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A computer model is developed for the solution of regional net-

work gzgggms on a minimum cost basis. Different network problem types
are identified to define the scope of the model. Generally, tthbrablém
invalves the determination of’qpe optimum conveyancehschedule required to
supply a set of consumer nodes with a cogmodity or public service
provided by cne or more processing centres (i.g. water supply, solid'

' -
waste or wastewater collection networks). The system costs include costs

incurred due to conveyance of material and the processing of that

material; both of these cost components exhibit economies of. scale and

. generally lead to the centralization of processing.

LY

A mathematical statement of the problem is developed which is

applicable to all network typeé, can be utilized easily and efficiently in

o

a digital computer and facilitates the use of a variety of optimization

~

routines. A number of algorithms, ranging from linear approximation to

. nonlinear gradient seéﬁghrroutines, are investigated for pogsible

inclusion in the model with the advantages and disadvantages of each being

LA
identified.
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A modular packagq, NE?SOL, is developed which facilitates the
use of alternate optimization routines and allows for,the inclusion of
complex design functions In the computation of system costs. An inter-
active command gtructure permits the user to modify the network system

parameters thereby combining intuitive design with the capacity to

select an optimal solution from a large number of alternatives. Thus a

model is obtained whicﬁbis flexible enough to answer many of the questions

that arise in network problems and also determihe the optimum.

In view of the disadvantages found in the existing optimization
techniques (e.g. conv?rgence to focal minima), the propertiés of the
netﬁork problemsg are investig&te& in detail to isolate any special
charact;ristics. For a system involvingyseparable concave cost

functions, the minimum cost solution to a network problem lies at one of

the vertices formed by the problem constraints. A new solution

o

algorithm, HYVRST, 1is developed whfch takes .advantage of th;s important
property utilizing a direct search technique. This results in aﬁ,
efficient and stahle algorithm with good convergence propetties. A

number of examples are presented to test the optimization algorithms and
. . p

demonstrate the usefulness of the NETSOL package in solving regional

network pfoblems.
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CHAPTER 1

NETWORK SYSTEMS

1.1 Introduction _ =

In recent years, the classical transportation problem has
become a general classification for many problems exhibiging certain
similar properties. The transportagion problem arises wﬁen an
optimal conveyance schedule is required to convey a commodity from
one or more sources (supply nodes), where the commodity is mage
available, to a number of sinks (demand nodes). The cost is defined
by an objective function which comprises the sum of the conveyance
costs and costs generated at the supply or processing nodes. The
amounts of the commodity available at the supply nodes and required
at the demand nodes are generallyhfixed or constrained within limits.
At ti@es, special problems arise in wh;ch the conveyance link
capacities impose a constraint. The problems encountered are
generally economic in nature since the goals or obje;tives are

concerned with monetary costs( d benefits, while the network system

itself is subject to constraints of a téchnological or physical form.

The purpose of this study is to develop a package of .sub-
routines which can be used to construct economet;ic models useful in

solving trangportation (network) problems. The different network



problems whigh are to be considered for model applications are first
covered in detail to identify common characteristics. A general
mathematical statement of the problem is then developed and an
9pt1mization technique adopted for the development and testing‘of an
initial model. Alternative solution algorithms are investigated for

possible adoption in the package. Further testing is carried out to

determine the general applicability of the package and its usefulness

vy,

*

in problem solving. Congideration is also given to work already

carried out in the fifld of econometric modeling.

The classical transportation problem has a long history. In
1939, L.V. Kantorovich (21) identified a class of problems closely
relﬁged to transportation problems which applied typically to the
allotmegt of labour im industrial plants. A great amount of research

has been devoted to thg development of solution algorithms for

application to transpoytation problems, especially those in the
linear programming_f eld (9). At first, most solution methods were
designed to facilifate hand calculationé but with the advent of,
computer appli ions, solution methods are now designed to take
advantage of t speed and accuracy of digital computers. Linear
graph theory has bken very helpful’in identifying the special
characteiistics of %transportation problems or equivalent‘network

flow problems wh;ch facilitate the development of standardized solu-
tion techniques (18). T.C. Koopmans (9 ) pioneered the interpretation

of the properties of optimal and nonoptimal solutions with respect to

the linear graph representing a network.

e .
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Linear programming problems are generally solved by using a
simpléx or revised simplex technique. The network problems
considered in this study do not correspond stricFly to the class of
transportation problems as used in some texts due to the existence
of‘qonlinear instead of linear objective functions. Nonlinear
programming problems are generally subdivided into probiem types,
-gblvable By dif ferent specialized tecliniques or, if possible, the'
problem is approximated to a linear one so that the more efficient
_ linear methods can be used. Methods of solution are presented later

in this study.

1.2 General Problem Types Investigated

Although many different problem types come under the classi-
"fication of a tr;nsportation problem, certain network probllems with a
common chgracteristic have been isolated and provide theueasis for
this study. Frequently, the design engineer encounters the problem
of d;signing a -scheme to 'provide a gro;; of communities with a public
utility service or commodity. When considering a number of regional-
ly located communities, it is gommonly found that it 1is more econom;
ical to ‘have ; small numbér or only one large setvice centre which is
centrall; located. The savings in.the system gost obtained through
the economies of scale realized with a large central service centre
may or may not offset the additional costs incurred in tramnsporting

the commodity. It is of interest to find the optimal method of

providing the communities with a public utility. In finding the

PERCE -
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optimal system, it is necessary to determine the size and location of
the service centres (or processing nodes) and to find the optiﬁal

method (i.e. network of transportation links) of conveying the
‘ !

commodity. Secondary areas of interest to the planner include
investigating the economic effect of removing some of the marginal
-

communities or some of the feasible distribution links, Decisions of

4

2

this type are best made through the use of -an econometric model which
is capable of choosing the most economical system design from all of

the possible alternatives.

There are various problems which fit into the classification
of a network flow'problem and exhibit the properties of economies of
scale with- respect to the costs involved. Each major problem type
congsidered is discussed in detail to ;}Eéé;t their main characteris-
tics and facilitate the identification of the required p;operties for

a useful econometric model.

1,2.1 Water Supply System

The growth or. planned expansion of a community, resulting in

an increased demand of potable water may make it necessary to utilize

new sources of water supply. While doiﬁg‘this it may aléo appear
feaéible to investigate the practicality of ingluding other commu-
nities in a regional supply network. A typichl example of a water
supply network is illustrated in figure L,i( The supply nodes
consist of any type of water sogrce such as reservoirs, lakes, rijers

or wells, any of which may or may not require treatment (processing)

N AN "}' . !
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depending upon the quality of water reguired. There is a cost
associated with each supplyenode representing the cost of collecting
and treating the water and which varies nonlinearly with the volume

rate of supply from that source. The demand nodes are made up of the

< ey

different communities which can feasibly be included in the supply

Aklaaty

system scheme, In some cases it may be degirable to subdivide Some
of the communities.into a number of demand nodes to conform to the
geographical layout of the region or to meet design requirements.
For instance, each community can be su@divided corresponding to
different pressure districts. In this case, the required pressure or ‘
state at each node is determined by the minimum service pressure in
the digtrict. It is worthwhile to note that in the design of a water
distribution system within a community, the preésure at the supply
point is a variable which can lie between maximum and minimum limits;
the maximum limit being determined by : siderations of léakage or
damage to fitﬁings, and thé minimum bging the.léwest useful service
predsure, In the model presented here,ithe pressure elevation is sét
and‘phe design variabie is the flow between nodes. The %ntréduction
of the node pressures as another form of design variable, results in
.an entirely different type of problem which is discu;sed‘in more
detail in a later section (see Chapter 6, pagel93). .The links

connecting the nodes include all technically and economically feasi-

)
L
[
K
.

ble pipelines. The supply and demand nodes may be linked either
directly in a one-to-one correspondence or indirectly where trans-
shipﬁent of material from one node to another occurs via intermediate

nodes. The flows in the links and, indirectly, the quantities of

»




water processed are viewed as the design variables.

<

The decisions which are normally required in the design of a

reglonal water supply network are: ¢

P
L4

1) Which of the possible sources should be
included in the distribution system and
at which nodes should the treatment

facllities be located?

2) Which of the communities should be in-
"~ cluded in the network and which should

7

rely on external or local sources?

3) What is the most economical pipeline
layout required to supply the commu-
nities and what flow scheme should be . e

used? ) )

[y

System costs, which form the basis for making the required

decisiomrs, arise both from §tocessing theé water and from conveying it

to the demand nodes. The processing costs comprise capital
expenditures on intakes, treatment works and ancillary equipment .in
addition to annual costs for treatment, maintenancé and sinking funds

—
for plant rgplacement., Experience has shown that with/cénCrolli,g
4 ! .

_/

/ -
factors such as raw water quality, impounding, land costs, cogp%ﬁ?c—

tion costs, etc. held constant, the costs involved in constrJ;ging and

[

operating water treatment works generally exhibit economfes of scale
. \,

.

— {
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o

with respect to plant capacity for the quantity of water 'handled
(2). A typical plog demonétrating the economies of scale present is

illustrated in -figure 1.2. The cost curve is concave ahd monotonic

wst

in shape and generally displays the characteristics of a fixed charge

. t , N

implying a minimum charge limit. The mitdgum charge 1limit is a
4 ‘ '

. ) . .

result of the property that there is a lower Limlit of feasibility on }

the size of treatment works. Trangportation costs arise fr‘ﬁ capital

costs on pilpelines and pump stations as well as annual costs for

operation, maintenance and sinking funds for the replacement of plant

© °

and other items with a relatively short life. The transportation
costs are a1§o nonlinear and exhibit economies of scale. The fixed

. charge component is usually negligible in transportation. A typical
transportat%on cost curve is shown in figure 1.3. There is, there-
fore, a cost function associated with each Ygriablé representing the
rate of flow through a link and with the amount of material processed
at a node. The resulting family of curves are used in combination
with the design variablés (flowrates) to make up the objective func-

tion of the network problem.

(3

The restriction of continuity being established at the supply
and demand nodes results in the generation of a set of feasibility
constraints on the solution to the problem. To find the optimal net-
work polic;)(or the least costly method of supplying the demand
nodes), the.objective function is minimizéd subject to maintaining

feasibility in the constraints,



1.2.2 Sewerage Networks

Increasing water quality restrictions ;long with community
growth result in an ever-increasing requirement for the treatment of
sanitary sewage and wastewater. Through economies of scale, it seems
logical that iﬁ a regional system, savings would arise through the
uge of a central or series of centralized treatment plants to process
the wastes of the communities. Depending upon the characteristics of
the region, the ec;nomies of scale obtained through centralization

-

N~

may offset additional conveyance costs. . §‘1
S
A wastewate£ collection network is similar to a regional
water supply network in that it supplies a public utility (i.ed
wastewater disposal service) to a region. Thé(difference lies im\ the
fact that it is a collection network whereas water supply networks ™
involve distribution. In sewerage networks, the '"load" imposed on
the system by each community takes the form of an input of wastewater
describea‘as a flowrate and averaged over some suitable time interval.
Directions of flow are therefore reversed and the central processing
nodes thus become'points of abstractiop from the system. The use of
the'terms source and sink may therefore lead to confusion and are

avoided. /Z_

> .

In accordance with today's technology, .most processing sites

are normally close to a river or lake. The treatment capacity, or

demand, of the processing nodes is normally regarded as infinite in

relation to the amount of wastewater produced. In special cases, the

-~

N B4

-
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limiting size of the treatment works due to land availability or

capacity of the receiving waters
el

of handling this special case is

p——

In a regional,wastewater
wastewater producing communities

an aspect which 1s considered in

affects the system design. A method

discusged in Chapter 7 (page 251).

.

treatment network, some of the
are also possible sites for treatment,

the econometric model design. The

links connecting the supply and processing nodes include all

technically and economically feagible pipeline locations. Trans-

shipment is possible, hence, wastewater can be routed to the

processing centres directly or through interconnected nodes.

od

The decisions normdlly required in the design of a regional

wastewater treatment network are:

1) Out of all of the possible locations

for treatment facilities, which

should be included in the optimal

system desipgn?

2) Which wastew;:;}\producers should be

included in the network system?

(o ¢ '

3) What is the additional cost imposéd

1

upon the commﬁnity (or region), 1if any,

of having the treatment works centralized

in a chosen location?

AR SRl e LSRRI 2 4 it St
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4) What is the most economical sewerage
1ayou£ required to provide conveyance
to the processing centres and wha

flow scheme should be used?

Centralization of wastewater treatment for a regional system
leads to certain environmental considerations. Centralization of
treatment leads to a centralized discharge of treated effluent into

- a receiving water which then confines the degradation of water

quality to one area. (he degradation of water quality results from the

policy of utilizing the assimilative capacity of a receiving water body

as much as possible as part of a treatment scheme 1n order to reduce
costs. Lately, however, more effort has been made to improve the
quality of the effluent discharged due to the increased awareness of
our poor overall water quality, Recent studies (1) show that the
environmental impact of effluent discharge can be reduced by
decentralization of treatment so that instead of having a large dis-
charge at one point, there are a numbe;~;;T:ha;1er discharges at
different locations. This technique, howeven[igtilizes the
assimilative capacity more extensively and a lower level of overall
treatment can be used and still meet qﬁality standardg. This
suggests that the higher efficiency of one large treatment plant may
not compensate for the extra cost involved in the higher level of
treatment required to meet water quality standards. It is question-
able as to whether or not the aspects of environmental iqpact can be

quantified in the cost functions. However, the development of a

re
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model which has the capability of generating the costs of numerous
network configurations quickly and efficiently facilitates the

determination of the cost difference between solutions of differing

N,
~

environmental impact.

As with water supply networks, the costs incurred arise from
processing and conveyance which are both nonlinear functions with
respect to flow. The processing costs include capital expenditures
on collection chambers, treatment works and ancillary equipment in
addition to annual costs for treatment, maintenance and sinking
funds. Although wastewater treatment differs in many ways from water
treatment, the cost functions exhibit the -same general property of
economies of scale which produce a concave monotonic curve 2, 30).
The cost functions also have a fixed charge representing a minimum
charge, as found for water treatment. The transportation costs
orféinate from capital expenditures on sewers and pump stations as
weil as annual costs for opgration, maintenance and sinking funds.
The transportation costs are very similar to those for water supply
networks, however,-the wastewater collection systems are generally
gravity fed instead of being pressurized by booster pumps. Pumpin§
stations may be required however, depending upon the geographicél
configuration of the region. An important difference from water

supply networks 1is that the pressure head at each node is either

fixed or conspréined within quite narrow limits since the flow occurs

with a free surface and conduits are located close to the ground

L]
surface. ,



2 }

Since both water supply and waitewater collection networks
‘~have the same nonlinear nerork problemﬂgropercies, the main differ-
ence between the two lies in the fact that one is a distribution net-
work and omfe a collection network which results in a difference in

the constraint formulations. The constraint differences and allow-

o

-ances necessary in the mathematical statement are digcussed in a

later section (see Chapter 2, page 34).

1.2.3 Solid Waste Collection Networks

Sanitary landfill is fast becoﬁ}ng a very undesirable method
of solid waste digposal due to problems of pollution and aesthetics.
Although significantly more costly, there is an increasing use of

N .
£

incinerators and material reclamation centreg for solid waste

processing. Even in regions where alternate disposal methods are not

e -

-

yet technically or economically feasible, sanitary landfill sites are

constantly being filled up and new sites must be found farther away

.

from the waste producing community., The requirement of processing

centres or new disposal sites raises the questions of where they y K

PR

.- o~

should be located and along which routes the solid wasta should be
transported. The network in this 'problem 13 set up in a similar’
manher to the wastewater collection network; the waste producing

commynities are connected f£o all economically or technically feasible

processing locations by a series of feasible conveyance links.

The manner of processing is quite arbitrary as long as the processing

e

R, -

‘costs can be expressed as{a function of the volume rate of flow
\

X
.
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treated. The two basic ways of treatiﬁg solid wastes, disposal and
processing, both exhibit economies of scalg (5). The costs for
;isposal by sanitary landfill are generally lower than those for
incineration or material reclamation. The capital expenditures in-
clude the acquisition of suitable landfill sites, preparation and any
equipment required. The maintenance of the sit¢ makes up the annual
costs. The life of a sanitary landfill site is possibly q;ite short
depending upon the volume available for waste and the rate of waste

. inflow., Therefore, depending upon the design stipulations, a sapitary
landfill sit?£has a limiting flow c;pacity obtained through a

relation similar to:

[y

Available volume for waste
flow capacity =

Required life of disposdl site

The designer must be aware of this when setting out the design require-

ments but as with wastewater collection networks, no special attention

Ban -e

is given to this aspect in the model development and, theoretically,

the processing cépacity is assumed to be infinite for both landfill

P A

sites and solid waste treatment works,

i

With a waste processing centre, the capital costs originate %

from expenditures on waste holding and handling equipment, reclama- i

tion facilities and a means to dispose of the material not recycled !
‘ such as incineratofs or disposal sites. Annual costs are incurred

through operating costs, mainterdance an& sinking funds. There are a

number of intangible factors such as social, political or aesthetic
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impact which affect the value of a possible disposal or processing
centre. For example, a newly located landfill site may lower the

value of any residential property nearby or threaten the‘wngéi

[
»

quality of local wells. The designer has the option of building

factors such as -these into his cost functions, or dealing only with
3 .

the tangible costs and considering the effect of the intangible
factors when he is in ‘the position of finding the costs of alternate
solutions. - ——
( .

. \,_ .

The links connecting the nodal points include all existing .
and proposed transportation routes. The: concept of flow is slightly

/ .

different in this problem due to the mode of conveyante. A change of

-

terminology is required to describe the costs and capacities in the
network; the basic concept o; conveyance remains the same, however,
that an input of capital and energy creates a capacity for a specific
volqme rate of flow. Whereas with pépe flow, the conveyance is
simply described in terms of a voiﬁme fate of flow, additional
parameters sgch as vehicle capacity, trip cycle time and hours of
seryice per week are introduced when considering the conveyance of
solid wastes. With controlling factors held constant, the nonligear
cost functions for solid waste conveyance exhibit economies of scale
resulting in concave, monotonic curveg with respect to the flowrate
(5). The specific costs depéﬁd upon the mode of transport used énd
the,.conditions under which it 1s used. New transportation routes

such as rail limes or roads may be required and the total or partial

costs of these included in capital expenditures. The decision of

4
i

I
v

— .- "

.,

<
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either leasing or purchasing the transporting vehicles affects the
‘gllocation of these expendigpfes to either annual or capital costs.
in the instance of using existing transportation means, the problem
of é%ceeding the capacity may arise. If the capacity of an existing
link;is exceeded, extra costs through the délay times are incurred
whicghmay introduce a convex region in the upper part of the cost
function. The consequences of this special case are discussed in
Chapter 4 (page 133), Transshipm;nt through a node is possible and
.may ihvolve a cost due to changing from one mode of transportation to

1

anoté%%%amMethods of handling transshipment are discussed later in
i

* this study (see Chapter2, page30).
The design decisions which arise in the problem are identical
. to that of wastewater collection since both problems involve the task
o% collecting and processing wastes. The questisn of which process-
ing locations and what que of waste process to use is more prominent
in solid waste problems, however, due to the envirqnmental attraction

of the more costly solid waste reclamation centres.

1.3 Econometric Model Requirements

A similar type of network problem, not covered in the
preceding ;ections, is investigated by Hitchcock (20). The problem he
approaches involveé the distributioA of a productlfrom a number of
factories or warehouses to a collection of cities. In‘his
mathematical statemgnt of the problemz Hitchcock allows only for

direct conveyance between the factories and cities, not permitting
c-

< S ST It b S
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transshipment. The objective function used is the sum of products of
constant coefficients and the flow variables. The constant co-
efficlents represent the cost of conveyance per unit of material
shipped thus depicting a linear relationship. Hitchcock includes a
discussion on the geometric interpretation of the objectiye function
and constraints. The solution method which he proposes foreshadows
the simplex method used today., Although the application of properties
inherent to transportation systems is limited, he does use them in

developing a method of finding a starting solution.

E. Feldman, F.A. Lehrer and T.L. Ray identified a similar
type of network problem in the development of a computer model (1l).
They investigate’ the problem of determining the number and sizes of
warehouses requireﬁ to supply a set of demand centres. It,is assumed
that the cost functions associated with transportation costs are
linear and the warehouse cost functions are concave with respect to
flow, displaying economies of scale. The authors do not look into
any special properties of the problem presented but use existing
solution methods in developing a computer algorithm to solve the
problem. Different possible solution techniques are presented later

in this study.

The three different problem types considered for solution in
this study consist of a network made up of a set of nodal po%nts
intercognected by links over which material conveyance takes place
with the 1links connecting the nodal points being directed arcs. The

network is considered as being a continuous system in that the supply
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and demand quantities do not vary with time and hence the flow values
are constant. Flow can exist in either direction in a link resulting

in the possibility of either positive and negative flowrates or tw

nonnegative design variables per link and two assogiated cost

functions Ci(Q) and C (Q), one for each direction. 1In general,

i+l

Ci(Q) and C _ .(Q) are not equal due to differences in lengths of the

L]

directed arcs, nodal states or user defined preferences. Feasibility

i+l

restrictions require that continuity be established at each node with

c

the general continuity statement appearing as:

Gross Supply = Production - Consumption + Intdake -~ Output
LS

\

Two basic types of networks exist, collective and distributive.

In a distribution network, a public utility service is generated at
.the processing nodes and consumed at the de%and nodes. Generally,
theré are upper limits on boﬁh the demand nodes and processing nodes
but the system is not'necessarily balanced, that is, the total supply
available can exceed the total gystem demand. Collection networks
consist of consumer node; which generate the mateéial to be

processed at the processing nodes. This system is balanced since the
amount of material generated eduals the‘amount of material ‘processed.
Theoreticaily, there is no limit to the capacity of the processing
nodes. The waste generating nodes, of course, have a finite oﬁtflow
valué assopiaéed with them. In this system, it is possible to have a
node which acts/péth as a waste producing and processing node. 1In

this type of situation, a possible location.for a processing plant

'gxists in a community which aldo generates the material to be

.

'
»
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processed. It can be appreciated, however, that if the costs of the
processing plant are prohibitively high, the result is the rejection
of the solution or’solntions using that plant and the conveyance of

the material from that community to another processing node.
~ -

Upon inspection.of the pqssible network problems which aré=
solyable by the econometric model developed, it becomes apparent that
each problem has the same basic characteristic of conveyiné a
commodity from a set of source nodes to a sgt of collection nodes.
The costs involved arise from transportation of and processing the
co&modity.’ Most importantly, the cost functions inyolved in express-
ing these costs are concave, monotonic and separable, as shown later,
this has a great bearing on the solut;dn algorithms used. With
respect to the development of a generalized mathematical statement of
the problems, the most significant difference lies in ihe nodal types,
dictated by the network classification‘(distribution or collection). )
To avoid any confusioﬁ later in the study, any nodal poiné ié

classified as either a processing 6; nonprocessing node. In each

network type, the activity involved is:

Network ‘ ' Processing Node " ° Nonprocessing
Distribution Nodes which produce the Nodes which consume the
commodity for commodity.
consumption. ‘
Collection Nodes which process the Nodes which generate the
commodity (i.e. waste material to be- processed.
" processing node). ) :
(4 . FQ
/
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\

The only special case involved is in a collection network where a
processing node can generate a material as well as have the ability
to process it. The difference in nodal types must be handled by the

Y

algérithm which develops the mathematical statement of the problem.

- The next step in the dévelopment of an econometric'mo&el is
to adopt a consistent mathematical statement of the network problem
.which facilitates the use of common nonlinear optimization techniques.
"Further refinements on the model objectives may become apparent
during the development of theﬂmathematical statément and investigation

of possible, solution methods which is presented in the following

chapters.
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LEGEND:

<:] SOURCE NODE

(:) CONSUMER NODE

@ JUNCTION NODE

FIGURE I-1 — TYPICAL REGIONAL WATER
SUPPLY NETWORK
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CHAPTER 2
4 \

METHOD OF SOLUTION

2.1 Introduction

In constructing an econeyetric model, the first stage involves
developing a mathematical statement of the problem which is applicable
to all of the cases considered. Initially, the topological properties
of the networks are investigated to identify common, graphical proper-
ties and to adopt a universal graphical representation., This also
aids in the identification‘of.the minimum amount of data required to

( .
define the network. A generalized mathematical statement of the

problem is then chosen for use in the econometric model. The mathe-
matical statement is developed first for a distribution netﬁork to

aid in understanding the terminology used. Special treatment is
pro&ided to allow for the differences bet&een collection and distrifu—
tion networks. Other possible forms of mathematical statements are
also investigated for p?ssible us%;x‘?yé/;;éﬁerties of the problem

- golution are then investigated and illustrated through the use of a

simplified préblem.

2.2 Graphical Representation of Networks

. v
When considering the development of a generalized model for

the analysis of network problems, it is important to investigate the

spatial structure, in terms of fepologic arid geometric components, of

22
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i

the networks involved. Obtaining the topological structure 5% a net-
work 1nvolves reducing the network system to its basic elemental form
of links and nodes. When reducing the nétwork to its set of )

’

geographical locations intersected by a number of routes, the complex

characteristics of the network come into Qiew, for example, the

lengths of the links, the degree of tortuosity of the links, the A
commodity being transported and the nodal stéte. The nodal state is

a measure of nodal chatscteristics and has a direct effect on the
conveyance of material gnd, hence, the cost of conveyance for.any

given flow. For instance, in a water distribution network, the

pressure elevatifpn of a node affects the pipe, and possibly pump size, .
required to convey water to another node. All of the network
characteristics are important to the solution method used but they

make the devglopment of a generalized model very.cumbersome. In

order to investigate the basic spatial structure of networks, many of
the characteristics are initially put aside to be used later in the . -
model. The network 1s reduced to its spatial structure form through
thé use of linear graphing. The graph formed does not display the
length or shape of a link or’'the size or characteristics of a node.

Directed graphs denote the positive direction of flow and symbols are ;

used to differentiate between supply and demand nodes. An éxample of
) \

~.

P

~
3
.

reducing a topological network to its linear graph form 1is
illustrated in figure 2.1 (a) and (b). Reducing topological networks
to linearngraphs in this manner may bring out similarities which are
not recognizable at first. Since the characteristics_defining the

locations of the nodes and links are disregarded, the configuration

“9



w

24

-

of the linear graph can be changed to any shape required by the

designer.

Linear graph theory provides methods which are useful in
establishing standard methods of catagorizing networks. The two
classifications which apply to the networks studied here are: (i)
branching networks and (ii) circuit networks. A typical braﬁching
network is illustrated in figure 2.2 (a). The dist;nguishing
characteristic of a branching network is its tree-like structure.
Single path networks with no diverting links, such as a route from
one node to another pa;sing through other nodes, also fall under the
classification of branching networks but have limited application.
The most well known example of a branching network is a stream net~-
work which, from a topological viewpoint, has the s%?plest possible
connectivity. ’In,a distribution system comprised of a branching neé—
work, each processing node has a smaller branching network associated
with 1t which.has no more than one inflow link to any node. Like-
wise, ig a collection system comprised of a branching network, each
processing node has a smailer branching network associated with it
which has no more than one outflow from any node. In general,
optimal solutionéitake the form of a b%anch;ng ne€§ori in which each
of the smaller branching networks may be connected at common nodes
(see figure 2.2 (b)),»/thimal solutions tend towards branching net-
works due to economies of scale which make it less costly to
distribute a commodity, in the case of a distribution network,

through one link rather than a number of links. ™
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The initial regional networks as defined (i.e. figure 2.1 (b))
are generally structures with closed loops or circuits. Theoretically,
they are nonplanar, that is, two links can cross without forming a

junction node. Practically, however, it is not economical to have

en o s

links crossing without a junction. When a network is reduced to a

S vl

topological graph;. three parameters can be identified:

(1) The number of nodes (N)
(11) The number of links (L) ,
(1i1) The number of subgraphs or non- (G)

connected networks

In figure 2.3, the parameter values are: N=9, L=8 (only 8 feasible
links are shown) and G=2 (two nonconnecting networks are shown). The
parameters can be used to form indices usefﬁl in establishing coémon
yardsticks for comparing sets of networks. Haggett and Chorley

o
summarize a number of indices useful in graph theory (18). Of these,

-

the following are useful in this study:

e

L

T (Planar graph)

1) Gamma Index

2L
N(N-1)

gty wt

(Nonplanar graph)

~

13
b
€

2) Cyclomatic Number = L - N+ G

/
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: L -N+G6 '
3) Alpha Index o= NTCE N (Planar graph)
L-N+¢ (Nonplanar graph)
N(N-1)
2 T (N-1)

The Gamma index gives a measure of the degree of comnectivity

of the network. A value of zero denotes that no nodes are connected
and a value of 1 denotes that all possible nodal pairs have a
connecting link. An increasing Gamma index, in the range 0 to 1,
therefore gives some insight as to the degree of connectiwity and
also gome description of the inc?easing complexity. The Cyclomatic
number yields the number of circuital paths in a network ¢(i.e. in
figure 2.3, there 1is 1 circuital path). The number of circuital
paths 1s identical to the number‘of redundant links in the network,’
that is, the number of links above the minimum required to connect a
set of nodes in a network. For instance, in figure 2.3, ;ny link in
the ¢ircuital path can be deleted and not disruﬁt the connectivity of

the overall network. The cyclomatic number for a branching network

is, therefore, équal to zero regardless of the number of subgraphs.
\

N ‘

1

A more us%ful index of the connectivity of networks is the
Alpha index, or, re&Qndancy index. The-Alpha index is the ratio of
the number of the ex#stidg circuital paths i; a network to the maxi-
mum number of possibe circuital paths, Values of zero indicate a
Lranching network and\%alues of one indicate a fully connected net-

work in which no further links may *be added without duplicating

exipting links. An index such as this provides a measure of the
| .
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degré of redundancy of an initial network. The index also serves to
identiify a branching-fletwork, and gives ' 'a measure of the relative
complexi of a network. For a given set of nodes, an.increase in
the Alpha index represents an increase in the number of feasible
solutions to be cdonsidered when searching for an optimum, and thus an

increase in the computer time required.

2.3 Mathematical Statement

Although Chapter 1 describes both distribution and collection
networks, the mathematical statemént is presented in terms of a dis-
tribution network in order t; silmplify the understanding of the terms
and quantities, .Esseptially the same procedure may be applied‘to
collection networks, and minor.differences are discussed towards the

A

end of this chapter. Figure 2.4 illustrates a linear graph for a

typlcal distribution network. The processing centres are, therefore,

sources of supply and nonprocessing nodes are demand points. All
possible links are included with two flow variables assigned to each
link. The flow variables, Q,, are marked on the’diagram and the

demand parametfrs, D,, and supply parameters, S are included along~

i i’

side the node¢s with which they are assoc};ted. The possibility of

of Low exiéting n either direction in a link is ensured by assigning

two flow variables tq each.link, thus allowing a nonnegativity
restriction on the flow. By using douBle'flow variables, the number
of flow variablds are increased, but this method ailds in the

flexibility in choosing solution algorithmsl The use of two flow

valdés also facilitates the application of cost functions if the

]

N
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costs are not equal in each direction. Transshipment is allowed for

through the inclusion of links connecting like nodes (links 1-2, 3—&,

4-5, 3-5)., Forsexample, the total demand at nodes 3, 4 and 5 might be

1

routed through node 4. It may seem impractical to have a link between
two supply nodes, however, if processing is carried out at a supply
node, such as in the case of water treatment in a water disfribution
system, a saving in cost may be realized by linking the two sources
and treating at the downstream supply node, due to econocmies of scale

in the cost curves,

The objective function is designed to provide a measure of the
system cost arising from the values assigned to the design variables.
Actual system cost may include overheads and other cost components
which are unaffected by the values adépted and these constant elements
may be dropped from the objective function (e.g. the cost of
balancing reservoirs may depend only on the total system demand, ir-

respective of how the demand is met). The objective function costs

fall into two general catagories:
(1) Production costs at the processing centres.

(2) Transportation costs associated with the link

over which conveyance of the commodity takes

place.

Total costs for the network are formed from the sum of the
cost functiPns evaluated in terms of the design (flow) variabl&s,'

i:e.:

= Y RSy s

p—

P e m Y
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L 4 20 . g
Total Cost = 3= I C,(Q) where: (2.1)
g=1 1

L el eI e by s R SN 2

[

Ci(Q) = cost function for

the ith flow variable

It should be noted at this point that the functions C(Q) are

assumed to include both transportation and processing costs. In

b ARG 2 3 e L

equation 2.1, no provision i1s made to express the processing costs

- AN,

separately from the transportation costs and they are assumed to be
computed jointly (i.e. processing costs distributed among the nonzero

flow variables leaving these nodes). An expanded form of the objec-

RN T - TR

tive function is presented later in this gectlon where the processing
costs are expressged separately. To obtain the optimal solution, this

objective function must be minimized and to maintain feasibility,

constraint equations must be satisfied which ensure mass balance at

. T

the nodes. Specific values of supply and demand are defined by a set
of nodal stipulations. For convenience, the sign convention adopted
for the constraints assumes that flow out of a node is positive and

~
flow into a node is negative. The sign of the stipulation may be

either positive or negative implying an-addition to or abstraction

from the system, ,

: £
At the supply (processing) nodes, the total outflow of 1

material from the node must not exceed the processing capacity, S.

The constraint for node 1 in figure 2.4 is: '

Q - Q, +Qy -Q, +Q5 - Qé + ng = Qy = 5 (2.2)
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The demand node constraints stipulate that the algebraic sum of the “
\
inflows to a demand node must equal the stipulation requirements.

The constraint for node 3 in figure 2.4 is therefore:

Tty m QR QY Q3 - Qe T Yy 7 Dy (2.3

Slack variables are used to change any inequality constraints into an
equality form. The inequality- (2.2) is changed to'an equation by

adding the slack variable Q21 to the left hand side:
QU - Q* Y-+ =Q+ Qg "Rty = 5y (2.4)

Physically, the nonnegative  quantity Q21, represents the surplus of
supply, Sl’ over the net outflow from node 1, This quantity is used
in the evaluation of the quantity of material processed at a supply

node. The total quantity of material processed 1is:

Net OQutflow = Sl - Q21 . (2.5

In special cases, the designer may wish to redefine the
quantity of material processed at a éuppiy node. For instance, if,
as mentioned- at the beginning of this section, transshipment takes
place Between'two processing nodes, the user maycwish to invéstigate
any ecénomies of gcale avallable in processing at the doynstream node.
Therefore in figure 2.4, if the supplied cpmmodity i8 conveyed from

node 1 to node 2 where all.of the processing is carried out for

subsequent distribution to the nonprocessing nodes, the amount of

~
»

material processed at node 1 is given by:

At A, kb,

|
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Quaétity Processed = S1 - Q21 - ng (2.6)

PR P

It is easily shown, however, that the relation (2.6) does not hold _ 3

¥,

for some cases. If, for example, a water supply system is being

¥

-,

Al

analyzed, even though the water is transported from one supply node

AR

to another for treatment, there are still costs associated with the K
£

upstream node for amassing the water for conveyance, The apportioning

L

:of treatment among processing nodes is not identical for all

problems, hence no attempt is made -to accommodate this in a géneral

2 LTS

sense. In the mathematical statement, it is therefore assumed that

<

KN

the material leaving the supply node is fully processed, Special

methods are pregented later in this study for handling cases such as

this (see Chapter 4, page135). , : <-;F§

With slack variables providing a meang by which the processing

z
!

quantities can be quantified, the processing costs can be defined with ’

the use of a processing cost function CPl(Q). The processing cost for

node 1 in figute 2.4 is;:

™

[ 24

The use of slack variables, therefore, provide a means of expressing
the Processing'quantities'and processing costs independently of the
conveyance quantities.' If this method was not followed, the-procesé—-
ing costs would have to be proportiéned among the conveyance costs

‘of the flows leaving the supply nodes which is not as’ straight-

forward.

o
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As an extension, artificial slack variables are introduced in-

to the nonprocessing node constraint equations. For the example in
o

figure 2.4, the constraint equation for demand node 3 now becomes;

(2.8)

Qp Q- Q Qg - Qpy + Qg - Qg+ Q- Qy, = Dy

~

The nonnegative quantity Q22 represents an additional inflow into
node 3. Being artificlal slack variables, they éo not alter the
mathematical statement or set of feasible solutions for the network
problem, except in ad&ing extra variables. Since these new variables
provide an additional means of supplying the demand nodes, however,
they must have a' cost assigned to them. The artificial slack flow

. . . '
does not originate from any physical source in. the network, hence,
4

feasible solutions containing any artificial slack flows are un-

<«

desirable, The costs assigned with the prtificial'slacﬁ variables
are defined in the model to be prshibitively high, that is, higher -
than any conveyance costs for a design variable. These costs are
assigned through the use oﬁ a penalty cost function. The artificial
.slack variables are not directly needed in the deve10pment of the
mathematical statement but are required for use in a solution. ..
algoritﬁm introduced later in the study to establish initial
feasible solutions. Their importancekié covered in detail when the

solution algorithm is developed.

The set of simultaneous equations obtained from the equality

constraints may be converted to the structural matrix:

s 7y

.q =B c (2.9)

< P g A e
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where;V A = a matrix of stquctural coef ficients which take the

_value 0, 1 or -1 (N x NQ elements)

e

6 = a column vector of design variables (NQ elements)

.

vace

-

B = a column vector of constraint stipulations (N

~ ) elements)

~ N = the number of nodes in the network for which

constraints are written

i
!

NQ = the total number of design (flow) plus slack plus

artificial slack variables

’

-
-

A formal statement of the optimization problem tdakes the

following form: -

_ NQ-N NQ-N-+NCEN , ) (2.10)
Minimize 8 = I CT,(Q) + E Py N+ St ~ Y y
o {=1 i _ L=NQ-N+1 Qo o )
. _ R
NQ . p\\.-J\/-'\&
¥, 5.
1=NQ-N-HNCEM+1
Subject to A.Q = B
and Qi.z 0 ’ i= l: NQ
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CTi(Q) = Transportation cost function for the ith flow vadable

34

——— N A =

CPi( ) = Processing cost function for the ;th node

NCEN The number of processing nodes

-

h

CPENi(Q) Penalty cost function for the 1" f£1low variable

(normally a constant)

R S

Table 2.1 illustrates the matrices formed when the problem of

LY

figure 2.4 'is formulated as outlined above., For convenience, the

B i A

processing node constraints appear first In the structural matrix.

The constraints are contained in the matrices of structural coeffi- ’ !

cients and stipulations., Two auxiliary matrices, NQ elements in.length, :

N

are included to denote the nodal origin and destination numbers for

each flow variable.

2.4 Modification for Collection Networks -

.
é
§

The mathematical statement developed in the previous section
is for a distribution nerork, such as regional water supply. Both
distribition and collection networks .have the same basic sbatial/

- structures and -only minor festrict;ons havé to be imposed on the
mathematical statement to allow for the difering network character-

* istics.’ It is important tyat the math;matical statemeng be applicable
to both network types so that the same econqmetric model can be used
in their analysis. A collection network is" comprised of a‘set of
commu;ity or input nédes and processing nodes interconneg;gq by -

.feasible links. The input nodes generate the commodity to be

-
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processed at the processing nodes which may or may not be coincident

with the input nodes,

Two examples'are provided to help in identifying the.
differences between distf}butionAand collection net;orks. Fiéure 2.5
(a) dep?cts a 3 node distribution network with nodes 1 and 2
representhg processing nodes and node 3 a nonprocessing node. The
sign conveqtggn‘used in these examples is the same as presented in the
last section, that[ZQ\\fEé;;;;flow from a node is assumed positive
and, hence, an eiogenous input, or material inflow to the network is
positive and an exogenous output is negative‘in'gccordance with the
form of the conétfaiﬁt equations, The constraining relations for the

network of figure 2.5 (a) are:

Q1 o+ Q3 o= Sl (2.11)
——— T
™~
> -Ql - QZ - QS = -D3

‘The structural matrix of the network is also shown in figure 2.5 (a)

and Fhe slack Gariébles Q3, Q4 and QS are schematized on the linear

- graph diagram. . ’ . v

Figure 2.5 (b) depicts a collection network with node 1
representing both a processing centre andé node which generates a
r.. . i : . : )
volume of material. Node 2 is a processing node only and node 3

generates material. . The no are numbered in accordance with the

convention that processing modes are numbered before nonprocessing

)
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nodes. The constraining re}atiéns for this example are:

Q + Q -5 (2.12)
, -Q,  +Q; " =0
Q, + Qg = S,

The structural matrix of the collection network is included

~

in figure 2.5 kb). The stipulations Sl and S2 represént ‘the material
generated at node 1 and 2 respectively. The zero stipulation assigned

to node 2 denot;s that there is no material generated at that node.

Néde 2 is, howevq'gi capable of processiﬁg material which implies that

a variable is Tequiréd to represgent the quantity of material <~\‘
processed. Both of the first two constraints in the equation group.

2.12 are, before the addition of slack variables, of the following

form:
Net outflow £ Gross supplyc%f material (2.13)
Upon.iétroducing slack vari;bles,,the relation becomes:
Net outflow + Slack = Gross supply ’ . (2.14)

‘The slack variables introduced are Q3 and Qh' This slack represents
the amount‘of mat;rial processed at the node which it is associated

with. éince node 3 does not have ‘the facilities for processing the

mgteriai, the constraint rela?ion is an equality beforelthe addition
of QS' This slack variable is, therefore, ap artificial slack

variable ‘simflar éo those added to the nonprocessing node constraints
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in a dist;ibution éetwork. Similarly; the artificial slack Qariable
is required only for the formulation of an initial feasible solution
and, in general, will not appear in the final solution. In order to
avoid the assignment of a nonzero value ta the artificial slack

variable when the model is searching for the optimal solution, the

artificial slack variable must have a prohibitively high cost
agsociated with 1it.

" Another type of node, not mentioned yet, which can exist in
either distribution or collection networks is a null, or junction, . 3

node, These nodes represent junctions in a pipeline or other type

of conveyance route whére a flow of material can be diverted to -
alternate links. There is, of course, no stipulation associated with /
a null node since it does not generate, process or consume any .

: i
commodity. The general form of the continuity equation for a null C’Jk :
node is:

' e o .
Net outflow -~ Net inflow = 0.0 X (2.15)

P }

B L T o L

For convenience, the null nodes are ‘classified as nonprocessing nodes. -

i S v

in distrdibution qetworks although, they could theoretically be /1\
included in either cateéory. 'To maintain cons;stency w}th the other
demand node constraints, an artiﬁ*éial slack ;ariable is incorporated
in the'null node constraints by subtracting it from chg left hand side
of the equation. .Thisxglack variable, as with the other artificial

slack variables, represents an additional nonexistent source.

It is {mportant here, also, that the costs associated with nonzero
. o
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R’
values of the new artificial slack variables be prohibitively high.

-

0

In collection networks, the null nodes are again classified as
nonproceséing nodes. The null node constraints have a nonnegative

artificial slack variable added to the left hand side of the equations

TR BT PTad e

to maintain consistency with the other constraints. Since the null

L

nodes have zero stipulatiods, their constraint equations appear the
same as the constraint equations for processing nodes with zero
stipulations.' As with other artificial §lack variables in the

problem definition, the artificial slack variables in the null node

- @by

constraints must have a prohibitively high cost assigned to(them in
the objective function.
\
) The nodal number designations are similar fo§:§§th'ggl{;ction
( —

and distributdon type networks. The £irst nodal numbers\are assigned
to processing nodes and‘the remaining are nonprocessing léhesJin both
network types. Furthermore, since the nonprocessing node slack
variables have high penalty costs assoclated with them so as to keep
them out of the solution for bo;h types of ne&works, it ‘is impogtant

that the number of processing nodes as well as the totél number of

nodes be specified in etwork definition data.” In this manner,

th€ model can distinguish Yetween the node types and assign penalty

’ 2
costs where required. . ‘

5
A

o

The most significant aisﬁgnction between the mathematical

statements for distribution and collection networks is the existence

Ny
o
k
!
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' of negative stipulations and negative artificial gslack variables in
the processing node constraints of distribution networks. An important
aspect of this difference i1s that it is useful in providing an easy
means of allowing the econometric model to distinguish between the type
of network to which it is being applied and in using this facility,

: the coding is made general enough to allow for any other differences
between the network types. One such difference lies in the definition
of the processing cost terms of the objective function. In the
distribution network problem, the quantity of material processed is
given by the processing node stipulation minus the value of the slack

“variable. Recall that the distribution network objéctive function

appears ‘as:

Ny
NQ-N NQ-N+NCEN
z = X CT,(Q) + z CP (s, - Q) (2.16)
=1 1 1=NQuN+1 L-NQ+N""L-NG#N ~ 4
NQ -
4+ " L CPEN i(Q)
y 1=NQ-N+NCEN+1

s’
’

i

Tﬁe quantity of material processed in a collection network is equal to

(éhé value of the slack valdgble for the processing node under

~

consideration. Using the same notation as in equation 2.16, the

objective function for a collection network is as follows:

N
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. NQ-N ., NQ-N+NCEN <
3 = I CTi(Q) + L cpi_NQ+N(Q) (2.17)
1=1 1=NQ-N+1
NQ '
+ I CPENi(Q)

1=NQ-N+NCEN+1

" Since both objective functiofis have the same format and the only dif-
ference lies in the definition of the processing quantity, the model

4
easily compensates for thilis once the network type is identified.

2.5 Alternate Methods of Problem.Definition

The precgding two sections present a method of stating the
network problems in general mathematical termsrwhich can be used in‘an
econometricﬂgodel. The objective function is formed as a function of
the flow design variables and the network topo%ggz is defined by the
constraint equations generated from.mass balancé.rescrictions at the
nodes. Nodal origin-destination palrs are used to ﬁefine the flow
variables. The remaining network characteristics, such as link length
and nodal state, can then be stored in separate arrays which are

accessed as required by cost function routines.

It is import;nt to realize tﬁat the form of the mathematical
statement adoptéd is not necessarily the most simple or straight-
forward, but it is developed to be compatible with possible solution
élgorithgg{ It is worthwhilg,’%gwevér, to examine other methods
of defining the nétworks mathematically and discuss any advantages or

disadvantages. Through the development of solution techniques for

P IR A
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transportation problems, formulations are developed which take
advantage of the special structure possiple for tﬁe matrices (9, 3).
In a transportation model without transshipment, the matrix defining
the connectivity of the nodes in a network can be stored very
efficien;ly in a rectangular array displaying the flow variables in
an origin—destinatibn manner. When apglied to a distribution network,
each .row of the array represents a set of flow variables with the
property of originating from a common nod&. Each array columh
represents a set of flow variablés with the property of terminating at
a common node. Therefore, the sum of the elements in any row is equal
to the supply available at the corresponding node and the sum of ther
elements ;n any column is equal to the demand at the;corresponding

node. This formulation is further illustrated using the example in,

figure 2.6 (a). The 5 node distribution network has 2 supply and 3

demand nodes. The resulting matrix, shown in table 2.2 (a), is a 6

element (2x3) nodal connectivity matrix with all positive flow values.

‘The variable designation is slightly different from that used before

with Qij representing the flow originating at supply node i and
terminating at demand node j.‘ All possible direct transportation
links are included in the example resulting in égfull maf?ix. Pf any
links ‘are not included, the corresponding flow.vafiable is zero
valued. The connectivit& matri#vmay, therefore, have a number of

"empty' locations, the number of which depends upon the degree of

connectivity in the network problem.
) 3

demand, D,, values apéear as edge vectors on{ the right side and

3

bottom of the éonnectivity matrix respective

dal supply, Si’ and nodal
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The same type of matrix formulation can be extended for use in
transportation networks with transshipment., Figure 2.6 (b) displays
the same basic network as £.6 (a) with the difference that all
possible transshipment links are included. The nodes have been
renumbered since flows can exist between like nodes as well as unlike
nodes. The connectivity matrix defining the network, given in table
2.2 (b), still uses an origin-destination formulation but it is now
square (i.e. NxN elements). A new variable, T, is introduced to
«represent the maximum amount of material which can be transshipped
through any node (i.e. the sum of the supply or demand quantities,
which are equal in é.balanced system). The maximum transshipment
quantity is added to the supply and demand quantities along the right

side and bottom-of the matrix. The variables Qij’
A

— ~

ot -
represent a slack variable to the transshipment iﬁ/Ebé system, thus

where i=j,

’

the amount of material transshipped through noderi is T - Qll’ Through
- - '

the inclusion of transshipment, the matrix size has increased

significantly over that required for a network with no .transshipment.

Y

The application of the nodal connectivity matrix to a typical '

network is illustrated in figure 2.7. A five node distribu;ion net-
work 1s®shown with a specified solution. The flow variables in the
corresponding Eonneptiyity gatrixhhave values consistent with the
sol:tion giyen. The netgork solutiog,given ip this example is of the
bra;chihg type’ as defined earlier in this chapter. Béanchiﬁg networks
result in sparse matrices (matrices with many géro‘elements) as seen

" in figure 2.7, This is common in network analysis problems since the

. optimdl policy is a branching network.

“
Y

~

e
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The matrices shown above are for bf&lanced networks, where the
total network supply équals the total network demand. If the sdpply
and demand quantities do not balance an extra row or column, depend-
ing upon whether total supply .or demand is greater, can be added and
the corresponding stipulation equal to-the exdess amount, This
procedure 1s analogous to the use of slack variables in constraint

relations to change inequality constraints to equalities.

)
To complete the mathematical statement, the objective function

must be inéluded. In problems whezs the cost functions are separable,
a cost functipn métrix can be formed which is compatible with the flow
connectivity matrix. Table 2.2 (c) illustrates the cost f;nction
matrix for the example in figure 2.6 (b). The new matrix is the same
size (NxN) as the connectivity_matr;x ardd each cost function, Cij(Q)’
is located in the same position as its corresﬁonding flow variable,
Qij' ’The cogt functions, Ci(-Q), which 1ié along tﬁe diagonal of th;‘

cost matrix represent the tramngsshipment costs. The negative sign

-preceding the flow variable is a result of transposition since the

_transshipment quantity is costed with supply and demand quantities.

The .network cost is comprised of the sum of the costs calculéted'
through introaucing each flow variable into its corresponding cost

function.

When comparing the use of connectivity matrices to the
constraint equation form, it appears, upon first -inspection, that the
use of the connectivity‘matrix§would be advantageous .due to the

smaller matrices involved. In general, the following matrix sizes

N
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AN
are required for the mathematical statement.

‘1, Constraint equation formulation:

Objective. function (cost): 1 x NQ

Structural Matrix : N x (NQ + N)
2. ansportation (connectivity) formulatior:
Cost Matrix : NxN
) Structural Matrix - : NxN

\ | | \

* This type of comparison is deceiving, hbwever, since further

matrices are required in the solution algorithms with the number and

size depending upon the solution algorithm applied. Additional érray

-

storage is required for storing network information such as link

\

lengths and nodal states. Further investigation of the actual array

storage requirements for the salution algorithms is made in Chapter 4

where different solution algorithms are investigated. In general, 1it.

is found that solution algorithms require substantially more computer

storage than the mathematical statement.

It is decided that the constraint equation formulation is the
best to use in the mathematical statement for the model presented

heré. The main reason for adopting this méthod is'that most
)

standardized algorithms are structured to solve problems expressed in
the form of an objective function subject to a set of coﬁspraint

equalities or inequalitfies. Restrigtiﬁi the econometric model to the
use of optimization routines designed for cohhectivity constraints
B

" would remove the generality desired for the model.

-
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‘t~ghould be noted here that if, as a result of problem size,

~
~~

the matrices in;beed are excessively large, it is possible to use
special compyter techniques to decrease the amount of computer
storage r red, For example, éince the elements of the structural
coefficiene matrix are only one of 0, 1 or -1, it is possible to use
a space saving translation technigue. Th; elements could he‘
trangformed into "equivalent" numbers, say 0, 1 and 2 represented in
binary form as 00, 01 and 10 gespectively. Then several elements
could be stored in a single word, the actual number being. dependent
on the word space available (e.g. 29 in CDC 6400). The main draw-
back to this érocedure is that the need for the translation oflmatrix
elgments f;om zero-one form to a 24bit binary form and pack again
would naturally increase tﬁe execuzzzszihe ;f the program. This
procedure may be req;ired, hawever, if a large regional network is
Leing analyzed and ihé matrices exceed the storage capabilities of the
computér facilities.‘ Ihe actual development of storage saving
pgpcedures is not carried out in this study butsis left as an

opportunity for further work.

2.6 Properties of the Solution

The nature of the network problems presented results in
certain solution properties which are important when considering.the
type of solution method to use. The two important characteristics of

network problems are: °
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1) The objective function is separable and
concave (in practice, the function is also

monotonic).

2) The solution is subject to a get of linear

constraints,

As a result of these characterisfics, the following state-

ments may be made which significantly affect the method of solution

!
. . _ X
_and choice of algorithm. ' : . i
' {
1
Theorem 1: The linear problem congtraints, form ‘
a convex feasible solution space.
Theorem 2: A function which comprises the sum of . 1

a series of sepafable, strictly concave

functions is in itself strictly concave.

Theorem 3: The minimum cost solution of a concave

%
objective function subject to a set of 1

linear constraints must lie on a vertex:

of the feasible solution space, called a

basic solution.

) fheorem 1is reproduced in deé;il in Appendix"A and is
1dentical-to the condition generally used for Linear Programming.
Appendii B cqgtains,a fuller development of the statement in Theorems
2 and 3 and is fuﬁdaﬁeptal to the choice of the solution strategy for

problems of this type. . . o ) )
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To demonstraFe the location of the optimal solution to net-
work problems, a simple 3-node Qistribution network is solved, using
a graphical method. This example also fécilitates the presentation
/" of any further properties of the solutJoﬁ. The network considered is
illustrated in figure 2.8. A.singlé demand node with the stipulatio;\
;SDB igs conngcted, through two linké, to two supply nodes with thgu
stipulations S1 and So. It is possible té have eithef s&pply node 1,
2 g:)goth squ&&ing the demand .node with the reqﬁired Eommodity. Only
two design variables Q1 and Q2 need be considered, and the gPrrespond—
~ing conbeyagce costs for each ar;‘represented by the cost functions
Cl(Q).and Cz(Q). ?he mathematical statement of the problem bgcogzs:

. ‘ &

.Min B = .C,(Q) + C,(Q - ' .(2.18)
* l . 2 . .
P Qi
Fa e
Subject to: Ql < S1 . .
.
Q2 < 82
Q1 + QZ = DB
<v-‘J )
Ql’ Q2 > 0.0
¥
In this case Sl’ 82 > D.3
L In this mathematical statement, slack and artificial slack

'variables'are not Introduced since a manual solution technique %s

[
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used. Although network costs normally include both processing and
trénSportation costs, for simplicity, only transpoftation'costs are
considered in this illustrative péoblem. The tranSportatioq cost
functions are typically concave and monotonic, exhibiting economies
of sc;leu In this particular problem, tﬁe cost functions appear in

figuge 2.9. The optimal solution is obvious‘through ingpection of

the cost curves. Due to the concavity of the cost function, any

solution with both Ql and Q2 nonzero is more costly than having only”

one nonzero variable. The optimal solution i1s, therefore, obtained
through the lowest intercept of ﬁhe vertical ordinate through the
point Q==D3 6n the cost curves. In this case, the optimal solution is

Q2=D3 and Q1=0.0. This method 1s only val{d, however, when both Sl

¥

and 82 exceed D3. If either one or both are less than D3, a trial
and error method is required in determining the optimal solution.
The effort required in finding the'qolution 1s reduced substantiaily

by the fact that one variable will have full value due to economies

;
orLD/).

of scale ({.e. Q; will equal §, or Dy, or Q2'w111 equal S, Dy

Further insight.into the solution properti;s of the netyork
.problem presente;_heré is obtdined by a different graphical method..
If.the'constraint eéquations and objective function are plotted on a
graphﬁof Q, versus Q,, figur; 2.10 is.obtained. In the graph, it is
;asumed ;hat‘Sl is greater than D3 and 82 is less than p3.

problem constraints form a set of lines which bound a convex regiOn.“

The

lIf the constraint Q1 + Qé = D, had the form Ql + Q2 >D instead,:

3 3

V' the convex region bounded by the ‘constraints would represent the

/
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feasigle solution set, Due to the equality constraint, however, all

solutions lie along the line'A - B.f The cost isograms (i.e. iso—coss

lines), which appear in fﬁe figure, comprise the sum of the Ywo cost

functions for the corresponding f%Pwrates. The iso-cost curves of
. ¥

figure 2,10, are typical of concave monotonic cost functions. The

values of the isograms increase in the upper right hand direction.

In linéat programming, the objective function forms a set of
linear isograms of constant slope and; therefore, parallel to each
otﬁer. To obtain the.optimal solution, successive isograms are
considered, moving in the direction of decreasing cost, until an ‘
extreme point of the convex solution set is reached. .In this case,
the extreme point is the optimal solutioﬁ. With concave cost func-
tions, however, the lsograms are neither linear nor parallel but
have different dggreqf of curvature. The meghod of consgidering
successive parallel isograms does not ensure an optimal solution and
therefore .cannot:. be.useds In this simplified problenm, 'the optimal
solution can be found by inspection prbviding ;ufficient isograms

are plotted. It is found, from figure 2.10, that the optimal solution

lies at point A in this case where Ql-D3 and Q2=0.O.

It is dmportant t¢ notice in figure 2.10 that certain isograms

- crogs over the constraint Qi + Q2 =D

4

3 which implies that along the
line seément A - B, there are points which have higher costs than at
© point A or B.- In more mathematical terms, this is in effect saying

that the sum.of concave functions is in itself a concave function and

thus the cost'of any point along the I}ne A - B must be greater than

v
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the equivalent weighted average of the costs at the extremities A and

B, i.e.:

2 2
C(Z o, X,) > L a, C(X) (2.19)
{1 i4 1=1 i 1 .
) 2
= where I @y = 1

i=]1

and Xi is‘a transformed variable.

Xy =Q = 5; +Dy

LR RO T

Therefore, if applying a solut;on algorithm and using the solution at
'poi;t B as a startifg bosiﬁion,‘the solution mechanism must effectively
cross over a "hill" of higher cost éiong the line A - B to reach the
optimal solution at péint A, Point B can therefore be iéentigied as a
local optimum. This illustrates the main diﬁfic&lty eﬁcountered in

devising a solution algorithm which will converge to a global optimum.

WL 20X, ST

The most important conclusion which can be derived from this

P e

example is that the optimum lies on an exterior point or vertex of

the convex solution. set. It is proven generally in Appendices A and “ '

B that for problems with linear constraints and a monlinear concave

objegtive‘function, the optimal solution lies on a vertex of the
solution set. Another important agpect lies in the fact that
adjacént vertices can be separated by segments representing a

boundary of the solution set with points having higher costs than that
: ) A | .

H
t
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of either vertex. This ggy result in convergence to a local optimum

when using solution algorithms which employ a ‘strategy based solely .

on information available at the current position within the feasible
space., Hill climbing techniques which use local gradients and simplex
type algorithmé which depend ‘on local artificial cost coefficients are
typical examples. This aspect 1s demonstrated further in Chapter 3.
It appedrs as though optimization routines which consider onf; the
“Vertices in their search for the optimal solution are most™ likely to

* converge to the glbobal optimum and will generally be more eféicient

in execution times than thoge which search through the entire convex

get,

2.7 Conclusions

¥

<

The importapce of graphical theory is stressed in the
beginning of this chapter. Transforming a regional network into an
——
equivalent linear graph simplifies the pxoblem, allowing the designer

to consider initially the topological characteristics of the system,

temporarily setting aside the physical properties for later use in the

econometric modél,

The two types of network tOpoiOgy involved are branchiné agd
éyélic networks. In general, ini£ially specified regional networks
are cyclic and the optimal solution determined eliminates redundant
links and reduces the network to a branching fSrm. Indices, such as
the Alpﬂa ipde;, provide a measure of the conn;ctivity of a network,

5

which is helpful in determining the relative complexity of a problem.

-
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The mathematical statement adopted for use in the econometric

model comprises an objective function subject to a set of equality

constraints. The objective function represents the total network

costs and is formed by the sum of separable, concave monotonic cost

r
functions of the design variables, The eguality constraints are nodal

mass relations and, hence, are linear in the design variables, Minor

-

differences occur in the developmen?ég;ﬂthe mathematical statement for

distribu2ion and collection networks, but the adoption of cQ{tain

rules allows the use of the same formulation: 4

o

1) Outflow from a node is assumed positive.

2)

3)

4)

3)

Processing and nonprocessing nodes must be
distinguished by the node nuhbering convention

adopted (see sgection 2.4). . "

The null or junction nodes.are grouped with

nonprocessing nodes,

For a distribution network, the processing node

congtraints represent the upper limit on supply

from that node. \The nonprocessing node stipula-

tion, which egative, represents the nodal

demand. -

For a collection network, both the processing
and nonprocessing stipulations represent the

material generated at a node.

M |
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. &he mé&hematical statement has certain features built in to

facilitate its use with standardized solution algorithms. Each

" constraint has a slack variable associated with it and appropriate

costs are included in the'cost functions. The mathematical statement

is not structured to allow for the transsyipment of untreated

av

material between processing nodes.

-

Other possible formulations for the mathematical statement

are investigated. These involve mainly deXining the network through
the use of a connegtivity matrix. Using thi$ method, the structural
matrix is smaller than that required for the tonstraint equation

formulation. Unfortunately, fewer algorithms]exist which caﬁ be used
in conjunction with éznnectivity matrices. erefore, to facilitate
access to a greater number of optimizationwéggorithms, the equality

)
constraint formulation is preferred. Computer storage saving

techniques are possible in case the array storage requirements -exceed

the computer facility capabilities in larger problems.

.

When investigating the properties bf'the optimal solution to
network problems, it is fouﬁd that the existence of linear constraints
" and sepprpble concave c?st functions are important in thét they
dictate that the optimai golution lies on a vertex of the convex
‘ soiution set. Furthermore, the line segments joining adjacent
bgrtices can have points of higher cost than either vertex. hThis

.should be congidered when selecting a solution.methed to be used

since it implies that vertex searching algorithms will have better

o
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convergence properties and have the potential for a more economical

optimization strategy.
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LEGEND:
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FIGURE 2-1(a) - WATER SUPPLY NETWORK
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LEGEND:

q SOURCE NODE

- CONSUMER NODE
® JUNCTION NODE

FIGURE 2-1(b) — GRAPHICAL REPRESENTATION OF
- THE WATER SUPPLY NETWORK
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FIGURE 2-2(a) - TYPICAL BRANCHING NE T WORK
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LEGEND:

. BRANCHING
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" PROCESSING NODE
NONPROCESSING

FIGURE 2-2(b) — DIVISION OF A BRANCHING
NETWORK FOR A DISTRIBUTION
SYSTEM
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LEGEND: _ A

<] PROCESSING NODE
(O NONPROCESSING NODE
—— LINK '

ede,

STRUCTURAL MATRIX 3
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FIGURE 25(a) — DISTRIBUTION NETWORK AND
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TABLE 2:2(a) — ORIGIN-DESTINATION MATRIX FOR
A NETWORK WITH NO TRANSSHIPMENT

Q3 Q2 Q3 51
Supply where:
Nodes
= F1l f Node 1
%21 sz Q23 S3 Qij tOO;OdZO? >
Dl D2 D3 { = Supply at Node 1
’ D = Demand at Node 1
. v i
R
Demand
Nodes

f)\
7
TABLE 2-2(b) — ORIGIN-DESTINATION MATRIX FOR

A NETWORK WITH TRANSSHIPMENT

‘/’

Q1 | Y2 | U3 | Ya | Ys |5 *T
where:
QZl Q22 Q23 Q24 QZS SQ +T T = Maximum possible
transshipment
B | B2 | Bz | YU | YBs T -,
1 1
1 3
Ur | U2 | U | U | Us T
T
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TABLE 2-2(c) — COST MATRIX FOR A NETWORK

WITH TRANSSHIPMENT

» N

(= | CL@ | c@ | ¢, @ | ¢
(@ | () | Cu@ | 6@ | @
C3 (@ | €3, | (- | € | Cyg (@
1@ | €@ | ca@ | ¢ @ | @
€@ | €@ | €@ | Cq@ | cg(-
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CHAPTER 3 .

NONLINEAR SOLUTION TECHNIQUES

n.' i

* i

3.1 Introduc¢tion

!

»
4

The preceding chapter describes the specificatien of a
generalized matheAaticai model for the solution of econometric network

!
problems. J

¥
F r

In thig chapter, a number of solution algorithms are
investigated‘for po§sible i;;lusion in the model. Since most non-
linear solution algorithms which could be used for problems considered
here use a problem formulation comprising an objective function
subject to a set of constraints, this formulation is adopted for the
mathematical statement. By adopting this format, a wider choice of

14

solution algorithms for the model is made possible.

To consider alternate solution algorithms, the properties of
the problem solution are first reviewed. The general criteria
requirfé for useful nonlinear solution algori&hms are then outlined
as a set of guidelines to be followed. Following a general introduc-
tion to nonlinear programming, some specific techniques are
invest;gated only so fAr'as fo ﬁ;termine if they represent feasible

~

tectmiques for.the problem. A useful solution algorithm is then

", chosen for use in the development of the econometric model.

1

o S 60 Fu )
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3.2 Choosing a Nonlinear Solution Technique

Through development of the generalized mathematical statement
for network problems and investigation of a simplified problem, the

following important solution prﬁerties are found:

1) The linear solution constraints form a convex

solution set.

2) The use of separable, concave, monotonic cost
functions results in an optimal solution which
lies on a vertex of the feasible solution

region.

3) Linear segments joining .adjacent vertices in
the solution region may have higher costs

than at either vertex.

These solution properties were demonstrated in Chapter 2, section 2.6
and illustrated in figure 2.10. 1In this study, problem types which
exhibit these solution properties are referred to as_"Concave‘

Programming" problems.

Concave programming, as used here, relates to problems in-
volving the‘minimization of a coricave objective function subject to a
set of linear constraints. Due to the nature of the problem, the
cost isograms fo;med by the objective f:nétion in the region of

interest have the same overall curvature as the convex solution set

near the location of a minimal solution (see figure 3.1 (a)). This
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property leads to the existence of local optima. Analogous to this
case is the problem of maximizing a convex objective function subject
to linear constraints. In this case, the curvature of the objective
function 1s reversed and the region of interest is on the opposite
side of the convex solution set (see figuf5>3.l (b)). It can be seen

that the solution properties of these problem types are similar so

that local optima can exist in either case.

"Convex Programming”, on the other hand, involves the
minimization of a convex objective function subject to linear
constraints as illustrated in figure 3.2 (a). Since; in the region
of interest, the sense of curvature of the objective function and
solution set is opposite, the isogram representing the minimum cost
can touch the convex solution set at only one point. Convex
programming, therefo;é, yields a global Optiﬁum. The optimum may not
necessarily lie on a vertex of the convex set. Maximization of a
concave objective function subject'to linear constraints exhibits

similar properties with the optimum being global (see figure 3.2 (b)).

’

_Consideflng the availability of convex programming algorithms
and’the possibility of a guaranteed global solution'(b, 12), it 1is
worthwhile to determine if the algorithms could be used for network
p;oblems. It is possible to transform a concave objective function
to a convex form by sign reversal but thé'optimization strategy must

_also be reversed to maximization, 1i.e.:

L
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Min (2) = Max (~2)
where: 2 = objective fct.

The problem now takes the form of the maximization of a convex
objective function subject to linear constraints which, unfortunately,
still comes under the category of concave programming as illustrated
in figure 3.1 (b). Transformation of the problem does not lead to a
global solution implying that convex programming cannot be applied to
problems of this type.and solution algorithms intended for specific

application to convex problems cannot be used.

In general, computational efficiency and accuracy of a solu-
tion algorithm are mutually incompatible and several criteria are
required to describe the effectiveness of any procedure for the

golution of network problems. The most important criteria are:

‘1) Execution time: Closely related to this is the

number of functional evaluations required to

attain the final solution.

2) Computer storage requirements.

3) Accuracy.

£

4) Computational stability: The ability of. the

algorithm to detect errors in the problem ox

diagnose nonconvergence.

| [t S AN REI AL I AN M 7.
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5) Ease of uge: It must be remembered that the
total cost of problem solving includes the
time taken for problem formulation and

~ coding.
ﬁ#«-

6) TForm of the objective function: Certain solu-

tion algoritims (i.e. gradient search techniques)

may require djifferentiable functions.

When evaluating the above criteria for different solution
algorithms, extensive testing may be required, especially in
determining the execution times, accuracy of the solution and
stability of the aigorithm. Himmelblau (19) reports on an extensive
-study comparing che performance of nonlinear solution algorithms

which is helpful in determining the usefulness of certain algorithms.

Computer storage requirements may limit the size of problem
which can be solveci. "For example, experience has shown that the
storage requirements for a typical 45 node, 71 link network using a
linear formulation can exceed the capabilities of many systems. This

leads to the use éf storage saving techniques which generally impose

a penalty in execution costs.

In view of the imporéance of storage requirements, two
indices are developed which are used to compare the storage require-
ments of different solugion algorithms when it appears that the
gtorage may be an'impértant criteria. . To provide a basis for

" comparison, the indices. are initially evaluated assuming that the

-

ﬂl@%ﬁ%’s&mp»mﬂ.-.,w B
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problem may be presented in linear programming form.
(1) Mathematical Statement Size

Using the mathematical model defined by
equation 2.10, one cost function is required;
for each of the NQ flow variables, where NQ
= 2 x number of links + number of nodes (N).
The problem constraints are formed by N

constraint eqﬁations. Witgna linear formula-

tion, the following arrays would result:

Cost array - (1 x NQ)

Structural matrix - (N x NQ)
(2) Solution Algorithm Storage Requirements

This index is an extension of the first.
Assuming that the problem is a linear prograp-
ming one, the SIMPLEX algorithm can be used
(33), for which the following storéée is

required.
((2+N) xNQ) + ((6 +N) xN)

_For many network prdblems, the parameters NQ
and N are fo;nd to be approximately related by
the ratio %? = 4, Using this ratio, tLe
algorithm stpragé requirements |for -dif-

ferent network problem sizes mAy be tabulated.
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N 10 20 40 80 100

Storage 640 2280 8560 33120 51400

The increase in storage 1s seen to be exponential
with N, demonstrating the difficulty involved in
solving larger network problems.‘ The storage
calculated above does not include additional
storage for further required network para-
meters, .This additional storage does not vary
for different solution algorithms since it is

dependent only upon the network properties.

In the sections which follow, different sbl;tion techniques
are discussed and, where appropriate, comparison of the required
machine storage 1s made using the indices developed here. The second
index is more important bince it provides the actual storage required

by an algorithm in its applicatibn._

3.3 Gradient Projection Method

Solution techg%queé which use the method of projection, or
gradient search ;ethods, are Aften_referred to as methods of '"feasible
directions" or '"large-step gradient" methads. They are sometimes
classed as linearization methods since, when applied to problems with
linear constraints, they generally utilize the constraints in their
sofution techgique as‘do‘linear algorithms. Some graéégng search

algorithms also use linearization techniques to approximate nonlinear

constra;ntsz
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A gradient search method devéloped by J.B. Rosen 1is perhapé
the best known, sinse readily available commercial computer codes of
the algorithm exist (24, 32). Other common gradient projection
pethods include, the Generalized Gradient Search (GGS) program,
developed by K.E. Cfoas and W.L. Kephart, the Davidon-Fletcher-
Powell algorithm, the Method of Feasible Directions by G. Zoutendijk
and thd Generalized Reduced Gradient (GRG) algorithm by J. Carpentier

and J. Abadic (19).

The general dequence of steps followed by all projection

methods is as follows:

1) The algorithm starts with ap,initial feasible

solution.

2) The feasibje direction is determined in

which a lower cost solution may be found.

3) A step of a specified or calculated length is

taken in the feagible direction.to find a lower

cost solution which is gtill feasible.
. b

Steps 2 and 3 are repeated using progressively smaller step

sizes as required, until the region of uncertainty, so defined, is

acceptably small. At this point, convergence to a minigum is assumed.

.

The "feasible direction" is defined as the direction in which a small
step can be taken to improve the objective function without violating

a conitraint. The algorithms differ primarily in the manher by which

i -
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the feasible direction is calculated.

«

A form of the Rosen algorithm (24) is used in a practical
application to test its couvergence properties. This particular
version of the algorithm is useful only for linearly constrained
problems. As a starting point, the routine requires an initial
feasible solution and initial step size both of which are to be
defined by the user. The feasible direction is calculated to provide
the greaéest change in the objective function for a given step size,
by means of normalized direction vector componénts which are

determined from derivatives of the objective function with respect to

the design variables., The resulting direction vector compopents are:

My = - i=1, NQ ¢3.1)
' N 2
o 2 5@
i S
where: Mi » 1th direction vector component

3

2(Q) = objective function -

The user must supply a subroutine providing the derivatives oé the
objective éunction with respect fo each design variable. A new feasi-
ble solution éith a lower cost tﬂan the initial solution is obtained
by using the fe;sible directién.and specifi;d step size., Modifica- &

- tious ‘to the basic procedure are made when cergain copditions are’
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\

encountered. If improvement is made to the objective function and

the constraints are not violated, the step size in the next iteration
is doubled. 1If the objective function is not improved during any
iteration, the step size is halved and another attempt 1s made from
the last successful solution. If an improvement in the objective
function is obtained but one or more of the constraints is violated,
the step gize is determined which places the new point on the violated
constraint(s). Once on the constraints (i.e. on the exterior of the
convex solution set), the feasible direction is determined so that it

lies along the constraints. The direction vector components are now

calculated utilizing the constraints in the form of a Lagrangian.

28(Q) , ; 5 2.%(Q

9Qy kel 9@
Mi = im= 1, NQ (302)
NQ £ 2 |k
r [232Q@ ¢ (x 2 G(Q) )
=1 \%Y k= R ?

where: £ = the number of the violated constraints

Gk(Q) = icth constraint equation
and Ak (k = 1, 2) 1is determined from the following % equations:
’ 3

- .
Y or | 2s@  2&@). o R (a&@ 2.3
=1 gup 1 3 2 3 Q 1=1 '3 Q L3y

k=1, 2
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Iterative steps are continued until convergence is obtained within a
limit specified by the user. 1In addition to the derivatives of the
objective fgﬂction, the user must provide subroutines to specify the
objective function and any constraints. Other usger specified
variables include the number of independent variables, the number of
constraints and a step size accuracy index (i.e. the accuracy to which

the constraints are to be defined).

A sample problem is used for a brief test of the Rosen
algorithm's convergence properties. The problem is identical to the
three node network problem illustrated in figure 2.8, The stipula-
éions Sl’ S2 and D, are given the values 2.2, 1.6 and 2.0 MGD

3
respectively. The nodal states and link 1engths'are£

Node Rlevation (ft.) Link Length (miles) .
1 100 1-3 4
2 505 243 5
3 . 400

In developing the objective funcﬁion, the general cost equation used

to calculate the conveyance costs is:
[ 4

Cost =(15 . XL . QD+(200 . Q(0.004 . XL + STDS - STUS)) (3.3)

where: XL = lepgth (ft.)
" Q = flowrate (MGD)
. STDS = elevation downstream (ft.)

STUS =~ elevation upstream (ft.)

PR

et e e
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Using this equatilon, the conveyance costs for the two flow variables

in the example aré obtained through the following relations:

Ql : Cost = 316800 . Ql% + 76896 . Ql (3.4)

Q, : Cost = 396000 . Q;‘ +120 . Q,

The objective function and constraints are therefore:

Min , 2 = 316800 . Qlli + 76896 . Q1 + 396000 . QZ% + 120 . Q2 (3.5)

subject to: Q1 < 2.2

Q, 1.6

IA

Q, +Q, > 2.0

v

Inequalities are used for the constraints to facilitate
choosing alternative initial solutions. The constraints bound a con-
vex set which contains the feasible solution set. Figure 3.3 provides
r

a graphical representation of the proﬁlem using the same format as in

figure 2.10.

An optimization package 1s formed by writing the subroutines
which define the problem objective function, constraints and
derivatives of the objective f&né;ion for use by the Rosen algorithm.
The program is tested for sensitivity to the initial solution.by

making subsequent runs with different starting points. Two of the

Y
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initial solutions used are: Ql-2.0, Q2n0.8 and Q1-0.8, Q2-l.4. A

These starting points are located on figure 3.3 along with the paths
followed by the algorithm from each. The algorithm converges to

different solutions in each fase demonstrating that it is sensitive to‘the
initial solution. The Rosen algorithm therefore cannot guarantee

convergence to a global solution.

A further restriction involving the use of the Rosen
algorithm lies in the form of the objective function. A subroutine
is required which supplies the derivatives oflthe objective function.
This requirement can be easily met if the objective function 1is in an
explicit form. However, in most practical cases some design procedures
need to be carried out before costs can be calculated. An example of
this 1s in the calculation, of costéd for a pipeline in a regional water

’

supply network. Depending upon the nodal states, the flow of water

-‘between nodes is conveyed by gravity or under an induced head through

- %
pumping. When the link comprises a pump and pipeline, the pump and

pipe sizes are not uniquely defined as a Function of the flow

conditions; 'instead, a greét number of alternative solutions exist.

For a given flow, small pipe sizes Rave high head losses which

result in a larger pump size requirement. A decrease in pump size
results in a saving in pumping costs but a lafger pipe 1s required, -
resulting in higher costs for pipe materials and installation. A
suboptimization'procedure is therefore/required to determine the most
economical trade-off betweép pipe pump sizes. If the friction
head along the pipeliné 18 fﬁe designhvariable, a plot of link cost '

versus friction head can be formed to facilitate the suboptimization.
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A typical plot is shown in figure 3.4. The least costly configuration
can then be found by a single variable\g?timization technique such as
the Fibonacci method (24). This suboptimization technique provides a
very accurate method of designing the links for regional water supply
systems. Similar trade-offs in design may be necessary for other net-
work systems. In using solution algorithms which require an explicit
expression ;f the objective function, it would be necessary to
calculate finite difference approximations to each derivative by
_multiple evaluation of the objective function, or by curve fitting
techniques. When considering solution algorithms which require an
ekplicit objective function, therefore, the possibility of needing
further routines to generaée the required expressions must be

considered.

-

An advantage of using the Rosen algorithm is that no changes
need to be made to the mathematical statement of the proSlem for its
application. The algorithm would therefore fit into the model object-
ives well, The atorage requirements of the algorithm are calculated

through the use of the relation:

v

+

‘Storage = (N x (NQ + 1)) + (4 x NQ)

The storage required for.different problem sizes as shown in the last

gsection are:

[

N 10 20 40 80 - . 100
‘ Storage = 570 1950 7080 26960 41700
=+ Units ' . -

oy
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The storage requirements are very similar to that of a linear formula-

tion implying that in terms of storage only, relatively large network

problems may be handled as easily as by the linear programming method.

Gradient search techniques are applicable to both convex and
concave programming problems and, therefore, do not take advantage of
the property that the optimal solution lies on a vertex. These
methods will most likely be more expensive computationally since the
surface of the feasible region is explored and thus many more steps
are required to reach the solution. Furthermore, the solution

obtained is not necessarily a global one but may be a local optimum.

3.4 Successive Linear Approximation

The method described here is a successive linear approxima-
tion method originally developed by Griffith and Stewart (15) for the
solution of petroleum industry optimization problems. The method is
designed to be used in problems with a concave objective function
having continuous first partial derivatives and convex constraint
equations. Siddal (33) has developed an algorithm, APPROX, after
this method which is included in a subroutine package developed for
design use. This method can be used for problems with both a non-
linear objective function and nonlinear constraints if required. The
APPROX algorithm starts with a feasible point where the problem
functions are approximated by an expansion 1h a Taylor's series about
the point. Linearity is attained by dropping the nonlinear terms.
The nonlinear problem can be stated mathematically in the following

general form:

~ - v ¥

-

a dafaltam b
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Min 2 = 3(Q) (3.6)

subject to: Gj(Q) = 0 j =1, N B

where: 3(Q) = objective function (in terms

of all flowrates Qi’ i =1, NQ)

G, (Q) = jth constralnt (in terms of all

flowrates Qi’ i=1, NQ)

The constraint equations are altered slightly by placing the stipula-

tions on the left hand side. The l}inear formulation is then given

by: \
NQ ’ o
Mo 2 o= 3Q%) + T 4Q - 0,0 %_g_(&l (3.7)
. j=1 3

subject to:

NQ 3 G, (Q°)
6@ + I (q-0Q% yg—— = 0 £ =1, N

j=1 : 3

. ]

where: Qjo, j =1, NQ = feasible solution elements

or, alternately: L
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o NQ
Min 3-23 = [ V_.,6Qq, (3.8)
* j=1 J J
Q
NQ o
subject to: j;l Uij.é Qj = —Gi i=1, N

o
where: V = 9 2(Q)

P
j Q,

P - _ 0
Q Q - 0
2° = 2%

(e}
Lo 2 G,(Q")
13 3 Q,
[a] [¢]
6,° = 6,

The problem is now in a linear form in terms of the first
order corrections § Qj which is solvable by a linear programming
algorithm. Further constraints are required in addition to the ones

inherent in the problem, namely:

leQ | <m, 3 =1, NQ (3.9)

These congtraints limit the changes in Q to a small amountmj since
the linearization is only valid in a small interval around the
specified solution. Another important point which should be noted is

that 6 Q, is not necessarily positive, therefore the variables are

3
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substituted within the algorithm by the equivalent relation:
+ -
= - (3.10)
8 Qi 8 Qi 5 Qi .

-+ -
,6Q, 20

where: § Qi i

In using APPROX, the objective function and constraints must
be made available in a subroutine form. The objective function, there-
fore, does not have to be explicit but can use additiohal design
routines before calculation of the objective function value, if
necessary. %ge varigbles defining the problem size must be specified

5 as well as various parameters defining step sizes and allowable
variable tolerances. The additional constraints involving the change
in Q are built into the algorithm as well as the possibility of
negative Q values. Implementation of, the algorithm is therefore
fairly 3traightforwa§d due to this feature and also the fact that the
same mathematical statement formulation is used as that adopted for
the model (eqn. 2.10). %’

The array storage required by APPROX 1s defined by the

relation:
Storage = ((33 + 8N + 12NQ) x NQ) + ((7 x N) x N)

Therefore, the storage for different problem sizes as derived in the

previous sections are:
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N 10 20 40 80 100
Storage 24420 95040 374880 1488960 2323200
Units®

The storage required is significantly larger than that for the Rosen
algorithm or SIMPLEX implying that the application of APPROX imposes

a much lower limit on the size of problem thdt can be solved.

It is suspected that the execution times are similar for the
Rosen and APPROX algorithms. The search is nog,restricted to the
vertices in either algorithm and APPROX must calculate differentials
upon each iteration as does Rosen. The APPROX algorithm mé& not
require as many iterations to converge but this depends upon fhe

" allowable range, m for Q in each iteratiom. Thg APPROX algorithm

j’
ig easier to apply since it does not require a subroutine with the
first derivatives of the objective function. Unfortunately, the )

possibility of convergence to a local optimum still exists with the

APPROX algorithm,

3.5 Linear Separable Programming

Linear separable programming in general converts a nonlinear
- problem statement to a linear one so that a linear programming solu-

tion algorithm can be used. Separable programming can be used
' .

effectively to obtain approximate solutions to a very large class of

-
nonlinear programming problems (8, 26). The validity and accuracy of

linear approximation is often difficult to determine and must be dealt

¢

with carefully. ‘ .
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For this type of linear approximation, the objective function
should be separable, that is, it must be possible to express the
. : o
objective as the summation of a series of functions of a single design
variable:
NQ

3@ =  c@ (3.11)
' i=1 .

-

. . U
This condition holds in the case of network problems since

independent cost functions are formed for éach design variable.

The approximation used is callfg "pieéewise linear approxima-
tion" or "polygonal" app;oxﬁmatioﬁ and involves the fitting of'a ‘
series of connected line segments to a given curve, Figure 3.5
illustrates how this may be done to approximate a typical concave
cost curve. There are a number of variations on the formulation used

to convert a nonlinear problem to a plecewlse linear approximatiom.

All, however, use:the same basic method of connected linear segments. |

»

To provide some insight to the restrictions of linear sepa-
rable programming, a typical formulation is investigated. Figure 3.5

shows a typical nonlinear function of a given flowrate variable which

-

is approximated by four line segments. Thé.cost, or functional
value, C', cofréspbnding to a flowrate, Q', at any point on the

linear segmeﬁts is given by

-]

o

C, . ~-C :

i+1 i
——— Q' - Q,) Q, Q' 5Q (3.12)
Qar = - v 1 i+l .

1=0,1, 2,3

t =
C C1 +



where: C, = Cost at point Q, Q/’AAR'

Qi = Flow at ith junction joining
two linear segments
Q' = Flow value where C' is being

evaluated

-’

By using this equation, the approximated cost can. be calculated

89

be~

tween the end points i and i+l corresponding to the Q' value. The

-

Ci and Ci+1 values are predetermined and upon inspection; it is

apparent that the fraction (Q' - 9,) / .(Q - Q,) is.a number
P T i1 T S0 S

between. 0 and 1 when Q' is between Q dnd Qi+l" Equation 3,12 can

tferefore be simplified in the following manner:

Q' - Q

let A = 6————17i%-
i+] i
- 1 - -
so that: C Ci + (Ci+1 Ci) A

and by letting Ay = 1 - X and A . =},

equation 3.13 becomes:

1 =
Ch =2 G+ M Can

subject to: Ai + Ai+1 = 1

vhere: o Ai , Ai+1 >0

or (the equivalent): Qi Q' s Qi+l

(3.13)

(3.14)

%
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Graphically, Ai and Xi+l may be seen to be weighting factors

Jhereby C' 18 expressed in terms of the C values at the extremities

of the line segment. Extending this notion to include all of the liae

~

segments we obtain:

: 4 : 4 o
C'= § X C where: L A, = 1° i (3.15)
=0 * 1 =0 * )
' ) A 20,1 =1, 4
. T 4
and Q= I A, Q
: g0 * 1

-

Since the invalues are predetermined for each flow variable, the

design variable Q is uniquely defined by the weighting factors Ai.
Thus the problem is restated in terms of theunknowns‘kij (1 a1l -4
say, j % 1, NQ) by replacing each flow variable with a set of

aeighfing factors.

Two prortant additional restrictions must- be introduced -

for this formulation to be valid:
‘ ' ' A

-~
1) Not more than two of Ai can havg nonzero

values,’

2) The nonzero A's must be adjacent.

1f, by chance, the flowrate being costed is coincident with one of

the intersectdon poings, Qi,i = 1, 4, the value of A, is 1.0 and all

i
other A's = 0.0:
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Each cost function can be transformed to a ‘plecewise linear
function using the formulation of equations 3.15 but certain initial
steps are required. Firstl&, the linear segments must be chosen to

minimize the error or differences between the real and linearized

curve, fhis may involve graphing or otherwise preprocessing the

_ curves as in figure 3.5. The range of each design variable must be

decided upon, which in turn defdines the end point of the linear

segments.,

In the formulation, the constraints are altered through the
replacement of each flow variable, Q, by the last equation in 3.15.
Each flow varilable is therefore replaced by a set of new variables,

{i’ with the number in the set depending upon the number of linear

segments used in the correspond;n% cost function. The plecewise

linear formulation of the problem is solvablehby a linear programming

algorithm as long as certain modifications are made to ensure that
not mote than two Ai variables, which belong to the same flow
variable will be nonzero and they must be adjacent. Miller (14)

discusses a m?dified version of the SIMPLEX algorithm which can be
h) ‘ > .

ugsed for thiglapplication.

* It is important to notice that, in this method of formula~

-

tion, the number of design variables is increased greatly and in

direct proportion to the number of linear segments used in the

’

approximation, Also, an extra constraint equation (i.e. I Ai = 1)

is introduced for each flowrate variafle.
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A lineatgseparable method presented by G B. Dantzig (9)
uses upper bounds to replace the additional constraints required iﬁ
the above method thereby not increasing the problem size. ,Instead of
specifying the end ﬁoints of the linear segmeﬁts; the slopes and
léngths of the segments are used to define the nonlinear functions.
This method can be used only for convex programﬁing since the slopes
of s&écessive chords on the approximated cost curve must increase
with,the value of the design varifible. As the‘design variable
increases, the minimum objective value is obtained by moving along
the polygonal expression from the origin. Due to the increasing
slope of the cost curve,points close to the origin yield optimal
solutions. ﬁith & concave function, however, the sloﬁe decreases with
increasing Q and the segment farthest away from the origin yields the
lowest increase in cost with an increase in Q. Therefore, when using

slopes for a concave objective function, the segments are not

assigned sequentially and the method fails.

The main disadvantage of this Op;imization strategy still
remains as the increase in the number of vaéiables and constraints,
henﬁe increasing storage requirements., The 8ize of the modified
m;thematical statement depends upon the number of linear segments
used to represent thé objective function, If it is a;sumed that
»chree segménts are used;‘then four new variables replacde each

original flow variable. Also, an additional.constraint is introduced

for each set of new variables replacing the old. The‘new'array sizeéi

Ed

»for the mathematical statement are:

Yerr
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. Cost array: (4NQ x 1)
Structural matrix: (N x 4NQ)

Additional constraints: (NQ x 4NQ)

Tye modified linear algorithm required to solve the linear
separabie problem most likely requires additional storage to satisfy
the restrictions. However, assuming that the gtorage requirements to
not‘change from that of SIMPLEX, the array stor;ge for different size

'

problems is given by:

Storage = ((2 + N + NQ) x 4NQ) + ((6 + N + NQ) x (N x NQ))-¢’

N 10 20 40 80 100

Storage 11120 42646 170480 676960 1056200
Units

The storage requirements are generally twenty times greater than for

a 1ingar formulation implying that the limiting problem size.is

substantially smaller.

The execution times involved are likely to be higher than in
a linear problem since the introduction of ﬁddieignél varigbles and a
. L

finer grid of the polynomial expression regults in an-increase in the

number of SIMPLEX steps to solution.

In his paper on separable programming, C.E. Miller (14) .

reports.on the limitations of the method:
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"There is, in general, no way to show that the
particular solution produced by the algofithm is

a global optimum., Ordinarily one has smooth
nonlinear functions, and the polygonal functions
are merely approximations to local optima of the
underlying smooth model, evén though the objective
value is nearly optimum. Eatimatihg the extent of
such discrepancies is a difficult proB}em*
intimately related to an exhaustive sensitivity
analysis of the model. The previously mentioned
tricks can increase model sfzt substantially and
thus restrict the size of fhe prﬁblem which can be

computed economically. The number of simplex steps

—
-~

to optimum is increased by the use of ﬁany sets of
special variables, and 1s further ‘increased. by the

use of fine grids in the polygonal approximations".

b3

, This method, therefore, cannot ensure convergence to a glohal optimum,

but within its limitations the method has, in practice, produced

©
4

local solutions which are useful. w

3.6 Fixed Charge Algorithm

The fixed charge method iy a variation of linear separable

. 5
programming. in which the cost fgﬂction is approximated by a single
linear segment plus a fixed/éﬁﬁrge. Figure 3.6 demonstrates how a

\
concave cost curve can be épproximaged in this manner. The cost

N
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function is actually represented by two linear segments, one being a

vertical line of length B forming the fixed cost a;; the second line-

providing a rough approximation to the slope or relationship between

cost and flow, The two gegments retain the properties of concavity

observed with the original functionm.

)

W. Hirsch and G.B. Dantzig (9) present a mathematical
formulation of the fixed charge problem for separable cost functions.

The cost takes the general form:

KQ+B 1f Q>0

' C = ' ) (3.16)
o if Q=20
. /
This can be represented by the following formulation: ) \Zd
C=XQ+468B . . (3.17)

subject to: Q s S u

where: 6§ =0, 1

and u = An upper bound on Q

" The coqstraiﬁt "Q ¢ § u" ensures that Q=0 if &=0. Whgn the
formulation in 3.17 is used to replace.the cost functions in a net-
work problem, a new set of variables (5)4i8 introduced, the number
being equal to the number of design flows. Two additional

constraints are also introduced for each §,
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Thé fixed charge formulation is similar to.a strictly iinear
problém due to the occurrence of the single "KQ'" term to represent
ghe rate of change of cost with respect to the floﬁ&ate. Th; ;nly
deviation from a strictly linear problem 1is the exﬂgtence of a fixed
charge B.. It appears therefore that ;he method allo;é for a global
solution gince the oéjective function is, planar, as ogposed to-
concave, aﬁq that the fixed charge only introduces a variable datum,

the location of which depends upon“which.variables are in the solu-

tion.

Although the fixed charge method appears useful for network
AS

problems, since it results in a global solufion, there are inherent

disadvantages which must be considered. As with separable

'programming, the numfer of variables,and congtraints to the problem

-increaée which can result in storage.difficulties with larger net-

N ' works. More iﬁporC;ntly, the fixed charge formulation is a very poor
approximation ta the actual éhapé gé the cost functiomns and cannot
accurgcely repfésent the curvature along the cdst,cufves. Fdrtber- )
more, b;cause:of the poor repregsentation of cost functions, thé

c .

» global solution obtained may not be close to the true optimum for the
problem dépending upon the approximation used. knéther disadvantage
of this formulation is the occurrence of mixed-ingeger programming

. which is more Eomplex than real variable p;ogramming. It appears,

therefore, that for network problems the disadvantages with fixed
(/ charge programming outweigh‘the‘advantage of obtaining a global

\
solution which may not be the true optimum, A

&
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3.7 Iterative Linear Programming

"Iterative Linear Prograhming" (ILP) is a name used for a
solution technique which uses a linear approximation to a nonlinear
objective function and the SIMPLEX algorithm in an iterative manner
to obtain a solution to concave programming problems. Th; storage
requirements are only‘slightly larger than that of a linear formula-

tion using SIMPLEX apd through testing has generally been found to

have good convergence properties.

The ILP algorithm was implemented in an early version of the
‘econometric model for an application to a regionél watef supply net-
work (37). Thg method was designed to take advantage of the
relatively small storage requirements, widespread availability and
computational efficiency of the SIMPLEX algorithm, Through the use
of the SIMPLEX algorithm, the method confines its seayé% to the
vertices of the solution space resulting in a more economical

technique.

- The ILP alg?rithm proceeds by calculaéing a cost for each“
design variable based on an initial agssumed value or, in the case of
zero flowrates,a very small default value. A cost coefficient is
then calculated for each design variable by dividing eacﬁ S
corresponding cost by the real or assumed flowrate. The linear
approximation .to the nonlinear cost function is therefore a secant
]

forned between the origin and the point on the cogt curve associated '

with the assumed flowrate. With the cost coefficients representing



98

an approximation to the original cost function, the problem is now
in the generél linear form:
NQ

Min & = E CQ (3.18)
* 1=1

subject to: A . Q =B

where: Ci = cost coefficient for design

variable'Qi

and A . Q=B are the constraifft eqns.

This linear formulation is readily solvable by SIMPLEX or an equivalent
linear programming algorithm. Subroutine SIMPLE (33) 1is used in this
case which implements a version of the revised SIMPLEX algofithm.

After a solution has been obtained, the new flowrates are compared

N

with the ofiginal vaiues. If the flowrates differ significantly, the
cost coefficients are recalculated based upon the new solution and.
the linear programming algorithm is again applied. " This iterative
procedure is used until tﬁe_vector of calculated fiow variables is
identical, within desigﬁ tolerances, to that from which the éost co-

efficients were calgulated. . {:;::5

When applyting ILP, a.slight tiodification must be made to the

mathematical formulation. Due to the nature of SIMPLEX, the cost
coefficients calculated must represent the design variables. In

collection networks, however, the quantity of material processed at a

processing'node, i, 18 given by the difference between the stipulation

72
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and- the slack variable that node, Since’ SIMPLEX

o 54 -Qng-Nu”

assoclates the cost coefficient for processing costs with the . slack

o

variabie, QNQ—N+1’ only and not the true processing quantity,
Si—QNQ7N+1”fﬁbe sign of the cost.,coefficient must be reversed. This
change does not affect the solution mechanism since the stipulationm, f
Si’ is a constant. The true processing quantity must be used, how-

everi in the calculation of the cost coefficients. This modification

is required only for processing nodes in-distribution netwo;ks since

in collection networks the processing quantity is ;epr;sented by the

slack variable only. Furthermore, the modification does not present

any difficulties in the application of the iLP algop&thm since it can

be done within the algorithm itself, thereby avoiding any changes

b
requived for the basic model.

e

Good results were obtained\in the specific study to which the
model was applied. 1In further tegting with problems of practical

size, convergence was both succebsful and rapid. For most problems,

‘convergence was attained in tlree to four iterations. As with other

techniques, however, the pfthod does not guarantee convergence to a

global optimum, hence the optimum found may be a local one. It is

important to realize that the\ocal optimum exists in the nonlinear

problem and that th%nsolution o the linearized problem is global,

guaranteed by the SIMPLEX algorithm. The ILP algorithm is reluctant
to 180k beyond a local minimum due to apparently high cost coefficients .
assigned to a zero valued flow variable. This is due to the relatively

low flowrate value used to calculate the cost coefficilent. Under-

L]

’ : . . ' ' , 1
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standing of this concept is facilitated through the use of an example.
A thr'ee node distribution network is shown in figure 2.8 with its
corresponding cost functions plotted in figure 3.7 (a). For
simpliciéy, only transportation costs are included in the problema.

. For an initial approximation, it is assumed that Q1=Q2-D3/2. Figure
3.7 (a) illustrates the cost coe