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ABSTRACT

Interstitial Laser Photocoagulation ULP) is a minimally invasive cancer

treatment technique whereby optical energy from an implanted optical fiber is

used to destroy small. solid tumours. In this work. an optical diffusion

...pproximation and heat transfer equations were used to develop dyn3mic models

of interstitial laser heating. Modifications in the thennophysical and optical

properties due to tissue coagulation IT ~ 60°0 and vaporization of tissue water

rr ~ 100°0 were incorporated into the physical description. In addition, the effect

of different blood perfusion approximations on temperature distributions for an

ill vivo liver model was explored. The calculational results presented indicate the

necessity to include dynamic modifications in the tissue biophysical ~nd blood

perfusion properties in future parametric investigations of the potential of ILP in

various tissues. A quasi-linear model of tissue charring during single fiber ILP

was derived. The increase in optic'll absorption at the fiber tip due to the

browning/charring process was modelJed as a linear continuous shift in energy

deposition from a point optical source to a point heat source. The tissue charring

temperature was estimated by placing experimentally measured charring

dimensions on calcul'lted temperature profiles. The potential for combining on­

line thennometry with dynamic thennal modelling to reconstruct complete tissue

temperature distributions during ILP waS also investigated. Features of an on-line

temperature reconstruction system have been identified and the physical and

technical limitations explored.
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NOMENCLATURE



R.:...~(t) Tissue coagulation radius (mm).

R.'.rr~t) Tissue water vapori7..ation radius (mm).

. ~(t) Thermal damage radius (mm).

"~.'
~. '<:

'-.
. "

5

t

Number of sensor samples.

Time (s).

Reconstruction time interval (sl.

'. <,

Ten•r Tissue charring temperature (0C).

T~'fr Reconstruction temperature error (Oe).

Tm.... Measured tissue temperature (0C).

Tl'fi'\l Predicted tissue temperature (Oe).

J Jacobian matrix.

Z Number of spatial parameter zones.

~J"'lnt Total power from a point optical source (W).

~linl! Total power from a line optical source (W).

Optical irradiance (W Icm2
).

).1. . Absorption coefficient (em· I
).

~' Reduced scattering coefficient (cm· I
).

Ptr Total transport coefficient (em·I ).

P',P Optical interaction coefficients (cm· I
).

Regularization parameter.

".:..-

p

a

Density of tissue (g/cm3).

Linear interpolation function.

Cl> Weighting function.
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