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Abstract

In this thesis. a new paradigm is proposed for designing the transmitter and r~'Ceiver for

quadrat ure-amplitude-modulated signalling over a .llobile radio channel. Thf.' new paradigm

is based on a discrete-multipath lin~ar time-variant mod£'l of the mobile radio channel, and

hence the title of the thesis. The time-variant input-output relationship of the discrete·

multipath C:lannel (DMC) is go\'erned by a set of parameters which can be obtained in

finite time by ?robln9, that is. by transmitting a pre-assigned signal and then perform·

ing computations OIl the received signal. Therefore, once the parameters of the DMC's

input-output relationship have b~n obtained in this manner. the receiver can. in principle.

deternine the subsequently uansmitted data-carrying signal. or. the data itself. by per­

forming computations on the received signal, which operation is referred to as signalling,l

Thus, the thesis proposes a philosophy of design based on alternate probiilg and sig·

nalling, and show~ that when the transmitted signal is generated by quadrature amplitude

modulation (QAM) the composition of QA}.'I and DMC lends itself to this philosophy of

design, even in the presence of intersymbol interference (lSI) and additive white Gaussian

noise (AWGN).

As regards probing, it is shown that by transmitting a suitable quadrature-amplitude.

modulated signal cJl parameters of the DMC, or, rather, of the composition of QAM and

DMC, can be estimated in the presence of AWGN. In particular, the ma:<imum-likelihood

method of estimation is shown to have the statistical properties needed to justify the phi·

losophy of design.

As regards signalling, based on the assumption that the parameters of the DMC, or,
._0"

rather, of the composition of QAM and DMC, are known by the receiver, it is showlI how

the receiver may decide which data sequence was likely transmitted, takine; into account

lThe term signalling also refers in a. wide sense to the combined opera.tion of probing a.nd lIignalling, u
it does for example in the title of the thesis.
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lSI and :\\\"G~ according to some optimal rule. ~Ioth-atet:l by the classical receiver design

orincipll!s llsed for quadrature-amplitude-modulated signalling O\'er a linear time·in\-ariant

channel in the presence of lSI a.nd A\\'G~. namely.

1. linear zero-forcing equalizer.

2. decision· feedback zero-forcing equalizer,

3. linear mean-square-error equalizer.

-t. decision-feedback mean-square-error equalizer,

5. maximum-likelihood sequence estimator of the Forney-type,

6. maximum·likelihood sequence estimator of the Ungerboeck.type,

the thesis shows how these principles can be generalized for quadrature-amplitude-modulated

signalling over a D.MC in the presence oflSI and AWGN. Despite the Dz.-IC's being time­

variant, these generalized receivers can be implemented with a bank of continuous-time

time-invariant filters at the front.

The thesis, although mainly theoretical, illustrates some of the above methods through

computer simulations. More specifically, numerical results are given for probing by ma.ximum­

likelihood method anQ. signalling by a linear zero-forcing equalizer, under various system

specifications and scena:ri6s:i~:""ol\'ingthe geometry of propagation and speeds of movement.
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