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Abstract

In this thesis. a new paradigm is proposed for designing the transmitter and receiver for
guadrature-amplitude-medulated signalling over a .obile radio channel. The new paradigm
is based on a discrete-multipath linear time-variant model of the mobile radio channel, and
hence the title of the thesis. The time-variant input-output relationship of the discrete-
multipath ciannel (DMC) is governed by a set of parameters which can be obtained in
finite time by probing, that is. by transmitting a pre-assigned signal and then perform-
ing computations on the received signal. Therefore, once the parameters of the DMC's
input-output relationship have been obtained in this manner. the receiver can. in principle.
deterriine the subsequently tiansmitted data-carryving signal, or, the data itself. by per-
forming computations on the received signal, which operation is referred to as signalling.!

Thus, the thesis proposes a philosophy of design based on alternate probing and sig-
nalling, and shows that when the transmitted signal is generated by quadrature amplitude
modulation (QAM) the composition of QAM and DMC lends itself to this philosophy of
design, even in the presence of intersymbol interference (ISI) and additive white Gaussian
noise (AWGN).

As regards probing, it is shown that by transmitting a suitable quadrature-amplitude-
modulated signal all parameters of the DMC, or, rather, of the composition of QAM and
DMC, can be estimated in the presence of AWGN. In particular, the maximum-likelihood
method of estimation is shown to have the statistical properties needed to justify the phi-
losophy of design.

As regards signalling, based on the assumption that the parameters of the DMC, or,
rather, of the composition of QAM and DMC, are known by the receiver, it is shown how

the receiver may decide which data sequence was likely transmitted, taking into account

1The term signalling also refers in a wide sense to the combined operation of probing and signalling, as
it does for example in the title of the thesis.

iv



ISI and AWGN according to some optimal rule. Motivated by the classical receiver design
principles used for quadrature-amplitude-modulated signalling over a linear time-invariant

channel in the presence of ISI and AWGN. namely.

p—

. linear zero-forcing equalizer.

ho
.

decision-feedback zero-forcing equalizer,

3. linear mean-square-error equalizer.

4. decision-feedback mean-square-error equalizer,

5. maximum-likelihood sequence estimator of the Forney-type.

6. maximum-likelihood sequence estimator of the Ungerboeck-type,

the thesis shows how these principles can be generalized for quadrature-amplitude-modulated
signalling over a DMC in the presence of ISI and AWGN. Despite the DMC's being time-
variant, these generalized receivers can be implemented with a bank of continuous-time
time-invariant filters at the front.

The thesis, although mainly theoretical, illustrates some of the above methods through
computer simulations. More specifically, numerical results are given for probing by maximum-
likelihood method and signalling by a linear zero-forcing equalizer, under various system

specifications and scenarios involving the geometry of propagation and speeds of movement.
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Chapter 1

Introduction

1.1 The Context of the Thesis

This thesis addresses a fundamental problem that arises in mobile radio communications.
The primary aim of this chaptar is to explain how exactly the problem arises, and thereby
Jjustify the choice of the title “Quadrature- Amplitude-Modulated Signalling over a Discrete-
Multipath Linear Time-Variant Channel,”

The last two decades have seen an intensification of research activity in the field of
mobile radio communications. This intensification has been driven by the realization that
the existing mobile communications technologies, based on analog modulations, will soon
be unable to cope with the fast increasing demand for services. Although the aim of
research has had many facets, the overall aim has been to provide reliable voice and data
communications using as little resources — mairly, spectral occupancy and signal power —
as possible. The requirements of spectral efficiency and integrability of voice and data have
strongly suggested the use of digital modulations. But digital modulations when used in
conjunction with the conventional receiver techpiques — the techniques used in line-of-sight
point-to-point digital microwave radio, for example - have failed to provide the required
level of reliability.

This failure can be attributed to the rapid and seemingly random variations in the
impulse response characteristics of the mobile radic communications channel that is in
effect between moving transmitters and receivers. To gain some insight into the cause of
failure, suppose that a purely sinusoidal signal - an unmodulated carrier, for example - is

being transmitted in a mobile communications context. Owing to the rapid variations in

1
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the channel characteristics. the received signal will exhibit seemingly random fluctuations in
the instantaneous frequency and amplitude so tnat it can hardly be considered sinusoidal.
This phenomenon has serious implications for those digital modulations that depend on

! would

carrier synchronization, for carrier svnchronization, at least in the traditional sense.
be impossible to achieve. This is especially so when the carrier frequency and the speed
of movement are high, for the rate of fluctuation in the received signal would then be
comparable to the rate of signalling. In loose terms, this thesis is concerned with designing
receivers for digital signalling over mobile radio communications channels that exhibit rapid
variations in their impulse response characteristics.

It has widely been claimed that a mobile radio communications channel that exhibits
rapid variations in its impulsé response characteristics cannot be characterized in a de-
terministic sense, especially if the characterization must be simple enough to be useful in
designing receivers. Perhaps as a result, all techniques for designing receivers for such
rapidly varying channels have been based on stochastic characterizations of the channels.
This thesis, however, demonstrates that there are certain tvpes of mobile radio communica-
tions channels that can be characterized in a deterministic sense regardless of the rapidity
of variations in their impulse response characteristics. This thesis further demonstrates
the utility of this deterministic characterization in designing receivers and analyzing their
performances. The techniques presented in this thesis have their roots in the solutions to
the classical problem of “Quadrature- Amplitude-Modulated Signalling over a Linear Time-
Invariant Channel.” In fact, the problem addressed in this thesis, as stated in the title, can

be considered as a generalization of the aforementioned classical problem.

1.1.1 The Organization of the Chapter

The rest of this chapter is organized as follows. In section 1.2, a model of the mobile
radio channel is developed on the basis of certain postulates; in system-theoretic terms, the
mode] is linear and time-variant. In section 1.3, the notion of the mobile radio channel’s
being random or stochastic is briefly reviewed. In section 1.4, some examples of mobile
radio channels that may be considered as being deterministic are given, and a time-variant
mobile radio channel termed “Discrete-Multipath Channel” is introduced, with a claim

! A technique proposed in chapter 2 can be considered as a generalized method of carrier synchronization.
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that it can be considered as being deterministic. In section 1.5. the classical problem
of “Quadrature-Amplitude-Modulated Signalling over a Linear Time-Invariant Channel™
is discussed with emphasis on the notion of intersymbol interference. In section 1.6, the
problem of “Quadrature- Amplitude-Modulated Signalling over a Mobile Radio Channel”
is discussed with emphasis on the implications of the channel's being time-variant. In
section 1.7. a new philosophy is proposed for designing the transmitter and receiver for
quadrature-amplitude-modulated signalling over a mobile radio channel of a certain 1 ype,
and thereby the problem addressed in the thesis. as stated in the title. is introduced. The
specific contributions made by the thesis toward substantiating the proposed philosophy

are outlined. In section 1.8, the organization of the rest of the thesis is presented.

1.2 The Mobile Radio Communications Channel

1.2.1 Multipath Propagation, Fading

In a mobile radio communications scenario, the electromagnetic energy radiated in an omni-
directional manner can reach surrounding locations of interest by line-of-sight propagation
and/or by reflections and scattering from cbjects such as buildings, trees, vehicles, and
mountains, and also by diffraction [32]. Thus, the propagation of electromagnetic energy
can be considered as taking place along multiple paths. This characteristic mode of propa-
gation, usually known as multipath propagation, is both a blessing and a curse; on the one
hand, it makgs communication possible, in principle, even in the absence of the line-of-sight;
on the other hand, it is at the root of the failure of those digital modulations that depend
on carrier synchronization.

To gain some insight into this negative aspect of multipath propagation, suppose that
a pure sinusoidal signal - an unmodulated carrier, for example - is being transmitted, The
receiver would see the sum of the sinusoidal signals received over the various paths. As-
suming the transmitter, receiver, and all reflecting, scattering, and diffracting objects to be
stationary, the component sinusoidals would be of the same frequency, as at the transmitter,
but of possibly'diﬁ‘erent amplitudes and phases. Since the phases of the components would
be sensitively dependent on the electrical lengths of the respective paths of propagation, the
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amplitude and phase of the combined sinusoidal signal as seen by the receiver would be sen-
sitively dependent on the spatiai location of the receiver.? If the receiver is in motion. this
spatial variation would be seen as a temporal fluctuation of the effective channel response.
the rate of fluctuation being higher for higher speeds of movement. In the prevalance of
a multitude of paths, the fluctuation would be rapid and appear 1o be random. and the
received signal’s strength would fall to undetectably low levels in an unpredictable manner.
Therefore, this phenomenon of fluctuation has been dubbed fading.

It may seem that the undesirable phenomenon of fading can be avoided by selectively re-
ceiving only the strongest component. the line-of-sight component perhaps. But there may
not be a line-of-sight, and, amongst the other components, none may be strong enough.
Even if there were a strong component. an antenna with high directivity and tracking capa-
bilities would be needed to receive it; using such an antenna is an impractical proposition
for portable transceivers. Fading is therefore considered unavoidable.

The discussion so far about fading has been qualitative. Fading is but one effect of
multipath propagation. To obtain a quantitative understanding of fading and anry other
effects of multipath propagation, one must consider multipath propagation in a general
setting, where the transmitted signal may be non-sinusoidal and the transmitter, receiver,

and all reflecting, scattering, and diffracting objects may be moving.

1.2.2 Postulates on Multipath Propagation

A mathematical model that would adequately reflect the effects of multipath propagation
in a general setting can be developed based on the following postulates on multipath prop-

agation:

1. The phenomena of line-of-sight propagation, reflection, scattering, and diffraction are
all linear; in other words, each path of propagation, when considered as a channel, is

linear.

2. In the vicinity of the receiver, the electromagnetic energy associated with each path

propagates as a linearly polarized plane wave.d

In analogy with an improperly terminated transmission line, a spatial standing wave may be said to
exist,

*When sinusoidal signals are involved, circular and elliptic polarizations can be handled by appropriately
decomposing them into orthogonal linear polarizations.
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3. The receiver sees the sum of the effects of all the paths. or equivalently the additive
interference of the aforementioned plane waves.
According to this last postulate. multipath propagation. per se. can be characterized by
linear superposition as soon as propagation over a single path has been characterized.
1.2.3 Propagation over a Single-Path in a General Setting

Assume there to be only one path of propagation from the transmitter to the receiver. Also
assume the transmitter. receiver. and all reflecting. scattering. and diffracting objects 10 be
either stationary or moving with constant velocity. that is. moving rectilinearly with constant
speed. According to the first and the second postulates, there is no loss of genéraljt)' in

restricting consideration to the following:
1. There is only the line-of-sight path.
2. The transmitter. and all reflecting. scattering. and difiracting objects are stationary.

3. The receiver is either stationary or moving with constant velocity.

An Arbitrary Signal

Assume the signal z(t) to be transmitted, and consider its reception in the vicinity of a

reference location. The received signal y(t), as a function of location of the receiver and

time, is given by
¥(t) = Bz ((c(t - 7} + d)/c), (1.1

where
1. cis the speed of propagation of the electromagnetic wave,
2. 7 is the time of propagation up to the reference location,

3. d is the distance of the receiver measured from the reference location in the direction

perpendicular to the planar wavefront and opposite to that of propagation,

4. B is the gain* of propagation, which is assumed to be relatively independent of d in
the vicinity of the reference location.

*More appropriately, 3 is the scaling factor that represents the attenuation.
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This representation is known as the travelling wave representation. If ¢ is the velocity of the
receiver in the direction perpendicular to the wavefront and opposite to that of propagation,
then

d = ut. (1.2)

Using this, the received signal y(t), as a function of time alone, is giver by
y(t)=Bz((1+vfe)t—7). (1.3)

Thus, the received signal is a time-contracted, time-translated, and scaled version of the

transmitted signal.

A Pure Sinusoidal Signal, Doppler Shift

Let z(t) = sinwgt be the transmitted signal. The received signa! y(t) is then given by

¥(t) = Bsin(wo((1 + v/e)t — 7). (1.4)
The time-contraction of the signal manifests itself in the frequency shift of wov/c rad/s
known as the Doppler shift.
A Narrowband Signal

Let R (z(t)e/“0t) be the transmitted narrowband signal with z(t) being a complex-valued
lowpass signal. The received signal R (y(t)e’*0!) is then given by

y(1)e?t = Bz ((1+ v/c)t — 1) eenll+v/e)t=7) (13)
or, equivalently,
y(t) = Be™ 07z ((1+ v/c)t — 1) & e, (1.6)

Since z(t) is a lowpass signal, and since 1 + v/c = 1 typically, the following approximation
is possible:
o~ —Jwor jERY 4
y(t) = Be z(t—r)e "t (1.7)

Observe that z(t) may be the complex envelope [11] of the transmitted narrowband signal,
in which case y(t) would be the complex envelope of the received narrowband signal. Thus,

when a narrowband signal propagates over a single path, its complex envelope undergoes a
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delay, phase change. Doppler shift. and (real) scalirg. In theory. r(t) can be reconstructed
from y(t) given 3. v. and 7. But. in practice. .y may be very large and r may not be
kiiown accurately enough to determine the phase change to within 2% radians. Therefore.
the phase change must be considered as being independent of the delay, and y(f) must be
considered as

y(t) = Fz(t — r)el 5 (1.8)
with 3 being complex. Thus, when a narrowband signal propagates over a single path, its.
complex envelope undergoes a delay. Doppler shift. and complex scaling or gain. The trans-

mitted signal will henceforth be assumed to be of the narrowband-type. and the received

signal will be approximated as above.

1.2.4 Multipath Propagation of Narrowband Signals

From the discussions of the previous section, every path can be associated with a triple

(8,w, 7).

Discrete-Multipath Propagation

Multipath propagation where the set of pairs (w,7) is discrete, in the two-dimensional
plane, is said to be discrete. Discrete-multipath propagation can be characterized by a

summation. Thus, the complex envelopes z(t) and y(¢) of the transmitted and received
signals respectively are related by

y(t) = 3 Bre*z(t - 1), (1.9)
k
where k runs over a set of path indices; the variables 8y, wg, and ¢ are the gain, Doppler

shift, and delay respectively of the kth path.

Diffuse-Multipath Propagation

Multjpath propagation where the set of pairs (w, ) is a continuum, in the two-dimensional
plane, is said to be diffuse. Diffuse-multipath propagation must in general be characterized

by an integral. Thus, the complex envelopes z(t) and y(t) of the transmitted and received
signals respectively are related by

y(t) = f j B(w, 7)e™ a(t — T)dwdr, (1.10)
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where 3(w, 7) is possibly a continuous complex-valued function.

General Remarks

1. Observe that discrete-multipath propagation can also be characterized by an integral
using

Blw,T) = Z Bib(w — wi)d(T — %), (1.11)
k
where §(t) is the Dirac delta function.

2. Defining
ot )= [ Blw,m)eao, (1.12)

in the case of diffuse-multipath propagation, or
ot 7y =D Bee*6(T — 1), (1.13)
k
in the case of discrete-multipath propagation, one obtains

y(t) = / (1, 7)x(t — 7)dr, (1.14)

which resembles the input-output relationship of a linear time-variant channel. Thus,
from a system-theoretic point of view, the mobile radio communications channel can
be considered a linear time-variant channel, and the phenomenon of fading can be
considered the manifestation of the channel’s being time-variant.

1.2.5 A Classification of Multipath Propagation

Time-Selective Multipath Propagation

Multipath propagation where all paths have the same delay 7y is said to be time-selective
for using B(w,7) = Bo(w)é(t — 7o) one obtains the time-selective relationship

?

y(t} = z(t — 7o)¢o(2), (1.15)

where

do(t) = [ Bolw)etdus. (1.16)
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Frequency-Selective Multipath Propagation

Multipath propagation where all paths have the same Doppler shift v is said to be frequency-

selective, for using 3(w,7) = Fp(7)6(w — wo) one obtains the relationship
y(1) = f Bo(F)etz(t — 7)dr. (117)
which, when written in terms of the Fourier transform®
) = f 2(t)eI (1.18)
of z(t) and those of 8o(7) and y(t), similarly, yields the frequency-selective relationship

(e + wo) = Bo(w)E(w). (1.19)

Time- and Frequency-Selective Multipath Propagation

Multipath propagation that does not fali into one of the above classes is said to be time-
and frequency-selective, for the relationship between the transmitted and received signals
has the same form in both time and frequency domains.

In reality, the underlying multipath propagation of a mobile radio channel will be time-
selective to some degree and frequency-selective to some degree; nevertheless, the purely
time-selective and the purely frequency-selective models are useful in visualizing the bound-

ary behaviour when z(t) has small bandwidth or short duration respectively.

1.3 Stochastic Characterization of Mobile Radio Channels

It has widely been claimed that mobile radio communications channels should be considered
as being random or stochastic (see [32], [19]). Such claims can be interpreted as saying that
the particular channel realization that a mobile radio transmitter/receiver will experience,
at a certain locality in space and time, cannot be known a priort with certainty.

One way of dealing with this situation is to characterize the ensemble of channels that a
mobile radio receiver may experience in a region of a particular topogra.phy/terra.in. This is
the essence of stochastic characterization of mobile radio channels. In stochastic character-
ization, usually, the number of paths are assumed to be large, and, therefore, no distinction

is made between discrete-multipath propagation and diffuse-multipath propagation.

This convention of denoting the Fourier transform with a” (‘hat’} will henceforth be followed.
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When a mobile radio channel has a large number of paths. the central limit theorem
can be invoked to deduce, under some additiona' assumptions, that the random function
f{w,7), or a component thereof, has a Gaussian probability density.® This approach has
been used by Clarke[6} and others (see [32] and the references therein) to develop stochastic
models of time-selective mobile radio channels. It is also claimed[32] that the assumption
that there is 2 large number of paths is not crucial, because the models are approximately

valid provided there are at least six paths.”

1.4 Deterministic Characterization of Mobile Radio Chan-
nels

The claim that a mobile radio channel cannot be characterized in a deterministic manner
was perhaps based on the belief that such a characterization should explicitly involve the
geometric positions and the velocities of the transmitter, receiver, and reflecting, scattering,
and diffracting objects. This claim is wrong, for instance, if 2 mobile radio channel is known
a priori to be frequency-selective with wy = 0 (c.f. the discussion in section 1.2.3), for the

time-invariant input-output relationship

(1) = f Bo(r)z(t - 7)dr (1.21)

of such a channel is characterized by the impulse response Bo(t) which can be determined
merely by probing the channel, that is, by transmitting a pre-assigned signal and observing
the received signal. Another simple example of a mobile radio channel that can be char-
acterized in a deterministic manner is the one-path channel (c.f. the opening sentence of

section 1.2.4}), for the input-output relationship

y(t) = Boe™'z(t — 1), (1.22)

8 A channel whose A(w, ) has a Gaussian probability density is also a known as a Rayleigh fading channel.
A channel whose 8(w,7) has the form

B(w, 7} = Bo(w, 7} + B18(w — w1)8(r = ), (1.20)

where So(w,r) has a Gaussian probability density, the quantities ||, wi, and 7y are fixed, and arg (f1)
modulo-2x has an independent vniform probability density, is known as a Rician fading channel.

"When a mobile radio channel has a small number of paths, a better characterization may be obtained
by making measurements of the set of triples (§x,wk, 7). This thesis demonstrates how those measurements
can be made and how the measurements can be made use of in system design.
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of such a channel is characterized by the numbers J. wo. and 7o which can be determined
merely by probing the channel$ ,
A question arises as to whether there are more general mobile radio channels that can
be characterized in a deterministic manner by probing them. This thesis demonstrates
that there is a wider class of timé- and frequency-selective multipath channels that can be
characterized in a deterministic manner by probing them; this class of channels is introduced

next but a discussion on probing them is deferred until chapter 2.

1.4.1 Discrete-Multipath Channel ~ The Channel Studied in the Thesis

Consider the discrete-multipath channel introduced in section 1.2.4. In general, there can

be more than one path with the same Doppler shift, and hence the input-output relationship
can be written as

y(t) = Zk: Gl ;ﬂkll‘(t - Tht), | (2.23)
= ;a‘wt f o(r)z(t — T)dr, (1.24)

where the functions ¢x(t) are defined by
ox(t) = Z[:ﬁkié(t = Tit)- (1.25)

The further specialization obtained by requiring that the number of Doppler shifts be small,
that is, a channel whose input-output relationship is of the form

K )
y(t)= 3 et / éu(r)e(t - )dr, (1.26)
k=1

where K is sr'na.ll, is the channel studied in this thesis.® Such a channel will henceforth
be referred to as a Discrete-Multipath Channel (DMC). The time-variant impulse response
¢(t,7) of a DMC has the form

K
$(t,7) = 3 ¥ gy(r), (1.29)

k=1

®This situation also arises as the combined problem of automatic gain control, carrier synchronization,
and timing synchronization, when signalling through an ctherwise ideal channel.
®The study applies equally well to 2 diffuse-multipath channel whose #{w, v) has the form

K
Bl Ty =D 8w —wi)du(r), (1.27)

k=1
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for the input-output relationship can then be written as

y(t) = /o(:,r)z(t — +)dr. (1.30)

Some studies of microcellular radio propagation [21] have shown that the signal strength
variation with distance can be predicted by considering six interfering rays. or paths. This
finding provides enough justification for studying the problem of digital signalling over a
DMC.

This thesis specifically addresses the situation where the transmitted signal z(¢) is gener-
ated by quadrature amplitude modulation (see section 1.5.1). Since the linear time-invariant
channel is a special case of the DMC, obtained by setting & = 1 and wy = 0, it is instruc-
tive to first consider the problem of quadrature-amplitude-modulated signalling over a linear

time-invariant channel.

1.5 Quadrature-Amplitude-Modulated Signalling over a Lin-
ear Time-Invariant Channel

A host of techniques known for communicating digital data over linear time-invariant chan-
nels is reviewed in this section. The definitions, terms, and concepts introduced here will
set the stage for reviewing, in section 1.6, the techniques known for communicating dig-
ital data over mobile radio channels, and for introducing, in section 1.7, the problem of
communicating digital data over discrete-multipath channels.

The most fundamental problem in designing a digital communications system is that of
designing the transmitter and the receiver. The problem of designing the transmitter is one
of choosing a coding/modulation scheme, that is, a class of signals that can unambiguosly
and robustly represent the digital data. The problem of designing a receiver is one of
hypothesis testing,!® that is, guessing, from the received signal, the digital data that was

likely transmitted. A transmitter design is useful insofar as an associated receiver design is

for its input-output relationship is

B
(i) = E e?nt / du(r)z(t = v)dr. {1.28)

k=]

1%The channel may introduce noise and other random distortions on the signal.
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implementable and the combination performs well in terms of probability of correctness.!!

In this sense. quadrature amplitude modulation forms the basis of many useful designs.

1.5.1 Quadrature Amplitude Modulation

The term Quadrature Amplitude Modulation (QAN) means the generation of a complex-
valued signal!® z(t) of the form

r(t) = Z a{n)g(t — nT), (1.31)
n

with the purpose of communicating the sequence a(r) of complex numbers that represent
the data; as such, the sequence a(n) is known as the data sequence; the function g(t) is
complex-valued and square-integrable; the time interval T is known as the symbol period or
baud period, and its reciprocal 1/T is known as the baud rate. The elements a(n) are chosen
from a finite set of complex numbers - known variously as the alphabet, signal set, signal
constellation, etc.— some commonly used ones being the PSK-type sets'® and the QAM-type
sets (16-QAM, 64-QAM). This thesis is concerned with a generic signal set rather than with
a specific one, and the choice of a(n), for successive values of n, is considered as being done

by a probabilistic information source in an independent manner.!*

On the Terminology

In the literature, the acronym QAM is used in two different senses. In one sense, it means
the generic modulation scheme discussed above. In the other sense, it means a more specific
~ scheme whose signal set is a subset of 2 two-dimensional rectangular lattice, 16-QAM and
64-QAM for example. In this thesis, QAM is used in the first sense. However, it is the need
in mobile communications for high-spectral-efficiency signal sets such as 16-QAM and 64-

QAM that motivated the thesis. Therefore, no great harm is done by this loose terminology.

11The method of hypothesis testing that has the lowest probability of exror is the one that chooses the data
whaose conditional probability Prob[data/received signal] is the largest; the receiver based on this method is
known as the mazimum a posteriori probability receiver [57].

12Recall that real bandpass signals can be represented in terms of their complex-envelopes [11].

13Binary Phase-Shift Keying or BPSK, Quaternary PSK or QPSK, M-ary PSK or MPSK, etc.

Some of the techniques proposed in the thesis can be easily adapted to trellis-coded sequences.
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1.5.2 Additive White Gaussian Noise Channel

In the Additive White Gaussian Noise (AWGN) channel, the complex-valued transmitted

and received signals z(t) and z(t) respectively are related by
(1) = 2(1) + nult)s (1.32)

where 7,,(1) is while Gaussian noise. More specifically, 7.(t) is a complez Gaussian random
process which is independent of z(t) and has the following properties:!> E[n,(1)] = 0.
E{nu(t)na(s)) = Nob(t - s), and E[nu(t)nu(s)} = 0 [57].

1.5.3 Receiving a QAM Signal over an AWGN Channel

Suppose that a2 quadrature-amplitude-modulated signal z(t), as defined in section 1.5.1, is

transmitted over an AWGN channel. Thus the received signal z(t) is given by

z(t) = > a(n)g(t — nT) + nu(2). (1.33)

n

The task of the receiver is to decide from the received signal =(t) as to which data sequence
a(n) was likely transmitted. In performing this task, the receiver first obtains a sequence

of numbers
j £ (0)=(t)dt (1.34)

defined by an appropriate sequence of square-integrable functions f,(t). If the closed sub-
space (of the space L2 of square-integrable functions) spanned by the sequence of functions
fn(t) coincides with the closed subspace spanned by all possible forms of z(t), then the
sequence of numbers [ fi(t)z(2)dt is said to constitute a set of sufficient statistics, and
all decisions can be based on these numbers without loss of optimality. Since the closed
subspace spacned by all possible forms of z(t) coincides with the closed subspace spanned
by the sequence of functions g(¢ — nT'), an obvious set of sufficient statistics is defined
by [g°(t —~ nT)z(t)dt and obtained by feeding z(t) into the filter matched® to g(t) and
sampling the output at the instants ¢t = nT.

'*Here E[] denotes the expectation of the random variable within the brackets, and the superscript *
denotes complex conjugation.

Y¥The filter f(1) = g*(~t} is said to be matched to g(1), and, therefore, ff(nT = t)z(t)dt = fg'(t -
nT)=(1)dt.
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1.5.4 Intersymbol Interference

The case when g(t) satisfies the conditions
fg'(z)g(r —nT)dt=0 if n20
is important. In this case, denoting the sufficient statistics as

b{n) = /g'(t ~ nT}z(t)de.

one observes that
bn) = a(n) [1g( dt + etn)
where ¢(n) given by

ctn) = [ gt - nTyu(t)at

(1.35)

is a complex Gaussian random varigble with mean zero and variance A [ |g(t)} dt. Further-

more, if ny # na then ¢(n1) and ¢(n2) are independent.!” Therefore, assuming an uncoded

data sequence, a decision on the likely a{n), for any particular n, can be based without

loss of optimality on () alone by the maximum e posteriori probability rule of hypothesis

testing. In otherwords, there is no Intersymbol Interference (1S1). The condition given by

equation 1.35 is necessary and sufficient for there to be no ISL!® Thus, the answer to the

question whether there is IST or not is inherent in the sequence of functions g{t — n7') and

not in the sequence of functions f,(t) that is used to obtain the set of sufficient statistics.

The condition given by equation 1.35 is equivalent to the Nyquist criterion

2r\ |
Z ‘_r} (w + L—)| = constant,
s T

where §(w) = [ g(t)e~*!d¢ is the Fourier transform of g(t).

"For all n; and na, Efe(n))e(n2)] = 0 and E[c*(ny)c(n2)] = (n1 ~n2)ANb [ la(0))? dt.
®The condition is equivalent to the existence of a sequence of functions fn(?) that satisly

[ ratrate - mtree = { o if ngm

f n=m,

and

j Fi)fm(Ddt=0 i n#m.

(1.41)

(1.39)

{1.40)
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1.5.5 Receiving a QAM Signal over a Linear Time-Invariant Channel in
the Presence of ISI and AWGN

Suppose that a quadrature-amplitude-modulated signal z(?), as defined in section 1.5.1,
is transmitted over a linear time-invariant channel whose output has an additive white

Gaussian noise (AWGN) component. Thus the received signal z(2) takes the form

(1) = f O(F)z(t = 7)dr + 7u(t), (1.42)

where ¢(1) is the complex impulse response of the channel. This case can be reduced to

that discussed in sections 1.5.2 to 1.5.4 by observing that

2(t) = 3 a(n)h(t — nT) + nu(2), (1.43)

n

where

h(t) = f 8(r)g(t - 7)dr. (1.44)
Accordingly, given the function ¢(t), it may be possible to choose g(t) so as there be no
intersymbol interference (ISI), but there may be both theoretical and practical reasons that
preclude this choice. Therefore, ISI may be inevitable, and it would become the task of the
receiver to deal with it.

1.5.6 Techniques for Dealing with ISI and AWGN

The techniques of receiving a quadrature-amplitude-modulated signal in the presence of
intersymbol interference and additive white Gaussian noise, that are of interest in this
thesis, fall info two main classes: equalizers and sequence estimators. The equalizers of

interest in this thesis are:
1. linear zero-forcing equalizer [27] [3],
2. linear minimum-mean-square-error equalizer,
3. decision-feedback zero-forcing equalizer [27] [3] [35],
4. decision-feedback minimum-mean-square-error equalizer [29].

The sequence estimators of interest in this thesis are:
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1. maximum-likelihood sequence estimator of the Forney-type [13] [14] [28],
2. maximum-likelihood sequence estimator of the Ungerboeck-type[52].

Discussions of the aforementioned techniques are deferred until later chapters of the
thesis where the techniques are generalized so as to be applicable to the discrete-multipath

channel whose output has an additive white Gaussian noise component.

1.5.7 QAM Signalling over an Unknown Linear Time-Invariant or a Lin-

ear Quasi-Time-Invariant Channel

Before signalling, that is, trasmitting and receiving data, can take place over an unknown
linear time-invariant channel, knowledge of the impulse response @(t) or of the function
h(t) = [é(r)g(t — 7)d7 must be acquired by some auxiliary method. Conceptually, either
8(t) or h(t) may be computed from the received signal using knowledge available of the
transmitted signal which is not intended, at first, for signalling; then, using either a(t)
or h(t), the parameters of the receiver may be computed, after which the signalling may
commence.

In the case of the receiver techniques discussed in section 1.5.6, however, it is more feasi-
ble to compute the parameters of the receiver directly - that is, without actually computing
either ¢(t) or h(t) - by vsing methods of stochastic approximation. Methods of stochas-

tic approximation, as applying to quadrature-amplitude-modulated signalling, fall into two
classes:

* methods that require deterministic knowledge of the transmitted signal; in this case,
the transmitted signal is known as a training signal, and the stochastic approximation
methods are known variously as treining, adaptive filtering, or adaptive equalization,
or even adaptive receiving (see (38), [13], and [16]).

e methods that require only statistical knowledge of the transmitted signal; in this
case, the stochastic approximation methods are known as blind deconvolution, or blind
equalization (see [18] and [16]).

When the parameters of the receiver have been sufficiently closely approximated, sig-

nalling may be commenced; in this situation, either the parameters can be frozenor they can
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be continually adapted under the assumption that the receiver is already operating essen-
tially without error and, therefore. that deterministic knowledge of the transmitted signal
is available; this latter mode of operation is said to be decision-directed. The decision-
directed mode is particularly suited to quadrature-amplitude-modulated signalling over a
quasi-time-invariant channel.!®

Some applications where the receiver techniques of section 1.5.6 are used in conjunction
with stochastic approximation methods are telephone line data modems and line-of-sight
point-to-point digital microwave radios. Hereafter, in this thesis, these combined receiver

techniques shall be referred to as conventional techniques.

1.6 Quadrature-Amplitude-Modulated Signalling over a Mo-
bile Radio Channel

Recall from section 1.2.4 the representation ¢(1,7) = [ B(w, 7)e’*dw of the time-variant
impulse response ¢(t,7) of the mobile radio channel, in terms of the underlying multi-
path propagation. In the choice of strategy for designing the transmitter and receiver for
quadrature-amplitude-modulated signalling over a mobile radio channel, a significant role
is played by the intended baud rate as taken relative to the ‘Doppler spread’ and the 1 /(*de-
lay spread’), where ‘Doppler spread’ and ‘delay spread’ are measures of the spread of the
function S(w, ) with respect to the Doppler shift «: and the delay 7 respectively.?® Some in-
sight into this role could be gained by considering the composition of quadrature amplitude

A quasi-time-invariant channel is a time-variant channel whose impulse response varies slowly enough
with time that the channel may be considered approximately time-invariant over a limited interval of time.
From the point .of view of quadrature-amplitude-modulated signalling, a channel may be considered quasi-
time-invariant if a receiver based on a time-invariant approximation of the channel would perform satisfac-
torily for data sequences of limited length.

*In terms of a stochastic characterization, the root mean square

1/2
( f (w- wo)’d(w)dw) , (1.45)

j E [|8(w, )] dr/ / E [18(w, 7)[*] dwdr, (1.46)

where

ol{w)

wp = fwc(u)dw, (1.47)

is a popular measure of the Doppler spread. A similar measure can be defined for the delay spread.
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modulation and mobile radio channel as described next.

1.6.1 The Composition of Quadrature Amplitude Modulation and Mobile
Radio Channel

Suppose that a quadrature-amplitude-modulated signal r(t) given by

x(t):ia(ra)g[t— ni. {(1.4%)

n
as first defined in section 1.3.1. is transmitted over a mobile radio channel. The received

signal z(t) takes the form

) = /o(t.r-).r(t — YT + (). (1.49)
where ¢(t, 7) is the time-variant impulse response of the channel and #,.() is white Gaussian
noise. The received signal z(t) can be writter, owing to the linearity of the channel. as

() =D a(n)R™(1) + pu(t). (1.50)

n

where

(1) = f¢(:,.—)g(: - nT = 7)dr (151)
for all n. The latter two equations define the composition of quadrature amplitude modu-
lation and mobile radio channel.

From the point of view of designing the transmitter and receiver, one must be con-
cerned with the sequence of functions h™(2). Were the channel time-invariant, the functions
h"(t + nT'), obtained by translating the functions A"(t) to the time origin, would all be
identical. Since the mobile radio channel is time-variant, however, the function A™(t + nT)
varies, in general, with n; thus, fading manifests itself in the function A™(t + nT'}’s being
dependent on n. Moreover, the functions A"(t) can physically overlap with one another, po-
tentially causing intersymbol interference. Qualitatively speaking, the choice of a strategy
for designing the transmitter and receiver is usually based on the effective rate of fading,
that is, the rate at which the function A"(¢+nT') varies with n, and on the po! ential amount
of intersymbol interference, that is, the extent of overlapping among the functions h™(t).
Empirical evidence suggests that, given a mobile radio channel, both the effective rate of

fading and the potential amount of intersymbol interference depend on the baud rate as
described next.
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The Effective Rate of Fading

Given a mobile radio channel with a certain Doppler spread. the dimensionless ratio

Doppler spread

59
baud rate (152)

is usually considered a good measure of the effective rate of fading.

The Potential Amount of Intersymbol Interference
Given a mobile radio channel with a certain delay spread, the dimensionless product
delay spread x baud rate (1.53)

is usually considered 2 good measure of the potential amount of intersymbol interference.

The Behaviour of the Comgposition of Quadrature Amplitude Modulation and
Mobile Radio Channel] at Various Baud Rates

Depending on the baud rate, as taken relative to the Dopplerspread and 1/(delay spread) of
the underlying muitipath propagation, the composition of quadrature amplitude medulation

and mobile radio channel may exiiibit different behaviour as follows:?!

o at high baud rates, the rate of fading is low but the amount of intersymbol interference

is high; the mobile radio channel appears to be quasi-time-invariant.

¢ at low baud rates, the amount of intersymbol interference is low but the rate of fading

is high.

¢ at moderate baud rates, both the rate of fading rate and the amount of intersymbol

interference are moderate.

1.6.2 Existing Strategies for Designing the Transmitter and Receiver for
Quadrature-Amplitude-Modulated Signalling over a Mobile Radio
Channel

The discussion of the previous section shows that if the baud rate can be considered high,

then the conventional techniques, as briefly described in section 1.5.7, may be applicable.

#In the literature, this is usually explained in terms of the coherence time and the coherence bandwidth,
which are the reciprocals of the Doppler spread and the delay spread respectively.

/y
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But, the high-baud-rate assumption is not valid in the context of some proposals for mobile
radio communications systems [37] [31] [36]. where it is observed that the effective rate of
fading could be significant enough to degrade the performance of the conventional tech-
niques. In an attempt to overcome this degradation. many strategies have been proposed
(see [37]. [7]. and the references therein). These strategies, based on cither periodic train-
ing or periodic insertion of known data symbols, are mere modifications of the conventional
techniques, for the assumption that the channel is quasi-time-invariant. although recognized
as being less valid. has not been entirely relaxed.??

When the effective rate of fading is significant, recourse must be made, in general,
to a stochastic characterization of the mobile radio channel, or. rather. of the sequence
of functions {£"(t) : ¥n € Z}. If a complete stochastic characterization ic available, then
the receiver design may be based on either the mazimum a posteriori probability or the
mazimum likelihood principle.*®* Unfortunately, implementations of such designs tend to be
exceedingly complex in all but a few special cases.

The case where the set of functions {h"(2) : Yn € Z} has a Gaussian probability density
is of much interest, for the conditional probability density prob[received signal/data], the
so-called likelihood of the conditioning data, can be expressed as

prob[received signal/data] ~ det[Fy,,,] exp (- / / z‘(t)Fdata(t,s)z(s)dtds) » (154}

where (1) is the received signal, and Fjg,,(2,5) and det[Fy,,,] are the Fredholm resolvent
and the Fredholm determinant of the covariance kernel of 2(1) conditioned on the data. Even
in this case, the receiver tends to be very complex owing to the complexity of the functional
dependence of Fy.¢,(t,s) and det[Fy,..] on the data. This is especially true when there
is intersymboi interference. Even if there were no intersymbol interference, to keep the
complexity in manageable proportions, it is often considered necessary to restrict the choice
of the modulation scheme to those that give rise to a det[Fy,,.] that is independent of the
data; such modulation schemes have typically low spectral efficiencies.

22This attitude owes, perhaps, partly to the simplicity of the conventional techniques, but mainly to
the lack of a feasible general technique for dealing with a time-variant mobile radio channel. The tech-
niques presented in the thesis achieve a significant level of generality while maintaining the simplicity of the
conventional techniques. ‘

*#Since Prob[data/received signal] = probireceived signal/data]Probjdata)/probreceived signal), the max-
imum a posteriori receiver is also the one that maximizes prob[received signal/data]Probfdata); if the data
are equally likely then only prob[received signal/data] need be maximized. A receiver that maximizes
probfreceived signal/data] is known as the mezimum likelihood receiver.
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1.7. THE NOVELTY OF THE THESIS

1.7 The Novelty of the Thesis

The novelty of the thesis lies in the recognition that when a mobile radic channel can be
modelled as a Discrete-Multipath Channel, that is, when its impulse response ¢(f, ) has

the functional form "

é(t,7) = Zeju“.ék("-)s (1.53)

k=1
as first defined in section 1.4.1, receiver design can be based on a deterministic charac-
terization of the mobile radio channel, regardless of the effective rate of fading.?* This
recognition is based on the reasonable assumption that a discrete-multipath mobile radio
channel is quasi-static in the sense that the number of effective wavefronts, their strengths,
and orientations are gquasi-static, that is, they remain the same over fairly long time in-
tervals. Based on this recognition, the thesis proposes the following philosophy of design
for the transmitter and receiver, to effect quadrature-amplitude-modulated signalling over

a discrete-multipath mobile radio channel.

1.7.1 A Philosophy of Design for Discrete-Multipath Mobile Radio Chan-

nels Based on their Deterministic Characterization

To effect quadrature-amplitude-modulated signalling over a discrete-multipath mobile radio
channel, the transmitter and the receiver together may alternate between the following two

phases:

Probing Phase

The receiver obtains a deterministic characterization of the channel, that is, it estimates
from the received signal z(t) the parameters of ¢(t,7), that is, the integer K, the set of
numbers {wi : k =1,2,...,K}, and the set of functions {@x(t}: k = 1,2,...,K}. In this,
the receiver is aided by an appropriate transmitted signal. Thus, a deterministic character-
ization of the sequence of functions {h*(t) : n € Z}, where

h*(t) = j¢(t,1‘)g(t —aT - 7)dr, (1.56)

or, more specifically, of estimates thereof, becomes available to the receiver.

*The term ‘fading’ here loses its stochastic connotation.
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Signalling Phase

A quadrature-amplitude-modulated signal

(1) = > a(n)g(t — aT) (1.57)

n

is transmitted. The receiver decides from the received signal z(t), that is,

(1) = > a(n)R™ (1) + nu(?), (1.58)

n

as to which data sequence a(n) was likely transmitted. In this, the receiver assumes that
the deterministic characterization of the sequence of functions {h"(t) : n € Z} obtained in

the preceding probing phase is accurate.

1.7.2 The Contributions of the Thesis

The contribution of the thesis as a whole can be summarized as the proposing of the above
philosophy of design and demonstrating, analytically, that the proposed philosophy of design
leads to attractive solutions to the problems posed under the probing and the signalling
phases.

The contributions of the thesis a5 regards the problem posed under the signalling phase
can be put in proper context by considering the special case of a discrete-multipath channel
obtained by setting K’ =1 and w, = 0, that is, a time-invariant channel.

In quadrature-amplitude-modulated signalling over a linear time-invariant channel, there
may be intersymbol interference (ISI) as discussed in sections 1.5.4 and 1.5.5. The notion of
ISI given in section 1.5.4 can be generalized in a straightforward manner so as to be valid in
the context of quadrature-amplitude-modulated signalling over a discrete-multipath kinear
time-variant channel. Thus, there is no ISI if and only if, for any n and m, n # m implies

_[ R (8)R™(1)dt = 0. (1.59)

Accordingly, if there is no ISI, then the solution to the problem posed under the signalling
phase is straightiorward. Thus, for any particular n, the quantity

b(n) = / R (8)2(t)dt (1.60)

)
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satisfies
b(n) = a(n)/[h"(t)igdt+ o(n) (1.61)
where ¢(n) given by

()= [ (Onu(e)e (1.62)

is a complex Gaussian random variable with mean zero and variance Aj [ [h*(t)|* d¢. Fur-
thermore, if n; # ny then ¢(n;) and ¢(n2) are independent.?> Provided that the data
symbols were chosen in an independent manner, and f |R"()]2dt # 0. a decision on the
likely a(n) can be based without loss of optimality on &(n) alone.

Given a time-variant discrete-multipath channel, it seems extremely unlikely that the
function g(t) can be chosen so as there be no ISI, unless the baud period T can be chosen
large enough that the functions 4™(t) do not physically overlap with one another. Choosing
T large is an option only if the baud rate can be low. At moderate-to-high baud rates, ISI
seems inevitable and, therefore, it becomes the task of the receiver to deal with it.

The techniques mentioned in section 1.5.6 for dealing with ISI and additive white Gaus-
sian noise (AWGN), which are applicable in the special case of the discrete-multipath chan-
nel obtained by setting A’ = 1 and w; = 0, are well known for their simplicity. The thesis
demonstrates, analytically, that those techniques can each be generalized so as to be appli-
cable for quadrature-amplitude-modulated signalling over a discrete-multipath time-variant
channel. The generalizations may be described as techniques for dealing with fading, ISI,
and AWGN in a joint manner. The generalization is made possible by a certain representa-
tion of the sequence of functions {A"(t) : n € Z} induced by the functional form of ¢(t, 7).
The generaliz?.tion is particularly simple in the time-variant special case obtained by setting

K =1 while w; may be non-zero.

1.7.3 Some Merits of the Proposed Philosophy of Design

As long as a mobile radio channel can be modelled as a discrete-multipath channel, the
proposed philosophy calls for the continual optimization of the receiver to the actual channel
in effect. In contrast, a strategy based on a stochastic characterization of the mobile radio
channel calls only for the optimization of the receiver io the statistical ensemble of channels

3The sequence of random variables ¢(n) has the following additional properties: E[c"(n1)c(n2)] = 0 for
all my # na; Efe(ns)e(rz)] = 0 for all n; and n3.
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that the receiver may encounter in a topography of interest. Thus. providing that the
overhead of the probing phase is small enough. a receiver designed under the proposed
philosophy will yield better performance than a similar receiver designed under a strategy
based on a stochastic characterization of the mobile radio channel.

As long as a mobile radio channel can be modelled as a discrete-multipath channel, the

proposed philosophy is comprehensive in the following senses:

1. it is applicable regardless of the effective rate of fading or the potential amount of inter-
symbol interference; in other words, it provides a unified framework for dealing with

time-selective fading, frequency-selective fading, and time- and frequency-selective
fading.

2. itis applicable regardless of the underlying statistics of fading which may be dependent

on the topography.?®

1.8 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the composition of
quadrature amplitude modulation and discrete-multipath channel, and describes a method
of estimating this composition; the method provides a justification for the philosophy of
design proposed in Chapter 1, and for the assumption made in the five subsequent chap-
ters that the composition is known. Chapters 3 to 6 discuss receivers termed equalizers;
chapters 3 and 5 discuss linear equalizers of the zero-forcing type and the mean-square-
error type respectively; chapters 4 and 6 discuss decision-feedback equalizers of the zero-
forcing type and the mean-square-error type respectively. Chapter 7 discusses receivers
termed mazimum-likelihood sequence estimators of the Forney-type and the Ungerboeck-
type. Chapter 8 presents numerical results pertaining to some specific real world scenarios.
Chapter 9 summarizes the thesis, draws some conclusions, and makes suggestions for fur.
ther work. Appendix A gives some of the mathematical results needed in chapters 3 to 7.
Appendices B and C give the additional mathematical results needed in chapters 4 and 6
on equalizers of the mean-square-error type.

#*When the statistics are known, however, the average performance of a receiver designed under the
proposed philosophy may be evaluated.



Chapter 2

The Composition of Quadrature
Amplitude Modulation and
Discrete-Multipath Channel

2.1 Introduction

This chapter is aimed at substantiating the claim made in chapter 1, section 1.4 that the
class of time- and frequency-selective channels termed discrete-multipath channels can be
characterized in a deterministic manner by probing them. Thus, the chapter is also aimed
at substantiating the probing phase of the philosophy of design proposed in section 1.7.1 of
chapter 1. Under certain assumptions, the probing of the discrete-multipath channel with
a quadrature-amplitude-modulated signal is shown to lead to a deterministic characteriza-
tion of the discrete-multipath channel. This suggests that the composition of quadrature
amplitude modulation and discrete-multipath channel - a system whose input is the data
sequence and the output is the received signal - can be characterized directly by choosing
the probing signal appropriately. In fact, the probing can be effected by appropriate design
of the data sequence.

26



2.2, CHANNEL PROBING HEURISTICS 27

2.2 Channel Probing Heuristics

Consider the Discrete-Multipath Channel (DMC) to be noise-free; thus. the transmitted

signal z(t) and the received signal y(t) are related by
K

()= 3 e f ox(F)z(t - T)dr (2.1)

k=1
as first defined in section 1.4.1 of chapter 1. A characterization of the noise-free DMC
consists in knowing the integer X', the set of functions {gx(¢) : k = 1,2,..., K'}, and the set
of numbers {wy : k= 1,2,..., K'}. Under certain assumptions, such a characterization can
be obtained by probing the noise-free DMC as described next.

Suppose that the transmitted signal z(f) consists of a train of impulse functions, that

is,

z(t) = D &(t — aT). (2.2)
Then the received signal y(t) can be written as
"
y(t) = T3 et j éx(r)6(t — nT — r)dr, (2.3)
n k=1
K
= 3.5 ettt — aT), (2.4)
n k=1 :
K
= Y ) eunTeduli=nTlg (; _nT), (2.5)
L 3
K
- Z Z ejuknT¢k(t — RT), (2-6)
n k=1
where
V() = ¥ (1) (2.7)

fork=1,2,..., K. Observe that if the integer K, the set of functions {%(t) : k = 1,2,..., K},
and the set of numbers {wy : k£ =1,2,...,K} can be determined, then the set of functions
{ér(t) : k=1,2,..., K} can in turn be determined, and the DMC can thus be characterized.
Suppose that the set of functions {¢x(t) : k = 1,2,..., K’} is known a priori to be time-
limited to an interval of length less than T, that is, the functions are zero outside this

common time interval. Then the functions
K
> e Ty (t — nT) (2.8)
k=1
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do not physically overlap with one another, and, therefore, can be individually observed.
By translating these observations to the time-origin, a set of observations of the form

K .

va(t) = 30 4Ty (i) (2.9)

k=1
can thus be obtained.! Consider the contiguous set of observations {y,(t) : n = 0,1,2,...,L};
observe that there is no loss of generality in choosing zero as the starting value of =,
for a non-zero case can be reduced to the zero case by redefining the set of functions
{¥n(t): k=1,2,...,K'}. The set of observations {y,():n =0,1,2,...,L} satisfies the

matrix equation

[ 30(t) | 1 1 .1 t
yl(t) ejwlT eJ"‘"-'T o ejw;\-T %i)l-( )
yz(t) = edw12T  ojun2T jwglT ?,)2'(1‘) (2.10)
: : »
| yi(t) | | LT gialT | giulT | UK (1)
This form of a matrix equation, where K and {ﬁ;k(t),eiwki‘ ck=1,2,..., I\"} are the

unknowns, has been studied extensively in connection with many other problems. How-
ever, a discussion of the solution to such an equation does not, at this stage, make much
engineering sense, for impulse functions are not practical realities. In section 2.3.1, a more
general and practical form of channel probing is shown to lead to a matrix equation similar
to equation 2.10; therefore, a discussion of the solution to such equations is deferred until
section 2.4.

2.3 The Composition of QAM and the Noise-Free DMC

Suppose that the transmitted signal z(t) is generated by Quadrature Amplitude Modulation
{QAM), that is,

z(t) = ) a(n)g(t - nT). (2.11)

In other words, the received signal can be written as y(t) = 3, yn(t—nT) with the functions yu(t=nT)
not physically overlapping with one another.
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Recalling the input-output relationship

K

()= 3 et / o(7)z(t ~ T)dr (2.12)
k=1
of the noise-free DMC, the received signal y(¢) can be written as
K .
W) = Tamy e-"‘“*t/q')k(r)g(t — nT = 7)dr, (2.13)
n k=1
K .
= Za(n) Z e"‘"‘"TeJ“"‘“"“T)fék('r)g(t - nT = 7)dT, (2.14)
n k=1
I\— .
= Y a(n)d e Thy(t - nT), (2.15)
n b=1
where
hi(t) = ekt j or(T)g(t — T)dr (2.16)

fork =1,2,..., K. The relationship between the data sequence e(n) and the received signal
(1), given by equation 2.15, shall be known as the composition of QAM and the noise-free
DMC. It is this composition that will be of direct relevance in designing a receiver for
quadrature-amplitude-modulated signalling over the DMC. Observe that, according to the
notation of section 1.6.1 of chapter 1,

K

h(t) = 3 e Thy(t - nT). (2.17)
k=1

This functional form is made use of in the subsequent chapters to substanti: te the signalling
phase of the philosophy of design proposed in section 1.7.1 of chapter 1. A characterization
of the composition of QAM and the noise-free DMC consists in knowing the integer K, the
set of functions {hg(t) : & =1,2,...,4'}, and the set of numbers {ej“"‘T tk=1,2,. ..,I\"}.
Under certain assumptions, such a characterization can be obtained directly by probing the
noise-free DMC as described next.

2.3.1 Probing the Noise-Free DMC with a Quadrature-Amplitude-Modulated
Signal

The form of the composition of QAM and the noise-free DMC, given by equation 2.15,

suggests that the noise-free DMC can be probed with a quadrature-amplitude-modulated
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signal z{t) of the form

z(t) =D g(t—nT) (2.18)

n
for appropriately chosen function g(?) and parameter 7. The received signal y(t) is then
obtained by setting the data sequence as a(n) = 1 for all » in the composition given by
equation 2.15. Thus, .
y(t) = 3 > & Thy(t - al), (2.19)
n k=1
where the set of functions {hx(t): k = 1,2,..., '} is as defined by equation 2.16.
In the manner of the discussion in section 2.2, if the function g(¢) and the parameter T
are such that the set of functions {Ax(¢} : £ = 1,2,..., K’} is time-limited to an interval of

length less than T, then the functions

K
S e nThy(t — nT) (2.20)
k=1

can be individually observed. Denoting
K -
() = D e Thy(), {2.21)
k=1

the contiguous set of observations {y,(t) : n =0,1,2,..., L} satisfies the matrix equation

[ yo(2) | 1 1 .1 »

n(t) ei1T i LjwrT hl( )

y(t) | = | 2T ewadl | gjwxaT 2Ft) , (222)
L ye(?) | | frLT giwalT  gjurlT | hi(2)

which is similar to the matrix equation 2.10 of section 2.2. Discussion on solving equation
2.22 for K and {hk(t), el 1k =1,2,.. .,K} is deferred until section 2.4.

If the function g(t) and the parameter T' intended for use in signalling can also be
used in probing, then the solution of equation 2.22 will constitute a characterization of
the composition of QAM and the noise-free DMC which will be of direct relevance in
designing receivers. However, the function g(t) and the parameter T intended for use in

signalling may not be appropriate for use in probing. For instance, the set of functions
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{hi(t): k=1,2,.... K}, defined by

hi(t) = ej"*‘/ék(r)g(t - 7)dr, {2.23)

for £ =1,2,..., A, may not be time-limited to an interval of length less than T'. On the

contrary, in striving to achieve high data-rates with band-limited signals, the functions

&
ST e Tt — nT) (2.24)

k=1
must inevitably be allowed to overlap with one another.
If the function g(t) used in probing is different from that intended for use in signalling,

then the set of functions {¢x(2) : £ = 1,2,..., K'} and the set of numbers {wy : k = 1,2,..., K}
may be determined as follows:

¢ under the assumption that

—T<wyl < (2.25)

for k= 1,2,..., K, the set of numbers {wr : £ =1,2,..., K} can be determined [rom
&Fﬂ:k=Lz“”K}

¢ under the further assumption that g(t)is time-limited, the set of functions {¢x(t) : k = 1,2,..., K}
can be determined from {f ¢x(7)g(t — 7)dr : k=1,2,..., K}

yy e

But if the function g(t) intended for use in signalling could be used in probing as well, then
there may be no need for determining {¢x(t),wr: k=1,2,...,K}.

2.3.2 Probing and Signalling with a Common g(t)

Suppose that the set of functions {hx(t): k= 1,2,..., K} defined by equation 2.23 is time-
limited to an interval of length 7,. By probing the noise-free DMC with the quadrature-
amplitude-modulated signal z(t) given by

z2(t) = g(t - nTy), (2.26)

n

one obtains a matrix equation that is identical to the matrix equation 2.22 except that T is

replaced with Ty, for the parameter T (or T,) does not enter into the definition of the set of
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functions {hi(t) : k = 1,2,..., K’} (see equation 2.23). By solving the resulting matrix equa-

tion for A" and {hk(t),ej"“‘TP k=1,2,..., Ix'}, the set of numbers {ej""*T k=1,2...., I{}
can in turn be determined from {e-f“’*TP th=1,2,..., I\'} under the additional assumption
that

—riwl, <= (2.27)

for k=1,2,..., K. Thus, a characterization of the composition of QAM and the noise-free
DMC, which will be of direct relevance in designing receivers, can be obtained without
determining {@x(t),wr: k=1,2,...,K}.

The assumption that ~% < wiT, < @ for k£ = 1,2,..., /" is expected to be valid in
practice. In case it proves restrictive,? it may be obviated with added complexity as follows.

Suppose Tp, and T}, are two numbers such that

¢ 1, 2T and T3, 2 T,

¢ Ty # Ty,
o — 7 <wi(Tp, ~ ) <wlork=1,2,...,K.

By probing the noise-free DMC twice, first with the signal
z(t) = Zg(t - nTy, ), (2.28)
n

and then with the signal
z(t) = Eg(t - nT3,), (2.29)

two matrix equations of the form of equation 2.22 can be obtained. By solving these
matrix equations for K and {hk(t),ej‘”*TP:,e-"“"*TH tk= 1,2,...,1&'}, the set of numbers
{ej”*T 1k =1,2,.. .,I\"} can in turn be determined from {ej“*(TPx'TPz} tkh=1,2,.. .,Ix"}.
This scenario will no longer be considered in the thesis.

The discussion so far has been on the composition of QAM and the noise-free DMC.
The consideration of noise at the output of the DMC, however, may have a role in the
choice of the function g(t). For instance, the g(¢) chosen for probing must ensure accurate
estimation of the set {hk(t), et k=12, K}, but the g(t) chosen for signalling must

ensure correct decisions on the data sequence. The issue of choosing g(t) to achieve the

3This question was raised by Dr. 1. P. Reilly.
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aforementioned ends is bevond the scope of this thesis. Nevertheless, the discussion in this
section has demonstrated that choosing a common g(t) for probing and signalling may be

advantageous from the point of view of complexity.

2.3.3 Framing the Data to Effect Probing and Signalling with a Common
9(t)

Suppose that the consideration of noise allows the use of the same function g(1). or scaled
versions thereof, in probing as well as in signalling. Suppose also that T, is an integral
multiple of the baud period T. Then the transmitted signal for alternate probing and

signalling can be generated by framing the data as shown below:

[ probing | signalling i

| 0...0a0...0e0...... 0a0...0a0...0 | a(l)a(2)a(3)...... a(N - 1)a(N) |
(2.30)
Thus during the probing phase, a periodic data sequence of a’s interleaved with blocks of

(T5/T)— 1 zeros is transmitted at the baud rate 1/7.

2.3.4 On Choosing the Data a and the Lengths of the Probing and the
Signalling Phases

In the presence of noise, the data a and the length of the probing phase must be large
enough to ensure the ‘correctness’ of the estimate of A" and the ‘desived accuracy' of
the estimates of {hk(t),ej“’*r k=1,2,.. .,I\'}. The ‘desired accuracy’ of the estimates
of {e5”*T k= 1,2,...,!1'} is determined by the ‘desired accuracy’ of the estimates of
{ej‘”*’r hk=1,2,...,K;1<1< E}, where £ is the length of the data frame.®> Therefore,

the data a and the length of the probing phase are determined by the length of the signalling
phase.

*In the case where K = 1, in simple terms, frequency error results in accumulating phase error!
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2.4 The Matrix Equation 2.22

2.4.1 Previous Encounters with Similar Matrix Equations

Matrix equations of the form of equation 2.22, where A and {hk(t).e-f“’*T h=1.2,.. .,I\'}

are the unknowns, have been encountered in many other problems. To mention a few,?

1. Consider a superimposition of a set of sinusoidal signals; from the observations taken
of the superimposition, determine the number of sinusoidals, their frequencies. and
their amplitudes [51] [44].

2. Consider a superimposition of a set of exponential signals; from the observations taken
of the superimposition, determine the number of exponentials, their exponents, and
their initial values [4] [24].

3. Consider a set of plane waves of sinusoidal signals impinging on 2 linear uniform array
of sensors; from the observations taken of the output of the sensors, determine the
number of waves, their directions of arrival, and their amplitudes [48] [40] [23] [45]
(20].

The noise-free formulations of the aforementioned problems are structurally identical to the
problem of characterizing the composition of QAM and the noise-free DMC, as formulated
in section 2.3.1. Moreover, the problem of characterizing the composition of QAM and the
+ noisy DMC can be formulated, as shown in section 2.5.2, to conform to the formulations of

the aforementioned problems that take noise into consideration.

The solution to the matrix equation 2.22 hinges on the Vandermonde structure of the
coefficient matrix as discussed next.

“The study of this class of problems has a long history and there is an abundance of literature (see [15],
[16), [33],\[;:(]). Therefore, the citations may not necessarily be the original sources. Literature of more
specific relevance to the thesis is cited in later sections of this chapter.
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2.4.2 The Vandermonde Structure

Given a set of complex-valued scalars A = {M; : & = 1.2..... K'}. the (L + 1) x K matrix
Vi (A) defined as

1 1 ... 1
Al 1\2 .- I\h’
Vi) =| A A . A (2.31)
| AP AF AR

T
is said to have Vandermonde structure. The column vectors (I,Ak.A'f.. . .,/\{.‘) for k=
1,2,..., K, are known as Vandermonde vectors. Vandermonde matrices have the following

important property:

Lemma 1 ([40]) The columns of the matriz 'V (A) are linearly independent if and only if
K < L+1 and A, # Ay, whenever ky # ka.

When the columns of the matrix V (A) are linearly independent, the column span of the
matrix is said to have 2 Vandermonde basis. Of direct relevance to solving the matrix

equation 2.22 is the following consequence of the lemma:

Corollary 1 ([40]) Given the columnn span of V (A), the column span has a unique Vander-
monde basis, or, equivalently, is associated with a unique sel of scalars A = {Ap: k= 1,2,..., K},
if and only if K < L.

2.4.3 On the Uniqueness of the Solution

Returning to the matrix equation 2.22, denote the vector-valued functions

Yt = [w),n®),wlth- .. v, (2.32)
H(t) = [ha(t)ha(t), ..., hx(®)], (2.33)

and the set of numbers
= {7 k=12,...,K}. (2.34)

Then, using the notation introduced in section 2.4.2 for Vandermonde matrices, one has

Y(t) = Vi (Q) H(2). (2.35)
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The problem of characterizing the composition of QAM and the noise-free DMC, as
formulated in section 2.3.1, is meaningful only if the observed vector Y(t) has a unique
representation of the form given by equation 2.22, or, equivalently, equation 2.35. From the
corollary of section 2.4.2, a necessary condition for such uniqueness is that L > K, for Y(2)
belongs to the column span of V() for evéry t. This condition is also sufficient if the set
of functions {hi(t): k=1,2,...,K} is known a priori to be linearly independent. In the
absence of such a priori knowledge about the set of functions {hx(2) : k = 1,2,..., K}, the
necessary and sufficient condition for uniqueness is that L > 2K —~1 [5] [54]. This can easily

be met.®

2.5 The Composition of QAM and the Noisy DMC

Suppose that the quadrature-amplitude-modulated signal

z(t} = a(n)g(t — nT) (2.36)

n

is transmitted over the discrete-multipath channel. In the presence of Additive White
Gaussian Noise (AWGN), the received signal z(t) is dependent on the data sequence a(n)
as given by

KN
2(t) =Y a(n} D @ Thy(t — aT) + py(t), (2.37)

n k=1
where the set of functions {hx(t) : £ = 1,2,..., K} are as defined by equation 2.16 of section
2.3, and 7,(?) is a complex white Gaussian noise process as defined in section 1.5.2 of chapter
1. )
2.5.1 Probing in the Presence of AWGN

Suppose that the quadrature-amplitude-modulated signal

z(t) = Eg(t - nT) | (2.38)

*In the presence of noise, however, L may have to be much greater than 25 — 1 to ensure the desired
accuracy of the estimates of {e-“""r tk=1,2,..., K} typical of mobile radio channels. For the scenario of
large L, Viberg, Ottersten, and Nehorai [53] have given a criterion which is satisfied here.
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is transmitted, with T being large enough that the set of functions {hx(t) : k= 1.2.. ... K}

is time-limited to an interval of length less than T. Then the received signal is given by
2(t) = 3 yal(t — nT) + (). (2.39)
n
where the functions {ya(t)} are as defined by equation 2.21 of section 2.3.1. Denote

:z(t)={ (t+IT) 0<t<T

, 2,40
0 elsewhere ( )
and
St 41 < T
w(gy={ WEFHIT) 0st<T (2.41)
0 elsewhere
Then
2i(t) = wi(?) + wi(?) {2.42)
for all integers [. Denote the vector-valued functions
Z(t) = [EO(tL 31(2)& 52(1)3 seey 3L(t)]Ta (2.43)
W(t) = [wo(t), wn(t), wat),...,wr(t)]". | (2.44)
Then
Z(t) = Y (1) + W(t) = VL (Q)H(t) + W(2), (2.45)

where Y(t), H(t), and V(Q) are as defined in section 2.4.3.

2.5.2 Characterizing the Composition of QAM and DMC in the Presence
of AWGN

Characterizing the composition of QAM and DMC in the presence of AWGN is essen-
tially estimating the integer X, the set of functions {hi(t): k = 1,2,.. ., &}, and the set
of numbers {ej“’*r th= 1,2,...,!1'} from the observations {z(2):{ =0, 1,2,...,L}. The
presence of AWGN necessitates that the ohservations {z1(t)} be projected onto some finite
dimensional subspace, say ), of the space of square integrable functions that are also time-
limited to the same interval that {hx(2)} is limited to, and the estimation be based (only) on
the projections. If the subspace ) can be chosen such that ki(t) € ¥, for k = 1,2,..., K,



2.5 THE COMPOSITION OF QAM AND THE NQISY DMC 38

then there is no loss of optimality in using (only) the projections. Suppose Y is such a

subspace and {@n(t) : m = 1,2,..., M} is an orthonormal basis for J. Denote
2 = [ nOald, (2.46)
wim = [ Sn(wiltiat, (2.47)
for!=0,1,2,....Land m=1,2,..., M, and
hem = [ Sr (Rt (2.48)

fork=1,2,...,Kand m =1,2,..., M. Observe that w; ,, are zero mean complex Gaussian

random variables that satisfy

E[wf-; y wl'.'vm2] = J\roéllvlﬁéml oM (2‘49)
Denote the row vectors
a = [31.11 2y v ey :!.M']: (2'50)
w = [wf.ly L PR wt,l\f]i (2-51)
for{=0,1,2,...,L, and
hi = [hk1, heay .- b)), (2.52)

fork=1,2,..., K. Denote the matrices

Z9 hl Wo
2 Wi
hy
Z = z2 |; H = Ol W= wa . (2.53)
hg
[ 2L | | WL |
Then
Z=V () H+W. (2.54)

Given the matrix Z, the task is to estimate the integer K, the set of numbers

0={eT:k=1,2,..,k}, | (2.55)
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and the matrix H. In virtue of equation 2.16. the matrix H is dependent on f2. But taking
this dependence into account in the estimation of H and Q seems difficult.® Disregarding
the dependence makes the problem conform to the well studied class of problems mentioned

in section 2.4.1. Therefore. the latter approach is taken in this thesis.

2.6 The Key Estimation Problem

For a set of mutually distinct real-valued scalars

O={0:|0]l <mk=1,2.....K}. (2.56)
denote i ]
1 ) R |
e e | ik
V(0)= | 2 %2 | k2 | : (2.37)
L gl | ikl
Then
Z=V(O) H+ W, (2.58)
with the understanding that
B = wi T, (2.59)

for k= 1,2,..., K. The integer K, the set of real numbers ©, and the complex matrix H
must be estimated from Z. The estimation of K is essentially a hypothesis testing problem,
wherein 2 range of values of integers must be considered for &'. A systematic method of
doing this would involve the problem of estimating © and H for a given K. Therefore,
the problem of estimating © and H assuming that K is known is discussed next, and an
overview methods of estimating K is deferred until section 2.6.7.

2.6.1 An Overview of Methods of Estimating © and H

Equations of the form 2.58 arise also in problems 1, 2, and 3 stated in section 2.4.1. Among

these, two cases can be distinguished based on the size of the matrix Z:

®From the definition of the functions {h«(t):k =1,2,..., K} given by equation 2.16, any attempt at
making use of the dependence between H and Q is likely to introduce the functions {¢x(t): k=1,2,...,K)
into the estimation problem.
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1. M is large but L is possibly small.
2. L is large but M is possibly small.

Typically, problem 3 belongs to the first case, with L being the number of sensors in the
array and M being the so-called number of snapshots. However, problem 3 may belong to
the second case [53]. Strictly speaking, problems 1 and 2 belong to the second case; so too
does the problem of characterizing the composition of QAM and DMC as formulated in

section 2.3.2.

In the first case a method known as MUSIC [48] and its variants are widely used under
the precondition that L > A" and the matrix H has full row rank. In this class of methods
~ known collectively as subspace based methods ~ first the column span of the matrix
Z is decomposed into two subspaces known as the (estimated) signal subspace and the
(estimated) noise subspace.” Then the vector @ for which the column span of V(©) gives
the ‘best’ fit to the (estimated) signal subspace is considered the estimate of @, The matrix

H = (VEV)7 ¥z, (2.60)

where V = V(0), is then taken for the estimate of H. For 2 performance analysis of
MUSIC, see [50]. In the second case, the observations can be rearranged so as to satisfy the
preconditions of the subspace based methods. Some possibilities® are forward smoothing,

backward smoothing, and their combination forward-backward smoothing:

1.-Turward Smoothing:- Here the subspace decomposition is done on the matrix Z given
by

Z;=V(0)H; + Wy, (2.61)

TThis is done, for instance, by finding the eigen decomposition of #7ZZ" and choosing for the (estimated)
signal subspace the span of the eigenvectors corresponding to the K largest eigen values. When M — oo
and/or A — 0, the (estimated) signal subspace converges to the column span of V{©), assuming HHHA
converges to a full rank matrix, The method also gives an estimate of A,

®In section 2.6.5, some remarks are made on the suitability of these methods in the context of the thesis.
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where

similary for Wy,

Zp Z1 Za Zy L
21 Z2 23 e ZL_L+1
z2 23 2y Zr-L+2
Zj_4 zZj zI-.+l Zl-1
L 2L Zis1 Zi4p -e- L
bt hyet®? . hyeii(L-L)

hgejaz h2€j932 e hoejez{['_i')

hpe?®s  hyelfs? | hfceje“(L—i')

11

(2.63)

and V(0) is the (L + 1) x K’ Vandermonde matrix parameterized by ©. Here L is
chosen according to K < L € L — K +1 to satisfy the preconditions [49]. For a

discussion on the tradeoffs involved in choosing L, see [50).

2. Backward Smoothing:- Here the subspace decomposition is done on the matrix Z,

given by
where
Zy
similarly for W,
hje~ihL
hje~i82L
H, =

Zy = V(@)Hb + Wy,

2L

Z7-1

2 —L42
2L+

| %%

h;e-iﬁl (L-1)
he=if2(L-1)

h;{e-iﬂxfa h;(e—iaxtb-l)

L

hje~i0(L-2) | hpe~itil
hje~i%20L-2) || pye-ital

hjemionli-d) || by il

(2.64)

(2.65)

., (2.66)
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and V(O) is the (L + 1) x K Vandermonde matrix parameterized by ©, with [
satisfying K < L < L - K + 1.

3. Forward-Backward Smoothing:- Here the subspace decomposition is done on the ma-

trix Zy given by
Zyy=[Z4,2s] = V(O)[Hy, Hy] + [W;, W), (2.67)
with L satisfving K < L < L — K/2 [34).

A method applicable regardless of the relative magnitudes of L and M is the mazimum
likelihood method to be discussed next.?

2.6.2 The Maximum Likelihood Method

Given the observation matrix Z, the conditional complex Gaussian probability densityl®

_ 1 oL —_VvHY (Z -
p(Z[@,H,J\fo)—W(L_*_I)MJVéL_i_I)Memp( rrtrace (2 - VI (2 VH))), (2.68)

- considered as a function of ©, H, and A, is known as the likelihood of @, H, and Ay. The
‘maximum likelihood method seeks to find those values of @, H, and A whose likelihood is

maximum. This is conveniently done by maximizing the logarithm of the likelihood

£(0,H,Ap)

= logp(Z|®,H,M), (2.69)

= —Aiftra.ce ((Z -vH)f (Z - VH)) ~{(L+4+1)MlogANy - (L +1)Mlog.
0

(2.70)

Thus, the maximum likelihood estimates of ©, V, H, and N, are given respectively by [60]

0 = a.rg(;mn trace ((I -V (VHV)_1 VH) ZZH) , (2.71)
v o= V(9), (2.72)
H o= (VHV)7 ¥z, (2.73)

®In the context of problem 3, it is also known as the deterministic maximum likelihood method.
19For convenience, V(©) is denoted simply by V.
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and
Ny = o trace ((1 -V (VHY) \‘/“) zzH) . (2.74)
(L+1)M
These maximum likelihood estimates are known to have desirable asymptotic properties,

Before discussing the asymptotic properties, a discussion of the Cramer-Rao bound is in
order.

2.6.3 The Cramer-Rao Lower Bound

Denote by p the (14 2K M + K')-dimensional vector comprising the unknown parameters,
that is,

No
p=|pu | (2.75)
Pe
where
Po = [811-- '78K]T1 (2.?6)
and
PH = [g?(hl.l)a saey g:'?(h!\',l): g(hl,l)ﬁ reey g(hf\'.l)t g“E(h'l.'-’)’ R

ey %(hK,M—l), R(hl']‘lf)g vy gt(hl\-,l‘f)! %(hl,.'\'IL ey Q‘(h'}'\'..ﬂ‘nf)]'r (2'77)

where ®(.) and ©(.) denote the real and imaginary parts respectively. Denote by q the
gradient of the log-likelihood function £(p)} with respect to the parameter vector p, that is,

oL
qQ= -a'; (2.78)
Then the Cramer-Rao lower bound on the covariance of any unbiased estimator of p is given
by the matrix

Q= [E‘ (qu)] - . (2.79)

where the expectation is taken with respect to the noise W of equation 2.58. A formula
for the inverse of Q has been derived by Stoica and Nehorai [50] in the context of problems
1, 2, and 3 described in section 2.4.1. Accordingly, denote by U(®) the matrix whose kth

column is the derivative of the k*® column of the matrix V(0©) taken with repect to the
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parameter 8, for k = 1,2,..., &, that is,

[0 o ... 0 ]
je jet L. jex
U(©) = | jeelt? 2% ... j2esOx?

jLehl jLe®l | jLeifrL

44

(2.80)

Denote by H,, the diagonal matrix comprising the elements of (h1.m,h2,my-- -y i m), for

m=12,...,M, that is,

[ Ayw O ... O
0 hom

h!\'—l,m 0
0o ... 0 hrm |

Denote the K x & matrices!!

E = A%(ijlae(nﬁuﬂr.rﬂm)),
= Za((v"v)o (mm)),
G = J—\%v”v,

and
2
Neo

form=1,2,...,M. Then, the matrix Q™! has the partitioned form [50)

MEL+1) ‘ 0 0
[1]

Q= 0 Alg A b

¥

0 Al Ajp

F,. = —VHAUH,,,

1Here © denotes the element-wise (Hadamard) product.

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)
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where )
RG) -3(G) ... 0 ]
HG) RG) ... 0
A1.1=
0 0 . RG) -HG)
0 0 e S(G) RG) |

45

that is, a 2K M x 2K M block-diagonal matrix with 2/ x 2K blocks along the diagonal,

Az =al= @D o) ... wED @) |,

and
Ara=E.

The conformal partition of Q has the form

N
M{L+1) 0 0
Q = 0 B'l..l B1 )

-

0 Bg,l Bg 9

where

By = [Al.l_Al.QAz-;l_!A2,l]-l1

By = [Az,z - Az.lAf,{Al,z] - )

-1

Biz2 = —AljA12B2,,
-1

Bz, = _AQ"ZA?.IBI,].‘

Stoica and Nehorai [50] have further shown that

No

By = 3

m=1

which can be written more compactly as

Byo =20 [#((v¥u- v (vAv)" v v) o (ar)"))|

where @ represents the element-wise product.

-1
[% R (Hf,{UH[I -v(viv)” vH]UH,,.)] ,

(2.88)

(2.89)

(2.90)

(2.91)
(2.92)
(2.93)
(2.94)

(2.95)

(2.96)
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The Case A’ =1

In this case,
_ 6/Ng
2T L(L+ )L +2)(HHEA)

as given by Stoica and Nehorai [30].

B,

(2.97)

2.6.4 Asymptotic Properties of the Maximum Likelihood Method

The behaviour of the maximum likelihood estimate of the parameter vector p, when L
tends to infinity, has been studied in different contexts by Rao and Zhao [39] (the case
where M = 1}, and by Viberg, Ottersten, and Nehorai (53] (the case where, in general,
M > 1). Rao and Zhao have show:, for the case where M = 1, that the maximum

likelihood estimate P of p has the following properties as L tends to infinity:
¢ it is strongly consistent, that is, p converges in probability to p,
¢ it is asymptotically normal (in other words, Gaussian),

e it is asymptotically efficient, that is, the covariance of p approaches the Cramer-Rao

lower bound.

Viberg, Ottersten, and Nehorai have shown, for the general case where M > 1, that the
maximum likelihood estimates are consistent, asymptotically normal, and asymptotically
efficient.

Convergence: Rates of the Maximum Likelihood Estimates

Rao and Zhao have also derived the asymptotic rates of convergence for the estimates No,
H, and © for the case where M = 1. Their results can easily be extended to the case where
M 2 1 using the following results from [50]:

oy,

‘_‘h_r‘rcxi° EV V = 1, (2.98)
R P S |
Y Y = b (299)
o log 1
jim UY=L (2.100)



2.6 THE KEY ESTIMATION FROBLEM

By using the above results in equations 2.87, 2.88,

and 2.89, one obtains

2

ancxnIA“ = Elzx.\rxzh‘.\r-
1
pm ?A” = fm L“A
1
= EX.
1 _ 2 H
L]'.'.[.nmfg‘ﬂl2 T 3N (I}"U‘L(HH ))
2 xx?
TN, T
where
= [-sE) R .. -S(HA) REHW |
Denoting
L2 0 0
D=| 0 LYLgarxaryr 0 ,
0 o L3 gk
one can observe from equation 2.86 that
M
10-1p-1 _ ! Yo ° ;
Lh-néo DT'Q™'D™ =N 0 2Dxarxens X7
0 X IxxT
Therefore,
%2 o0 o
JuDQD=M| 0 C,; Ci. |,
0 Cyy Cap
where

Q
I

N 3 -1 -1
. [2I2KMx2KM - -2-XT (XXT) X] '

-1

Coa = [-xxT—-xxT] ,
- o)
Ci2 = -—XTCM,

' 2

(2.101)
(2.102)
(2.103)
(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)
(2.113)



2¢ THE KEY ESTIMATION PROBLEM 48

=1
= -6XT (xx7)", (2.114)
Ca1 = Cl,, ' (2.115)
= -6(xxT)" x. (2.116)

The matrix C;z 2 can also be obtained, using the result [50]

1oy Y Yo Lo -
Jim U I-v(VvEv)" v U = Sk, (2.117)
as
J%Cg’g = lim LsBz‘z, (2.118)
L—oo
-1
= 6N (Ikxx OHEF) ™, (2.119)
= 6N (XXT)7. (2.120)

Since the matrix Q is the asymptotic covariance of the estimate p, the matrix DQD
is the asymptotic covariance of Dp. This observation combined with the result that the
matrix DQD is asymptotically constant shows that the maximum likelihood estimates of
N, H, and © have convergence rates of L~1/2, L=1/? and L=3/2 respectively.

2.6.5 On the Necessity of Faster-than-L™! Convergence Rate of the Esti-
mate © of @

The philosophy of design proposed in section 1.7.1 of chapter 1, based on alternate probing
and signalling, can be justified anly if the estimate © converges to ® at a rate faster than
L', This fact is explained below.

Suppose that the probing is done over an interval of ‘Cprobe bauds and signalling is done
over an interval of Esignal bauds. Suppose further that the probing is done with the signal

L
Zg(t - nlp), (2.121)

n=0
where T, is chosen according to the discussion in section!? 2.3.1 and (L + 1) is the largest
integer smaller than Lprobe (%;) w_ith T being the baud period for signalling. Thus one

13That is, such that the set of functions {kx(t} : k =1,2,..., K} defined by equation 2.16 is limited to an
interval of length less than T}, _
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obtains equation 2.538 with the understanding that
O = Tp. |0k} < =, (2.122)

for k=1,2,.... K. Denote by ® the estimate of ©@ = (6;,0a.....01).
In section 2.3.4, it was observed that the receiver will need *accurate’ estimates of

{rdT i k=1,2,...,K;1<1< L}, (2.123)

where £ is the length of the data frame given by £ = Eprobe + £signal° Roughly speaking,
the denser the signal set!3 the higher will be the ‘desired accuracy.’ Suppose that

& = diag(ﬂl,z‘?g,...,ﬂ;\-) (2.124)

is the positive definite matrix of the maximum allowable variances of the errors in the

estimates of
{wdT:k=1,2,..., ;1< 1< L}, (2.125)
Then \
2T r- A H
! (ﬁ) E [(@ -0)(6-0) ] < @, (2.126)

for 1 <1 £ L. Particularly,
- - H
L*E [(e -0)(6-0) ] < @, (2.127)

For arbitrarily small values of ®; and signal-to-noise ratio, the above inequality can be
satisfied with 2 sufficiently large L if and only if

Jlim I2E [(é -0)(6- 9)”] =0, (2.128)

or, in otherwords, if and only if, the estimate © converges to © at a rate faster than L~1,
The maximum likelihood estimate @ defined by equation 2.71 has a faster-than-L~" con-

vergence rate, as was shown in section 2.6.4. Therefore, the philosophy of design proposed
in the thesis can be justified on the basis of the maximum likelihood method.

Y3 Density here means the number of points per unit area obtained after normalizing the boundary; for
example, 64 QAM is denser than 16 QAM.
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As for the subspace-based methods - the MUSIC algorithm in conjunction with smooth-
ing - described in section 2.6.1, Stoica anc Nehorai [50] seem to suggest!! that the estimate
® has a convergence rate of only L~1/2. Therefore. the MUSIC algorithm in conjunction
with smoothing cannot be used in the context of the thesis, except perhaps in finding initial
values for the search algorithm that is used ultimately in finding the maximum likelihood

estimate ©.

2.6.6 A Guide-Line for Choosing L4}, under the Maximum Likelihood

Method
Denote, for convenience,
- - H
=E=E [(@ -0)(6-0) ] . (2.129)
From equation 2.126 of section 2.6.5,
2 2 .
T 2 (T
2 = . —_] =
Eprobe (g_"'p) =< (‘Cprobe + Es:gnal) (Tp) E £ Oy, (2.130)
or, equivalently,
2 T.\?
E;robell{xk < (ﬁpmbe + ‘Csignal) Inxn < (Tp) ="1@,. (2.131)

Recall, from section 2.6.4, that for the maximum likelihood method, when ‘Cprobe is large,
-1
6M (Ixxx © HEH)

c;robe (%) ’

U]

~

(2.132)

Using this in equation 2.131,

H
. v 2o (T (Ixxx ©HE¥) 0,
L:probeI’\ xK < (Eprobe +£signa1) Ikxk < £pr0be (q_*'p) 6V

(2.133)
Therefore, for a given Esigna.l! the smallest allowable Eprobe is given by the solution to the
cubic equation

2
(ﬁprobe + £signa.l) = aﬁ;robe' (2.134)

" Their proof is for the case where the elements of H (c-f. equation 2.58) constitute a wide sense stationary
random process and where M — oo, Whether it applies to the matrices Hy, Hs, or [Hy, Hy) obtained by
smoothing and where L — oo for fixed L is not certain to the author of the thesis.
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a1

where a is the smallest element of the diagonal matrix
7\ (kx OHEY) 0, s
T_p 6_1\.’;3 . (-. 30)

2.6.7 An Overview of Methods of Estimating i’

The problem of estimating the actual number of paths K is essentially one of choosing from
a family of models, parametrized by the assumed number of paths, a model that provides
the *best” fit to the (L + 1) x M observation matrix Z defined in section 2.5.2. This problem
can be solved by choosing, for the estimated number of paths, the value of A that minimices

a criterion function of the form

— 2L (6,1, %) + pP(n), (2.136)

where £(0,H, V) is the log-likelihood function of ®, H, and A% for an assumed value of
K, and 6, H, and J\:fb, respectively, are their maximum-likelihood estimates, as discussed
in section 2.6.2, p is the number of free real scalar parameters as determined by &, n is the

number of real scalar observations, and P(n) is a positive function, whose choice determines

the criterion. From section 2.6.2,

L ((:):I:laJ\-rD) =-(L+ I)JW[I +logw +105CK1, (2.137)
where
__ min 1 _ -1 H) H)
Ck= o TrDmre ((I v(viv)Tv zz¥), (2.138)

with 'V denot-ing Vi(©). Morcover, p= K +2KM + 1, and n = 2(L + 1)M. Therefore,
the estimated number of paths is the value of K that minimizes

AL+ 1)M[1+logn +logCx] + (K + 2K M + 1)P(2(L + 1)M). (2.139)

As the assumed rumber of paths K increases, the maximized log-likelihood £ (G),I:I, Nb)
increases as well,!> and therefore the function P(n) is designed to penalize the choice of

*If K) < K3, then 2 model with an assumed number of paths K is also a legitimate model with assumed
number of paths K3, but with some (K2 — K1) paths being of strength zero. Therefore, the maximization of

the likelihood with K1 paths can be viewed as the maximization of the likelihood with K paths, but with
some constraints.
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larger values of A", Two criterion functions of the above form that are based on information
theoretic principles are the Akaike’s Information Criterion (AIC) [1] and the Minimum De-
seription Length (MDL) criterion [42]. The AIC uses P(n) = 2 and the MDL criterion uses
P(n) = logn. The AIC asymptotically tends to over-estimate the number of free param-
eters, that is, as n tends to infinity, although the probability of under-estimation becomes
vanishingly small, the probability of over-estimation remains non-zero. The MDL crite-
rion is asymptotically consistent, that is, as n tends to infinity the probability of erroneous
estimation of either kind become vanishingly small.

Observe that the above method of estimating A" subsumes the method of estimating
O given in section 2.6.2. However, the above method is computationally intensive. Two
computationally less intensive methods of estimating the number of real undamped/damped
sinusoids in noise, due to Reddy and Biradar [41] and Fuchs [12], can be adapted for

estimating the number of paths A". These methods are reviewed in the following.

The Method of Reddy and Biradar

Recall from section 2.6.1 the equation
Z;=V;(O)H;+W; (2.140)

obtained by forward smoothing. The method of Reddy and Biradar [41] is based on the fact
that if K < I € (L—K+1) then both V;(©)H; and the sub-matrix of V;(©)H; consisting
of all but the last row, that is, V;_,(@)Hy, have rank K. Therefore, the partition

Z -
Zy = | WAt (2.141)
Zrow

where Zp,.¢rix consists of all but the last row of Z; (and, therefore, where Zrow is the last
row of Z;), and the conformal partition

W,
W, = matrix (2.142)
Wrow
satisfy
Zpatrix = VL—I(O)H!'*'Wmatrix’ (2.143)

Zrow = aV;_ (0)H;+ Wrow, (2.144)
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where a is some L-dimensional column vector.!® Then denoting
A=V;_(O)H; (2.145)
for convenience, Zrow has the probability density function
oy 1 ] 1 RN
p(Zrow |a, A, Np) = AR exp ( A (Zro\\ -a A) (me -a A) )
(2.146)

parametrized by a, A, and A'5. From here onwards, the development is somewhat heuristic.

Thus, for an assumed number of paths K, the Singular-Value-Decomposition{SVD)-based

rank-K-approximant'® of Z ... can be taken as an estimate of A. A family of such esti-
mates, obtained by varying K over a range of values, can be used to compute an apprezimate
family of probability density functions for Zrgw, which is then considered parameu"ized by
only the unique minimum norm a and Np. Therefore, the number of free parameters in this
approximate family of models is p = K + 1. The estimated number of paths is the value of
A which minimizes

2L~ L+1)M(1+logw +logCr) + (K + DP(L - L + 1)), (2.147)
where Cg is defined in terms of the SVD of Z atrix 35
1
Ch = ———————(Zrow Yk ) ZrowYx)", 2.148
R (L—L-{-l)ﬂf( TOwW h)( TOW h) ( )

where Y contains in its columns all right singular vectors of Z 545y €Xcept those corre-
sponding to the A" largest singular values. Here P(r) can be chosen as P(n) = 2 to obtain
the AIC version, or as P(n) = logn to obtain the MDL version.

Using some ideas from [59], Reddy and Biradar have derived an approximate probability
of correct estimation for these methods, in the context of undamped/damped sinusoidals,
and verified them by computer simulations. The derived probabilities of correct estimation
were optimistic for both the AIC and MDL versions but were quite close for the MDL ver-
sion. Moreover, the AIC version exhibited a significant tendency to produce over-estimates
while the MDL version did not exhibit any such tendency. However, no proof is given for
the consistency of the MDL version.

8The vector a satisfies (a¥, —1)v,,(e) =0.
YSuppose Zpatrix = Zf_, oxurvyl, where oy > 02 > ... > oy are the singular values of Znatrix 2nd

Uk, vi are the left and right singular vectors, respectwely, correspondmg toox fork=1,2,...,1L, then the

rank-K-approximant of Zmagrix i5 3 e, oxaV. This is based on the fact that zmamx is of full rank
due to noise.
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The Method of Fuchs

The method of Fuchs [12] is essentially a sequence of tests of hypotheses, wherein the
question “Is the number of paths at least #?” is asked for k = 1,2,... in sequence until
the answer becomes “No”, and the largest & for which the answer is “Yes” is taken as the
estimate of the number of paths K. The method is based on the eigen-decomposition of
the matrix'® Z;Z_’f", where the (L + 1) x (L ~ L + 1)M matrix Z; satisfies

Z; = V;(0)H; + Wy (2.149)

as described in section 2.6.1. For convenience, let V; denote VE(G)), and for matrices Xy,
Y, having N columns each, define Ryy = %x jYJ,H , where ¥ = (L — L+ 1)M. In terms

of the above notations,

Rzz = ViRgaVE + \pI+ A + Ay, (2.150)

where!?
A1 = ViRaw +Rwa VY, (2.151)
As = Ry — Aol (2.152)

Recall that for K < L < (L - K +1), with K being the number of paths, the matrix V;H;
has rank K, and hence, so does the matrix VLRHH\!'%’ . Therefore, K is given by the
smallest integer & such that the (L + 1 — k) smallest eigen values of (VERHHVEH +Ngl)
are all equal. But, due to the pertubation (A; + A;), the (L+1 - K') smallest eigen values
of Rzz are all different with probability 1, and the ‘gap’ between the K th largest eigen
value and the (K + 1)th largest eigen value is random.

Suppose, for k = 1,2,...,(L + 1), the eigen vectors of Rzz corresponding to the (L +
1 — k) smallest eigen values are arranged in the matrix Uy, left to right in the order of
decreasing eigen values. Then, for ¥ = K, Fuchs shows that there exists a matrix U with
orthonormal columns such that

1. U = U+ O(N-D),

*The method also applies to ZsZf and more generally to the centro-symmetric [Z;, Zs) [Zf, Zo]¥.

%The Hermitian matrix A; contains zero-mean Gaussian random variables. The Hermitian matrix A
contains zero-mean random variables which, for large L, are approximately Gaussian, Furthermore, for large
L, the variances of the elements of both A; and Az are O(N ™).
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2. UHVE = 0, and therefore UFRz;U = ALl + U¥ A,LU.

3. the (L + 1 — k) smallest eigen values of Rzz. that is. the diagonal elements of
I:TﬁRzszK, are obtained, to within an approximation (N ~1!), by perturbing A}
with the eigen values of U¥ A,U.

Therefore, a hypothesis test for the equality of the (I + 1 — K') smallest eigen values of
Rzz may be based on the probability density of the eigen values of U¥ A.U. However.
Fuchs believes that its computation would be impossible. Therefore. Fuchs proposes to
base the hypothesis test on the probability density of the diagonal elements of U¥ A, U,
on the strength of his observation that the elements of U¥ A,U, for large L, are all linear
combinations of some (L + 1 — K') zero-mean independent Gaussian random variables.
Specifically, he proposes to estimate the diagonal elements of U¥ A,U by the diagonal
matrix (I:TERZZT:T K- .J%I), where A = trace (I:Tf\‘-Rzzﬁ K) /(L+1=KY),and perform a
x? test of 2(L + 1 - K) degrees of freedom.?® Thus, Fuchs chooses a sequence of thresholds
1 according to

Prob{ux > t;) = P,., {2.153)

where p;, is 2 random variable with x? probability density with 2(L + 1 — k) degrees of free-
dom, for k = 1,2,...,(L+1), and where P,. is the fixed probability of over-estimation of K.
Suppose §y, is the column vector containing the diagonal elements of (ﬁf RzzU; - N},I).
where N = trace (ﬁf Rzzﬁk) /(f. +1—k), and Q4 is its covariance estimated under the
assumption k = K <+ 1, then the test statistic jiy, = c";f Q;lqk will be greater than ¢, with
high probability?® for & < K, but less than #; with probability (1 - P,.) for k= K + 1.
Thus the method consists in asking whether fx > 1 is true, in sequence for k = 1,2,..,
until the answer is “No”, at which point k& = K + 1.

2.6.8 On the Consequences of Erroneous Estimation of i

The consequences, for signalling, of erroneous estimation of & would depend on the mutual
separations of the elements of ©@ = (8 : k = 1,2,..., K). If the mutual separations are all

1 q is the column vector containing the zero-mean diagonal elements of U¥ A, U and Q is the covariance
matrix of q, then q”Q~!q has a x? probability density with 2(L + 1 — K) degrees of freedom.

#1Puchs claims this to be true, but does not provide any quantification. Thus he does not provide any
means of fixing, or even finding, the probability of under-sstimation. Nor does he discuss the tradeofl
between the probabilities of over-estimation and under-estimation.
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large, then the consequences of under-estimating K can be a severe. On the other hand, if
the separation between two elements of © is very small, then not only will the corresponding
paths be difficult to resolve, but also the consequences of not resolving them may be mild.

However, this notion has yet to be precisely quantified.

The consequences of over-estimating &' may be mild. Thus if the estimated number of
paths K is more than the actual number of paths K’, and if © and H are the corresponding

maximum-likelihood estimates of © and H, respectively, then for large L,

1. some K elements of O = {é;_. thk=1,2,..., ff} will be very close to the elements of
O={8:k=1,2,...,K}, and

2. the remaining (K ~ K') elements of © will correspond to rows of H that are close to

the all-zero row vector.

In the following, a proof of the first statement is sketched based on the ideas of Bai et. al.

[2]. The second statement will then follow from the first.
When K is known, the problem of estimating @ = {8 : k =1,2,..., K} can be trans-
formed into the problem of estimating the coefficients of the polynomial whose roots are

{eia" 1k =1,2,.. .,Ix"}, or equivalently, the unigue (K + 1)-dimensional column vector
b = (b0, b1, b, -, b-1, b)Y (2.254)
that satisfies ||b}]2 = b¥b = 1, by > 0, and
K _ K .
D bzt = by J[ (2 ~ %), (2.153)
k=0 k=0
Thus the maximum likelihood estimate b of b is given by [4] [2]
arg min
b= b trace ((B (B“ B) ' gH ) zzZH ) , (2.156)
lIb]| = 2,65 >0

where b = (bo,bl,bg,...,bﬁ_hbx)ﬂ is a (K 4+ 1)-dimensional column vector that defines
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a7
the (L + 1) x (L + 1 = K') matrix B = B(b) as
( bo b be by by L] 0 0\
0 bo b[ bg b}\'— 1 bI\' 0
Bf(b)y=| : .. - (2.157)
0 b b be by bp O
\ 0 0 0 b b b by bic )

The estimate b is strongly consistent as shown by Bai et. al. [2]. More specifically, for every

€ > 0, there exits a constant ¢ > 0 and an integer Lg such that for all L > Ly

Prob(||b — b|| > ) < et (2.158)
Suppose K is not known exactly but is knuwn to be less than K, and
arg min
-1
&= ¢ trace ((C (ctc) c”) zz”) , (2.159)
lle]l = L,ez >0

where ¢ = (cg, 1, €2,.. ., CI{‘-v‘-'R)H isa (f( + 1)-dimensional vector that defines the (L+
1) x (L 41 = K) matrix C = Cr(c) as

0 )
0
(2.160)

0 ... 0 Co 1 Ca
\0 o 0 D co ] Co

Choy ¢ 0

Char SR/

In the absence of noise, & is non-unique, but it belongs to the column span of the (K+1)x
(K — K + 1) matrix BK.(E) given by

(B b by

0 by b &

0\
0

BH(b) = (2.161)

\0 .. 0 0 bo b b ... 51\'-1 b!\'}
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In the presence of noise, using the ideas of Bai et. al. [2], one can show that, for every

€ > 0, there exits a constant ¢ > 0 and an integer Lo such that for all L > Lq
Prob (e” (1 -B(B¥B)” B”) &> e) <eiL, (2.162)
where B = B . (E), or equivalently,
Prob (e”v (V”V)_1 vig > e) < ek (2.163)

where V = V. (0}, the (K +1) x K Vandermonde matrix parametrized by ©. Therefore,

Mg o &7 V- {0) = 0, or equivalently, some K zeros of the polynomial TP, &.2%, where
H .

é= (éo,al,ég,. . .,E,-\-_I,&,;-) , tend to {e’gk h=1,2,. ..,Ix"}.



Chapter 3

Linear Zero-Forcing Equalizers

3.1 Introduction

A class of receivers for the composition of Quadrature Amplitude Modulation (QAM)
and Discrete-Multipath Channel (DMC) is derived in this chapter. Receivers of this class
shall be referred to as linear zero-forcing equalizers in view of the fact that they are cx-
tensions of the linear zero-forcing equalizer known for the composition of QAM and lin-
ear time-invariant channel with additive white Gaussian noise (AWGN). (For information
on the latter, see, for example, [27] and [3]). The stationarity of the set of sequences
{he(t=nT): k=1,2,...,K;Vn} and the consequent isomorphism between the Hilbert
spaces H and L as discussed in appendix A, section A.5 play a central role in the deriva-
tions. To facilitate the derivations, the set of stationary sequences {h(t — nT): k = 1,2,..., K} ¥n}
is assumed to satisfy the minimality condition as discussed in appendix A, section A.9.
Issues of specification, implementation, and performance analysis of the receivers are ad-
dressed. Man)-' of the concepts introduced in this chapter will be useful in the subsequent
chapters on other kinds of equalizers as well.

3.1.1 Some Preliminaries

Recall from chapter 2, section 2.5 that the received signal z(t) can be written in terms of
the transmitted data sequence a(n) as

K
2ty = a(n) 3 e Thy(t — aT) + 9y (t). (3.1)

=1

39
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For a square-integrable function function f(t). the integral

iy = ff'(:)s(t)dz, (3.2)

defined in the mean-square-sense with respect to both data and noise, is called the correla-
tion of z(t) with f(2). Thus a; is a complex random variable which, in view of equation 3.1,
has a decomposition as the sum of a data-dependent part & s and a noise-dependent part é;

given by .
by =S a(n) 3 eieT f F () kil - nT)dt (3.3)

n k=1
and

&= [ Fomoa (3.4)

repectively. Thus é; is a complex Gaussian random variable with mean zero and variance

E [les] = % [ 170 at. (33)

3.2 Linear Equalizers

The task of a receiver is to decide from the received signal z(t) which data sequence a(n)

was likely transmitted. A linear equalizer performs this task by forming a sequence of

correlations
b1 = [ (=), (3.6)
for some optimum sequence of functions f,,, (), and then considering the sequence of numbers
A arg min . -
i(m) = la— g, (3.7)
a€ A

as the data sequehce that was likely transmitted; here A denotes the signal set. The latter
operation, known as quantization, is schematically shown in figure 3.2.

i
W T T
-;‘\,3-'}&.\‘/,;
ThemE
‘1_‘\



3.2 LINEAR EQUALIZERS 61

ag,, a(m)

Figure 3.1: Quantization

The sequence of functions f,(t) may be optimized under various criteria that judge the

closeness of ay,, to a(m). This thesis considers two such criteria:
1. minimum noise variance under the zero-forcing constraint.

2. minimum mean-square-error.

The first of the above criteria is considered in this chapter, and the second criterion is
considered in chapter 5.

3.2.1 On Specifying a Linear Equalizer

For the composition of QAM and linear time-invariant channel, linear equalizers optimized

under one of the aforementioned criteria have the property that

fm(t) = fo(t — mT) (3.8)

for all m, where T is the baud period. Thus a linear equalizer for the composition of QAM
and lirear time-invariant channel is completely specified by the optimum function fo(¢) and
the parameter T. A linear equalizer for the composition for QAM and DMC, however, may
not be specified as ea.sily‘because the DMC is time-variant. In general, an entire sequence
of optimum functions would be needed to specify a linear equalizer for the composition of
QAM and DMC. The complexity involved in specifying such a sequence of functions is of
major concern in this chapter and the subsequent ones on other kinds of equalizers as well.
For the time being, however, a linear equalizer may te identified with an optimum sequence
of functions.
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3.3 The Optimality Criterion — Minimum Noise Variance

under the Zero-Forcing Constraint
Suppose that, for some function f(t), the correlation a5 = [ f*(¢)=(t)dt is used to obtain

argmin R
a(m)= """ Ja—qyl. (3.9)
a€ A
In considering a(m) as the mth data symbol ihat was likely transmitted, both the noise
and the data are potential causes of error. To guard against an error being caused by the

data, the data-dependent part b s of @y defired by equation 3.3 must be constrained as
by = a(m), (3.10)

or equivalently, the function f(t) must be constrained as

)fj efwsnT j (it = nT)dt = §,,(n), (3.11)
k=1

where 6,,(n) is the Kronecker delta defined as

0 if nfEm
d{n) = T 3.12
(m) {1 if n=m. ( )

This constraint is known as the zero-forcing constraint because +* Irees to zero the inter-
ference caused by data other than a(m), the data symbol being decided upon. Assuming
for the moment that there exist functions that satisfy this constraint, one obtains

ay — a(m) = &y, (3.13)

where é; is the noise-dependent part of &; defined by equation 3.4. Since é; is a Gaussian

random variable, its variance E [|é flz] must preferably be minimized. Thus the integral

[ a (3.14)

must be minimized with respect to the function f(t) under the zero-forcing constraint.
The derivation of a linear equalizer under the aforementioned optimality criterion - min-

imum noise variance under the zero-forcing constraint — is attempted in the next section.
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It turns out there that this approach. although optimal. is not feasible from an implemen-
tation point of view. In the subsequent sections. suboptimal formulations of the problem
obtained by using stronger zero-forcing constraints will be considered. Henceforth, the term
linear zero-forcing equalizer shall describe the solution to the optimal formulation as well

the solutions to the suboptimal formulations.

3.4 The Optimal Formulation of the Linear Zero-Forcing
Equalizer Problem

From the discussions of sections 3.2 and 3.3, it is evident that the problem of deriving a
linear zero-forcing equalizer can be cast as a family of constrained minimization problems
indexed by integers, the mth problem being to minimize the quantity []f(#)|° d¢ under the
constraint C;, defined by equation 3.16. The solution to the mth problem shall be denoted
by fm(?), and the minimum so achieved shall be denoted by

Am = f fm(t)[2d. (3.15)
3.4.1 Zero-Forcing Constraint C,,
Denote by Cr the following constraint on the function f(1) :

K
3 ednn? / F(Ohi(t = nT)dt = 6, (n). (3.16)
k=1

3.4.2 A Consideration in the Hilbert Space £2

Recall that, by assumption, the functions hi(t) € £% for k = 1,2,..., K, and observe that

a function f(t) € £2 is being sought. Since £2 is a Hilbert space under the inner product

(ho)= [ £ watt)at, | (3.17)
the problem can be restated as follows: minimize (f, f) under the constraint
(/i 47} = bm(n), (3.18)
where X
hh(t) = Y e Thy(t — nT). (3.19)

k=1
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This restatement shows that the solution. if it exists, must belong to the subspace!
Hg = Clos.Span {h"(t) : Vn}. (3.20)

A proof of this simple fact is as follows: by the orthogonal projection theorem [47], an

arbitrary f(t) € £? has a unique decomposition
f(t) = g1(t) + g2(2), (3.21)
where g1(t) € Hx and go(1) € Hg (the orthogonal complement of Hx in £2); since
(f,h") =(g1.R") (3.22)
for all n, the function f(t) satisfies C, if and only if g,(t) satisfies C;n; moreover, since
(£;f) = (91,91) + (g2,92), if f(t) is optimum then necessarily ga(t) = 0, for otherwise g,(?)
would be better than f(t), thereby contradicting optimality.
3.4.3 Further Consideration in the Hilbert Space £
To obtain further insight into the solution to the mth problem, denote the subspace
He(gm) = Clos.Span {A™(t) : n # m}, (3.23)

and consider an arbitrary f(t) € Hz. By the orthogonal projection theorem, there exist
unique decompositions

h™(t) = () + y(1), (3.24)
f(t) = u(t) + o(2), (3.25)

where z(t), u(t) € ‘Héhém) (the orthogonal complement of Hy(xm) in Hx) and y(t), v(t) €
He(zm)- If f(t) satisfies C then

(£,h") = (v,h") =0 (3.26)
for all n # m. This implies that v(¢) = 0, and therefore

(L) = (wu), (3.27)
(£,8") = (w,z)=1 (3.28)
IThis is the smallest closed subspace containing the set {k"(t) : Vn}.

&
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This shows that 2 solution to the mth problem exists if and only if z(t) # 0. Under this

assumption, the optimum solution is unique and is given by

fm(t) = 2(1)/ (z. 7). (3.29)
and

Am = 1/{z.7). (3.30)
3.4.4 Special Cases

Finding z(t) is straightforward in the trivial case where there is no intersymbol interference.
that is, where ny # ny = (R™,h"™) = 0 as defined in chapter 1, section 1.7.2. In this case.
y(t) = 0 and therefore z(t) = A™(¢).

In the case where A" = 1, although the DMC is time-variant in general, the sequence of
~ functions {A™(t) : ¥r} is stationary as shown in appendix A, section A.1.2. Therefore, even
if there is intersymbol interference, the technique used for the composition of QAM and
linear time-invariant channel can be used essentially without difference. Thus the linear

zero-forcing equalizer exists if and only if

[”’T LI (3.31)
——dw < oo, .
-7 H({w)

where H(w)is the spectral density function of the stationary sequence of funciions {A,(t — nT') : Vn}
as discussed in appendix A, section A.4. Under this assumption, recalling the isomorphism
between the Hilbert spaces M and £} as discussed in appendix A, section A.5, the isomorph

e(w) € L% of fm(t) is given by

c(w) = Tellr=2ImT 1 (), (3.32)
T2 r=/T
dn = 5 j“ T (3.33)
3.4.5 The General Case

In the general case where K > 1 and there is intersymbol interference, it does not seem
a trivial task to ascertain the existence of the solution or even to find it. However, an

approximate solution may be obtained as follows: since the optimum solution f, € Hy,
heuristically,

| fa(t) = am(n)R(2) (3.34)
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for some sequence a,(n); this implies

3 (272 am(n') = bm(n), (3.35)

nf
and

(fms fm) = Zam(n) (Jm:B") = am(m); (3.36)

an approximation of equation 3.35 obtained by restricting both n and »’ to a finite set can
be solved by matrix methods. The approximate solution so obtained will not strictly satisfy
the zero-forcing constraint C,,. However, it will satisfv a weaker constraint than C,,, and
therefore correspond to a lower bound on A,,. In the next section, it is shown how, for
roughly the same order of complexity, a function f(t) that minimizes (f, f) while satisfying
a stronger constraint than C,; can be found; the solution so obtained will automatically

satisfy the zero-forcing constraint C,, and correspond to an upper bound on Ap,.

3.5 A Suboptimal Formulation of the Linear Zero-Forcing
Equalizer Problem

The linear zero-forcing equalizer problem can be formulated in a suboptimal manner by

replacing the constraint set (,,, with a stronger constraint set C2, defined by equations 3.38 .

and 3.39. Thus the suboptimal formulation of the lirear zero-forcing equalizer problem is
a family of constrained minimization problems indexed by integers, the mth problem being
to minimize [ |f(2)|* dt under the constraint C2,. The solution to the m‘® problem shall
be denoted by f2,(t), and the minimum so achieved shall be denot.d by

M= [18u () (337)

Then AD,, will be an upper bound® on An,. The motivation for this suboptimal formulation

is that the solution is attractive from the points of view of specification and implementation.

3.5.1 Zero-Forcing Constraint C%_

Denote by C3,, the following set of constraints on the function f(t):

2This is the reason for the subscript ‘w’ in C3,, etc.. The reason for the superscript ‘0’ will become
apparent later.
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e fornFmand k=1.2.....K.

jf'(f)hk(t -~ nT)dt = 0, {3.3%)

K
)» e:‘wka[f-(t)h,,(: - mT)dt = L. (3.39)

k=1
Observe that CJ,, is stronger than C, in the sense that if a function f(¢) satisfies €%, then
it satisfies Cr;.
3.5.2 Considerations in the Hilbert Space £*

An argument similar to that used in sections 3.4.2 and 3.4.3 gives the following conclusions:
h

a solution to the m! problem, if it exists, must belong to the subspace

H = Clos.Span {he(t — nT) : k =1,2,...,K:Vn}, (3.40)

but be orthogonal to the subspace

H(zm) = Clos.Span {hi(t = nT): k= 1,2,...,K;n # m}; (3.41)
suppose that
K
™) =3 e ™ T it — mT) = 2(t) + y(t) (3.42)
k=1

is the unique decomposition of A™(¢) such that y(t) € Hizn) and z(t) € 'Hf'#m) (the
orthogonal complement of Hixnm) in H); a solution exists if and only if z(t) # 0, under
which assumption it is given by

F(t) = 2(8)/ (2, 2), (3.43)

and A2, =1/(z,2).

3.5.3 Solution

For the special case where K’ = 1, the suboptimal formulation is equivalent to the optimal
formulation, and therefore the corresponding result of section 3.4.4 is applicable.
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For a general case, denote
junmT  _juwamT jwiomT T
Q.. = 1ed L€ eerap €l . (3.44)

and recall the isomorphism between the Hilbert spaces H and ['21{ as discussed in appendix
A, section A.5. The isomorph of Z{.‘._.l efxmTh (¢t — mT) is then e~ ™TQ, ¢ £2H. Let
uf{w) € L3 be the isomorph of z(t). The isomorph of y(t) is then (e‘jmrﬂm - u(w)) €
£%;. To find u(w), observe that (e‘j"""TQm - u(w)) is orthogonal to functions v(w) € Ly

that are the isomorphs of functions that belong to Hf‘;ém). Therefore

[ v BE) (T - ) do =0 (849)

-

for all functions v(w) that satisfy

=T .
j vH(w) H(w)ere= T dw = 0 (3.46)
T

_1_—/

forn#mand k=1,2,..., K, where e, is the k! unit vector of the standard Euclidean

basis; equivalently, the functions v{w) satisfy

H(w)v(w) = be~dwmT (3.47)
for some complex vector-valued constant b. Also, the function u(w) satisfies

H(w)u(w) = ae~iwmT (3.48)

for some complex vector-valued constant a. Therefore, denoting the generalized inverse of
H(w) by G(w), equation 3.45 can be written as

j::’;, v (w)H(w)G(w)H(w) (e_jmrﬂm - u(w)) dw=0. (3.49)
This implies
r{T
[ b G0 ()0 - ) = 0 (3.50)

for all complex vector-valued constants b.
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Assumptions that Facilitate the Solution

The following assumptions facilitate the solution:

G(WwH) =1, (3.51)
j://:_ Trace [G(w)]dw < oo (3.52)

This pair of conditions is equivalent to the set of stationary sequences
{hE() = hi(t —nT) : k=1,2.....K;¥n} (3.53)

satisfving the minimality condition as discussed in appendix A, section A.9.

Solution

Under these assumptions,
Q. = Goa, ‘ (3.54)

where Gy is the positive definite matrix given by

G T G(w)d 3.55
O_EE-[«/T (w)dw. (3.55)
Using a = G5 'Q,, one obtains
ww) = e TGW)G;N,, (3.56)
1 w{T 1 /T _ _
g'j;#n uH(w)H(w)u(u)dw = .2_'}.];?” QﬁGolG(w)Golﬂmdw, (3.57)
= Teflgy'a,. (3.58)

Observe that QG592 > 0 owing to the positive definiteness of Gq. Let c(w) € L} be
the isomorph of f2 (t). Then®

@) = T[0HGs'R| " TG ()65 R, (3.59)
¥ = T[efesie.] ™. (3.60)

3Compare with results given in 3.4.4.
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3.5.4 An Alternative Approach

The isomorph c(w) € L}; of 2 (1) is that which minimizes the quantity

=/T
ij cF(w)H(w)e(w)dw (3.61)
27 JeryT
under the constraints
=T .
51: / /T H (W) H(w) Qe T du = 1, (3.62)

H(w)e(w) = ae=*™T (3.63)

for some complex vector-valued constant a. Equivalently, the complex vector-valued con-

stant a is that which minimizes

w/T /T
3 [y @ = 5 [7 o Gad, (3.69)
= T7'a¥Gpa (3.65)
under the constraint
aflQ, =T. (3.66)
Denoting b = G[l,! ?a, the complex vector-valued constant b is that which minimizes
af Goa = bHb (3.67)
under the constraint
G 0 = T (3.68)

here Gy ? and G, 72 are the positive square roots of Go and G respectively. Since an
arbitrary b has the unique orthogonal decomposition

b= oGy ?Q + 1, (3.69)

where a is a scalar and f is orthogonal to Gy Y *Qpm, the complex vector-valued constant b

which minimizes
b#b = |e]?QH G0, + £Ff (3.70)
under the constraint
2G5, =T (3.711)
is given by £ = 0 and a = T [RAG5'm] ™. Thus a = T[0HG;'20|” G50 and
T-'aHGoa = T [QH G5 0. .
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3.5.5 On Specifying and Implementing the Solution

The linear equalizer {f3,() : ¥m} is specified by the matrix G(w). the vector €2;. and the

parameter I'. More specifically, it is specified by the isomorphs of the columns of the matrix
G(w)G;'. (3.72)

the matrix Gy, the vector Qy, and the parameter T. The linear cqualizer can be im-
plemented as shown in figure 3.2. Thus the received signal z(t) is fed into the bank of
K continuous-time time-invariant filters matched to the isomorphs of the columns of the
matrix G(w)Gg!. The outputs of these filters are sampled once every T seconds and the
samples are linearly combined according to the weight vector 7,. The combined output is

scaled by T [Q,“,{Galﬂm] ! . and then quantized to the signal set to obtain a(n).

3.6 Generalized Suboptimal Formulation of the Linear Zero-

Forcing Equalizer Problem

The suboptimal formulation of the linear zero-forcing equalizer problem of section 3.5 can
be generalized by replacing the constraint set €3, with a generalized constraint set C3,,
defined by equations 3.74, 3.75, and 3.76. Thus a generalized suboptimal formulation of
the linear zero-forcing equalizer problem is a family of constrained minimization problems
indexed by integers, the mth problem being to minimize [|f(¢)|2dt under the constraint

set CZ,,,. The solution to the mth problem shall be denoted by f2,(¢) and the minimum so
achieved shall be denoted by

Mo = [ 180 at. (373)

3.6.1 Zero-Forcing Constraint €3,

Let ¢ be a non-negative integer. Denote by C3,, the following set of constraints on the
function f(t):

-~ eforln—-m|>gqand k=1,2,..., K,

f F()ha(t — nT)dt = 0, (3.74)
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e forO0<|n~m|<q,

K

3 efanT f F(Oha(t — nT)dt = 0, (3.75)
k=1

® % .
3 efnmT / F(Oha(t = mT)dt = 1. (3.76)
k=1

Obsérve that C7,, is stronger than C,, in the sense that if a function f(t) satisfies C3,, then
it satisfies Cr,. In the same sense, C2, is stronger than C%,,, and if ¢ < g2 then C%, is

stronger than C%2, . Therefore,
Am S AR, S AL <AL (3.77)

In otherwords, for increasing ¢, the quantities A? constitute a hierarchy of tighter upper

bounds on A,,. This is the reason for the subscript ‘u’ and the superscript ‘q.” One may
call g the degree of optimality.
3.6.2 Solution

In the manner of the discussion of section 3.5.4, the isomorph ¢(w) € L§y of f%,(¢) is that

which minimizes the quantity

1 =/T _
37 | o e (3.19)

under the following set of constraints:

o forln—m|>¢qand k=1,2,.. ¥~

./_ﬂa.-//j:;*é ‘(W) H(w)ere " dw = 0, (3:79)
o for0< |n~m| < g,
[ BT =, (&80
:
3 O H e = 1, (&80
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where e, is the kth unit vector of the standard Euclidean basis. and

Qn = [ej‘”‘"‘T,ej"’"‘T ..... ei*‘h""T]T. (3.82)
The first set of constraints say that
H(w)e(w) = ¢~ dmT Z aped+PT (3.83)
Ipl<q

for some set of complex vector-valued constants {a, : |p| < q}. The set {a, : [p| < g} is that
which minimizes the quantity

=/T =T .
.,i_ FlwHW)(w)ds = 3 3 afl(')l: f G(w)eJ““’“”"wa) Ap
=T ==T lpil<g lpalse N\ AT
(8.84)
= 7! all G, _paap,. (3.85)
Ip1l€e Ip2l<e

under the constraints

=T i - ‘

T afa, f M giutmapnirg, o ) O 0<ln-m|<q, (3.86)
J

or equivalently,

0 if 0<[plgq,
HQP'H“ ={

(3.87)
% T if p=0.
In the above, the denotion
T x/T .
_ = JuwnT
Gn = 3- j_ S Ta (3.88)
has been used.
The Caseg=1
The set {a, : [p] < 1} is that which minimizes the quantitj
Gg G1 G2 a
H [afliagv afl]
Z Z ame._.p,am = Gy, Gy & agp y (389)

<1 <1
Im1|< |P2|_ G_g G-—l GO a.q
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under the constraint

Qf., of  of a 0
0" Qi of ag = |T|. (3.90)
o# oH Qqff_, a_; 0

where 0 denotes the A’-dimensional column vector of zeros, and hence 07 denotes the

K -dimensional row vector of zeros. Denote

Gy G G-
G - G—l GO G] . (3-91)
G, G Gg

Denote by G/ and G~1/2 the positive square roots of G and G™! respectively. Then the

set {a, : |p| < 1} is that which minimizes the quantity

H _H .H 2
ay.ay,a” . 1a
2. 2 a4 Gpopay, = o' o825, GG\ | g |. (3.92)
Iml£l ip2l1
a-i
under the constraint
oH ﬂ,’,{ oH G-l2@1/2 ag = T . (3.93)
of  oF QqQff a_, 0

For an arbitrary set {a, : |p| < 1}, there exists a unique decomposition

a3 9m+l 0 0 "
GlY?| a9 | = G2 9 R 0 v | + f (3.94)
a1 0 0 . T-1

where 71, 7o, 7-1 are scalars and f is a 3A-dimensional vector orthogonal to the span of
the columns of
nm-{-l 0 0
G2 o O 0. (3.95)
0 0 Qno
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The set {a, : |p| £ 1} which minimizes

Z Z a;i Gpi-p2p, = fHr+

Ipai<1 |pz|2
[__.].I._..a- _}_.. ] Qﬁ‘i“l UH OH an-‘ﬂ. 0 0 { "N
o=t of qf of | g-! 0 Q. o0 10
GH OH ﬂg_] J 0 0 Q,,;_l G-l
under the constraint
Qf, o of Qnsy O T 0
OH anI OH G_l 0 er; 0 i = T
of o qQf 0 0 Q. SO 0
is given by f = 0 and
[ o# H H -
g Q0 0 0 Qmsz O 0
Yo =T o¥ Qg oH G-! 0 L
o o of i | 0 0 -y
The solution can now be given in terms of the scalars 91, 9. 7—; as foilows:
ay Qi1 0 0 N
ao = G_l D ﬂm 0 A,'u L
a_ 0 0 T
a;
c(w) = Glw) [e'j“‘('"*'l]TI, e~ JomTy e‘j”(’“'l)TI] ap |
a.)
1 1 =T 4 -1 H
A = 5= " (WHWeWde =T 3" 3 afG, a8, = w;

[P1l<1 |pait

here I denotes the A" x A identity matrix.

3.6.3 On Specifying and Implementing the Solution for ¢ = 1

(3.96)

(3.97)

(3.98)

¢

(3.99)

(3.100)

(3.101)

(3.102)

The linear equalizer {f,(t) : Y¥m} is thus specified by the isomorphs of the columns of the

matrix G(w), the 3K x 3K matrix G™!, the vector £2,, and the parameter 7.
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The linear equalizer can be implemented as shown in figure 3.3. Thus the received
signal =(t) is fed into the bank of A" continuous-time time-invariant filters matched 1o the
isomorphs of the columns of the matrix G(~). The outputs of these filters are sampled once
every T seconds and the samples are fed into A" parallel tapped delay lines each with 3 taps,
The values at these 3A™ taps are arranged into a column vector which is then multiplied by
the 34" x 3R matrix G™!. The resulting column vector is used to form a scalar product
with the vector '};9{;_{._”.759;{.7:,9{;_“]1-: observe that the sealars 5. <. 3. are
dependent on m. The resulting scalar is then quantized 1o the signal set te obtain @(n).
In view of this implementation and that given in section 3.5.5. the matrix G(=) may be

said to define a canonical front end for a class of linear zero-forcing equalizers.

3.7 A Lower Bound on ),

When A" > 1 and there is intersvmbol interference. the linear zero-forcing equalizer derived
in section 3.5 is. in general, suboptimal in the sense that A, < A% .. An accurate comparison
of A, with A2, cannot be made without knowing A,,. However. an approximate comparison
can be made if a lower bound on A, is known. A lower bound can be found by replacing the
constraint set C, of the optimum formulation of the linear zero-forcing equalizer problem
of section 3.4 with the weaker constraint set 2, defined by equation 3.104. Thus solutions
are sought for a family of constrained minimization problems indexed by integers, the mth
problem being to minimize [ |f(t)]*dt under the constraint C2,. The solution to the mth

problem shall be denoted by f2,(2), and the minimum so achieved shall be denoted by

M = [ 1520, (3.103)

Then AY, will be a lower bound®* on A,. It turns out that the expression for A, is similrr
to that of A, obtained in section 3.5.3.

3.7.1 Constraint C2,

Denote by €2, the following constraint on the function f(t):
ml .
K
3 efunmT j F(Ohi(t - mT)dt = 1. (3.104)
k=1

*This is the reason for the subscript ‘I’ in C3,; etc.. The reason for the superscript ‘0’ will become apparent
later.
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Observe that €2 is weaker than C,, in the sense that if a function fit) satisfies Cthen it

satisfies ). Also. observe that €%, is not. in general. a zero-jorcing constraint.

3.7.2 Solution

By an argument similar to that used in section 3.4.2. the solution f2,(t} takes the form

K ‘
a Z = emTh (p — mT) (3.105)
k=1

for some scalar a. Therefore. in terms of its isomorph ¢fw) £ ‘CEH given by
(<) = ae™mTQ, (3.106)

the quantijty

=T
i_ . cH()H(w)e(w)d = laf

i S

b
-

-

=/T o
f . QF (L) H()Qmd = T (o QFH,Q,,

(3.107)
must be minimized under the coustraint
=/T } - =/T
:,1_: o M () H(w) e Tdor = - /T QN H(W)Qnds = T 10" @ HoR,, = 1.
(3.108)
where
T r=I/T

Therefore, a solution exists if and only if Q’,,‘:Hgﬂm # 0. Observe that this condition is
implied by minimality.® Under this assumption,
1=1

a = T[QHHQ.| (3.110)
ow) = T[eHH,]  «iomTq (3.111)
r — h. .
o) = T[0HHR,|™ 3 e nThyt — mT), (3.112)
) T k=1
0 H 17!
2, = T[efHn,.] . (3.113)

Observe that the expression for A2, has the same form as the expression for A2, given by
equation 3.60. The expression for the isomorph of S2,(1) is also of the same form as the
expression for the isomorph of f2,(t) given by equation 3.59.

*Under minimality, 0 < G;* < H,.
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'

3.8 A Generalized Lower Bound on \,,

The lower bound on A.. derived in section 3.7. can be generalized by replacing the con-
straint C2, with a generalized constraint set Cl, defined by equations 3.115 and 3.116. Thus
solutions are sought or a family of constrained minimization problems indexed by integers

th

m. the m*" problem being to minimize [|f(1)!" d¢ under the constraint set C? ;. The solu-

tion to the mth problem shall be denoted by f7,(¢). and the minimum so achieved shail be
denoted by

Al = j FARGINR (3.114)

The functions f3,(¢) are the approximate solutions suggested. in section 3.1.5. to the optimal

formulation of the linear zero-forcing equalizer problem.

3.8.1 Constraint 7,

Let g be a non-negative integer. Denote by C?; the following set of constraints on the
function f(1):

e for0<|n-m|'<yq,

A- -
) e"""‘T/f'(t)hk(t - nT)dt = 0, (3.115)
k=1
. : K )
) e’“’"“‘T/f"(t)hk(t —mT)dt = 1. (3.116)
k=1

Observe that C7; is weaker than Cy, in the sense that if a function f(2) satisfies C,, then it

satisfies C:,d. In the same sense, cf:,, is weaker than C}, and if q; < 42 then C¥, is weaker
than C%,. Therefore,

At € A S AR < A (3.117)

In other words, for increasing g, the quantities A}, constitute a hierarchy of tighter lower

bounds on An. This is the reason for the subscript ‘I’ and the superscript ‘q.’
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3.8.2 Solution

By an argument similar to that used in section 3.4.2. the solution takes the form

n
Faty= 3 0> @™ g — (m + p)7). (3.118)
ety k=1

for some set of scalars {a, : |p| < g}. Therefore. in terms of its isomorph c(«) € L3; given
by

Y
c(=) = Z C‘PZ e_""'(m':'p]TQm-:—p- (3.119)
lplse k=1
the quantity
1 =T
o o () H{w)e(w)de (3.120)

o, (L[ juotpy=p2)T
z Z Omﬁp-.-ﬂmq-p, )_‘_./_ TH(;_-,-)C 3 dos 'Qm-I-pe-
Ips1Se Ipz1<q W Jozy

TV Y Y a6 enQf  Hyp Qmap, (3.121)
lPal<g lp2i<e

must be minimized under the constraint

=T )
5z | ) eI (3.122)

. 1 /T (py =
= 3 amnfn{ﬂu (ﬂ./:w/rH(w)erm pz)wa) Qnipe

Ir11gq

_ -1 -~ oH
=T Z ap; s-zm+p; HPI -p2 gm-ﬂ’: *
I;r|<g

_ {0 if 0<ipz| <y,

3.123
1 if P2 =0, ( )

where

H. = 2./’-'-/7' H( )ejwanw ‘
n= o /T o - (3.124) |
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The Case g =1

The set of scalars {a; : |p| < 1} is that which minimizes

: | QL o o Q.
laj.ag.al,} '
off  QF of H 0
of o Qf | 0
under the constraint
Qf , of of Qmyy O
of Qi of H 0 Q. o
I o of off 0 0 ..,
where
Hy, H; H-
H=| H, H, H,
H.. H, H,

In terms of the scalar ay. the solution is given by

1 _
’\ml = ap.

Q..
0

43|
Qg

Q.

Qm—l

ay

(491}

NIt

(3123

(3.126)

{3.127)

(3.128)

Observe that the expression for AL, has the same form as the expression for A, given by

equation 3.102. The expression for the isomorph of f1,(t) is also of the same form as the

expression for the isomorph of f2 (1) given by equation 3.101.

£
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Chapter 4

Decision-Feedback Zero-Forcing
Equalizers

4.1 Introduction

A class of receivers for the composition of Quadrature Amplitude Modulation (QAM) and
Discrete-Multipath Channel (DMC) is derived in this chapter. Receivers of this class shall
be referred to as decision-feedback zero-forcing equalizers in view of the fact that they
are extensions of the decision-feedback zero-forcing equalizer known for the composition
of QAM and linear time-invariant channel with additive white Gaussian noise (AWGN).
(For information on the latter, see, for example {27] and [3].) The stationarity of the set
of sequences {hi(t—nT):k=1,2,...,K;Vn} and the consequent isomorphism between
the Hilbert spaces A and Eil as discussed in appendix A, section A.5 play a central role
in the derivations. Most of the concepts introduced in chapter 3 on linear zero-forcing
equalizers will be useful in this chapter. However, to facilitate the derivations, the set of
stationary sequences {Ax(t —nT): &k = 1,2,..., K’;Vn} is assumed to satisfy the regularity
condition as discussed in appendix A, section A.8. Issues of specification, implementation,

' and performance analysis of the receivers are addressed.

4.1.1 Some Preliminaries

The preliminaries given in chapter 3, section 3.1.1 are needed here as well.

/

83
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i
de

4.2 Decision-Feedback Equalizers

The task of a receiver is to decide from the received signal z(¢) which data sequence a(n) was
likely transmitted. A decision-feedback equalizer performs this task in a recursive manner
as follows. Suppose a{(n) € A is the nth data symbol that was likely transmitted for n < m:

here A denotes the signal set. A random variable dy,_ ;. defined as

Qg 5m = _[f;z(”:(f)df— Z 3nima(n). (1.1}

n<m

for some optimum pair of functions ( fm(f). 3m(n)). is formed. and then the numnber

N arg min .
am)= " la=ag,.3.] (4.2)
ag A
is considered as the m'! data symbol that was likely transmitted. The sequence of pairs of
functions (fm(¢). 3m(n))} may be optimized under various criteria that judge the closeness

of aj,, 3., to a(m). This thesis considers two such criteria:
1. minimum noise variance under the zero-forcing constraint.

2. minimum mean-square-error.

The first of the above criteria is considered in this chapter, and the second criterion is
considered in chapter 6,

4.2.1 A Simplifying Assumption

Observe that the a(n) are random variables dependent on both the data and the noise
and, therefore, their probabilistic/statistical characterization may be exceedingly difficult.
Therefore, in optimizing the pair of functions (fin(t), Bm(n)), it is necessary to assume that
a(n) = a(n) for n < m; in practice, this assumption will hold with high probability if the
signal-to-noise ratio So/Ng is high. Under this simplifying assumption,

as= [ F ()t~ 3 Bna(n), (43)
n<m /.:;-{:‘\

where [ f=(t)z(t)dt is the correlation defined in chapter 3, section &\3.1.1, and where the
summation 3} ,.n B(r)a(n) is defined in the mean-square-sense’ with tespect /to the data.

"“m__,:::_T
P

—

e

e



(7
o

42 LECUIGH-FEELBACEH EQUALIZERS

In view of equation 3.1 of chapter 3. the random variable a; ; has a decomposition as the

sim of a data-dependent part 5;_? given by

w

K
bys = Y a(n)d ci*'*“Tff'(t)hk(t — nT)dt
k=}

n>m

K
chugnf‘/f-(t)hk{t_nT]dt—j(n) (4.4
k=1

—Za(n)[

n<m

and a noise-dependent part ¢y given by

cp= /f'(t)nw(t)dt. {4.3)
For later use. observe that the random variable
ag = ) 3(na(n) (4.6)
n<m
has mean zero and variance
E 3ol = S0 3 13(mF". (4.7)
n<m

Therefore, from an implementation point of view, the condition

S < (4.8)

n<m

is desired.

4.2.2 On Specifying a Decision-Feedback Equalizer

For the compt;sition of QAM and linear time-invariant channel, decision-feedback equalizers

optimized under one of the aforementioned criteria have the property that

Ju(t) = folt — mT), (4.9)
Bm(n) = Go(n — m) (4.10)

for all m, where T is the baud period. Thus a decision-feedback equalizer for the compo-
sition of QAM and linear time-invariant channel is completely specified by the optimum
pair of functions (fo(t), fo(n)) and the parameter T. A decision-feedback equalizer for the
composition of QAM and DMC, however, may not be specified as easily because the DMC

2
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is time-variant. In general. an entire sequence of optimum pairs of functions would be
needed to specify a decision-feedback equalizer for the composition of QAM and DMC. The
complexity involved in specifving such a sequence of pairs of functions is of major concern
in this chapter and chapter 6. For the time being. however. a decision-feedback equalizer

may be identified with an optimum sequence of pairs of functions ( fim(t). Jm{n)).

4.3 The Optimality Criterion — Minimum Noise Variance

under the Zero-Forcing Constraint

Suppose that. for some pair of functions { f{). 3{n)). the random variable

a3 =ff‘(t):(t)dt— > 3(n)a(n) (4.11)
‘ n<m
is used to obtain
amy= """ 0 _a. (4.12)
ac A

In considering @(m) as the m'h data symbol that was likely transmitted. both the data and
the noise are potential causes of error. To guard against an error being caused by the data,

the data-dependent part b 7.3 of @y 5 defined by equation 4.4 must be constrained as
bss = a(m), (4.13)

or equivalently the pair of functions ( f(2), 3(n)) must be constrained as

K .
S T [ f()hy(t - nT)dt = { o i m>m, (4.14)
=1 4 1 if n=m,
and! .
I‘ .
B(n) = ZeJ“k"T/f'(t)hk(t- nT)dt (4.15)
k=1

for » < m. This set of constraints is known as the zero-forcing constraint because it forces
to zero the interference caused by data other than e{(m), the data symbol being decided
upon. Assuming for the moment that there exist functions that satisfv this constraint, one

obtains

asp—a{m)= ¢y, (4.16)

For later use, observe that by Cauchy inequality 1B(n)f® < KZ:"_I ]f Fr(Ohe(t - nT)d!lz.
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where ¢ is the noise-dependent part of a;.; defined by equation 4.5. Since ¢; is a Gaussian

. . . fl. 2 e . .
random variable. its variance £ £|c;|']} must preferably be minimized. Thus the integral

fif(t)i'“‘dt (4.17)

must be minimized with respect to the function f(¢) under the first part of the zero-forcing
constraint given by equation 4.14. The function 3{n) is then straightforwardly determined
by the second part of the zero-forcing constraint giver by equation 4.13.

The derivation of a decision-feedback equalizer under the aforementioned optimality
criterion - minimum noise variance under the zero-forcing constraint ~ will be attempted in
the next section. It turns out there that this approach. although optimal, is not feasible from
an implementation point of view. In the subsequent sections. suboptimal formul?.tions of the
problem obtained by using stronger zero-forcing constraints will be considered. Henceforth,

the term decision-feedback zero-forcing equalizer shall describe the solution to the optimal

formulation as well the solution to a suboptimal formulation.

4.4 The Optimal Formulation of the Decision-Feedback Zero-
Forcing Equalizer Problem

e

From the discussions of sections 4.2 and 4.3 it js evident that the problem of deriving a
decision-feedback zero-forcing equalizer can be cast as a family of constrained minimization
problems indexed by integers, the mth problem being to minimize the quantity [|f(?)|* dt
under the constraint Dy, defined by equation 4.19. The solution to the mth problem shall
be denoted by- Jm(t), and the minimum so achieved shall be denoted by

Am = f |fm(D)f2dt. (4.18)

4.4.1 Zero-Forcing Constraint D,

Denote by Dy, the following constraint on the function f(¢) :

. _ |
3 e [ ()bt - nT)dt = { 0 m>m, (4.29)

k=1 1 if n=m.
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4.4.2 Some Considerations in the Hilbert Space £-

Following the discussions of chapter 3. section 3.1.2. the problem can be restated as follows:

minimize ( f. f) under the constraint

0 if n>m,

u.w:{

(-1.20)
1 if n=m.
where
K
Ry =Y T h(t - aT). (4.21)
k=1
This restatement shows that the solution, if it exists. must belong to the subspace®
He(>m) = Clos.Span {h"(t): n > m}. (-1.22)
In the manner of the discussion of chapter 3, section 3.1.3. denote the subspace
He(sm) = Clos.Span {h"*(t}: n > m}. (-1.23)
Suppose that
R (1) = z(t) + y(t). (4.24)

is the unique decomposition of A™(¢) such that z(¢) € 'Hé()m) (the orthogonal complement
of Hy(sm) It Hy(>m)) and y(t) € Hy(sm). A solution to the mth problem exists if and
only if z(¢) 7 0. Under this assumption, the optimum solution is unique and is given by

Jm(t) = z(t)/ (z,2). (4.25)
and

Am = 1/(z,x). (4.26)

4.4.3 Special Cases

In the trivial case where there is no intersymbol interference, the decision-fredback zero-
forcing equalizer is the same as the linear zero-forcing equalizer. Thus z(t} = h™(1) as
observed in chapter 3, section 3.4.4, and 8,,(r) = 0.

IThis is the smallest closed subspace containing the set {A"(t):n > m).
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In the case where A" = 1. although the DMC is time-variant in general. the sequence
of functions {A"(t):Vn} is stationary as shown in appendix A. section A.1.2. Therefore,
even if there is intersymbol interference. the technique used for the compositicn of QAM
and linear time-invariant channel can be used essentjally without difference. Thus the

decision-feedback zero-forcing equalizer exists if and only if

=T
j log H(w)ds > -, (4.27)
-=/T

where H(w)is the spectral density function of the stationary sequence of functions {h;(t — nT) : ¥n}.

Under this assumption, there exist causal functions C(w:)} that satisfy

H(w) = |C)f, (4.28)

‘as observed in appendix A, section A.8.1. In terms of a maximal causal function C(w:), the

isomorph c(w) € L3 of fu(2) is given by

ew) = T IT/(Ci0w)), (4.29)
Am = T|Co|™2, (4.30)
and
Bm(n) = Sal-miTo 1C,, (4.31)
where ,
T =T junT
Co= 5= /_ G Tas, (4.32)

_ Observe that, since C(w) € L3[-=/T,x/T}, the condition ¥,, . |8(n)}? < o is satisfied.

4.4.4 The General Case

In the general case where K > 1 and there is intersymbol interference, it does not seem
a trivial task to ascertain the existence of the solution or even to find it. However, an
approximate solution may be obtained as follows: since the optimum solution f, € He(>m)s
heuristically,

fm(®) = Y am(n)h™(2) (4.33)

n2m
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for some one-sided sequence o.,(n): this implies

2 (wn.n7) Omtn')={ O i m>m. (4:39)

n'>m 1 if n=m.
and

(fm-fm)= Z Qm(n)(fm~hn)=0m(m): {+.33)

n>m
an approximation of equation 4.34 obtained by letting both n and » vary over a finite set
can be solved by matrix methods. The approximate solution so obtained will not strictly
satisfy the zero-forcing constraint Dp,. But it will satisfy a weaker constraint than D,,. aud
therefore correspond to a lower bound on An,. In the next section. it is shown how. for
roughly the same order of complexity. a function f(¢) that minimizes (f. f) while satisfving
a stronger constraint than Dy, can be found: the solution so obtained will automatically

satisfy the zero-forcing constraint D, and correspond to an upper bound on A,.

4.5 A Suboptimal Formulation of the Decision-Feedback
Zero-Forcing Equalizer Problem

The decision-feedback zero-forcing equalizer problem can be formulated in a suboptimal
manner by replacing the constraint set D,, with a stronger constraint set DY, defined
by equations 4.37 and 4.38. Thus the suboptimal formulation of the decision-feedback
zero-forcing equalizer problem is a family of constrained minimization problems indexed by
integers, the mth problem being to minimize f|f(2)|° dt vnder the constraint D2.. The
solution to the mth problem shall be denoted by f2,(t), and the minimum so achieved shall
be denoted by.

M = [120)Pa (4.36)
Then AS,, will be an upper bound® on Ay. The motivation for this suboptimal formulation
is that the solution is attractive from the points of view of specification and implementation.

4.5.1 Zero-Forcing Constraint D°

Denote by D, the following set of constraints on the function f(t):

This is the reason for the subscript ‘v’ in D%, etc.. The reason for the superscript ‘0’ will become
apparent later.
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e forn>mand h=1.2,.... K,

/ Fr(1)he(t — nT)dt = 0. (4.37)

K
Z ej”*mTff'(t)hk(t - mT)dt = 1. (4.38)
k=1

Observe that DY, is stronger than D, in the sense that if a function f(1) satisfies DY,
then it satisfies D,.
4.5.2 Considerations in the Hilbert Space £>

An argument similar to that given in chapter 3, sections 3.4.2 and 3.4.3 gives the following

conclusions: the solution, if it exists. must belong to the subspace

H(>m) = Clos.Span {hi(t = nT): k= 1,2 Kin2m}, (4.39)

P X

but be orthogonal to the subspace

Hizmaty = Clos.Span {Ax(t — nl) 1 k= 1,2,.... K1n > m + 1} ; (4.40)
suppose that
&
R™(1) = 3 & Tyt — mT) = z(t) + y(1) (4.41)
k=1

is the unique decomposition of A™ (t) € H(ym) such that y(t) € H(pm41) and z(t) € Hme+1)
(the orthogonal complement of H(»m41) in H); a solution exists if and only if z(2) # 0,
under which assumption it is given by

Fou(t) = 2(2)/ (=, 2), (4.42)

and A9, = 1/(z,2).

4.5.3 Solution

For the special case where i’ = 1, the suboptimal formulation is equivalent to the optimal
formulation, and therefore the corresponding result of section 4.4.3 is applicable.
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T
In the géneral case. a necessary condition for r(f) £ 0 is that the set of stationary

SequUences

{the(t = nI) 1 k=1.2.....K:¥n} (4.43)

be non singular. However. a stronger condition which also facilitates the solution is that the
set of stationary sequences be regular. or. equivalently. that it have a Told decomposition

as discussed in appendix A. section A.S.

Assumptions that Facilitate the Solution

The assumption of regularity is equivalent to the following: the spectral density matrix

H(w), of the set of stationary sequences .
{he(t — nT): b =1,2,... K;Vn}, {(4.440)

has constant rank L almost everywhere, and admits a factorization. Let C(w) be an L x I

maximal causal matrix satisfying
H(w) = CH(w)C(w), e . (4.45)
and let the A’ x L matrix A(w) = [a1(w),anw), ...,ar{w)] satisfy
C(w)A(w) = Iux. - {440)
Then the set of functions |
{\/Ta;(w)e‘j"‘"'T :i=1,2,..., L;Vn} (4.47)

constitutes 2 Wold decomposition of £2;, the Hilbert space isomorphic to M as discussed in
appendix A, section A.5.
Solution

Denote S

. , NN T
Q, = em'"T,emmT,...\,%HmT] . (4.48)
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The isomorph of A™ (1) is then R e~+m7T ¢ C%i. The isomorph u(w) & C%.I of z{t) is

obtained usiug the Wold decompositinn as follows:

L
(2 f VTafl (2)H{)Q d..) VTa(w)e™*mT, (4.49)

u(w)

. ={T
= e""""TA(U)Zm (,l_j /Tef’AH(-—‘)H(-:)dea') . {4.50)
=/T
= ¢~ wmT (e )Ze;( f . eFC(u)ﬂmd;:) . (4.51)
= e-omTp(, )(Zele, )con (4.52)
l_
= e T A(L)CoNn. (4.33)
where?
T =T -
Co= 5= C(w)dw. (4.34)
W J=z/T
Therefore
=T =T
é j o w(WHGu(w)de = oIcH ()1‘_ f ITAH(L».:)H(;;)A(w)dw) CoSlm.
(4.35
= T'QHCHCq,.. (4.56)

Threfore a solution exists if and only if 2, does not belong to the null space of Cq. Under

this assumption, the isomorph c(w) of f2,(2) is given by®
o(w) = T[sz,,’ic{fconm]" e=mT A () Cofpm, (4.57
X, = Tlefcicn.)™. (4.58)

If L = K then Cp has rank X, and therefore a solution exists.

4.5.4 The Optimum Function 3, (n)

The optimum function gn,(n), given by

R
Bm(n)= 3 eisnT f O (0)he(t — nT)dt (4.59)

k=1

*The elements of C(w) are in £21—=/T, x/T].
*Compare with results given in 4.4.3.
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for n < m, can be obtained using the isomorphism between X and L3y as follows:

=/T .
dm(n) = f_ Jf o H( O H () Qe T dos, (4.60)

- =T
= T[efcHcon.|  efch (;] f ’ AH(;‘:)H[..-:).QneJ-‘(m-“)Td;g).
- _,-_-/T

(4.61)
=/T .
= [QHC Cofn ] lnﬁc{,’ (;T: ] ITC(u:)eJ“[”"'")Td;.-:) Q. (4.62)
= [efcEcon,] ™ @ ClCnnn, (4.63)
where®
T r=IT ‘ T

C,= 5= Clw)e? ™ duws. (4.64)

- a0 —:.-/ .

That the condition ¥, 18m(n)* < o is satisfied is eudent from the equation

f O (DAt - nT)dt = [Q"'C{,’COQ I” ‘nﬁc{, C,,,.;,’.t:’k. O (4.65)

the fact that the elements of C(w) are in L*—=/T,x/T], and the mequalm lﬁm(n}|
K Tfoy | fou™(Ohe(t ~ nT)dt|°.
4.5.5 An Alternative Approach

Since f2,(t) is a function that belongs to H(»m) but is orthogonal to H(y .44y, its isomorph
c(w) € Lj; has the form '

c(w) = A(w)be~iwmT {4.66)

for some complex L-dimensional vector-valued constant b. Using this form, one obtains

211- j _/,T AW HW)e(w)dw = -;—ﬂf ”_// b7 A% (W H(W)A(w)bdw,  (4.67)
= T—leb, . (4,68)
and
1

I3

L jI/T oH (W) H(w)Rn(wlde = == f:;b”A”(w)H(w)nm W (469)

T-1b Co 2. (4.70)

®The elements of C(w) are in £2[—=/T, =/T].
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The complex vector-valued constant b that minimiz~ 7-"b#b under the constraint 1 -!'b¥Cy02,,, =
1 is then given by
-1
b=T [Qﬁcgfconm] Com. (4.71)

-1
for which T-1b#b = T [QHCE o] .

4.5.6 On Specifying and Implementing the Solution

The dcéi.sinil-feedback equalizer {f2,(1). 8m(n) : ¥m} is specified by the isomorphs of the
coh_nﬁt-ﬁs of the matrix

' A(w)Cq, (4.72)
“ "the sequence of matrices CH¥C, for n > 0, the vector £, and the parameter T. Observe
that, although C(w) is non-unique, A(w)Cg and C}'Cy, for all n, are unique.

For the purpose of implementation, the decision-féedback equalizer can be considered

as having the following four functional blocks:

1. forward filter — a bank of K continuous-time time-invariant filters matched to the

isomorphs of the columns of the matrix TA(w)Cp.

2. backward filter - a K-input K-output discrete-time time-invariant filter with impulse

response

B, =

{ cEc, if n>0, @13)

0 if n<0.
3. sublractor - a bank of A" elementary subtractors, that is devices each with two inputs

and an output, the output being the signed difference of the inputs.

4. combiner - a device that linearly combines K values according to a set of weights.

The implementation in terms of these blocks is shown in figure 4.1.

Thus the received signal z(t) is used as input to the forward filter. The output of the
forward filter is sampled once every T seconds and the samples are used as the positive
input to the subtractor. The sequence” 2,a(n) is used as input to the backward filter. The
output of the backward filter is used as the negative input to the subtractor. The output

of the subtractor is combined according to the weight vector £23,. The combined output is
then scaled by [n,f{cgf Cgﬂm] -,

"Recall from section 4.2 that @{n) is the decision as to which data sequence was likely transmitted.
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4.6 Generalized Suboptimal Formulation of the Decision-

Feedback Zero-Forcing Equalizer Problem

The suboptimal formulation of the decision-feedback zero-forcing equalizer problem of sec-
tion -1.5 can be generalized by replacing the constraint set D2 with a generalized constraint
set DY, defined by equations 4.75, 4.76. and 4.77. Thus a generalized suboptimal formu-
lation of the decision-feedback zero-forcing equalizer problem is a family of constrained
minimization problems indexed by integers. the mth problem being to minimize []f()|*dt
under the constraint set D7 . The solution to the mth problem shall be denoted by f3,,(t)

and the minimem so achieved shall be denoted by
Au = /IJZ‘LHU)I2 dt. (4.74)

4.6.1 Zero-Forcing Constraint D7,

- Let ¢ be a non-negative integer. Denote by D2, the following set of constraints on the
function f(2):

sforn—m>qgand k=1,2,....K,

/ F(Ohi(t - nT)dt =0, (4.75)
efor0<n—-m<yq,
K .

3 efunn? / F (it - nT)dt = 0, (4.76)

k=1
[ 2 K .

3 efenmT j F(Ohe(t = mT)dt = 1. (4.77)

k=1

Observe that D, is stronger than Dy, in the sense that if a function f(t) satisfies DI,
then it satisfies Dr,. In the same sense, D, is stronger than Dg,,, and if ¢ < g then DX,

mu?

is stronger than D§2,. Therefore,
Am < AB, < AT, <AL, (4.78)

In other words, for increasing g, the quantities A?,, constitute a hierarchy of tighter upper
bounds on An. This is the reason for the subscript ‘u’ and the superscript ‘q." One may
call ¢ the degree of optimality.
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4.6.2 Solution

An argument similar to that given in chapter 3. sections 3.4.2 and 3.4.3 gives the following

conclusions: the solution. if it exists, must belong to the subspace
H{>m) = Clos.Span {hp(t ~ nT) : k= 1.2..... K:in> m}. (4.79)
hut be orthogonal to the subspace
H(2m+q+1) = Clos.Span{h(t = nT):k=1,2,....,Ain>m+qg+1}. (4.80)

Under the assumptions stated in 4.5.3, the isomorph c{w) € EQH of f3.(t) has the form

. q -
c(w) = A(w)e—_;me Z bpe-JwPT {(4.81)

p=0
for some set of L-dimensional complex vector-valued constants {b, : p=10,1.....q}. Using

this form, one obtains

il

=/ T q q /T .
if_ /TCH(u)H(u)c(u)dw Z Z i/;:ﬁ bg{AH(Q)H(“’.)A(U)bmeJu(pl-p-_n}Tdu’

2= =/ p1=0pa=0 27
(4.82)
g
= T7'3 b, {4.83)
p=0
and
i H H Q, —Jude — b T :"I H(<)2 -jw(n—-"m—p)Tdu
- () H@) Qe T do = Pz_; i BRSO ORY:
(4.84)
q
= TV Y bHC, (nem)fn. (4.85)
p=0

The set of complex vector-valued constants {b,:p=0,1,...,¢} is that which minimizes
T=' %o bib, under the constraint

k! 0 if 0O<n-m<ay,
> bHC, (nom)n = : (4.86)
p=n-m 1if a-m=0,
or equivalently, by a change of variable,
ae 0 if 0<n<yg,
T 1 Z bePqng“q’.m = . - q (4-8?)
p=n 1 if n=10.
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The Case g =1

The set of complex vector-valued constants {b, : p = 0.1} is that which m.nimizes

b4 b%] [ by }

by
under the constraint

[bff. b (41.39)

0 G 0 Q.

Co c‘}

Qm-i-l 0 ] - [O'T]'

An arbitrary set of complex vector-valued constants {b, : p = 0.1} has a unique decompo-

[ b1 ] = [7' ] + f. (4.90)
by

70
where 79 and 7, are scalars and f is a 2L-dimensional vector that is orthogonal to the

sition

0 G 0 Q.

Co Cl‘ [th—l 0

column span of

Cy C Q. 0
¢ * : (4.91)
0 Co 0
The set of complex vector-valued constants {by : p = 0,1} which minimizes
b¥ b by | ,
[ot" b4 [ Vo= e 4 (4.92)
by

[Tf:?ﬁ] |-9£+t of Cﬁ' 0 Qmya 0 T (4.93)
T oH n,’,{_ cil cf 0 Qn Yo

under the constraint 4.89 is given by £ = 0 and scalars 45 and 7, that satisfy the constraint .

Qﬁ.[.l o Quyr 0 Tt - 0 )
0 nm 7o T

of o
(4.94)

[ c Cl]

| 0 G

cff o
cff cf

Co C
0 Co

Such scalars 4¢ and v, exist if and only if the vector

0
e= [ ) ] (4.95)
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belongs 1o the range space of the coefficient matrix

nH Qusy 0
l & } (1.96)

.

hoaoof cll o Co C
o qnf ci cl 0 GCp 0 Q,

or, equivalently. if and only if the vector e does not belong to the null space of the matrix

C. This implies that such scalars v and +; exist if and only if the vector

° (4.97)
Qm ot
does not belong to the null space of the matrix
Cy C
e (4.98)
0 Cp

or, equivalently, if and only if the vector 2, does not simultaneously belong to the null
spaces of Cg and C,. Under this assumption, the solution can be given in terms of the

scalars 7o and 9, as follows:

b Cy C Q 0 ¥
bo 0 CO 0 Qm Yo
~Jju(m+\)Ty —jwmT by
cw) = Alw)[e™ 1, emiomTy] , (4.100)
by
1 =T 1
Ay = 7_‘7.[ . (W H(W)e(w)dw = T Z b;’bp = o3 (4.101)
=N J=5 p=0
here I denotes the L x [ identity matrix.
4.6.3 The Optimum Function 8,(n)
The optimum function Gm(n), defined by
K ]
Bn(m)= Y. e+ [ 1 ~(@)hu(t - nT)a (4102)
k=1
for n < m, can be obtained using the isomorphism between H and ‘CQH as follows:
1 =T .
fn(n) = 5= f . H (W) H(w) e~ dus, (4.103)
q
= T3 biC, (nom) . (4.104)

p=0
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The Case¢g=1

Cm-:-l—.".
Cm—r.

bH_bH
3min) = T [‘ "] Q.. {-1.103)

That the condition ¥, ... |3m(n)|° < ¢ is satisfied is evident from the equation

bH bH
[ L (Ohe(t =nT)dt = T-1 [‘ °] c

Crisi- -
tHion }ek. (-1.LU6)

the fact that the elements of C(w) are in £L2[—z/T.z/T]. and the inequality ()] <
KSR IS A (Ohe(t = nT)dt2.
4.6.4 On Specifying and Implementing the Solution for ¢ = 1

The decision-feedback equalizer is specified by the isomorphs of the columns of the matrix

Alw), (4.107)

the sequence of matrices C, for n > 0, the vector £, and the parameter T'.

For the purpose of implementation, the decision-feedback equalizer can be considered
as having the following seven functional blocks:

1. forward filter — a bank of L continuous-time time-invariant filters matched to the
isomorphs of the columns of the matrix A(w).

[T

. backward filter (main) - a K-input L-output discrete-time time-invariant filter with
impulse response

C if »>0, ‘
B,=¢{ " "7 (4.108)
0 il n<0.

3. backward filter (auziliary) - a K-input L-output discrete-time time-invariant filter
with impulse response

C, if n=1,
D,={ " " (4.109)
0 if n#l

4. subtractor (main) - a bank of L elementary subtractors, that is devices each with

two inputs and an output, the output being the signed difference of the inputs.
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11

. subtractor {auriliary} - same as above.

-

i. tapped delay lizie — a bank of L elementary delay lines each with two taps.

. combiner - a device that linearly combires 2L values according to a set of weights.

The definition of the main and auxiliary backward filters is motivated by the following

observation which simplifies the implementation of 3, .. Im(n}a(n):

Z Cr+1-ana(n) = ZBm—nﬂn&(n)- (4.110)
ngm n
Y. Cruoaflra(n) = Y Cnon@i(n)+ Ciflmoré(m—1).  (4111)
n<m n<m-—1

> Bmo1-nQ0mé(n) + Y Dm_nQna(n). (4.112)
n n

The implementation in terms of these blocks is shown in figure 4.2. _

Thus the received signal =(t) is used as input to the forward filter. The output of the
forward filter is sampled once every T seconds and the samples used as the positive input
to the subtractor (main). The sequence T-!Q,a(n) is used as input to both backward filter
(main) and backward filter (auxiliary). The output of the backward filter (main) is used as
the negative input to the subtractor (main). The output of the subtractor (main) is used
as input to the tapped delay line. The values at the delayed tap is used as the positive
input to the subtractor (auxiliary). The output of the backward filter (auxiliary) is used as
the negative input to the subtractor (auxiliary). The values at the non-delaved tap and the
values at the output of the subtractor (auxiliary) are arranged into a column vector which
is then multiplied by the 2K x 2L matrix

e H
Co Cl:|

4.113
0 G (4.113)

T
The resulting column vector is used to form a scalar product with the vector [7{9{’,'“ +1) qﬁﬂfn’] ;
observe that the scalars 1, 7o are dependent on m. The resulting scalar is then quantized
to the signal set to obtain a(n).

4.7 A Lower Bound on A,

When A" > 1 and there is intersymbol interference, the decision-feedback zero-forcing equal-

izer derived in section 4.5 is. in general, suboptimal in the sense that A, < A2,,. An accurate
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comparison of A, with A% cannot be made without knowing ... However. an approximate
comparison can be made if a lower bound on A, is known. A lower bound can be found
by replacing the constraint set D of the optimum formulation of the decision-fecdback

zero-forcing equalizer problem of section 4.4 with the weaker constraint set PV,

Ty

defined by
equation 4.115. Thus solutions are sought for a family of constrained minintization problems
indexed by iniegers. the mth problem being to minimize [ f(£)]* dt under the constraint
D?m.. The solution to the mth problem shall be denoted by f;’h.(t). and the minimum so

achieved shall be denoted by )
Ao = /!f},',,.-(t)i"'dt. (-L.11:)

Then AY,; will be a lower bound® on .. It turns out that the expression for AV, is similar

to that of A% obtained in section 4.5.3.

4.7.1 Constraint D?,

Denote by 'D?nz the following constraint on the function f(¢):

.
ZEJJ“MT.[I'UM(:— mT)dt = 1. (-1.115)
k=1

Observe that D?, is weaker than D,, in the sense that if a function {t} satisfies D,, then
ml

it satisfies D2,. Also. observe that DY, is not. in general. a zero-forcing constraint.
m! mi B g

4.7.2 Solution

An identical problem is solved in section 3.7. Thus the isomorph c{w) € L3y of f3,(0) is

given by

w)=T [nf,,'Hon.,.]" e=iomTq (4.116)
and
=1 LY , .
£ = T[nﬁHonm] 3 e Th(t = mT), (4.117)
k=1
- -1
Mu = T[afH0.]". (4.118)

*This is the reason for the subscript ‘¥ in DY, etc.. The reason for the superscript ‘0° will become
apparent later. ' '
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Observe that the expression for A2, has the same form as the expression for A2 | given by
equation 4.58. The expression for the isomorph of f2,(1) is also of the same form as the

expression for the isomorph of f2 (¢) given by equation 4.57.

4.8 A Generalized Lower Bound on ),

The lower bound on A, derived in section 4.7, can be generalized by replacing the constraint
DY, with a generalized constraint set D!, defined by equations 4.120 and 4.121. Thus
solutions are sought for a family of constrained minimization problems indexed by integers,
the mth problem being to minimize [ |f(t)|* dt under the constraint set D? ;. The solution
th

to the m™" problem shall be denoted by fZ,(t), and the minimum so achieved shall be

denoted by
At = f Lo (t)]2de. {4.119)

The functions f},,(t) are the approximate solutions suggested, in section 4.4.4, to the optimal

formulation of the decision-feedback zero-forcing equalizer problem.

4.8.1 Constraint D7,

Let q be a non-negative integer. Denote by DI, the following set of constraints on the
function f(t):

eforl<n-m«<y,
K

3 ednnT j F(Ohi(t — nT)dt = 0, (4.120)
k=1

[ ] K '
3 efurm? / F(Ohi(t - mT)dt = 1. (4.121)
k=1

Observe that ’Dfn, is weaker than D,, in the sense that if a function f(t) satisfies D, then it

satisfies D7 ;. In the same sense, DY, is weaker than DY, and if g; < g2 then DY, is weaker
than D?,. Therefore,

Mt S A0 S AR < A (4.122)

In other words, for increasing g, the quantities A?,, constitute a hierarchy of tighter lower
bounds on An. This is the reason for the subscript ‘I’ and the superscript ‘q.’

=00
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4.8.2 Solution

Observe that the problem is similar to that discussed in section 3.8. Thus the solution takes

the form
q

K
() = Z ap z el (mFRI Ty (m <+ p)T). (4.123)
p=0 k=1

where {a; : 0 < p < g} is a set of scalars. In terms of its isomorph (<) € L3 given by

g K
cfw) = z Q, z e_J"‘(m+p)TQm+p. (+1.124)
p=0 k=1

the quantity

1 =/T - ] g . -
5= f ) Tc”(u:)H(.:.:)c(u)dw: Ty Y 050nQf  Hy Qs (4.125)
=n ""/ P1=0 p>=0

must be minimized under the constraint

1 =T -juw(m+pa - 1 -
E/ TCH(Q)H(QJ)Q'"“’"'& LT S IR, ; IR S

_7/

p1=0

0 if 0<pr < .
= ' P21 (4.126)
Vil pa=0,
where p—
= j_=/r H(w)e™ T do. (4.127)
The Case g=1
The set of scalars {a, : p= 0,1} is that which minimizes
[of. 03] | ., oF Ay O o (4.128)
OH Qﬁ 0 gm Qg
under the constraint
Qf . o Q 0 1 0
m+1 el L : (4.129)
o qH 0 0, ao T
where
Hy H
H=| ° T1[. (4.130)
H., Hg .
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In terms of the set of scalars {a, : p = 0.1}, the solution is given by

Al = aq. (4.131)

Observe that the expression for A! ; has the same form as the expression for Al , given by

equation 4.10). The expression for the isomorph of f},(?) is also of the same form as the

expression for the isomorph of fL (1) given by equation 4.100.
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Figure 4.1: Schematic Diagram of the Decision-Feedback Zero-Forcing Equalizer fof =0
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Figure 4.2: Schematic Diagram of the Decision-Feedback Zero-Forcing Equalizer for ¢ = 1



Chapter 5

Linear Mean-Square-Error
Equalizers

5.1 Introduction

A class of receivers for the composition of Quadrature Amplitude Modulation (QAM) and
Discrete-Multipath Channel (DMC) is derived in this chapter. Receivers of this class shall
be referred to as linear mean-square-error equalizers in view of the fact that they are
extensions of the linear mean-square-error equalizer known for the coniposition of QAM
and linear time-invariant channel with additive white Gaussian noise (AWGN). (For in-
formation on the latter, see, for example, [3]). The stationarity of the set of sequernces
{he(t —=nT): k=1,2,...,K;VYn} and the consequent isomorphism between the Hilbert
spaces M and L}; as discussed in apperdix A, section A.5 play a central role in the
derivations. However, no further assumptions are made on the set of stationary sequences
{hk(t = nT) : k= 1,2,...,K;Vn}. Issues of specification, implementation, and performance
analysis of the receivers are addressed. Many of the concepts introduced in this chapter

will be useful in chapter 6 on decision-feedback mean-square-error equalizers as well,

5.1.1 Some Preliminaries

The preliminaries given in chapter 3, section 3.1.1 are needed here as well. In addition to
those, the data sequence a(n) is considered 2 wide-sense-stationary uncorrelated random
process with mean zero and variance E [la(n)lz] = So.

108



2.2. THE OPTIMALITY CRITERIGN - MINIMUXM MEAN.SQUARE-ERROR 109

5.1.2 Linear Equalizers — Their Definition and Specification

The definition of a linear equalizer given in chapter 3, section 3.2 is followed in this chapter.
The discussion on specifying a linear equalizer given in chapter 3. section 3.2.1 is valid in
this chapter as well. The criterion of optimality is. however, minimum mean-square-error

as defined in section 5.2.

5.2 The Optimality Criterion — Minimum Mean-Square-

Error

Suppose that, for some function f(t), the correlation @; = f f~(2)z(¢)dt is used to obtain

arg min

a(m) = ceA

ja — . (5.1)
In considering &(m) as the mth data symbol that was likely transmitted, both the roise and
the data are potential causes of error. The probability of error may be reduced by choesing

f(t) so as to minimize the mean-square-error
Amlf] = E [tag - a(m)P] . (5.2)

where E[.] denotes the expectation with respect to both data and noise. To obtain an
expression for Ay [f], observe that (a¢f — a(m)) can be decomposed as the sum of a data-
dependent part and a noise-dependent part in the manner that é; was decomposed as
iy = b s + &7 in chapter 3, section 3.1.1. Thus the data-dependent part of (&7 — a(m)) is a

complex random variable given by

N
by —a(m)=Y a(n) (Z gdwsnT f F(hi(t — nT)dt — 5,,,(n)) . (5.3)

k=1
where 6,,(n) is the Kronecker delta defined as

0 if n#m,
1 if n=m. _
The data-dependent part has mean zero and variance

E [|5f - a(m)r] =53

n

K 2
3 efwnn? / POkt ~aT)dt - bu(m)| . (5.5)

k=1 .
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The noise-dependent part of (a; ~ a(m))is é(f) = [ f*(#)n.(t)dt which has mean zero and

variance
E [les] = %o [ 10 d. (5.6)

Since the data-dependent part and the roise-dependent part are independent. the mean-
square-error is given by

-\m[f] =& Z

n

K :
S et f'(z)hk(:-mdr-am(n)' £ [Irord 50

k=1

The derivation of a linear equalizer under the aforementioned optimality criterion -
minimum mean-square-error - is attempted in the next section. It turns out there that
this approach, although optimal, is not feasible from an implementation point of view. In
the subsequent sections, suboptimal formulations of the problem. obtained by using upper
bounds on the mean-square-error, will be considered. Henceforth, the term linear mean-
square-error equalizer shall describe the solution to the optimal formulation as well the

solution to a suboptimal formulation.

3.3 The Optimal Formulation of the Linear Mean-Square-
Error Equalizer Problem

From the discussions of section 5.2 and chapter 3, section 3.2.1, it is evident that the problem
_ of deriving a linear mean-square-error equalizer can be cast as a family of unconstrained
minimization problems indexed by integers, the mth problem being to minimize the cost
Am[f] defined by equation 3.10. The solution to the m*! problem shall be denoted by fm(2),
and the minimum so achieved shall be denoted by A,. Thus

argmin

m = Am ) 5.8
fnl®) T Al (5.8)
o= ™ALL (5.9)

f
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5.3.1 Cost An[f]

Denote by An[f] the following cost on the function f(1) :

)

+.r\-‘b/!f(t)|2dt. (5.10)

K .
S e-"“"‘“T/f'(t)hk(t — nT)dt — bm(n)

k=1

-'\m[f] = So Z

n

5.3.2 A Consideration in the Hilbert Space £

Recall that, by assumption, the functions hr(t) € £2 for k = 1,2,.... K, and observe that

a function f() € £? is being sought. Since £* is 2 Hilbert space under the inner product

(f.9)= [ Fwgttae. (5.11)

the problem can be restated as follows: minimize

Amlf] = S0 D1 (£:8") = bm(n) + Mo (. £) (5.12)

where ”
W) = Y e Thi(t — aT). (5.13)

k=1

This restatement shows that the solution must belong to the subspace!
Hz = Clos.Span {A"(t) : Vn}. (5.14)

A proof of this simple fact is as follows: by the orthogonal projection theorem [47], an
arbitrary f(t) € £* has a unique decomposition

f(1) = a(t) + g2(2), (5.15)
where g1(t) € Hc and ga(t) € H& (the orthogonal complement of Hx in £2); since
(f,h") = (g1, h7) (5.16)
for all », and (f, f) = (91,91) + (92, 92), one obtains
Amlf] = Am[g1] + Mo (92, 92) . (5.17)

Therefore, if f(t) is optimum then necessarily go() = 0, for otherwise g1(t) would be better
than f(?), thereby contradicting optimality.

VThis is the smallest closed subspace containing the set {A™(t) : ¥n).



3.3. THE OPTIMAL FORMULATION OF THE LINEAR MEAN.SQUARE.ERROR EQUALIZER PROBLEM P2

5.3.3 A Consideration in the Calculus of Variations

The conclusion of the previous section can be stated. heuristically, as follows: the optimum

fm (1) has a series representation

oL

fut) =3 am(mih™(t). (5.18)

This representation can also be directly inferred by using the calculus of variations to
minimize A,,[f]; implicit definitions for the optimum sequence () and the minimum A

i)

can also be obtained as a result. Thus, for an arbitrary g(t) and a real number ¢, one has

=0

tim PG g SR (1) = ()] (0.8 4 G20 1), (5.19)

where R(.) denotes the real part of the quantity within the parenthcses. Replacing g(1)
with jg(t), one obtains

i ST 5 S 98 = b (0,7 + 400, S) (520)

=0

where $(.) denotes the imaginary part of the quantity within the parentheses. The optimum

function f(2) is that for which both of the above quantities are zero for every g(t). Thus
80D [(fm:h") = 6m(R)]" A () + N0 fin(1) = 0, (5.21)
n

which is a series representation for fn(¢) of the form given by equation 5.18. The optimum

sequence am(n) must satisfy

So [Z (A1) am(n') - 6m(n)] + Noam(n) = 0, (5.22)
n'! ' .
%: [(h",h" )+ J;—gén(n')] am(n') = 6m(n), (5.23)
where -
(A1) = 30 3 emiennT o' f hi(t — nT)hy(t — n'T)dt. (5.24)
k=1 k'=1

To obtain A, observe from 5.21 that

So Y [(fimr B™) = ()] (Sm ™) + No (fimy fm) =0, (5.25)
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which, when compared with equaticn 5.12, gives

A = =80 ) [(fm:h) = bm(n)]" 6m(n), (5.26)
= -So(fm.h™)-1]", (5.27)
= Apam(m). (5.28)

5.3.4 Special Cases

Finding fm(t) is straightforward in the trivial case where there is no intersymbol interfer-

ence, that is, when n; # no = (h™,h"?) = 0, as defined in chapter 1, section 1.7.2. In this

case,
) = R™Q) ((hm,hm)+j;—'g), (5.20)

3 ) -
A = Ao/ ((h ™) + So). (5.30)

In the case where i = 1, although the DMC is time-variant in general, the sequence of
functions {h"(t) : ¥n} is stationary as shown in appendix A, section A.1.2. Therefore. even
if there is intersymbol interference, the technique used for the composition of QAM and
linear time-invariant channel can be used essentially without difference. Thus the isomorph
e{w) € LY of fm(t) is given by

Tedlw1—w)mT

C(u)) = m, (5-31)
T2 r+=/T JVD .
Am %L—Jr (H(w)+ 2T) @, (582

where H{w) is the spectral density function of the stationary sequence of functions {hy(t — aT) : Vn}.

5.3.5 The General Case

In the general case where K" > 1 and there is intersymbol interference, it does not seem a
trivial task to find the solution. An approximation of equation 5..23 obtained by restricting
both n and n’ to a finite set can be solved by matrix methods. The approximate solution
so obtained will correspond to a lower bound on A,,. In the next section, it is shown how,

for ronghly the same order of complexity, a function F(t) that minimizes an upper bound
on An[f] can be found; the solution so obtained will correspond to an upper bound on Ap,.
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5.4 A Suboptimal Formulation of the Linear Mean-Square-
Error Equalizer Problem

The linear mean-square-error equalizer problem can be formulated in a suboptimal manner
by replacing the cost \An[f] with its upperbound A% _[f.a] defined by equations 5.36 and
5.37. Thus the suboptimal formulation of the linear mean-square-error equalizer problem is
a family of constrained minimization problems indexed by integers, the mth problem being
to minimize A, [f,a] under the constraint given by equation 5.36. The solution io the

mth problem shall be denoted by f2,(t). and the minimum so achieved shall be denoted
by A2, ,. Thus

argmin min

fa(®) ' Adulf.al, (5.33)
A, = ;“Q A2, [ral. (5.31)

Then :&?M will be an upper bound? on both A, and An[f9,]. More specifically,

Am S Am[faa] € A (5-35)

The motivation for this suboptimal formulation is that the solution is attractive from the

points of view of specification and implementation.

5.4.1 Cost A2 [f,q]

Let the set ofscalars {ax : k= 1,2,..., K} satisfy

«
Y a=1. (5.36)
k=1

Denote by AJ,,[f, @] the following cost on the function f(t):

Aulfial = KSd 3 U f(Dhi(t = nT)dt — ape™x™T 4, (n)

n k=l

T+ I
(5.37)

*This is the reason for the subscript ‘v’ in A%, etc.. The reason for the superscript ‘0’ will become
apparent later.
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Then
\m[f] < -"\?nu {f‘ Q] . (538)

To prove this inequality, observe first that

K L
Amlf]=S0D 13 (e’“"*“f ] S (st = nT)dt = axb(m) )| + Ao / Ife)* e, (5.39)
n k=1
and then by the Cauchy inequality that
K 2
Tk T (0he(t — nT)dt = apém(n) 5.40)
g(e [ et = nThdt - aién(m) (5
N . a
<KY | j £ (et = nT)dt — age=T 5, (n) (5.41)
k=1 .

for all n. The conclusion is now obvious.

5.4.2 Solution

For the special case K" = 1, the suboptimal formulation is equivalent to the optimal formu-
lation, and therefore the corresponding result of section 3.3.4 is applicable.
In the general case, the problem is solved in two stages as follows. In the first stage, the

cost A2 [/, a] is minimized with respect to f(t) for a fixed set of scalars {a; : k= 1,2, ..., K}.

Denote
) = MR 40 54 (5.42)
Ao = “}i“ A%, lf,al. (5.43)

In the second stage, A, is minimized under the constraint 2?:1 ap = 1. Thus

Agm = Aas (5.44)
a .
) = fa(d), (5.45)
where the set of scalars {8; : k = 1,2,.. ., K} is given by
Cp= VEER ., (5.46)

&
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An argument similar to that used in section 5.3.2 gives the foliowing conclusion: the solution

to the first stage must belong to the subspace
H = Clos.Span {hi(t — nT): k= 1.2..... A:Vn}. (5.47)

The first stage is a special case of the generic problem treated in appendix B. where use is
made of the isomorphism between the Hilbert spaces X and L3; as discussed in appendix

A, section A.3. In accordance with the discussion given in appendix B. denote

‘ : , T
a = [ajemT azeemT | agesnT)’ (5.18)
b(w) = Tae™wmT, (5.49)
N N, AT )-' -
G(w) = (H(w)'*' 75 R (5.50)
and
T /T
Gg = 5= Gw)de. {3.51)
LW Sz /T
Then the isomorph ca(w) € L3 of fo{t) is given by
Ca(w) = Te™ T G(w)a, (5.52)
and .
i =T Iy -1
do = ‘-;‘3 b (w) (H(w)+J\,°TI) b(w)dew, (5.53)
. 2F JozyT KSp
= NpTa" Goa. (5.54)

The first stage is now solved. To solve the second stage, observe that the constraint
Ef=1 o = 1 can be written as

@, =1, (5.55)
where

. . , T
Q= [e-’“‘"‘r., eamT  pJwwmT|" (5.56)

The solution to the second stage can be obtained using the method discussed in chapter 3,

section 3.5.4. Thus the optimum a is given by®

a= [R4G;'0m|” G5! R, (5.57)

3The matrix Gy is pesitive definite
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the isomorph ¢{w) € L3 of f2 (1) is given by
o — Ha-1a 17! —iwmTar a1 ==
c(w) =T [RHG510,] " e T ()T, (5.38)
and the minimized A%, [f,a] is given by
0 r. He-1 -1 = =
o = NoT [QF G; ] (5.59)

Observe that, except for the constant Ap, the above expression is similar to that given by

equation 3.60 of chapter 3.

5.4.3 On Specifying and Implementing the Solution

The discussion given in chapter 3, section 3.5.5 is valid here with the appropriate defini-
tions of G(w) and Gg. Thus figure 3.2 of chapter 3 is also a schematic diagram of the

implementation of the linear mean square error equalizer for g = 0.

5.5 Generalized Suboptimal Formulation of the Linear Mean-
Square-Error Equalizer Problem

The suboptimal formulation of the linear mean-square-error equalizer problem of section
5.4 can be generalized by replacing the cost A%, [f,a] with a generalized cost A%, [f,aq]
defined by equations 5.63 and 5.64. Thus a generalized suboptimal formulation of the linear
mean-square-error equalizer problem is a family of constrained minimization problems in-
dexed by integers, the mth problem being to minimize A%, [f, a] under the constraint given
by.équiticm 5:63. The solution to the m'1 problem shall be denoted by f3.(t), and the
~ minimum so achieved shall be denoted by Al Thus

argmin min

o = ALl al, (5.60)
M = }m: AL, al. (5.61)

Then A%, will be an upper bound on both A, and Am[f2.]- More specifically,

Am £ Am[ffu] € AL, (5.62)
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5.5.1 Cost A? [f.q]

Let ¢ be 2 non-negative integer and let the set of scalars {ap 1k = L.2..... K:|p] < q}
satisfy

K .
0 if 0« < q.
Yoepw={ lpl<q (5.63)
bl 1 lf p= 0.

Denote by AZ,,[f. a] the following cost on the function f(1):

]

. 2
AL lfial =KS Y S f ST (Ohe(t — aT)dt = D ape™?mATg(a)] +0p f | () dt.

nok=1 lpl<g
{5.64)
Then
Am[f] <AL [f1 Q] . (5.65)
To prove this inequality, observe first that
K
Y Y epkbmap(n) = Y 60(p)omen(n) = Em(n), (5.66)
k=1 |pl<e lpl<q

and therefore that

Ly 2
Anlfl=S)_ > (ej”*“ij‘(t)hk(t—nT)dt— Y. apk6m+,,(n)) +N‘u_/|f(t)l"' dt,
it Ipl<e
(5.67)
and by the Cauchy inequality that,
R . 2
3. | T / F ket = nT)dt — Y apbmsp(n) (5.68)
k=1 lpl<e
K 2
<Ky j P (Ohi(t - aT)dt — e 5™ o brnap(n)| , (5.69)
k=1 pl<e
K 2
=K}, j F®Oh(t = nT)dt - > apedlm+aiTs,  (n)  (5.70)
k=1 Iel<q

for all n. The conclusion is now obvious.

Observe that if ¢; and g; are non-negative integers satisfying q, < g, then

Am S AR, < AT, S AL (5.71)
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In other words, for increasing g, the quantities AZ constitute a hierarchy of tighter upper
bounds on A.. This is the reason for the subscript ‘u’ and the superscript *q.” One may

call ¢ the degree of optimality.

5.5.2 Solution

In the manner of the discussion of section 5.4.2, the problem is solved in two stages as
follows. In the first stage, A% [f,a] is minimized with respect to f() for a fixed set of

scalars {ap; : k£ =1,2,...,K;|p| < ¢}. Denote

falt) = a’g;‘j“ AL, al, (5.72)
do = “}i” A% Lfval. (5.73)

In the second stage, A, is minimized under the constraint given by equation 5.63. Thus

min

Al Aas (5.74)

o
mu(t) = fa(t), ' (5.75)

where the set of scalars {8, : k= 1,2,...,K;|p| < ¢} is given by

g= BT, (5.76)
(43

An argument similar to that used in section 5.3.2 gives the following conclusion: the solution
to the first stage must belong to the subspace

H = Clos.Span {hi(t — nT) : k= 1,2,..., K;V¥n}. (5.77)

The first stage is a special case of the generic problem treated in appendix B, where use is
made of the isomorphism between the Hilbert spaces H and L% as discussed in appendix
A, section A.5. In accordance with the discussion given in appendix B, denote

. . ; T
ap = (a1 AT, oz gderlminIT, | gny ieniminlT] (5.78)
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for |p] < q.

b(w) = Te iwmT Z ape~ T (5.79)

Ipl<q

. L NeT )"'

Cw) = (I—I(u.)-i-KSOI . (5.80)
and -

=2 f Y edunT g s a
Gn = 57 our G(w)e™ du. (5.81)

Then the isomorph c,(w) € L§ of fa(2) is given by

Ca(w) = Te ™ TG(w) 3 a,eivrT, (5.82)
Ipl<q
and
AL '-/T
Ao = -)‘70 f i b (w) (H( ) +: °T1) b(w)dw, (5.83)
=/T .

= Z > 'NDT f (w)ap,ePr=r)Tq, {(5.84)
lr1<q ipal<e =T

= MT Y. Z all Gy _p,ap,. (5.85)

' lp1l<q Ip21<q

The first stage is now solved. To solve the second stage, observe that the constraint given
by equation 5.63 can be written as

o if o<ip <y,
Hnm+p={ ll

(5.86)
o 1 if =0,
where

Ry = [ men)T, gientmin)T efortmaIT] T (5.87)
for [p| < q.
The Case g =1
Following the discussion given in chapter 3, section 3.6.2, denote

Gy G G;
G=|G,; Gy G |, (5.88)

G_, G, Go
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and define?
-1
1 Qf., of of Qni1 0 0 0
Yo = OH ﬂ:n{ UH G! 0 Q.
'f—l OH OH Q":{_l 0 0 nm_l 0

(5.89)
Thus in terms of the scalars 4;, 79, 1. the optimum set of vectors {ap : Ip| £ 1} is given
by

ay Qmy1 0 0 T
ag = G 0 , O 7 |- (5.90)
a_) 0 0 Qna -1

the isomorph ¢(w) € L3 of fL,(1) is given by

ar
c(w) = TG(w) [e‘j“‘('"'”)TI,e‘j""”‘TI,e"j‘“('"'”TI a0 |, (5.91)

a—

where I denotes the K x K identity matrix, and the minimum cost is given by
AL = ANoT 0. (5.92)

5.5.3 On Specifying and Implementing the Solution

The discussion given in chapter 3, section 3.6.3 is valid here with the appropriate definitions
of G(w} and G and the scalars 11, 70, 7-1; the parameter T is being introduced separately
here as opposed to being incorporated in the scalars ¥, Yo, ¥-1 there. Thus figure 3.3 of
chapter 3 is also a schematic diagram of the implementation of the linear mean square error

equalizer for ¢ = 1.

5.6 A Lower Bound on )\,

When K > 1 and there is intersymbol interference, the linear meai-scuare-error equalizer
derived in section 5.4 is, in general, suboptimal in the sense that A, < A2 .. An accurate

comparison of A, with A, cannot be made without knowing \,,. However, an approximate

$The matrix G is positive definite.
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comparison can be made if a lower bound on A, is known. A lower bound can be found
by replacing the cost An[f] of the optimum formulation of the linear mean-square-error
equalizer problem of section 5.3 with its lower bound A2,[f] defined by equation 5.96. Thus
solutions are sought for a family of minimization problems indexed by integers, the mth
problem being to minimize the cost A2 [f]. The solution to the mth problem shall be
denoted by f2,(1), and the minimum so achieved shall be denoted by A%,. Thus

2 = “g;“i“ A% f], (5.93)
X, = “}i“ A%, (5.94)

Then A2, will be a lower bound® on both A, and An{f2,]. More specifically, ’
Mt € A S Amlf2)- (5.95)

It turns out that the expression for A?, is similar to that of A% obtained in section 5.4.2.
p ml mu

5.6.1 Cost A,[f]

Denote by A9,[f] the following cost on the function f(2):

K 2 :
ALf] = So D eenmT f Fr(hi(t = mT)dt — 1| +Ap f | F())? dt. (5.96)
k=1

It is obvious that

ASLA < Amlf]. (5.97)

5.6.2 Solution

By an argument similar to that used in section 5.3.2, the solution f2,(t) takes the form

K
a)_ e mTh (1 — mT) (5.98)
k=1

*This is the reason for the subscript ‘I’ in A%, etc.. The reason for the superscript ‘0’ will become apparent
later.
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for some scalar a. Therefore, in terms of its isomorph c(w) € L3; given by
e(w) = ae™mTq (5.99)

the quantity

A%lf1 = SolarT=18 = 1 + AglalP T3 (5.100)

must be minimized with respect to a; here the following denotions have been used:

Qn = [ehamT gham?, eJ*’f\mT] (5.101)
T =T

Hy = 5= _r/TH(w)dw, (5.102)

B = QfHQ.. (5.103)

Observing that A2,[f] is a quadratic function of o, completing the square gives

1/2 -1/2]2
Al f]1 = So !a (T“‘ﬁ) (T“ﬂ + ’\°) (T“ﬁ)l"2 ( T8+ ) ) (5.104)
So
+ ll - (71p) (T-l,e+"\°) ” (5.105)
Therefore, the optimum a is given by
-1 J\U -
a= (T 8+—=—) , (5.106)
So
and the minimum cost A2, is given by
_ -1
2SS [1 ~ (17%) (T"ﬁ + &) ] : (5.107)
So
-1 J\O -
= Mo (T B+ s) : (5.108)
0
Observe that :
(T“‘ﬁ + Ni’) = T-'Q¥H’q,,, (5.109)
where )
H° = Ho+ 2017

ES (5.110)
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In terms of the matrix HP. the solutions are given by

cw) = T[0FHQ,] " e nTq,, (5.111)
- K .

S8 = T[QFEQ,] ™" Y e Thyt - m). (5.112)
k=1

Xy = NT [RfECR,] ™. (5.113)

Observe that the expression for A2, has the same form as the expression for AS.., given by
equation 5.59. The expression for the isomorph of f2,(1) is also of the same form as the

expression for the isomorph of f2,(1) given by equation 3.58.

5.7 A Generalized Lower Bound on J,

The lower bound on A, derived in section 5.6, can be generalized by replacing the cost
A2 ,[f] with a generalized cost A? wulf] defined by equation 3.116. Thus solutions are sought
for a family of minimization problems indexed by integers, the mth problem being to mini-
mize the cost A% ,[f]. The solution to the mth problem shall be denoted by f7,(2), and the
minimum so achieved shall be denoted by AY;. Thus
argmin

2 = s AL (5.114)

2z T AL LA (5.115)

f

- The functions f7,(t) are the approximate solutions suggested in section 5.3.5 to the optimal
formulation of the linear mean-square-error equalizer problem.

5.7.1 Cost A? [f]

Let g be a non-negative integer. Denote by A? ¥alf] the fol.lowmg cost on the function f(1):

Alfl=8 3

Iﬂ-'nl<q

2 gFuwnT j FOhe(t = nT)dt = 6, (n)

k=1

+Nof|f(i)|2dt (5.116)

The following are obvious:



o
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ASulf1 € AL ] € Amlf] (5.117)
o if 41 < g2 then
AD[F] < AZ ). (5.118)
Thereflore,
Mt S AL S A% < A, {5.119)

In other words, for increasing ¢, the quantities A7, constitute a hierarchy of tighter lower

bounds on A,,. This is the reason for the subscript ‘I’ and the superscript ‘q.’

5.7.2 Solution

By an argument similar to that used in section 5.3.2, the solution f?,(t) takes the form

K
S ap Yy ™t h (¢~ (m 4 p)T), (5.120)
el #=1

where {ay : |p| < q} is a set of scalars. Therefore, in terms of its isomorph c{w) € L% given
by

clw)= Y apetumiAlg (5.121)
lrl<e
the quantity

]

Alfl = S22 [T 3 g Bpp—6o(@)| +MT™ D 3 a5, ap8p,1
Ipi<e Imi<y I 1<g lpz]<q
_ (5.122)
= So [T—z z Z Z a;lﬁPl-Pﬂ;eraPZ - TR Z a;lﬂplvo-i- 1
Ipl<q Im|<q Ip2l<e lp1<e
| +MT™ Y Y o) 0pBp ., (5.123)
Ip1]<q Ip2|<e

Y
must be minimized with respect to the set of scalars {ay: |p| < g}; here the following
denotions have been used:

Qm-l-p = [ejw’ (m+P)Tg erz (m-i-p)T’ sy eij(m+p)T] s ? (5'124)

H,

T =IT .
g Logp BI T (5.125)
(5.126)



5.7. A GENERALIZED LOWER BOUND ON Ay, 126

for |p £ ¢, and

-3.91 P2 T nﬁ+p1 Hm —-pa Qm+p; L] (5.127)
for |p1].pa] < 4.
The Case ¢ =1
Denoting
a = [aj.ap,04]7, (5.128)
e = [0,1,0, (5.129)
ba b S
B = | Gu1 Boo Bo-r |- (5.130)
By Baro Baro
the quantity AL,[f] can be rewritten as
Aalfl = S |T™%aBBa-T- 17§?aHBe+1]+J\ T-1a"Ba, - (5.131)
= S T2 (BB+J\£TB)a—T ENY ”Be+1], (5.132)
i 0

JVBT
So

= S T-2 Hgl/2 (B + 0= )B”ﬂa- T~'2Ra" Be +e”e], (5.133)

where B1/2 js the positive square root of the Hermitian positive semidefinite matrix B.

Observing that Al [f] is a quadratic function of a, completing the square gives
Anlf] = So [T" (B + %II) B'/%a - (B + ml) Bl/zeJ H
—1 J\DT ) 1/2 _ ( N__U__ ) 1/2

[T (B N ——1I} B%a + 5 I B!/%e|,

+ So [e e - ef'B1/? (B+N°T) B‘“e], (5.134)

where ( ) (B + -—°—-I) 12 are the positive square roots of (B + %}I)
and (B + ‘—‘-rﬁII) ! respectively. Therefore, the optimum a is given by

(B+ N"T ) B?2a = (B+ %T-I) B'/?%, (5.135)

T-'Ba = B!/2 (B + = MoT, ) B!/, (5.136)
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and the minimum cost A! , is given by

A\ =11
AL = Spelf [1 _ B2 (B + Ml) B'/-J e.
So
These results can be simplified using the matrix identities

NoT N~ AT !
172 ——1I) B/? = B(B P ) .
B (B+ s 1) +

AT\ ! AL -1
I—BU?(B-{-'—\%{) BY/2 = -UT(B+.\0T1) .

0 SO SD

Thus, the optimum a is given by

and the minimum cost Al , is given by
-1
ALy = ANoTeH (B + ——I) e

Observe that

AT i ., of of Qnr 00
B+?°0—I= of of of |H| o @, o
of o qff_, 0 0 Q.
where H denotes the matrix
H H, H,
H= H_1 HD H1 1
H. H.,, H
where .
0 _ J\OT
and -
T rr :
H,=— H(w)e™PT duy,
P o —x/T ( )
Therelore,
oy o, of of Qs O 0
g =T of QH of | H 0o 0, o0
a. OH OH Qﬁ"l. 0 0 Qm—l

(5.137)

(5.138)

(5.139)

(5.140)

(5.141)

(5.142)

(5.143)

(5.144)
(5.145)

-1

(5.146)
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and
Mo = Aoag. (5.147)

Observe that the expression for A1, has the same form as the expression for Al given by

equation 5.92. The expression for the isomorph of f! (1) is also of the same form as the

T

expression for the isomorph of f}, () given by equation 5.91.

[FhS



Chapter 6

Decision-Feedback
Mean-Square-Error Equalizers

6.1 Introduction

A class of receivers for the composition of Quadrature Amplitude Modulation (QAM) and
Discrete-Multipath Channel (DMC) is derived in this chapter. Receivers of this class shall be
referred to as decision-feedback mean-square-error equalizersin view of the fact that they are
extensions of the decision-feedback mean-square-error equalizer known for the composition
of QAM and linear time-invariant channel with additive white Gaussian noise (AWGN).
(For information on the latter, see, for example, [3] and {29]). The stationarity of the set of
sequences {hp(t = nT): k=1,2,...,K;V¥n} and the consequent isomorphism between the
Hilbert spaces H and E%—I as discussed in appendix A, section A.5 play a central role in the
derivations. However, no further assumptions are made on the set of stationary sequences
{he(t — nT) th= 1,2,...,A5Vn}. Many of the concepts introduced in chapter 5 on linear
mean-square-error equalizers will be useful in this chapter as well. Issues of specification,

implementation, and performance analysis of the receivers are addressed.

6.1.1 Some Preliminaries

The preliminaries given in chapter 3, section 3.1.1 are needed here as well. In addition to
those, the dita sequence a(n) is considered a wide-sense-stationary uncorrelated random
process with mean zero and variance £ [la(n)lz] = Sp.

129
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6.1.2 Decision-Feedback Equalizers — Their Definition and Specification

The definition of a decision-feedback equalizer given in chapter 4. section 1.2 is {ollowed
in this chapter. The criterion of optimality is. however. minimum MeAN-3QUATE-eITor as
defined in section 6.2. The simplifving assumption made in chapter -, section 1.2.1. and
the discussion on specifying a decision-feedback equalizer given in chapter .. section 1.2.2

are valid in this chapter as well.

6.2 The Optimality Criterion - Minimum Mean-Square-
Error

Suppose that. for some pair of functions (f(t). J{n)). the random variable

Gy = ff'(f)z(f)dt— Z J(n)a(n) (6.1)
ngm
is used to obtain
a(m) = arg min la — 5] (6.2)
" aeA fat -

In considering @(m) as the mth data symbol that was likely transmitted, both the noise and
the data are potential causes of error. The probability of error may be reduced by choosing

f(t) and 8(n) so as to minimize the mean-square-error

E lazg - a(m)l], (6.3)

where E[] dénotes the expectation with respect to both data and noise. To obtain an
expression for the mean-square-error, observe that (a3 — a(m)) can be decomposed as the
sum of a data-dependent part and a noise-dependent part in the manner that @ 1.0 Was
decomposed as a5 = 7,6 + €7 in chapter 4, section 4:2.1. Thus the data-dependent part
of (&4, ~ a(m)) is a complex random variable given by

brg-a(m) = 3 a(n) (i &nT [ (t)u(t = nT)dt - 6m(n))
k=1

n2m

n<m

K .
-3 a(n)L edunnT f F(hi(t - nT)dt—p"(n)], (6.4)
=1
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where §,,(n) is the Kronecker delta defined as

6m(n)={ 0 M ngm, (6.5)

1 if n=m.

The data-dependent part has mean zero and variance

2

E [|13m- a(m)ﬂ = %Y

n>m

h. .
Y ednT f Fr()hi(t = nT)dt — b(n)
k=1

K :
S edunn? / F()he(t ~ nT)dt - B(n)| -

k=1

+S°Z

n<m

(6.6)

The noise-dependent part of (55 — a(m)) is &(f) = [ f~(t)nu(t)dt which has mean zero
and variance

Ele?) = Ao f IF(2) dt. (6.7)

Since the data-dependent part and the noise-dependent part are independent, the mean-
square-error is given by

K 2
E(lass - atmf] = So ‘,,V: kzei“*"T f F ()Rt ~ aT)dt - 6,a(n)
ns,m =1
> ) 2
+8 Y |3 T ] F(Oha(t = aT)dt - B(n)
n<m lk=1 ’

+M [If@Pa. (68)

Observe that, for a fixed function f(t), the mean-square-error is minimized by the function

h- .
Bln) =3 efnnT f F()hi(t - nT)dt . (6.9)

k=1

for n < m, and the minimum so achieved is given by

K
3 efnnT j F(Dhi(t ~ nT)dt — 6,,(n)

k=1

Im[fl= S0 Z

n2m.

. )
+No j If(®)2dt.  (6.10)

The derivation of a decision-feedback equalizer under the aforementioned optimality
criterion — minimum mean-sqnare-error ~ is attempted in the next section. It turns out

there that this approach, although-optimal, is not feasible from an implementation point of
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view. In the subsequent sections. suboptimal formulations of the problem. obtained by using
upper bounds on the mean-square-error. will be considered. Henceforth. the term decision-
feedback mean-square-error equalizer shall describe the solution 1o the optimal formulation

as well the solution to a suboptimal formulation.

6.3 The Optimal Formulation of the Decision-Feedback Mean-

Square-Error Equalizer Problem

From the discussions of section 6.2 and chapter 4, section 4.2, it is evident that the problem
of deriving a decision-feedback mean-square-error equalizer can be cast as a family of un-
constrained minimization problems indexed by integers, the mth problem being to minimize
the cost T'm[f] defined by equation 6.13. The solution to the mth problem shall be denoted
by fm(t). and the minimum so achieved shall be denoted by An. Thus

fml®) = argfmi" Twlf], (6.11)
Am = “}‘“ Tl (6.12)

6.3.1 Cost ' [f]

Denote by I'n[f] the following cost on the function f(2) :

I'm[f]=So Z

. n2m

K :
3 ewanT ] F (Ohi(t = nT)dt - b ()] + No f ISP d.  (6.13)

k=1

6.3.2 A Consideration in the Hilbert Space £?

By an argument similar to that used in section 5.3.2, the solution fm(t) must belong to the
subspace!

Hsg = Clos.Span {h%(t) : n > m}. (6.14)
Therefore, heuristically, _
fm(t) = Z am(n)R(1), - (6.15)
nzm

This is the smallest closed subspace containing the set {A"(t) :n > m}.
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for some sequence a,,(n).

6.3.3 A Consideration in the Calculus of Variations

In the manner of the discussion of chapter 3. section 5.3.3, the optimum solution fi, (1) must

satisfy
So D {(fm-B") = Em(n)]" (1) + Nofm(t) = 0. (6.16)

n2m

Therefore the sequence a,,(n) must satisfy

> [(h“,h"') + J—\rﬂén(n')] am(n’) = éx(n), (6.17)
n'>m So
for n > m, where
! K I\— : . !
(A, ") = 3 3 emdennT giown'T f Ri(t — nT)hy(t — n)dt. (6.18)
k=1 k=1

Also
Am = Mpan(m). (6.19)

6.3.4 Special Cases

In the trivial case where there is no intersymbol interference, the decision-feedback mean-
square-error equalizer is the same as the linear mean-square-error equalizer. Thus fm(t) =
h™(2)/ ((h™,h™) + Mo/So) and Am = Mo/ ((R™,h™) + Np/So) as observed in chapter 3,
section 5.3.4, and Bm(n) = 0 for n > m.

In the case where K = 1, although the DMC is time-variant in general, the sequence of
functions {Ah"(t) : Yn} is stationary as'shown in appendix A, section A.1.2. Therefore, evelin
if there is intersymbol interference, the technique used for the composition of QAM and
linear time-invariant channel can be used essentially without difference. Thus the decision-
feedback mean-square-error equalizer always exists, for there exist, as observed in appendix
A, section A.8.1, causal functions C(w) that satisfy

H(w)+ MoT/So = |C(w)?, (6.20)
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where H (w) is the spectral density function of the stationary sequence of functions {Ay(f — nT) : ¥n}.

In terms of 2 maximal causal function C(w). the isomorph c(w) € L3 of fm(?) is given by

c(w) = Tetr=ImT jCac(w)), (6.21)
Am = TAG|Col2. (6.22
and .
Bm(n) = efrte-mT o 1C,. (6.23)
where
T =T fuwnT .
Cn = 5 . C(w)e™™ duw. (6.24)

Observe that, since C(w) € £L2[—=/T,=/T), the condition Tonem 18()F < oo is satisfied.

6.3.5 The General Case

In the general case where K > 1 and there is intersymbol interference, it does not seem a
trivial task to find the solution. An approximation of equation 6.17 obtained by restricting
both » and 7’ to a finite set can be solved by matrix methods. The approximate solution
so obtained will correspond to a lower bound on A,,. In the next section, it is shown how,
for roughly the same order of complexity, a function f(¢) that minimizes an upper bound
on I'z[f] can be found; the solution so obtained will correspond to an upper bound on A

me

6.4 A Suboptit...l Formulation of the Decision-Feedback
Mean-Square-Error Equalizer Problem

The decision-feedback mean-square-error equalizer problem can be formulated in a subopti-
mal manner by replacing the cost I'y [ f] with its upperbound I'% [/, o] defined by equations
6.28 and 6.29. Thus the suboptimal formulation of the decision-feedback mean-square-error
equalizer problem is a family of constrained minimization problems indexed by integers,
the mth problem being to minimize I'J,,[f, ] under the constraint given by equation 6.28.
The solution to the mtR problem shall be denoted by f2,(t), and the minimum so achjeved
shall be denoted by A%,. Thus

argmin min

Fou(t) = 1%,[f.0l, (6.25)
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mi

X = T lfal. (6.26)

L

Then A3, will be an upper bound® on both A, and T,[f2,]. More specifically.,
Am € [ fia] € A (6.27)

The motivation for this suboptimal formulation is that the solution is attractive from the

points of view of specification and implementation.

6.4.1 Cost 'Y [f, ]

Let the set of scalars {ay : k= 1,2,..., K} satisfy
"
Sa=1. (6.28)
k=1

Denote by T3,,[f, o} the following cost on the function f(2):

K
Toulfie] =KSo Y. >

n2m k=1

N f L) de.
(6.29)

] F@)hi(t — nT)dt — age==4mT§, (n)

Then
Tmlf] S Thu[f20]. (6.30)

The proof is similar to that given in section 5.4.1 for Am[f] € A2, [f.e].

6.4.2 Solution

For the special case K = 1, the suboptimal formulation is equivalent to the optimal formu-
lation, and therefore the corresponding result of section 6.3.4 is applicable.

In the general case, the problem is solved in two stages as follows. In the first stage, the
cost I'Y,,[f, &] is minimized with respect to f(t) for a fixed set of scalars {ax:k=1,2,...,K}.
Denote

arg min

fc.(t) = r?nu[.ﬂa], (631)

*This is the reason for the subscript ‘v’ in I'%, etc.. The reason for the superscript ‘0’ will become
apparent later.
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A = "}"‘ r%.[f.al. (6.32)

In the second stage, A, is minimized under the constraint $°F_, ax = 1. Thus

min .
AL, = Aoy (6.33)
a

o) = fa(t), (6.34)

where the set of scalars {8x: &k =1,2,..., K} is given by

arg min
8= s Aa- (6.35)
o

An argument similar to that used in chapter 3, section 5.3.2 gives the following conclusion:

the solution to the first stage must belong to the subspace
H = Clos.Span {h(t —nT): k= 1,2,...,K;Vn}. (6.36)

The first stage is a special case of the generic problem treated in appendix C, where use is
made of the isomorphism between the Hilbert spaces H and L}; as discussed in appendix

A, section A.5. In accordance with the discussion given in appendix C, denote
w jwimT = jwamT w JupemT T -
b =T [ajein7, azeianT, | el ] (6.37)

Let C(w) be a maximal causal matrix satisfying

(H(w) + ‘%x) = CH(w)C(w), (6.38)
and let
Clw)A(w)=1. (6.39)

Then the isomorph c,(w) € L3 of fu(t) is given by
ca(w) = e T A(w)d, (6.40)
and
Ao = NpT™1dHd, . (6.41)



€4 A SUBOPTIMAL FORMULATION OF THE DECISION.FEEDBACK MEAN.SQUARE.-ERROR EQUALIZER PROBLEM 137

where
d=A}b, (6.42)
or, equivalently,
b=cCld, (6.43)
where
Co= L [ Gy 6.44
0—2?_:/]- (‘-")“'.- (' )
T =T -
Ag= — A(w)dw. : (6.45)
2% JozJT

The first stage is now solved. To solve the second stage, observe that the constraint

Z,{.‘.:] aj; = 1 can be written as

bR, =T, (6.46)
where
Q,, = |efmT giwamT eiwn'mT] T . (6.47)
or, equivalently, as
d?Cof = T. (6.48)

The solution to the second stage can be obtained using the method discussed in chapter 3,
section 3.5.4. Thus

d = T[QECHCm]™ Coftm, (6.49)
“) = T[alclCotn]” T A)Com, (6:30)
M = NT[RECHCenn) ™. (6.51)

6.4.3 The Optimum Function §,,(n)

The optimum function 8,(n), defined by

.
Ba(n)= 3 ennT / 0 ~(t)hi(t - nT)dt, (6.52)
k=1

for n < m, can be derived as was done in chapter 4, section 4.5.4. Thus
-1
Bn(n) = [RCHColn] ™ QECHC a2, (6.53)

The argument given in chapter 4, section 4.5.4 for ¢ [8m(n)}? < 0 is valid here as well.
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6.4.4 On Specifying and Implementing the Solution

The discussion given in section 4.5.6 is valid here with the appropriate delinitions of C{u)
and A(w). Thus figure 4.1 of chapter 4 is also a schematic diagram of the implementation

of the decision-feedback mean-square-error equalizer for g = 0.

6.5 Generalized Suboptimal Formulation of the Decision-

Feedback Mean-Square-Error Equalizer Problem

The suboptimal formulation of the decision-feedback mean-square-error equalizer problem
of section 6.4 can be generalized by replacing the cost T2 ,[f,a] with a generalized cost
T2 .[f,a] defined by equations 6.57 and 6.38. Thus a generalized suboptimal formulation
of the decision-feedback mean-square-error equalizer problem is a family of constrained
minimization problems indexed by integers, the m*!' problem being to minimize IS el
under the constraint given by equation 6.57. The solution to the mth problem shall be

denoted by fZ.(t), and the minimum so achieved shall be denoted by AY,. Thus

argmin min

) = 19,./sal, (6.54)
Mo = }“‘: I8, lf, ol (6.55)

Then Af,, will be an upper bound on both Ar and I'n [f2.). More specifically,

= ’\m < rm[fr?w] < AEnu' (6'56)

6.5.1 Cost I'?_[f ]

Let g be a non-negative integer and let the set of scalars {apr 1k =1,2,...,K;0< p< q}
satisfy

K .
: 0 if 0<p<
Sap=4 T OPEE (6.57)
k=t 1 if p=0.
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Denote by T'7 [ f, a] the following cost on the function f(t):

13

N q =
I, 0] =85S S 3 j I 0t = aT)dt = 3 ape ™I g ()| +AG ] |F(1)]? dt.

n>m k=1 p=0
(6.58)

Then
Tnlf] < Thulf:a]. (6.59)
The proof is the same as that given in chapter 5, section 5.5.1 for An[f] £ A%, [f.q].
Observe that if ¢ and ¢ are non-negative integers satisfving ¢; < g2 then

Am € AE, S MY, <AL, (6.60)

In other words, for increasing g, the quantities A%, constitute a hierarchy of tighter upper
bounds on A,. This is the reason for the subscript ‘u’ and the superscript ‘q." One may

call ¢ the degree of optimality.

6.5.2 Solution

In the manner of the discussion of section 6.4.2, the problem is solved in two stages as
follows. In the first stage, I'?, [f,a] is minimized with respect to f(t) for a fixed set of
scalars {apr 1 &k =1,2,...,K;0 < p < g}. Denote

arg min
fﬂ(t) = f rrqnu[f- a]v (6‘61)
min
Ae = r?nu[f! a]' (6‘62)
f
In the second stage, A, is minimized under the constraint given by equation 6.57. Thus
mi
A= Ty (6.63)
«
fra(t) = fald), (6.64)
where the set of scalars {f1 : k =1,2,...,K;0< p < ¢} is given by
arg min
g= EMR, (6.65)

o
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An argument similar to that used in chapter 3, section 5.3.2 gives the following couclusion:

the solution to the first stage must belong to the subspace
H = Clos.Span {hy(t —al): k= 1.2..... K:Vn}. (6.66)

The first stage is a special case of the generic problem treated in appendix C. where use is
made of the isomorphism between the Hilbert spaces H and L§; as discussed in appendix

A, section A.5. In accordance with the discussion given in appendix C, denote

bp =T [Q;leiu1(m+P)T’ a;qej”’(m+p)T, s G;I\.eiwu(nx-&-P)T]T (6.67)
for 0 < p< g, and
q
b(w) =) bye Pt {6.68)
p=0
Let C(w) be a maximal causal matrix satisfving
;
(H(w) + Mﬁ-I) = CH(w)C(w), (6.69)
K&p
and let
CwAw) =1 (6.70)
Then the isomorph c,(w) € C"I'{ of f.(t) is given by
- q -
ca(w) = e T A (W) dpeiwr T, (6.71)
p=0
and ]
Ao = NoT™P Y dfld,, (6.72)
p=0
where 9 S
do= > Afl_ by, (6.73)
p'=p
or, equivalently,
q
b= Y. CH_ d,, - (6.74)
p'=p
where
=T i
c, = L j C(w)e* T dw, (6.75)
27 -x/T
=T .
A, = = ] . Aw)e T du, (6.76)



¢.2. GENERALIZED SUBOPTIMAL FORMULATION OF THE DECISION.FEEDBACK MEAN-SQUARE.ERROR EQUALIZER PROBLEM 141

The first stage is now solved. To solve the second stage, observe that the constraint given

by equation 6.57 can be written as

0 f 0<p<y,
b0 = = 6.77
p S¢m+p { T if p= 0, ( )

or, equivalently, as

g 0 if 0<p<y,
3 dHCy Qs = { : P=1 (6.78)
p'=p T if p= 0,
where
. . . T
Qnyp = [e.rwz (mHp)T gin(m+n)T erx(m+P)T] . (6.79)
The Case g=1
The set of complex vector-valued constants {b, : p = 0,1} is that which minimizes
af,dff d
[af. 25 } { ! ] (6.80)
do
under the constraint
dff,d¥ C, C Q 0 0,7).
[ 1 0] 0 1 Ml = [ ] (6.81)
0 Co 0 Q,
Following the discussion in chapter 4, section 4.6.2, denote
-1
o - off  off cf c¥ 0 Co 0 9, 1
(6.82)
The solution can now be given in terms of the scalars o and 4; as follows.
d G © Q 0 ] -
do 0 G 0 Qpn Yo
cw) = Aw) [e‘-"“’(”‘*”TI,e‘-"“'mTI] :1 ] . (6.84)
, 0

’\}nu = -N'O'TO- (6.85)
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6.5.3 The Optimum Function 3,,(n)

The optimum function 3,(n), defined by

.
Bn(n) = 3 eiuwnT f FLL(ORi(t ~ nT)dt, (6.86)
k=1
for n < m, can be derived as was done in chapter 4. sections 1.5.4 and 1.6.3. Thus
q
Ba(n) =Ty d¥C,_ (1) 0. (6.87)
p=0
The Case ¢=1
d{{vdgll Cm-}-l—-nnu
Bm(n) = T7! [ . 6.88)
m( ) Cm—nnn (

6.5.4 On Specifying and Implementing the Solution for ¢ = 1

The discussion given in section 4.6.4 is valid here with the appropriate definitions of Ciw)
and A(w), and with L being equal to K. Thus figure 4.2 of chapter 4 is also a schematic
diagram of the implementation of the decision-feedback mean-square-error equalizer for

g=1.

6.6 A Lower Bound on },,

When K > 1 and there is intersymbol interference, the decision-feedback mean-square-error
equalizer derivad in section 6.4 is, in general, suboptimal in the sense that A,, < M- An
accurate comparison of Ay, with A, cannot be made without knowing A,,. However, an
approximate c;omparison can be made if a lower bound on A, is known. A lower bound can
be found by replacing the cost T'{f] of the optimum formulation of the decision-feedback
mean-square-error equalizer problem of section 6.3 with its lower bound I2,1f] defined by
equation 6.92. Thus solutions are sought for a family of minimization problems indexed by
integers, the mt! problem being to minimize the cost I'C[f]. The solution to the mth
problem shall be denoted by f2,(t), and the minimum so achieved shall be denoted hy AL,
Thus

S arg min
f

fail®) = Ioulsl, (6.89)



€& A LOWER BOUND ON Ay 143

2, = M™Mhre g, (6.90)
f
Then A9, will be a lower bound® on both A, and T'n[f2,]. More specifically,

A%, € Am S TR[f2 (6.91)

It turns out that the expression for A%, is similar to that of A2, obtained in section 6.4.2.

6.6.1 Cost I'?,[f]

Denote by T'9 ;[ f] the following cost on the function f(t)

K

P01 = So| 3o T [ f(t)ha(e — mT)dt ~ 1

A f}f 1)[° dt. (6.92)

L_

It is obvious that
Tou[f] < Tmlf]. (6.93)
6.6.2 Solution

An identical problem is solved in chapter 3, section 5.6. Thus the isomorph c{w) € L3 of
J8,(1) is given by

ow) = [n”n%zm] e~dumTqy (6.94)
and
-1 K N
fat) = T[QHEQ)T 3" e Thyt - mT), (6.95)
k=1
Xu = NT[efEee,]”, (6.96)
where
H° Ho+’_,\f1 (6.97)

Observe that the expression for A9, has the same form as the expression for A%, given by
equation 6.51. The expression for the isomorph of f2,(¢) is also of the same form as the
expression for the isomorph of f3,(¢) given by equation 6.50.

3This is the reason for the subscript ‘I’ in %, etc.. The reason for the superscript ‘0’ will become apparent
later.
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6.7 A Generalized Lower Bound on \

n

The lower bound on A,. derived in section 6.6. can be generalized by replacing the cost
I'?,[f] with a generalized cost I'7,1[f] defined by equation 6.100. Thus solutions are sought for
a family of minimization problems indexed by integers. the mth problem being 10 minimize

the cost T? ;[f]. The solution to the mth problem shall be denoted by ff,(t). and the
minimum so achieved shall be denoted by A%. Thus

arg min

Fult) = ;o Tlfl (6.93)
At = “}m L) (6.99)

The functions f7 (1) are the approximate solutions suggested in section 6.3.5 to the optimal

formulation of the decision-feedback mean-square-error equalizer problem.

6.7.1 Cost I'? [f]

Let ¢ be a non-negative integer. Denote by I'? [ f} the following cost on the function f(?):

>

+A’b[|f(t)|2dt. (6.100)

Mfl=S 3

(n—m)=0

K v
3 efunnT j F(Dhi(t = nT)dt — 6m(n)

k=1

The following are obvious:

Toulf1 S TLLF] € Tw[/): (6.101)
o if 1 < gz then”
Toulf] S TE[1). (6.102)
Therefore,
R PLE LS W (6.103)

In other words, for increasing g, the quantities A?, constitute a hierarchy of tighter lower

bounds on An. This is the reason for the subscript ‘I’ and the superscript ‘q.’
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6.7.2 Solution

Observe that the problem is similar to that discussed in chapter 5, section 5.7. Thus, the

solution f7,(t) takes the form

q K
D ap Y e mtRTh (4 (m 4 p)T), (6.104)
p=0 k=1

where {a, : 0 < p < g} is a set of scalars. In terms of its isomorph ¢(w) € L§; given by

9
cw)= Y apeimiATq (6.105)
p=0

the quantity

g
-

7 g 7 4
Ialfl= Soz T-! Z oy, 8510 = So(p)| +NoT™! Z E ag 0p,Bp, 52 (6.106)

p=0 p1=0 P1=0pa=0

must be minimized with respect to the set of scalars {e, : 0 £ p < g}; here the following

denotions have been used:

Qi = (1A ghnlminlT ,e"‘”"""‘”""] i (6.107)
for0<p<yg
5?:-?2 = Q£+p1Hp;—pznm+pq, (6.108)
for 0 < p1,p2 < ¢, and
H,= - f H{w)e T do, (6.100)
for |p| < g.
= The Case ¢ = 1
Denoting |
a = [ahan] _ “ (6.110)
e = [0,11, - T (6a11)

B = |Pu ﬁlc (6.112)
B ﬁo.o '
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the quantity I'},[f] can be rewritten as

T/l = So [T%a¥BBa - T-'28%a"Be + 1] + AoT"'a¥Ba.

Thus, the optimum a is given by
AL -1
a=T (B + '\LTI) e,
So
and the minimum cost A}, is given by

) J- _l
AL = NpTef (B + -%—ZI) e.
0

Observe that

B+ MoT, Qf . oH . Qny1 O
SO OH an’ 0 s-zm
where H denotes the matrix
HO
H= H, .
H_, H°
where VoT
0 _ Vo
H=H,; + —Ix'SOI’
and T .
w
- = jwpT .
p=3 f_ BT
Therefore, -
; -1
ao o Qf 0 0, 1|’
and
z\,lnl = Ncao.
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(6.113)

(6.114)

(6.115)

(6.116)

(6.117)

(6.118)

(6.119)

(6.120)

(6.121)

Observe that the expression for A}, has the same form as the expression for AL, given by

equation 6.85. The expression for the isomorph of f1,(2) is also of the same form as the

expression for the isomorph of f1,(t) given by equation 6.84,



Chapter 7

Maximum Likelihood Sequence
Estimators

7.1 Introduction

Two receivers for the composition of Quadrature Amplitude Modulation (QAM) and Discrete-
Multipath Channel (DMC), based on the mazimum likelihood sequence criterion, are derived
in this chapter. These receivers shall be referred to as the Maximum Likelihood Sequence
Estimator (MLSE) of the Forney type and the Maximum Likelihood Sequence Estimator
of the Ungerboeck type in view of the fact that they are extensions of their namesakes
known for the composition of QAM and linear time-invarian. channel with Additive White
Gaussian Noise (AWGN). (For information on the latter, see [13], [14], and [52]). The
stationarity of the set of sequences {hx(t —nT):k=1,2,...,K;Vn} and the consequent
isomorphism between the Hilbert spaces X and L}; as discussed in appendix A, section A.3
play a central role in the derivation of the MLSE of the Forney type and a marginal role in
the derivation of the MLSE of the Ungerboeck type. The receivers exist under the condition
that the functions {Ax(?): k= 1,2,..., K’} are time-limited. Some issues of implementation
are addressed.

147
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7.2 The Optimality Criterion -~ Maximum Likelihood Se-
quence

The task of the receiver is to decide from the received signal =(1) which data sequence a(n)
was likely transmitted. A maximum likelihood sequence estimator performs this task by
choosing the data sequence a(n) for which the following likelihood ratio is maximum:

IR = Likelihood of the hypothesis that z(¢) is due to that data sequence and noise
- Likelikood of the hypothesis that z{?) is due to noise alone

(7.1)

Recalling the composition of QAM and DMC from chapter 2, section 2.3, the maximizing
of the likelihood ratio is equivalent to finding the data sequence a(n) for which the following

quantity is maximum:!

Ml = = [1a(0) - o) + JEECRE (7.3)
= o j =(t)y"(8)dt - j ly(8)[?dt, (7.4)

where N
y(t) = Z a(n)g el xnTh (1 — nT), (7.5)

and R(.) denotes the real part.

Recall that the elements of the data sequence belong to a discrete set A known as the
alphabet (see chapter 1, section 1.5.1), and therefore the task of the maximum likelihood
sequence estimator is to perform a combinatorial optimization. The computational cost of
the brute force approach of computing Aa] for all possible data sequences and then finding
~ the largest increases ezponentially with the length of the data sequence. In the case where
K =1 and wy = 0, that is, the composition of QAM and linear time-invariant channel
with AWGN, Forney and Ungerboeck have shown that, under some mild conditions on the
stationary sequence {h;(t — nT):Vn}, the combinatorial optimization can be performed
with a computational cost that increases linearly with the length of the data sequence. The
methods of Forney and Ungerboeck can be extended to the case where K’ = 1 and w #0

1The likelihood ratio

exp (—Wl'f I=(t) - y(¢)|2dt)
LR = 2 . 2
exp (-ﬁ;flz(l)l’d!) (7.2)

Then Ala] = Mo log LR. The equivalence follows from the monotonicity of A with respect to L.
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and indeed to the case where A" > 1, under some mild conditions on the set of stationary
sequences {hx(t — nT): k=1.2,...,K;¥n}.

7.3 The Common Thread of Forney’s and Ungerboeck’s
Methods

The common thread of Forney’s [13] [14] and Ungerboeck’s [52] methods is being able, under

some conditions, to write
Ale] = Z An(state(a,n — 1),a(n)] + C, (7.6)
n

where

state(a,n — 1) = (a{n — np},a(n — ng + 1)...., a{n - 2),a(n — 1)) (7.7)

for some no. the A;[]’s are some functions of the data sequence, and C is a constant

independent of the data sequence. Although A,[.] is a function of the vector
(a(n = no),a(n = ng + 1),....,a(n ~ 2), a(n - 1), a(n)) (7.8)

obtained by appending the data symbol a(n) to the state(a,n — 1), the notion of the state
has conceptual consequences in the maximization of Ala] as recapitulated below.?
Denote by segment{a, n) the initial segment of the data sequence a up to and including

the ath data symbol, that is,
segment(a,n) ={(...... sa(n —2),a(n—1),a(n)). (7.9)
Suppose that the sequence & is the solution to the maximization problem, that is,

arg max

d= Ala]. (7.10)
. a
Then
argmax
segment{d, m) = segment(b, m) : 3 Anlstate(b, n - 1),b(n)]. (7.11)

state(b, m) = state(a, m) ngm

*The argument is also known to have roots in the subject of Dynamic Programming founded by R.
Bellman, as pointed out to me by Dr. D. P. Taylor.
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In other words. of ail the data sequences whose state at time m concides with the state

of & at time m, the partial sum ¥, ¢, Aq[state(b, n — 1).b{n)} is maximum for those data
sequences whose initial segment up to time m concides with the initial segnient up to time
m of a. To see this, write

Ala] = Z Anlstate(a.n — 1), a(n)) + Z An[state(a.n — 1).a(n)). (7.12)
n<m n>m

and observe that if the result of equation 7.11 were false then there exists a sequence b

whose state at time m concides with the state at time m of @ such that
D Anlstate(b,n — 1),b(n)] > z An[state(@, n — 1), a(n)]. (7.13)
n<m n<m

More specifically, the sequence b can be chosen such that b(n) = a(n) for n > m also. In

other words, the sequence b can be obtained by replacing the initial segment up to time m
of @ with the solution to the problem

arg max
segment(b, m) : Z An[state(b, n — 1), b(n)). (7.14)
state(b, m) = state(&, m) nim

For such a sequence b,

Z Anjstate(b,n — 1),b(n)] = Z Aa[state(a, n — 1), a(n)}, (7.15)
n>m n>m
and therefore
Alb) > Ala], (7.16)

which contradicts the definition of a given by equation 7.10. This proves the result of
equation 7.11.

Since the elements of the data sequence belong to the discrete and finite set A, the
values taken by state(a,n) belong to a discrete and finite set ® say S. Consider the solutions

to the problems

arg max
segment (b, m): Z An[state(b,n —1),b(n)], Vs € S. (7.17)

<
state(b.m)=s -

3In mathematical tetms, S is the Cartesian product A x A x ... x A {(no times).
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The result of equation 7.11 says that one of these solutions must concide with segment(a. m).
By an argument similar to that used above, one can prove the following: the initial segment

up to time m of the solutions to the problems

arg max
segment(b,m+1): E Anfstate(b.n—1).b(n)], Vs€ & (7.18)

state(bm+ 1)=s nsml

must be among the solutions to the problems of equation 7.17. Therefore, in order to solve
the problem of equation 7.18. the maximization need be done only over the extensions of
the solutions to the problem of equation 7.17. In other words. as m increases, the problems
of equation 7.17 can be solved recursively, storing at each stage the maximizing initial
segments and the maxima so achieved. For data sequences that terminate at a known time
with a known state, the final step of the recursion will yield é. The optimization procedure
described above is easily visualized in terms of a directed graph known as the trellis diagram
(13], [14], {52).

For the above method of maximizing Afa}, it is clear that the number of computations

increases only linearly with the length of the data sequence.

7.4 Maximum Likelihood Sequence Estimator of the Unger-

boeck Type
To derive the MLSE of the Ungerboeck type, denote
Rt = iejw"ﬂhk(t - nT), (7.19)
k=1
o(ny,m2) = j R (1) (1)ds, (7.20)
b(n) = j ()R (1)dt. (7.21)
Then
j =)y (t)dt = Zﬂ:a'(n)b(n), (7.22)

as easily observed, and

jly(t)|2dt = 23?Za‘f(n) [%c(n,n)a(n) + 2 e(n,m)e(m)/|, (7.23)._

men



(2]

A MAXIMUM LIKELIHOOD SEQUENCE ESTIMATOR OF THE UNGERBOECK TYPE 15:

as shown in section 7.4.2.

Under the assumption that the functions {hy(#) : & = 1.2..... R’} are time-limited. there

exists a finite integer ng such that
c(m.nay=0 for Iny = na] > ng. (7.2:1)

Combining equations 7.1, 7.22, 7.23, and 7.24. one obtains

n=1
Ala] = 2%2 a*(n) lb(n) - (%C(n,n}a(n)-}- Z c(u.m)a(m))] . (7.

msn—ng

-1
b
ot
—

which can be identified with equation 7.6 by defining

m=n-ng

n-1
An [state{a,n — 1).a(n)} = 2% (a'(n) [b{n)— (éc(u.n)a(n)-}- Z c(n.m)a(m)) ) .
26)

-
[

(7.26
c = 0 (7.27

<

)

The expression of equation 7.25 is clearly an extension of that given by Ungerboeck [52]
for the composition of QAM and linear time-invariant channel with AWGN where c(n,m)
takes the form é(n — m).

7.4.1 On the Implementation

Although the stationarity of the set of sequences {hi(t—nT):k=1,2,...,X;¥n} has
played no role in the derivation of the MLSE of the Ungerboeck type, it has a role in
the implementation of the MLSE.

First, it facilitates the computation of ¢(ny, ny) as*

1 /T Jwn T H —jwna T -
clm,m) = 5= j_ & TR H() e, (7.28)
= T7'QF Hin, ony)Rass (7.29)
where

X . , T

Qu = [efnnT T eionnT]T (7.30)
T [T jwnT

= — : 31
H, = o f_ ) Tdo (7.31)

‘Here H(w) is the spectral density matrix of the set of stationary sequences
{he(t = aT): k=1,2,...,K;¥n}.
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need be known.

Second, it facilitates the computation of b(n) as

«
bn) = e~ T (n), (7.32)
k=1
where
bu(n) = ]:(t)h;.(z— nT)dt. (7.33)

The MLSE can be implemented as schematically shown in figure 7.1. Thus the received
signal z(2) is fed into the bank of filters matched to {hx(¢) : k = 1,2,..., K'} and the outputs
are sampled once every T seconds to obtain the numbers {bi(n): k=1,2,..., K'}. These

numbers are then linearly combined according to the weight vector Q7 to obtain b(n).

filter
filter
Trellis
Search
1) | to _.3_,.
Maximize
Ala]
\‘:*“\:b > filter
E. .................... i : eeendt E..........E elements of
matched to sample .
Q-n
[t k=12..8} a
k t=nT

Figure 7.1: Schematic Diagram of the Implementation of the Ungerboeck type MLSE
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7.4.2 Proof of Equation 7.23

To prove equation 7.23, write

fly(r)lgdt = 'Z;“‘("l)ﬂ("'.‘)c(nhﬂz)-, (7.34)
= i Z a*(ny)a(na)e(ny, na) (7.35)
:—E: (ny)a(ny)e(m, ny) (7.36)

+ Z Z}I a(m1)a(n2)e(ny, na), (7.37)

and observe that the last double sum is the complex conjugate of the first double sum. 1o

see this, interchange the variables n; and na, and also interchange the order of summation.
Thus

z Z a'(nl)a(ng)c(n;,ng)=z Z a"{na)a(n ye(na, ny). (7.38)
m na>m n2 wm>na
=Z Z a(ny)a™(na)e™(ny.na), (7.39)
Ay ra<ng

where, in the last step, the Hermitian property

e(na, m) = ¢*(ny, na) (710}
is used. Therefore,
Jwewra: = Som) 3 el nalaln) (7.41)
na<ny
‘*‘Z“ (ny)e(m, m)a(n) (7.42)
+ Z n;)( Z ‘n1,no)a(ng)) (7.43)
nz<ny

which can be written as in equation 7.23.

7.5 Maximum Likelihood Sequence Estimator of the Forney

Type

To derive the MLSE of the Forney type, denote

H = Clos.Span {ht(t —=nT): k=1,2,...,K;Vn}, (7.44)
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and observe from equation 7.5 that y(t) € H for every data sequence a(n). Under the
assumption that the set of functions {hg(t): &k =1,2,..., K’} is time-limited, the spectral
density matrix H(w) of the set of stationary {he(t = nT): k=1,2,..., K:¥n} is a polyno-
mial in e=9“T, that is, it has the form
ng )
Hw)= Y Hue T (7.45)
n==ng

for some finite ng. Therefore, as discussed in appendix A, section A.T, there exists a set of

orthonormal stationary sequen-‘:es,5 say,

{gt—nT):1=1,2,...,L;¥n}, (7.46)
that constitutes an orthonormal basis for H, and the functions {he(t) 1k =1,2,..., K} can
be represented in the form®

ng L

hi(t) = 3 cx(n)a(t — nT). (7.49)

n=0(=1

In terms of this representation,

K ng L
y(t) = Z a{n) Z edwinT Z Z ckx(m)g(t — (n + m)T), (7.50)
n k=1 m=0 {=1
L no KN
= ZZQI(’ - nT) Z z cr(m)erm=mTa(n _ m), (7.51)
n =1 m=0 k=1

and therefore,

ng K 2

L
[P = £330 S au(menmiTo(n - m)| (7.52)
: n =1 Im=0 k=1
" Denote
bi(n) = f (1)g7(t — aT)dt. (7.53)
:.-\ Wold decompusition also exists as discussed in appendix A, section A.8.1,
Here
wfT
ci{n) = —g eFC(w)ege""“rdw. {7.47)
- —r]T

where C(w) is a causal polynomial in e~7%7, of degtee no, satisfying H(w) = C¥ (w)C{w), and the functions
9:(t) € H are the isomorphs of the functions vTai(w) € L3y, where

Clew) [a1(w), a2{w)...,ar{w)] = Ioxe. (7.48)
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=

Therefore

f Oy (t)dt = ZZbI(n) (Z Zc“(m)e-’**("'"‘}r a(n - m)) (v.54)

n l=1 =0k=1)
Combining equations 7.4, 7.52, and 7.54, one obtains

L ng K -
Ala] = BSIZZ bi(n) (Z Z crp(mler - T gy _ m)) {7.55)

no =1 m=0 k=1

L )ny K _ :
- ZZ Z Z c;,k(m)eJ“’*("“m)Ta(rl —m) (7.36)
=1 Im=0 k=1
By completing the square,
L . L ng K . 2
Ale] = 2 @) - S jln) = 5 3 ep(m)edrtn=mT oy _ my (7.57)
n =1 n =1 m=0 k=1
which can be identified with equation 7.6 by defining
L np K ) 2
An[state(a,n - 1),a(n)] = =D |b(n) - 3 D ciu(m)ed =Ty _ )
=1 m=0k=1
(7.58)

C

1

L
35 T b(n)*. (7.59)
n jl=t

Disregarding the constant term, the optimization problem can be posed as follows:

minimize
L ne K ' 2
Tla] =3 > |i(n) = 3 " crp(m)edx=miTg(n — )| . (7.60)
n =1 m=0Lk=1
The expression of equation 7.60 is clearly an extension of that (squared Euclidean distance)

given by Forney [13] for the composition of QAM and linear time-invariant channel with
AWGN.

7.5.1 On the Implementation

The MLSE can be implemented as schematically shown in figure 7.2. Thus the received
signal 2(t) is fed into the bank of filters matched to {gi(t):{=1,2,...,L}. The outputs
are sampled once every T seconds to obtain the numbers b)(n). The front end filter bank is
an extension of the whitened matched filter derived by Forney [13].
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-1

- b, (n)

filter AN !
: b, (n)
: Pl b
e filter [ N >
: P : Trellis

Search -
: Do : a
Z(f) to -

: P : Minimize

I'la]

> filter > N

matchedi to. sample

{g,(®:1=12...L) =z’11tT

Figure 7.2: Schematic Diagram of the Implementation of the Forney type MLSE
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Chapter 8

Results of Computer Simulations

8.1 Imntroduction

In this chapter, results of computer simulations are presented for the following:

* maximum-likelihood method of estimating the parameters of the composition of quadra-
ture amplitude modulation (QAM) and discrete-multipath channel (DMC) proposed
in chapter 2, section 2.6.2,

¢ linear zero-forcing equalizer proposed in chapter 3, section 3.5, based on the actual

parameters of the composition of QAM and DMC,

¢ linear zero-forcing equalizer proposed in chapter 3, section 3.3, based on the estimated

parameters of the composition of QAM and DMC.

Wherever possible, results of computer simulations are compared to their theoretical coun-
terparts. All computations were performed by using MATLAB, an interactive high level
programming environment. :

8.2 The QAM-based Transmitter

8.2.1 Signal Set

The 16 QAM signal set shown in figure 8.1 was considered, with an equiprobable choice of
signals. This signal set, when scaled to have a minimum distance of 2 between signals, has

a mean square value of 10.

158
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A
Imaginary
. . . °
° . ° .
Real
. ° . °
[} . ' .

Figure 8.1: The 16 QAM Signal Set

8.2.2 Transmitter Pulses

The following two pulses were considered:

e A pulse of a rectangular shape in the time domain, one baud duration, and unit

energy, that is,

L. for 0<t<T,
g)=4 VT == 8.1
® { 0 elsewhere. (81)

* A pulse of a square root raised cosine shape in the frequency domain with roll-off
factor 1.0, and unit energy, that is,!

T wT 1/2 2= 2z
W) = \/; (1 + cos -—2-) for —F <wg i (8.2)
0 elsewhere,

2 wT 2= 2=
VIceos¥- for —F <w<F,
—_— { 4 (8-3)

0 elsewhere.

'In the time domain, g(t) = = f 3(w)e’“*dw, the inverse Fourier transform of §; since g(?) is not time-
limited only a truncated version can be implemented.
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8.2.3 Carrier Frequency, Baud Rate

The following combination of carrier frequency and baud rate was considered:?
1 GHz, 20 kbauds/s.

8.2.4 Signal-to-Noise Ratio

Unless specified otherwice. signal-to-noise ratio (SNR) will mean the following:

SNR = The average transmitted signal energy per baud period

The noise power spectral density (8.4)

8.3 The Discrete-Multipath Channel (DMC)

Discrete-Multipath Channels having up to three paths were considered. Compositions of
QAM and DMC with Doppler-shifts of up to #/200 radians/baud and relative delays of up
to 0.2 bauds were considered. Some scenarios where the values of Doppler-shifts and delays
considered will arise are given below. In all these scenarjos, without loss of generality, the
transmitter and the reflector/scatterer are assumed to be stationary and the receiver is
assumed to be moving. Moreover, the transmitter and the reflector/scatterer are assumed
to be far from the receiver such that the assumptions made in chapter 1, section 1.2.2 are
valid.
Recall from chapter 1, section 1.2.3, that the Doppler-shift w; of the kth path is

Loty -
W = _c"" . (8.3)

where v is the velocity of the receiver taken relative to the fth path,?® wp is the carrier

frequency, and ¢ is the speed of propagation of the electromagnetic wave.

8.3.1 Scenario 0

In scenario 0, the DMC is assumed to have one path, and the receiver is assumed to be
moving such that vy = 0. Therefore, the Doppler-shift is zero.

2The results of this chapter are, however, valid for any combination that gives tise to the same normalized
values of Doppler shifts and delays, the normalization being with respect to the baud rate and baud period
respectively.

"3More specifically, the velocity in the direction perpendicular to the planar wave front associated with
the kth path and oppasite to that of propagation,
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The frame length is assumed to be 400 bauds, with the lengths of the probing and the
signalling phases being 200 bauds each. Observe that the composition of QAM and DMC

is time-invariant.

8.3.2 Scenario 1

In scenario 1, the DMC is assumed to have two paths, and the receiver is assumed to be
moving such that vy = 0 and v2 = 15 m/s (15 m/s is equivalent to 34 km/h). The relative
delay is assumed to be zero. '

At the carrier frequency of fo = 1 GHz, the Doppler-shifts are given by,

w = 0, (5.6)
wy = 2% x10%x15/(3 x 10%), (8.7)
= 1007 radians/s. (8.8)

At the baud rate of 20 kbauds/s, the baud period is T = 50 ps. Therefore, wn T = 0 and
weT = 1007 x 50 X 10~® = 7/200 radians/baud.

The frame length is assumed to be 400 bauds, with the lengths of the probing and
the signalling phases being 200 bauds each. Observe that, with the differential Doppler-
shift being 7 /200 radians/baud, the composition of QAM and DMC can be considered as
periodically time-variant with a period of 400 bauds.

8.3.3 Scenario 2
Scenario 2 is identical to scenario 1, except for the delay. In scenario 2, a relative delay of*
10 us, or, equivalently, 0.2 bauds, is assumed.

8.3.4 Scenario 3

In Scenario 3, the DMC is assumed to have three paths, and the receiver is assumed to
be moving such that v; = —10 m/s, v; = 0, and v3 = 10 m/s (10 m/s is equivalent to 36
km/h). The relative delays are assumed to be zero.

! According to [37), relative delays can be as much as 100 ps. According to [8], the ETSI/GSM specification
assumes relative delays of up to 16 pus.
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At the carrier frequency of fo = 1 GHz. the Doppler-shifts are given by,

@ = =27 x 10° x 10/(3 x 10%), (8.9)

= -2007/3 radians/s. (8.10)
wr = O (8.11)
w3 = 200x/3 radians/s. (8.12)

At the baud rate of 20 kbauds/s, the baud period is T = 50 us. Therefore. w, T = =2007 x
50 x 107%/3 = —= /300 radians/baud, w;T = 0, and w3T = =/360 radians/baud.
The frame length is assumed to be 600 bauds, with the lengths of the probing and the
signalling phases being 300 bauds each. Observe that, with the differential Doppler-shifts
_being integer multiples of #/300 radians/baud, the composition of QAM and DMC can be
considered as periodically tirne-variant with a period of 600 bauds.

8.3.5 Scenario 4

Scenario 4 is identical to scenario 3, except for the delays. In scenario 1, a relative delay of
10 us, or, equivalently, 0.2 bauds, is assumed.

8.3.6 Scenario 5

In Scenario 5, the DM is assumed to have three paths, and the receiver is assumed to
be moving such that v, = —15 m/s, v2 = 0, and v3 = 15 m/s (15 m/s is equivalent to 54
km/h). The relative delays are assumed to be zero.

At the carrier frequency of fo = 1 GHz, the Doppler-shifts are given by,

w, = =27 x 10° x 15/(3 x 108), (8.13)

= =1007 radians/s, (8.14)
we = 0, (8.15)
w3 = 1007 radians/s. (8.16)

At the baud rate of 20 kbauds/s, the baud period is T' = 50 us. Therefore, un T = —1007 x
50 x 10~ = — /200 radians/baud, w,T = 0, and wsT = =/200 radians/baud.

The frame length is assumed to be 400 bauds, with the lengths of the probing and the
signalling phases being 200 bauds each. Observe that, with the differential Doppler-shifts
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being integer multiples of =/200 radians/baud, the compositicn of QAM and DMC can be

considered as periodically time-variant with a period of 400 bauds.

8.3.7 Scenario 6

Scenario 6 is identical to scerario 3, except for the delays. In scenario 6, a reiative delay of

10 ps, or, equivalently, 0.2 bauds, is assumed.

8.4 Errors in the Estimated Doppler-Shifts

The probing of the DMC with 2 QAM signal and the maximum-likelihood method of es-
timating the parameters of the composition of QAM and DMC were simulated® for the
scenarios described in section 8.3. The SNR-dependence of the simulated errors in the
muximum-likelihood estimates of the Doppler-shifts are shown in figure 8.2 through fig-
ure 8.16. These figures also show the SNR-dependence of the Cramer-Rao bounds given
by equation 2.96 of chapter 2. These figures, therefore, substantiate the result quoted in
chapter 2, section 2.6.4 that the maximum-likelihood estimates of the Doppler-shifts are
asymptatically efficient.

8.5 Post-Equalizer Signal-to-Noise Ratios

Recalling the generic structure of the linear equalizer from chapter 3, section 3.2, the post-
equalizer signal-to-noise ratio (Post-Equalizer SNR) is defined as follows:

1

Post-Equalizer SNR = The mean square value of the signal at the input to the quantizer

The mean square value of the noise at the input to the qua.nt(iszer )
A7

Observe that the defining quantities are, in general, functions of discrete-time {measured in
bauds), for the DMC is time-variant.

For the linear zero-forcing equalizers of chapter 3, one can define a normalized Post-
Equalizer SNR as follows:

Post-Equalizer SNR 1
SNR AL

*The MATLAB function fmins was used to find the estimate © defined by equation 2.71 of chapter 2,
using the actual value © as the initial point, with the resclution parameter being set at 10~7,

Normalized Post-Equalizer SNR = (8.18)

(¢
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where SNR is as defined in section 8.2.4, and the A%, s are as derived in chapter 3 {sections
3.5 and 3.6). The time-dependence of the hierarchy of these normalized Post-Equalizer
SNR's corresponding to ¢ = 0.1.2 s shown in figure 8.17 through figure 8.32 for the various
scenarios described in section 8.3. These figures also show the t:me-dependence of the
hierarchy of upper bounds® Tf‘:: corresponding to ¢ = 0.1.2. In these figures. the time

interval shown is that of a frame.

The figures also show that the common understanding of fading. gained by transmitting
a sinusoidal signal and observing the received signal. may be too simplistic when it comes

to quadrature-amplitude-modulated signalling in the presence of intersymbol interference.

8.6 Symbol-Error Rates

The symbol-error rate over a particular time interval is defined as follows:

The expected number of symbol errors over the time interval

Symbol-Error Rate = The length of the time interval

(8.19)
Observe that, since the DMC is time-variant, the symbol-error rate is specific to the time-
interval.

Figure 8.33 through figure 8.47 show the SNR-dependence of the simulated symbol-
error rates of a linear zero-forcing equalizer, with ¢ = 0, over the signalling phase,” for the
various scenarios decribed in section 8.3. The simulated symbol-error rates were found by
simply counting the symbol errors over the time interval, dividing the count by the length
of the time interval, and then averaging the result over the trials. The figures also show the
theoretical SNR-dependence of the symbol-error rates of the hierarchy of linear zero-forcing
equalizers corresonding to ¢ = 0, 1,2, calculated according to the discussion of section 8.6.1
by using A%,,. These figures also show the SNR-dependence of the hierarchy of lower bounds

corresponding to ¢ = 0,1, 2, calculated according to the discussion of section 8.6.1, but by
using A¥,.

GRQCIH that Aenl S AE’" S t\.i‘l S A?ﬂu S -\l < “?‘nu'

mu =
"The time interval was approximately that of the signalling phase, with an allowance having been made
for the effects of the probing phase to die down.
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8.6.1 Theoretical Calculation of Symbol-Error Rate

To calculate the symbol-error rate for a linear equalizer. consider the string X of binary
random variables

X = (X1 Xoo . Xn), (8.20)

where each binary random variable X, takes value 0 or 1 with the joint probability distri-
bution

Prob.[X; =z, Xo=z0... ., Xx = zx]) = p(21. T2, . . . 2N) {8.21)
and the marginal probability distributions
Prob.[X, = z] = pa(z), (8.22)
forn=1,2,...,N. Denote by Ny the expected number of 1’s in the string X. Then

Ny = Z (x1+ 22+ ...+ zx)p(z1, 22, - - 2N), (8.23)

all I=(T1.T20Zx)

N
= Z ( Z p(.r],xg,...,.":x)) » (8‘24)

n=1 \all r withz,=1
N

= 3 pall). (8.25)
n=1

By identifying the event that X, = 1 with the event that the nth symbol is in error, one
has, for the 16 QAM signal set shown in figure 8.1,

Pa(1) = 3Q, ~ 2.25Q2, (8.26)
where
l @ _:2/2 -
n= "7 d 1 -2
Q Wer L ) e T (8.27)
and
ai _ Post-Equalizer SNR _ SNR
2 10 T10ME, (8:28)
Therefore, the symbol-error rate over the time-interval 1 to NV is given by
1 &
Symbol-Error Rate = ¥ ngl on(1), (8.29)

where p,(1) is given by equations 8.26.
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8.7 Graphs
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On the maximum-likelihood estimates of Doppler shifts of a two—path channel
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On the maximum-likelihood estimates of Doppler shifts of a two~path channel
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On the maximum-likelihood estimates of Doppler shifts of a three—path channel
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" On the maximum-likelihood estimates of Doppler shifts of a two-path channel
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On the maximum-likelihond estimates of Doppler shifts of a two-path channel
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On the maximum-likelihood estimates of Doppler shifts of a two-path channel
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On linear zero-forcing equalizers for a two—path channel
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On linear zero-forcing equalizers for a two-path channel
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©n linear zero~forcing equalizers for a two-path channel

T

5 ] - b 3 ]

o

|
n

|
ary
o

Doppler: ShlftS (rads!baud) 0 pif200
delays (bauds) : 0, 0
- -strengths + 1,05

L
o

normalized post-equalizer signal-to-noise ratio (dB)

roll-off factor 1.0; truncated to 10 bauds

|
n
(=]

transmitter pulse : root raused cosine in frequency domam.

The rece:ver performance hlerarchy and the upper bound hlerarchy vnrtually coincide

T Y

50 100 150 200 250
time (bauds)

Figure 8.24: An Example in Scenarit.:)”l

30 - 35:_) 400



87 GRAPHS ’ 190

On linear zero-forcing equalizers for a three—path channel
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On linear zero—forcing equalizers for a three-path channel
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On linear zero-forcing equalizers for a two-path channel
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On linear zero-forcing equalizers for a three-path channel
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On linear zero-forcing equalizers for a two-path channel
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Chapter 9

Summary, Conclusions, and
Suggestions for Further Work

9.1 Summary of the Thesis

In this thesis, a new paradigm has been proposed for designing the transmitter and re-
ceiver for quadrature-amplitude-modulated signalling over a mobile radio channel. The
new paradigm is based on a discrete-multipath linear time-variant model of the mobile ra-
dio channel, and hence the title of the thesis. The following is a chapter-wise summary of
the thesis.

9.1.1 Chapter 1 — Introduction

1. The Discrete-Multipath Channel (DMC) was introduced as a model for the mobile
radio channel. The DMC is a linear time-variant channel whose input z(t) and output

y(t) are related, in the absence of noise, as

K .
Yty =3 et j ox(t — 7)a(r)dr. (9.1)

k=1

2. A new philosophy, based on alternate phases of probing and signalling, was proposed
for designing the transmitter and receiver for quadrature-amplitude-modulated sig-
nalling wver a DMC.

213
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9.1.2 Chapter 2 — The Composition of QAM and DMC

1. The composition of quadrature amplitude modulation (QAM) and DMC was shown

to have the input-output description

R
:t) =) a(n) Y & Thi(t — nT) + ny(2), (9.2)

n k=1

as per following denotions:

» a(n): transmitted data sequence, whick is the input to the composition.
e T : baud period,

e =(t) : complex envelope of the received signal, which is the output of the com-

position,
® 7y(t) : complex white Gaussian noise,

o K, {wi,he(t): k=1,2, ...+ '} : parameters of the composition; here the w;’s

are real and the A(t)’s are complex-valued square-integrable functions.

2. The probing of the DMC with a suitable quadrature-amplitude-modulated signal was
shown to lead to a characterization of the composition of QAM and DMC, that is, to
estimates of K and {uwy, he(t): k=1,2,...,K}.

3. Under the assumption that A is known, the maximum likelihood estimates of
{we, hi(t) : k= 1,2,..., K} were discussed with emphasis on their asymptotic prop-
erif;ies_'bf_strong consistency, normality, and efficiency when the duration of the probing
pﬁa.se tends to infinity.

4. The result that
Jim I°E [(G) -0)(6- e)T] < o0, (9.3)

was used to justify the philosophy of design proposed in chapter 1. Here © is the
maximum-likelihood estimate of @ = T (wy,wy, ... ,w;\-)T, and L is the probing dura-
tion.

5. An overview of methods of estimating K was given, and the possible consequences of

erroneous estimation of A was discussed.
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9.1.3 Chapter 3 — Linear Zero-Forcing Equalizers

1.

A

ot

The concept of a linear equalizer for the composition of QAM and DMC was in-

troduced: the linear equalizer was identified with an optimum sequence of functions

Fm(8).

. The optimal zero-forcing criterion - minimum noise variance under the zero-forcing

constraint ~ for designing a linear equalizer was stated.

- The use of the optimal zero-forcing criterion was shown to be feasible in the special

cases where either there is no intersymbol interference or &' = 1. but was seen to be

difficult in the general case where A" > I and there is intersymbol interference.

- A hierarchy of suboptimal zero-forcing criteria, based on stronger versions of the

zero-forcing constraint, was used for designing linear equalizers in the general case;
the output noise variances of the suboptimal equalizers so designed form a hierarchy

of upper bounds on the output noise variance of the optimal equalizer.

. Despite the DMC’s being time-variant, the sequence of functions f7,(t) defining a

n
suboptimal equalizer was easily specified. Moreover, the suboptimal equalizers were

shown to be implementable using a bank of continuous-time linear time-invariant
filters at the front end; the baud-rate samples of the outputs of these filters have to

be combined in a linear time-variant manner and fed into a quantizer.

. To assess the performance degradation of the suboptimal equalizers relative to the

optimal equalizer, a hierarchy of lower bounds on the output noise variance of the
optimal equalizer was derived.

9.1.4 Chapter 4 — Decision-Feedback Zero-Forcing Equalizers

1.

2.

The concept of a decision-feedback equalizer for the composition of QAM and DMC
was introduced; the decision-feedback equalizer was identified with an optimum se-
quence of pairs of functions (f,(2), Bm(n)).

The optimal zero-forcing criterion - minimum noise variance under the zero-forcing

constraint - for designing 2 decision-feedback equalizer was stated.
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o

. The use of the optimal zero-forcing criterion was shown to be feasible in the special

cases where either there is no intersymbol interference or A" = 1, but was seen to be

difficult in the general case where A" > 1 and there is intersymbol interference.

. A hierarchy of suboptimal zero-forcing criteria, based on stronger versions of the zero-

forcing constraint, was used for designing decision-feedback equalizers in the general
case; the output noise variances of the suboptimal equalizers so designed form a

hierarchy of upper bounds on the output noise variance of the optimal equalizer.

Despite the DMC'’s being time-variant, the sequence of pairs of functions (f2,,(¢), 8m(n))
defining a suboptimal equalizer was easily specified. Moreover, the suboptimal equal-
izers were shown to be implementable using a bank of L (< K') continuous-time linear
time-invariant filters at the front end; the baud-rate samples of the outputs of these
filters and the decisions on the past data have to be combined in a linear time-variant
manner and fed into a quantizer; a discrete-time linear time-invariant filter plays a

central role in combining the past decisions.

. To assess the performance degradation of the suboptimal equalizers relative to the

optimal equalizer, a hierarchy of lower bounds on the output noise variance of the

optimal equalizer was derived.

9.1.5 Chapter 5 — Linear Mean-Square-Error Equalizers

1

o

The concept of a linear equalizer for the composition of QAM and DMC was recalled
from chapter 3.

. The optimal mean-square-error criterion — minimum mean-square-error — for designing

a linear equalizer was stated.

. The use of the optimal mean-square-error criterion was shown to be feasible in the

special cases where either there is no intersymbol interference or K = 1, but was seen
to be difficult in the general case where K > 1 and there is intersymbol interference.

- A hierarchy of suboptimal mean-square-error criteria, based on upper bounds on the

mean-square-error, was used for designing linear equalizers in the general case; the
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mean-square-error of the suboptimal equalizers so designed form a hierarchy of upper

bounds on the mean-square error of the optimal equalizer.

. Despite the DMC’s being time-variant, the sequence of functions f3,(?) defining a

suboptimal equalizer was easily specified. Moreover, the suboptimal equalizers were
shown to be implementable using a bank of continuous-time linear time-invariant
filters at the front end; the baud-rate samples of the outputs of these filters have to

be combined in a linear time-variant manner and fed into a quantizer.

. To assess the performance degradation of the suboptimal equalizers relative to the

optimal equalizer, a hierarchy of lower bounds on the mean-square-error of the optimal

equalizer was derived.

9.1.6 Chapter 6 — Decision-Feedback Mean-Square-Error Equalizers

1.

(=13

The concept of a decision-feedback equalizer for the composition of QAM and DMC
was recalled from chapter 4.

. The optimal mean-square-error criterion — minimum mean-square-error - for designing

a decision-feedback equalizer was stated.

. The use of the optimal mean-square-error criterion was shown to be feasible in the

special cases where either there is no intersymbol interference or & = 1, but was seen

to be difficult in the general case where &' > 1 and there is intersymbo) interference.

. A hierarchy of suboptimal mean-square-error criteria, based on upper bounds on the

mean-square-error, was used for designing decision-feedback equalizers in the general
case; the mean-square-error of the suboptimal equalizers so designed form a hierarchy

of upper bounds on the mean-square-error of the optimal equalizer.

. Despite the DMC'’s being time-variant, the sequence of pairs of functions (f1,,,(¢}, Bm(n))

defining a suboptimal equalizer was easily specified. Moreover, the suboptimal equal-
jzers were shown to be implementable using a bank of L (< K') continuous-time linear
time-invariant filters at the front end; the baud-rate samples of the ocutputs of these

filters and the decisions on the past data have to be combined in a linear time-variant
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manner and fed into a quantizer; a discrete-time linear time-invariant filter plays a

central role in combining the past decisions.

6. To assess the performance degradation of the suboptimal equalizers relative to the
optimal equalizer, 2 hierarchy of lower bounds on the mean-square-error of the optimal

equalizer was derived.

9.1.7 Chapter 7 — Maximum-Likelihood Sequence Estimators

1. The definition of the maximum-likelihood sequence estimator (MLSE) was stated in
the context of the composition of QAM and DMC.

2. The common thread of Forney’s and Ungerboeck’s methods that made the imple-
mentation of the MLSE feasible in the case where A’ = 1 and w; = 0, that is, the

composition of QAM and linear time-invariant channel, was recapitulated.

3. The Ungerboeck-type MLSE was derived for the composition of GQAM and DMC. The
Ungerboeck-type MLSE was shown to be implementable using a bank of A" continuous-
time Hnear time-invariant filters at the front-end; the baud-rate samples of the outputs
of these filters have to be combined in a linear, time-variant, and memoryless manner

and then fed into a trellis search algorithm.

4. The Forney-type MLSE was derived for the composition of QAM and DMC. The
Forney-type MLSE was shown to be implementable using a bank of L(< k') continuous-
time linear time-invariant filters at the front-end; the baud-rate samples of the outputs

of these filters have to be fed into a trellis search algorithm.

9.1.8 Chapter 8 ~ Results of Computer Simulations

1. Various scenarios of 16 QAM signalling over DMC's, some aspects of which were
simulated, were decribed.

2. Simulated results were presented for probing using the maximum-lizelitood method
and signalling using the linear zero-forcing g = 0 equalizer. ”

3. Graphs depicting the signal-to-noise ratio dependence of the simulated errors in the
estimated Doppler-shifts and of their Cramer-Rao bounds were presented.
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4. Graphs depicting the time-dependence of the normalized post-equalizer signal-to-noise

ratio’s of the linear zero-forcing equalizers for ¢ = 0. 1.2 were presented.

5. Graphs depicting the signal-to-noise ratio dependence of the simulated symbol-error
rate of the ¢ = 0 equalizer and of the theoretical symbol-error rates of the ¢ = 0,1.2

equalizers were presented.

9.2 Conclusions

From a theoretical standpoint, the conclusion of the thesis as a whole is, that the philos-
ophy of design based on alternate probing and signalling leads to attiractive solutions to
the problem of quadrature-amplitude-modulated signalling over a discrete-multipath linear
time-variant channel, even in the presence of intersymbol interference (ISI) and additive
white Gaussian noise (AWGN). Probing may be effected by transmitting a pre-assigned
data sequence and then applying the maximum-likelihood method of estimation. Signalling
may be effected by using one of the many equalizers and sequence estimators obtained by
generalizing some receiver designs known for quadrature-amplitude-modulated signalling
over a linear time-invariant channel.

From a practical standpoint, the discrete-multipath channel (DMC) being an adequate
model for real mobile radio channels, generic! quadrature-amplitude-modulated signalling
over a mobile radio channel can be effected by applying the philosophy. In applying this
philosophy of design, no attention need be given to whether the mobile radio channel is
time-selective, frequency-selective, or time- and frequency-selective, for fading and ISI (and
also AWGN) are jointly dealt with. Moreover, no attention need be given to the underlying
statistics of the mobile radio channel.

9.3 Suggestions for Further Work

Much more work has to be done before the concepts and methods presented in the thesis
can be implemented in a cost-effective manner, with a fair amount of work being aimed at

improving the probing, for probing accuracies are crucial to the success of the signailing.

'the signal set being arbitrary
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9.3.1 Possible Approaches to Improving the Probing

¢ The maximum-likelihood method of chapter 2, section 2.6.2, although has the best
possible asymptotic properties, is expensive to implement, due to its high storage and
computational requirements. While the computational requirements may be reduced
by using a fast? algorithm to perform the minimization defined by equation 2.71
of chapter 2, it is extremely unlikely that the storage requirements can be reduced
within the framework of the maximum-likelihood method. Therefore, it seems, that
an iterative method must be devised for solving the key estimation problem of chapter
2, section 2.6, that is, a method of producing a sequence of estimates Oy, of @, as L

increases, satisfving the following requirements:

~ the methed needs a finite and fixed amount of storage at every step of the

iteration,

— the method needs a finite and fixed amount of computation at every step of the

iteration,

— the method has a faster-than-L~! convergence rate.3

Such an iterative method would account for any slow changes in the underlying geom-
etry of multipath progation of the mobile radio channel, by de-emphasizing the remote
past, in the manner that some adaptive algorithms do by incorporating a forgetting
factor[15).

¢ As explained in chapter 2, section 2.3.4, for a given length of the probing phase, the
total allowable length of the frame is limited by the accuracy of the estimate O
achievable at the end of the probing phase. In order to remove this limitation, a
method of iteratively refining the estimate of © even through the signalling phase is
needed. Such an iterative method must have a faster-than-L~! convergence rate.!

The method may be decision-directed, that is, it may use previous decisions on the

?The MATLAB fmins function proved to be 100 time consuming in the computer simulations.
That is, the sequence of estimates &7 of © must satisfy

lim LEYIE[(©, - 0)(81 - 0)7] < o0, (9.4)
Le=oo

where 0 < ¢ < 1. The need for such a convergence rate was explained in chapter 2, section 2.6.5.
‘In the case where K =1 and w; = 0, this is implicitly achieved by a carrier-phase tracking method.
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data, assuming them to be correct. Such an iterative method of refining the estimate
of © will allow the length of the probing plase to be chosen independently of the
length of the signalling phase, and once the length of the probing phase has been

chosen, will allow a virtually unlimited length of the signalling phase.

* When there are two Doppler-shifts that are nearly the same. they may be considered
approximately as one Doppler-shift. within a limited length of the signalling phase,

A precise quantification of this notion will be useful.

9.3.2 Possible Approaches to Improving Signalling

¢ When an equalizer is intended for use, an analyvtical method of choosing the value of

q to achieve a certain degree of optimality will be useful.

¢ An analytical or a simulation study of the effects of previous decision errors on the
\ A p

performance of the decision-feedback equalizer will be useful.



Appendix A

Some Results from the

Theory of Stationary Sequences in
Hilbert Space

A.1 Introduction

A.1.1 Historical Background

A sequence! {z, :n € Z} of elements in a complex Hilbert space® is said to be stationary
if the inner product (zy,,z,,) depends only on the difference (ny — np) of the indices; this
definition was introduced by A. N. Kolmogorov in the seminal paper [23]. Having shown
that a weakly-stationary discrete-time stochastic process can be considered as a stationary
sequence in a Hilbert space, Kolmogorov used the results of [23] to solve the problems of lin-
ear extrapolation and interpolation of weakly-stationary discrete-time stochastic processes
in [22].

In [23], Kolmogorov also introduced a definition concerning pairs of stationary sequences;
accordingly, stationary sequences {z, : n € ZZ} and {y, : n € Z} are said to be jointly
stationary if the inner product (x,,,yn,) depends only on the difference (n; — n2) of the
indices. Although [23] contained some significant results about a finite set of pairwise jointly
stationary sequences, its main concern was a single stationary sequence. The results found
in (23], concerning a single stationary sequence, were subsequently extended to a finite set

of pairwise jointly stationary sequences by many researchers, notably by Rozanov [46] and

'Here Z denotes the set of integers.
?For a discussion of Hilbert spaces, see {47).

222
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Wiener and Masani [35] [56] [26] (see [16] for more references).

A.1.2  Onthe Relevance of the Theory of Stationary Sequences to Quadrature-
Amplitude-Modulated Signalling

Signalling Over a Linear Time-Invariant Channel

In studying quadrature-amplitude-modulated signalling over a linear time-invariant channel
in the presence of intersymbol interference and additive white Gaussian noise, one is con-
cerned with linear combinations of elements of the sequence {h(t~nT):n € 2.} gencrated
by a complex-valued square-integrable function A(t) and a real-valued parameter 7' (see
section 1.5.5 of chapter 1). In mathematical terms, k(1) € £2, where £2 denotes the set of

all complex-valued Lebesgue-measurable functions f(f) of the real variable ¢ that satisfy
f |F(Odt < oo, (A
—00 '. i

Since £? is a vector space, all finite linear combinations of functions of the sequence {h(l —
nT): n € Z} belong to £2. The most important property of the sequence {h(t=nTY:ne

Z}, however, stems from the fact that £? is a Hilbert space under the inner product [47)
()= [ r(vgy | (A2)
Denote A"(t) = h{t — nT') for all integers n, and observe that
(h™, k™) = (k™ 7"2, h7) (A3)

for all integers n1 and n,. Thus, the inner product (A™, h"2) depends only on the difference
(n1 — n2) of the indices; in other words, the sequence of functions {h(t = nT) : n € Z})
constitutes a stationary sequence in the Hilbert space £2.

Questions concerning the existence of various kinds of receivers for quadrature-amplitude-
modulated signalling over a linear time-invariant channel can be answered by applying
Kolmogorov’s results of [23] to the stationary sequence {A(t —nT') : n € Z}. In fact, a con-
nection between pulse-amplitude-modulated signalling and weakly-stationary discrete-time

stochastic processes was discovered by D. G. Messerschmitt [27). Using this connection,
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Messerschmitt was able to interpret some of the results or. linear extrapolation and interpo-
lation of a stochastic process as results on decision-feedback equalization and linear equal-
ization, respectively, of pulse-amplitude-modulated signalling, However, Messerschmitt did

not seem to he aware of Kolmogorov’s work.

Signalling Over a Discrete-Multipath Linear Time-Variant Channel

In studying quadrature-amplitude-modulated signalling over a discrete-multipath linear
time-variant channel in the presence of intersymbeol interference and additive white Gaussian

noise, one is concerned with linear combinations of elements of the sequence
K
{Z e Th(t—nT):ine z} (A4)
k=1

generated by a finite set of complex-valued square-integrable functions {hr(t) € £2: k =
1,2,...,K}, a set of mutually distinct real-valued scalars {wy : k = 1,2,...,K}, and a
real-valued parameter T (see soctions 2.3 and 2.5 of chapter 2). Denote

AM(t) = i T h (4 — nT). (A.5)

k=1

Then h"(t) € £2. However, in general,
(A", h™2) & (R™ "2 hO), (A.6)

The case where i = 1 is an exception, for

o] . .
(h™,h") = / e~ nmT oy T)h(t - npT)e ™ T g, (A7)
= j_ : emirtm=ma)T =y _ (n) _ no Ty (2)dt, (4.8)
= (h™—",RY), (A.9)

Thus, when K > 1, the sequence {h"(t) : n € Z} is not stationary in general.
Observe, however, that finite linear combinations of functions of the sequence {A"(1) :
n € Z} are also finite linear combinations of functions of the set of sequences

{he(t-nT):k=1,2,...,K;n € Z). (A.10)
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Denote
(Y = hy(1 = nT) (A
for k=1,2,.... A and all integers n. Observe that
(her b2 = (AR =™ RQ) (A.12)

for all integers ny, no2; in other words, for fixed k) and ko the inner product (hzl‘.hx:’)
depends only on the difference (ny — n1) of the indices. Thus. the sequences of functions
{he(t—=nT):k =1,2,...,K;n € Z} constitute a set of pairwise Jjointly stationary sequences
in the Hilbert space £2.

The theory of jointly stationary sequences in Hilbert space provides a suitable framework
within which to pose and solve receiver design problems as arising in quadrature-amplitude-
modulated signalling over a discrete-multipath linear time-variant channel. Henceforth, the

term ‘stationary’ will mean ‘pairwise jointly stationary’ as well.

A.1.3 The Aim of the Appendix

The primary aim of this appendix is to state from the theory of stationary sequences those
results that are relevant to this thesis. A secondary aim is to sketch the preofs of the
central theorems of the theory, as specialized to the concrete situation {he(t =aT) ik =
1,2,...,Kin € Z} in the Hilbert space £. The discussion is based on [46)].

A.2 The Hilbert Space H

Denote by H the closed subspace (of the Hilbert space £2) spanned by the sequences of
functions {Ax(t — »T):k=1,2,...,K;n ¢ Z}. Thus

H = Clos.Span{hi(t — nT): k= 1,2,...,K;n € Z}. (A.13)
Denote by M’ the vector space spanned by {hi(t —nT): k=1,2,...,K;n¢ Z}. Thus
H' =Span{hi(t - nT):k=1,2,....K;n ¢ Z}. (A.1d)

By definition,
H = Clos. H'. (A.15)
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The definitions of the terms used above are found in [47]. The Span and Clos. (abbreviation
for Closure) conventions are followed in the thesis.

The theory of stationary sequences aims to characterize the elements of the Hilbert
space H and of some subspaces of H. This characterization is easily done in a certain
Hilbert space that is isomorphic to . The following few sections are devoted to defining
this Hilbert space.

A.3 The Hilbert Space £3

The following theorem plays an important role in the theory of stationary sequences.

Theorem 1 Let H(w) be a K x K positive semi-definite Hermitian matriz-valued function
defined on [~ /T, 7 [T). Denote by L3; the set of all complex vector-valued functions a(w) =
[@1(w), @2(w), - - -, ax(w))T that satisfy

=/T
f . a¥ (W) H(w)a(w)dw < . (A.16)
Then the set L3; is a Hilbert space under the inner product

1 =T H
@b =5 [ B, (A.17)
| -
For a proof of the above theorem and properties of £%;, see [46] or [43)].

A study of stationary sequences in the Hilbert space C%_I can be done in its own right.
In fact, resuits from such a study are needed in this thesis. But the main reason why this
space is introduced here is that there exists an H(w) such that Ef{ is isomorphic® to H; the
appropriate function H(w) is the so-called spectral density matrix of the set of stationary
sequences {hr(t —nT):k=1,2,...,K;ne Z}.

A.4 The Spectral Density Matrix H(w)

A Hilbert space isomorphism known as the Fourier-Plancherel Transform and a certain

result from integration theory are needed for the definition of H(w) and the proof of the

3Two Hilbert spaces My and Mz are isomorphic if there is a one-to-one linear mapping A of H; onto M2
which also preserves inner products, that is,

(2, ¥)m, = (A2, Ay)n, (A.18)
for all z,y € H,, where the subscripts denote the space in which the inner product is defined [47].
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isomorphism between H and 3.

A.4.1 The Fourier-Plancherel Transform

The Fourier-Plancherel transform.* defined by
. . A
f(«) = lim(in C').J.-—x,/ fle™ e, (A.19)
-4

is an isomorphism of £ onto £3p. where the latter space is the same as the former space

except for a scaling factor in the inner product. Thus, for f{t).g(¢) € £2.

o0 1 = - -
(f:9)ez = f_w fr{t)g(t)dt = 2—,]_@ F{=gMe = (f.9)e, - (A.20)

A useful property of the Fourier-Plancherel transform is that g(t) = f(t — 7) is equivalent

to §(w) = e~37 f(w). The inverse transform is defined by

" 1 A .
f(t) = lim{in £°) ,_ 3;_/_4 fle)etduw, (A21)

See [47] for a discussion of the Fourier-Plancherel transform.

A.4.2 A Result from Integration Theory

Lemma 2 If f(1),9(t) € L?, then the series

Hw)= \E: Fr(w + k27 /T)j(w + K27/T) (A.22)

k=—os
converges almost everywhere, H(w) € L{-=/T,x/T}, and

[ i = 3 ”

k=—ca

] ’; Jotwt kan/ Tyt kew /Do = [ A, (123)

—x/

Proof
Observe that by Schwarz inequality

[olesele < ([ fofw)” ([T awra)”,  w
< oo (A.25)

“The Fourier-Plancherel transform will henceforth be referred to simply as the Fourier t‘;ansform and
denoted by the hat convention as shown.
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The left hand side is equivalent to the series

Z / | f + k27 T)ilw + k2 /T)| do. (A.26)
k=—ag 7/

which converges because its partial sums form a monotone and bounded sequence. The

conclusions of the lemma now follow from Theorem 1.38 of [47).

A.4.3 An Application of the Lemma — Definition of H(w)

The lemma applies particularly to pairs of elements of {hx(t) € L2 : k = 1,2....,K}. Thus,
for Iy, ko =1,2,.... K, the series
=]
Hi o) = 3 R (w + 127 /T (w + 122/T), (A.27)
l=—o0 .
converge almost everywhere and Hy, i, (w) € LY-=/T,=/T]. Denote by H(w) the K x K

complex matrix-valued function
H(w) = [Hiy b (w)] (A.28)

defined on [~7 /T, x/T]. This is called the spectral density matriz of the set of stationary
sequences {hx(t — nT) : &k = 1,2,...,K;n € Z}. Clearly, the spectral density matrix is
Hermitian. It is also positive semi-definite almost everywhere, for

K K o K K
2 D e nw) = 5 3 Y of akhi, (w4 271/ Tk (w + 271/T),

k1=1k=1 I==00 k=1 k=1
(A.29)
o3 1y . 2 :
= 3 D arhile +270T)| {A.30)
I=—c0 lk=1
2 0, (A.31)

where {ax : &k = 1,2,...,K} is an arbitrary set of complex-valued scalars. Also, H{w) G
LY-#/T,=/T), meaning Hy, iy(w) € LY==x/T,x/T] for ky, ks = 1,2,..., K.

A.5 The Isomorphism Between H and £}

The Hilbert space £} defined by the spectral density matrix H{w) of the set of stationary

. sequences {hy(t ~ nT) : k = 1,2,...,K;n € Z} is isomorphic to the Hilbert space H.
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This isomorphism is obtained by extending. to H, a certain mapping from H’ into L’.}'_I as
described in the next two sections.

A.5.1 A Linear Inner-Product-Preserving Mapping & from M’ into Ly

An arbitrary function f(t) € H' has the form
K Ny
FO =30 3 a(n)h(t — nT) (A.32)

k=1 n=Ny;

for some finite set of scalars {ax(n): —00 < N < n < Nop < 00k = 1,2,...,A'}. Taking
Fourier transforms on both sides, one obtains

K N

flw) = 305 ax(n)e Thy(w), (A.33)
k=1 n=Nx
K -
= 3 dp(w)hi(w), (A.34)
k=1
where
Ny )
a(w)= D ax(n)e T (A.35)
n=Nyx

for k= 1,2,..., K. Denote the complex vector-valued function
a(w) = [ (w), aa(w), - . ., ax(w))7. (A.36)
Then the above defined association between f(t) and a(w), written as
8 (f(2)) = a(w), (A.37)

is a linear one-to-one inner-product-preserving mapping from H' into L.

Towards proving these assertions, denote fi(w) =ag(w)hp(w) fork = 1,2,..., K. Then®

K K
(fv f) o2 = kz Z (fkl ’ fh) (A-38)
FP 1=1

ky= c?"‘P

*Recall that f (w) and fi(w) for k=1,2,..., K are Fourier transforms of functions in £2.
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By the lemma and owing to the periodicity of the functions &;(w),

Y i w+127/T) fiw + 127/T) (A.39)
I==00
= iy, (w)ag,(w) i By, (w0 + 127 /T, (w + 127/ T), (A.40)
[==cc
= ag, (W) (W) gk, (@) ' (A.41)

Moreover, integrating with the use of the lemma.,

- . o L . =T
25 (fusdin) g, = [ R aloie= [ @ @i nnpde  (442)

By summing over &y, k2 = 1,2,..., K,

.. 1 & T
(4, )cz” - Ekz.mzﬁx j_ o B ()0 ) i () (A.43)
L o \H (el A
= 5 [ 2 @) HEa). (A.d4)

Therefore a{w) € E%. Conversely, for any complex vector-valued function a(w) € £2H whose
entries éx(w) for k = 1,2,..., K are polynomials in e~“7 | there exists a function f (t)eH
such that

@ (f(1)) = a(w). (A45)
The linearity of &(.) is obvious. So is the fact that ®(.) is one-to-one under the inner
product space notions of equality in %' and £§;. Suppose that for a function g(2) € H'
and complex vector-valued function b(w) € E%I, whose entries 5k(w) fork=1,2,...,K are

polynomials in e=*T, one has

 (g(1)) = b(w), (A.46)

that ié, .
§w) =27 b(w)hu(w). (A.47)

k=1

Then by the same method that was used to show that ( £, f) o = (a,a) c3p it can also
FP
be shown that ( £y g}) o = (a,b) iy that is, ® (.) preserves inner products. Also, observe
FP .
that ®(.) has the property that if & (f(2)} = a(w) then & (f(t — nT)) = a(w)e~#T, In
particular,® ® (hi(t — nT)) = exe™“"7 for k = 1,2,..., K and all integers n.

*Here and henceforth, ex will denote the standard kth unit vector of the Euclidean space.
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A.5.2 The Extension of ¢ as an Issmorphism of H onto L}

The linear one-to-one inner-product-preserving mapping & (.) defined in the previous section

can be extended as an isomorphism from H onto E""H by using the following fact:
E}'.I = Clos.Span {eke‘j‘”“T th=1.2,....hk:n¢ Zﬁ} . (A8)

that is, the set of complex vector-valued functions whose entries are polynomials in e=/~T

is dense in £2H. An equivalent statement is that if a(w) € Lj; is orthogonal to
Span {eke"j“’“T k=12....K;n¢ E} . {A.19)
then a(w) = 0. To prove this, observe that
=T
] O Tel )l = 0 (A.50)

for £ = 1,2,..., and all integers n, implies’ that efH(w)a(w) =0fork=12,...,K
which in turn implies that H{w)a(w') = 0 or, equivalently,

)

=/T
j ¥ (@IH()aw)ds = 0. (A.51)

The extension of @ (.) is accomplished in a standard manner. Briefly, for any f(t) € X,
choose a sequence of elements ! .(t) € H' that converges to f(t) in the norm of the Hilbert
space L2, Denote & (f4(2)) + .a(w). Then the sequence of elements a,(w) is a Cauchy
sequence in £}; which converges to a unique a(w) € L3; whatever sequence f,(!) € H' was
initially chosen to approximate f(t). Conversely, with an a{w) € L£};, one can associate,
in a similar fashion, a unique f(t) € H; if H(w) is of full rank almost everywhere, and
H-!(w) € LY[-=/T, 7/T), then the sequence of partial Fourier series of a(w) converges to
a(w); for a proof see [46]. The extension of ®(.) defined by & (f(t)) = a(w) can be shown
to be an isomorphism. The extension satisfies

«
fw) =Y ar(w)hilw), (A.52)
k=1

where a(w) = [@1(w), @2(w), . . ., @x(w)]7, and has the property that if @ (f(1)) = a(w) then
2 (f(t - aT)) = a(w)e~iwnT, |

TA property of L}; is that if a(w), b(w) € L}y then a¥ (w)H(w)b(w) € L} [-=/T, =/T).
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At STATIONARY SEQUENCES IN Ei'

Owing to this isomophism between M and L}, the subspace structure of H can be
inferred from the corresponding subspace structure of L3y, which in turn can be inferred

from the analytic properties of H({w}).

A.6 Stationary Sequences in £}

Henceforth, unless mentioned otherwise, H(w) will be an arbitrary positive semi-definite
Hermitian matrix-valued function defined on [~=/T, = /7).

In the manner that stationary sequences in £* were considered, stationary sequences in
L}; may also be considered. Thus, for any set of functions {a;(w):1=1,2,...,L} in L3,
the set of functions

{aw)emT 1= 1,2,..., Line z} (A.53)
constitutes a set of stationary sequences in £3;. One can associate with this set the L x L

positive semi-definite Hermitian matrix-valued function
G(w) = A¥(W)H(W)A(v) (A.534)
defined on [—=/T, 7 /T], where A(w) denotes the K x L matrix-valued function
Aw) = [ay(w), a2(w), .. .,ar(w)]. (A.33)

In the manner that H(w) defines the Hilbert space £3;, G(w) defines the Hilbert space L
of complex vector-valued functions b{w) = [by(w), ba(w). ..., br(w)]? that satisfy

=/T
f . bH () G(w)b(w)dw < co. (A.56)
In the manner that 1 was shown to be isomorphic to L3, the subspace
Clos.Span {a;(w)e‘j“’“T :1=1,2,...,Lin¢€ Z} (A.57)
of Lf; can be shown to be isomorphic to £. Thus, denoting
A = Span{a)e T :l1=1,2,...,.Line Z} C Lh, (A.58)
B = Span {e;e‘j“’"T =12,...,Lin¢€ E} cC LE, (A.59)

for every x(w) € A there exists a y(w) € B such that x(w) = A(w)y(w)and vice versa. This
linear one-to-one mapping preserves inner products. Since Clos.B = £, the mapping can
be extended as an isomorphism between Clos.A and L%. Therefore, G(w) may be called

the spectral density matrix of the set of stationary sequences given by equation A.53. .
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A.7 Orthonormal Stationary Sequences in £}

In this section, it is assumed that H{w) € £M-=/T,x/T]. Thus. exe="T g L3 for
k=1,2,..., K and all integers n.

The set of stationary sequences given by equation A.53 is said to be orthonormal if the
following conditions are satisfied:

0 if Iy #1 2 na,
N f af (WYH(w)ay(w)e (M mT g, = { oamhkooh mEnn o 60)

1 if h =4 and ny = n,
for {1l =1.2,..., L and all integers ny, ns, or equivalently, if
G(w) = Af(W)HW)A(w) = TIxL, (A.61)

where Izxz denotes the I x L identity matrix and A(w) is as defired in equation A.55,
that is,

Aw) = [ar(w),aa(w), ... an(w)]. (A.62)

The question — under what condition does an orthonormal set of stationary sequences
of the form given by equation A.53 exist such that

Clos.Span {ay(w)e™"T :1=1,2,...,Lin € Z} = L (A.63)

~ is important, for such an orthonormal set of stationary sequences would then constitute
an orthonormal basis for [,%{; the necessary and sufficient condition is that rankH({w) =
almost everywhere. For a proof, see [46].

Under this assumption, £§; is isomorphic to L. Moreover, denoting by cx(w) € L%
the isomorph of e, € L} for k = 1,2,..., &k tespectively, one has

efl H(w)ex, = Tefl (w)er, (w) (A.64)
for k1, k2 =1,2,...,K, and

H{w) (A{w)er(w) —er) =0 (A.65)
for k'=1,2,..., K. The first of the above conditions is equivalent to

H(w) = TC*(w)C(w), (A.66)
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where
C(w) = [cl(w)! c2(“")? ey C}\‘((:J)] ¥ (:\.67)

an L x K matrix of rank L almost everywhere. The second condition is equivalent to

H(w)(A(w)C(w) - Ixxr) = O, (A.68)
CH(w) (C(w)A(w) - Ixt)Cw) = O, (A.69)

which implies
C(w)A(w) = Irxe- (A.70)

Conversely, for any L x K matrix C(w) that satisfies equation A.66, there exists an Alw)
that satisfies equation A.70; the columns of A(w) generate, according to equation A.33, an

orthonormal set of stationary sequences that constitutes an orthonormal basis for EQH.

A.8 Regularity, Wold Decomposition

In this section, it is assumed that H(w) € £'[-7/T,#/T] and rankH(w) = L almost
everywhere. By the first assumption, exe=™"T € L3 for k = 1,2,..., K and all integers =,

and
Clos.Span {eke'j”“T k=12,...,K;ne Z} = EQH. (A1)
By the second assumption, there exists an orthonormal set of stationary sequences
{aw)e T 1 =1,2,...,Lin e 7} (A.72)
in £} such that
. Clos.Span {Af(w)e“j“’“T =12,...,L;ne Z} = LY. (A.73)
Denote
Am = Clos.Span {eke‘j‘*’“T thk=12,...,.K;n> m} , (A.74)
Ym = Clos.Span {a;(w)e"“‘“r l=12,...,Lin> m} (A.75)

for all integers m.

The question — under what condition does

A = Vi (A.76)
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hold for all integers m - is importaat. for the set of functions

{ag(w)e'"j“’“T d=1.2.....Lin> m} (A7)

would then constitute an orthonormal basis for .,; the necessary and suflicient condition

is that H(w) admit a factorization of the form
H(w) = TCH(w)C(w) (A.78)

for some L x K matrix C(w) that satisfies$

=/Tr .
f L O T = 0 (A.79)

for » < 0. For a proof, see [46]. The property defined in equation A.76 is referred to as

regularity of the set of stationary sequences
{eke"j“’"T hk=1,2,,..,K;n¢ ZC} , (A.80)
and the decomposition of ‘C?I'-I into the family of mutually orthogonal subspaces
W,. = Span {a;(w)e"j‘”’mT 1=1,2,. ..,L} (A.81)

for —oo < m < oo is known as a Wold decomposition.

If there exists a matrix C(w) satisfying equations A.78 and A.79, then there exists
a class of such matrices C(w). Of these matrices, there is a subclass of matrices whose
corresponding set of functions

{ag(w)e"j“"T H=12,...,L;n> m} (A.82)

satisfies A, = Ym for all m. Matrices of this subclass are known as mazimaf® or optimal

matrices. A matrix C(w) that satisfies equations A.78 and A.79 is maximal if and only if

Cf€o 2 clic, (A.83)
for all matrices C(w) that satisfy equations A.78 and A.79; here
- T /T _
& = [z S, (A.84)
G = L j T Sy (A.85)
. 2r -z]T

*The matrix C(w) is causal in system-theoretic terminology.
°In engineering literature, the term minimum phase is often used, especially when A = 1.
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A maximal matrix é(u) is unique to within premuitiplication by an L X L constant unitary

matrix. The proofs of the aforestated results are found in [46).

A.8.1 Special Cases of Regular Sequences

Stationary sequences whose spectral density matrix H(w) is a rational function of e—/»T
are regular. For a proof see [46].
Stationary sequences whose spectral density matrix H(w) is of full rank almost every-

where and satisfies

=/T
/ | logdet Hiw)dw > o0 (A.86)

are regular. This condition was proven by Wiener and Masani [55]. Its special case for
K =1 was proven by Kolmogorov [23].

Sce [46] for more general cases.

A.8.2 Spectral Factorization

Given a set of regular stationary sequences, or its spectral density matrix H{w), methods
of finding a maximal matrix G(w) are known as spectral factorization. When K = 1 and
H(w) satisfies the condition of equation A.86, a closed form expression is available for the
maximal C(w) [46). When H(w) is a rational function of e~ algebraic methods are
available for finding the maximal C(w) [46], [9], [30]. When H(w) satisfies the condition of
equation A.86, iterative methods are available for finding the maximal C(w) [10], [38].

A.9 Minimality
In this section, it is assumed that H(w) € £)[~x/T, 7 /T, and therefore that epe~3«nT ¢ LY
for k=1,2,..., K and all integers n, and

Clos.Span {eke‘j“‘"T thk=1,2,...,K;n¢€ R} = E%I. (A.87)

Denote by Z; the closed span of all elements of {eke‘j"’“'f tk=1,2,...,K;n¢€ E} ex-
cept e;. Denote by ai(w) the orthogonal projection of e) onto 2. The set of sequences
{eke‘-""’"T k=12,...,K;n¢e Z} is said to be minimalif e; # ar(w),fork =1,2,..., K.
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A necessary and sufficient condition for minimality is that H(w) is of full rank almost ev-

erywhere and

*/T
f Trace [H"(u))] dw < oo, (A.88)
-x/T



Appendix B

A Generic Minimization Problem

that arises in Linear
Mean-Square-Error Equalizer
Problems

The suboptimal formulations of the linear mean-square-error equalizer problem of chapter

5 can all be viewed as two-stage minimization problems. The first stages of these problems

being similar, a generic problem is stated and solved in this appendix. The result obtained

here is also used in appendix C.

B.1 Statement of Problem

Minimize the quantity

K
Alf] = KSo Z E

n k=1

2 oo
+ A f_ Lf ()2 dt

j_ : F(8)halt - nT)dt — by(n)

with respect to the function f(t), given that hx(t) € L2 for k = 1,2,..., K,
o
> l(m)f < o0,
n k=1,
and Sp and A are real positive quantities.

238

(B.1)

(B.2)
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B.2 Preliminaries

By an argument similar to that used in chapter 3, section 5.3.2. the solution must belong
to the Hilbert space

H = Clos.Span {hx(t - nT): k= 1,2,....K;ne€ Z}. (B.3)

Recall the isomorphism between the Hilbert spaces H and L3; discussed in appendix A,
section A.5, and denote by c(w) € C'f{ the isomorph of the solution.

Denote by b{w) the complex vector-valued function

b(w) = [bi(w), ba(w), - - ., bgc(w)]T (BA)

defined on [—# /T, % /T], where

bi(w) = T Y by(n)e~nT . (B.5)
n
for k=1,2,...,K. Then!
=T .
= i P e T = by(n) (B.6)

for k=1,2,..., K and all integers n, and

. j H(w)b(w)dw = 3 Z {be(n)]? < oo (B.7)

n k=t
The above are consecuences of the Riesz-Fischer theorem and the Parseval Formula [47).
The quantity A[f] can now be written in terms of c{w) and b{w) as®

2
Ale] = IxStoE - f oH (wH(W)ere T dur — 5 j b (w)ere= T
IT
* N°'2'1'r' .Lrn' ! (L) H(w)e(w)dw, (B.8)
K - 2
- s El [ [ - oo
/T -
+No f_ . cH (w)H(w)e(w)dw, (B.9)

!Here e« denotes the standard kth unit vector of the A'-dimensional Euclidean space.
2Here A is retained for convenience.



B.2 PRELIMINARIES 240

where H{w) is the spectral density matrix of the set of sequences
{f(t =nT):k=1.2,...,K:ne Z}, (B.10)

which defines £§{ as discussed in appendix A, section A.5.

To see that there exist non-zero c(w) € L§; such that Alc] < oo, try®
c(w) = (H(w) + X))~ b(w) (B.11)

for some real positive a; observe that since al < (H(w) + oI) the inverse (H(w) + oI)™!

exists. Then

cwHW)e(w) < (W) (Hw) + oI) o(w), (B.12)
= b (W} (H(w) + oI} b(w), (B.13)
< SbH(w)b(w), (B.14)
for
0 < (H(W) +al)™! < éI, (B.15)

and therefore,

x/T =T
/_ T o (w)H(w)e(w)dw < % j: T b (w)b(w)dw < oo,

(B.16)

that is, ¢(w) € L. Futhermore,
e WHW)-b¥w) = b(w) [(Bw) + o) Bw) - 1], (B.17)
= —abf(w)(H(w) + aI)™!, (B.18)

[ (w)H @) - b ()] {H(w)e(w) - b)) a®bH (W) (H(w) + aI) " b(w), (B.19)

< bw)b(w), (B.20)
for
21
0 < (Hw)+eal)™? < =L (B.21)

3Here I denotes the A x X identity matrix.
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and therefore,

=/T =T
/ [e# (D) - bH ()] [Hiw)e(w) - b)) d < f o b (w)b(w)de < oo

—-=/T
{B.22)
By the Parseval formula
1 —junT ? 9
ZE -,-:f [ <)H(w) - b (.h)] exe= = T d_ (B.23)
n k=it =7

H
== [ p [ ) = D) [H(wdefe) - bl do

and hence Afe] < .

B.3 The Solution

For any ¢(w) € L§; such that Ale] < oc. by the Riesz-Fischer theorem and the Parseval

formula,

/T
Ale] = nsnz—,f o [H(w)H(w)—bH(w)] [H(w)e(w) - b(w)] dw

=T
+ N 21 ] H (L) H (w)e(w)dw. (B.24)

Since both integrands in the above expression are non-negative, the quantity Afc] can be
minimized by minimizing the sum of the integrands almost everywhere on [-=/T,=/T).
Moreover, sinte the integrand is quadratic in ¢(w), the minimization can be done by com-

pleting the square. Thus, by collecting together the quadratic terms in c(w), one obtains

A= 558 [ [e) (o) + 2L ) et

- cH (w)H(w)b(w) ~bH (w)H(w)c(w) + b (w)b(w)] du, (B.25)

J\roT

- :!
Ale] = 58 o [ ) (ae) + 30 B3 (w)e(w)

— cH(w)H(w)b(w) - b¥ (w)H(w)e(w) + b¥(w)b(w)] dw,  (B.26)
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where HY/?(w) is the positive square root of H(w), and by completing the square. one

obtains
I\'So 2, NoT N\7! 12 N
Mel=57 . T ot () [I-—H” () (H(w)+};.s—ol) H! (w)] b(w)dw +
=T NoT N\ 2 ” AT \~1/2
H AHV. , 0 He ZWgY? W)+ =
L. [c (@)H ) (He)+ Z51) = b)) (Hw) + £21) ]

” T N\"V2 s -
[(H( )+"—j;-’.1) H"‘(u:)c(w)-(H(u)-i-'}\.?sol) H”-(e-)b(u)] de,  (B2V)

where (H(w) + i};%l) 2 and (H(w) + 7‘5%1) mi are the positive square roots of (H(w) + 7“;%%‘1)
and (H(u) + =k:f‘s%l)—l respectively.

Therefore, the optimum c(w) satisfies

, 4
(1) + F21) ™ B2y = (B(w)+ M) meee).  (Bs)
HY(w)e(w) = (H( )+ “°T) HY?(w)b(w), (B.29)
= HYY) (H(@a-?\fl) b(w), (B.30)
o(w) = (H(w)+"}fl) b(w), (B.31)
and the minimum so achieved is given by
Mo = o2 I,Trb (w )[1 H'(w) (H(w )+"°TI) H""(w)] b(w)dw,
(B.32)
J\rn MNT
= 3 f . bH (W) (H( w) + sI) b(w)dw, (B.33)

where the last equality is a consequence of the matrix identity

[1 H'/*(w) (H( )+M§ ) H‘“(w)] NTST (H( )TMST) » (B34)

which is easily verified. The commutativity of matrices (H(w) + %&f—l) -1 and HY/?(w),

tacitly used above, is a consequence of the matrices’ having the same eigenvectors.
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B.4 Conclusion

The isomorph ¢(w) € EQH of the solution f(¢) to the problem posed in section B.} and the

minimum A[f] = Alc] so achieved are given by equations B.31 and B.33 respectively.



Appendix C

A Generic Minimization Problem
that arises in Decision-Feedback
Mean-Square-Error Equalizer
Problems

The suboptimal formulations of the decision-feedback mean-square-error equalizer problem
of chapter 6 can all be viewed as two-stage minimization problems. The first stages of these
problems being similar, a generic problem is stated and solved in this appendix. The result

obtaiped in appendix B is used here.

C.1 Statement of Problem

Minimize the quantity v,
\“

W= ks S 3| [7 ot -nDi-sm)| +46 1s0Fa €1

n20 k=1

with respect to the function f(t) under the constraint

)3

n<0 k=1

I rritme- nT)dtr < o0, (C.2)

given that he(t) € £2 for k = 1,2,..., K, the number of nonzero bi{n)’s is finite for n > 0,
k=1,2,...,K, and & and N are real positive quantities. Condition C.2 ensures the
implementability of the feedback filter of a decision-feedback equalizer.
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C.2. AN EQUIVALEXT PROBLEM

L%
.
ot

C.2 An Equivalent Problem

The problem stated in the previous section is equivalent to the following problem:

minimize the quantity

K
Alf,bl= K8 Y
n k=1

[ Z F@helt = Tt = ()| + 46 | i ORd  (C3)

with respect to the function f(2) and the set of one-sided sequences {bi(n): k = 1

under the constraint

»2,...,Kin<0}

.
22 ) < e, (C.4)

n<o k=1
where he(t) for k= 1,2,..., K, b(n) forn > 0, £ = 1,2,..., K, and Sg, \y are the same as
those in the previous section; the argument b of A[f, b] denotes the set of one-sided sequences
{be(n): k=1,2,...,K;n <0}
To prove the equivalence, first observe that, if for some function f(t) and some set of
sequences {bx(n): k= 1,2,..., Kyn € Z} that satisfies

K
33 lor(m)]? < oo, (C.5)

n<Q k=1

one has A[f, b] < oo, then, by the triangle inequality in the metric space of square summable
sequences, condition C.2 is satisfied. Furthermore, since the optimum function f(t) and set

of one-sided sequences {bx(n): k=1,2,...,K;n < 0} must satisfy

f_ : F(Dhe(t = nT)dt = by(n) (C.6)

for k=1,2,...,K and n < 0, one has

“g;“i“ ALY = "’g}“‘“ i/, (C.7)

::':;-“ min min
Alf,b] = [ f]. C.8
Ay = - (c8)

Thus the equivalence is proved.
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C.3 Solution

The equivalent problem stated in the previous section can be solved in two stages as follows.
In the first stage, the quantity A[f,b] is minimized with respect to the function f(t) for a
fixed set of sequences {bi(n): k =1.2,....K;n € ZZ} that satifies

.
3 ST bk(n)F < . (C.9)
n k=t

The optimum function shall be denoted by f;(¢) and the minimum so achieved shall be

denoted by =[b]. Thus

arg min

¢
Jo(2) ;

A[f, 8], (C.10)

=)

“‘;“ LS8l (C.11)

In the second stage, the quantity =[b] is minimized with respect to the set of one-sided
‘sequences {be(n): k= 1,2,...,K;n < 0}

The first stage is the generic problem treated in appendix B. Thus to write the solution
to the first stage, while setting the argument b for the second stage, denote

btw) = [bf(w),bF(w),....b5 W), (C.12)
b™(w) = [by(w),b5(w),-..,05w))7, (C.13)
where

bfw) = T bi(n)emivnT, (C.14)

‘\‘\',. n>0
bp(w) = T by(n)e T, (C.15)

n<0
(C.16)

for k = 1,‘2}...,1\'. Accordingly, the isomorph cy(w) € L} of f3(2) and the quantity =[b]
are given by

cp(w) = (H(w) + ﬁ-f—(g;l)- (bF(w) + b~ (w)) (C.17)
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and

=[] = ;_}7" f_ ‘:;_ (b* () + b () (H(w) + }93321) (b* (@) + b (N de  (C.18)
respectively.
To solve the second stage, denote by )’ the set of complex vector-valued functions
¥(w) = [1(w). §o(w), . .. §1 ()T defined on [—7/T.#/T) that satisfy
'[_.j;yH(u) (H(w) + }?ST )y(u)d'..: < oo. (C.19)
From the discussion of appendix A, section A.3, the set I is a Hilbert space under the inner
product

KS
The functions® exe ™" ¢ Yfork=1,2,.. ., A" and all integers n, and

=/T
9= gz [ xw) (Bl) + T vl (C.20)

Y = Clos.Span {eke‘j“’“T k=1,2,...,K;n¢€ E} . (C.2n

Denote by Y+ the subspace

Y* = Clos.Span {exe ™7 1k = 1,2,..., Kin > o} (C.22)
of . Denote ,.
x() = (H( )+"f1) b*(w), (C.23)
y(@) = (@) + 7o 1) b (w). (C.24)
Then both x(w) and y(w) belong to Y, and therefore
Ep] =M (x+y,x+y), (C.25)
for
7 ) () + 4501) wpupas = 77 b+ (B + 2) " s,
(C.26)
< ’Vf; b+”(w)b+(w)dw (C.27)
< o, (C.28) -

Here ex denotes the standard £Punit vector of the K'-dimensional Euclidean space,
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and similarly for y(w). Furthermore, y(w) belongs to the orthogonal complement of 3t in
Y, for ’

=ir T =T
f fTer"Te{.’ (H{u)-{-}\‘fgl) yiw)de = /_ -!TeJ““Tefb'(:.-:)dw._ (C.29)

=T . .
= ~()elonT gy .
f_ b _ (C.30)
=0 (C.31)

fork=1,2,...,A and n > 0.

The second stage of the problem can now be posed in the Hilbert space ) as follows.

Minimize
No(x+y,x+y) (C.32)
with respect to
y(w) eyt (C.33)
under the constraint
=/T
/ b (@) < o0, (C.34)

In the following, the minimization is first carried out regardless of the constraint C.34, and
the optimum solution is then shown to satisfy the constraint.

Suppose
X(w) = u(w) + v(w) (C.35)

is the unique decomposition of x(w) such that u(w) € Y* and v(w) € Y+L. Then
x+y,x+y)=(wu)+ (v+y,v+y). (C.36)

This implies that the optimum y(w) is given by y(w) = —v(w) and the minimum so achieved
is given by

(x+y,x+ y)= (u,u). (C.37)
Thus, in terms of u(w), the isomorph ¢(w) € £} of the function f(¢) that minimizes T[f]
is given by

(w) = u(w),

(C.38)
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and the minimum so achieved is given by

min . )
T[f] = Aj (u.u). (C.30)
f
It remains to find u(«) and then show that the constraint C.31 is satisfied.
Since the matrix (H(u) + T\%;‘I) is positive definite, by a theorem of Wiener and Masani
[55], the set of stationary sequences {e‘g.e"-"“’“:r tk=1,2,....K:n€ 'E} in )'is regular. Let

C(w) be the marimal causal matrix satisfying

(H( )+ "‘:ST ) = CH(w)C(w), (C.10)

and let A(w) be its inverse, that is, C(w)A(w) = I. Then the set of stationary sequences
{\/Tak(w)e‘j‘”“r thk=1,2,...,Kyn € Z)} is orthorormal in ) and

Y* = ClosSpan {ay(w)e T : k= 1,2, o Kin 2 0}, (C.A1)
Y+*+ = Clos.Span {ak(w)e JonT k= 1,2,.. whin< 0}. (C.12)
where
A(W) = [al(w)? 82(Lu‘), ‘- --raf\'(w)]T- (0.43)
Therefore,
N
uw) = X3 (93.. f e Tall(w) (Hw) + 221 )x(u)dw) ax(w)e~snT,
2 k=1 i I S
(C.44)
KT : .
= Z Z (— f w)b"’(w)e-"""wa) ap(w)e™ T (C.45)
n20k=1 2
T H + junT e umT
= AW (= ] AT ()b (W) Tdy | e (C.46)
n>0 \27
and
(u,u) = i l‘.@:fﬁﬁ aH(w)b+(w)ej“’“wa2 (CAT7)
’ ns0k=t | 27 J-m/T ¢ '

I
3
3%
[=]
o il
[yl

™ H iy )
[&1: f_ :; AH (w)b"‘(w)e"“‘“rdw) (g j_ :; AH (w)b+(w)ei~ﬂdu) .
(C.48)
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Observe that, for this optimum u(w),

- NI (o
bt(w)+ b (w) = (H(w)-i- KSOI) (x(w) + y()), (C.49)
= CHw)C(w)u(w), (C.30)

=T \ .
= c%)% (23_ f_ RITAH(u)b"‘(w)e"”“wa) e~ T (C.51)

Since b*(w) is a polynomial in e=/~T and AH () is anticausal, the summation

/T " . .
Z kol_f /T AH(u)b-i-(w)eJuanw) e—JjwnT (C.52)

n>0 \~" -=/T

is itsell @ polynomial. This, when combined with the fact that CH{w) € L3-=/T,#/T],
shows that (b*(w)+ b~ (w)) € L[—=/T.x/T], which immediately implies that b-(w) €
L3{-»/T,=/T), that is, the constraint C.34.

C.4 Conclusion

The isomorph e(w) € L3; of the solution f(t) to the problem posed in section C.1 is given
by
e{w) = u(w), (C.53)

and the minimum so achieved is given by
L{f] = Mo (u, u), (C.54)

where u(w) and (u, u) are given by equations C.46 and C.48 respectively.
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