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ABSTRACT

Accurate attenuation correction is a prerequisite for the determination of precise regional

radioactivity concentrations in positron tomography. Attenuation correction can be

performed using an external source of radiation and two measurements: a blank scan

performed with no subject in the tomograph, and a transmission scan performed with the

subject in the field of view. The ratio of blank to transmission counts gives the

appropriate attenuation correction factor for each line of response. In theory. this provides

a perfect correction for photon attenuation. but in practice the technique is limited by

noise due to limited counting statistics and scattered radiation in the measured

transmission data.

In the present work. 137CS is proposed. as a suitabl~ radiation source ·for

transmission measurements in 'singles' mode, a technique that substantially increases the

statistical accuracy of the transmission data. 137Cs can be used without any ~calibration

of the tomograph, and the spatial resolution is comparable to that obtained using 6KGe.

Since 137Cs emits a monoenergetic gamma ray at 662 keV, and emission data are acquired

by detecting annihilation photons of energy 511 keY, a simple extrapolation method is

developed to extrapolate the attenuation coefficients measured at 662 keV to 511 keV. To

eliminate scatter contamination in the transmission data, a dual-energy-window scatter

correction technique is developed whereby correction can be made on-the-fly during data

acquisition. Using the developed extrapolation method and dual energy scatter correction

method, the linear attenuation coefficients measured in 'singles' mode using lJ7es agree

well with the expected values.
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To achieve further suppression of noise in the transmission data. a segmented

attenuation com:ction technique is also developed in this work. The technique uses

artificial neural networks for processing the count-limited transmission data. The

technique has been validated in phantoms and verified in human studies. The results

indicate that attenuation coefficients measured in the segmented transmission images are

accurate and reproducible. Activity concentrations measured in the reconstructed

emission image can also be recovered accurately with this technique. The accuracy of the

technique is subject independent and insensitive to scatter contamination in the

transmission data. It can predict accurately the value of the attenuation coefficient for any

material in the range from air to water. Satisfactory results are obtained if the

transmission data contains as few as 400,000 true counts per plane. Thus, accurate

attenuation data can be obtained by acquiring a short transmission scan using the 'singles'

method, and then processing these data using the artificial neural network technique.
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