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ABSTRACT

Most of the design of concrete gravity dams is based on a two dimensional

analysis which is suitable for monoliths with smooth, unkeyed, contraction joints.

However, when keyed contraction joints are used. it is expected that the dam monoliths

will interact in a manner that may affect the overall response of the system. The

objective of this study is to investigate the seismic behaviour of concrete gravity dams,

built with keyed contraction joints. including the effect of monoliths interaction. The

scope of research work included: 1) development ofa simplified procedure to investigate

the effect of monoliths interaction on the seismic behaviour of the structure, 2) after this

was proved to be important. a detailed and comprehensive procedure was developed and

3) investigation of the parameters which affect the response of the structure and

significantly influence monoliths interaction.

In the simplified procedure, each monolith of the dam is modeled using beam

elements which has the advantages of keeping the number of degrees of freedom to a

minimum and being available in most of structural engineering computer codes. The

approximate added mass t~hnique is used to simulate the hydrodynamic effects

when the dam and reservoir are subjected to an earthquake ground motion. The

importance of including monoliths interaction is ill~strated by analyzing different cross-

sections of concrete gravity dams.

In the proposed detailed analysis of gravity dams, a substructuring technique is

employed to model the structure. The dam is divided into a number of substructures

equal to the number of monoliths. Each monolith is then reduced to a few degrees of
C

iii



freedom on the upstream face and Ritz vectors are used to represent internal degrees of

freedom. The analysis is carried out in the frequency domain to include the frequency­

dependent terms which appear when including reservoir-darn-foundation interactions. The

results obtained are compared to typical three-dimensional analysis and a good agreement

is obtained. It is noted that the importance of monoliths interaction is dependent on two

factors; 1) the type of contraction joints used in construction and 2) the longitudinal

profile of the dam.

The effect of monoliths interaction is to increase the natural frequencies of the

structure and as a result leads to a change in its overall response. It is concluded that in

many cases the effect of monoliths interaction is important and should be included in the

analysis. The geometry and material properties of contraction joints have a significant

effect on the overall response of the dam. Dependinz on the crack width, the shear

behaviour of the joints varies widely. The longitudinal profile of the dam was also found

to have a substantial effect on monoliths interaction. Important variations in the response

of the dam, from that calculated using typical two-dimensional analysis, is obtained for

some cases. This is usually the case for short dams with rigid monoliths at the sides or

for dams built in steep canyons.
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