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Abstract R
The path integral Monte Carlo method is applied to some solvation
' . - * » .
~ problems involving quantum soliifes. Thermodynamics quantities like par-

tial molar volume and entsopy ‘chagge’a‘tssociatéd with the electron solvation

progess are ‘calculated. The ionization of alkali atoms in liquid ammonia’

and the electron a.ttac.hment to ammonia clusters are investigated.

Path integral MC simulations at constant pressure lead to an expan-
sion of: the simulation box in satisfac;‘.orily agreement with the experimental
molar volume. The struc‘:ture oi' the solvated electron at constant presstre
was found to be verj' similar to the one at constant ;rolume. The electron
~ wavefunction was only slightly e;cpanaed. :

The I;)ebye charging trick is used to calculate the free energy of the
solvated electron at constant volume. The experimental solvation entropy
at constant pressure is reproduced Pnly when a correction due to the vol-
ume expa.nsio.n is introduced. The contribution to the entropy due to the
ordering of the ammonia molecules induced by the electron is negative. The
expansion work, performed by the liquid whén the electron is introduced,
is responSible for the positive experimental entropy. -

Spentaneous jonization is observed only for Na and Cs when'a hard
core (HC) pseudopotential is employed. A soft core (SC) pseudopotential

leads to the formation of dipolar atoms when tested with Li and Cs. A

"dipolar Li atom is observed even for the HC model. These calculations -
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| predict that the minimum energy sta.te for at least Na and Cs is indeed the
separately solva.ted ions. Thisis agreement with the experimenta!l evidence:
The nature of electron attachment to ammonia clusters composed of
16, 36 and 54 molecules is studxed At IOOK a negatwely charged cluster of
16 molecules appears to be unstable in the sense that the electron binding
energy is less tha.n kgT. For both the 36 and 54 molecule clusters the
electron binds to the cluster surface. The 54 molecule cluster also supports
a (meta) stable interior solvated state. These findings are discussed in the

light of experimenltal data on the same system. .
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Chapter 1

1

Introduction

r

The increasing power and speed of the modern computers in the past two
decades havawproduced a flourish of studies on classical molecular systems
by means of molecular dynamics (MD)[1] and Monte Carlo (MC)[2] calcu-

lations. Recently, simulation techinques, somewhat related to MD and MC,

- have been used to ifivestigate quantum systems.[3-8] The most popular of

these techniques is derived from the Feynman path integral formulation
of quantum equilibrium statistical mechanics.[9,10] Here a quantum parti-
cle acting in a potenti;:.l field is represented by an isomorphic closed chain
polymer (necklace) composed of P classical particles. Ea‘::h particle inter-
acts with the its adjacent neighbours in .the poly.mer and with the external
field. The interaction bet\\_reen adjacent polymer units is directly related to
the path integral free particle density matrix.

If exchange is neglected, this approach projects a system of N inter-
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acting quantum particles into an isomorp}{ic classical system of N flexible -
ring molecules formed by P atoms.[li] The advénfages of the path integtal
method are now clear. Since the quantpim many-body problem can be re-
duced") toa clasgical many-body problﬂg’qm, the canonical averages of such a
system can Be calculated by using MC or MD simulation techniques.

Path iﬁtegral MC{12,5,6] OF:M‘D[3,13] simulations have been per-
formed on a variety of systems. Al}ihough in the past quantum ma.ny-Body
problems have been treated with:i;}ﬁs technique,[12,14] most of the investi-
gations have been focused on quantum solvation problems involving a quan-
tum particle (electron or muocnium) interacting with the solvent molecules
which in turn were dealt with as classical objects.

The theoretical interest in this latter kind of problems lies in the re-
lation between electron solvation and fundamental physical chemistry pro{
cesses such as electron transfer in solution, at an electrode and in biological*
molecules, ionization and electron-ion recombinations in solution. Several
solvents have now been studied. The first pioneering work was carried out
by Parrinello et al.[3] on an electron in molten KCI using path integral
MD. More recently the attentic;n has been focused on the electron in rare
gases,[15] water{13,6] and liquid ammonia.[5,16] Both MD and MC methods
have been used for these systems.

The first path integral simulation of an electron in a molecular
liquid[5] was carried out in ammonia and was mainly centered on the struc-

tural aspects of the solvent molecules, in the vicinity of the solvated elec-



tron, and the electron éiiate. 'Tha.t WC;rk has been taken as a starting point
-for this thesis. ’I;I.i.i:s.'thesris is COncemed with some aspects of the solvation
of qua.ntum solutes.in hqu1d ammonia and i in @oma ‘clusters. The qua.n—
tum, solute studnt;d has been the electron and a.lka.h atoms : Li, Na and Cs.
What follows } is an outline of the problems this thesis deals with.

The d1sco\rery of solvated electrons in hqmd ammonia goes back
to 1863.[17] Smce‘then a wide variety .of expenment echniques have
been used to study this phenomenon [18] "The easiest way of prepar-
ing a solvated electron is by d1ssolutf6{£' alkali metals in ammonia at
low concentration.[17] Another techmque involves the pulse radiolysis of
the pure liquid.[19] The .thermodyna.mics of the electron-ammonia sys-
tem (f;ee energy and eptropy) can be probed either by photoemission
experimentsf [20,21] or indirectly by standard electrochemical techniques ap-
plied to'low. concentration alkali metal solutions.[22) S?me noticeable prop-
erties of the electron-ammonia solutions include intense blue colour, high
electronic mobility, large positive molar volume and positive entropy.

The study of the absorption spectrum ax;d the‘mobility of the sol-
vated electron would involve access to real time electron correlation func-
tions. Because of the limitation set by the complex time formalism, the
path integral simulation methods cannot provide such information. Never-
theless, this technique can now be used to investig‘ate the volume and the
entropy change on solvation. Part of this thesis deals in fact with these two

probleh‘xs after affew theoretical issues are answered.
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"To provide some insight to the experimentally observed pﬁenomenon

of spontaneous iehizaf;ion of alkali metals in liquid ammonia,[23,22) t.he.next '

" problem tackled in this thesis is the solvation of alkali atoms in liquid am-

monia. Issues iike st.ructufe of solventfnea.r the atoms, ions and electfon
which are not expenmenta.lly accessible, are at the center of the discussion.

In very recent times, expenmental\tudles on negatively charged
ammonia clusters have appeared in literature.[24,25] In these clusters the
excess electron is bound to a neutral'body of molecules. The experiment has
provided only information about the critical si%e of the ammonia cluster,
no lnformatxon about the structure of the eleg:tron state can be gathered
from experiment. This thesis will provide a few answers to the latter issue
in light of the results obtained from path integral simulations.

The various chapters of this thesis are arranged as follows : Chap-
ter 2 presents a discussion of the intermolecular potentials and electronic
pseudopotentials. In Chapter 3 the path integral Monte Carlo method is
described in some detail. After these two introductory chapters, Chapter
4 and 5 deals respectively with the volume and entropy change on electron
solvation. Chapter 6 is de\:)ted to the study of some alkali atoms in lig-
uid ammonia. The‘etudy on eleetron attachment in ammonia clusters is

presented in Chapter 7.

1



Chapter 2

Intermolecular Interactions

“and PSeudopotential-s

2.1 Intermolecular Potentials

Intermolecular forces play a central role in the structure and therméodynam-
ics of liquids and solids.[26] The problem of calculating the potential surface
" in phase space on which the molecular system is evolving can in theory be
solved directly from first principles. In effect only in a few ca.ses.[27,7]
has such an approach revealed to be feasible with the currently available
computational resources. In more common circumstances one is obliged to
adopt very-crude potential models to represent the interactions amongst
- molecules.

The potential energy V(r,,rs,...,ry) of a system composed by N

i

118
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molecules. can’ be expanded- in contributions each deriving from different

orders of additiv_é interactions :
' ' 1 . 1 ' :
V(rh r2, '"a,rN) =o Z UQ(I'.‘, r.‘l') + 5= 2 ug(r;,r,-, rk) +oe (2'1)
g 2 &= 2354
Studies[28,29,30] have shown that many-body effects are.not generallf neg-
ligible in most of the liquid and solid state applications. For- practical

reasons, however, only the first term in Eq. 2.1 is usually retained.

N .
2.1.1 Ab Initio Calculations

One way of calculating the intermolecular potential acting between
molecules -is to use the perturbation theory. When the intermolecular
distances are in the same order in magnitude of the dimensions of the
molecules or larger, the interactien energy through second order in the in-~
teraction Hamiltonian can be derived from so-called exchange pertubation

theories.[31,32] Schematically the intermolecular potential is given by

€ = €erch + €elat + €ind + €diap (22)

The first term in the above eqL;ation represents the repulsive exchange in-
teractions acting between the molecules when the wavefunctions overlap is
not negligible. In the perturbative calculation at short range, €.-.; derives
directly from the antisymmetr; requirements on the molecular wavefunc-

tions. It contains first and, in smaller extent, second order contributions

and vanishes as the intermolecular separation goes to infinity.
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' €.tst i8 the quantum mechanical counterpa.'rt of the .classictﬂ electro-
static intéra..ctio_n energy between two cha.fge distributions and coincides
. with it at large intermaecg{lra: distances. It is a first order contriBuFion. At
shorter dista.nces,- this term differs from the classical energy of two interact-
'ing arrays of multipoles by a contribution sometimes called “penetration

: ene'rgy” ‘

- eper; = €eist ™ Emult,y (2-3)

whex;g €mui¢ 15 the energy calculated from the electrostatic: multipole expa-
. . slon. N
' The lest two terms in Eq. 2.2 are purely second order contribu-
tions. The induction (€ina) and dispersion (e4isp) energies are originated
respectively Ifay (permanent-induced) and"(induced-iﬁduced) multipole in-
teractions between the two molecules.

The explicit expressions for the four terms in Eq. 2.2 involve a com-
’plex depex}dence from the center of mass separation between the molecules
and the relative molecular orientations. Additionally, it requires the evalu-
ation of matrix elements of the interaction Hamiltonian between antisym-
metric products of the two sets of molecular eigenfunctions. Due to such
complexity only in the past few years the calculation of ab initio inter-
molecular potentials has become computationally feasable. So far mainly
small molecules have been the subject of investigations (see for instance

[33,34,35,36)).
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2.1.2 Atom-atoin Potential Method

When yepeated eva.iua.tions‘ of the interaction potentials for many conﬁgura—
tions are required like in applications to sté.tistica.l mechanics and solid state
physics, the use of the ab :'T:it:"o approach is out of the question because of
the enormous computer resources needed. An easy and quick calculation of
the intefmolecﬁla.r energy and its derivatives is achieved by using analytical
functions to approximate the effective potential acting between molecules.
Multicenter analytical functions, instead of an explicit angular dependence,
are generally used to mimic the anisotropy of the molecule-moler:ule interac-
tion. Many-body simulation studies such as molecular dynamics (MD) and
Monte Carlo (MC) are then possible within reasonable computer resoufces.
| -In the past there has been a great deal of discussion about the parti-
tioning of molecules in fr;.gments whose properties are transferable amongst
different molecular species.[37,32] According to one possible approach, the
molecular Hartree-Fock orbitals are projected by an unitary transforma-
tion onto orbitals localized on interatomic bonds, inner shell of the nuclei
and lone pairs.[37] It has been shown that molecular quantities can be ex-
pressed as a sum of contributions from bonds and lone pairs. In addition
to being additive, the properties of the fragment are, in a certain extent,

transferable amongst diﬁ'erelnt, but chemically related, molecular species.
Bader et al.[38,39,40,41,42] have followed a different route. In their
view, the most transferable fragments in a molecule are delimited by a so-

called “zero flux” surface for which the gradient of the electron density,



Vo(r), is equal to zero. Such fragments possess physmal propertles and .
satisfy theorems that are those of the isolated ‘ajom.

In pnncxple, both. approaches could be used to partition the?' |
moleZules; in pieces whose interacti'on potehtials are the same.indep;endently
from which molec:ule the fragmentg happen to be:

As megi:ioned in the pre\_rim‘xg section, @b initio intermolecular po-
tentials are &ﬁicﬂt to calcqiate and the eétima.ted error lmge. At present,
there is not a reliable way to calculate the c;antribufions from bonds and
' lone pairs to the molecular interaction, the results depending mostly on
the wavefunction used in such calculations. Moreover,‘Bader’s approach
has not been w1dely a.pphed to intermolecular interactions.

Because of these aspects, the atom-atom method is generally
adopted. This consists'in considering the center of each atom in the
molecule as the mqlecula.r fragment. The interaction between two molecules
is then calc:.lla.ted by adding up together the contributions from each pair
of atoms on different molecules. -

The atom-atom potentials have a variety of analytical forms in-
volving many parameters. These parameters are generally fitted either to
physical properties of gaseous and condensed phases or to ab initio calcu-
lations of the dimer. They are respectively classified as semi-empirical and
ab initio’atom-atom potentials. .

The functions used in representing the atom-atom.interaction are

composed of different contributions which, in part, derive their analytical

~
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exp.ression.s from a series expansion of the terms'in Eq. 2.2.°
Commonly, the electrogi;atic atom-atom potential consists of a
charge-charge term. In some case atomic dipole-dipole, dipole-quadrupole’
and quadrupole-quadrupole contributions have been gdded.[43,44] The
charges or higher order multipoles are distributed on the molecule in ordér
to reproduce the molecular niultipole moments known from experiment or
ab _init;a calculations. L e
The series expansion of the dispersion energy for two interacting
"atoms leads to a sequence of contributions from instantaneous multipole
interactié‘ns. The leading terms go with 1/R® (instantaneous dipol:-dipole
interactions), 1/R® (instantaneous dipole-quadrupole interactions),... ete.
The intermolecular exchange interaction, which gives a 'repulsive
contribution to the total energy, cannot be represented analytically accord-
ing to an expansion like the one for the dispersion energy. Therefore, the
potential function in an atom-atom potential is totally empirical and goes
commonly with 1/R!? or has an exponential dependence.
The induction effects Ze commonly negligible in solids and liquids.
In the few cases in which induction has been explicitly included in con-
densed matter calculations, the potentia.ll is expanded in terms containing
the static melecular multipoles and polarizabilities leading terms. Induction
has never been incorporated explicitly in atom-atom potentia_ls. Often, its
effects are included in the attractive and repulsive terms-of the interatomic

-

potential.

-



exp-6 functions : '
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: Thelmost common analytical forms used are the Lennard-Jones and

V) = 4[(2)7-(2) (249)

r r

Veap-o(r) = Aczp(— Br) -r% - (2.5)
The relatively few pa.ra.metérs contained in the above e@ressions and their
simplicity make them suitable for use in MD and MC simulations. Only in
few cases ab initio atom-atom potentials include contributions from multi-
body interactions, deriving from higher order terms in Eq. 2.1 (see for
instance [29]). This, in part, explains why most of the available ab initio
potentials do not satisfactorily reproduce the behaviqur of liquids and solids
where those interactions are important.

At present, semiempiricé.l atom-atom potentials are the most pop-’
ular in statistical mechanics calculations. In fact, although designed to
reproduce only a few physical properties of the molecules in a particular
region of the phase diagram; they can be successfully used to study other
regions of importance for the same system. In addition, they can have

in some case & certain degree of transferibility amongst chemically related

“molecular species (see for instance [45,46]).

2.2 Electron Pseudopotentials

Pseudopotentials have been used in the past to calculate the electronic

properties of a variety of systems such as metals, semiconductors, atoms



12

.
-and mblecules. The pseudopétential‘method is based on the a.ssﬁmption
that the interaction amongst core and valence electrons can be ha.ndle‘d‘ :
by an effective potentié.l acting on the valence electrons. Such a potential
" averages out the f:ontributhions from all the core electron states.

" In the past the first pseudopotentials were uSéd in:single el.ectron
band structure ca.lculations.' Their pgrameters were Mpirica.lly‘cho-sen to
fit first 1omzatmn energies of the isolated atoms and some expenmenta.lly
avmlable fea.tures of the energy bands such as form factors.

The earliest formulation of the pseudopotential method is due to
Philips and Kleinman.[47) They considered a single electron wavefunction

¥ solution of the Schrodinger equation for a valence electron?
. {T + V(r)}¥(r) = e¥(r), - (2.8)

where T and V(r) constitute the appropriate single electron Hamiltonian
( namely Hartree-Fock or density functional Hamiltonian). ¥(r) is divided

in a smooth part, ®, and a linear combination of the core wavefunctions ¢,

¥(r) = &(r) - Z bada(r). (27)

Inside the core, where the potential energy is strongly negative and, conse-
quently, the kinetic energy of the valence electron is matchingly high, ¥ is
rapidly oscillating. The oscillatory contribution to ¥ is totally due to the

second term in Eq. 2.7. The cancellation of the negative potential energy

1Unless otherwise stated, atomic units are adopted throughout this thesis
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with the positive Kinetic energy inside the core[48] suggesté‘ the ﬁse of an:

" eﬁ'ei;,tive Hginiltogia.n whose eigenfunction is ®. ® ‘coincides with the ezact

wavéfunctiqn outside a certain core .ra.di.us, is nodeless and goes smoothly
‘to zero when r goes to zero. | )

Since ¥ ié orthogonal to the core levels, the coefficient of the linear

combination of core orbitals is given By
ba = (‘ﬁal@)- ‘ (2.8)

Inserting 2.8 into 2.6 &nd using H @, = €444, one obtains
. -

{T +V(r)+ Va(r)}®(r) = e3(r), ’(2.9)

where
_ Paolta— 5)¢a(r)(¢a|@>
- #{r) '

The term in brackets in Eq. 2.9 acts as an effective Hamiltonian. The

VR(rj =

(2.10)

altered pot;ential contained in this Hamiltonian is the pseudopotential,

namely

\ Vou(r) = V() + Va(r). (211)

The above pseudopotential is not only a function of the electron position,
but also of core state projection operators ( see,. Eq. 2.10 ). This is then
‘called a non local pseudopotential.[49]

To discuss the various contributions to the pseudopotential an ex-
plicit expression for the single electron Hamiltonian has to be used. The

most natural choice is to employ the standard Hartree-Fock formalism. One
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obtains the following eigenvalue equation for the valence electron[50,51]

[V - o = Tt [ EOHD g

where V¢(r) is the Coulomblc potentla.l felt by the ele'ctron given by

|r —x'|
The sum of exchange terms on the right hand side of Eq. 2.12 is non

Vc(r) ——+22“] AL (2.13)

local. This part of the Hamiltonian can be replaced by some attractive’
potential Vi(r) if & local exchange approximation is used. The Hartree-
Fock approach does not include any effect from electron polarization (i.e.
correlation). It is common to introduce an additional term in the potential

Vp(r) which accounts for this effect. >

The one electron potential which now acts on the electron in the

outer shell is

V(r) = Ve(r) + Ve(r) + Va(r). S (214

Thus, combining Eq. 2.14 with Eq. 2.11 one obtains the followj xpres-
sion for the pseudopotential \(Eg\
I/;,,(r) = Vc(r) + VE(F) + Vp(l‘) + VR(I‘). (2.15)

Although Eq. 2 10 has been denved for valence electron of atoms, the
electron-molecule scattenng theory can show that an identical equation
holds for the interaction between an electron and a closed shell molecule.[51]
In this case one has to substitute in the Eqs. 2.6 and 2.15 the core wavefunc-

tions with the ground state wavefunctions of the molecule. Additionally,
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“the coulor-r;bic interaction has to be modified to include the electrostatic
potential deriving fr'om-all the nuclei. It is clear, hb_weyer, that the nsture
of the interaction in the two cases is different; the electron-molecule poten-
tial is much less attractive than the interaction between valence and core

-

electrons.
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Chapter 3

Path Integral Monte Carlo |
Method

-~
.

The thermodynamic properties of a quantum many-body sygtem are di-
rectly obtainable from its partition function which, in turn, can be ex-

pressed as the trace of the so-called density matrix p, namely

Q =Tr(p). (3.1)

p is the statistical mechanics equivalent of the wave function in quantém
mechanics. The Feynman pa.th integral representation of the partition func-
tion.can be exploited to study quantum systems by computer simulation.
The density matrix of a quantum many-body system in thermal
equilibrium with the surroundings and composed of N particles is obtainable -

16
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by solving the Bloch equation -

B _ i |
with boundary c'onclition . ‘
- Lmp(B)=1, | - (3

where p(f3) is the density matrix relative to, the reciprocal temperature
B = 1/kgT and M is the system Hamiltonian. Equation 3.2 has formal

solution
p(B) = ePH, (3.4)

Adopting the Dirac notation, the density matrix in the coordinate repre-

sentation has the form

P(R,R',B) = (RleP|R), (3.5)

where R and R/ refer to all the phase space coordinates of the N particles.
It is clear that p(R, R/, B) has the physical meaning of the probability am-
plitude distribution, at reciprocal temperature g, relative to the transition
between the phase space configurations R and R’

The other possible interpretation is related to the djmensibna.lity
of the reciprocal temperature . By comparison of p(3) in Eq. 3.4 with

=iHt it is evident that 3 has the dimension of

the quantum propagator e
an imaginary time.{10] ponsequently, the density matrix can be thought of
as an imaginary time propagator giving the probability that the system at

imaginary time 7 in R moves to R’ at time 7 + 3.
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3.1 P\a‘th Integral Representatidn of the Par-

tition Function .

4

To derive the path integral representation of the partition function, one can

transform'Eq. 3.5 using the identity
ePH — (= F )P, _ (3.6)
and inserting P-1 intermediate states; namely

(RIeHRY) = [dR, [dR,- f dRp_{Rle~F|R,)
S X (Rl FRy) - Reole FR). (37)

In imaginary time the integrand in Eq. 3.7 gives the probability that a
system at time 7 = 0 in R moves to R’ at time r = 3 through a path
of intermediate points in phase space. Tl’lle system is found in R; at time
T = %, in Ra at time 7 = % ---and in Rp_; at time 7 = IL-P_IJE. The total
amg;litude to go from R to R’ is given by a sum over all possible paths.
As mentioned previously, the trace of the density matrix, namely

the integral dver the diagonal matrix elements, gives the partition function

of the system. Thus, from Eqs. 3.7 and 3.5

QN.8) = [dRe(R.R.8)
de'/dR.jc{Ry'[dRp,l(Rk";?”"lR,)

x (Rile"F|Ry) - (Rpoy|e” F|R). (3.8)

i
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3.1.1: High Temperature Approximation

~ The appearance on the nght hand side in Eq. 3.8 of the density Inatnces
relative to a temperature higher than the one on the left side enables one to
use the high temperature approximation of the density matnx to eva.lua.te
- the integrand.

At first, one has to a.ssume a pair product form for the density

matrix, namely ' ' |
3

p(R,,R,r ) HK()(I",I' ’ P) I r2 ( ;’,r;'!, f;) H(l3.9)

=1 i<y

where r! is the position of the particle { at “time” s, Kg( ., P) is the

free particle density matrix[10]

Ko (ri,r:., %) = (;—b;)yz exp (— %(r -r )2), (3.10)

with M the particle mass; p; is the two-body density matrix divided by the

free particle contribution; and
ry = ~ril (311

By using the perturbation theory at the first order in %, one can

show that[10]

P (r:’,r;‘!, }ﬁj) ™ exp [ 2‘; (V(r") + V(ri )] | (3.12)

where V(r7) is the mteractmn potential between the particles i and j at

“time” s. The so-called asymptotic formula for the density matrix at high
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tempera'ture in BEq. 3.12 can apprqﬁmate P2 when. P is large enough. 'In
addition to the condition on the tem’gerature, Eq. 3.12 is & good a.p'prox;

_ img.tioﬁn if the pdtentia.l acting on thg-pa.rticles does not vary significantly
in the space Ar = Ap(1/P)'/? spanned bj the pa.rticies dux-'ing the “time”
Ar = B/P which ‘separates s from s'. Here Ar is the particle thermal |

wavelength -
Ap = (g/m)lﬁ. : (3.13)
- The:use of Egs. 3.9 through 3.12 into Eq. 3.8 brings to the partition -
function
MP\3N/2 P N
o Pp=(3g) few(-psupTIITas, (329
=11i=1
with the Euclidian action
P MP
Sers = E Z [Qﬁg .,+1)'2 +5 Z V(TU)] (3.15)
a=1i=] I<J '
and ‘
=T =TIp41. . (316)

It 1s clear that when P — oo E-qs. 3.14 and 3.8 coincide.

3.1.2 Classical Isomorphism

The present discussion is concerned with the special case in which all the
particles of the system except one have a very short thermal wavelength

compared with the interparticle distances and can be considered classical
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. while an electron does not. The electron is, undoubtebly, & quéntum par- -
ticle, | '

The partition function of the mixed quantum-classical sygtem com-
posed of N molecules and one electron is obtainable from Eq. '3.14 when

the path i.ntegral discretization of the N classical particles is removed. This

means inserting P = 1 for those particles in 0 3.14. One obtains

QN, P, ) = (;’:f;)m(gig)m / Hdm Ee—a ot en) (3.17)

where m is the quantum particle mass,

P o '
Ve =3 (e ) 4 5 ;v(h-,_ N @)

and

N
Vn-n = > U(Ry, R;). (3.19)

i<j
/\The set {rF'} denotes the electron coordinates at different imaginary time-
points, {RN} represents the molecular coordinates; P is now the discretiza-
tion of the electron, M and n are respectively the molecular and electronic
mass. )
The next problem to be tackled is the evaluation of Q(N, P, §) for
the mixed qua;'ltum-classica.l system It has been noticed in the past that
the pa.rtitxon function in Eq 3. 17 is equivalent to the one.of a purely clas-
sical system formed by a closed chain flexible polymer (or necklace) and N

molecules. The potential field acting on this isomorphic classical system is

given by Eqgs. 3.18 and 3.19. This connec}ion between the electron and the
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: _necklace polymer is called “Classical Isomorphsm” 11} The 1somorphxsm___ |
becomes eventua.lly exact when P = co. _

Eacl bead of the isomorphic necldace, onto whxch the electron at a
certain imaginary time has been mapped out, interacts with two adgac‘ent,
beads through a harmonic potential of spring constant Pm/ 24% and with
the molecules. The latter interaction occurs through the electron-molecule
pseudopotential scaled by P (second term in Eq. 3.18).

The “Classical Isomorphism” enables 6n;a to take full advantage
of the classical theories of polyatomic fluids ;en.nd the related simulatit;n
techniques to compute the physical properties of & quantum particle in a |
liquid. Both molecular dynamics n£1d Monte Carlo simulations have shown
to be able to sample the Ba.rticle quantum paths.[13,5,52] This thesis will
discuss only the latter approach to the problem.

3.2 The Monfe Carlo Method

In the past, large use has been made of the Monte Carlo (MC)[2] method
to simulate éla.ssica.l solids and liquids. A standard MC simulation samples
the configurational space of a given many-body system in the canonical
ensemble. .

One can begin a mo&edetailed discussion by looking at the canonical

average on the (NvT) ensemble of an arbitrary quantity of interest A L

J Aexp(—BUn)dp"dr¥ (3.20)
Jexp(—BUn)dpNdrN ° -

(4) =



23

-

- where Uy is the conﬁgura.tronal energy, {p” } and {rN} are respectively
the particles momenturh a.nd p031t10n coordmates Smce Unis momentum
.mdependent, the mtegr.a.ls over dp” in the numerator and denomlnf.}ot'

~cancel out. Thus, one obtains ' T

(4) = [ Aexp(—pUy)dr"
S exp(—BUn)drN -

(3.21)

The traditional MC method for many dimensional integrals, which samples
the integral on a ranciom grid of configuration space Poipts, is not practical
in %&se. In fact, only certzﬁn physically accessible re-gions of the phase
spac’:e’ contribute substantially to the integral in Eq. 3.21. This makes a
random sampling of the pha.se space extremely inefficient.

| The importance sampling MC method due to Metropolis et al.[53, 54]
uses another approach. It samples preferentially from the regions of the
phase space which | give the greatest contribution to the configurational
integral in Eq. 3.21. This biased sampling is carried out picking up con-
figurations according to a probability distribution IT corresponding to the
canonical distribution. Here IT can be regarded as a vector of finite dimen-
sionality in which the element II,, gives the probability of occurrence of the
‘m-th system with-energy Unx(m). The importance sampling algorithm uses

the Boltzmann factor exp(—BUy(m)) as probability of the state m, namely
II, = exp(—BUn(m)). (3.22)
The Metropolis algorithm is a procedure (series of stochastic pro-

cesses) that, in the end, generates a sequence of systems distributed in

N
TN

v
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phase space according to the unique steady-state distribution IT. It can be
shown that if each system of a'stochg.stic sequence ‘iw,s probability of oc-
currence that depends only on the previously generated ,systémﬂ- then after
a sufficiently long chain the distribution of systems reaches a steady-state
proba.bxhty d:stnbutlon A stochastic process tha.t satisfies those conditions
is called a Ma.rkov chain. [55] ‘
"However, the process bemg a Markov cha.in;cr se does not assure its
ergodicity. Different steady-state probability distributions can be reached
from distinct initial conditions. The process of generating a sequence of
systems becomes ergodic if the transition probability, P,_.., between two
states i‘n the chain, n and m, obeys the so-called “ microscopic reversibility”

o

(or “detailed balance”) property

~ .
I Paem = O Prcan. (3.23)
In such a case, an unique steady-state distribution is approached irrespec-
tive of the form of II. ’
The transition probability matrix for the systems generated in the
chain 1s

T (3.24)

where P, is an a priort transition probability matrix and the second

l'—'a

P _y=P_ .mm[ Mo Py ]

factor is an acceptance probability.
The Markov chain generated according to the transition probability
matrix in Eq. 3.24 converges to a steady-state distribution which coincides

with the canonical distribution. o

.
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The biaﬁed sampling 6f the cdnﬁgurétionalépa.ceraccording to the -
dxstnbut:on I1 a.ﬁ'ects the way one ddes the average on the ensemble Each
| equillbnum propert'y of Ehe’system in the state m has’ to be welghted by
the probablhty I ﬁ'om quch one samples. The mtegra.ls in Eq\ 3.21 has’
- to be substituted by a d15crete sum over the N states generated by the MC
sa.mplmg Thus _ ) _ .
S A(m) exp ( - BUN(m)) /Tim
Emexp (= BUn(m))/Mm
If the e_xp'ressic;n of I, in.Eq. 3.22 is subst‘ituied in Eq. 3.25, one obtains

v

(A) =

(3.25)

3.3 Classical Monte_l Carlo Simulations

Generally, classical MC. simulations of liquids are ca.rrit-ed out on systéms
composed of few hundreds atpms‘ (or molecules) contained in a cﬁbic box.
To avoid surface effects, the so-called periodic bour}dary conditions are
imposed in which the simulation box is periodically repeated in space along
‘the three cartesian axes. For each particle which exits the box its reflected
image enters from the opposite direction.

For a system composed of atoms, the a prior: transition érobability
P,‘_,,; ci):rresponds to the displacement of a particle chosen at random from

an initial position ( Xy, Ys, Zo ) to a final position X, i, Z,

e X! = X0+£zxma.r



“ Y = Yo+&Yme .

2y = Xot Ezzma:r : T (321
where £, -E,;, £: are random numi)ers from 0 — 1, Xmars Ymary Zmaz 8re the
maximum displacements of the particle allowed for each move.

It is-obvious that in this case P,._,,, = P;i_,,, therefore the trapsitiori

probabilitf in Eq. 3.24 takes the simpler form

P, =Py min[l,exp (~ B(Un(s") — UN(s))] (3.28)

where the expression of I, in Eq. 3.22 has been used.

Each _r_ilbve is accepted or rejected according to min[l, %‘f] which
is sometime called the Metropolis function. In practise this I;ICB.IIS that
wﬁen Un(s') < Un(s) the move is accepted and when, instead, the rt:crsé
occurs the move is accepted with probability exp ( — B(Un(s") - UN(s))-).
In the latter lcase a random number £ between 0 to 1 is generated; if £ <
exp ( — B(Un(s") - UN(s))) the move is accepted. If the move is finally
rejected the configuration s is counted again in every average.

In case of molecular liquids, rotational degrees of freedom also have
to be sampled by a MC simﬁlat‘ion. Quaternions{56] are gt;nerally pre-
ferred to Euler angles to define the orientation of & rnoleculeﬂ in space bé-
cause they giveg}ise to a rotation matrix of the molecule which is non-
singular. The quaternions coordinates along with the molecular center of

mass are moved according to rules similar to those specified previously for

monoatomic systems.[57]
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It is obv:o‘us that a particular cho:ce of. ma.:umumxcoordmate dis-

placement does not aﬁ'ect the final d.lstnbutlon It alters, instead, the rate

at which the moves are a.ccepted and the velocxty with which the steady-
state probablhty d1stnbut1}on is reached.

A high accepta.nce rate can be achieved with small maxxmum dis-

. _placements. Unfortunately, this brings to a slow convergence of the simu-
’ fation since the phz;se space is sampled'siowly. On the other hand, a large

7 maxlmum d1splacement a.lso leads to a slow samphng of the.phase space,

beca.use of the low acceptance rate.- It follows that an mtermedxate value
of the acceptance rate is usually preferred.‘A typical value that maximizes

-

the convergence of the simulation is ~ 30 — 40%.

3.4 Path Integral Monte Carlo ¢

Se far only the application of the MC importance sampling method to clas-
sical systems has been discussed. Nevertheless, by exploiting ;he “Classical
Isomorphism” examined in section 3.1.2, the MC tecnique can.be employed
to simulate quantum-classical systems. In accordance with Eq. ‘3.17, in
these circumstances the probability distribution from which one has to cam-
ple is . .

I = exp ( — B(Ve-n + V-n))- (3.29)

Here V,-_n and Vy_x are respectively the contributions from the electron-

molecule and molecule-molecule interactions to the average potential energy

’ \i.
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of the system. Before discussing the problems that this type of simulations
generates and how the chfﬁcultles can be overcome, it is opportune to exam-
.ine the non obvious relation between the energies of the qua.ntum particle
‘and the 1somorph.1c system. . o \\
While in quantum mechanics theh energy of a fmrticle is i'nterpreted .
as the expectation value of the Hamiltonian operator evaluated ir; the oc-
cupied ste.te, in st‘atietical mechanics the energy has to be related to the
partition -functi-on of the system. In particular, in the canonical ensemble

the energy is given by .
g=_ 9@
o8 " _5

If the path integral approximation of the partition function of a_mixed

(3.30)

: quanturn’-classiea.l‘systenﬁ (Q(N , P,Bj in Eq. 3.17 ) is substituted in the

above equa.tidn one obtains the following energy estimator

B= RS o))+ () (). o

Consequently, the quantum particle kinetic energy is given by

P 2
K= %g- - %(2 (r) = Fora) ) (3.32)

=1

The above estimator is, however,‘not suitable to be used in a MC simulation.
-In fact, with large P values the kinetic energy is given by a sum of two large
numbers of opposite sign. This'brihgs a high numerical uncefta.inty on the
average. Herman et,a.l.[58] circumvented this problem showing that in the

(NvT) ensemble

P N B :
K’:oi %(Zr,p-zaL(‘;r.—R“)) (3.33)

=1 i=1
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where r,-p.-sta.nds for r, ~rp. 'This,express'ion for the kinetic energy is
legitimate oniy if the extefnal pressure acting on the quantum ﬁartide
is zero.[10] The same authors showed that if P — oo the mean square
ﬁuctu”a;tion in the kinefic energy giveh by Eq. 3.32 grows as O(P), while

the energy estimator in Eq. 3.33 is insensitive to P.

3.5 The Staging Algorithm "

Due to the increase in strength of the harmonic spring that connects two
adjacent beads, the Monte Carlo importance sampling of the isomorphic
polymer chain- becomes more inefficient when the number of beads in the
chain increases. When P is big, moving a vertex of the polymer has very
few chances to be accepted unless the associated maximum allowed dis-

placement is ver all. As mentioned previously, both a low acceptance

. rate and.a,. slow sampling of the phase space produce an ipadequate con-

vergence of the simula.tion; Since P in the order of 10°% is the usual number
for an electron in polar liquids (see later in this section for details on h-ow
P is chosen), an alternative to the importance sampling must be found.

| In éhe past, two approaches have been devised which partially solve
the problem. In one case the standard Metropolis algorithm is substituted
by a biased importance sampling.[12] An approximate transition probability
is used to chose a new point in the path from the actual position and the

position after the next imaginary time interval. Because of this, only moves
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- with a high proba.blhty of bemg accepted are actually attempted whxle, at
the same time, the phase space is sampled eﬁimently This method has
been used to study solid and liquid hehum[12,14] and an excess _glectron in
water[52] and rare gas liquids.[15] The other sampling method which has
been used in the past.is the so-called staging[59,60,5] and will be the one
used throughout this thesis. _ . . :

' Bei_'ore- discussing this technique in deta.?l, itis ﬁseful to épecify what
size of discretiﬁa:tion is needed in order to adopt the high temperature ap-
““proximation of the density matrix in a MC simulation of a solvated electron

in ammonia.

3.5.1 The Choice of P

The average distance covered by a bead in the imaginary ti_me T = % in

one direction is equal to

Ar = vt

= M(1/P)} (3.34)

where Ar is the de Broglie wa.v?length. This average distance corresponds
also to the average link length.,

. The high temperature approximation of the two body density ma-

trix is valid if in Ar the potential acting onqge bead does not change

appreciably. For the type of electron-ammonia pseudopotential used in

this thesis.(see next chapter for details) the former condition is likely to be
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satiéﬁed when Ar is in the order of ap, the Bohr radius. Accoraingly,'fhe
average MC move of each bead is of the same 'éize as dg.

Since the average dlsta.nce between two ammoma molecules i in the
hqwd I = (VIN )3, is almost one order of magmtude larger tha.n ao, it
is evident that the significant phase space of the electron will be sa.mpled
very-slo‘;vly. This _ar'gumént is exactly equivalent tor the one é,ddresséd_ at
the beginning of tﬁis section. .

It follows that what one really needs is an average MC move in the
order of I .a.nd, at the same tim.e, an average link length in the order of aq.
These fwc:;, apparently, ir‘reconcilable r-equiréments can be composed by the

staging algorithm.

3.5.2 Staging

The staging technique ‘divides the polymer chain in two subsections. A
primary chain composed of P, beads and a series of P, secondary chains
of P, beads inserted between each two adjacent primary chain beads. The
primary chain is sampled using the Metropolis importance sampling algo-
rithm while a direct sampling technique is used to handle the secondary
chain. '
Analytically, this means that V-_x in Eq 3.18 will be changed to

Pa P,-1
B . (3.35)

where r,_ ,, is the position of the s;-th bead of the secondary chain inserted

~ .
)
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bétween s, and s, + 1, r,, = Ty 0 and r,,410 = T, p. It is convenient -
to ‘write T,,,, as the sum of classicél’path.bet\f:éen r,, and r,, and the

deviation frofm it

Fsaey = ri{.,s; + Ar, 5. | © (3.36)

whiere |
r:i.la = Ty + 36(!‘.,4.1 - rl,)/Pb ) (337)
Ar,,0 = Ar,p =0 (3.38)

The first term in Eq. 3.35, say V( -_n» can be manipulated by the intro-
ducthﬂ of Egs. 3.36 through 3.38. Finally, one obtains

: Vc(—l?.N = 252 z_: (r., r,,+1)2 m;;fb Z Z_ (Ar"'"“ Ar"'""*‘)a'
‘ sa=1 sa=125=1 (3.39)
Tlie second term in Eq. 3.35, say V( )_ N> can, instead, be aPproximated by
the sum of two contributions, one deriving. from the interé.ctions amongst
the secondary beads and the nearby molecules, the other from the interac-

tion of the primary beads and the rest of the molecules, namely

1”=

ve = ZZV(Ir.. Ra|) + 5

(Ir'n " R’?I) .
(3.40)

a,...I 3=1

The‘sum over v includes only the molecules which are close to the link
" associated with the vertices 8, and s, + 1, while the index a runs over

all the other molecules. Technically, for each link all the molecules inside

an ellipsoid of volume 2y and centered on the two vertices of the link are

&8



.33

' {ncloded in the secondary cha:in contribution to V;(_g)_ - In other word, this
) ei‘goiﬁes that the moleouleé farther away from fhe lmks see a necklace with"
less beads, while the ones closer feel the intéraction with the full chain.
The real trick that makes the staging algorithm worth using is that
now the Metropolis algoﬁthm can be used for the primary chain beads
while a direct sampling of the secondary chains is performed It is therefore
convenient to-rearrange Ve ~_N in two contnbutlons from the primary a.nd

: secondary chains, namely

) ha
Ve-n o VE_n+VE o (3.41)
a Pn i) 1 Fa
VE_y = ’;‘ﬁz .‘.T‘_‘l (r.. "r..+1)2 +T.§1¥V(|r,, R.l) (3.42)
Veﬁ--N = mP Pb E E (Ar’an-'b Ar,n_,bﬂ)z-;-
c..—lq,—l
.t B 5 55 TV ([Faun ~ R (3.43)

% ga=1 n=1l 7
For each link the direct sampling involves the eva.lua.tmn of exp(—AVE _4)

# for a fixed number of gaussianly d.istributed[fl] secondary chain paths. The
weight to the importance sampling function from the set of paths is

P=exp(-BYVi_n) (3.44)

where the sum in the exponential is over the paths. The total probability

distribution from which one samples is therefore

I7 = IMIIP = exp ( — BVE_y)exp( — B VE_y). (3.45)
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Basically, the actual computatlona.l procedure a.ssocmted with the sta.gmg

algorithm consists of three steps Firstly, a randomly chosen bead in the

primary chain is rpoved according to Eq. 3.27. Secondly, the direct sam-
pling weight from the two links affected by the moveis recileula.ted. Finally,

the move is accepted or rejected in conformity with II7 in Eq. 3.45.

« The staging algoﬁthm not only affects the way one samples from the

phase space associated with the qﬁantum—sohlte, but also the computation
of the average kinetic and potential eneréies. It is clear that contributions
from the primary as well as secondary chains ha.ve to be included. p
To conclude 'this section, it mist be pointed out that the etaging
technique is a very good candidate for ‘V@ri/za.tion on modern superco;n-
puters. In fact, the evalua.f.ion of each path of a secondary chain does not
depend on the others in the set. For each primary chain link the ciirect

sampling of the corresponding secondary chains can be done in a single

shot on a vector machine. .

-

3.6 Equilibrium Correlation Functions

What follows is a discussion of the various time independent correlation -

functions used throughout this thesis to probe the equilibrium structure of

the syetems studied.

Classical Liquids The most commmon way to discuss the structure of a

liquid is to utilize the site-site correlation functions. -One defines gaa(r)
o N
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as the density of sites of type a occurring at distance r from the site of

~ type B z;ormalized to the liqtiidquerage 'deﬁ-sit)'r p. In the cémpﬁtation‘
. of the distributionsfunction only sites belonging to different molecules are
1ncluded The forma.l deﬁmt:on of gap(r) is given by

gaa(r) = - (ZZS(r-a) Bria=m)." - | (340)

i=1 §>i --
Information on the a.tomic~pa.1r_ correlation functions of hqmds and solids

can be gathered from neutron ‘diffracag:i and X-rays experiments.

o S N
Electron To characterize the form of the quantim pa.rticle'wa.veﬁmc.-
tion and the structure of the nearby liquid molecules different correl'zitmn
functions are cornmon.ly used. The functlons ut:hzed in tlns thesis are de-'
termined by mcludmg in the computation only statistics associated with
the primary chain beads: _ o }
The electron ce-nter of mass site correlatidh Eunction probes the

radial distribution of the molecules in the surroundings of the electron and

give some cruderinformation on their orientation. It is defined as

Gomeal(r) = -(Zé(rm)é(r—r,.)) i (3.47)

" nEa

where the sum runs over the sites a on.the molecules and r, is the center
of mass of the Py primary chain beads. The orientation of the molecules
" in the'vicinity of the electron cloud is better described by calculating the

electron c.m.-molecule dipole correlation function .

. (6) ‘oc ( 3" 8( cos(8om—i) — cos(6))), (3.48)
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with R; a.nd d|, respectwely, the p051t10n vector of the center of mass of

Cos(acm—|) = (3 49)
_the solvent molecule with the mdex t and 1ts dxpole moment vector. The
sum over the index 1 mcludes only those molecules in the wcxnlty of the
electron c.m. belonglng to a given solvation shell. - \

Somensights on the spatial extension and the néture of the elec-
tron state are provided by the complex time correlation function defined
2s[62,63,64] S
: 1

2 — —— , , ‘

RY(r) =5 ( z et +7) - r(f.)|), (390)
where the sum is extended to all the contributions from the electron at
imaginary times differing from each other by =, multiple of 5/ P,.

Electron excitation energies large compared to §~! are a sign of
dominance of the ground state in the electron wavefunction. It can be
shown(11,13] that for small r’s with the exception of 7 = 0, the deviation
of R*(r) from its maximum value at 7 = /2'is proportional to

AR} r) = R¥}r)-R¥B/2)
2 B(Eo + E\)

oS <'R.01 exp [— 5 ]

x exp[(Eo— Ex)r — 8/2] - 1), (3.51)
where Ey and E, are respectively the electron ground state and first excited
state energy. Ry, is the matrix element

= [dr [ e (0¥l - ¢ P (), (3.52)
& v
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' where Po(r) and T,(r) are the respective' electron wa.veﬁmttioxié it must i

be pomted out that Ry is proportlona.l to the electron dipole. moment for =

' the t‘ra.nsltlon 0 = 1 Addltmnally, at larger T va.lues ’R,z('r) reaches a'

: platea.u value gwen by

/

-

'R’(r (R3y exp(= ﬁE)) ) (359

. The complex tnﬁe correlation functlon for a free electron shows a stnk— ‘
 ingly d;ﬁ'e}ﬁt/ behaviour. In fact, Rj... has a parabolic dependence onT
according to : I o :
Rpee(r) = [37(6 = 1. @)
Moreover, at = [(/2 Eq. 3.54 provides an useful relation between Ap and!

.the electron correlation length ’R,(,B/ 2). One obtains

R = Lag. (3.55)

3

To conclude, two aspects of R(r) reveal the nature of the electron state.
An initial rapid rise with 7 followed by a nearly constant region signals that
the electron is in a compact state and the ground state is dominant. On

thé’contr‘éry, a parabolic dependence implies an extended -electron state.-

2

Atoms In the discussion regarding the solvation of atoms in ammonia

two additional distribution functions will be used to analyze the results.
The first is the electron-ion correlation {unction

- ga(r) = —( ¥ Z 8(r,)é(r — r,.)) (3.56)

ngo a=l
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where r, is the posxtlon of l'.he s-th pnmary chain bead. The second corre-
lation functzon is the :on—molecule d1pole correlat:on function which char-
actenzes the onentatlon of the molecules a.round the posutxve ion, It is

-~

defined in 2 similac way as P (), na.tr}.ely.

| Px(8) (Ea( cos(fx i) — cos(8))),. - (3.57)

" where
(R.. - rx) -d;
Ox_;) = - —"————, .
000 = IRy el (8.58)

with ry the poéition of the'ion X.
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. The Solvated El‘eétron-‘in' :

Liquid Ammonia at Constant

Pressure

In the past, path integral Monte Carlo (PIMC) simulations which used
the staging algorithm have been performed on an excess electron in liquid
ammonia.[5,65] The electron was found to produce a ilolé in the solvent
and become self-trapped in.it in a rather compact (locaﬁéed) state. Since
the simulation was carried out in the (‘NvT) ensemble, no theoretical es-
timate of the experimental partial molar volume was given. This chapter

describes a PIMC simulation carried out in the (NpT) ensemble which en-

abled the calculation of the liquid ammonia volume expansion produced by |,

the localized electron.

39
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4.1 Potentials "

. ¢ . R
The intermolecular potential us'ed for .amhmnia in Ref [5,65] is cémposed )
'of an electrostatlc sxmple pomt charge type potentm.l and a N N Lennard-f )
Jones interaction. The ammonia molecule is assumed to have a C3, sym-
metry wzth hydrogens placed at 1. 0126 A from the mtrogen The angle
between two N-H bonds is 106. 79 degrees The electrostatic potential con-
51sts of charges distributed in four sites on the molecule: @* = 0.485 on
the hydrogens and @~ = —1.455 on a site 0.156 A from the nitrogen along
the Cj, axis. This charge dilstribution reproduces the exi:erimental dipole
moment of u = 1.47D. The additional atom-atom inter;u:tion center is’
placed on the nitrogen with ¢ = 1.16 KJ mol~! and o = 3.40 A.

This potential was obtained from a fit of the set of parameters to
the physical properties of liquid ammonia. It must be pointed out that
this potential model does not include explicitly polarizability interactions
ma.ny-body.eﬁ'ects. The}; are taken into account only in an “effective” way.

It has been shown in Chapter 2 that the electron-molecule pseu-

1

dopotential can be written as

Voo(r) = Ve(r) + VE(r) + Vp(r) + Va(r). (4.1)

There seems to be agreement that for the similar case of an electron-water
pseudopotential the dominant contribution is provided by the electrostatic
term Ve. It was shown in Ref. [66] that (VE(r)) is negative, while {(Vp(r)}

and {Vg(r)) are positive. Moreover, the sum of the positive contributions



| pseudopotent:al is employed (see*Eq 3. 33)

: to V,,,(r) tends to ca.ncel out- Vg(r) A more senous error. may a.nse in

‘the estlma.te of the electron kinetic energy where the ﬁrst derivative of the -

LN

S1nce at the present time there is no rehable model potent:al that

includes all the terms in Eq. 4.1, the pseudopotentxa.l used in this thesis

inc]:udés only the elecrrostatic'contribution and neglects all the others.

‘ A purely electrostatlc pseudopotentla.l possesses a s:ngulanty at’ the
origin. In the presence of singularities the direct sampling of the secondary
chain expenences crucial attntxon problems. Moreover, a large discretiza-
tion of the electron polymer may be needed for the high tempera.ture ap-
proxxmatlon of the imaginary time propagator to hold.

To eliminate these problems, the Coulombic potential can be re-

- placed by a quantum effective pair potentia.l' which in the past has been

used in Plasma Physics.[67] Here the interaction between the site & on a
i

_given ammonia molecule and the electron is given by

Q062

A

where @, is the fractional charge placed on the a-th site of the molecule

(-s-rP)=

o~
Ve“—r::r(|r e RGI) =-

positioned at R, and e is the electronic charge. The quantum effective .

potential in Eq. 4.2 arises as a dire¢t consequence of the diffraction effects
due to the-uyrta&nty principle.

Although, the regularized Coulombic potential is adequate for the
repulsive interaction between electron and nitrogen, it does not work as

well for the attractive interactions . Since the electron and the molecular
o
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'eigenf.mct;m have to bé orthogonal to. each other, the probability of find-

'ing the excess electron loca.ted on the hydrogen of the ammonia molecule

7 must be very low. Beca.use of the deep minima on the hydrogens, such a

. requu'ement cannot be fulfilled when the quantum effective potent:al inEq.
4.21s utzhzed o ' , | /

A way to get a.round the problem is to use a model potentml l:ke

those widely used in the past in band structure calculations of metals.

Shaw{68] proposed the following pseudopotential-

Vo_n= —Que/lk-Rul  |r—Ry|2R.
Vg = ~Que*/R. . - Ir-Ry] <R. (4.3)

<

A similar model pseudopotential was used by Pa.rrir;ello and Rahman(3]
in 2 path integral simulation of an F center in molten KCl to handle the
interactions between the polymer- chain and the potassium ion. The choice
of R, for the electroxhl-hydrogen interaction is somewhat arbitrary. R, = 1

A was used throughout this thesis.

4.2 Path Integral Monte Carlo at Constant
Pressure

Feliowing McDonald,[69] the average of a classical dynamical variable in the
Anonical ensemble at constant pressure can be derived from Eq. 3.21 by
La‘dding a pressure dependent energy term to the total energy of the syétem
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a.nd:a.veraging over all possible molar volumes. Thus one obtains

L ay- 5 dvexp (= fpo) [, A(RY, v) exp [ - BUN(RY, v)]dRY
_ - _ J&° dvexp(— Bpv) fuexp[—ﬁUN(R{v, v)]dRN

A .

- - The integral over the veriable v has to be evaluated for a constant shape of

(4.4) -

the volume enclosing the particles. In a MC simulation the volume must be
. ‘ . o

sampled as well as the particle coordinates. To do so a new set of particle

coordinates has to be introduced to provide an explicit dependence on the

volume in the second integrals. This set of coordinates is defined by
o; = L_IR.; . (4.5)

where 'L is the edge.of the cubic simulation box in which all the particles
are contained. The range of the coordinates {a’¥} goes from zero to one.
If the {a™} is substituted ir Eq. :4.4, one obtains
Jo2 dvexp (= Bpuyo® [, A([La]™,v)exp [ — BUN([La]", v)] da™
C [P dvexp(~ Bpo)oY [, exp [~ BUN(ILa)Y,v)]daV

(A) 1
(4.6)
~ where the integrals over.{a"} are restricted to an unitary cube w. In con-

formity with Eq. 4.6 the phase space of the system in the (NpT) ensemble

has to be sampled'ti)_v a MC simulation according to the probability
' L

exp( = Bpv — 83Uy + Nlnv) (4.7)

Although the Metropolis importance sampling algorithm can be

easily adapted to sample the phase space of a classical system in the (NpT)
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- ensemble,[69] the éxtension to the quantum-classical system is not concep-

tually straightforward, =

Quite intuitively, one can say that the fluctuations in.thé volume of
“ the simula.tiqn box do not pro&ucg modiﬁc#tidg in the eléci:,;on wavefunction
if the electron is localized in a-.,region'sma.ll compared to the size of the box.
- Indeed, onl)( in this r;a.se the systenﬂ satisfies the quantum mechanical virial

theorem[10]
1

(KE)= -3

(PE), (4.8)

where K E and PF stand respectively for kinetic and pc;tentia.l energy. It
becomes evident that the isomorphic chain need not be affected by changes
in the volume if L > Ar.

To find some support to the last statement one must concentrate on
the partition function of the mixed quantum-classical system in the (NpT)
ensemble. To simplify the algebra of the calculations, the potential ficld
produced by the N molecules and acting on the i-th electron bead with
coordinate r; will be represented by &(r;). Thus, from Eq. 4.6 and 3.17
the partition function of the electron moving in this potential field can be

written as

QtP, g) = jom dvexp ( — ﬂpv) /;drldrg -+ drpexp ( - ﬁS,_.H), (4.9)

where

P & . ; 18
Sers = 2m 2 Z (ri—rip1)" + P ; é(ry). (4.10)

i=1

At this point, it is useful to introduce a new set of electron coordinates

)

-



relative to the center of mass of the beads, namely
e r’- z
= pm
) rf = r—rem,
‘ r;’—l = -I'p-t = Tem ) .
rp = Ip-—Tcn. . (4.11)

Instead of integrating over the original P coordinates, one can now integrate
OVer Ie, and 1), 15, <+, r’p_l‘( note that r} is linearly dependent on the P—1
bead coordinates and the center of mass,i.e., rb = — ¥ r! ). It follows that

. Eq. 4.9 can be rewritten

Q(P.8) = '/;ma've}tp(—ﬁpv) j dromdr,drl - - dr's_,
_ X exp[—-ﬂscﬂ(r”’_l,rm)}. (4.12)

When the electron is localized in a cavity inside the solvent, the integrals
over ry,r3, -+ ,rp_, in Eq. 4.12 decay very rapidly outside this region. Con-
sequently, when the dimensions of the electron necklace are small compared
to the simulation box, these integrals need not be extended to the entire
volume, but only to a restricted region of space enclosing the cavity. Thus,

the partition function is now given by

QP.B) = jowduexp(—ﬁpv)[udrmfu‘dr;dr;---dr;;_l

X exp [ = BSers (1P, vm)]. © (4.13)



Here the dimension of v’ are in the order of the electron wa.vefunct:on and
v’ < v. The mtegra.l over the center of mass of the electromc charge, nmnely
Iem, Must be extended to the simulation box volume, v.

Using .volume scaled coordinates, the partition function i-n Eq. 4.13
can now be rearranged in the same fashion as for classical systems, but now

the only coordinate to be scaled by the volume is ron = L * &tam. Thus

QPB) =. f:?dvexp.(-—6pv)v];udamfu'dr;dr;.--dr;;_l

X exp [ = BSess(r", Laen)], (4.14)

where w is the unitary box. Combining Eqs. 4.14 and 4.7, it is now possible
b S
to write down the probability distribution from which to sample in & PIMC

simulation at constant pressure

H:exp(—ﬁpv—ﬁ(Scf;+U,\.—)+(N+1)lnv). (4.15)

In conclusion, the partition function in Eq. 4.14 and the propability density
in Eq. 4.15 imply that each time the volume is changed only the coordinates
of the molecules and electron polymer center of mass are to be scaled with

it, while the position of each individual bead relative to r., is kept fixed.

r

4.3 Simulation Details and Results

It 1s advantageous to the general discussion to report in some detail the
results from the constant volume simulation. Such a calculation was re-

peated in this thesis in order to produce an equilibrated electron-ammonia

46



configuration which in turn was used as a starting point in the constant

pressure calculation. )

4.3.1 Simulations in the (NvT) Ensemble

Simulation of the Fluid - Initially, a classical MC simulation of the lig-
uid at constant volume was carried out in order to obtain an equilibrated
conﬁgurat‘:ion of ammonia molecules in which' to introduce ‘the electron.
The sifnulétion was performed at the same conditions of temperature and
density as in Refs. [5] and [65]. To summarizeé, T = 260 K, N = 250, V =
25.3 cm® mol~!. Cubic periodic boundary conditions were applied to the
molecules center of mass in the simulation box to eliminate surface effects.
At the beginning of the simulation, the ammonia molecules were arranged
on a body center cubic lattice and given random orientation.

In this classical si.mulation a MC pass was defined as a sequence
of trial moves of randomly chosen ammonia molecules. The length of this
sequence equailed the number of molecules in the simulation box. Each
move of an ammonia molecule involved. translation of the molecqlar center
of mass and rotation of the molecular inertial frame using quaternians.

The maximum allowed move for the coordinates was set to 0.1 & for
the molecular center of mass and to 0.01 for the quaternions.[57] With such
choices the overall acceptance rate was about 40 % for all the*simulations.

After 2000 passes of equilibration, in which the potential energy set-

tled to a steady value. averages were accumulated for 5000 more passe? In



the siri:xulaticin conditions the ammonia was liquid. The calculated average
potentia‘l energy and ﬁa&r. corfelaigion function are in agréement with the
previous MD and MC calculations doﬁe with the same model potential. In
- Fig. 4.1 the calculated and experimental nitrogeri-nitro_gen pair correlation
function are com'p;a.t"ed. These functions show that the simple point charge
potential is able to reproduce correctly the structilral features of the liquid
ammoniza. From the integration of the calculated nitrogen—nitrogen corre-
lation function it was found that each ammonia molecule'is‘surrounded by .

12 nearest neighbours.

Solvated Electron The number of beads in the primary and secondary
chains used to simulate the electron were respectively P, = 128 and B, = 8
with a total discretization P = P,P, = 1024. Each time an attempted
move of the primary chain was pgrformed 25 molecules were moved as
well. A PIMC pass consisted of the attempted move of all the primary
chain beads and of 25 x P, ammonia mo!ecules. The maximum allowed
displacement of the primary chain beads was set to 0.1 A in order to achieve
an acceptance rate for the polymer motion of about 30 %. The change in
coordinates of a primary bead involved the recalculation of the secondary
chain contributions from the two links connecting the two adjacent beads.
One hundre{seconda.ry chains were included in the direct sampling. The
ellipsoidal map around each link was defined by a first axis which coincides
with the link and a second axis of 1.3 A.

A compact isomorphic electron polymer was inserted in an equili-

i

\~
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brated i’i(uid ammonis, configuration. Initially, the beads ;,f the prima:y
chmn were ra.ndomly a.rra.nged to give a correlation. length 'R,(ﬂ/2)
'A The molecules were moved to rearrange themselves’ a.round the electron
cha.m for 100 passes. Then the concun'ent‘. samphng of the molecules and
isomorphic polymer was 1mt1ated ' _
Imtla.lly, the mmula.tlon was ca.rned out for 500 passes to equilibrate
the system. During this period the electron expa.nded its sme to rea.ch a-
correlation length of 4.0 A; its potential energy decreased to - 120 kgT "
+from —30 kgT. The configurational energy of the liquid defined in Eq. '3.17
stabilized around - 18.40 KJ mol™?, 0.40 KJ higher than the energy of the
pure liquid.
' SuBsequentIy, tite simulation was run on for 1000.more passes and
averages accumulated. Partial averages of the potential and kinetic energies
were recorded to monitor the convergence of the simulation. At the end of
the run the energies oscillated steadily around the mean values.
The results of the simulation were similar to those in Ref. [63].
The electron was localized in a solvent cavit‘y and its correlation length was
R(B/2) = 4.01 £0.02 A. In Fig. 4.2 the electron center of mass-%:monia
pair correlation funttiqns are reported. The scarcity of structural features
in the two functions is primarily due to the quantum nature of the electron.
This in turn is in agreement with the highly structured shape of the pair
correlation functions of classical ion in polar solvents. As shown in a paper

by Schnitker et al.[13] on an excess electron ‘solvated in water, an increase

>

’
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-m dlscretxzatmn produces the dxsappea.ra.nce of strong correla.t:on between -
électron and molecules I I _ S

In Fxg 4.2 the (cm-N) curve is the more structured of the two,’
It presents a first peak at 3.9 & a.nd a weak second .pesk at 6.9 A By .
.mtegratxon over r from the on_gm to the first rmmmum at 5.6 A,; it was
found that tiiefe are 15 a.mmonis: molecules in the first solvation sheath of |
the electron _In contrast the (em-H) curve ‘shows only one week peak at ‘
3. 9 A as (cm-N) The number of hydrogens in the first electron solva.t:on
shell, calculated from (cm-H) is consistent thh the' preceeding result.

It mu:t be pointed out that the electron c.m.-ammonia pair corre-
lation functions calculated in Ref. [5] with a purely coulombic pseudopo-
tential differ from the ones in this thesis for the position of the penkswhich
are closer to the origin (first pea.k at 2.9 A,\second at 5.5 A) and for the
number of ammonia molecules coordinated to the electron, 9 opposed to
15. This seems to indicate that the effect of the Shaw type pseudopotential
is to produce an electron less localized inside the cavity and more diffuse |
onto the molecules of the first solvation sheath.

The electron dipole correlation function is plotted in Fig. 43 The
ammonia molecules in the vicinitjr of the electron are on average bond
oriented toward the electron center of mass. This is shown by the peak in
the dipole correlatio:; function at cosf = 0.65 associated with an angle of
130 degree, close to 112 the angle between the oriented m::lecular axis and
the NH bonds. Only the ammonia molecules within r = 5.0 A from the

i

-+
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electron center of mass were included in the calculation of the curve. This

‘ cﬁt;-o.ff._-in-the Pc,,,'(ﬂ)" deﬁnee the electron ﬁrst's_olvation shell.

e

| .4 3. 2 Slmulatlons in the (NpT) Ensemble

In both the classxca.l a.nd qua.ntum MC ca.lculat:ons performed in this study _
the volume was sampled by va.rymg the cubic box edge L accordmg to

=L+ sLlo, | | (4.16)

whefe L is a random number between 0 and 1 and lo is the maximum
allowed change in L. In both the types of simulations a change ir-l'L' was
attempted after the posmon of the particles in the box had cha.nged signif-

icantly.

quuxd Ammoma at Constant Pressure -At first, a simulation of the
pure fluid at T = 260K , N = 250 and at a pressure such as to reproduce
the liquid ammonia molar volume of 25.3 cm® mol™! was carried out. A
classical MC pass consisted of the attempted move of 25 times the totality
of the molecules and once the box edge L. The maximum displacements for
the molecular coordinates were kept at the same value set in the preceeding
ca.lculation-at constant volume while Iy in Eq. 4.16 was chosen equal to
0.45}1 to give a volume acceptance rate of 35 %. The calculation was
started from an equilibrated configuration of ammonia molecules obtained

at constant volume. It was found, after several attempts, that a pressure of
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500 ba.rs was needed to sécure a molar volume of 25 26 + 0.02 cm® mol-!,

- The error was estunated in the usual way by looking at the subaverages

After about 3000 MC pa.ss&c the sxmula.txon ‘converged following a
‘standard equ.lhbra.tmn run of 1000 passes. As was expected, the gN_N(r)
did not show a.ny sxgmﬁca.nt va.natxon with respect to the constant volume
ca.lculatmn. In addition, the ﬂmd potential energy was very close to the -
preceedmg calculation, = 18 82 KJ mol-? compared with —18.80 KJ mol™!

-

Solvated Electron at Constant Pressure The quantum sim-ula.t_ion
was initiated from a configuration taken from the constant volume calcu-
lation. A MC pass involved the attempted move of zll the beads in the
electron polymer chain along with 25 times the totality of the molecules
and once the box edge L. The maximum cell move was the same as in the
simulation of the pure fjuid and brought a similar acceptance rate. For few
hundred passes the molecules and the ‘box‘were allowed to equilibrate at

p = 500 bars around the beads which were left untouched. Subsequently,

—

the full sa.mphng of the electron path, ammoWes and volume was
started.

The convergence of the PIMC simulation was monitored by exam-
ining the box edge and the system total energy every few hundreds passes.
These variables were found to be sufficiently stationary after a total of 1700
passes. In Fig. 4.4 four volume subaverages at different passes of the sim-

ulation are plotted. The average volume of the simulation box was 10622
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At the end of the run the structure of the solvated electron was
examined-and compared to the results obtained in the-previous calculation
at constant volume. The electron wavefunction is slightly more expanded
while thé st;-uctu£e of the molecules around the electron does not change
significantly, The complex time 'cofrelation functions R(t —t') for the two
ca.lcd_lations‘are plotted in Fig. 4.5 The correlation lengthrat constant
pressure is 4.15 A which compé.re with 4.01 A of the other calculation. In
Fig. 4.6 the (crﬁ-H) and. (cm-N) pair correlation functions are reported.l
There are no significant differehcés between these curves and the ones at
constant volume in Fig. 4.2.

o

4.3.3 Partial Volume of Electron Solvation

Finally, from the results of the above sections one can calculate the relative
expansion of the liquid produced by the electron. The calculated expansion
of the box is ' -

AVior(cale) = 119 £ 104°. (4.17)

The experimental molar volume of the solvated electron is affected by a
large uncertainty. In fact, it is derived from the partial molar volume
of very dilute metal-ammonia solution and an evaluation of the volume
change produced by the metal cation’in solution, At present the commonly

accepted experimental estimate of the electron molar volume is{70]

AV (ezp) = 100ecm3mol~!, | (4.18)



A

which compares to the result from: this simulation * . - ) |
AV(cazc)': TL+6em®mol™, . - (4.19)

A} -

| denved from Eq 4 17.

Wlth the thh uncerta.mty of the expenmenta.l mola.r volume borne' o ’

in mind and in Splte of the unsoph:stxca.ted model potent:a.l for the electron-
- ammonia mteractlons, ‘the agreement between expenment and ca.lcula.tlon
is satisfactorily. However, a more sophisticated pseudopotential, perhaps
Qincluc}ing polarization, could very likely improve this agreeme_ﬁt..

. Another factor that could affect the simulat.ions_result: is the han-

dling of long range electrostatic interactions by a spherical cut-off. However,

due to the electron spatial localization in the solvent, this aspect is thought |

by
to be of minor importance with regard to the relative volume expansion.

’ .
For later reference, it must be pointed out that the quantum sim-
ulation at constent pressure described in this chapter was about 4 times
more time consuming than the one at constant volume, totalling 12 hours

of Cyber 205 CPU time. . ~
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N:trogen—mtrogen pair correla.txon functxon ca.lcula.ted ( contmuous hne) a.nd

v

from x-ra.y dxffractxon (dashed line). ..
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Suba.vera.—ges of the simulation box edge length, c, at different MC passes.-
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Figure 4.5

pressuré and at constant volume in liquid ammonia.
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Figure 4.6:
Distribution functions at constant pfessure for the solvent hydrogen and

nitrogen atoms with respect to the electron center of mass.
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Chapter 5

Free Energy of Electron

Solvation in Liquid Ammonia

5.1 Free Energy from MC Simulations

The partition function and the free energy of a system composed of N

interacting classical particles can be calculated by observing[71,72] that

v" _ [exp(— BUn)exp (+ BUn)dRY
Q Jexp(— BUN)IRN ’

(5.1)

and
-1
Q = vV(exp(BUN)) . (5.2)
In principle, the above canonical average can be estimated by a conven-

tional MC simulation.[71,73] Unfortunately, since exp (8Uy) increases very
rapidly with an increase in Uy, a Metropolis MC calculation, which samples

|3
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~ 'the most physically important regions of the phase space, will not be able
to give appropiate weight to those regiéns of high configurational energy
(Un) not Physically likely to be reached. For the uéual statistical systems,
this limitation makes impossible the evaluation of the free energy from Eq.
5.2. '

~ Notwithstanding this fact, in the past few years more successful free
energy methods have been devised. :All these-methods calculate the difi:er-
ence in free energy between a reference state of known free energy and the
state of interest. For example, the thermodynamic integration method(74,75)
requires that the two systems be connected by a reversible path, defined
by some continous pa.ramet;er. Genefa.lly, this involves carrying out a MC
simulation for ea'ch point of a chosen grid along tﬁe path. On the other
hand, methods such as the energy distribution technique[76,77,78] and the
acceptance ratio method(79,80,78] are able, in principle, to estimate the free
energy difference without using intermediate stages. Nevertheless, calcula-
tions in the past have shown that multistaging is always a necessity when
studying systems of physical interest.[76,77,78] It is instructive at this point

to elucidate the differences amongst the above free energy methods.

]

i The acceptance ratio method was first introduced by Bennet.[79] It ex-

ploits the following property of the Metropolis sampling function

M(z)
M({—z)

= exp(—z), (5.3)
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" where M (z). = min[l,exp(~z)]. In the importance safuiﬁiing a.lgorith;n
- each move is accepted and rejected accordiﬁg to M (.ﬂUN) ‘K UR and U
are respectively the potential functions that describe the reference system“

. and the system of interest, then the followmg relat:on is satisfied

M[pwg -vk)|
M[pUy - UR)]

[ﬂ(U}v UN)] (54)

This can be convenientiy rearranged into

MUY = UY)] exe [ - BUR)] =M [0} - UR)] exp [~ AUR)]- (5.5)

The above equation can be éxploited to calculate the ratio @o/h
between the partition functions of the two systems. By dividing both sides
of Eq. 5.5 by Q,Qo and integrating over the configurational space of the

two systems, one obtains

1 SM[BUR — Ul exp [ - BUR]RY
Qo - @ -
<o | — D N
5 M{pws - U )]c;;p BORJRY

which implies

o <M[ﬂ(Uﬁf - UR:)])

% (lows - vy ) o

The route to estimate the two cangnical averages on the right hand side of

Eq. 5.7 is to conduct two MC simulations, one for each system, and calcu-

late the total acceptance rat'p«inbo'é ensembles of the move that switches
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the two potentxa.l functions. The two averages must be Ia.rge enough to be
successfully evaluated by & MC calcula.t:cup This is not the case when the’
two potential functmns are very far apart. ‘
Unfortunately, in the totality of free energy problems that have been, |
studJed in the past with this method the phase spaces of the two systems
never overlapped sufficiently to allow the evaluation of Eq. 5.7 in one

stage. The solutien to this problem is to single out intermediate potential

- 5
functions between Uy and U}, and calculate 5.7 in different stages.
ii Calculations in the past have shown that the evaluation of Eq; 5.7 using
multistaging requires a very lengthy ea.mpling. The same type of §robie1’n
arises when the energy distribution method is used. This method calculates
the ratio Qp/@ according™o
QD [A hO(A)
— =g . 2.8
o= ma) (58)
where
Cho' = (B(UR - Uk — &), ‘
by = (6(U - Tk - A)),. - (59)
When ho(A) = hy(A), from Egs. 5.8 and 5.9

As happened in the acceptance ratio method, a poor overlap between the

two systems configurational spaces leads to difficulties in the evaluation



T TR A Y-

- - - - ' N . o .
5 . . . g EN e . - .o O . R

of Eq. 5.8. Theee problems can be overcome by resortxng to multlsfage :

-sa.mplmg as it is done in the acceptance mt:o method

-

. energies_ %etween two systems using-the identities

| = f (g‘:)d). L (5.11)

where Alis a pa.rameter t.ha.t defines a rever31ble pa.th between the systems
descnbed respectively by A4, and Ao. The canonical a.verage in Eq. 5.11
can be evaluated by a sta.nda.rd MC simulation. Usually, the convergence of
the free energy derivatives is good The thermodynam:c integration method

: mtegrates numerically <3A/ aA)_ with respect, to A evaluating the therrna.l

average on a grid of A values between Ao to A, If <6A/ 3)\) is a smooth .

function of A, only a few points might be needed to evaluate the integral.
Phase transitionsralong the reversible path may influence the convergence
of the free eénergy derivative and increase the error. |

Free energy calculations performed in the past using the acceptance
ratio and the energy distribution methods have required- Ienéthy sampling
to obtain reasonable convergence of the required averages and appreciable
accuracy in the final results. It is now clear that, if the initial and final

states are very far apart from each other, the thermodynamic integration

technique provides the route, less demanding in computer resources, to

-

ili The the_rrﬁodynamic integration method calculates the difference in free -
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calculate the free enefgr_. If, instead, two states overlap sufficiently the two

other tecﬁniqu&s.may_be less wasteful of computer time. ’

5.2 ‘Application to the Electron in Liquid

- Ammonia

TheAHelmoltz free energy of electron solvation in liquid a.mmoni?a. ma& be
interpreted as the free energy necessary to charge up an electr'o'r'x immersed
in the liquid from charge zero to full charge. This is the solvated electron
analog of the Debye charging trick used in the-electrolyte-theory.

In the initial state at zero charge the electron can be considered free -
since there is no interaction with ’the molecules of the solvent. The fully .
charged electron, instead, is solvated by the ammonia molecules and is self-
trapped in a cé.vit.y produced in the liquid. The two states are sufficiently
different from each other that the free energy difference is anticipated to
be efficiently estimated by the thermodynamic iniegration method.

The parameter A, ove\lms‘

hich the integration is to be carried out, is

the charge of the electron. Equation 5.11 can be rewritten as
¢ ;04
A= o= [[(Z)ds (5.12)

where Ay and A, are the free energies respectively of the electron immersed
in liquid ammonia at zero charge and at full charge. The integral in Eq. 5.12
is calculated by choosing an appropiate grid of charge values and evaluating
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the statlstxcal average <3A/3q> at this meah of points.
. The derivative of the free energy mth respect to the c.ha.rge can be

exphc1tly denved id the ca.nomca.l ensemble by acting on

-

A=-llgq. - | (5.13)
B s | @

One obtains

0A 1 8Q

— == 5.14

20 ~ ~BQ By (5.14)
In the case of the solvated electron, one uses the isomorphic path integral

’

partition function in Eq. 3.17.

The electron-ammonia pseudopotential used in this thesis repre-

Sy

.sents each solvent molecule as a collection of. charge s{'Eja [81] Thus, the

interaction potential between the electron at r; and the solvent molecules

_is given by : .

V) = ZZ: qq“

Jj=1s=1 |I'| R_ys
L= qV(r‘),l - (3.15)

. -«
where N is the number of molecules, n, is the number of charge sites on each

molecule, g;, and R;, are respectively the charge and the position of the
s-th site in the j-th molecule. From Eq. 5.14 and 3.17 it is qtraightférwa.rd

to derive the following expression for (3.4/ aq)

&) - e GD

x [ HdR«Hdr-Vepexp[ B(V.- ;m+ V- N)] (5.16)

=1 =1

[
]
N
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where

__ L P R a
| . Voo = 5 2. V(rd), . an
is the total potential acting on the electron. The configurational integral
on the right hand side in Eq. 5.16 is nothing but thé thermal average of |
V.p in the canonical ensemble. Thus, writing*dg = edy, where 1 > v > 0, N

Eq. 5.12 can be rewritten as’

' 1 .

A, — = V. . 3 .
- [ e(Ver)d v (5.18)
The equilibrium average (V.,) can be evaluated by a MC simulation for
every value of 4. Thé calculation of the difference in free energy amounts

" to the numerical integration of (V,,,) over v with an appropiate choice of

mesh points.

5.8 . 'Simulation Details

£
All the parameters of the PIMC simulations were set as in the previous

calculations described in Chapter 4. ¢

A series of MC simulations were carried out by decreasing the charge
of the electron from full to zero charge. The initial electron-ammonia co-
ordinates used to start a new calculation were produced in the preceeding
run involving a higher electron charge. The, discharging process created
a progressive defocalization of the electron associated with an increase of
the isomorp‘hjc.polymer average diameter. The system at fullfcha.rge was

prepared according to the procedure described in the previous chapter.
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'Typically, a run was performed by initially equilibrating the system |

for 500 passes-' The averages were then. accumulated for a number of passes |

suﬁment to ma.ke certain the overall convergence of the calculatlon Asin
the prévious chapter, the converge of the calculation was checked by looking
at the subavergges about every 400 passes and companng them to the ones
obtained for the previous segments. Only in one calculation involving the
electron cha.l;ged at 0.5 e~ the error on the ‘poténtia.l and ‘kineti-c energies
was large. Typically, for all the other electron charges the relative error on
the pofential <V,,,) was around 4 % and about 2500 passes were required

to ensure convergence.

5.4 Results

y
5.4.1 The Discharge Process

-

Going from full charge % zero charge the electron evolved from being
trapped in a cavity in the solvent (localized state)_, to being extended to
large regions (delocalized state). This “phase transition”, which took place
when the charge reached 0.5 e, cdused the disappearence of the cavity.
Consequently, the short range correlation between the electron and the
ammonia molecules was lost. At 0.3 e~ the equilibration of the system
was very difficult; the valiw of <V,,,> oscillated greatly and exhibited poor
convergence.

It was mentioned in section 3.6 that the complex time correlatio

“
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fuﬁctioh, R(t — '), can be used to ;lis;i:i.nguish between localized ;nd d&&
caliée'd electron stﬁt_es. Thus, the r&sp’bﬁse of the electron to the variation
of its charge.is clearly visible in tleg shape of this correlation function.. In
Fig. 5.1 the R(t — t')’s for some of the simulations are plotted. From the .
gap in correlation 1englﬁh between' charge 0.5 e~ and 0.4 e~ ( R(8k/2) )
. one infers that the electron remains in a compact state until it reaches 0.5
e~ where it undergoes a tra.nmtlon to more extended st\be A perhaps..
clearer picture of tl!le electron behaviour when its charge is decreased from
full c‘lza.rge to zero charge is given in Fig. 5.2 where R(Sk/2) is plotted
versus the electron charge. At charge 0.5 e tl_;efl'electron is in a peculiar
state, in between localization and delocalization.

To confirm this interpretation, in Fig. 5.3 the electron c.m.-nitroger?
pair correlation functions for charge 0.25 e, 0.50 e;, 0.9 &~ are reported.
At charge 0.9 e~ the gem-n(r) is equal to zero‘*fvhen r < %A, showing
the presence exclusion volume for the’ammonia moleculles. On the
contrary, at :Qe 0.25 e~ the gem—n(r) is zero only at the origiil; the
electron is in an extend state, the cavity has disappeared. When the charge
is 0.5 e~ the situation is intefmediate; g.n_n(r) becomes zero around 0.5
A. A pictorial representation of the electron at charge 0.25 e~, 0.5 e~ and
0.9e is g‘iVCI; respectively in Figs. 5.4, 5.5 and 5.6 where representative
instantaneous configurations for the electron primary chain in each of the

cases are plotted. All three pictures are drawn to the same length scale,

* therefore the difference in size of the primary chains are meaningful. .
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Further calculations were carried out to test the reliability of the
resuits obtained for (.V,,,,) and the possibility of hysteres‘is; At first, utilizing |
the electron—ammoni'a coordinzite“s:;t. cha;ge 0le"esa ‘st‘a.rtiritg configura-
tion the electron ﬁras-éha.rged up to-a charge of 0.25 e~ and, subsequently,
to 0.4 e”..In the end, a final run v;vas perfo'rmgd'at charge 0.1 e~ starting

the simulation from an équilibra.ted configuration of the pure liquid and

adding an electron at charge 0.1 e~ in a fully eXtended state. No substan-
tial hysteris was fourid for {V,;) in the results. Thisi
where (V.,) for all the simulations versus the charge on he electron is plot-
ted. The results of these simulations relative to the R(87Y2) show, instead, .
the large uncgﬂ.a.?nty on the dimension of the electron in,efv(.tended states

at lower charges se';:'Fig. 5.2). AN
, g

5.4.2 Free Energy of Solvation
» ! ~ ' .

The integral of (V,,) plotted in Fig. 5.7 was evaluated using a cubic spline
interpolation method. The Helmoltz free energy of electron solvation was
found to be o

A — Ao = —11.5%+ 1ksT. (5.19)
The error on this value was due ma.iply to the uncertainty in the potential
function at charge 0.5e~. It was estimated by recalr.:ulating the integral at
the upper and lower bo&rjfi of (V) at charge 0.5 e~. It was found that the
error due to the other regions was compa}atively small.

J

(. The total energy of electron solvation, AE is given by the sum of

o



thie electron total enefgy, Er, and the reorganization enefgy of the ﬁuid,
Ep. Nafnely™> - ° ' '

AFE = Er + Ep. . o (5.20)

ET w2s directly from the run at full charge, while thé calculation of

Er required an additional MC simulation of the anlﬁnonia pure fluid, AE
N

ke

was estimated tébe * ' * ‘ o~
AE = —283 +1kpT. - 0 (5.21)

Finally, the entropy of solvation is

AS = —16.8 & 2kp. : (5.22)
\ .
Unfortunately, tlﬁs value of the entropy does not agree with the experimen-

tal AS = 1845.[22] It must be @inted out, however, that the experimental

determination of thd entropy was conducted at constant pressure[22 21)

while this calculation was carjed out at constaF volume.
Instead of embarking én a new series of constant pressure calcula-

tions using the technique described in the previous chapter, it was chosen
. t
to correct the experimental constant pressure value of the entropy by the

@opriate factor.! The entropy at constant volume and constant pressure
»r

arevrelated by the following expression
<

AS, = AS, — ASa., . (5.23)

: 3
i il
It must be remembered that a PIMG simulation at constant pressure is on average 4

times more time consuming than at constant voldme.
~
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where AS, is the entropy of solvation at constant volume; AS; is thé.en—
tropy change a.t constant pressure and ASa, is the entropy change when
the liquid expands by one solvated-electron mola.r volume,
The physxca.l meamng of the correction ASA., can be understood
from the thermodynamxc cycle in Fig. 5.8. Here AS(p,v) is the solva.tlon /
y \entropy at a constant volume v and at average pressure p. " The pressure
| at ‘which the experimental entropy is available is p = 1bar, v is the volume /
at which the PIi\;IC simu} tion has beex; performed. Moreover, Av is the T
volume expansion produaezd by the electron, p + A:p is the pressure of t1.1e
) constant vqur.Fle calculation. It is clear that AS(p,v + Av) and {AS (p+
> . Ap,v) corre‘spond respectively to AS, a.ud AS, in Eq. 5.23. For this
diagram to be useful one has to assume that AB = CD = AS,, and that

the effect of clanging the pressure at constant volume on the entropy of

solvation is negligible. Therefore

N ,
AS(p+ Ap,v) ~ AS)'(p, v), . (5.24)

and

AS(p,v) = AS(p,v+ Av)—AB
~ AS(p,v+ Av) - ASa, (5.25)

With this assumption in mind, the correction to the experimental
AS, can be estimated to first order in AV by using the Ehermodyna.mic

relation
-~

ASa, = (22

aT)AV. B (5.26)
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: i 3
(aP/BT) can be estimated from the equ;tion of state for fuid
amnmonia,[82,83] its numerical value is 22.7bar K-, The expenmenta.l par-
tial molar volume of electron solvation is estlma.ted at 100cm®mol- 70
By using the experimental entropy at constant pressure AS;(ezp.) = ?SLL—B‘\
aa.hd Eq. 5.23 the experimental AS, is

1/

ASy(ezp.) = —9.3kg. . (5.27)

. . S
The calculated entropy change ( AS,(calc.) = —16.8+ 2kg ) is then in fair
' agreement with the experimental value. . .

L

5.5 Discussion

- < (" &

This study has shown that the entropy of electron solvation at constant vol-
ume is negative. Tilis finding is consistent with the results of the preceeding .-
chapter and previous studies[5,63)] that a localized electron favours local or-
dering, at least, in the molecules of its first solvation shell. The pols\itive '/\
entropy measured experimentally is mostly due to the volume expansion
produced by the electron in the solvent. The entropy cha.nge\h.lculated in ‘.
this simulation was in accepta.ble agreement with the expenment

It was also found that discharging the electron produced a transition
from localized states near full charge to delocalized states near zero charge.
This transition occurred around charge 0.5 e~.

To conclude this chapter, it must be said that the remaining dis-



?’greement between experiment and calculation is likely to be related to the
;iinple-pseudopotential model used in this study. Since delocalized states

occur only at smell electron charge the existence of loilg range electrostatic

forces is not likelywt/o have a large effect on the calculated entropy.
[ o ¢ '
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- Figure 5.1: _ .
Complex time correlation ﬁncti_ons for the electron-ammonia systém cal-
culated for various values ¢ of electron charge. From top to bottom
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Figure 5.2: . o
Asympfotic values of the cqmpléc time correlation function the electron-
_ammonia t;ystem for the values of the electron charge given Fig. 5.1. The
circles ang the results for the sequential discharging of the el.ectron, the
triangles from charging up runs starting from ¢ = 0.1, and the square is an -

* independent run at ¢ = 0.1 which started from an extended( free ) state.
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Figure 5.3:
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Electron (cehfer—of-mass)-nitrogeﬁ correlation functions for three values of

a}gi. The disappearance of the cavity should be noted. -

electron ch
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“ Figure 5.4:

J
-

Instantaneous configuration’ of the electrori'and solvent when the elect'ron

charge is ¢ =0. e~. Only the P, pruna.ry chain partmles compnsmg the

1somorph1c electro polymer are shown (small dots). The spacmg between _

the Ia.rge circles is 25.5 &

.79
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F_‘ig’ureﬁ.ﬁ:

 Instantanéous configuration of the electron and solvent when the electron

_charge is ¢ = 0.5¢~ drawn on the same scale as Fig, 5.4, |
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Figure 5.6: ’ ' o
Instantaneous configuration of the electron and solvent when the elei:t;i'on. . M

charge is ¢ = 0.25¢~ drawn on the same scale as Fig. 5.4 and 5.5.
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. The electron-solvent pbtentxal V.p &s a function of the elecfron charge. The
symbols have the same meamng as in Fig. 5.2.
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Figure 5.8: Entropy cycle
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Chaptéf 6

Tonization of Alkali Atoms in -
Ammonia : Li; Na, Cs

In the past alkali metal-ammonia solutions have been the sulbject of inten-
sive investigations.[84,70,22] The focus of most of these studies has been
the transition from non-me.tallic to metallic properties which the metal-
ammonia solutions experience ‘at vefy low concentration of the metal. As an
example of this peculiar behaviour, in Fig. 6.1 the molar condulgtivity Aof
the sodium-ammonia system is plotted versus the sodium mole fraction.[22
It is evident from the graph that a transition to.a more conducting state
occurs at mole fractions z(Va) > 0.02. Most alkali metal-ammonia solu-
tion transport properties show a remarkably small dependence on the type
6f ion present and conductivity curves similar to the one in Fig. 6.1 are

found for the other metals of the series.[84]

84



M{é‘t;alﬁc_behaviour of the concentrated mét\al-ammonia,'solutliohs is
ft.irther indigated b} théir bronze colour and metallic reflectivity. At lower
‘ concentra.tions instead, the solutions show a dark blue c;alour
L - .. Tobe more specific, accordmg to the classxﬁca.tlon scheme for hquld
Ce electromca.uy conductmg materials mtroduced by Allgaiger(85] the alkali
metal-ammoma. solutions are class B liquids. Thqy have an 1ntermedmteA
behaviour b:etweérik _good metallic liquids (class A) and electrolytes (class C).
It is pa.rti.cula.rly noticeable 'tha.t the temperaturé coefficient v =0"1do/dT
(o specific conductivity) is positive (as in semiconductors) at low concen-
trations and becomes negatwe for all the alkali metals at a mole fmctzon
of about 0.2 [86] ‘
All the experimental evidence discussed above indicates that there
y are two distinct electronic states‘existin“g in different ranges of concentra-
tion. The solvated electron state as discussed in Chapter 4 is prevalent at
low concentrations, while delocalized states are responsible for the metallic
'conductivity at higher metal-ammonia ratios. From the positive sign of ¥,
N 1t can be inferred that at low concentrations the conduction occurs through
thermal activation of the electron carriers which jump to the conduction
yband.

In the past simple models of metal-aﬁlrﬁonia soiution have been
devéloped to explain the electronic conductivity at the high concentration
regime. These models were mostly an extension of the standard treate-
ment of ionic electrolytes.[87,88] The electrons were considered nearly-free

.
hY

.
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ing in an éverag’f; botentia.l field crez;t_ed'. by Fhé solva_t}ed poéitive ions a.ﬁd

axﬁmonia molecules. Unfortunate_l}f t-hfzsé t'_y;es of models cannot include

effects due tolocal fluctuations iir the elé;ctron-ioﬁ and electron-molecule

botential which are more important in a liquid than in a solid. Such effects
\/jcan be taken care of by utillizing‘ simulation t,echniques;

. Recently, a dilute lithium-ammonia solution has begn studied by
simulating the lithjum&va.ler-xce electron with the PIMC method.[16] Al-
though this sin;'ula.tior; Pechnique cann.ot be used to simulate a metal-
ammonia solutiords in the high concentration regime L(‘it is unable to handle
conveniently delocalized states and mc')re than one el~<;ctron)-,_' this approach
is useful if the goal of the investigation is .to better underst;md ﬁhe effects
of the solvent in the ionization process. . ‘

A few problems have to be faced in order to'simulate alkali atoms in
ammonia. In the ﬁrs.t place, the soft core Slﬂ:a\v type pseudopotential used
_in IrQef. [16] may not be suitable for heavier alkali metals where the repul-
sion between the atom core and fhe valence electron is more pronounced.
Secondly, a suitable intermoleé:ula.r potgnﬁal between the alkali positive ion
and ammonia is not_available in the literature except for the i.i-ammonia
intera.ction.
Thi; chaptér iy aJ;ranged as follows. In-section 6.1 results of the
. classical simulation of the Li, Na'and Cs ions in ammonia and details of

the ion-a:mmqni‘a int'ermolecular potential are given. In section 6.2 the

PIMC simulations of the three atoms in ammonia are presented and the
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~ -effect of different electrm\z-ion pséudopotentials is diécussed.

e

* 8.1 Li*, Nat and Cs* in Liquid Ammonia-
6.1.1 Jon-ammonia Potentials

In the past, most of the theoretical studies on ionic solutions has ihvolved
water as the solvent. Alkali ions in water have been studied by ‘mblecda.r
dyﬁamics and Mon}:e Carlo techniques and interaction potential for these
systems are readily .a.vai!?ble in literature. Unfortunately, there is almost

> .
a complete absef of these studies for liquid ammonia. At present only

\ a .MG simulation

! literature which presented a simple model potential for the ion-ammonia

f a Li* ion solvated in ammonia has been reported in

interaction.[16,89] The same model will be used in this thesis for Lit, Nat
and Cs* solvated in ammonia. ‘

The authors in Refs. [16,89] devised their potential in part from a t"S-
31G" level SCF calculation.[90] This article exaxninefi dimers of 20 first and
second-row bases, which included ammonia, with H*, Li* and Na*. The to-
tal energy and the equilibrium distance and geometry of the coml-)lexes were
given. It was shown that the intermolecular interaction between ammonia
and alkali ions is dominated by electrostatic ion-dipole and polarization
contributions. lon-base interaction energies and equilibrium distances for
heavier alkali jons (K*, Rb* and Cs*) were then extrapolated.

On this basis the model potential in Ref. [16] consisted of Coulom--
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bic and dispersion contributions. The electrostatic part involved the intér-
‘action between the unitary pos;.txve charge on the cation and four charg&
sites dastnbuted on the ammonia molecu.le ’1‘he magmtude and posmon of
the four cha.rges were taken as in the electrosta.tlc SPC model potential for
a.mfmoma. ‘and described in Chapter 4. A Lenna.rd-J ones potentla.l between
the nitragen and the cation ha.ndled the short-range contributions. In Refs ’
[16,89] the parameters of the Lenna.rd-Jpnes potential were. fitted to the
dimer energy and equilibrium distance givel'l by _i.:Iie_;SCP'1 calculation. The
éa.q:e strategy is fbllowed in this thesis to determine Lennard-Jones param-
eters for sodium and caesium interacting with ammonia. In tab}é 6.1 the

-

“fitted potential f;;a.rameters for. the three cations are listed.

.
“
LI R

- 6\1.2._ Classical MC Calcﬁlatiéhs

‘Simulg‘{:io;x Detailg Classical MC si‘_fn-ulations Weré performed on a sys-
tem cpmpt‘)séd. of 250 ammonia molecﬁles and an alkali ion’ at a molar
vc;lt;me V= 26.5 cm® mol~! and temperature T = 260 K. The ammonia
molecules were moved according to the standard MC procedure described
in Chapter 3 while the alkali ion was kept fixed in the center of the box.
As usual, the acceptance ‘rate was inantained. around 40%. A MC pass was .
defined in accordance to section 4.3.1. Typically, the simulations were run
for 5000 passes following a period of 2000 passes ?f eQujlibration', during

which the ammonia molecules adapted to the presence of the ion.

»
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was defined in section 3.6. - ‘

. 89
‘Structure The structure of the ammoma. molecules a.round an ion X is.

descnbeti by the two pair correla.tlon functxons ng(r) a.nd gx H(r), where

X= Lit, Na* o.nd Cs+. Further information on!wt.he onenta_tlonal order

‘around the fon can be gathered.fz‘om the dipole correlation function ﬁhich

-~

The functions: / 9x u(r) and gxn(r) for the three ions are plotted in
, Figs. 6. 2 6.3. 'I‘he posmons at which the first peaks occur are reported m‘
table 6.2. The separa.tlon between the n1trogen and the ions are very close
to the value of the parameter .o in the respectwe Lenna.rd-Jones potentlals
In Fxg 6.4 the dipole correlation functions are reported.

~ The results in Figs. 6 2 and 6.3 show that in the gXN(r) s the

first peak is always very strong signalling the expected very pronounced
coordmatmn between the ion and the molecules i in the first shea.th The
he:ght of the peak decreases going from lithium to caesium. For lithium
and sodium this peak falls to zero while for caesium i\t reaches a small
minimum value. The ammonia molecules of the second solvation shell arge
less correlated to the ion. Sodium experiences the sharpest second peaks.

The a:«rerage angle 6§ between the molecular axis and the ‘Axis that
unites the ion with the nitrogen of the first nearest neighbours can be
derived from the positions of the first peaks in both gxn(r) and gxu(r).
The results are listed in table 6.2. The deviation from 8 = 0 preciicted
by the ab initio calculations is very small for the two smallest co,tions, but

more marked for caesium. More than one configuration contributes to the



‘3

ma.m pea.k i gc,N(r) 8y shown by ite sizable mdth Th.ese dev1at1ons are

S8 effect of the otHer nea.rby solvenﬁ fnolecules ..‘

s
In a,ddmon, the br‘oader peak of- t.he cmmm d;pole dJstnbutaon

1

! functlon 1n F1g 6 4 show.é that ‘the mol¥cules of its ﬁQt'Bolvatlon sheath

A T
expenen'ce on a.verage niore onentaf,lons eompa.red to those of lithium and
- t‘( oF
- e . -?\ LN . . . ‘
sodxum ,‘_3 - .« (q-f'i . SN

The coord.tna.tlon nuxﬁber, nN,"ls usually defined as  the mean num-
ber of molecules in the\jon first solvation shell. The sepai'g.t.ion = s
at wh,lch the functlon gXN(r) reaches its first minimum defines the spatial
extension of this first shell. Only Li* and Na"‘ ha.ve a clear plateau in their
correlation functions while Cs* has a less shallow rmrmmum. Therefore the
value of ny is better defined for the two former than.for the la,‘tter. The
coordination numbers for the three cations are listed in table 6,2.- Their
values are in agreement with chemical experiegce and. neutron diffraction
experiments.[91] It must be added that in the case of Cs+ the number of
hydrogexls in the first shell is not equal to 3:x ny as in the other cases (see
table 6.2). This indicates that few of the ammonia molecules of the second

shell are able to penetrate in the first shell.

Results pertaining to the equilibrium e}rergetig:s of the ions solvated

-

in liquid ammonisa are given in table 6.3. It s observed that the three ions .

have a negative solvation energy. The major contribution to the ionic en-
[ 4

ergy is’supplied by the electrostatic component. Going from the smaller ion

to the larger, the contribution from the atom-atom interactions increases
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noticeably. “ ‘
s
termole‘cula.r "'st'ruct_ufe of the fluid compared with the pure sample. The
reorganization energy, which quantifies this _c;hange, is calculated in table
6.3 relative to the energy of th%urf_: liquiid obéained.in Chapter 4. It shows
that Cs:*' exerts the smallest eftkct on the liquicf configurational energy.

Fl

6.2 All;ali Atoms in Ammonia

6.2.1 The Pseudopotential Problem y

&
In previous path integral computer simulations the ion-electron interanc-

Jions have been handled by using a Shaw type ﬁseudopotential described in
Chapter 3{see Eq. 4.3). The locality of this pseudopotential is essential to
its us:e in a PIMC calculations. The value of the parameter R. in Eq. 4.3
for each of the alkali metals can be calculated by fitting to the expériméntal
first ionization energicas (Li,5.39 eV; Na 5.14 eV; Cs 3.89 eV).[68]
However, the simplicity of this pseudopdtential (only one parame-
ter) is also its major limitation. The constant negative potential energy for
r < R, produces an unphysically high electron density inside the ion core

due to a valence s electron. This problem was not important in early band

* structure calculations where soft core pseudopotentials were mostly used.

Given the nea.rly; free-electron nature of the Bloch energy bands of most

of the non-transition metals, pseudopotential models were chosen to give a

The solvation of an ion s accompained by some change in the in-

2



quick damping of the form factor Vi for large K > 2K7.[68,92,47]

N . Ha.fd core ion-electron pseudopotentiale have'been used in the past
‘mainly in the=study of the structural propertles of elementa.l metals and
-binary compounds Andreom et al.[93] recently proposed a sunple model
- for this type of pseudopotentzals. Andreoni’s pseudopotential is / dependent

(non-local) and can be written as
' /

e

‘where Z is the valence core charge ( Z = 1 for alkali metals ), Wi(r) is a

short range potential

mm=£ﬁ%¥ﬂ.

(6.2)

A; and v are the parameters that describe the interaction of the valence
. b
electron with core electrons. Wy(r) contains contribution from short-range

orthogonality, electrostatic and exchange interactions. The interaction is

positive if some of the core electrons have the same angular momentum
. L)

as the valence electron. In this case Wi(r) is dominated by the repulsive'

orthogonalization term. Instead, when the valence electron is in a state
with angular momentum different from those of the core electrons, the
potential incorporates only the electrostatic and e*cchange contributions
being the valence and core electrons already orthogonal The ! dependent
para.meters of the Andreoni hard- core model potential are fitted to the
Hartree-Fock (HF) energies and valence HF wave functions from infinity to

the outer node. The nontlocality of this potentla.l model does not prevent

mm:—%+M@,~ . (6.1).
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its use in a PIMC simulation. In fact, it may be inferred tha.t the va.lence
electron ground state of an alka.h metal in liquid ammonia is mmnly an s
‘type state. Therefore it is reasona.ble to use m ine ion-electron interactibnﬁj\b-

= 0. Both, soft-core (SC)
. '-w- and hard-core (HG) potentials have been used in this thesis. In table 6.4

only the potential parameters correspond}ng to

" the parameter’s of both pseudopotentials for L1, Na and Cs are presented,

6.2.2 The Li Atom in Liquid Ammonia
iy .

A previous PIMC ca.lcu.lat:on[lﬁ] has shown hat the Li atpﬁl in ammonia is
unstable and forms a contact ion pair in wluch;thc‘e yyence electron charge
is polarized by the surrounding molecules. No spontaneous ionization was
observed. The soft-core potential given in table 6.2 was used in this study.
TheJ_‘i atom was subsequently ionized by a series of calculations
in which the center of mass was constrained to increasing distances from
the ion. In this way the activation energy of the ionization process was
estimated. Unfortuxiately, since MC simulation cannot directly calculate
the chémica.l potential, it was not clear if the entropic contribution could
stabilize the ionized form with respect to the contact ion pair.
” In this thesis the results from the HC potential will be discussed
with:respect to those obtained with the SC potential used in Ref. [16].
Since in that study most of the structural information on the ion-electron

contact pair solvated in ammonia was not reported, the same calculation

had been repeated.
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" Details of the Simulations- |
The PIMC calculation of an atom in ammonia was carried out at the same
conditions_of temf:erétur'e, density and size of the"simulation box as in the _
" classical simulations discussed previously. To i;e more sbeciﬁc T =260 K, N
=250 and V - 26.5 cm® fnol"_?. With respect to the previous calculaf.ion?, of
" an excess electron in liquid aﬁlménia, all the éimuIati_pn pa.rﬁ.'meters (such |
asr electron discretization, pofe’ntial cut-offs, deﬁniti-on of MC pass, étc.)
remained unchanged: | '
| Before the simulation was initiated the discretization of the eicctron
( P = P,P,.= 1024, N; = 100 ) was checked against the reproducibility of '
the atomic spectroscopic term value. The calculated PIMC electron total -
energy for the isolated atom matched the experimental value within a .few
percent. =
" The initialization of the atom-ammonia system followed the lines
of previous solvated electron simulations described in Chapters 4 and 5. A
configuration taken from the calculations of the classical Lit ion was used
us a starting point. The electron was inserted on the Li* in a compact
state with R(8/2) =~ 2 A. When the HC potential was used the beads of
the primary chains were introduced just outside the core region, where the
pseudopotential was strongly positive.
Both the simulations with a SC and HC pseudopotential were con-
ducted following the same lines. Initially, the electron was allowed to adapt

to the ion-ammeonia potential field by moving the primary chain beads for
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100 pa.éses while the coordinates of the molecules were kept unchanged. The
- contemi)g)raneous sampling of molecules and electron phase space followed.
After 500 passes needed to equiIiBra.te the solvent molecules around the Li

‘atom, 2000 rﬁ_ore passes of data acquisition and averaging were required to

reach an acceptable stability of the e:iergie_s.

Results

a. Electron Wavefunction At the end of the SC and HC simulations
the electron was found in a compact state bound to the Li*. The complex
time correlation furtctions are shown in Fig. 6.5. It is clear in this figure that
the HC pseudopotential produces a larger spatial extension of the electron
beads. The electron correlation lengths were found to be 2.34 Aand 3.21
A respectively for the SC and HC calculations. These values compare with
4.02 A of the solvated electron. . .'

The two calculations found the Li atom in a dipolar s;tate in which
the electron center of mass was sepé.ra.ted from the center of the ion by a
certain distance £. The HC pseudopotential produced the largest atomic
polarization with £ = 1.54. This sepaxlation was £ = 0.5¢ A for the SC
pseudopotential. If the center of the electronic charge is approximated by
the ceﬁter of mass of the beads the dipole moments resulting in the SC and
HC calculations are respectively 2.6 D and 72 D.

The polarized Li atom obtained in the two simulations has been

interpreted in the past as due to a dipolar excitonic state.[94] Accordingly,
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the dipole moment of Li is a hybrid state formed by the superposition of
2s and 2p states. Simple a.rgumeiats, based on the cdntinuum dieléctric
theory, showed that the resultmg polarization induced in the polar fluid is

likely to stabilize this state against the energy increase produced’ by the

hybridization. . L e

" —— - Additional information about the size and, to a lesser eJ-ctent, thé
shape of the electron wavefunctions can be gathered from thea_ electron-Lit
charge site pair correlation func'tiqn. In Fig 6.6 the two functions relative to
the SC and HC calculations are compared. It is clear from these curves .that‘
the HC ﬁiodel produces z;. much deeper penetration of the electron cloud
into the Li solvation shells. As expected-‘,-‘ t}£1e inner core becomes a region
precluded to the electron. The peaks in the functions plotted in Fig. 6.6
indicate maxima in the electron wavefunction at the correspondiﬁg radial

distances. The change in pseudopotentials does not seem to have a large

effect on the position of these peaks.

b. Liquid Stricture around the Li Atom The structure of the liquid
ammonia in the region surrounding the Li atom (Li* plus electron) is best
characterized by the Li*-ammonia and electron cm-ammonia pair correla-
tion functions. In Figs. 6.7-6.10 these correlation functions, resulting from
the SC and HC calculations, are plotted. *

The large polarization of the Li atom caused by the HC pseudopo-

tential is the cause of the intense first peak in the gp;+n(r) (comparable to
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the one calculated from the simulation of the classical ion, see Fig. 6. 2)'.

which in turn is associated with a considerable ordermg of the liquid in - -

the vicinity of the ion. Much less intense (a.bout one ha.lf) is the corre-
sponding pesk in the SC calculation. This can be explamed by noticing
that the otiéntation of the ammd¥ia molecules in the Li first solvntlon shell' '
favoured by the electron beads is opposed by the Li* 4nd viceversa. These
competing steric effects are curtailed when'the ion and the electron beads
are farther a.pa:t. Moreover the presence of the electron on the Li+ induces
a decrease in the Li* coordination number The SC and HC ca.lculatlons
yield respectively ny =2 and ny = 3 which compares with ny = 4 given
by the calculation of the classical ion.

The integration of the two rsz,;+lé(r-)’s‘in Fig. 6.8 shows that while
the HC calculation gives a number of hydrogens in the Li* first shell very
close to 3xn N the SC snmulat:on revea.ls a sizable penetration between first
and second solvation shell. In the lattér case the first coordinated hydrogens
are 11 compared to the expected 7. The average angles 8 defined in section
§.1.2 calculated with the two pseudopotentials are not significantly diffe‘rent
from those of the classical ion.

The gem-n(r)’s and g.:,,.._y(r)’s in Figs. 6.9 and 6.10 show sharp and
intense peaks in contrast with the results for the solvated electron. The less
poia.rized Li atom obtained by the SC simulation yielded a g.._n(r) which
repeated most of the features of the corresponding correlation function for

Li*. The same trend was observed for the g.n._g(r), but to a smaller extent.
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These ﬁn'd;ngs'are to be related to the rather short distance sel;aratihg_ the
.. contact ion pair and to the small electron average diameter. As expected,
the larger correlatmn length and pola.nza.tlon of the Li atom produced by _
the HC pseudopotent:al decreased the structural chara.ctenstlcs of the rela-
tive (cm-N) and (cm-H) correlation functions. This is particularly visible in
the gon—g(r). The coordination numbers found for the electron and Li* in
the SC simulation were id;nticall Two ammonia molecules 6:1 average were
coordinated to the electron. In the HC calculation, mstead the electron |
toordmatlon number was about 4.

Further information on the orientational ordering of the ammonia
molecules coordinated to the electron and Li* can be derived from the re-
spective dipole correlation functions plotted in Figs. 6.11 and 6.12. Only
the contributions from solvent molecules within 4 A from the Li* or elec-
tron center of mass were included in the computation of these correlation
functions. In both calculations, the ammonia molecules around the electron
are seen to be influenced by the nearby Li*, this being the main cause of
the sharp peak between 0.7 and 1.0 in Fig. 6.11. The weaker tail around
-0.5 is instead due to a fractidn of solvent molecules bond orienbejd towards
the t-alectrori. ']_."hé dipole correlation functions for Li* in Fig. 6.12 exhibit
intense peaks at 1.0 corresponding to the dipole ordered § = 0. Only in
the curve obtained from the SC calculation a weak tail for negative cos 8's
is visible.

{ 'Fina.lly, a pictorial répresentation of the contact ion pair formed
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upon immersion of tRe Li atom into liquid ammonia is given in Figs. 6.13
and 6.14. Here two instantaneoué con.ﬁgﬁrations répresentative, respec-

tively, of the S€ and HC calqulafions,"are plotted.

6.2.3 ; Cs and Na in Liquid Ammonia

R .

The PIMC simulatior;s in the previous sections did not predict a sponta-
neous.ionization ‘of the Li atom in liquid ammonia. Allthough there is no
direct experimental evidence to support these findings, it should be noticed
that neutral Li may be stabilized at low temperature in solid ammonia. [95]
In contrast, in the case of Na and heavier alkali metals experiments clearly
- indicate that they are ionized in liquid ammonia. The main objective of
the following PIMC study has been to investigate whether or not the spon-
taneous ionization of Cs and Na can be observed in the simulations.

The physical conditions, the simulati.on parameters and the initial-
ization procedures used in the following PIMC calculations on Cs and Na

were 1dentical to those previously specified for the Li calculations in section

6.1.2.

The Dipolar Cs Atom

In the case of Li the SC pseudopotential does not obstruct the excess elec-
tron to enter inside the ion core. This effect is expected to be even more
marked for a larger ion where its bigger ionic radius prevents the ammo-

nia molecules of the first solvation shell from getting closer to the excess
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electron. In order to verify this supposition & simulation of the Cs atom

“using the SC pdtentia.l in table 6.4 was performed. It was found that the

SC‘pseudopo_t‘entia.l ﬁrompted the form:ation of a contact ion pair Cst-e™,
The ele;ctr'on necklace localized at about 0.81 A from the ion. Thi_s pro-
duces a dipole Igoment‘on the'Cs of a.pplroximatel}: 39D. In F1g 6.15 an
inééantai{eo_us éonﬁ_gﬁration from the PfMC simulation is presented.

| Th;z locaiizéd nature of the electron state is clearly seen in.Fig. 6.16

where the 4t — t') is plotted. Its average correlation length, 'R(ﬁﬁ/z) =

. 2.61 A,‘ is very close to that given by the SC calculation on Li. The electron

necklace exhibits a limited penetration in the first solvent sheatl.l. as shown
by the drop to zero at 4.0 Aof the chain radial correlation function in Fig.
6.17. .
The (Cs*-N) and (Cs*-H) pair correlation functions are plotted in
Fig. 6.18. Here it is visible a decrease in intensity with respect to the results
for the classical jon (compare with Figs. 7.3-4) due to electron screening.
;I‘he gcas+#(r) reveals a splitting in the first peak produced by two inequiv-
alent hydrogens of the ﬁr;t solvent sheath. The angles § corresponding to
these peaks are — 39° and + 37° This splitting is respongible for the broad
peak around cosf =~ 0.8 in the Cs-ammonia glipofe correlation function
plotted i-n Fig. 6.19. The cut-off for this function was set to 5 A. The same
function shows maxima for negative values of the X axis due to the ammo-

nia molecules coordinated to the electron. The dipole correlation function

relative to the center of mass of the electron plotted in Fig. 6.19 shows
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similar cha.i:-a.cteristics. The coord&na.yio.n‘ number of Cs is 10, unéhange.;d
from the results of the classical ion (see table 6.2).

The results for the (cm—N) and (cm-H) correla.tio-n' fﬁnctions élbtte;:i
in Fig. 6.20 are not fery.diiferent from those obtained in the Li simulation. |
Both of them have the same main peaks as those for the Cs*, but broader |
and less defined. The gem-z(7) exhibits oﬂy a broad first peak: no s;plitting
is found. | - |

The conclusion from these resulf.é is that t_‘.he‘ SC pseudopotential
does produce an unphysical localization of the electrm\l necklace insi&e the
Cs core. On this basis, it se:ams hopeless to expect‘ a different behavior in
liquid ammonia of the other alkali atoms, if a SC pseudopotential is used.
Anticipating the findings of the next section, the-HC pseudopotential is

able, instead, to promote the spontaneous ionization of these atoms in

liquid ammeonia.

Ionization of Cs and Na

<
-

Since the contribution to the pseudopotential from the repulsive core is
very r'narked in Na and Cs, the initialization of the respective simulations
was carried out in a very cautious manner. The frozen electron necklace
was inserted in the region outside the ion core and the solvent molecules
were equilibrated for 200 passes. Then the polymer beads and molecules
were allowed to relax. |

For both atoms, the electron immediately expanded into the solvent
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" molecules and started to dﬁft away frém the ion. Such an ionization process
occured through the initial fo@gtion of an extended electron state which,

after about 1000 pa.éses, peaked tc.> a co';"relﬁ'i?ion length of 15 'A and 12

A respectively. for Na and Cs. After 3000 more passes for Cs and 4000

-more for Na, the process culminated in the creation of a solvated cation
end a solvﬁted electron. This mechanism of ionization involving a transient

quasifree electron state isin agr_een\:eﬁt with-what has been previousiy found

in Ref. [16] regarding the induiced ionization of Li in ammonia. As an

exa.rni:'les of this intermediate stage, an ipsta.nta.neou-s configuration taken

from the Na._ca.l_cula.tion after 2000 passes is plotted in Fig. 6.21.

Three electron-Cs* charge site correlation functions caleulated at
different stages of the simulation are preseﬁted in Fig. 6.22. This picture
shows the maximum of the elect'ron Eensity drifting away from the Cs* and
localizing at about 11 A from it. Similar results were obtained for Na, ih
this case the electron localized at about 14 A from the Nat.

In conclusion, it must be pointed out that the HC model used in
this chapter seems to be basically sound. In fact, in agreement with the
experimental evidenc;e it prédicts the spontaneous ionization of:Na and Cs

in liquid ammonia.



' Table 6.1: Ion-A'.mnionia.‘ Lenna:d-Jbues Parameters

~

o Lit | Na* | Cst
e(KImol™')| 55| 7.0|14.0
c(A) .|207|220]2090

Table 6.2: Structural Data

f(IN)(A)|=(-H) (&) 8 (degree ) | ny | ny
Lit | 205 2.62 3 4|19
; Nat 2.95 2.77 1 5 |18
Cs* 3.15 3.37 18 10 | 35
.
Table 6.3: Energetics of Ionic Solvation
<Ep>|<Ec> EED> <Er>| <AEs>
Lit | 119 | -3.44 | 001 | -3.43 |-2:24 & 0.0
Na* | 124 | -3.29 | -0.08 | -3.37 |-213+0.01
Cst| 1.00 | -2.30 | -0.61 | -2.91 |-1.91 % 0.01

103

< Eg > is the reorganization energy of the liquid, < E¢ >, < Ep > and

< E7 > are respectively the Coulombic, Lennard-Jones and total energies

of the ion. < AEjs > is the solvation energy. Energies are }_g KJ mol~!.

-



Table 6.4: Parameters of the soft and hard core pseudopotentials

-

{ Re Ao Yo
Lit | 2.885 2233 6
Na* | 3.482 6820 | 6
Cst | 4.887 [ 1.309 x 10| 6

104

R. is defined in Eq. 4.3, while Ay and 7 are defined in Eq. 6.2. All data

are in atomic units.
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Figure 6.1: - .
Molar conductivity A of sodium ammonia solutions at T = 240 K and p="

1 bar. B . o
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Figure 6.3: o
Distribution functions for tl}e solvent hydrogen atoms with respect to Li*,

Nat and Cs”".‘
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'Figure 6.4:

Dipole correlation functions for Li*, Nat and Cs'*'.
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. Complex time correlation functioxidfor the eleftron bqund to Li* obtained

- using the Li soft core and hard core péeudopot_entia.ls.
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:cula.ti;on carried out using the Li soft core and hard core pseudopotentials.

: Electron;Li""c.harge site corréla.tion functions obtained from the PIMC cal-
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' Figure 6.7:

(Li-N) pair correlation functions for Li in liquid ammonia obtained using

the Li soft core and hard core pseudopotentials.
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Figure 6.8:

(Li-H) pair correlation functions for Li in liquid ammonia obtained using

the Li soft core and hard core pseudopoféntia.ls. .
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" Figure 6.9:

Pair radial correlation functions for r;itrogen'a.toms ‘with reépect to the
electron center of mass obtained using the Li soft core and hard core pseu-

dopotentials.
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. Figuré 6.10: |
Pair radial correlation functions for_hydrogerrx atoms with respect to the ) o
electron center of mass obtained using the Li soft core and hard core pseu-

dopotentials.
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_- Electron-ammonia dipole correlation functions obtained using the Li soft

core and hard core pseudopotentials.
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Figui‘e 6.12:

0.6

(Li*-NH;) dipole correlation funcﬁ_ons obtained using the Li soft core and

hard core pseudopotentials. ‘
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Figure 6.13: |

Instantaneous configuration for the contact ion pair (Lit-e™) from the Li
soft core simulation. FFor graphi'c reasons, only one out of four primary
chain beads is plotted. The Li ion is shaded. The corners of the box are

11.4 A,
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1

Figure 6.14: , . L
Instantaneous donﬁgqrétion for t¥fe contact ion pair (Li*-e~) from the hard )
core Li simulation. For graphic reasons, only one out of fwo primary chain

beads is plotted. ‘The Li ion is shaded. The corners of thk box aré 16.4 A
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- Instantaneous conﬁguration for the contact jon pair (Cs"f-e'j from the soft

* . T

Figure 6.15:

core Cs simulation. For graphic reasons, olly one out of four primary chain;

beads is plotted. The Cs ion is shaded. The corners of the box are 11.4 A.
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Figure 6.16:
Complex time correlation function of the electron bound to Cs+ obtained

“using the Cs soft core pseudopotential.
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o Flgute 6.17:
= -
o Cham rad:al correlat:on function of the electron polymer with respect to
7%
', - theCsion calculated using the Cs sb{t core pseudopotentlal
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_ Fig. 6.18 Cs—Site Chain Correlation Function
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. Distribution functions for the solvent nitrogen and. hydrogen. atoms with

respect to the Cs ion usmg the Cs soft core pseudopotentml
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. Pigt}re 6.19:.

.

' Cs-ammonia dipole correlation function from the SC Cs simulation.
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Figure 6.20:

Distribution functions for the solvent nitrogen (N) and hydrogen (H) atoms

- with respect to the electron center of mass using the Cs soft core pseudopo-

tential.
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Figure 6.21:
Instantaneous conﬁguration for the contact ion pair (Na+-e~) from the Na -
hard core simulation.” Only the primary chain beads are plotted. The Na. |

ion is :,ha.ded The corners of the box are 32.2 A.
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Figure 6.22: 7
Electron-Cs ion charge s:te correlation function at diﬂ'erent stages of the '

simulation carried out using the Cs hard core pseudOpotentml
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‘Chapter 7

Electron Attachment to

Ammonia Clusters = ‘
Y,

Negatively charged ammonia and water élusteijs have been ¥ecently discov-
é:é&i by injecting low-energy electrons into supersonic expansions of NH,
and H,0.{96,24,97,98,25] About 18 water and 30 ammonia are required to
bind an electron. These new findings have stimulated many theoretical _
investigations re'garding the mechanism of electron attachment to clusters.'
Water cluster_s in particular have been the center of most ‘of
these studies. Mosf noticeably, a series of articles by Landman et
aJ:[99,66,100,101,102] “have appeared recently which used path integral
molecular dynamics to explore (H,0): 'for n = (8-132).[66] This investi-
gation agrees with the experimental evidence that electron attachment in
water clusters is not energetically favoured for n < 18. Landman et al.

-
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found that for ‘ixitl:ermediate_ sizes (n = 18 - 32) the electron is bound to thé
cluster through a surface state. Here a sufficiently large .dipole moment of
the cluster &évelops inr order to create the bound state. In larger clusters, n .
- = 64, 128, the formation of an internally bound électronic state is fa.vc;ured
- over a surface state. | |
The electron affinity of small ammonia clusters has recently been
discussed using a dielectric continuum model.[103] In this.theory the elec- |
tron moves in an average potential energy, which correspond to the Bottom
“of the conduction band of the liquid ammonia, and in an additional at-
tractive potential field due to the polarization induced on the ammonia
molecules. Thi§ theory precﬁcts the localization of the excess electron in-
side the cluster for n > 30. Such a result is in contrast with the mechanism
of electron attachmen.t through jthe surface state four%d. for medium size

water clusters. The calculations described in this chapter was undertaken

in order to test this explanation of the experimental data.

7.1 Preparation of the clusters

7.1.1 Neutr;al Clusters

Calculations were carried out on 3 neutral clysters composed of 16,36 and
54 ammdnia molecules each. The initial configurations for the systems were
chosen by randomly distributing the molecules around the center of a box

with 30 A edges, maintaining the cluster deasity close to that of the liquid.
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Standard classical MC simulations were conducted for few hundreds
passes, where a pass involves an attempted move of the center of mass and
the 6rie:;tation of all ﬁlple;:ules in :the cluster. The maximum disi:lac‘ement
for the coordinates was adjusted to obtain an approximate acceptance rate
between 30 — 40%. As in the otﬁer studies of this thesis, t';he orientations
of the molecules were sampled using quaternions. 4

After this first lmtla.l etiuilibration stage, the simulatibns:were run
for an additional few thousand passes. During this period, iﬁfbrmation '
about the structure and pair correlation functions of the ‘clusters were ac-
cuﬁlﬁlated. IIn partrcular, it was important to know if the moiecules in the
clusters Were in a frozen or liquid state. Each of the two possibilities implies
a different strategy to be followed in order to- determine the ground state
energies.[66]

All through this initial stage of the simulations the evolution of the
malecular center of mass mean square displacement, D}, was followed. Its

steady increase during the simulation showed that the cluster studied was

liquid. D! is defined by

t 1 ud i R()? | -
D'= (2[R} - R} - (1.1)

=1
where R/ is-the position of the j-th molecule center of mass at the I-th' MC
pass and N is the number of molecules. | |
After the equilibration period the calculations were carried on in
order to accumulate averages. I:}termedié.te results were used to check

for convergence during the runs. Generally, after ~ 30,000 passes the
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- '51mu1a.t10n converged in the sense that the total molecula.r potentxal energy - |
. rea.ched a stable value L - ' o

| . 7.1.2 Charged Clusters -

- The composite electron-cluster system was studied ‘using the s'fame simula-
tion techmque and similar interaction potentlals as in the previous studies
in this thesis. The number of beads in the pnmary cham and each secondary

io...chain conﬁgu.ra«txon were respectwely P, = 256 and P, = 8. Accordingly,
the total elecfron dxscretlzatxon was P.= P, P, = 2048. The wexgﬁt ofa lmk
connectmg two adjacent beads of the primary chain were eva.luated from
the contributions of 100 distinct secondary chain conﬁguratx_ong. Each MC
pass involved the éttempted move of all beads in the primary chain with the
corresponding sampling of the secondary chains and, several times (5 10),
the totality of afnmonia.moleculels. )

For all the clusters, the simulations co_mn,:lenced from a localized
internal electronic configurations. When the cluster showed an apparent
stable trapped interior state, additional runs were performed starting from
an exterior state for which the electron necl&&ca,x{as initially outside the
cluster boundaries. | -

The startins configuration for t‘e interior state was produced by
running a classical MC simulation for the ammonia cluster and a negative

ion of charge 1le~. A Lennafd-Jon&s potential, with ¢ = 2.0 A and ¢ =

5.5kJ mol=, for the nitrogen-ion interaction was employed.(Thjs potential



4

produces a camty with'a d:a.meter of about 4 Ain the center of the cIuster )

After few thousa.nds MC passes of ethbratlon, the nega.twe ion

was replaced by a conﬁgura.tlon of pnmary cham bea.ds dlstnbuted ac-

cordmg toa Gal‘aﬁxa.n of mdth 3 A\For about 50 passes the electron was.
allowed to expand while the cluster molecules were held statlonary ‘Next,

Lrthe electron polymer was frozen and the molecules were moved for a few

more pésses(d 100). Finally, the simultaneous sampling of the elecfronic_

\and molecular phase space was initiated.
‘The simulations were carried out until the size of the electron neck-
~ lace appeared stable. Then averages were accumulated until the conver-

gence of the electron plus cluster eneré;y was achieved. Typical equilibra-

tion and acquisition periods were respectively 5000 —9000 and 3000 basses.'

Long equilibration runs were needed for the N = 16 and 36 clusters be-
cause t_hé starting conﬁguration‘collapsed' and the electron escaped from
the interior of the cluster. |
The e;cterior state was set up by chosing a configuration of electron
beads from a Gaussian distribution with width ~ 3 A and placing the
necklace beside an equilibrated neutral cluster. The center of mass of the
electron necklace was located at about 2 A from tRe cutermost ammonia
molecule of the cluster. The composite system was then run for about 3000

- passes for equilibration and about 2000 more to accumulate statistics.
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7.2 Structural Propertles I

' 7.2, 1- N eutral Clusters

A_t ﬁrat, some prehmmary ca.lculat:ons were_;ierfi:rmed on the three neutral
-clusters with v = 16 36 and 54 at 200 K. In all three -cases the ammonia
molecules 1mmed1ately started to escape from the clusters. Th:s observatxon
is perhaps not too surpns:ng since the triple poxnt of ammoma. is 196K In o
__order to see if the presence of an ‘electron could enf},\ance stabihty of such.
clusters, attempts were made to study the negat:vely charged cluster states
: startmg from ‘an interior as described above In each case the the ammonia
 clusters broke apart and hence were not stable at 200K.

Next, fhe texﬁperature ﬁa.s lowered to 100 K and the neutral clusters
were/studied again. This time they did not disintegrate but showed liquid-
like behaviour in the sense that D' increased steadily during the simulations.

In Fig. 7.1 the nitrogen-nitrogen pair correlation functian of the
three neutral clusters is' compared to that of the bulk liquid ammonia at
260 K and molar volume of 25.3_c1;n:’mol ~1. The narrowing and compression
of the first neighbour peak in the cluater compared to the liquid is largely
due to their lower temperature. With the decrease of N, there is 2 gradual

disappearence of structure in the g(r)’s after the first peak.
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.',»-’7'.2.2 | c'héu-géd Clusters "

T

The ca.lculatlons for the two sma.ller nega.twely cha.rged clusters at 100 K

‘ showed that they ma.mtamed hqu.ld-hke structure very s:mlla.r to tha.t of -
.the neutral clusters. The Teason is that unhke for the la.rger N 54

cluster, no stahle mtenor solvated state is formed when the s1mulat10n

18 started from an interior sta.te prepa.red as described above. The cawty

1nsxde the N =16 a.nd N = 36 clusters, which 1mtla.]1y conta.xned the

| electron polymer, collapses a.nd the electron esca.pes to-the outszde Only

for the N = 54 clusterdid the electron polyzher remain tra.pped for. the
entu'e length of the §1mu1a.t1on

A convenient way to cha.ractenze the various conﬁgura.tlons of the

“ electron neclila.ce is to examine the complex time correla.tmn function,

R? (t - t’) It is important to remember (see Chapter 3) that the corre-

lation length, namely R(Bh/2), is a direct mea.shre of the mean square

. diameter and therefore the size of the electron. If this quantity is evaluated

for the interior state in the N = 54 cluster it is found R(BR/2) = 3.7 A
which compares with 4.1 A of the bulk liquid. |
In contrast, the behaviorof an electron interacting with the smaller

clusters is vefy different. When N = 16 the electron is almost totally

detached froh the cluster, it becomes “ diffuse” and its average diameter

is comparable to that of a free electron At 100 K Ar = (hzﬂ/m )2 ~ 30
A, which implies that R(8%/2) ~ 25 A. For-N = 36, the electron escapes

to form a more compact surface state in which the electron polymer has

RIS e
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R(BR/2) ~ Qw;nds and is attached to the cluster surfﬁcé.

T?. test the stubility of the interior state found for the N = 54
cluster, it was necessary to run an extra s;imu_lation starting from a cavity
of diameter G‘A and then running the system in the usual way. The la.rge;
initial cavity does not affect the final result ; the electron remains .ltrap'ped
and the molecules relax bringing the electron (and cavity) average diameter
to the same value asin the.previoqs calculation. The interior state‘found for
the cluster with V = 54 shows strong simil;u'ities with tie solvated electron
state in the bulk. Io“Fig. 7.2 an instantaneous configuration sampled from
the MC run is presented. Figure 7.3 presents the pair correlation functions
for N and H atoms, with respect to the electron center of mass, .in the
cluster.‘ These functions lha.ve to be compared with the ones in the bulk
reported in Fig. 4.2. The former are more structured, most likely, because
of the lower temperature. Nevertheless, the coordination number for both -
calculatic(’ns is the same, around 12.

On the basis of the above calcula.tion,_one can conclude that the
interior state for N =%54 is at least metastable. Previous work on &lectron
attachment to H;O clusters found that surface states were more favourable
until N 2~ 100.[66] Accordingly, an additional run was performed for the
same cluster, this starting from a exterior state. This simulation éonverges
to a stable éurface sta:te similar to the one the negatively charged N = 36
cluster evolves to. .

In Fig. 7.4 a pictorial representation of the surface states at N =
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36, 54 and the diffuse staté.t-:.t N =161is gwen The smnla.ntxes of the .~
surface states of clusters with N = 36 and 54 a.nd their contrast w;th-. .
the N = 16 case a.re clearly seen in Fxg 7 5 where the respectwe complex
time correlation functions are shown The values of R(RB/ 9) for the qurfa‘ce,
states (see Table 7.1) agree ‘within statistical error : a.round 8.8 Afor N=36 .
and91AforN 54. . |
_T;[‘he nature_of the' re;ﬁon‘stmction of the ammonia ‘cluster induced
by an elecﬁron a.ttaéhé_d to the surface is also of i.nterest'.‘ The orientational
ordering of the solvent in the vicinity of the electron can-be quantified by ..
examining the corresponding dipole correlation ‘function. The evaluation of |
‘ this probalility dist‘ribution function, which is shown in Fig. 7.6, includes
only those molecules witkln a distance |R; — ren] < 5 A from the center of
mass of the electron. A trunca:ion radius of this length effectively exeludes
all solvent- beyond the first solvation sheath. .From Fig. 7.6 it can be - °
cqncluded that electron attachment to the surface of the cluster causes
strong dipole ordering of the molecules in the cluster. This contrasts with
the electron in bulk ammonia and in the interior state for N = 54, where
bond order in the first solvation shgath is prédominant. A similar effect
was:’foﬁrid in H,O clusters.
The electron center of mass nitrogen distribution functions for the
. .

surface states are presented in Fig. 7.7 . The density distribution shifts

inward in the case of N = 54 in comparison to the N = 36 case.
o .



7.3 Energej:_ics of Ele”cf:rpn" Attadhmgnt T
~ The electron solvat:on energy is. deﬁned a.s the sum of the bxndmg energy -

.and the reorga.mza.tlon energy of the cluster moleculés namely

(SE)=(B)+(Ea . (an

where {ER)_iS_ given by | _ | | : -_ |
B =m-w), (1)
. with (Us) and (U) being respectively the potential enérgies of the neutral
and negatively charged cluster. (E) is defined as the sum of the electfon

“inetic and poten&\al energies minus the free pa.rtlcle contribution, namely

(E) = (K) + (P) — §k5T (7.4)

In Table 7.1 the re.sults concerning the equilibrium‘energetics of

the neutral and charged éluster‘s are presented. It is found an essentially
free electron state for the ammonia cluster with N = 16, i.e., AE is zero
within error bars. This sugge;st; that an electron cannot be bound by
so few ammonia molecules. For the exterior states occurring at N = 36
and N = 54, large negative solvation energies are found. This implies
that electron attachment to small ammonia clusters occurs through surface
states. That the reorginization energy {Eg) has a small negative value

for the N = 16 and the N = 36 surface states is puzzling at first sight.

A possible explanation is that the electron causes an enhanced alignment *



‘of surfa.ce molecules in the cluster (reca.ll Fzg 7 6) a.nd hence reducee the

i a.mmoma. clusterg entropy

*

'_\{ra.s'checked every. few thou"sa.nd'pa;sses by compa.ring subavereges Tte

i The convergence.‘of both the quantum and Veleesicz:jl calculations .

estxmated uncertmntxes on the mtermolecula: potentlal energies vaned with-

the size (see Table 7 1) As e*cpected the relatwe error was higher for the |

- smallest’ tluster. The error on the electron bmdmg energyrwa.s less than on'

the molécular potential energy.




. ‘Tablé 7.1: Energetics of the Neutral and Chacged Clusters.

" (P) and (K ) are the electron potential and kinetic energies. (E) is the
‘ electrén binding eﬁergy defined in €q. 7. 4 (Uo) and .(U) are the mter-

. molecula.r potential energles of the neutral a.nd charged clusters (ER) a.nd :

(AE) are the reorganization and the solvation energies (eq. 7.2 and 7.3).

Energies are in eV and length in A.

q

N [ (F) | (B | (B) | (Vo) (U) | (Er) |.(AE) | R(rB/2)

16 | 0.013 [:0.002 |-0.002| -2.939 | -2.957 |- 0.018 | -0.020|  30.1
| + 0.042 + 3
36 |0.223|-0.438 |-0.228 | -7.216 | - 7.276 | - 0.060 | - 0.288 8.8
+ 0.033 +1
54 [1.072|-2.261}-1.201 |- 11.529 | -9.811| 1.718| 0.517 3.7
‘ £0018| 01
s4st | 0.260 | -0.550 | -0.303 | - 11.529 |- 11.383 | 0.146 | - 0.157 9.1
" + 0.024 +1

{ Surface State —~
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Figure 7.1: o o : , U
:"Distribution functions for the nitrogen é.toi_ns. Results for bulk liquid am-
. moniaat T = 260K and V = 25.3crn®mol~" and for the neutral ammonia

clusters at T = 1001\.
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Figure 7.2:

Instantaneous configuration of an electron in an irterior-solvated state for

the (N Hj);, cluster. The corners of the cubic box are 30 4. Only the bends
of the primary chains are plotted (empty dots).

.




PR

S

e 141

F igure 7.3: ) _
Distribution functlons for the solvent nltrogen (N) and hydrogen (H) a.torns
. with. respect to the center of mass of the electron charge density for the

interior solvated state of a (NHy)3, cluster.
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“Figu\r‘e T4

Three instantaneous conﬁguratibns at the end of the MC runs for the sur-

face states for (N H3)3g, (NHQ;} and the diffuse state for (N Ha)ys. The

corners of the boxes are 30.0 Afor (N Haj)zs and (NH);,, and 55.0 &for
(N H3)s. Only the beads of the primary chains are plotted (empty dots).
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K Figure 7. 5' - _
Complex txme correlatmn functions for the (N Hs)zg, (N Ha)as clusters and -
for the (N H3)ss cluster mtenor a.nd surface states.
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Fig_uré' 7.6-:‘ | y

~ Dipole cbrrelatior; fﬁnqtibﬁs for the electron in liquid ammonia and for-the

.electron in an ihteifio: and surface states bound to the N =54 ammonia

_clusger. The COffelation functions for the\elec_trorx in -bglk ammonia and the -

~ . interior state include (fénfrii)ution frdm the first electron solvation sheath.
-About 10_héighb6uring arnrnégia molecules are included in the calculation

for the surface state. d

0.6 _—

-1 =05 o0 05 1

‘‘‘‘‘



L

1 .
- -

- F1gure 7. 7

Electron c. m. -mtrogen correlatmn functmns for the surface states.
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Chapter 8

Conclusions
In this thesis _the path integral Monte Carlo method has been applied
to some solvation problems involving quantum solutes. Thermodynam-
ics quantities like partial molar volume and entropy change associated wit}_;
the electron solvation process have been calculated. The ionizatiog of alkali
atoms in liquid ammonia and the electron attachment to ammor'ﬁ:élusters
hz}ve been investigate h

Path integral MC simulations at constant pressure have lead to
an expansion of the simulation box in satisfactorily agreement with the
- experimental molar volume. The simulations werc‘e carried out by regarding
the polymer degrees of freedom as independeizt of the volume fluctuations.
The structure of the solvated electron at constant pressure was found to be
very similar to the one at constant volume. The electron wavefunction was

only slightly expanded.
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-Th‘e Debye charging trick was used to calculate the free energ_v,;
of the solvated electron at consta.nt volume The experimental solva.tlon
entropy at constant pressure was reproduced only when a correctlon due
to the volume gxpa.nsxon‘ was mtrodu_c.ed. The contribution to the entropy'
. due‘to the ordering of the a.n;.'.monia. mblecules induced by the electron is °
negative. A rﬁajdr result is clear from this calculation : thé eacpanéié:n woﬂ;,
'performe.d by the liquid when the electron is infroduceﬂ, is responsible for
the positive experimental entropy. L

Two médel pseudoéoténtia.ls were used to study a.lkah atoms in
ammonia. Spontaneous ionization was observed only for Na and Cs ﬁrh’en
the HC model was empldyed The SC model leads to the formation of
‘dipolar atoms when tested thh Li and Cs. A d1pola.r Li al..tom was observed
even for the HC model. The HC Li was much more polarized than the SC
Li. These calculations predict that the minimum energy state for at Iea.st
Na and Cs is indeed the separately solvated ions. This is agreement with
the experimental evidence. =

In the study on neutral and negatively charged ammonia clusters
at T = 200 K the N = 16, 36 and 54 neutral-clusters of ammonia were
found unstable. The introduction of an excess electron does not increase
their stability and they spontaneously break apart. In contrast, at T= 100
K only then = 16'3 cluster fails to bind the electron. For both the N = 36
and 54 a most stable surface state was found. The (meta)stable internal

state for the N = 54 cluster was higher in energy than the surface one.



e These results are’in agreement vnth La.ndman s work on water,[ﬁﬁ 100] but |

- d.lsagree W1th the continuum theory [103] i
Despxte the hmxta.tlons of the method and mtera.ct:on /quels_ .
‘ adopted in thls the31s the results obtained are m sat:sfact rely agreement .

‘ ‘ with expenment More 1mportantly, the pa.th mtegral Mont Ca.rlo rnethod .

is able to offer deep ms:ghts in the structura.l aspects of the systems exam- .

; med a.nd to make predJctlons on thelr muumum energy. states

~ -’
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