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ABSTRACT

A micro/macro—structural analysis is undertaken to determine the effects
of welding thermal cydles on austenitic stainless steel. The analysis is subdivided into
three parts; heat flow analysis, micro-structural analysis, and thermal elastic

visco—plastic analysis.

" A three—dimensional, finite element program based on heat conduction
equation is developed and r::lso incorporates a model for heat input due to welding to
approximate the welding thermal cycles. The program is capable of handling the
nonlinear material .prope.rties according to the temperature field. A two—point
recurrence scheme is employed to obtain the temperature field for every time step. A

welghted residual iterative method is employed to minimize d_riftlng. :

A micro-structural model based on the Avrami Equation and the grain
growth law is develnoped to ptedict the grain growth due to welding. The heat
affected zone is assumed to be composed. -m_a.inly of the grain growth zone for the
;ustenitic steel and ignores the recrystallization process. "

A coupled thermo—elastic visco—plastic: formulation including the
micro—structure changes is developed to predict the overall deformations and residual
stresses caused, by a welding thermal cycle. The zila.cro—structurail behaviour is
‘modelled by usmg the nme—node 1soparametnc shell element A twenty seven

o mtqratmn point scheme per element is used to transfer the temperature and the

- thermal strain field from the heat flow analysxs and the ausvenite grain size from the



micdro—structural analysis to the thermal elastic visco—plastic analysis. An
incremental load method is used along with the Newton-Raphson iterative method to
solve for the -incremental displacements and hence obtain the macro—structural

response.

After the development of all segments of the finite element programs, the

;:'Lccu.racy and the stability of the solutions are tested. Various studies are conducted
to check the modelling of the heat flow for both low carbon steel and austemitic
sta.i.nless‘ steel, and the results are compared with the experimental data available in
the literature. The micro—structural model is also checked with experimental data
available in the literature. Moreover, a micro /J;lacro—stmct%ral analysis is performed
on heat on edge weld and bead on edge weld for austenitic stainless steel and the
| rt;sults are compared with the experimental and analytical results available in the

literature.
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CHAPTER ONE

INTRODUCTION

-~

1.1 General

Welded structures 'genera.lly involve complex éeometric shapes and are
subjected to severe thermal loads during fabrication. A proper amalysis to determine
strength and stiffness of suclf structures depends largely on the accurate predictions of
the heat flow and a realistic macro—structural model that is capable of predicting the
thermal effects and their influence on mechanical prol;arties. Moreover, the accuracy
of such analysis depends on a proper fepresentation of tl;e geometry of welded struc-
tures, pé.fticulaﬂy in the weld regions. The finite element method provides a power-
ful tool for analysis of such problems because of its ve.rsaﬁlity and the avaiability of
cpmpute.rs. The ability of the finite element method to deal with structures of arbi-
trary complex shape, transient loadings, and also highly nonlinear material prdperties
makes it very aftractive when dealing with the anq.lyﬁis of thérmally loaded struc-
tures and par’cicularlj welded structures. * |

Few researchers have a."ctempted to use numerical inod;e]s to predict
thermai strains, stresses and distortions that are caused by welding. The most recent
publication on the past and current knowledge of such analysis and designs of weld-
ments and welcied structures has been reported by Masubushi [24]. Furthermore,
Ashby and Easterling {6,18], and Alberry and Jones ‘[3,4] have attempted to study the
microstructural ﬁhangé that occur dunng welding. The currently available model—

1



ling procedures for the transient probiems are rather inefficient and inadequate. This
is due to economic limitations, some models have ugpally included gross simplifi-
cations with respect to the load history, the microstructural changes and the material
behavior. Furthermore, no attempt was made to relate the effects of microstructural
changes, due to welding, to the macro—analysis. Keeping the above effects in mind, a
thermo—elastic visco—plastic finite element model is pu:(lnposed to predict the thermal
regime and the corresponding micrustructural changes, and then to predict the effects
of the above two on the overall structure, particularly thermal strains, stresses and
distortions. Two finite element programs have been developed for the modelling of
welded structures and their accuracy and stability are tested and comp_a;red with the
 experimental results available in the literature.

12 Pnrpbse and Scope

_ The purpose of the present study is to investigate the microstructural-
changes that occur in Austenitic Stainless Steel due to a welding thermal cycle and

" then-to determ.me their combined eﬂect on. the overa.ll stmcture This is accom-

phshed by developmg and testing a the:mo—ela.stxc vzsco—plastlc ﬂ.mte element model
and the subsequent computer programs. To limit the complexity of microstructural
changes, this study is concentrated on the modelling of -austenitic stainless steel which
. does not™indergo a phase change and therefore avoids the process of recrystillisation.
While the rc-Licrostructm_'aI model is only lumted to austenitic stainless steel, the heat
flow analysis and the macrostructural alialysis are applicable to all metals provided,
the material properties are known at high temperatures.



A three—dimensional model is employed to model the heat flow in either a
thick or a thin structural element‘. A recurrence scheme along with an iterative
" .approach is used to obtain the temperature field for successive time intervals. The
same three—dimensional interpolation functions are used to obtain the grain size
distribution. - A general shell element is adopted to model the thermo—elastic
visco—plastic response. Due to inelastic behavior, the incremental load method along
with the Newton—Raphson method is employéd to model the mechanical behavior at
each time step. Furthermore, an implicit scheme is employed to compute the

updated stress field when performing the visco—plastic analysis.

The finite element formulation for transient heat flow in solids, particu-
larly the welding thermal cycle, is discussed in Chapter Two. The finite element
method using the three—dimensional, twenty node 1soparametric brick element is
&iscussed.l Due to. variation in the ther;n:liroperties an iterative approach on the
residual quantities if_; désira.ble and a suitable scheme is employed within each time
- step. The Gaussian quadruti:.fe method is used with twmfy seven integration points
per element for numerical integration. The transient solution, using a two point
recurrence scheme, is also p‘resented'.- In the analysis of welds,. the moving héa.t
source i3 represented as a source area. The Cauchy and Dirichlet bounda.x"y
conditions are used to model the heat transfer oﬁ the ‘bou.ndary. The modelling of
- the heat affected zone i3 also presenteﬂ. To assess the stability and accuracy of the
finite element method, the local and overall performances of the thermal model are
investigated and the results are compared to the empirical and experimental results
available in the literature. ) |



The microstructural analysis of a:t.ustenitic sta:i.nless steel 1s discussed in
Chapter Three. A mathematical model predicting the austenite grain growth and
the definition of the heat affected zome a_.ré discussed in this chapter. The Avrami
equation’is employed in this study to determine the changes that occur in the particle
volume fraction due to a welding thermal cycle. Furthermore, the pinning force is
computed based on the carbide/nitride dissolution which is a function of the particle
volume fraction. A finite element formulation for austenite grain growth is also
presented. The stability and accuracy of the proposed model are tj&ed by corm par-
ing the results to the analytical and experimental results a.vail;a.ble in the literatnre.

Chapter Four describes the elasto—visco—plastic modelling, and the deri-
vation of the finite element equilibrium equations using the virtual work method.
The geometry, the displacement field, the stress—strain relationships, and. the formu-
lation of the nine node isoparametric shell element are brleﬂ_:,r presented.. The con-
‘stitutive equations for ela;sto—pla.stic analysiz along with'tlﬁe incremental load methgd
and the Newtc;n—-f{aphson iterative technique are discussed. Also, the constitutive
equations for the elastic visco—plastic analysis, using an implicit time stepping formu-"
lation to numerically update the relevant stiffness matrix, is presented. Gaussi:.n
quadrature is used with the twenty seven i.ntegia.tion points per element. A numeri-
cal algorithm for the elastic vis?o—plastic formulation is also presented. To test the
- model,'l elastic, elasto-—pia.stic and elastic visco—plastic test problex;xs are carried out. -
Furthermore, the st\abilit'y.a.nd accuracy of the selective integration te.chnique is
explored.for nonlinear analfses- o P



The effects of microstructure on the macrostructural analysis for austen-
itic ‘stainless steel are discussed in Chapter Five. The influence of tem perature on
the yield stress, observed experimentally, is presented. The influence of the austenite
grain size on the yield stress, again observed experimentally, is also presented.
Finally, to incorporate their combined effects on the yield stress and the visco—plastic
strain rate, The Hall-Petch equation is employed and is discussed in this chapter.

Chapter Six describes the overall micro— and macro—structural analysis of

_austenitic stainless steel weldments. There are two cases studied experimentally by
Hwang [17] and are used for comparison purposes. A bead~on—edge weld is first
analyzed usmg the proposed thérmo—elastic visco—plastic model. The thermal cycle,
.‘the austenite grain growth, the thermal deformations, and the residual strains and
stresses dﬁe to the bea.d—on—ecige weld are calculated and are compa.rca with the
experimental results available in, the literature. A heat—on—elge weld is also
analysed using the transient heat flow model. The therma-l cycle and the austenite
grain growth due to the heat—on—edge weld are shown and com pared with the experi-
mental data available in i.:he'literafu:e..‘ However, the .overall macro—structural
@dyﬁs has been omitted because a 'compl'ete analysis for bead—on—edge has 'beeﬁ

presented and is believed to be sufficient for demonstration purposes.
. ~ )



CHAPTER TWO

FINITE ELEMENT FORMULATION FOR TRANSIENT HEAT FLOW/
' WELDING THERMAL CYCLE

2.1 Introduction

Due to material non—linearities and complicated initial and boundary
coﬁditionq involved in determining the temperature distzibution in dnd around weld;-
ments, there is no choice but to use a numerical method. There are two methods that
have been extensively used to solve the parabolic equation for.iransient heat flow
problems; the finite difference method and the;' finite element method. In this study,
the more versatile finite element method using the thntj—node three-dimensional
isoparametri¢ element is adopted to model the transient heat flow. Because of the
elevated temperatures involved due to welding, material nonlinearities are involved
and the method accommodates such tempera.turé dependent material propertiee:.
This ia%accomp]ished through an iterative a.pprow':h which is incorporated within each
time step. This approach allows the use 'of linear analysis within each time step with -

some correction to com pensate for deviations due to non—linearities.

The finite element farmulation of the heat flow oblem is based on the
principle of virtual work. The transient problem is solved using a time—stepping
scheme with options provided for either implicit or fully explicit time marching. A

two—point recurrence scheme is adopted to accomplish this. To opti.miie the com—



puter storage requirement, the skyline technique by Bathe [?] has been adopted to

-~

assemble the necessary heat balance matrices.

In the analysis of welds, the emphasis is placed on modelling of the heat
generated by a welding arc, and the dissipation of this heat. All possible modes of
heat transfer are considered. However, the molten zone has been ignored in the
modelliﬁg process.

To assess the accuracy and stability of thie finite element method, a trans-
ient heat flow problem is analyzed and the solution is compared with the existing
exact éolutioﬁ. "The local and overall performance of the thermal model is tested by
comparing both the peak temperatures and cooling rates with either the empirical or
experimental results available in the Literature. I

2.2 Finite Element Formu]a.tmn

221 Problem Statement

_The transient heat flow via conduction is governed by the following dii-

ferentia' equation ,

Oyye T\, By O\, B,y OT ar
K=+ —K —=)+—K —=) +Q=C_— (2.1)
E(_ ox' ay Yay  or %z Pat

and can be subject to bou.nda.ry; conditions of the following type;



T=Ty on S, | . (2.2)
k 9L, 4 KyaT K 2L 44 n(T-Tg) =0 onsy (2.3)
ox * oy gz * ~
™
) where . *
T = temperatu.re !
Q ? = hea.t ﬁ{put per unit volume
K, ., = principal thermal c.onductlvxtly in xfd.i.rection; '
‘ Ky ;»“u' = pri‘.ti'clpal thermal cogductivif:y m y—direction; |
' K = pri:_»lcipal thermal conductivity in'z—direction;
? = density; ‘
Cp‘ ) = ‘specific heat at constant préssu:e;
q _ =/ heat inpit per unit area on Bou.nda.ry Sgi
STy . " = specified tempera.ture on boundary Spi
' ja = d.xrectmn cosmes of the unit outward normal to the boundary;
. b =, coefﬁqent of sur{a.ce hth transfer;
T " .‘ = time; and .
g = nm.mng coord.';.na.te. along the boundary.

&

—The va.rmtmnal prmc:.ple for Equa.tmns 2. 1 2.2 and 2.3, for a lmear {)b
lem, is well established and given by

S~

.

[ HK( Ty +K(‘ﬂ") +K( )}+QT—



2 IL1|av + J [T + b - T5)T]as |
Pye - 5 2 - , (2.4)
‘ B
&
and s valid at a.ny. instant of time. The first variation of I in Equation 2.4 yields the
field Equa.tion 2.1 and the boundary conditions m Equations 2.2 and 2.3 in the fol-

lowing manner
e

. 2 2 2 -
51=-_J K6—-T+K§—-T+KQ—T+Q—pCarSTdV
vl "o qé‘yg X Pat.
i ) -
+J xaT + K 9-2+K5T +q+h(-T—TB)6TdS
L Xpx ¥ ] o P . .
g 2y
B , A
. - : JB 1
+J [K-a-l +x L vk D fras
S"SA—SB ¢ * dy i3z : (:35)

However, for' nonlinear a.na.lysis due to femperature dependent matgrial properties,
the prmc1ple of virtual work is adopted for the finite element formulation. Equation

2.5 above also represents the virtual work equation or the wea.k form mn the case of

" nonlinear analysis.

\

292  Flement Pormulation

.

The three—dimensional isoparametric element, shown in Figure 2.1, has

been emplé:yed to model heat flow. The -twenty——ﬁode brick element is a-dbpted



- 10—

because of its broad applicability. The finite element fom;ulation of the element has

_ been détailed in the literature [7,36] and only a summary is presented here.
¢ :

For the 136pa.ra.metric element adopted in this study, the relationship
between the cartesian coordinates x, y, and z and the parent coordinates r, s, and t is

given by

X=[N]{X_}=NX_

L

¥ =[N {Y}=NY_ (2.6)

N ﬁ ' . - s
220 ) = .

A , :

whe;: [N] is the matrix of shape functions in -te.rms of coordinates r, s, and t. A §
listing appedrs in Appendix A. X} {¥,) ;ﬁg {z.} are vectors of nodal coordinates
of the élement. Similn.riiy, the unknown tempe.ra.tui'c field within an element can be
approximated using the sqﬁe »sl;a.pé fﬁncjit;ns as employed in Equation 2.6, i.e.

4

CT=[N{T}=NT A R (2.7)

According to Zienkiewics et al. [36],'and Irons [19], the finite element con~

_vergence criteria is satisfied and the element faces are compatible if the iﬁterpolatiori
4 L “ o

functions, [N], chosen preserve the contimuity of T and possess the constant deriva-

tives with respect to' 1, s, and ¢ ‘and constant temperahfe. The transformation

o
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between the cartesian and the parent co—ordinate systema in well established and

there derivative components are obtained from

Oy ] e
ox * or *
d -1 d
=N =[] =N (2.8)
dy ds , :
g N. a N. .
gz ! !

where [J] is the jacobian matrix and is given by

XYz o * - |
= et ' | | - _(2'9)

- - -
Once the transformation has been established, it is more convenient to deal with the
parent co—ordinates. 4 —

Voo

o _
Using Equation 2.7, the following integral equation can be obtained as a

weak form for a nonlinear problem;

[ o
o7 W
JVE[(Ni»*KxNi:x N RN g+ F RN T - 2NQT,

~

39
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1
J [qu + h(guingj ~TgN.)|TdS =0 (2.10)
SB !

The discrectized .equations of heat balance of Equation 2.10 can be written in the

following matrix form;

AT} + (E]{T) = (103} | (1)

\
where
{T} = the time derivative of T,
[A] = heat conductance matrix
Aj - I (N KN+ N KONG4 N, KON )V + J hN;NdS
5B
(H] . = heat capacitance matrix
-’ .
% =] sy mmay
v
# = heat input vector
Vo sy o
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In order to evaluate matrices {A], [H], and {f}, numerical integration has been
e

employed. The following transformation for infinitesimal volumes is required for
mtegration over the pai'ent element;

i

dxdydz = det{J]drdsdt (2.12)

) e

Gaussian Quadrature with twenty seven integration points is used to perform the

numerical integration. As mentioned before, a two-point recurrence scheme is

adopted for time marching.

2.3 Transient Heat Flow Solution

w

The two—pomnt recurrence scheme has been implemented to obtain the

solubion at subsequent times. The following equation describes the recurrence

scheme;

e = [L m-a-
[Etn 50+ O (T, 1) - [Atn[_H] (a-0)AI|{(T,)

Y

T ) )

. ~where At represent the nth@fmal and & is a.-para.mqter_ that controls the time
marching scheme. The value of 4 varies from 0, for the fully explicit schéme; to 1, for

the fully implicit scheme. Note that 4 = ! for the Crank—Nicholson method and 2 for
. 2 ., | ‘ 3
the Ga.lerki_n, Zienkiewicz [35]. -

a



w

The instability and oscillation of the two point recurrence scheme were
examined by Zienckiewicz [35] and Snyder et al. [30]. They concluded that the time

stepping procedure is unconditionally stable when # is greater than or equal to lm
2

this study, the Galerkin method 1s adopted, i.e, 4 = g, as 1t was found to yield super-
3

ior results. However, the accuracy of results does not depend on 4§ values above but

also on the finite element discretization. Because of the elevated temperatures that

are involved in the analyses to be presented in this study, the material nonlinearities

have %o be accounted for during each time step. Due to changes in the thermal

properties, an iterative approach has been incorporated and is discussed next.

24 ~ lterative Approach

* Without properly accounting for the non]inea:itia expected in the
thermal pro:%er‘l:_ies, the proposed solution procedure w111 ‘\_ygsult in e;ror&d cal-
/‘\éu.la.ted t'emperat‘ure ﬂeld; The severity of these errors depeni:ls' on the changes that
occur in the temperature field. To overcome this problem, a residual method is
. proposed fo t;ﬁminatg drfting .and at the same time obtain a better ap;ro:dmgti\gn.
© As the temperature changes during the time increment At, the thermal properties

will change a:.:\cordingly. Re—wﬁtﬁ‘:‘g Equation 2.13 as '

KI(HT, b+ (R) = 0} e,

where



K] = L [H] + 4A]
Atn

(R} = [ - a4 6t b+ 0-0(E)

n \

For i+1 iteration during Atn fime increment. This yields a new temperature field
1+1Tn 31° Now based on this new temperature field, the ma.terla.l.brope:rtica are
updated and subsequently the heat balance matrices are calculated in bhe foll:awi.ng |

implicit manner:

A1+ = (-n)(aft 4 qapit!

*
b

- oo ¢ i . (2.15)

From the updated material properties, the heat balance residual ARi‘ca.n be obtained’

as

[K]‘?r,;i}}ﬂﬂm} - (o)

X —

A

Now the incremental tem perature due to ARi can be calculated from the following:
(AT}, )} = K, HaRY
n+1 n+1

i+l i i
and - T Tn+1+AT

nt+l = nt1 (2.17) -
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After updating the temperature field, the process is repeated until the norm of the
incremental temperature vector is small enough within & specified tolerance. Note
that the initial [Kg +1] 18 used during such iterations to avoid the decomposition.
during each iteration within the time step. The residual method descaibed above is

schematically shown in Fian-c 2.2

2.5 Modelling of Heat [nput

During 2 metal—arc 1;ve1ding, the heat is generated as a result of phase
transformation of the metal, the chemical reaction between the two metals being
welded and the electric power of the welding arc. The first two sources are con-
. sidered negligible inrcompa.rison with the heat gen:era,ted- by the welding arc and heﬁce
- are con:tialetely ignored. g

The heat generated by the electric power of a welding arc is'given by

H=VI S " (2.18)
. \ '
where h S
H = heat in joul?s per seconds '
= arc voltage in Volts
I = arc current in Amps.

Equation 2.18 can be rearra.ngéd so thaf it expresses the intensity df the

5. N - 4
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welding heat source. Furthermore, the heat generated by the electric power is not
fully transferred to the workpiece. A small portion of that heat is lost to the sur-
rounding atmosphere and some is used to melt the electrode. By far the largest
| recipient of the heat input is the workpiece through heat conduction and is of most
interest in this study. The net heat supplied to the workpiece is, then, given by
V.1

q=7, — (2.19)
v

where T, is called the arc efficiency and v is the velocity at which the arc moves. The
value of 7, varies depending on the type of welding arc and the kind of metal used.
To illustrate the wide range of 7, some values are tabulated.in Table 2.1 as given by
Masubushi [24]. The determination of the arc efficiency is an important practical
consideration. Because of its dependence on many factors as i.ndica.ted in Table 2.1,
it beco:ﬁes necessary to determine the value experimentally. | o

The effective thermal power of the welding arc needs to b&_ expressed as

-

-

Q=027 ~= - | o | (2.20)

-~

in which Q is in calories per centimeter. Eqﬁation 2.20 has been adopted to model
v

the heat generated in the workpiece in this study.

\ : .
The modelling of the heat input is very important in the analysis of

"~ welded. specimen and particularly in pre&icting the pea.‘k temperature. In this study,



)
the heat input is per unit area and is considered uniform across the face of an

element.

2.6 Modelling of Boundary Conditions

The weak form (Equation 2.4) used for the finite element formulation,
incorporated the heat balance equation and the boundary conditions given m
Equations 2.1, 2.2, and 2.3. The Dirit;hlet boundary condition (Equation 2.2) on § A
1s easily incorporated by specifying the nodal degrees of freedom ilong S, to take the
prescribed values. However, the Cauchy boundary condition (Equ'a.tion 2.3) along SI.B

13 much more complex and involves the three modes of hegt transfer, namely con-~

duction, convection and radiation.” For conduction only

ok B, Lk OT, L OT,
q= _(Kxaxyx + Ky_ayvy + Kzazvz) , (2.21)

L. e &

and for convection only is.given by
™
(T —T )=—(k QT_,,Q."K I, +K‘3—Ty)--. . (2.22)
B e X yay ‘¥ Ty, T S :
&

where h represents the respective coefficient of heat transfer from the surface.

_ .‘ The major difficulty arises becm—lse of the lack of accurate values of the
parameter h a.t_‘glevated temperatures. To overéome this problem it is prr.::posed that
the surface heat ‘ransfer coefficient be approximated as a fanction of the total emis-
. sivity which is a me&u.re of radiation. Further, it has been shown experimentally by
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Beer and Meek [9] that the effect of convection is less than five percent (Figure 2.3).
Based on their experimental results, it is proposed to increase the value of h obtained

from the radiation by five percent to approximately compensate for the .convection

term. -

i -
2.7 Modelling of Beat Affected Zone

The metal adjacent to the weld is exposed to Jigh thermal loa:djngs and
also uﬁ.dergoes metaﬂurgi&al changes. This portion of the]workpiece, called the heat
aﬂq';;:ted zoile (HAZ), i3 composed of various zones namely, grain- growth zone, grain

s;eﬂ.ned zone, partially transformed zone and tempered zone, Easterling [14]. The size
and microstructure of each zone is important. However, it has been shown that the

maostmcture of the grain growth zone pla.ys the most significant role in determina-

tion of the weld soundness
\ . ~r

-

/To model tlus area; 1t is a.ssumed tha.t the HAZ is composed of only the
grain g'rowth zone. Furthermore, as is shown schematically by Easterlmg [14] In f
Figure 2.3, the peak temperature at the center of the weld a.nd at the-fusion zone are
almost identical. This ]ustxﬁes that there is no need to consider the actual weld and
the heat genera.ted by the‘életal fusion in the modellmg Thus the effect of the weld

and the transition zone on the therma.l cycle are completely Lgnored in this study.
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2.8 Numerical Examplesa

Due to lack of closed form solutions for three—dimensional heat flow
problems, it was decided to compare the remults with the exact solution for a two—
dimensional heat flow problem. A square plate‘ was used for this purpose. . The
geometry and material properties of the square plate used,-to test the accuracy of the
mc;dcl, are shown in Figure 2.4. The closed form solution by Carslaw eta.l [10] was
given in the form of isothermal contours at one instant of time and is shown in Figure
2.5. The results from t-he finite element program were identical to the closed form
solution. This example demonstrates that™the solutions obtained from the three—
dimensional transient ﬁ;;ite element program are stabie and 4dccurate, zud hence, can

" be extended to model weldments.

&

S | E
The heat yenerated by a weldi.ng arc and the heat transfer from and to the

, workpiece were-a]so modelled This is accomplished by checking the peak terhpera-
. “ture and the coolmg rate of the wotkpiece. The expmme.ntal work done by Kxhara. et
al. [21] i3 used to check the accuracy and stabxlxty of the finite” element model
pu:esented here. The material properha of the specimen are shown in Flgu.res 2.6 to
2.8. The geometry of the specimen, the finite element grid, and the properties of the
' wel&jng arc are shown in Fig;llre 29 Figure 2.10 s-hows the results obtained from the
 finite element model and those by Kihara et al. [21]. Figures 2.11 to 2.i4 show the
temperature field at different times. It can Be concluded from the. results presented
that the ‘ﬁnite element model is fully capable of modelling the transient thermal
regimes of weldments and will/{e extended for peiforming micro—structural analysis.

L]
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TABLE 2.1

ARC EFFICIENCY FOR VARIOUS WELDING PROCESSES‘AEID MATERIALS [14]

* MATERIAL ., WELDING PROCESS 1,}'\
Mild Steel Submerged-arc, ac © | s0-9s%
v Shielded metal—é.rc . e 66-85%
aMA : 66-70%
GTA, ac 22-48%
GT-A, de 36—6%  °
Aluminum ‘ : GMA L . | 70—85% ¢
GTA,2c  » 21-43%

Tin .. GTA,ac : 21-28%
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b)

FIG. 2.1 . & THREE-DIMENSIONAT, ISOPARAI‘IETRIC ELEMENT;
" " b) PARENT ELEMENT PARABOLIC, ' '
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RESIDUAL

TEMPERATURE *

PIG. 2.2 A-SCHEMATIC REPRESENTATION .OF THE NON-LINEAR
ITERATIVE METHOD. ‘ '



1.01

0.8

004-

SURFACE COEFFICIENT OF HEAT
TRANSPER (J/hr.*C.rm?)

Q.64

— 04 —

'Data: —_——
RADIATION Only

Data:

CONVECTION &
- CONDUCTION Only

oy

T — T I ¥ . [|

2047480 650 925 1090 1310
TEMPERATURE (°C)

'FIG. 2.3 EXPERIMENTAL DATA FOR' RADIATION, CONVECTION
AND CONDUCTION FOR CARBON STEEL [2].

]
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FIG. 2.4 GEOMETRY AND MATERIAL PROPERTIES FOR THE
TRANSIENT HEAT FLOW PROBLEM.

.

FIG. 2.5 'ISOTHERMALS 0.1 ~ 0.9 FOR A SQUARE PLATE WITH
UNIT INITIAL AND ZERO SURFACE TEMPERATURE AT
t=0.32 sec. PROM F.E: ANALYSIS & CLOSE FORM

SGLUTION.



— 26 —

.

- "(9] TEALS QTIN 40 XIIAIIONANOD IVWNAHLI 9°2 °*HId

(D.) TUNIVYIANAL
00cl : 009 | 0

.

000

A

(0.°0Eg*mo/TVD) X —

vio | -



—-27—

00cl1

\ j,

"6) TAATS QTIN 40 XITOVAVO I¥EH L'z *HIL

(0.) FYNIVHAIHAL
009

oL*0

(o_?smo/qvo) dod

ot



—28 —

L

*[6) WAISNVML IVAH 40 INTIDIZATOD ZOVIUNS mwmw.ch

(Do) HUNIVUAINAL M
0*002tL 0°009 : o 0°'0 i
' . 00°'0

LT AV

(g®0*04*0ES/TVO™, _OL) q

06°0 -



4 Welding arc

! o |

+ > +} » W Va4 . > - .
KL T ATV P AT A P i

’ -

LSS 7L s
] : . . / ='350.0 mm
& 9% Ve A/ b =150.0 m
| ’}’ . 1878 8%4%P. 7 t= 18.0m
A _xt':/Lf AAAAAAAA o~ I=170004
< a 280V
. : i v a 254 min/ sec

FIG. 2.9 GEOMETRY AND MESH PATTERN. OF THE SPECIMEN, AND
| PROPERTIES_OF'THEuWELDING'ARC.
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FIG. 2.12 EVOLUTION OF TEMPERATURES (°C) AT t=23.62 sec.



FIG. 2.13 EVOLUTION OF TEMPERATURES (°C) AT t=47.24 sec.
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CHAPTER THREE

MICROSTRUCTURAL ANALYSIS OF AUSTENITIC STEEL

-

31 Introduction

With greater emphusisvon the performance of welded :_;tructm'e‘z, there is a
needl to relate the chmges in microstructure to) the overall mechanical behaviour.
When two steel,mem-bers are joined by fusic?n they are subjected to a localized rapifl
heating and rapid cooling which alters the origina.l microstructural com positiorr of the
material. The most affected zone by this process i is very close to the weld and is
referred to as the heat affected zone (HAZ)

' The hest affected zone is a small volume but happens to be the most
critical when considering failures. It is com.po‘s'e'd‘of different zones as illustrated in .
ﬁgure"S 1, of which the mogt critical is the grain growth zone. The complexity of the
heat affected zone depends mainly on the type of matena.l bemg welded. To simplify
the analy:ns, only the anstenitic stamless steel is considered in this study. Duringa .
welding thermal cycle, a.:;:temtlc stau.nless steel does not undergo a phase change, and
this choice fherdore eliminates the recrysta.]]izatioﬁ pmceés. In this case the heat
affected zone is made up mainly of the grain growth zome and only modelling of
- sustenite grain growth needs to be considered. Howeves, the model is formulated in

such a way so that an exten_sicn to involve recrystallization (ferritic steel) is possible.

s

—-33-—
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A mathematical model has been developed to predict the metallurgical
changes that occur in austenitic stainless steel due to a welding thermal cycle. Pre-
viously, Ashby and Easterlh_lg (6] have computed the dissolution temperature of
cSbides /nitrides based on the metallic and non—metallic composition of the material.
’{hr;y” had assumed that the pinning force,which tends to dissolve as the tem pérature
i3 raised, remains large until the carbides dissolve completely after which it drops to
zero. In this study, the suggested model calculates the austenite grain growth accord-
ing to the value of the pi.nn.i.:ng force as will be Hlustrated in this chapter.

3.2 Grain Growth
il

The k.me{ucs of grain growth has bee detailed in many textbooks [23] and

wﬂl not be presented in this thesis. According to Ashby and Easterling [6], the rate

of change in the austenite grain size can be approxlma.ted by the following equation

e

W ) ep—Q o |
dt : RT : : : , )
where
¢ ' = grain size,
1% - =1/
Q * = activation energy for grain growth (J/madl),
R = gas constant, - N
T = 5:;9111,..3 temperature (°K). V4



This equation is bcaé& on a model which assumes that grain growth is diffusion
controlled and that it is driven by the reduction in grain boundary energy" E-Iowcvcr,
it was originally pointed out by Zener [23] that grain boundaries would be held back
or pinned by the presence of a second phase inclusion. This force is r-cfcrred to as l:.hc
pinning force P A B cam be approximated By t'he following equation if the volume
fraction of pa.rtit;les is fv’ and these are assumed to hdve\the'same radius r and

randomly dispersed

vacrb '
Pa=— . (32)
where oy = grain bofmdary tension. ' -

-

To compensate for the pinning of carbides/nitrides, Equation 3.1 is modified to the

following form: .
' 4 . . BT
M _ Af5(4) - -2 (3.
L CRUL O PR | (33)

Here A is referred to as a kinetic constant and can be approximated by the following
relation. ' |

A =200 B _ " ', _ \r - (34)

C o, “

where {2 is the atomic volume and P[T(t)] the pinning force, and is given by

-

o %



P[T(t)] = ‘A ' E (3.5)
™ b

_ " .In order to calculate the austenite grain, g?pwth given by Equation 3.3, one needs to
re—express the pinning force as described in the next section.

3.3 Pimning Farce / Carbide or Nitride Dissalution ;
T@g force as given in Equafioh 3.5 can be rewritten as
. ? .
3, . : ,
P[T()] = — . . (3.6)
. 2r -

which can be further simplified by a.ssummg th4t the number of particles per unit

volumeN remains gomtant Then . T ‘

9
3

ene A3 | .
' fv=Nv5HI : (3-7)

L]

from which, one can write the radius r as a function of the volume fraction fv. This

- ! ‘
yields ‘ T o !
o £ 13 o | o
Tr= -3- v ’ ! } (3'8)
4IIN_| 7 , i
- v ) -
. . _ 3
Substituting Equation 3.8 into Equation 3.6 yields : &
'a
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2[1(t)] = Y3t ) )12, (39
2 ' -

This implies that a rate function, which includes the volume fraction and tempera-

ture, i-s required in order to calculate the changes in the pinning force and mbse-
| quently the changes in austenite grain sizes. A suitable relation has been proposed bg
Avrami (18] and is discussed in the next section. -

3.4 . Volume Fréction

L

Avrami suggested that the dissolution of particles by diffhsion could be

'

described by the following relation

f =1 exp — [@;ﬂ%} . - . a (3_10)

where . : '

f"o = Lmtml volume fraction A | 1\’
D - =Dy exp—(Q /RT), diffusion coafﬁci;z"ﬁt for i:artide dissolution

t - - = time . o

4 = particle half—spacing. |

In order to compute the pm.nmg force a rate equation is needed. This can

be obtained from Equation 3.10 by differentiating it with respect to time, i.e.

-
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of 3/2 3/2
v 3y (DT 12 g [LJ__GD" ] (3.11)
a 270 ,3

e

To reduce Equation 3.11 to a single variable, using Equation 3.10, time t as a

function of the volume fraction can be written as

9 (3.12)

B

~-

Now substituting for time (as given in Equation 3.12) into Equation 3.11 yields

of v _ :
—%_ 9D, Loglls (_9.) (3.13)
at 27 £

4 v

. Equation 3.13 can be further rearranged to

df_
Ty

=2 4 ' (3.14)
1/3 L £ *

fv '. Log ("2)
fv

After integrating both sides of Equation 3.14 the following expression results

; . fvo .
= < 3.15)
. , : £ 3/2 (
1+1 1+1 1 L
- 6D(t - & 2/3 °0
. exp [ ( - ) + Log / — ]I : .
AR, iy, |



]

© 35 Finite Element Formulation for Aunstenite Gramm Growth

-39 —

| S
Incremental changes in the volume fraction due to the welding thermal cycle (time
: o

and temperature) can now be computed using Eéuatior'x 3.15. For isothermal’condi-

tions, integration of Equation 3.15 leads to Equation 3.10, as expected (Appendix C).

Having established a relationship between the w{ofume fraction and the °

welding thermal cycle, it is possible to compute the pmmng force u\gﬁLY
Equatlon 3.9 and consequently the changes in the grain sizes as described in the next

A

sectmn (See Appendix C for a more involved formulation).

. 0

.

* the particle volume fraction, it is now possible to approximate the value of ipe pin-

Having established a relationship between the weldling thermal cycle and

ning force. Equation 3.3 for the grain growth can now be modified to

dd _ A[-1—+B]exp—-£ . \ (31Q)

dt ) RT
where .
A = kinetic constant )
. 1, 1/3 2/3
B = — —{41INv) (va)
2

: o .
The unknown grain size distribution can also be approxamated in a man-
aer similar to the temperature field within » finite element whick yields

a

@
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d=ENg. | BENCRY)

i

where [N] are the same interpolation functions as used for the temperature field

(Appendix A).
Equation 3.16 can be rearranged to give

M-— A exp—ﬁdt | _ ) (3:18)»

1+ Bd
b

"This, when integrated exactly, yields

% |

+1 . :

[ﬁ -1 Logln 4 B¢)] = A ep— St _ Y (3.19)

B B? ! 0; | RT
{.

Smcc Equa.tmn 3. 19 is nnullzneu.r the Stef:fe.nsen Method is a.dopted to solve for the
grain size {See Appe.ndxx D). Fuzthermore, it is found that Eq_ua.tmn 3119 is numeri-
cally unstable as the pinning force goes to zero (See Appendix E) To ehmma.tc-thls
problem a condltmn to check the value of the pinning force Y J.mposed(\and for small

values the grain growth equa.tmn becomes

Y

B pAleg-— - ' - (3.20)
&t ¢ RT L

_ This, after rearrangement and integration yields
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2 ¢i+1 . .
QL . = Arexp — -—Q-(tl_l-l - tl) (3.21)
2 RT '
%
The aboye model has been extensively tested and the results are compared with the
experimental data available in the literature. However, it is also found that if the
kinetic constant A, mstead of being a constant, is written as a function of the peak
temperature, the model yields improved results. In the function form this is given t;y

-7 .
AlTp Temp] = TP%_k +49.25) x 107° (3.22)

and has been obtained by using only two experimental values in a rather random

: i

36. Numerical Examples

Avrami Equation was first tested to check Wth}l-.\it 13 capable of pred:.ct- ‘
mg the proper volume fraction when sub]ected to a severe thermal cycle. This was
a.ccomp].lshed using controlled hea.tmg and coolxng cycles as shown in Figure 3.2. The
corresponding volume fraction is shown in Figure 3.3. It can be obsgrged from Figure
3.3 that du:iJJ:g a slow heating cycle, the volume fraction has complet;aly dissolved
before the cooling cycle starts. During 2 fast heating cycle, the volume fraction has
barely dissolved before the cooling cycle starts. This illustrates that Avrami’



Equation, employed i this study, is predicting proper changes in the .volume
fraction.

To test, the overall microstructural model, the results from the finite.
cement model aze checked with the experimental data given by Ashby and Easterling
(6] for austenitic sta.m.less steel 316.  In their expenment Ashby and Easter].mg used
a weld simulator in order to control the hea.tmg and cooling rate. To sunula.te the
same thermal cycle, the transient Dirichlet boundary condition was utilized, and a
sample of the simulated welding thermal cycle is shown in Figure 3.4. Furthermore,
the simulated welding thermal cycle is only applied at the face of the welded element
and a proper three—dimensional heat flow analysis is performed on the entire
member. The size and mesh pattern of the bar used is shown in Figure 3.5. |

‘ -

To check the stability of tile proposed model, the grain size distribution
along the bar is studied. As shown’in Figure 3.6, it can be observed that the distrni-
-butmn is smooth and that no oscillation takes place. /Moreover, from the grai size
" distribution one can approximately predict the grain growth zone as highlighted in

the same figure. As a:n‘.:ic'ip:ated,lthe heat affectgd zone or the gra.m g'rbwfh zone Is
' small and vagies from 07 cm to 2.0 cm depending on the peak tem perature and tjne
cooling rate. | |

Ashby and Easterling [6] measured the grain size for four different peak .
" temperatures and for three different cooling time. The cooling time is defined as the
time needed for the specimen to cool from 800° g to 500° C and the peak tempera-

ture is defined as the highest temperature that the specimen is subjected to. Their

-
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experimental results, along with their analytical results and the two finite clement
results from the present study, are shown in Figures 3.7 t0 3.10. It can be noted from
Figure 3.7 that at one extreme, ie., at low cooling time and low peak temperature,
~only the finite element results (A as a function of the peak temperature) are in good
agreement with the experimental results. Again at the other extreme, by observing
i ure 3.10, it can be deduced that at low cooling rate and high peak
tempera.turé, only/the finite element model (A as a function of the. peak temperature)
renders better results. Furthermore, at high peak temperature and high cooling rate,
none of the analytical models are capable of predicting the proper grain size as
depicted in Figure 3.10. The grain sizes observed in experiments are beyond the solid
gram sizes t‘];at normally occur and poor performances of the models are thought to

be due to the grain growth law employed which is ]jmited to solid grain growth.

By observing the results of Figures 3.7 to 3.10, it can be concluded that all
three analytical models have predicted the proper grain sizes. However, one of the
sdvantages of the finite element model is that it is also capable of predicting the -
grain size distribution along the bar as is shown in Figure 3.6. It is also observed
from Figure 3.11 that by increasing the peak temperature, 'while keeping the same
cooling time, the curves follow the same path. When the -peak tempera_\ture is kept

constant, while the cooling time changes, it is observed that the curve drops as the

cooling time increases.

In conclusion, the microstructural model predicts’ proper austenite grai.d
size growth for austenitic stainless steel and therefare is adopted in the overall analy-
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f

sl of weld pieces to determine the total deformations and residual stresses due to the

welding thermal cycles.
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a |
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L4
e R e R R R L I T T T
= sohichfied weld
.:. :'.'.:I.':IZI'.:,"Z'.ZI'.Z'.'.'.'.Z'.Z'..'.Z'.‘.'.‘.'.'.ZI'.'.'.Z'.‘.'.:::Z::ZZ
a : solid - hauwd transition 20ne ’
E : :
© .
- :
-: grain growth zone
° :
a .
: recrystallized zone
L partially transtormed
: one
: tempered zone
. A3 - -
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-

PIG. 3.1 A SCHEMATIC DIAGRAM FOR THE VARIOUS SUB-ZONES
OF THE HEAT AFFECTED ZONE [12].

A}
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GEOMETRY AND MESH PATTERN
OF AUSTENITIC STAINLESS gy
LY

DIMENSIONS:

t=1.0 cm
L=20.0 cm

USED FOR THE.ANALYSTS
EEL 316. .- -
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(x CHAPTER FOUR
. ‘

ELASTO—VISCO—PLASEIC FlgrrE ELEMENT FORMULATION
| A LICATIONS -

41 Introdnc;ﬁon

In reality, continuum mechanics problems have an infinite number of
degrees of freedom ahd frequently have complicated boundary conditions along with
non—uniform- material properties. These probl@us are very diéﬁcult, if not impos-
sible, to analyze mathematically and one is forced to use numerical techniques. The
finite element method, as has been Hlust;:ated n cha.pter two and three, is one of the
numerical methods available which discretizes a system mto a finite num'be.r) of
degrees of freedom. It i3 a very poLerful analytical tool in the sense that it allows for

non—uniform material properties, complicated geometries 'and ﬁgﬁnda.ry conditions.

Because of the complexities involved in loadings, material properties and

the boundary conditions which will be present in the analyses of the welded
stmctqfes, it becomes necesspry to employ the finite element method to obtain a

reasonable sclution. The fmite element method proved to be successful in modelling

of the welc]: as reported by Chidiac {11], and 1s now. extended to include the viscous

effect which must be taken mto account in thermal stress analyses, especmlly at high

tempcra.tures The nine node isoparametric shell deme:nt is employed to model and
analy ze the thermo—él{ii visco—plastic problems. This element, first mtmdu»m by

w
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Ahmad et al. {1], is applicable to both thick and thin plates and shells and permits

represen*i&ion of curved boundaries accurately with a minimal com putational effort.

Because of the’ non—linearities involvcd, once again the principle of virtual
work is adopted to obtain the discretized equations of equilibrium. The Newton—
Raphson method is used along with the incremental load procedure to solve for the
incremental displacements due to thermal changes and the subsequent calculations of
strains and stresses for each load level. The displacements are afsumed to remain
small so as notgfo significantly alter the original geometry of the structure. The ‘
Prandti-Reuss flow rule and Von—Mises yield criterion have been employed for the

visco-—plastic analyses. An’ me].uzlt time stepping formulation is implemented to
update the sthfness matrix. '

The numerical results-for a variety of problems are presented for perform-
ance - evaluation of the element. These results include elastic, pl&stic and
ﬁsco—pla.stic analyses. Furthermore, the .sta.b:llty and nccura.cy of the selective

~ integration techmque is explored for the non—hnea.r a.nalyses

42 Derivation of Finite Element Equilibrinm Equations’

In the derivation of the discretized equaltions of equilibrium, the principle
of virtual wark has been employed. The equality of the internal virtual work to the
external virtual work in going through virtual displacements leads to the following
integral equation; “ |
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g _ .
where
%;; = M€ Egyr €p Expr Egr Ech vifcue:l strains
% = {U:cc' o P2zt Oy &yz' azx}' stress components
du; = {JU, gV, §W}, = virtual displacements R
f.1 = body forces
1
T. = surface tractions.

The displacements at any point inside a finite element are related to the nodal dis-

placements through the displacement field dssumed over the element, and is given by

.' =M - (42)
where | |
[N] = matrix of shape functions

{5 = nodal displacement degrees of freedom.



-

Thus, in the a.bsence of initial stresses and initial strains, the stres},zmd strain fields
within an element can be obtained in the following manner;

@ =LKW =[BKSY ) (43)
{o} = Dl{e} = [DIBYs} LG
‘a ; ) ~
where i 6{/ /)
[B] ‘ = strain matrix which relates the nodal displacements to the strain
field

D] = comPiance matrix relating strains to stresses.

. Substituting Equations 4.2 and 4.3 into Equations 4.1, yields

™| BT ouBlvHe} = a4l ey +
v ' . Vv
? [ T qryes) | (4.5)
S .

~

Since 3{f} is an arbitrary displacement vector, the following discretized equations of

equilibrium are obtained;
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| B e - | Tmev + [ Ty
v \' S

AL

and n matrix form i3 written as:

[K{&} = {F}

|
where the stiffness matrix [K] is given by

(%1 = [ 121 ifBlav
\'4

and the load vector {F} is due to the following;

F} - | Tgav + [ mTizyas
v S

43 ‘ Isoparametric Shell Blement

(46)

(4.7)

(4.8)

A

(4.9)

The isoparametric shell element, shown in Figure 4.1, was first introduced
b'y Ahmad et al [1] to avoid numerical difficulties that can be encountered when

| shells or plates are analysed uSing a three—dimensional isoparamdtric element. The

formulation of the element has been detailed in, previous work [1,11] and only a

summary 1s presented below.

}

The relationship between the cartesian and the curvilinear coordinates at.

any point can be written in the followimg form;

hY
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Y = EN:(¢,7) 1‘; Y (4.10)

1
Z Z Z bottom

where { and 7 are the in—plane curvilinear coordinates of the middle surface, and ¢ is

the linear coordinate along the depth of the element. Also, N. are the interpolation

functions and are listed in Appendix A. A parabolic distribution is employed and is

believed to render fairly accurate results. After having established the relationship

between the two sets of coordinates, it is convenient to operate with the curvilinear
basis. E

, ¥

The shell element under consideration has five degrees of freedom per

_ node, three displac;e;zlents and,tu\vo rotations. There are two (u,v) for in—plane action

and three (w,a, f) for out—of—plane action. The element, therefore, has forty five

degrees of freedom.

The element displ.acement field can be written in the form

U U d
- fa
Vi= ENI(E:’J) v + gNi(f'q)§t1[¢]{ﬂ} '(4'11)
wj ! W[ 4t :
where )
{U,V,W} = displa.cemeﬁt components of the parent element in the global X,
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g
Y,and Z directions
{u,v,w,a,f} = displacement field at the middle surface of the deformed shell
element in the local coordinates system
. ‘
] = matrix of directional vectors.

o_The matrix [¢] contains the unit vectors vn and 72i which, together with the thick-
{ , .

ness vector 73-1, form an orthogonal system [See Appendix B].  The thickness vector

is given by Y
X X
Vy={¥t —1{¥ (4.12)
Z top Z)pottom
For small deformations, the strain field is given by : -
o1 Ta T ‘
- Exlxl 'é;l'
. o'
S -
¥y ' o
Ezlzn = .a__l ’ «-'- S (4-13)
exlyl Eg’:_}_ ?a; . . . )
c iw_'_}_ﬁ . e B
[} ’
ye dz'  dy! , e N
t |
1 e de | G




which after proper manipulations leads to the desired relationship between the dia-
pla.cer.ﬁent degrees of freedom at the nodes and the strains at any point inside the

element;
.
e ] I T (%
€'y = B vt + 2| arg+eg]ia o 5} (14)
= w. 2 ‘ 1
. “1 -
h 4
where
~ [ i
— — !
BI 0 o0
0 32 0 ' )
B, = B, B, 0 . (4.15)
- 0 B i
0 0 B
9 i 2
and
By =5 N'f+G12 'y
By =Gy N’5+G22 iy
Ni'f . = derivative of N. with respect to { and i is the local element node
number | f



o

-
0 0 0 |
0 0 0 ‘
[C) - 0 0 0 ' (4.15b)
c, 0
“o C, 0~ -
€y = Gaslj )

For more information, refer to Chidiac [11].

After obtai.uing the strain-displa.cément relationship above, the stresses
can be related to stra.ms using the generahzed Hooke's Law in the follow.mg manner

‘which also accounts for m_ltla.lh:%resses and initial strains;

|y S | -
(0} =| 7| = DI[EY - {eg}] * {or (4.16)
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~
3 -
! - - .
{op} = imtial stresses
m = elasticity matrix.

[

The elasticity matrix {D] is given by

1 .
y 1
0 0 0 - _
[D] = Elo o9 > o (4aD)
1—v2, 2 . ~ ‘ . -
0 ¢ 0.0 ¥
2K
0 00 o o ¥
& . 2K

In Equation 4.18, E and v are modulus of elasticity and Poisson's ratio, respectively.
The linear .displacg‘ments aCTOss Ithe‘dep’ch of ; plate or shell result in constant
tra.nxver.se shear strain. However, this distributim; 13 known' to be nearly parabolic.
To cb'mp'e:nsate for this, the fact;)r'K has besn included in Equation 4.18 sbove. The
value of{u is taken to be 1.2, whx?ch is the ratio of the ma.xlmum t; the average .shear

\

straln energy.

Both the stiffness matrix in Equation 4.8, and the load vector in Equation

*
TN 49, because of the complexities of the integrands, require numerical integration over
. T the v/o‘%e of an element. The Gaussian—quadrature scheme is used with three

N T e o
: . ¢ - o ‘

-
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‘integration points in each of the three directions. It ia pointed that for elastic

analyses, only two integration points are needed along the depth in order to integrate

exactly.

The numerical analogue for integration in Equation 4.8, using the jacobian

transformation, takes the following form

F1 41 41
wi=] [ [ ®1 msinnaean
—1 ' =1"1

where the jac bian matrix is given by

(0 & & X
|a¢ ¢, of

M | & &|
oy
& ¥ &
10¢ 3¢ ac |

and the determinant of the jacobian matrix is given by
. 1

13y = ¥xzz)
&m0

(4.18)

(4.19)

(4:20)

The weighted- functions and the locations of the numerical integration poimts.

+

employed are listed in Table £.1. L

L]
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4.4 Constitutive Bquations for Elasto—Plastic Analynin -

Based on the experimental evidence as reported m the literature, a bilin-
ear stress-—strain .t:urve has been adopted for the elasto—plastic material Jbehmriou_:_
that has a linear strain hardening branch. Moreover, to perform plastic analysis, a
yield surface F must be defined so that the str-esses have to satisfy the following
criterion

1

F(O’,K) = () (4.21)
Equation 4.21 states that F is a function of both the stresses and strain hardening and
at the same time dictates that no plastic deforaations will take place as long as F is
less than zero. For F equal to zero, plastic deformations may occur, in which case
continuation of the initial elastic behaviour is no longer valid. |

There are many valid yield criteria that are applicable to metals. The
Von—Mises criterion with an assoclated flow rule is adopted for this study. lBy'
restricting the analysiz to associated flow rule, the plastic strain Ingements are

o .

defined by

(4.22)

é
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de = de® 4 dP | (4.23)

The relation between the elastic strain increment {d€®} and the stress increment

{ds} can be written as

{de®} = D] {do} | (4.24)

Substituting of Equations 4.22 and 4.24 into Equation 4.23 gives the total strain

increments. as

(de) = (DI Mao} + W (8.25)

)

For plasticity to occur, Equation 4.21 must be satisfied, this yields

Y do, + gk = {aF Tldo} + AX = 0 (4.26)
. do. JK ' .
1l Wl .
‘where A = —9% dK - : - (4.27)
' 0K ,1

The parametar A is equal to the stra.m ha.rdemng modulus H', i.e. the slope of the
effective stress plastlc stram curve

1

E.E -
‘:D hn)
N, i ae” o7 i {
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Where ET 15 the tangent modulus. In matrix form, one can write Equations 4.25 and

4.26 as

(3
0 F T

e

oF

do
-A

—_

In order to determine the elasto—plastic stress straifi,xelationship of the

following form

.‘\

{de} = [D,] {de}

(4.30)

from Equation 4.29, first multiply the first set of Equa.tlon 4.29 by { } [D] to

obtain

{ }[Dl{dE} { }{d }+{—} [D]{ }l

T T %.
20} {doh = {05 Diter - - }[D]{ “h BN

Then substitution of Eqnation 4.31 into the second set of Equation 4.29 yields

T gF\ T, . GF _
J)/{; [D{de} - {5:- [D]{E;}l ~Al=0

§

N

o ‘ e

. |
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{ } [Di{de}

5} = | . (s3)

{}[D]{ }+A

Now expand Equation 4.25 and use Equation 4.32 to obtain

-

, (2 (p1gae) |
-{de} = [P} Mo} 4+ 2227 . (4.33)

{ }[D]{ }+A

Substitute Equation 4.28 into 4.25 to yield +

[D]{ZEHE }[D]

{de} = |ip) - 22 {de} | (8:38)

{ }[D]{ }+H

_Hence, when the load exceeds the yield limit, the elasto—pl&txc compliance ma.tr.lx
;J to be used is given by ’

L
) »

D) = (D] - [D] — ?' ' {a}{-a-;} o e
- {}[D]{-—}+H o




&

L] N >

-7 =

The formulation of the elasto—plastic matrix above and adopted partly for this study
was introduced by Yamada et al. [34] and Zienkiewicz et al. [39].

From the Huber-von~Mises yield condition with an associated flow rule,

!

the yield surface is given by

v
'7 F=1/3J.2-—ay= a-—a: : (4.36)
I, % 8.5 : (4.37)
27,77 .

E
where J, is the second stgess invariant, and Sij represent the deviatoric stresses.> .
LA- S 5 ' o .
o denotes the uniaxial yielding stress and 7 represent the effective stress.
Since the material properties used are 1sotropic, according to the adopted
yield criterion, yieldiﬁg will occur when the effective stress'is equal to or greater than
the yield stress. Also note that the deviatoric stresses are given by-

So = 0.0 — §i.0 o . ‘ ‘ N (4.33)

and ' T - ’

it

b )
o =21g. = first stress invariant.
| (\ =3 :
., ‘ ’ ) -¢,
After substituting for o in Equa'tl_ip_ﬁ;i.%, the following can be obtained

Y3 .
¥t

-

=

~3s. | o . (4.39)
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Having defined all of the terms, one can now compute the elasto—plastic
compliance matrix as given in Equation 4.35. This constitutive equation will be used

only when the effective stress at an integration point exceeds the yield stress.

Time-dependent’ material effects and plastic flow must be taken into
account in thermal stress analyses, especially at high temperatures. However, the
constitutive relations developed in this section do not take viscous flow into consid-

eration and therefore a viscoplastic formulation is also required and is discussed in

Section 4.6. The solution proceduxe for the elastol-plpstic analysis is discussed next.

45 Numerical Algorithm for Elasto—Plastic FormnlMion
I.\ B

W For non—lineas behaviour, the principle of virtual displacements and the
mcmm&tal load technique are employed to obtain thktﬂscretlzed equa.inons of equi-
librum at each load increment. Within ench load increment, the incremental dis-
placements “are computed "and then the strains and stresses. When the behavmu.r
become:: non—l&.near the Newton—Raphson iterative approach is employed to_._.

a.ppmach equ:llbnum This a.pproa.ch is shown schematically in Flgu:ce &.2

L
-

The following equilibrium equations must be satisfied at any load level,

W= Eiaav-m=0 . (4.40)
R DN Y |
\wh’ere {#(#)} is the unbalanced load vectar or 4hg tesidual vector and {R} is the

1
3

}7' K
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applied load vector. Hence, the residual load vector for the m i iteration during the

oth load increment is computed from

7 = | BNo, ™V - (R} = 0 (141)
\'

-

¢

Using the Newton—Raphson iterative approach, the resulting iterative equation 1s

given by
S .
1 AN
- T = (0 + K@ DA = 0 (4.42)
in which K T(a' )] is the tangential stiffness matrix. This matrix is fgrmulated for

every element using twenty seven mteg;'aémn points. The: elasto—plastxc comp].na.nce

matrjs used for each mtegratmn point where the effective stress has exceeded the

yield strea}ﬁ/l . ‘

AN
¢ - .
' Having obta.med the residual loa.d the mcremental displacements are
computed from
{85 ™} = {K (o ™)K {$,7} | O (443)

]

-

The mcrc:ncntal strains md stresses at any pomt thh.m an elcmcnt are. then
computed from ‘ ”
. {8e,™} = [Bl{as5 ™} - o (4.48)
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{4 ™} = [DeFJ{Aenm} (4.45)
The matrix [Dep] is the elasticity matrix if no yielding is taking place and the
elasto—plastic compliance matrix if yielding has occurred. The strain matrix [B]
needs to be evaluated only once due to the fact that the geometric non—linearities are

ncglectcd.‘ 7 AT
.

”

The frontal solution technique, Hinton et al. [16], iz adopted to solve the
discretized equations of equilibrium. The frontal technique was first introduced by
Irons and h}mce enjoyed wide reputation as be.mg efficient and inexpensive. It is
deugned to minimize the core storage requirement and the number of arithmetic
operations. The algorithm of the method is summarized in Figure 4.3. For more

" information refer to Hinton et al. [16]. S : C

The st;i)a' ‘used in the algorithm for non—linear analysis ug%umm.a.rized

o 1.  After the Newton—Raphson iterative approach has converged for the
th . . th., ../ -
)

m .
(n—1)"" load increment in the m™" iteratian, consider ( gbn_l) to be

the resulting residual load. After the first iteration for the ot Iofa':d
— ‘ncrement, the displacement increment is given by /ﬁ

Oy N



gi .71 = (9,_,™
2. The di:;placementa are then npdated
{6, = (3,0 + {85, - (.47)

3. From {A 6':'1}, the nodal displacements {A J;e} are extracted and for
each element, the following steps are performed;

a) Compute the incremental strains and stresses,

{ae 'y 2 (BHAS_ 1} w | >(4.48)
.{Aané-l}=[DeP]{A€ne1} | (449)
b) Updat;both the ;tmsueq and strains. -
\ | ; .
. =10+ ae ) | T am
{%;el}={"ne.°} +—{f"‘“;el} - R .(4':51__)

‘ f> . ¢) Compute the effective stress 7 in Equation 4.36 to check -
. wl:.ether yielding has occurréd a.1: the’ pzu‘hcu.lar mtcgra.‘u

- polnt. If the effectxve stress is smaller than, or equal to the

yleld Limit, the elasticity matrix in Equatzon 417 is used

e r—
/a“/ . !

-
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\
it is greater than the yield stress, the elasto—plastic compliance

matrix [Dep] in Equation 4.35 is used.

d}) Compute the new stiffness matrix nsing Equation 4.18 based on

the information in c) above.

e)- Compute the residual load vector

b * R

Wne b= {Pret =R b,

=.J B {o_ yav - {R_3} (4.52)
v |

. £
_ where {Pnel} = load due to the internal stresses,

Y

\ | ! - {Rne]'} = total e:danfll load applied.

f) Solve for the incremental displacement vector.
e Repeat steps 2 to 3 until the incremental solution has converged
within  desired tolerance -7:;@#{5 computed by

v o i
\\A‘ | m, T | m,
‘ PR R S R 3 ) P
Tt T T, | {£:53)
RSS! |
. \ &
) b 7
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and

b= | [—B]T{anm}air_{nn}_ L
Al n-e

h{A'ﬁnm}= mcremental displlacement for the mtl iteration

during the nt}boad Increment. &
8 \

h s
le., the intemal energy of the n:gt.h incrément (i.e., the amount of

work done by tBe out—of balance loads on the dﬁ‘plccer’nent mcre-

' ments) is compared to the internal energy of the first mcrement [’(‘]

7, 1 the specified value of 7 for convergence. :
Once the condition specified in ‘Equation 4.53 is met, the next load ‘

WA

increment is applied. ;

eri.mental evidence the viscoplastic strain rates-depend not oz;.ly

on. the current ¢

A}
» -
.

bl

s offftress but also on the temperature, i.e.

A

€"P = F(o,T) L (4.54)
In this study, the fokll\ying yisco-'-plastic rate equation is proposed; ¢
: . A
. i
¢

-
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al é"f/[= 'é'(a,T,s_) ‘

(4.55)
whete
v .. = equivalent stress
T . = tem perature

= microstructural state.

The function F in Equation 4.55 is assumed to be a product of three individual

functions of single variables, i.e.

€'P = F,() F,(T) F4(8) | (4.56)
. |

For metals, the power law as suggested by Norton has been widely used and thus has
been adopted in this study for its simplicity, ie. -~

Fi(o)=Ad" | | - (4.57)

where A and n are material corstants. For the tempera.fﬁre__ﬁmction, F‘Q(T), the-

Arrhenius type expression is used which is fundamental to all thermally activated

‘rate processes, 1.e.
L]

PM=ep-—2 sy
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where

Q = activation energy
R - = gas constant

= absolute tem perature.

For the structure function, ‘FB(S)' its influence on the viscoplastic strain rate is not
well understood. It has been suggested by Frost and Ashby [15}.that either the

structure is constant, i.e.
P4(8) =3, o (4.59)
or it is steady state and can be a function of space 30

Py = L= | o (4.60)

Both expressmns can be:-;)gmployed to model the effect of mlcrostructu:e state on the
mscopla.'tlc strain rates. In this study, Equation 4.59 is adopted which yields the

following viscoplastic strain rate expression;
- vp ‘n 9 . S ; <
€% = ASo—exp=
o 0 T RT (4.61)

Although the variation in microstructure state (grain size) does not appear to
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mfluence the visco-—-plastic strain rate explicitly, its effect still indirectly mdudcd
through the stress field as will be shown in the next cha.pter o

Now to define the relation between the visco—plaatic strain components,
Zienckiewics and Cormean [37] have used the classical Plasticity theory to define o
plastic potential Q(v), and to write as

LePo i) > R o (4.62)
dt ~ ‘ do . :

] . .
in which 7 is the fluidity parameter which control the plastic flow rate. Similar to
the plastic analysts, viékco—_pla.stic flow takes place only if the effective stress is greater
than the' yield stress and to emsure this. the followmg condltmns should be

incorporated;

<¢(F)> = i F <0 .

<G(F)> = §(F) EF20 . (e
In Equation 4.62 <> is used to denote 5 specific function. There exist- different
 choices for function F for metallic creep, the power law by Norton (Equation 4.57)
has been shown to render good results and is introduced in Equation 4.62'in.the-

following manner;

Loy cpFly > R ‘ | (4.64)
dt - . de C ' '
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T o Jg ~ % ~
where F=C 1) - 2 (4.65}
o o .

It should be noted that the Von Mises—Huber yield law given in Equation 4.36 is has
\&been incorporated in Equation 4.65. By restricting the analysis to associated flow _

rule, the com ponents of the visco~plastic strain rate can be expressed as follows

. T 7 -7 n .
P =y p(—3 > OF (4.66)
- cry 6:{ .

where
gF aF dF 612 3
Therefore, Equation 4.66 becomes ; | - o
. ‘ .'v g —-—0.n 3 ‘ )
e P =g 5 > —s. (4.67)
‘ 1] "y -2 o b .

hl

By relating the equivalent viscoplastic strain rate given in Equation 4.67
to tl;e proposed.viscoplastic strain rate given in Equation 4.61, one can determine the
fluidity para,.méte:. To. do this, the effective viscoplastic strain rate is c;mputed'._as
follows; | o - - |
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E — o -
. ,/2 &P P = AS (—I) exp--2
6 0 g
1) v RT
y
This yields | A
7=ASOexp——2
RT

'

Substituting Equation 4.69 into Equation 4.68 yields

& : t— ¢ 3~
.vP Q a - d'v o &
€ . =AS;exp-— <( ) > Sy
1) - RT 'ta 2 t-(; ]
T
\,
TRike ke
where : : oo
Q i ‘tEr" -0 3
b= AS;exp——= ((——T) >
RT t 2 t—

(4.68)

(4.69)

(4.70)

@m)
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Ea

)

Rijkl = comstant stress operator matrix and has the following-f;rm

’ , 5 1
2/3  -1/3 -1/3 0 0 0
2/3  -1/3 0 0 o0
- a3 0 o o
Symmetric 2 0o o0 ‘ (4.72)
2 0
L 2 -

With the viscoplastic strain rate stated at time t above, one can proceed
~ to determine the total strain rate field. Again, using Prandtl-Reuss flow rule, one

can write the total strain at time t-+Atas - 3

t+4t ™

+ g | ) (4.73)

t+AL T t+AL e t+AL
€= €+

-

(T

-

" where

At

e

[ X2p)

= elastic strain at time t-+At

AL gp | S |
€ = viscoplastic strain at time 14+ A4

t+At o -
‘ € = thermal strain at time t+ At

tHAE £t
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v’
Jc‘*‘AtT = tem perature at time t+ At.
: N t
The total viscoplastic strain can be expressed as
t+ At t
€P= P4 AP

(wmy -

4

where A€ ¥ is the incremental viscoplastic strain. Using a truncated ‘Taylor's series

along with an implicit scheme, AgvP for the k+1 iteration, can be expressed as follow

.
t+ At vp
vo - t+dAL. 9 . §k , . ‘
A€'? = Aty Py ——Ag, (4. 75
“k+1 “k gtat i I
%%
. \ L=
t+0AL. ’
where € Pis expanded as given below
: S S
t4 0AL. b tALL , .
€P=(1-0)eP+s P n - (.76)
and
6 -
AL AL
A= g Ty

Havi_ug defined the imphcit format of the viscoplastic strain increment, one ran _
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determinc the second term in Equation 4.75. Since the first part of Equation 4.76

does not vary with the updated stress field, the denvative of Equation 4.76 with
respect to t+at, yields

at+ 9Atévp at+Atévp

S
at+At a at-f-At -

» »

at-{-At t+Ata_ t+ At

=0+¥ R 74 TR . (4.77)
sEHAL '

The first term of Equation 4.77 is determined as follow

t-At
0t+ﬂto_ " at+AtU 2 RT
t+AL= £+\'_~j/ S
1 ( o~ S |
t+At— t+4At 0 '
o ¥y

tHAL At 2
)

L3 ’ ®

t+At— t4AL
. e
+ a : ( g — A ¥
t-}-dtay (‘H-Ata? t-{-Atay

n—1-
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t4-At
R o .
- 4.78
( ) N

A

Substituting the results of Equation 4.78 into Equation 4.77, and then into Equation

4,75, the total viscoplastic strain at time t+ At can be expressed as follow

t+At t £. t+At.
€P= ¢"PL At/(1-0) ¢"P 1 g P 44 [A Sy exp — =
€ : - : RT

<0
L)

t+At- _ t4At ]

(t+Atf)3. ‘ t+Atay t—}-&tcry (t+At;)2

t+At- E4At n—-1 i
g — o - t+AS
: 7 } R 7 (At _tg (4.79)

t+Ata‘5
¥

Rearranging Equation 4.73, the elastic strain can be obtained ‘as follow
(4.80)

-

t-i-Atge _ 1:-}-&1;§ _ t-}-AtEvp _ t+At§th

Now substituting Equation 4.75 into Equation. 4.80 and rearranging, the following is

nbtained

t+At a | _
e_ D[t‘*mte B t+At§th _tevP_ Att-}-ﬁﬂtgvp

c=D

LI

t+ At

am

—=b
)
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Ap—0 (AL, —ta)] ' (4.81)
St+AL

| 3

This implies -

~

bt ity p [t+At§ __t+At§th _tevp

_Att-}-ﬂAtévp + t+AtMtf] : (4.82)
gt+48t;vp
Where M = Af (4.83)
at+Ata

¥

-From Equation 4.82 the viscoplastic compliance matrix can be expressed by the

following relation,
DP=(q+D"* 4 p - )

In the thermal stress analysis, ane .has to determine the updated stress
sbate and the equivalent viscoplastic strain rate as given i Equation £.70 after a time
increment At. In order T‘:o satisfy Equation 4.70 an iterelifi?e apmroach is implemented
usmg an implicit’ formulation. :I‘he' stress field at time t+At and for the n—i—‘lth

iteration is given as follow
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-

t-}-&t-n_H Dvp[t-}-&t t+At§th._ tgvp — Attt 0At§'vp

+ t+AtMt+Ata ]
=n -n

(4.85)
which after expansion yields
t+At = D [t—f—At ‘t+At€th _ tevp _ At{(l—a)té"? D
-n+1 - - .
t+At vp  t4AL t+At } '
+ 4 € -¥ Mﬂ o ] (4.86)
P

The solution procedure for the viscoplastic analysis is discussed in the next section.

47 ' Numerical Algorithm for the Blastic Visco-Plastic Formulation

The essential steps In the solution process are. aum.la.r to those prese_nted m
ISectmn 4.5 The procedure adopted for the viscoplastic analysis is similar to the one
presented by Kanchi et al. [20], but has been modified to obtain the updated stress
field after each time increnfent. The algori.j;hm,l for vpdating stresses and strains
using the constitutive model pr:eaented in Section 4.6, is for use within a lot.ad incre-
: ment. It 1z now mcorpora.ted into the overall finite element mode]hng uzmg the |

.mcrementa.l load procedure.

-
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At time t, the overall equilibrium of thesstructure is reached where

tl}, t, tg, t.vp

and R are known, the following are then com@jed

2) Using Equation 4.18, compute the stiffness matrix

t_IS =J ET thP_B_dV

b) Using Equation 4.70, compute the viscoplastic strain rate

ot vp__tTRt

The incremental djspla.cent_: field is computed using tlie. following

equation
-1
t 4
A*u=—[§]- by
2 ol ‘
where 'y = f BTtoav_t+aty (a87)—

From {Atu} the element nodal d.mplacements {A § } are e:ctra.cted

\

a) compute the incremental strains and stresses °

and the following steps are performer’



RS

~ Aeg=Bo'f, (4.88)
t_ tvp At ' 4 :
A's, = "DP a'e (4.89)
~\

b) wupdate strains and stresses for time t+At

tHAL. & g -
ge— ge +4 ge (_4'90.)

t+AL . £ : '
* Te™ ge_+A Te : af//‘ SIS

»

c) calculate the viscoplastic strain rate according to the updated
stress field ‘

.

t+Atév‘p _ t+M'r R t+4tg ‘ (4.92)

d) using the updated vlzisco'pla.stic st'ra.in rate a.bov:e, recalculate the
' “npdated stress field -Lisi.ng' Equation 4.86.
e) repeat steps c) and d) until the updated stress field and the ™
viscopla.stic‘.étra.in rate t-:orrespond. to each other.
" "4 Caleulate the unbalanced load vector; ' ’ a.
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t+M9""J ET t-mta dv-t’f’-“t{{. (4.93)
v

5. Repeat steps 1 to 4 until the incremental solution has converged

within a desired tolerance Tq which is given in Equation 4.54

6. Once the tolerance specified in Equation 4.54 is met, apply the next
load increment and repeat all steps 1 to 5 until the entire load
history has been achieved. The algorithm presented above is dia-

gramatically presented in Figure 4.4.

48 Numerical Examples

-

The performances of the nine node isoparametric shell dlement were testsd
for both pastic and viscoplastic analyses. Further, the effect of reduced integration
scheme beyond the yield limit was explored on both thick and thin pla.teg. Finally
" the stability of both the implifit a.;ld explicit scheme employed for the viscoplastic

analysis was explored.

In the first example the plate was su:u.ply supported and ‘subjected to
| umform distributed load. The geometry and material properties are given in Figure
'4.5. The nasults were compared to a Heterosis element that employs Mindlin plate
theory with both layered and non—layered approach by Owen et al. [28]. The results
are showp in Figure 4.6. As can be observed, the element response beyond the elasto-
slastic range, without the reduced integration, is in good agreement with the results

~



—97 —

given by Owen et al. [28]. The reduced'-in!:cgrntion results in an unacceptably otiffer
response beyond the elastic limit.

The results from the nine node shell element were then com pared with the
.nonconforming rectangular, thin plate bending element given by Mirza et al. [25] and
Stanton and Schmit [31], for a simply supported square plate under uniform
distributed load. The geometry a.nd I;J.aterial properties are shown in Figure 4.7. The
results are shown'. in Figure 4.8. Again, the respdaise, without the reduced integration,
is in good agreement with that obtained using the rectangular, plate bending element
and an unacceptably stiffer response resulting for the reduced integration beyond th;

elastic limit. It should be noted that the nine—node isoparametric shell element is a

conforming element.

» . To test the stability and accuracy of the viscoplasﬁc formulation, a static-

aﬂy determimate structure was first annlyiéd as shown in Figure 4.9. The plate is
almi:ly -supported on one side and is squected to a uniform strle.ss field along the
opposite side. The material roperties are also giv:an in the figure. . Only in—plane
action was tested a.nd the results for both the impl.icit and exp].icit schemes are shown
in Figure 4.10. Purther, a statically mdetcnnma.te structure was a.lao tutcd and the
results were compared tq those given by INDAP [13].:. The geometry md material

‘ . properties of the square plate are shown in Figure 4.11. Again, only the in—plane

action was tested due to the limitations of INDAP. The results of the explicit scheme
are shown in Figure 4.12. The imp]icit.scheme results where 4 is taken equal to 0.5
are shown in Figure 4.13. These results suggest that the formulation is proper and

stable and that the element response is accurate.

>
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In conclusion, the reduced integration technique employed to suppress the
shear strain modes is only applicable in the lnear elastic range. Due to the poor
performance of the nine node, isoparametric shell element beyond the elastic limit,
the selective integration is not recommended for an elasto—plastic or a visco—plastic
analysis. Based on very good responses for elastic visco—plastic analyses, it is con-
cluded that the isoparametric shell element is ';.cceptab_lé and is adopted for perform-

. : -
g thermo—elastic visco—plastic analyses of welded structures.
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TABLE 4.1

SAMPLING POINTS AND WEIGHTING FACTORS IN GAUSS~-LEGENDRE

NUMERICAL INTECRATION

Number of Points

Sampling Points

Weighting Factors

+ 0.57735 02691 89626
— 0.57735 02691 89262

+ 0.77459 66692 41483

0.0000C 00000 00000
— 0.77459 66692 41483

1.00000 00000 00000
1.00000 00000 00000

0.55555 55555 55556
0.88838 88888 88889

0.55555 55555 55556
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SUBROUTINE FIX
Construct the fixity vector.

SUBROUTINE LASTAPP
Check every node for last appearance and
set a marker for elimination.

SUBROUTINE ZERO
Inttialize all the'requi:red arrays.
|

'SUBROUTINE INCLOAD
Compute the element load.

SUBROUTINE STIFF
Com pute the element stiffness.

SUBROUTINE EXDEST
Assign position for the element degree of
freedom and adjust the current frontwidth if
' necessary.

|

P SUBROUTINE ASSEMB

Loop over Assemble the element loads and stiffness.
each element oo |

SUBROUTINE ELIMIN
Check each element node for elimination.
If yes, extract the coefficients of the
equation and the right hand side of the Loop over
node to be eliminated. each node
Check whether the present variable is free
- or fixed and deal with it accordingly.

|

Vir

SUBROUTINE BAKSUB

Read the equa.tions in reverse sequence and Loop over all
back substitute in the current equation to eliminated
. obtain the {m&l values. . variables

Output the ndd_al displacements.

FIG.43  OPERATION SEQUENCE FOR THE FRONTAL SOLVER.
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INPUT
Input data for the geometry, boundary
conditions, material propeties, and
type of loading.

BOUNDARY
Compute the equivalent nodal forces
according to e&le specified loading.

INITIAL
Initialize all the necessary matrices.

LOAD INCREMENT LOOP

_ INCLOAD
Increment the applied load according
to a specified load factor for the
first iteration.

|
STIFF
Evaluates the stiffness matrix usin

LO\QD ITERATION LOOP -

the appropriate D matrix, ie., elastic,
: plastic, or visco—plastic.,
FRONT |
Solves the system of equations using the
frontal method.

|
STRESS
* Evaluates the stresses, the visco—plastic
strain rate and the residual load for the
next load mncrement.

l
CONVERG _
Using the en convergence criteria, the
solution is checked for convergence.

|
UPDATE
Updates all the necessary quantities.

OUTPUT =~ =
Print the results if the solution has converged

END

. FIG. 4.4 FI;OW CHART FOR THE ELASTIC VISCO—-PLASTIC

ANALYSIS FROGRAM.
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FIG. 4.5 GEOMETRY & MATERIAL

PROPERTIES OF SIMDLy

SUPPORTED PLATE (THICK PLATE ANALYSIS).

Uniform Applied Loag

1.2
/
/o= .
0.9 Vs e
1 o |
. ‘/
J .~
. ’/
0.6 1 ' .;/( _ Present.Study
// -~ Reduced Integration'Approach
. ~-- Mindlin Plate Theory with
. Non-Layered Approach, Owen -
( ’ ' et al, 1980

0.3 . //' -»= Mindlin Plate Theory with

' d Layerad Approach, Owen et

V4 al. 1980, :
0.0 , : ;
0.00 0.25 0.50 0.75
| DISPLACEMENT
PIG. 4.6

LOAD DISPLACEMENT CURVE. -

1.00



- 100 —

——

[ =)
OCoCoOQo

100

ChRrmos

< mr—
M
[ ]

2

r

J L

FIG. 4.7 GEOMETRY & MATERIAL PROPERTIZES OF SIMPLY
' SUPPORTED PLATE (THIN PLATE ANALYSIS).

400
—
o +

| { e

300 _ $ e
-} ’ / h/
g b

©oed / . ‘/
@ L
2 iz
g 2004 - -
b
E / -— Present Study
0 v - Reduced Integration Approach
5 / -~ Stanton et al. 1970
S < -~ Plate Bending Element, Mirza
'/ et al, 1984. '
100 7 /'
«
0 ) : 7 T
0.0 - . 0.2 0.4 0.6 0.

Central Deflection

FIG. 4.8 LOAD DISPLACEMENT CURVE.

8



-~ 101 -

Lopl ﬂ . ].

hy

E

L =20
= 10° o
0.3

PROPERTIES: " E
oy
A= 10-7
n.
Y

=6
= 0.0

FIG. 4.9 GEQMETRI AND MESH PATTERN FOR THE DETERMINATE
STRUCTURE. f S



ﬁ.ommv HHIYL

Z

—102 -

G*'0=0 ‘EWIHDS IIDITAWI +
dWIHDS LIDITAXA ATINd o

13

i

14

]

r

.ZOHHOMAmMQ.EDZHM<Z ‘8A WIL OL*V *DId

20'0
+0'0
90’0

80’0

1'0
rANY
$1'0
910
gl'o
z'0
zz'o
$2'0
9Z'0

82'0

c'o

.(g;OL*) NOITOETIAC °*XVH

\

b

a'\



—103 —

T=1.0
¥ m
\ -
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FIG. 4.11 GEOMETRY AND MESH PATTE"\’.N -FOR THE INDETERMINATE
STRUCTURE \
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CHAPTER FIVE

EFFECTS OF MICRO-STRUCTURE ON THE MACRO-STRUCTURAL
ARALYSIS FOR AUSTENITIC STAINLESS STEEL

5.1 Introduction
2N
In the discussion of the constitutive equations for the elastic visco—pla.stic’
analysis, it was realized that it is very difficult to mcorporate the effects of.micro-
structure on the visco—plastic strain rate. The problem arose due to lack of experi-
- mental da.ta for determining the relation betwaen the grain size and the viscoplastic
stram ra.te To overcome’ this limitation, it was assured that its {:ffect is negligible

and a constant was added to the v13co—-p1;sst1c strain rate function.

In 1955, The Hall—Pei?ch e_q_tialtion ['23} was introduced. Based on the -
experimental 'data‘, fhey found that the'gra.ip size plays a significant role in determin-
ing the magnitude of the yield strength. Furthermore, Norstrom (27] and Tobler et
al. [33] reported recemtly that the data from theJr expenments were in good
agreement with the Hall-Petch equatlon To mcorporate the effects microstructural’

changes, in general, and the grain size in particular, the Hall—Petch equatxon has
been adopted in this study.

K

5
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5.2 Influence of Temperature on Yield Stress of AISI 3161 Austenitic
Stainless Steel

Norstrom [27] conducted various experiments to determine effects of
temperature on the yield stress of AISI 3161 austenitic stainless stecl. His specimens
consisted of 50 kg laboratory ingots whose chemical compositions are given I Table
§.1. The ingots were hot rolled to a thickness of 16mm and then heat—treated at
1100? C for 20 minutes and thes water quenched. This process resulted in recrystal-
lized microstructures. Following that, the spem;g cold—rolled to a thickness
of 12mm. To obtain diifere‘;t (grm.n size distributions, the specimens were differently
heat—treated. The first one was heated at 1000° C for 10 minutes and then water
quenched. The sesmd‘specimén was heated at 1100? C for 30 minutes and then
)u'gter‘ quenched, and t}le third spegimen was heated at a temperature of 1200° C for
60 minutes and then water quenched. The light microscopy was used to study the
microstructure g¢f .the ’spéc:imens and the average ﬁéhtaceﬁ value measured for
aﬁste.nitic grain boundaries was taken as the austenitic gr;.in size. | -

The yield stress was taken as the 0.2% proof stras “lts value for the
: taéiperature range 20 to 600 C after annealing’at™1100° C for 30 minutes and then :
water quenched, is ngen in Figure 5.1.? [From Figire 5.1, it can'be observed that
despite variation in the[ chemical composition, the yield stress values for the three
specimens exhibit parallel trends. It is also 'sﬁown that by increasing the nitrogen
content of AISI 3161, the yield stress increases. However the influence of nitrogen on
the yield stress is ignored in this study. F urthermore, as the temperature increases

. the yield stress decreases as expected. This effect was also observed by Tobler et al.
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5.3 Infifience of Grain Sixe on the Yidd Stress of AISI 316L Austenitic
Stamless Steel

Using the same experimental procedure and the same specimens,
Norstrom [27] had conducted more experiments to determine the effects of grain size
on the yield stress. Figure 5.2 llustrates the effect of grain size on the yield stress at
20° C, 300° C, and 600° C. At all three temperatures the value of the yield stress _

mcreases with decreasing grain size. This is in accord with the Hall-Petch equation

given by,
o_=o0.+ K/d)lv/‘2 | - (5.1)
¥ 1 4
- \
where o re.fers to the flow strength in the absence of gra.m boundaries and K is the
—1/2

slope. of 0, Vversus ¢ */“ plot and indicates the grain boundary dependence of the

-

ylelg stras. _ o .

As noted by Tobler et al. [33], the experimental data rela.tmg the effect of
grain size to the yield stress of austenitic stainless steel is very limited and therefore
very judicious use is necessary. 'I'hey used Norstrom ' 3 [27] expen.mental data and at
the same time adjusted the eﬁec’c of mtrogen to 0.04 percent weight. The results are .
shown in Figure 6.6 and md.lca!:e that both o, the friction stress, and k, the Hall—
Petch parameter, ‘are temperature dependent. Furthermore, the slope k is strongly

temperatu:e depeudcnt at low tempera.turs and is mdependent of temperature when
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the temperature is greater or equal to room temperature. These experimental data
clearly indicate that the grain size plays a significant role in determining the magni-
tude of the yield stress.

5.4 Yield Stress Incarporating Microstrcture

Based on the experimental data given by Norstrom [27] and Tobler et al.
(33] as has been discussed, it is justiﬁa.\hle to use the Hall-Petch equation given in
Equation 5.1 for determination of the yidd stress. This implies that the yield stress

iz a function of both temperature and grain size, ie.,

1

o= oy T) | | (5.2)

In Section 4.5, it was stated that the viscoplastic analysis is performed if
and only if the effective stress is greater than or equal to the 'yield stress. This
implies that although, the effect of microstructure is not directl.y' incorporated into
the constitutive equations, it | certé.i'n;ly. confrols the macro—structural analysis.
Again, for lack of more experimental data, it is decicied to use Equatiom 5.2-to

s
mcorporate the effect of micro~atructure in the present study.
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TABLE 5.1

COMPOSITION OF STEELS INVESTIGATED (wt.—%) {27

-
Steel C Si Mn P S Cr Mo Ni N
A 0022 056 142 0012 0015 179 28 . 142 0.5
0.02¢ 061 141 0012 0015 178 2.8 143 011
C 0027  0.62 141 0013 0016 180 2.7 0.18

14.1
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CHAPTER SIX

MICRO/MACRO-STRUCTURAL ANALYSIS
OF AUSTENITIC STAINLESS STEEL WELDMENTS

6.1 Introdnction

In the previous chapters, a stable and accurate thermo-elastic visco—
plastic model has been presented and is capable of modelling a welding thermal cycle,
the micro—structural ::ha.nges, and the overall macro~structural response. - The finite
element model developed rendered good results, regarding various components, in
comparison to experimental data and analytical results available in the literature. To
check the‘ov&eré.]l accuracy and to demonstrate practical uses of the mod%l, a bead—
on~%dge and a heat—on—edge welds ar‘e studied. Hwang [17) performed two experi-
ments, bead—on—edge and heat—on—edge welds; on stainless steel 308 a.nd reparted
results for the thermal cycle the transient temperature field, the transient central
deflection and the thermal strains. These experimental results’ are used for com pari-
aon-purposa. | ‘ g o |

In this chapter the transient heat flow a.na.lysus 1s carried out to model the
thcrmal cycle and the transient temperaturc field due to a heat—on—edge wdd and a
beud—on—e@ge weld, ‘The mlcro—etructural changes due to the thermal cycle are

determined and the distribution of the grain growth is computed. The elastic visco—

~—
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plastic analysis is carried out for bead—on—edge weld to demonstrate the accuracy

" and stability of the proposed macro—structural model. The transient central deflec- -
tion, the thermal strains and stresses are, therefore, only presented for the bead—on—

edge weld. The analytical results from the proposed finite cement model are

compared to Hwang's experimental and analytical results, -

6.2 Experimental Studies

In order to demonstrate the accuracy, the stability, and the practical use
of the prol?osed finite element model, data.'from an acp@rimentai study are required.
Few researchers have studied, exi:erimentally, the residlnml stresses due to a welding
thermal cycle in high strength steel and low carban steel (17,21]. However due to the
constraint lmposed! ignoringrof recrystallization in the micro—structural model, a
complete Rpalysis can only be performed on austenitic stainless steel, Hwang [17] has
co'nduct;?; complete experiment on austenitic stainless steel 308 and his experi- °

; : S _ .
mental data are used in this study for com parison purposes.

The objective of Hwang's experiment was to measure temperatu:e‘ and
strain changes that occur during welding. The temperature field was meagured ul.-sing
thermocouples and the strain field was measured by strain gages placed on the surface
of the specimen. Figure 6.1 shows the geoinetry'of the specimens, 122 ¢m long by
10.2 cm wide by 1.3 cm thick, along with the experimental setup. There were three

single—strain gages and three thermo—couples placed on the centreline of the speci-
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men. Two more gages were placed 30.5 cm away from the centre of the specimen in
order to measure the thermal strains at locations other than the centre. The speci-
mens were welded by bead-on—edge with GMA process and by heat—on—edge with
GTA process. The specimen is a 308 type stainless steel which is a high alloy steel
| and its chemical compositioni is shown in Table 6.1, The thermal and mechanjcal
properties of austenitic stainless steel 316 are shown in Figures 6.2 to 6.7 and are used "
instead of austemitic sfcainlé:s steel 308 due to the lack of material properties at
elevated tem peratures. \’ - ‘ . | )
\

6.3 Numerical Example of Bead ﬁ—Edge Weld

6.3.1 Analym of Bead—on—Edge Weld )

& .
/~ Thefirst specimen studied is that of weldment using a bead—on—edge with

a GMA process which is the gas metal arc welding. It is assumed that the heat is
i ' -~
diitribui;ed equally between the two welded pieces and hence allows ‘the use of sym-
‘ meé-y‘in the analysis to follow, ie. only one half of the plate needs .tb be analyzed. "

> ) | . ' ‘ . ;/_\J

6.32 Thermal Cyde

The finite elemeht mesh for the three—dimensional heat flow analysis is
shown in Figure 6.8 along with the properties of the welding arc (GMA process). As
can be observed, the size of the Ielements are small ngir the ﬁreld aﬁd increases drasti-
cally away from it. This’ discretization is necessary to reproduce the high tér_npe:a— -
ture gradients in the region near the weld, a.n.d‘ otherwise can lead to numerical i ‘

-
1

a .Y
¥ : - . [ B
] - B .
~ n
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\

instability, particularly oscillations. The plate is subdivided into 48 elements along
the length, 6 elements across the width, and one element across the depth. * This
subdivision is based mainly on experience keeping in mmd the problem of numerical
instability. Smce/- only one welding pass is considered, one element across the depth 1s
believed sufficient for the analysis of this welded plate.

The maximym temperatures reached across the width (i.e. away from !;hej
weld) at the centreline from both the finite element model and the expenmental
study are shown in Figure 6.9. The evolution of tem perature through contours at
different times is shown in Figures 6.10 to 6.15. The transient tempcra.turc at 2.54

. cm away from the welding edge, observed experiffientally and computed analyhca.lly,
is shown'in’ Figure 6.16. , . : ¥

RS : I .
It can be concluded from comparison of results in F ig‘u.re 6.9 that the finite
- element model is pred;ctmg well the maximum tempera.ture reached In the specimen.
This mehes that the material pcropertles employed are good representative of the
specimen and that the modelling of the boundary conditions, particularly heat input
and dissipation, is quite correct. From Figures 6.10 to 6.15, it is concluded that the
model is very stable which is also’ justified by the fact thé.i;- there are no o;scillaC‘ions
o‘pserved. .Furth.lermore, by examining Figure 6.16, which is the transient thermal
response, it can be concluded that the welding arc. model proposed for both, the
heating and cooling rates, is adeﬁﬁte. |
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6.3.3 Crain Growth

!
Based on the ma.thematlcal m‘bdel presented in Chapter Three the

Pr]

austenite grain growth is computed due to the bead—on~edge teld and the ﬁna.l grain
distribution along the distance away from the welding edge is shown in Figure 6.17.
There are no experimental results available to compare with the finite element
results. However, it can,;still be concluded that the distribution is smooth and that
the m;zzd is stable. Thm fact is demonstrated through smooth transition that can
be observed from regmn near the welded edge to about half a centuneter away where
after thac 13 no grain growth. This also approximates the extent of the heat affected
zone (grain .growth zo?e).

6.3.4 - Finite Element Modelling of Macro—Structoral Analysis - ¢ -

\
«  The effect of both the welding thermal cycle":::’apd the micro—structural
-'changes is investiga.ted u.-“;ing the proposed macro—structural model. The mesh pat-
tern and the vxsco-—pla.stxc ma.tenal propertles a.dopted for this study are shown in
Flgure 6.18. The thermal load, which is mamly the thermal expansion and contrac-
.tlon, 13 apphed as .discussed -in Cha.pte.r Four and is mcorporated through use of
twenty seven integration points per element. The tempera.“u,re field is incorporated i in

a similar manner, i.e. temperatures at the mtegratmn points.

The- plate is supported at the corners as shown in Figure 6.18. It is

beheved to be a good bou.ndary representation of the expenmental setup To redure

the size of the numenca.l problem, it is decided to parform the elastic visco—plaspic

P
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a.na.lysxs on only half of the plate due to symmetry Two cases can be considered in
the modelling of the welded &dge bounda.ry, a free surface type boundary and a
contact type boundary. Neither one reprasents the boundary condition pmcﬁﬁ[/ sifice
the plates are not restrained ahead of the welding arc and are indeed joined together
behind it. A free surface type boundary is appropriate to model the boundary ahead
cof l:he weldmg ar¢ because of the gap and is employed in this study. The difficulty
" arises in the modelling of the boundary .bc}n:nd the welding arc, especially after the
weld has. solidified. In general

is i3 & very complex boundary condition and alse

ed that the cut—of—plane
ion allows to 'model the

welded boundary as a contact furface. This is thought t-o be reasonable due to the

and cost. With the simp].i.ﬁf:ation i.ntx:oducéd above and the
complexities that would otherwise prevail, the mixed boundary conditions introduced

-are thought to best represent the welded plate and hence are employed in this study.
. ’ | 5

-

The material properties given in Figure 6.18 and employed for the visco——
'plastic model are according to Ffost and Ashby [15]. These are based on the experi-
mental results. Agamn it should be noted that all of the matena.l properties used are
\for austenitic sta.mless steel 316 and not 308 which ‘was used in the <xperimental
‘setup by Hwang [17]. The difference in the material prope:rtles 13 supposed to be not
ugnificant and the errors introduced are believed to be within the bounds of the finite
element model employed
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6.35 Thermo—FElastic Visco—Plastic Analysis

The transient ctra.l_ deﬂectic;ns at point A In Figure 6.18: observed
experimentally and computed analytically, are shown in Figure 6.19. The transient
thermal strains, at 2.54 centimeter and 4.45 centimeter away from the welded edge
and along the centreline, ‘observe(.i experimentally and computed analytically, are
shown in Figures 6.20 and 6.21, respéctively. The longltudma.l residual stresses
computed after 76.2 seconds and 139.7 seconds along the line perpendicular to the
‘weld are shown in Figure 6.22.' Also the transverse residual stresses computed after
76.2 and 139.7 seconds ﬂong the line perpendicular to the weld are shown in Figure

£
6.23.

] It1 appears from Figure 6.19 that the fnite element results from the
present model correlate much bettér‘with the experimental results than Hwang's [17]
. analytical results The maximum deﬂectmn computed from the proposed model is
‘sl.lghtly less than the expen.mentally observed values wherea.s Hwa.ng s prediction is
much ‘smaller,” almost half its magnitude. A ‘Comparison of the time history for the
central deflection obtained from the prgposed finite elemexbft model with those
obtained experimentaﬂy and a.nalyfica]ly ¥ Hw;;.ng indicates that the response is in
very good agreement from O to 40 seconds and after about 110 seconds with the
'expermental results. The discrepancy obs ved between .40 and 110 seconds is con-
sidered to be due to larger time mtewal employed in the analysis, especially larger
tolerances for the convergence’ criterion, and due'to the slight differences in the
material propemes adopted. It appears that wh:le the larger reszdual loads were

“ n.a.rned to the followmg loadmg intervals, some_ self correction eventually led to more

L}
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accurate results for response beyond 110 seconds. It must be due to the fact that
beyond this time (110 seconds), the time interval sizes used are adequate, The more
relaxed tolerance for convergence was used to prevent the high computing cost.
Hdwevér, if can be concluded that the proposed finite element model js capable of

predicting a reasonable accurate time—dependent response,

Figure 6.20 shows the predicted transient longitudinal thetmal strains at
2.54" centimeter away from the welded edge along the centreline. By, exmxmg the
ﬂgure, it can be observed that Hwa.ng s analytical model yields much smaller thermal
strains whereas the present finite element model predl.cts valucs for thermal- stra.ma
that abe- of the same magnitude as those observed expernnentally Although, the
finite element model overestimates the magnitude of the thermal strams initially,

perhaps due to larger time intervals, the overall transient Tesponse correlates quite

. well with the expe:nnental rezults As the spec.lmen cools off, the strains from the
proposed ﬁmte element model are shghtly smaller than the experimental values.
While the possible scurces of errors in the ﬁ.n_.lte eleme.nt model have been’ ldﬂ;fﬁed
before, the possible errors in strain measurements at elevated tem peratures ( in the |

neighbourhood of 250°C ) can also explain the discrepancy ﬁenti_oned above.

By examining Figure 6.22, at 4.45 centimeter away from the welded edge, |
the ﬁnlte element model predicts larger thermal strains initially aﬁd slightly smaller
© as the specimen cools off. There is also a ..hght oscillation between 55 and 75 seconds
‘and is believed to be due to the relaxed convergence criteria. Again the analytical
results computed by Hwang are much smallef than the one observed expeanental_l;.

For darification pl;.rposes, the finite element model employed by Hwang does not

.
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compensate for material non-lincarities, particularly plasticity or vinco—plasticity.
Once again, it can be stated that the present finite element results correlate well with
the experimental data keeping in mind that there are experimental errors and their
magnitudes are not known.

Although, there are no experimental results available to check the magni-
tude of the longitudinal residual stresses (rxx) shown in Figure 6.22, the profile
obtained is very reasonable and ;1ppea.rs to be similar to those reported in the litera-
ture (5,21,25] for several material types. The value of the yield stress abt room -
temperature 1s about 500 MPa and tI;;:-ma:cimum computed residual stress using the
" present, elastic visco——plastic is 420 MPa. This confirms that the residual stresses in
‘the austenitic stauﬂess steel of type 308 weldments can be of comparable magmtude
to the yield stress

The change in the transversf stress ('r ) distribution along the lme
perpendicular to the welded edge with ti\ne is shown in Flg'u:e 6 23. Once agaln,
there are no expenmental data available for comparison. Agam the. profile is similar
" to those reported In the literature [5,21,24]. The maximum value com puted for the
transverse siress is about half that of the yield stress. This va.lue is slightly la:ge
compared to those reported in the literature, Ref. [24].

Fram the results presented above, it ca.n,be concluded that the elastic
v1sco——plast1c model proposed is. very adequate and the bounda.ry conditions
em ployed, espec:a.]ly along the welded edge are reasonably good representation of the
realfboundary. t | . o
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6.4 - Numerical Example of Heat—on—Edge Weld

6.4.1 Analy=s of Heat—on—Edge Wdd

The second specimen studied is that of weldment using a heat—on—edge
with a GTA process which is the gas tungsten arc welding. Again, it is assumned that
the heat is distributed equally and therefore, with the use of symmetry, only one half
of the plate is anﬂ.lyzed

6.4.2 Thermal Cycle | o

4

The finite element mesh for the three—dimensional heat flow analysis is
similar to the bead—on—edge weld as shown in Figure 6.8 along with the properties of

the welding afc (GTA process). The ma.xlmu.m temperatunes reached across the

width (i.e. away from the weld) at the centreline from both the finite element model

and the expenmental study are shown in Figure 6.24. The evolution of tem perature

field at different times is shown in Figures 6.25 to 6.30.,. 'I‘hé tran;ient_: tem perature at
2.5¢ cm away from the welding edge, obsefved exp&i.menta]ly- and compl.xted'-
analytically, is shown in Figure 6.31.

By examining Figure 6.24, the results obtained from the finite element
model are again in good agreement with those measu.red experimentally (Hwang [17])
by buth the liquid indicator and the thermocouple. Alac uom Figures 6.25 40 6.30, it

can be concluded that the model 1s stable. The evolution of temperaturs around the
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arc in olightly different from that for the bead—on—edge weld. For the bead—on—sdge
weld, the arc speed is almost twice as fast as that for the heat—on—edge weld. As a
consequence, most of the heat remained behind the arc wherees for the heat—on—edge,
it can be observed that some of the heat managed to propagate ahead of the arc:
Therefore, 'the speed of the arc affects the temperature distribution.

(

By observing Figure 6.31, it can be concluded that the modelling of the
heating and cooling rate is proper. Furthermore, the molten zone is ignored in this
study, and the results obtained for both the heat—on—edge and bead-on—~edge weld
indicate that although itisa very turbulent- zone, it does not significantly alter the
peak temperature in the area close to the weld. 'I-'h.zs conclusmn 1s again based on the
good con'elatmn between the peak temperatures computed analytically and those
measured acpenmenta.lly Finally, the modeﬂmg of the welding arc as a heat per unit .

area is reasonable and very accurate,

643  Grain Growth

Again, based on the mathematical model presented in Cha.pte.r Three, the
austemte grain gmwth aré computed due to the heat—on—-edge weld and the finel
grain distribution along the distance away from the welding edge is shown in Figure
6.32. It can be concluded from the ﬁ;‘ure that the moddl is stable. The results’
appea.r to be in the nght direction since the austenite grain size from the heat—on—
edge weld Is larger with a large;r peak temperature  than the bead—on—edge weld.
Once again, the distribution is smooth and the method is stable as was for the bead—
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-

on—edge. Also the size of the heat affected zone (grain growth zone) is observed to be,
ghtly larger for the heat—on—edge weld.
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TABLE 6.1

CHEMICAL COMPOSITION OF 308 TYPE STAINLESS STEEL
AS GIVEN BY HWANG [17].

-

7

Cr ° Ni C Ma S P S

17/21 10/12 - 0.08 2.0 1.0 0.045 0.030

o2
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FIG. 6.8

GEOMETRY AND MESH PATTERN OF THE SPECIMEN, AND
'PROPERTIES OF THE WELDING "ARC. '
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FIG. 6.10 EVOLUTION OF TEMPERATURES (°C) AT t=2.12 sec,:

A

40

29050

FIG. 6.11 EVOLUTION OF TEMPERATURES (‘p) AT t=23.28 sec. -
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FIG. 6.13 EVOLUTION OF TEMPERATURES (°C) AT t=65.62 sec.

} N
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F

FIG. 6.14 EVOLUTION OF TEMPERATURES (°C) AT t=86.78 sec.

o

PIG. 6.157 EVOLUTION OF TEMPERATURES (°C) AT t=129.12 sec.



L
5

S ”

"( QTEM VWD ) DA HNIATIM WO wo v6°2 IV TUNIVYAdWEI INAISNVEL .w_.o *OId

L

¢ (*088) AWIL

o+i ozl ol 08 09 0¥ ‘02 S

1 L 1 t 2 L 1 L 1 I ) L .._ ' ol

- 02

- of
H
M | %
m_w 0¥ m
o6 af
=
&

- 09
: e
Loz &

- 08

[L1} INEWI¥EAXT - - - 96

_ S : | XQNTS TNTSTUD ~—~ - | o

// —
~

oLt



. "NOIINGIWISIA AZIS NIVED LL°9 *5HI4

nasov ANIT OTER WOWA HONVISIQ

Al ol g - 9 ¥ z o
] ) L i L1 ! t 1 1 i 1 621
L
— ~ F g1
: S0-3108 J
<
2
— rd
) - 191
’ - z9" |
. . S0-3o0ge’) | ¢cg' |
#
g0

(m*g_o L) FIZIS NIVED



— 140 -

*(S1] SITI¥AION TVINAIVH OIISVId-0DSTA FHI NV NYIIIVd HSIW QL°*9 °DId

¢ OLXL*¢ = OAq ‘3uaToTIy080D UOTSNIITQ TeTrusuodxs-axg
atow/rY 08z = MO ‘A81suy uorieATIOV

oL = V¥ .p:mumcoo :uon _
6°L = u *quouodxy :SEIIUTIONJ TYIMILVN

ol

e wo $G*2 X g¥ . 1
Vi
- 34
wo GLL*g
+ ) -
mo Gz
-3 -4
WO G06° | .
‘ -+ -4 4
wo Lz:) . | .
wo 690 T — )
wo G¢9°0-¥- {7
.= ¥

[N



— 141 —

J

"T8TLS SSAINIVIS 80¢ 0 HAINID FHI IV STHNVHD NOILOH'TAH .mp.m *DId

(*0908) AWIL

091 o+ ozl oot 08 09 ob oz 0
1 1 1 1 3 1 1 1 t 1 [ 1 L 1 | 0
- oo S
thu VIVQD TYDITXIVNY * 1]
_ =]
Hh—u VIVAD TYINTHINHIXT u o m
. XQNES INTSHUL » '
: | i g
- S1'0 e
H
- 20 9
2
-8
- sZ'0
. 0
B
- €0 ~
Fsso i

+'0



~ 142~

"dD0d QAATIM WOUd W2 $G*2 IV THALS SSATINIVES 80¢ HOd SAHDNVHD N

ﬁ.oomv AWIL

(L] viva TVOILXTVNY +

[LL] VIVQ TVINAKINAQXT o
AQNLS INASAUL ¢

4

IVHLS 02°9 °"9Id

b

]
™
S O
b

- —I.
60~

L0~

- 80—

90—

+'0~
£0-

+ M N -0 -~
S G © C

0
c

Fso-

[

(

/8, _0L) NIVEIS TYNICAIIONOT

Aﬂt\\



v

— 143 —

XANIS INISAUD ¢
[L13 VIVA TVOLIXIVNY »

L] YIVA TVINAWINAGYT u

oa1

ooz

oog¢

ooy

0%

(w/m._oL) NIVMIS TYNIQAIIDNOT

-



— 144 —

\J

"NOIINEI¥ESIA SSHUIS TYNAISTY A<ZHQDHHUZOQ ¢c¢'9 D14

(wo) YNIT TIaTIM mma no¥d moz<9mHQ

f!

L

‘098 L6l HALJIY SASSAUIS ©
‘088 2°9L WHIAV SHSSAYIS +

P

0z~

0

ol—

as

< (VAW»0L) SEZSSEULS TVNAISTN

%



— 145 —

. ‘ * m«

« *NOIINAIYISIA SSHYIS TVNaISaH q SUTASNVH T

(W) #5aT GHAATAN THI HOUL HONVISIQ

088 L*6¢l ¥ATIY SESSTUISO
‘088 2°9/ YATAY SHSSAUIE+

€2°'9 *HId

(VYdH«0L) SESSTY LS TYACISTH



—146 o

*( QTEM VIO ) NOIINGIYISIA FUNIVHAIWIL Q

ot

8 ) 8

o .
THOVEY . WONIXVH 279 *5Id

(mo) AT AIQTHMA WOMd AVMV HONVISIQ

dTdN0D0NUEHT, &

YOLVOIQNI QINDIT u

AANES INYSHYL -

- Q01
~ DQN
~ 00¢
.J.OO¢_
locm
‘- 0ao

~ Q0L

1 0oo8

006

(Do) TUAIVHIIWAL CTHOVTY WANTIXVKH



— 147 —

- 20°C
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- 70.0 . »
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- =200°C
-400°¢C
. -600°C

FIG.'6.25 EVOLUTION OF TEMPERATURES (°C) AT t=3.88 sec.

PIG. 6.26 EVOLUTION OF TEMPERATURES (°C) AT t=34.90 sec.
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FIG. 6. 27 EVOLUTION OF TEMPERATURES (*C) AT t=69.80 sec.
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FIG. 6.29 EVOLUTION OF TEMPERATURES (°

C) AT t=139.60 sec,

FIG. 6.30 EVOLUTION OF TEMPERATURES (°C) AT t=182.26 sec.
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CHAPTER SEVEN

CONGLUSIONS AND RECOMMENDATIONS

7.1 " Conclisions »

The three dimensional finite element heat flow model presented in
Chapter Two is found to be stable and accurate for predicting a welding thermal
cycle. It is also very adequite for predicting the peak temperatures. The procedure
for heat input presented turns out to be very versatile and em ployable for different
weld types, It is also very reasonable and accurate. The effects of the molten zone
turns out to be negligib%e on the —}ﬂea’.t'ﬂow analysis and the peak tem peratures after
comparison with the experimental results. The model is capable of preldicting the
proper temperature history for both mild steel and the austenitic stainless steel.

Numezrical oscillations in the region near the weld are reduced with the use
of small size element which also reproduce thé high temperature gradients. The

iterative approach used in heat flow finite element model is found to minimize driff.;

. ing of the solution with time and at the same time is found to converge rapdly.

The three dimensional finite element Vgra.i.n'growth model pré:cnted in

Chapter Three is reasonably accurate and very stable in predicting the final size and

—-152-
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. :
(\ dmtnbutmn of the austenite grains. The Avrasiti equation employed 1 15 found to

predict tl;(' e proper values for the volume fraction for all temperatures. The mclusxon
of t ing force in the analysis did not alter the final distribution. Although, all |
of the analytical grain growth models reported in the literature have predicted the
roper grain size, ouly the present finite element model is able to predict the prgper
grain Sige at Axtremes (high tem perature and low cooling rates) and to yield the grain

distribution “along with the approximate size of the grain growth zone. L]

!

The reduce? integration technique employed to suppress the transv&;e
shear strain modes for the isoparametric shell element is found to mnd& e:cceli&nt'
results for both thick and thin plates provided the analysis remains in the linear
ela.stié range. Once the analysis is extende!t.i to include material nonlinearities, it
resulted in an unacceptably stiffer response. Due to the poor response, the selective
integration is not recommended beyond the linear elastic range. The implicit formu-
lation of the elastic visco—plastic finite element model, for macro—structural analysis
of thlck or thin plates and shells, presented in Cha.pte.r Four a.nd th8 overall numeri-
ca.l algorithm is found to be accurate and convergent.’

£

The Hall-Petch equation is found to be a.dequa.te for determining the
magnitude of the yield stress as a function of temperature and grain size. This fact
has been conﬂrmed by comparing the predicted yield stress with the ‘experimenta.l
data (available in the literature) in Chapter Five.

In Chapter Six, two numerical examples are used to perform the heat flow

and the mico—structural analyses. * The temperature history predicted has been
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found to correlate very well with the experimental results reported in the literature.
Although, the_re are no experimental results availabl;e: for gra.jm size, the distribution
obtained :appem:*s to be very reasonable. One of the numerical exam ples, i.e. two
plates welded together, is used to perform macro—structural analysis. A mixed type
boundary condition, i.e. a free surface ahead of the welding arc and a contact type
behind the welding arc along the line of symmetry, models the welded edge quite
well. This boundary condition along with the visco—plastic strain rate equation and
- the Hall-Petch equation for predicting the yield stress as :fu.nction of the thermal
regime and the grain size, have been employed in macro—structural model. The
l;rediction for the transient central deflection and the transient thermal strains are in
good agreement with the available experimental responses. The t,:‘ﬁstribution of the
nq:_ma.l and transverse residual stresses appear very reasonable and are similar to
those reported in the literature for other arc properties of the same weld type. The
magnitude of these gtresses can not be compared for lack of e.ri.meﬁta.l data. It
appears that:the accuracy depends strongly on the size of the ﬁme increment used,
A

The value of the longitudinal residual stress is found to be nearly as h.lgh
as the yleld stress for austenitic stainless steel and that the value of.the transverse
residual stress is found to be a.ppmmmately equal to a.lmost half the longitudinal

residual stress.

Although the effects of the micro~structure are included in the overall
analysis, it can not be concluded that such effects have been properly tested since the

maximurm témpera,tu.re observed was less than 800°C. Of course, the model incorpor- -
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ates such effects and should always be considered especially for analyses at high

temperatures or for long time exposures. -

)

7.2 Recommendations

-

The models presented for the heat flow and the elastic visco—plastic
proble;1 in this thesis are found to render good results. Although the model is applic-
able to thick and thin plates and she]i;;, computationally it is very expensive to use
and at the same time requires a large scale computing facility. Costs for a.nalyzing a
full problem (with no symmetry) using the present computer program would be in
thousands of dollars. . Therefore, 2 more economical algor thm for the finite element

model, which is also capable of mode]lmg unsymmetric t 'ckf%i}a.tes, 1s desitable.

The overall effort required to perform the elastic—visco—plastic analysis
can be mgmﬂcantly reduced by dividing the problem mto two parts. One part con-
sists of the heat affected zone and should be analyzed using the elastic visco—plastic
model. The other part requires elastic analysis. This can be accomplished through
the parﬂtioning technique and upda.ting of the stiffness matrix will be required only
where the plasticity sets in. With a more economical algonthm along wﬁ:h the parti-
tioning technique above developed, it is stronglp' recommended to mamtam the same
small-time steppmg for macro—ghructural analysis for duration of the heat input from
a welding a.rc..

In the mico—structural analysis, the process of recrystallization has been
ignored. An extension incorporating this will enable analysis of ferritic steels as well.
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. ~
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In order tlo extend the knowledge about weldments, additional experi-
mental and analytical research is required. More experimental ywork is needed to |
determine the material properties at elevated temperatures. Also more experimental
data, including the tem perature history and micro and macro—structural respox;se, 13
needed to further extend and verify tha proposed finite element model.
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APPENDIX A: ELEMENT SHAPE FUNCTION

APPENDIX Al: Shell Element

Ny = 20— (- )
Ng-—-:ffmf)(l—nr
N3=f-;i(1'+.f)(1 +)
Ny = =3280 +9)
Ny=-1(-¢0-1)

Ng =L -1+ 0

| N7='.g(1—62)'(1+17) B \)

Ng =L -7h0- )
9

No={(1-7)1-¢2)..
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APPENDIX A2: Brick Element
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APPENDIX B

CONSTRUCTION OF ORTHOGONAL BASIS

N

If a vector va'is defined by its three cartesian components, then a ufilque
orthogonal basis can be constructed as follows:

. 'q n
Let
17
T= 0 w
0 ™~
then
V,=1TxV
1 3_ o

which is normal to the plane defmed by the vectors VB and T. One should note that
this' procedure fails if \73 is parallel to 1 and a vector 7 should be used lnstéad,
*J'.'(rhgfe o T ' '
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To obtain the unit vectors (;'1, ;2, ?3), one simply needs to divide by their scalar

length, | V],

3,2 2
Vi= {v, +V, +V

This approach is suggested by Ahmad et al. [1].
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APPENDIX C
MATHEMATICAL MODEL FOR CARBIDE/NITRIDE PINNING FORCE

The pinning force presented in Chapter Three is based on Zener's observ-
ation [23] where the grain boundaries are pinned by the presence uf a second phase
inclusion. The presence of carbide give rise to the pinning force which can be approx-

imated by

3 :
P[T(t)) = — 3 . . (C1)
2r
u ¥
and ther by assuming that the number of particles per volume fraction N_ remain
constant, Equation C.1 is re—written as

'

P[T(t)] = i(sfv)?/ amn )18 (C.2)

. ) o .
In order to determine the pinning force, the volume fraction needs to b7ﬁrst approxa-

mated. "By adopting Avrami equation, the volume fraction can be computed as a
function of the initial volume fraction, fv , the diffusion coefficient for particle
0 - ‘

\
dissolution, D, time, ¢, and the radius of the volume matrix, ¢, ie.,

h

+

Vs | o

. .aep—[@)ig] N .‘%é.s)

)
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In order to implement the above equation, it has to be re~written as a rate equation

after v:rh.ic.h one can determine the magnitude of the pinning force.

By differentiating Equation C.3 with respect to time yields

e[

& K PERY
_ L g_ f /2 6D3)3(2 exp — [(GDES/?} ()
f . ‘ .

In order to reduce Equation C.4 to a single valued function, using Equa.ﬁonoC.:i, the
following rela.tion}s obtained

. f | ‘
- tvg = é Logll3 (E;g) (C.5)

which after shbstituting into the rate equation yields

o R - -

of_ v -
=20 10g'0 (), (c5)
ata/. [2 _ fv .

“Now re—arranging Equation C.6 yields

i
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df
v

(C.7)
{ Log/3 (fvo ¢

v- t. .
J i+1 clfvr ﬁ: J 1+1 -9D

= . C.8)
A . £ 3/2 (C.
141 141 1 v
GD(t = t) ¥ Loggls 0

£ f,

1

Having obtained Equation C.8, one can incrementally compute the changes in the
‘ .volume ﬁ‘a.ction and subsequently compute the value of the pinning force as given in
Equatlon C.2. Moreover, to check the accuracy of the mathematical ma,mpulatmn of
Equa.tmn C 8, one should obtain the Avrami equation by setting £ equa.I to zero and

N

f equa.l to the J.mtml volume fraction. T]JJ.S yields




<
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3/2

= f, exp- [BRL ~ ©9)
0 [3 ' '

which is the Avrami Equation.

This implies that the physics of the Avrami equation was not altered while obtaining

Equation C.8. -



APPERDIX D

STEFFENSEN METHOD
B The Steffensen iterative approach is adopted to solve the non-linear grain
g'}owth equation. This method is a modification to the Newton—Raphson iterative
method and is also quadratically convergent [26]. It is used in this study becalse it
was found toconverge faster than the Newton—Raphson method. The Steﬁfeﬁé&n
iteration algorithm as given by Conte and Boor [12] is used and is summarized below;

L

Given the iteration function g(x), Equati;n 3.19, and j; initial 'gra'm size, "
| set X0 =7,

I :
|~ Calculate x) = g(xo) and X, = g(xi) |

R
SE

4 . . * | .
REPEAT FOR  |-Calculate d = (xg—x;)

n=0,1,2,.. | | .

until satisfied - qucﬁlate r= (x1 —x,)/d .
i Odae x4/

For more information refer to Morrs [26] or Conte and Boor [12].

(A ‘ , - 168 — L



APPENDIX E
NUMERICAL INSTABILITY IN THE GRAIN GROWTH MODEL

From the grain growth model presented in Chapter Three, one was able to

obtain the following rate equation

D= AL+ Bl ep--2 (2.1)
dte 0 RT
where
v
A f = kinetic constant,
B =~ Lamn )13 (g 213
2 ‘ v ,
~
which, after re—arranging, yielded
040 _ 4 Q. g g (E.2)
14+Bd « RT

Equation E.2 can be integrated exactly, ie.

¢ ot % '
+1 Sl "
sy J %: A.,,e}cp_ﬁ..dt
1+B . RT .-
b A S
~ ® e °
» .
@ - /
b
_1s9—
- - A “‘ '
. - ‘
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d)i+1 & '-
$_1 Log(1 + B¢) = A "-'KP"*j(tHl -t) (E.3)
B B2 o RT

By ignoring the limit of integration, Equation E.3 can be written as

¢ — L log(1 + B¢) = ABt exp— 2 (E.4)
B RT : |

Y

. k4
With the increase in temperature, the volume fraction will decrease and so
will the value of B until It reaches zero. This will take place when the carbide ha"

completely dissolved and the pmmng force is no longer present. Examining Equation
E.4in the hm;.t as B goes to zero yields . -

Lim [¢-——10g(1 + BY) - ABtexp__Q] = Lim [§— B
Boo B RT B-+0  1+B¢

=¢ (E.5)

.,

This implies that as the pinning force reaches zero, there will be no graiﬁ growth,
However from the physics of the problem and experimental observations, it is
be.heved that ‘as the pnning force goes to zero, the grain grows quadratically. “This
can be still achieved by setting B -'-'qual to zero in Equa.tmn E.l, ie,

a _ 1‘ _9 - 6)
dt ¢exP RT : | ()

which after mtegmti yields
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o ;

+1 - 1+1

. =Aexp _ 9. (E.7)
RT

% 4

0’
2

This implies that the model is unstable once the pinning force or the
volume fraction goes to zero. To eliminate this difficulty, it was decided to check the

value of the pmmng force with respect to a specified value,and if it is sma]l enough

then Equation E.7 is used instead of Equation E.3 in the calculation of austenite

grain growth.
. B * J
'y * v
L4
« S
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