the ESPRIT algorithm,
especially in the low SNR case and in the presence of closely spaced sources which
are well separated in the time-frequency domain. However, this will increase the
computational costs relative to the conventional ESPRIT algorithm because in this

case ESPRIT should be applied simultaneously to several averaged STFD matrices.

5.4 Simulation Results

We assume a ULA with omnidirectional sensors spaced half a wavelength apart. This
array is divided into two subarrays with half a wavelength inter-subarray displacement

as shown in Figure 5.1. Two narrowband chirp signals impinge on the array from the
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sources located at f; = 3° and 6, = 6°. After downconversion, the source waveforms

are modeled as

di(t) = exp{j(wit + Hit*/2)},

da(t) = exp{j(wat + Bot?/2)}.

The initial discrete-time frequencies of the source signals are chosen to be w; = 0
and wp = 7 while their chirp rates are assumed to be 3, = 0.002 and 3, = —0.002,
respectively. An observation interval of N, = 255 snapshots is considered. Figure
5.2 shows the pseudo-Wigner-Ville distribution of the signals in the first array sensor.
The noise is modeled as a complex Gaussian zero-mean spatially and temporally white
process. A total of 300 independent Monte-Carlo simulation runs have been used to
obtain each simulated point. The averaged STFD matrix Dy is computed for each
source signal separately by averaging the sample STFD matrices computed at 150

different time-frequency points that belong to the source signatures.

5.4.1 Example 1: DOA Estimation RMSEs Versus SNR

In the first example, we use an array of M = 10 sensors. Figure 5.3 displays the
DOA estimation RMSEs versus the SNR for the conventional LS- and TLS-ESPRIT
algorithms, as well as for the proposed time-frequency modification of the LS- and
TLS-ESPRIT techniques. Additionally, the so-called deterministic CRB [94] is shown
in this figure (the latter bound is computed under the assumption that the source
waveforms are unknown deterministic sequences). From Figure 5.3, it is clear that the
time-frequency ESPRIT algorithm has a substantial improvement over conventional
ESPRIT. This is especially true in the low SNR case. Note that neither time-frequency
ESPRIT nor conventional ESPRIT approaches the deterministic CRB.
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Figure 5.2: Pseudo-Wigner-Ville distribution of the source waveforms.
5.4.2 Example 2: DOA Estimation RMSEs Versus Number

of Sensors

In the second example, the source SNR is fixed and equal to 4 dB, while the number
of array sensors is varied. Figure 5.4 shows the RMSEs of the same four methods as
in the previous example versus the number of sensors M. It is evident from this figure
that the time-frequency ESPRIT algorithm has substantially better performance than
the convectional ESPRIT technique.

5.5 Conclusions

A time-frequency ESPRIT algorithm is introduced for DOA estimation of narrow-

band chirp signals in sensor arrays. The proposed algorithm is based on the concept
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Figure 5.3: The DOA estimation RMSEs versus the SNR; first example: 6§, = 3°,
0, = 6°, and M = 10.

of STFDs and employs multiple averaged STFD matrices, instead of the covariance
matrix (used in conventional array processing methods), to obtain the estimates of
the signal DOAs. Computer simulations show that in scenarios with chirp signals,
the proposed technique outperforms the conventional ESPRIT algorithm. The per-
formance improvement is especially high in the case when the SNR is low or the

sources are closely spaced.
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Figure 5.4: The DOA estimation RMSEs versus the number of sensors M; second
example: #; = 3°, 6, = 6°, and SNR = 4 dB.
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Chapter 6

Estimating the Parameters of Multiple
Wideband Polynomial-Phase Sources:
A Computationally Efficient Approach

6.1 Introduction

Parameter estimation of PPSs is an important problem because they are encountered
in many practical applications such as in radar, sonar and mobile communications. In
these applications, the received signals within a finite duration of time can be modeled
as PPSs [8], [20], [27], [31], [81], [105]. Furthermore, FM signals can be intentionally
transmitted in SAR, SAS, ISAR, ISAS, Doppler radar and sonar imaging, and mobile
communications. There is an extensive literature review on the problem of param-
eter estimation of PPSs in the single antenna case [7], [8], [66], [70], [71], [76], [81].
In particular, the high-order instantaneous moment (HIM) and its Fourier transform
which is called the high-order ambiguity function (HAF) have provided a simple

order-recursive and computationally attractive algorithm for estimating the phase
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coefficients of PPSs [70], [71], [76]. The HAF-based algorithm suffers from an identi-
fiability problem when dealing with multi-component PPSs having the same highest
order phase coefficients, however this problem was solved by introducing the product
high-order ambiguity function (PHAF) [8], [81].

In recent years, the parameter estimation of multiple PPS sources in sensor arrays
has received considerable attention [2], [10], [30], [31], [43], [57], [103], [110], [111],
[114]. Several methods that solve this problem using narrowband assumptions have
been reported in the literature. For example, several exact and approximate ML
estimators for estimating the parameters of narrowband PPSs have been given in
[110], [111]. Also, subspace-based methods that employ STFD matrices have been
effectively used for estimating the DOAs of multiple narrowband FM signals [10], [30].
STFD-based methods provide robustness against sensor noise and they can resolve
closely spaced sources with well separated time-frequency signatures by separating
them in different STFD matrices.

The case of multiple wideband PPSs impinging on a multi-sensor array has also
received a considerable attention. Several approaches have been reported in the lit-
erature for solving this problem [30], [31], [103], [57]. In particular, an exact ML
estimator that takes an advantage of the specific PPS structure has been proposed
for estimating the parameters of multiple wideband constant-amplitude PPSs [31].
The chirp beamformer (CBF) is a suboptimal estimator that has originated from
the analysis of the log-likelihood function in the single linear FM source case [31].
Although the CBF enjoys a simpler implementation than the exact ML estimator,
it is still computationally expensive as it requires solving a three-dimensional opt;i-
mization problem. Moreover, the CBF suffers from large bias even at high SNR. A
simpler approach for estimating the parameters of multiple wideband chirp signals

that requires multiple one-dimensional searches was proposed in [57]. This approach
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employs the discrete polynomial-phase transform (DPT) in order to obtain a non-
parametric estimate of each signal component. Then it exploits these nonparametric
estimates in estimating the DOAs using the CBF. However, this method is restricted
to ULA geometry and suffers from an ambiguity problem when the chirp signals are
subject to aliasing in the time-domain. Moreover, it can not be used for estimating
the parameters of higher-order wideband PPSs, i.e., PPSs of order greater than two.

In this chapter we introduce a new algorithm for estimating the parameters of
multiple wideband PPSs using an array of sensors. We first introduce the SHIM
which is a nonlinear transformation that can be applied to the data snapshots. We
also give a detailed description of the output of the SHIM when applied to multiple
wideband PPSs. The HAF concept is employed to obtain multiple estimates of the
frequency parameters in a recursive manner starting with the highest-order frequency
coefficients. Also, multiple different estimates of the sources DOAs are obtained from
the transformed data using STFD subspace-based methods. The multiple different
estimates of the frequency parameters and the multiple different estimates of the
DOAs are employed simultaneously in order to remove the outliers and to obtain
a better final estimate. Our approach is computationally attractive as it requires
multiple one-dimensional searches to estimate the frequency parameters as well as
the DOAs. Moreover, the DOAs can be obtained using search free techniques (e.g.
root-MUSIC) if a ULA is used. Compared to the CBF, our estimation technique
has better performance at lower computational complexity. Simulation results are

provided to validate the effectiveness of the proposed algorithm.
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6.2 Problem Formulation

6.2.1 Array Signal Model

We consider L wideband constant-amplitude PPSs impinging on a linear array of M
omnidirectional sensors. The vector array output is assumed to obey the following

model
x(t) = A(t)d(t)+n(t), t=0,1,...,N,~1, (6.1)

where A(t) is the M X L time-varying direction matrix, d(¢) is the L x 1 vector of
wideband nonstationary source waveforms.

The lth polynomial-phase source waveform can be modeled as

di(t) = agexp{j(wi,t)}, (6.2)

where
w; & (w1, w2, ... ,wl,K]T (6.3)
is the K x 1 vector that contains the unknown discrete-time frequency parameters,

oy is the initial amplitude and

1

K
P(wi,t) £ wio+ Z Ewl,ktk (6.4)
k=1

is the instantaneous phase of the /th signal. In (6.4), wy is the initial phase (constant
term), wix (1=1,2,...,L; k=1,2,..., K) are the unknown discrete-time frequency
parameters of the {th waveform, K is the order of the polynomial-phase model®. Let

@i(t) be the discrete-time instantaneous frequency of the Ith waveform defined as

K
(I)l(t) = Zwl,ktk_l
k=1

= Ataft(t), (6.5)

In what follows, the order K is assumed to be known.
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where At is the sampling interval and &f*(t) is the continuous-time (physical) instan-

taneous frequency of the /th PPS. The direction matrix

A(oawa t) £ [8(91,(:}1(75)), s ’a(ghd)L(t))]
= [a(61,w1,t),...,a(fL,wL,1)] (6.6)

consists of the time-varying steering vectors

@), (t) e
a(f,w;,t) = |1,exp ]cAthlsmﬁl ) -EhM_lsmﬂl ,  (6.7)

where

i

[wl,of,...,wf]", (6.8)

O 7 N (6.9)

The relationship (6.5) is used in (6.7) to express the steering vector as a function
of the discrete-time frequency parameters. Note that in (6.7) it is assumed that
the instantaneous signal freqﬁencies @(t) (I =1,...,L) do not change during the
time necessary for a wave to travel across the array aperture, i.e., the signals remain
narrowband in each snapshot, whereas the signals are assumed to be wideband at the
full observation interval of IV, samples.

The pure signal part in (6.1) can be rewritten as

x(t) = A(f,w,t)G(w,t)a

= A(6,w,t)a, (6.10)
where
a 2 [alej“’lv",...,aLej“’L"’]T, (6.11)
G(w,t) £ diag {ej¢(“1’t),...,ej¢(“L’t)}, (6.12)
AG,w,t) 2 A(0,w,t)G(w,t). (6.13)
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Note that all initial source amplitudes and initial source phases are now included in

the vector .

6.2.2 ML Estimator: A Review

The ML estimator that was derived in [31] is based on the assumption that the initial
signal amplitudes are constant (deterministic} values. The negative log-likelihood
function is given by

Ns—1

Ly(f,w,a) = Y |x(t) — A8,w,)G(w, t)e||?

= Z 1x(t) — A(8,w, t)a| . (6.14)

By minimizing Ly over o and substituting back in (6.14), the concentrated negative

log-likelihood function is obtained [31]

Ly(0,w) = Z_: x7()x(t) - {Z—: x"(t)A(0,w t)}
{i A(9,w,H)A(0,w t)} {ilAH(O,w,t)x(t)}
= i xH ~ Lp(0,w), (6.15)

where Lp(-) is the concentrated positive log-likelihood function. Ignoring the constant

term, the ML estimator is given by [31]
[0,&] = arg max Lp(0,w). (6.16)

The above estimator is highly nonlinear and difficult to optimize. However, it is easy
to evaluate the value of Lp for a given set of parameters {6, w}. This means that if

more than one set of estimates of the parameter set {0, w} are available, then one
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can use the ML estimator (c.f. (6.16)) to select the set that yields the highest ML
value as the final estimate. This ML-based selection criterion will be used in Section

6.4.

6.3 Spatial High-Order Instantaneous Moments and
Their Properties

In this section, we first review the HIM and its application in parameter estimation
of PPSs in the single antenna case. Then we introduce the SHIM which is a natural
extension of the HIM to the multiple antenna case. We will show that the Kth-order
SHIM of multiple wideband PPSs of order K is also a multiple wideband PPSs, and
that among the components contained in that Kth-order SHIM there are some terms
that have nice narrowband structure. These narrowband components are related to
the highest-order frequency coefficients and to the DOAs of the source signals. This
property provides the basis for our proposed method for estimating parameters of

multiple wideband PPSs in sensor arrays.

6.3.1 High-Order Instantaneous Moment

The HIM was originally introduced by Peleg et. al. [70]. The Kth-order HIM of a

given sequence z(t) is defined by the following recursive formula

z(t), K=1
NI ) * (6.17)
sED(t 475 7) (a:(K_l)) (t—-m7), K>1,

where 7 is a time lag (positive number) and (-)* is the conjugate operator. A closed-

form description of the HIM of multi-component PPSs in the single antenna case is
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given by the following lemma due to Barbarossa et. al. [8].

Lemma 6.1 Given the signal s(t) composed of the sum of L PPSs of degree K

s(t) = Z Ay, exp {j Z vll,ktK} . (6.18)
k=0

L=1
Its Kth-order HIM 1is still a multi-component PPSs that is given by

L K
. K
s(K)(t; T) = Z Ay - 'A12K_1 exp {j Ul(1,~-)~ 7l2K—1;ktk} 7 (6.19)
l1,"',l2K_1=1 k=0
where the coefficients ’Ul(lK) lyx_1sk €O be computed using the following iterative rule
o = vg k=0, K, (6.20)
K—k
k+r
(2) 1 1))
Ul lask = Z (vl(1;)k+r - (_1)Tvl(2;k+r) TT7 (6‘21)
r=0 k
K—k
k+r
(K) _ (K—1) (K-1)
vll""yng-—l;k - Z k (vll,"'»ng—2;k+'r - (_I)T’UZQK—:Z_H,"',l2K_1;k+r) " (622)
r=0
Proof. see [8].
The terms in (6.19) corresponding to equal indexes (I; = Iy = ... = lhx-1 = 1)

are called autoterms, whereas all other terms are called crossterms. For the sake of

convenience, the coefficients of the autoterms will be written as vl(f,:) instead of vl(f_{_) Lk
The autoterms of the Kth-order HIM in (6.19) are known to be complex sinusoids
with frequencies related to the highest-order frequency coefficients. This property is

described by the following relationship [8], [71]
v = @)Kl ok,  1=1,...,L. (6.23)

Hence, the Kth-order HIM of s(t) given in (6.19) can be rewritten as follows

L
5B (t;7) = Z A7 exp {j (Uz(,lo{) + vl(f)t)} + crossterms, (6.24)
I=1
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where vff){) is the constant phase term. The Fourier transform of s%)(¢; 1) is called the
HAF [76]. Based on the HAF, several algorithms have been reported in the literature
for estimating the highest-order frequency coefficients v, x [7], [71], [76]. The basic
idea behind these methods is to estimate vl(f) by searching for the highest peak of
the HAF, then the coefficients v x can be extracted from vl(’]f) using (6.23). Once the
highest frequency coeflicient is estimated, its contribution can be removed and the
process can be repeated for estimating the next to highest frequency coefficient and

S0 On.

6.3.2 Spatial High-Order Instantaneous Moment

As a natural extension to the HIM, we introduce the SHIM which is a new nonlinear
transformation that can be applied to vector data. We define the Kth-order SHIM
of the data vector x(¢) using the following recursive rule
x(t), K=1
x®(t; 1) = (¥ . (6.25)
xEVt+7;71)0 xEN (t-77), K>1,
We give a closed form description of the SHIM of multiple wideband PPSs in sensor

arrays by introducing the following two lemmas.

Lemma 6.2 Given the data vector x(t) composed of the sum of L multiple wideband

PPSs of degree K

X(t) = Z dl1 (t)a(elu Wiy, t)) (626)

h=1
where dy, (t) and a(fy,,w,,t) are defined in (6.2) and (6.7) respectively. Then, the
Kth-order SHIM of x(t) is still a multiple wideband PPSs scenario, i.e.,

L
K K
xXOtry = D ), mal o), (6.27)

Iy, )lzK—lzl
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where
K K
dz(l,.?. ,lz,{_l(t) =0y Qe €XP {J Z 1(1,))2}( Lk } ; (6.28)
and
1
(K) k—1
K exp{ AtZk 1S &t }
o s () = ¢ o (6.29)

. h (K) k-1
-exp {.7 cMAtI Zk 1 l1, ok 1,kt }

In (6.28), the frequency coefficients wl(lK) lre_yk Con be computed using the following

iterative rule:

w(l) _ Wiy ,05 k= (6 30)
ik Ly k=1 K .
k¥l k> T Ay ey By
K-k
k+r
2) 1 1
wl(1,l2;k = ( k (wl(l;)k+'r - (_l)rwl(g,)k‘-}-v") r’ (6'31)
r=0
K-k
) _ ktr) o e y
hydog—1sk 2 ( “iy e ok —2ik+r
r=0
(K—1
~ (1) W et (6.32)

and the spatial frequency coefficients Ql(f) lorc_1sk €O be computed using the following
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iterative rule
1 _
Qll kT
Q@ —

l1,l2;k

(K)
liyeslor 15k

Proof. See Appendix A.

Wik sinHll, k= 1,...,K, (633)
K-k

r+k-—1 (1
> Ok = U Uh )7, (634)
r=0 k - ]-
K*f(r4+k—1 (K—1)

(Qll,"- ,lzK_g;k‘-!—T‘

r=0 k—1

ra{K-1) r
—(~1QET )T (6.35)

Lemma 6.3 The autoterms of the Kth-order SHIM given in (6.27) are narrowband

with spatial frequencies

Q1(11{) = (27')K_1(K — 1)! wy g sin Gy,

(6.36)

and the signal waveform of the lth autoterm is a complex sinusoid with frequency

W) = @r)E YK - 1) wik. (6.37)
Proof. By setting {; = [, = [ in the 2nd-order SHIM (6.34) we find that
Uy = 0, (6.38)
A%y = 2r(K - Dwi,k sin 6. (6.39)
Similarly, by setting [; =l = I3 = [ in the 3rd-order SHIM we find that
oY = o, =o, (6.40)
%, = @K —1)(K - 2w sin. (6.41)
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Repeating the same procedure until reaching the Kth-order SHIM we get

2r) K"K — 1)! inf, k=1,
QU — (27)" 7 ) wi ke sin 6 6.42)
’ k=2,.... K

i

which proves (6.36). The proof of (6.37) results directly from (6.23) by substituting
for v, = wik/k. |
Based on Lemma 6.3, the Kth-order SHIM given in (6.27) can be rewritten in the

following form

L
x(t;7) = Z 4 (t)a (wl(f), 01) + crossterms, (6.43)
1=1
where
dS() = a2 exp { ] (w{fo‘ )+ w}ff)t) } (6.44)

is the signal waveform of the I[th autoterm and

(K) (K)

w w
a (wl(ff), 91) = [1, exp {jzlﬁ?hl sin 01} ) {j%th sin 0;}] . (6.45)

is the steering vector associated with the /th autoterm.

The fact that the signal waveforms of the autoterms of x()(¢;7) are sinusoids
provides the basis for estimating the highest-order frequency parameters via esti-
mating the frequencies of the autoterms. The HAF that has been widely used for
estimating the highest-order frequency coefficients in the single antenna case can be
used for estimating the same parameters in the multiple antenna case, i.e., the HAF
of the output of each sensor can be used to obtain an estimate of the highest-order
frequency coefficients. Hence, in the multiple antenna case, the number of estimates
of each frequency parameter that can be obtained is equal to the number of sensors.
The M different estimates of each frequency parameter can be incorporated to obtain

a better final estimate of that parameter.
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More interestingly, Lemma 6.3 provides the basis for estimating the DOAs of the
PPSs by computing the Kth-order SHIM and retrieving the spatial frequencies of
the autoterms contained in that SHIM. Unfortunately, conventional array processing
techniques can not be used to estimate the spatial frequencies of the autoterms due to
the existence of wideband crossterms. However, the fact that the time-frequency sig-
natures of the autoterms are localizable and distinguishable from the time-frequency

signatures of the crossterms motivates the use of STFD-based methods for estimating

the DOAs.

6.4 A New PPS Parameter Estimation Algorithm

In the previous Section, we have shown that the autoterms of the Kth-order SHIM
of multiple wideband PPSs of order K are narrowband while the crossterms are, in
general, wideband. We have also shown that the waveforms of the autoterms are
sinusoids while the waveforms of the crossterms are high-order PPSs. Hence, the

SHIM of the array data output vector given in (6.1) can be written as
xB(t;7) = ABAB (1) 4+ n®)(t: 1) + crossterms, (6.46)

where d*)(t) is the vector that contains the waveforms of the autoterms, n(X )(t; T)
is the vector that contains all the noise terms contained in the Kth-order SHIM, and

A%) ig the mixing matrix

AT = [a (wf,}f),ﬁl) R | (wéﬁ),h)] . (6.47)

Note that the mixing matrix A does not change with time. In what follows we will
introduce an algorithm for estimating the frequency parameters wig(l=1,...,Lik =

1,...,K) as well as the DOAs {6;},.
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The proposed algorithm estimates the required parameters in four basic steps.
First, we compute M different estimates of the highest-order frequency parame-
ters {wix}E,. Next, we compute J different estimates of the DOAs denoted as
él(i), (I=1,...,L;i=1,...,J). Then, we compute M different estimates of w;x(l =
1,...,L;k=1,...,K—1). Finally, we select the best set of estimates from the avail-
able sets of estimates as the final estimate. Note that these four basic steps have to be
done sequentially because each step incorporates the results obtained in the previous
steps in the estimation process. In what follows we will give a detailed explanation
of each of the four basic steps.

In the first basic step, we start by computing M different estimates of the frequen-
cies of the autoterms contained in the SHIM of x(t), i.e., we compute M different
estimates of {wl(f)}f:l where the mth estimate {d)l(ﬁn}le can be obtained by search-
ing for the L highest peaks of the HAF of the mth sensor data output. The HAF of
the mth sensor data output can be obtained by simply computing the discrete Fourier

transform of the mth row of x(¥)(¢;7), that is,

Then, M different estimates of the highest-order coefficients {w; x }# , can be retrieved
from {cbl(fzn}{‘:l as follows
S

~ L,LIim
= 1 . m=1,..., M. .
Cuim = Rk =1y 0 "L (6.49)

An additional processing step is required to combine the M different estimates
Wi, k;m in order to obtain a final estimate of w; . An easy way to do so is to choose the
mean or the median as the final estimate. Another way to obtain the final estimate is
to evaluate the value of the exact ML (c.f. (6.16)) at each of the estimates at hand [91].

Then, the estimate that yields the maximum likelihood can be chosen as the final
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estimate. However, this method can not be used unless all the frequency coefficients
are estimated. Hence, we will use the mean of &, i, as a temporary estimate of w; k.
We will incorporate this temporary estimate in subsequent estimation steps while the
ML selection criterion will be used at the very last step of the estimation process. In

particular we define the mean of the available estimates as

1 M
(Dl,K = —M_T;IWI’KWL' (650)

The second basic step of the algorithm involves estimating the DOAs {#;}~,. The
nice structure of autoterms contained in the Kth-order SHIM in (6.46) motivates the
use of subspace-based methods for estimating the DOAs. However, conventional
subspace-based methods can not be used because the covariance matrix of x(#(t; 7)
is full rank due to the existence of wideband crossterms. Fortunately, STFD-based
techniques (e.g. time-frequency MUSIC) can be used if the STFD matrices are com-
puted at time-frequency points that belong to the time-frequency signatures of the

autoterms. The sample SPWVD matrix of x(¥)(t) is given by
. (No-1)/2 -
Dot f)= > xBt+T) (x%)" (t — T)e T, (6.51)

T=—(No—1)/2

where N is the odd window length. For every time-frequency point that belongs to

the signatures of the autoterms, the following holds true

D,uo(t, f) = E{Dm(t, f)}

H

= AFDy(t, £) {AB} 1620 T, (6.52)
where

Dyuo(t, f) = E{Dauw(t, )}, (6.53)

. (No-1)/2 o
Dy (t, f) = > d¥E+T){d¥}" (t — T)e 94T, (6.54)

T=—(No—1)/2
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The eigenstructure properties of the STFD matrix (6.52 ) can be exploited to estimate
the autoterms spatial frequencies {Qf’f)}f;l in a similar way as in the conventional
subspace-based array processing techniques. In practical situations, the sample STFD
matrices (6.51) are used instead of the exact (statistically expected) matrices (6.52).
In order to reduce the effect of the sensor noise and to make sure that the STFD
matrix is full rank, an averaging over multiple time-frequency points can be used. In
particular, we form the averaged STFD matrices 1353,{) (¢t =1,...,J), where the ith
STFD matrix is formed by averaging multiple SPWVD matrices computed at P;Q;
different time-frequency points that belong to the time-frequency signatures of the

autoterms, i.e.,

P Qs
DU =Y. Do fo)r pi=1..,Piai=1,...,Qu (6.55)
pi=1¢;=1

Each averaged STFD matrix can be used to obtain an estimate of the DOAs. The
signal subspace (or noise subspace) can be obtained from the eigen-decomposition of
the matrices ﬁf:()K), then any subspace-based method (e.g. MUSIC) can be used to

compute estimates of Ql(lf) Using (6.36), estimates of {#;}2; can be retrieved from

{ Ql(,}fz M, as follows

" a0
;" = arcsi — i=1,...,J. .
)’ = arcsin { BRIk — 1)!%1{} , t=1,...,J (6.56)

Once again, the final estimate of the DOAs can be obtained using the mean, median,
or the ML selection criteria. At the time being, a temporary estimate of 6§, will be

computed as the mean of the J available estimates, that is,

J
0==> 6. (6.57)
=1

=

The temporary estimate 8 will be incorporated in subsequent processing steps.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ph.D. Thesis - Aboulnasr Hassanien McMaster - Electrical & Computer Engineering

Although one STFD matrix (J = 1) is enough to estimate the sources DOAs, we
recommend that multiple STFD matrices be used for this purpose. The reason we do
that is to obtain a temporary estimate of the DOAs that is as accurate as possible in
order to avoid error propagation due to the recursive nature of the algorithm.

In the third basic processing step, we estimate the frequency coeflicients wy x(l =

. L;k=1,...,K —1) in a recursive manner starting with w; x_;. At each iter-
ation, we incorporate the temporary estimates that have been obtained in previous
processing steps in order to remove the contribution of the already estimated param-
eters from x(t). If we consider the iteration at which we estimate w;x, assuming that
the values of the temporary estimates 6, and {@;,}X ., are obtained in previous

steps, we can compute the compensating vectors

yi(t) —exp{ —j Z —w,z }al,k, l=1,...,L, (6.58)

Z= k+1
where

i Ch & _
ar = [1,exp{— c_Alt Z Gjl,zt“_lsinﬁl},

z=k+1

T
.,eXp{ CAt Zw,z sinél}] . (6.59)

z=k+1

Then, we can compute the compensated data vectors as

() =x(t) Oyix(t), 1=1,...,L (6.60)

If the values of the temporary estimates §; and {@,,}X, , are accurately estimated,
then the /th signal component contained in X;x(t) will be of order k£ while all other

signal components will be of order K, i.e., the compensation reduces the order of the
Ith signal component by K — k. Let il(lz)( t) be the kth-order SHIM of X;(t). Then,

the waveform of the [th autoterm contained in x( )(t) will be a complex sinusoid with
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frequency

wl(,’i) = (27)* (k= 1)! wig. (6.61)

Moreover, the array response vector associated with this Ith autoterm will be nar-

rowband with spatial frequency
OF) = @r)* 1k — 1)! wyysing,. (6.62)

The above equation showes that the array response vector does not change with time.

Hence, we can obtain M different estimates of the frequency coefficient wl(ﬁ), where

the mth estimate d)l(’i)m can be obtained by searching for the highest peak of the HAF

defined as
Xiom@) = DFT{z{y) ()}, (6.63)

Lk;m

where xl(’?;m(t; 7) is the mth-row of il(lz) (t). Then, M different estimates of wy can

be retrieved from the estimates d}l(l,?m as follows

~ (k)

~ L,1m

m= e =1,...,M. 6.64
wl,k,m (27_)k_l(k _ 1)! ) m ) ? ( )
The temporary estimate @;; can be computed as the mean of &;,,. The process can
be repeated until the first order frequency parameters {w;;}f-, are estimated.

The final step in the algorithm involves selecting the best set of estimates from

the available sets of estimates {@w™, 9(1)}(m =1,...,M;i=1,...,J) where

A0 & [46 @]
9" 2 [e§ - ,92”] (6.65)
and
C . N ~ ]
wl,l;m W21m - U-)L,l;m
R L:)I,Z;m w2,2;m e ‘DL,2;m
om A : (6.66)
L Wi,Km de,K;m e ‘;}L,K;m |
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The set that maximizes the ML value will be chosen as the final set of estimates, i.e.,

we choose the final set of estimates as

[9,&] = arg rgapr(O,w) st. @€ 9(“, i=1,...,J

wed™ m=1,... M (667

We stress that the proposed algorithm is still applicable when the received PPSs
are subject to aliasing in time domain as long as there is no aliasing in the spatial
domain. In order to avoid ambiguity in the frequency parameters wy, (k =2,..., K),

the following condition must hold
‘wl(’;) = @YK - 1) lwkl <7, k=2,... K. (6.68)

The above conditions imply that the waveforms of the autoterms are not subject to
aliasing in the time domain. Regardless of the values of the true frequency parameters,
the above condition can be satisfied by making appropriate choice of time lag 7 (which
is a user design parameter). The problem will be more complicated if the PPSs suffer
from aliasing with respect to the initial frequency parameter wyy, i.e., if w;; > 7. Let

us assume that @;; is an estimate of w;;, then
‘Dl,l;n = @1,1 + 27n (669)

is also an estimate of w;; for values of n that satisfies the following condition

1
Atwlln

<. (6.70)

The above condition is a necessary condition for the signals to be non-aliased in the
spatial domain. The ML estimator, being a space-time processing technique, is able
to select the true estimate from the multiple estimates given in (6.69). Hence, the
ML selection criterion allows us to avoid ambiguity about wy ;.

Now, we can formulate our PPS parameter estimation algorithm as follows
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e Step 1: Estimating the highest-order frequency coefficients {w; x }Z ;.

1.1 Choose a positive value 7 and compute x%)(¢) which is the Kth-order

SHIM of x(t).

1.2 Compute the M different estimates cbl(lfzn by searching for the L highest

peaks in X,(nK)(f), (m=1,...,M), where X,(nK)(f) is given by (6.48).
1.3 Compute &y kg from &) using (6.49).

L1m

1.4 Compute @, g from @y k., using (6.50).
e Step 2: Estimating the DOAs {6,}£ ;.

2.1 Compute the sample SPWVD matrices ljx(x) (t, f) at PQ different time-
frequency points that belong to the time-frequency signatures of the au-
toterms.

2.2 For each value of i = 1,...,J, compute the averaged STFD matrices ljff(),()

by means of involving in the averaging process a subset of the PQ time-

frequency points that contains P,Q; points.

2.3 Use the matrices ]35:'(),() to obtain estimates of the spatial frequencies Ql(ffz

using any subspace-based method (e.g. MUSIC).
2.4 Compute the DOA estimates él(z) from Ql(,lfz using (6.56).

2.5 Compute 6, as the average of HAI(I)
e Step 3: Estimating the frequency coefficients {wx}2,, (k=1,...,K —1).

3.1 Set k = K ~1. Compute the compensated data snapshots {%; x(¢)}%, using
(6.60).

3.2 Compute the kth-order SHIM {il(f;c)(t)}le, then compute the spectrums
Xl(’,z)m, (I=1,...,Lym=1,..., M) using (6.63).
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3.3 Compute the estimates ‘*A’l(li)m by searching for the highest peak of the spec-
trum X l(’,?m
3.4 Compute estimates of w;;, as

~ (K)
wl,l;m

Sk = bl =1,....M 71
o T nEe -1 " (6.71)

3.5 Compute @y, as the mean of @ k;m.

3.6 Set k=k—1. If K > 1 go to step 3.
e Step 4: Selecting the final estimates.

4.1 For each set of the estimates {d:l(m),éfi)} t=1,....,J; m=1,..., M),
evaluate the ML value (c.f (6.16)).

4.2 Choose the set of estimates that yields the highest ML value as the final

set of estimates.

6.5 Simulation Results

In our simulations, we assume a ULA of M = 10 omnidirectional sensors. The sonar
case [32] is considered with the sound propagation speed ¢ = 1500 m/s and the in-
terelement spacing d = 1.5 m. The additive noise is modeled as a complex Gaussian
zero-mean spatially and temporally white process that have identical variances in
each array sensor. We assume that the ULA receives two equi-powered chirp sig-
nals impinging on the array from the directions 6; = 10° and 8, = 20° relative to
the broadside and having the initial continuous-time frequencies 408 Hz and 401 Hz,
respectively, and the continuous-time chirp rates —50 Hz/s and 60 Hz/s, respec-
tively (the latter correspond to the discrete-time chirp rates w2 = —0.00479 and
wa o = 0.00575, respectively). An observation interval of N, = 256 snapshots with
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the sampling interval At = 1/Nj is considered. Note that the signals are subject to
aliasing in time as the sampling frequency is smaller than the initial frequencies.
The Wigner-Ville distribution computed for N, = 256 samples of the sampled
source waveforms in their baseband representation is shown in Figure 6.1. Note
that, the baseband representation corresponds to downconverted waveforms with the
downconversion frequency 400 Hz. The second-order SHIM of the received data is
computed using the time lag 7 = 25A¢, i.e., the time lag is chosen to be 25 times of
the sampling interval. The WVD of the transformed data computed using the data
in the first row of the second-order SHIM is shown in Figure 6.2. As we can see from
this figure, the time-frequency signatures of the autoterms are parallel to the time
index while the time-frequency signatures of the crossterms have chirp components.
The FFT is used to compute the HAF of the data in each row of the second-order
SHIM. The HAF spectrum of the data in the first row is shown in Figure 6.3. The
chirp rates are estimated by searching for the two highest peaks in the HAF. The
STFD-based estimation techniques are used to estimate the sources DOAs. For each
autoterm, 200 SPWVD matrices are computed at 200 different time-frequency points
that belong to the autoterm signature, and then these 200 SPWVD matrices are
used to compute 20 averaged STFD matrices. The root-MUSIC algorithm is used
to obtain estimates of the DOAs using the averaged STFD matrices. A total of 500
independent Monte-Carlo simulation runs have been used to obtain each simulation
point. The experimental RMSEs of the DOAs, the initial frequencies, and the chirp
rates are shown in Figures 6.4, 6.5, and 6.6 respectively. It is clear from these figures

that the proposed method has better performance than the well known CBF.
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6.6 Conclusions

A new algorithm for estimating the parameters of multiple wideband PPSs in sensor
arrays is proposed. The SHIM which is a nonlinear transformation that can be applied
to array data vectors has been introduced. The SHIM of multiple wideband PPSs has
been discussed and employed to provide recursive estimates of the PPSs frequency
parameters. The time-frequency properties of the SHIM have been exploited for
estimating the sources DOAs using STFD-based methods. The proposed algorithm
has better performance than the CBF at lower computational load. Simulation results

were provided to illustrate the effectiveness of the proposed approach.
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Figure 6.1: WVD of the source waveforms.
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Figure 6.4: DOA estimation RMSEs versus SNR.
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Figure 6.5: Initial frequency estimation RMSEs versus SNR.
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Figure 6.6: Chirp rate estimation RMSEs versus SNR.
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Chapter 7

Concluding Remarks and Future

Directions

In this chapter we highlight the main contributions in this thesis. We also discuss

possible extensions for the future work.

7.1 Conclusions

This thesis has addressed the general problem of array signal processing in the pres-
ence of complicated spatio-temporal sources. Several important problems that are
encountered in practical applications have been discussed. Novel array processing
algorithms and techniques that can efficiently solve these problems have been devel-
oped.

The problem of estimating the DOAs of weak desired sources observed in the
background of strong interference has been addressed in Chapter 2. A new approach
to beamspace preprocessing with a substantially improved robustness against out-

of-sector sources has been developed. Our techniques design the beamspace matrix
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filter based on proper tradeoffs between the in-sector (passband) source distortion and
out-of-sector (stopband) source attenuation. The new concept of adaptive beamspace
has been introduced. Convex optimization formulations of such robust and adap-
tive beamspace matrix filter design problems have been proposed using SOC pro-
gramming. Simulation results have been presented to validate the robustness of the
proposed techniques.

Chapter 3 has addressed the problem of parameter estimation of multiple spa-
tially distributed sources. The specific case of ID sources has been considered. A
new method for estimating the angular parameters of these ID sources has been de-
veloped. The proposed technique is based on the generalization of the well-known
Capon estimator. Qur method involves a two-dimensional search over the parameter
space and shows a substantially improved performance relative to several popular
spread source localization techniques. Simulation results have been included in order
to verify the effectiveness of the proposed approach.

The problem of DOA estimation of multiple narrowband chirp signals in sensor
arrays has been addressed in Chapter 4. For this purpose, a new search-free time-
frequency ESPRIT algorithm has been introduced. The proposed algorithm is based
on the concept of STFDs. It employs multiple averaged STFD matrices to obtain the
estimates of the signal DOAs instead of the covariance matrix (used in conventional
array processing methods). Based on computer simulations, it has been shown that
in scenarios with chirp signals the proposed technique outperforms the conventional
ESPRIT algorithm. The performance improvement is high especially in the case when
the SNR is low or the sources are closely spaced.

In Chapter 5, we have approached the problem of estimating the parameters of
multiple wideband PPSs in sensor arrays. To solve this problem, a new compu-

tationally efficient algorithm has been proposed. The SHIM, which is a nonlinear
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transformation, has been introduced. The properties of the SHIM when applied to
multiple wideband PPSs have been employed to provide recursive estimates of the
PPSs frequency parameters. The time-frequency properties of the SHIM have been
also exploited in estimating the sources DOAs using STFD-based methods. The in-
troduced method is computationally efficient as it requires multiple one-dimensional
searches instead of multi-dimensional search. It has been shown that the proposed
algorithm has better performance than earlier suboptimal techniques. Simulation

results have been provided to illustrate the effectiveness of the proposed approach.

7.2 Future Work

Throughout the thesis, the white Gaussian noise assumption has been always used.
An interesting extension of the proposed algorithms would be to consider the unknown
noise case. Under such a new assumption, all presented algorithms can be further
modified.

Several other extensions of our results can be relevant. In what follows, we will

describe some of these future research directions.

7.2.1 Robust Beamspace Preprocessing

From our work on robust beamspace preprocessing that has been presented in Chapter

2, several issues arise. Future work could include some of these issues as given below:

e Robust beamspace preprocessing with improved robustness against signal model
mismatch. Such a mismatch may result as a consequence of environmental non-
stationarity, multipath propagation effects, array manifold errors and perturba-
tions, multiplicative noise and fading effects, and other undesirable phenomena

(see [29] and references therein).
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e It would be useful if the computational complexity of the adaptive beamspace
preprocessing algorithm could be further reduced. Recall that the adaptive
beamspace algorithm is implemented via the SOC programming (3.63) which is
sparse. It is quite possible that a specially tailored SOC solver for this problem

could be developed.

7.2.2 Spatially Spread Sources

More research on the case of spatially distributed sources could be carried out in one

of the following two main directions.

e Based on our work in Chapter 3, a future research direction would be the local-
ization of weak desired sources observed in the background of hot clutter. Hot
clutter is a terrain-scattered jamming that occurs when a high power jammer
transmits its energy into the ground. The ground reflects the energy in a dis-
persive manner, hence it appears at the receiving array as a distributed source.
The scenario becomes quite complicated when the terrain scattered interference
impinges on the receiving array within the same spatial domain as the desired

source.

o The generalized Capon estimator (4.23) that has been proposed in Chapter 3 for
localization of multiple spatially distributed sources requires a two-dimensional
search. At each point on the search grid, the eigendecomposition of an M x M
matrix has to be evaluated. The computational complexity could be very high
if the two-dimensional search is done over a fine grid. We believe that a com-

putationally efficient adaptive algorithm could be developed for this purpose.
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7.2.3 Wideband Polynomial-Phase Signals

Our work on the parameter estimation of multiple wideband PPSs can be considered

in several respects that include the following:

e The parameter estimation algorithm that has been developed in Chapter 5 is
based on the assumption that the PPSs have a constant amplitude. It would be
interesting if our results could be generalized for the case of multiple wideband

PPSs with time-varying amplitudes.

e Recall that the SHIM given in (6.25) was exploited by the PPS parameter
estimation algorithm. The used SHIM is based on single-lag transformation.
The case of SHIM using multi-lag transformation is worth investigating. Also,
methods for mitigating the effects of the cross-terms, that appear in the SHIM

when applied to multi-component data, are of great demand.

e A further reduction of the computational cost of PPS parameter estimation

could be achieved done via developing new search-free algorithms.
e Extension of our approach to the case of moving sources could be made.

e Derivation of the identifiability conditions for parameter estimation of PPSs

could be an interesting topic for future research.
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Appendix A

Proof of Lemma 6.2

Let z,,(t) be the mth entry in the data vector x(t)

L
Tn(t) = Zalexp{ wlo+Z—w,kt }
=1

-exp{ C—g; <Zl wl,ktk_l) sin 01}
L
= Z alm

where the sequences d;(t) and a;,,(t) are defined as follows

K
1
di(t) = agexp { (wio + Z 7L Kt*) } )
k=1

i N
az;m(t) = exp { 'C'E(Z wl,ktk 1) sin Hl} .
k=1
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The 2nd-order HIM of z,,(t) is given by
sPt1) = ap(t+ 1)zt —7)

= Z [di, (t + T)anm(t + 7)) - [dip(E = T)apm(t — 7))
l1,la=1
= D [ +7)d; =) [angm(t + 7)ot = )]

l,lg=1

L
2
= Y dP, e, ), (A.4)

l1,la=1

(t;7) and a®) (t;7) are the ({1, l2)th-terms of the second-order HIM of

(2)
where d I daim

l1,l2

di(t) and a;,,(t) respectively. Repeating this operation K — 1 times we get

L
K K
s = D Ay Gral) L (67), - (A5)
L, 11
where d (t;7) and o™ (t;7) are the (I lyx-1)th-terms of the K-
l1,...,l2K_1 ) l1,...,l2K_1;m ? 1yersyt2

order HIM of d;(t) and a;,,,(t) respectively. Making use of Lemma 6.1 we have

K
K . K
dl(l,.?.,l2K_1 (t7 T) = Oql e alQK—l eXp {j Zwl(l,) ,l2K_1;k‘tk} 3 (A‘6)

k=0
(K)

where the coefficients w; " Kk
b 3 2 —1y

can be computed using the following iterative rule

1 Wy ,05 k = 0
Wik =, (A7)
r Wi ks k‘=1,...,K,

K~k

k+r
(K) - (K-1)
itk = > (wll,--- Y
r=0 k

(K-1) r

—(—1)"%2,{_2“;--,lzx_l;kw) 7" (A8)
Similarly, by making use of Lemma 6.1 we have

(%) ) = om0 k-1

all,...,lzx_l;m(tJ T) =€xXpqJ CAt Z 1, vng—l;kt y (A.g)
k=1
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where the coefficients Ql(f) Jy_psk A be computed using the following iterative rule

O = wysing,, k=1,.. K, (A.10)
K-k
(K) _ T "+' k - 1 (K—l)
Qll,m,l21<—1;k - Z (Qh,'“,lgx—z;kﬁ‘
r=0

—(—1m<K-1> )7 (A11)

lyk—2, ) lpr—15k+r

Substituting from (A.6) and

(
L
K
xﬁf)(t;T) = Z ay, OzlxleXp{JZ 1(1,),2K 1k }

el 7221
A K
. (K) k—1
+ exXp {]_CAt kgl Qll’...,lszl;kt } . (A.12)

Note that the above equation holds true for all values of m = 0,...,M — 1. By

A.9) in (A.5), we get

rearranging the above result in a vector form we get

L
K K
Xy = 3 A G (BT, (A.13)
l1,...,l§_1=1
where
1
(K) k-1
K eXp{ AtZkl by s 1kt }
agh,?.,lzx_l;m(t;'r) = & PR . (A.14)
.k K -
_exp{ éVIAt1 Zk" l(l,) ok~ 1,ktk 1}d
Equations (A.13) and (A.14) prove Lemma 6.2. a
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