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. otrong homogeneity which, in the metric case at_least,

Ivm'sonu'c'riou "

k\,L
p ‘

—

-In recent years many authors have called topolo-
.gical.spaces with certain properties strongly homo-
‘geneous , and have investigated the group of homeomor-.. .

phisms of such spaces. Thus far, ‘all the definitions'
have one disadvantege,-namely that none of them implies

homogeneity. In this thesis we give a definition of

implies homogeneity.ﬁ We relate this dEfinition to‘the

previous- definitions, and show that it includes most of

a

”

.the spaces studied by previous authors. 'Moreover this

definition is a local as ‘ell as a’ global definition, it -

\

. applies to any open subset of a topological space X rather

than just’ to X itself, as is the case with the original
definitions. For some results, .for example Theorem 4.5,
it suffices thattthe space contain a strongly homogeneous .
subset. N | : c
, This thesis'is diﬁided into‘feur"sections.; Sec-
tion one includes the definition oﬂ strong homogeneity

and the proof that every strongly homoceneous subset
,a-'/ N T
of a metric: space is” homogeneous.\' We also show that

strong homogenelty is preserved by*homeono nisms. In

Pl
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also give an example of }

linear spaco;is strongly homogenecus ond'doduoo that

' every.normod'iinoar.spaoo-io Strongly-homogﬁneous. Wa

_space which is a strong local

homogonéity, but is.not.gtron ly hoﬁogonoous. We then show

that every 'S.H. xegular perfect space ir'a Galois soace. (see

41) and is reprasentable (sde (51), and deduoo'ohat, -/r
every S.H. metric space is reasonable. r‘ts e £5])

In section three we show that the definition of atrong
homogeneityembraces that of strong locol se sa homo—t

geneity (in the sense  of Brechner [2])p'50 that the

+

' group of homeomorphisms ‘of a strongly homogeﬁeous space

is at least one dimensional. We gfve an example of
a space which is strongly locally setwise homogeneous,

but not’ stron&lgghomogeneous. Sectiop four deals with

" the group of ergodic homeomorphlshs of a stroagly ho-

Mogensous space, and a.similar result-to that-of Saars
: ' Mot

‘(10 is proved. We also prove that the Cantor set is - R

stxongly homogeneous. . - . )
The following notation is used throughoul, the text.

If X is any topological space, then H(X) denctes

the group of all’delf:homoomorphisms of X. If U

s an o;on subset of . X ond' f ¢ H(X) is-the,identi;y----a-\k

. map on the complement of U, we write £ ¢ u'. We

denote the complement ofci‘sobset U of X by Cu,



Y
AN(x,E)' and we write G(U) for the diameter of a uet

‘proper subsat of®. Throughout ?he text R is the

‘throughout the text refer to. the bibliograbhy which ap--

a
T

and its closuré'bf g. - .In any metric'soaca (V'di-'

we denote the &-ball of radius é about x ¢ X- by

'y, that is

—

(U} = sué {d(a,b) :'?,b ¢ U).

. We write < for "ig a subset of" and- g for "is a

n - dimensional Eucliaean space with the usual topologv. ,
S/
Finally, the numbars appearing in square brackets o

- p

pears at the end af the thesis.

¥
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let U be an open set in x.

§1. A STRONG, FORM OF HOMOGENZITY,

I3

' In this section wa probé'thaé‘a-stronglylhomogeneous set

inﬂa mstr;c,space‘es homogeneous. , \Hul

-

‘Definiﬁioﬁ 1.1. Let {x,r)' be a topological space and

U is said. to be-B—5nze£y

cpen Lf_there'is'a basic 8 for T with the oroperty

that‘if vV,W ¢ 8 are proper subsets of U with

Won (U -.U) = ¢, then for aach X eV thera is & hcmeo-

morphism h\c g(x) such tHat

© o {4) . o ¢ h{W) and h(D 5 V.

(11F  h.e UN .

J\

//

Dsfinitioh}}.ZQ. Let U be an open sek iﬂ a topologtoal
space (X,t). A basis B for Tt is said to be a ﬁnae
basis foxr _U if every element of '{B¢B :BeU} is
B-freely open. . ' B

Definition 1.3. .Let U be anm open 'set in a topological

space X. U is said to be strongly homageneous (s. H )

“if U is B- freely open for some free basis B for U.

The space X |is S H. if it is S H. as a subset of itself.

s
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Nota tnat every e;emuwt of a frge baaiq is S H.,:'A”simble“ .

——r—nie

examole oE a free basis is the ba@is of _open. intervals for
— _

the Euclidean topolcqy on” ‘the spaue oF real numbers.‘

| [Fig. I].

i
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FIGURE I.

(a,b) 1is’an open inter&al and. (c,é) and (e,f) axe
subintervals of (a,b) with‘ c=a, d=20n and v ¢ (e,f).
t Choose € fl.suéh that e < e, < fl < £ and Y € (el,fl).

The reguired homeomorohism is shown above.

w
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" and ‘h—l(v} ¢ h

.

Lemaa 1.4. let h be a homgbmoaphLAm 5&oﬁ'a-£qpo£ogipac

sapace X onte altopotcéica&‘auacd Y. Then

1) U is B 5&ec£J optn Ln X L{ and onty L4 RiU) s

h(B! freely open in VY, S "
(2) 8 i e gree basis ﬁot U if ind only if h{5)

Maee basis ﬂot hiu}.

(3} U is a S.HY set & and only if h(U) '£4>a S.H. sed.

c. o &
Proof. (1) Assume that 'U'-;s B-freely open. ,.Theh
h(8) is a basis for the topology on Y. Let .V, e h(8)
be proper subsets of h (U} with W [R{D) - h(m] ='¢-'

Take v € V. Then h—l(V) and h-l(wj are elements of

B and are proper subsets of U. Also k™ (w) a (U - u)
—l(V). " 8Ihce U is B-freely open there

Lé‘a homedmdrphism_ g ¢ H(X) such thét '

(. n7Hw e gThHw)) cand gtTr) g n

(1) geu. -
- *
-1

Let £ = hgh ~. Then - £ e H(Y) and (i) ensures that

Ve f(w);_and (W) g V. Also if x ¥ h(u), then

hﬁl(x) ¢ U, so )ghul(x1'= h_l(x), and thus
£(x) = hgh 2 (x) = x. ~ Thus £ ¢ ({U))', and h(U) is
h(BY-freely open. ' Similarly if h(U) 4is h(B)-fresly

ppen:'theﬁ using h—l, U is B-freely-open.

>\ L

L4

¢
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. Theorem_15.

"t ‘ B - -.'\.,...E.-....wl_'_.'_._..._.:_..,-._ ' .

- > - i
(2) follows by a
(3)

Vs -

-

sin;l“r proof to- that of 1}

”
’

—

follows from (1) and (2).

L3

ER

if U s a S.H.:ae: inga metrie space

X, then U i3 homogeneous. '
Prook. Let B be a free basis auch that U is B-fraely .
open. let a, b be any two elamenus of w. Wc show that
there is a homeomorp ism‘ F ¢ H(X) with F(a) _Let. |
l'Yl € 8 be pxoper subsets of . with a e Wl, b« Yl‘ |
Wl n (U - U) = ¢, G(Wl) < 1 and G(YI) < 1. Then there
is a_homeomorphiSm hy e H(X) such’ that Y
. 3
. A‘ . " - ! v
(i1) hl e U'. .
et V) = hi{), a; =hyla), B, = 31(5" Then by lemma

1.4, Bl ig a free basis.

ceed as above. .
\»

Let Wi,'!zﬁe,ﬁl be proper

’

‘”wsgbsets ot {Vi. with .él € Wz,-p € Yé,: ﬁz ni(?i;* Vlf = ¢,
S W) < %, 8(3,) < k. Sinde U, e By, ¥y cis By-freely
open, SO there is a homeomo;phfsm. h, ng(x) §uch that '

1) b« h, (W and h,(W,) ¢ ¥, . !
i) h, € vi". B ' .
qu let V2 = hz(wzl. a2 hilay), 8, = h,(B,) and prq;



Continuing in_this way we get "uenées.'(wn) and’
{(v.) of S.H. sets, ané homeomorphisms h_ e H(X) such’

that for all n = 1,2,3,... we hi}pﬁw
_ | )

(a) 1 vn+l g:vn

o B
{b) .hn(Wn) = Vﬂ//and W_n (vn—l'q\vh—l? =" ¢

n
.g' B Vo = u)
-1 ,-L =1, 1 '
(c)  G(hl h, f"bn Jn+1) < opy and G(Wi? <:FN
o l .. . 4 el

(a) _é(Vn)>j a
. (E) hn E vn_l o (VO = U)
(£) a, = hnhn—l""héhl(a) € WQYl-

.‘ h .

clet F_ = map F by

" F{x) = 1lim anx) fFor all x e X-

A

T—

We show that F exists for all x e X, that F e BE(X}

and that F(a) =b. e
. R . Y . .
: ‘ Take . x ¢ X. If x { U, then F(x) =x%. If

) ) | _ _ - )
L Fp(x) *\Vﬁ tFor some n, then F{x) = F_(x) ky (2) and

~~~~~~

Ae). If* Fn(x) e V, for all n, then

‘ hh _;.---hy(x) e h (¥ )- for all a. So

Fn_ltx) = thIhn- ;.-.hl(x) e W ' for all n, that is.
' e | : - , ‘. 1
X € :n_l(Wn)' for all n. Thus by (<}, Q(x,aﬂl< =

* -
» . -
.

/. .
- Lo e Y e
/' . . e . .
. . . A
& . .
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for all_ n, énd so x = a. Also Fn\a) =3, € Vn for
all n, so by (4) d(?n(a),b) < % for all . n, which

means that F(a) = b.

Thus F(x)-= lim F_(x) existsfor all x ¢ X. - (1)
. n+m Lt . .
Alsé,by (2) and the proof of (1), F is one to one. {2)

To show thgﬁ F is ohto; take x ¢ X. " If x e CU, -

. " ) .
then F(x) = x. If x e'Vh for all n, then by (d),,
d(x,p) < %r for all n, so x = bﬂ’;nd Fla) = x. Othgy-‘
wise x ¢ v, for some n. Say x itV Now for ail /—
n, , there is an element. X, of X such that Fn(xn) = x.
Thus in particular FN(xN) H Vyr and 50 F(xN) = FN(xN),= Mo
" Thus ¥l is onto. ' ' : ' {3)

o~

We naow éhow that F is copﬁinuous. ‘Take x ¢ X.
Theré are two cases to gonsider.
{1) If . x = a; then there is a positife'integer m
such that F, (%) ¢ V ¢ SO that F(x) = Fy (x) for all

k =2 m. Now Wm+1 n (Vﬁ - Vm) = ¢, .so if Fm{x) € Wm+l’

then F(x) = F{x) & V- If F o0 bW, thenm/v_\‘\
Fm+l(x) ¢ hm+1(wm+l) = so F(x) { V1™ Thus o)

in both cases, F(x) = +l(x).{: V£+l, which means that ¥

. ' '
x e Foo(X - Vm+1),_which is open. Thus there is a

1 T -
+1(X - Vm+l?'

d{x,y) <-51' then F(y) =‘Fm+l(Y)i‘ Now let € >0 be

Gl(x) > 0 suchﬁth&t N(x,él),c F fo if

given. = Then there is a Szkx,e) such that if
dlx,y) < 3, then alr ., (v}, T_.qixl; <= Lex

_ 1
8§ = minfﬁl,éz,.
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Then if da(x,y) <'5, _F(y) = Fm+l(Y) and so
d(F(x),F{y))'< £ Thus F is.coﬁtinuous at x for

X * a.

. I . . ‘.’ . . . ..A"
. (11) Suppose x = a. .Let g > 0 “he given and let

1

N be a positive integer with 0 < & < .  Since

N e Fyoy

is continuous and a < F;El(WN) -by (Z), there is a

§(a) > 0 such that N(a,8) = F 1 W) - So if

: BJYJa).< 8, then y € FN l(W ),‘ and so

FN(¥) e hy (W) = Vi, which means that Fy) e Vyg-
1

Thus d(F(y),F(a)) = d(F(y),b) <3 <e. So F is

| N
continuous at x = a. .

Thus F is continuous. ' | (4)

It remains to show that Fnl ~is continuous. Take
x ¢ X. There are again two cases to consider.
(i) If x = b, then thére is an element 2 of X

such that F{z) = x and z = a. Now F(z) = Fy(2) k'ﬁN

_for some positive integer N ,so that F-l(xi =F TiX).

- Thus - X € X —‘VN which is open. Le£ 63(x) >0 be

such that N(x,53) c X - Gﬁ. Thus if Yy ¢ N(x,63),

P | - . :
then F “(y) = Fnl(y). Now let g > 0 be given. Since

-1

.FN _is continuous, there is a 54(x,e) >0 such that

- 1if d(x,y) < 64, - then d(F;l(xL,'F;I(y)) < €. Let

§ = min{63,6 } Then if d(x,y) < &, then .
I )

a(F T (x) ¥ Ly = awy Mg eS8 Jig)) <. so T ois

continuous at x for x = b.

’



 .F—1(Y) e F

11.

~

{ii) Suppose x = b, so that Fhl(x) = a. . Let

€ > 0O be given aid let N be a positive intéger with

0 <'% <'e. Choose .&§(b} such that N(b,§) = Vﬁ. -
Then if y e ¥(b,$),: then F—l(y) € F_l(VN), so

-1 s -1 -1, v - ]
(v..) since F (VN) < FN (VN). But |

N N
S(FRL (V) = 6 (F5- (hy (Wg))) = 6 F ) (W) < iy by ().
So 1f d(b,y} < §, then d(F—l(y),a) <-% < ?'. ‘Thes if
d(b,y)<é§ then a(F“I(b),F-l(y)) < g. So F—l- is con-
tinuous at x = b.

ihus F'l is cogtinuous._ ‘ . _ ' A5)

Thus by eqﬁatioﬁs (1) to (5), F € H{(X) ana

F(a) =b. Thus G ig a homogeneous set.

3 .

&

-

The following example, used by Ford [6], is an example
of a ‘campact metric space which is hemogenaous but not
S.H. ‘Iet C be the Cantor set and let S' be the one
dimensional circle. Let X be thé.Cartesian product
of C and S' with the usual proiuct tqpology. Since
both ¢ and S' are compact, metrié, hcmégeneoﬁs soaces,
X' 'is compact, metric and homogeneous. “We shall there-
fore ;;;;he that X' is émbedded on tﬁe surfaca-of a

right circular cylinder in Euclidean 3-space with the

metxic tcpoiogy. " The space is evidently not S.H. since



12

.
4

in order to mgve a point x ¢ X to a naighbouring point
" on a different. circle, we have to move the whole circle.

We show in section fou; that the-Cantor set is S.H.
‘Since s! is S.H., the above example shows that the
product of two S.H. spaces need not be S.H.

.



§2. A STRONG ¥ HOMOGEKEOUS SPACE IS A STFO\G LOCAL

HOMOGENEITY AND A GRLOIS SPACE. Co -
The following definitions are dus to ford.[ﬁ];

Definition 2,1. . Let X be a completely regular'HauS-\
do;ff space, and let G be any transitive subgroup‘of

H(X). G is said to.have a r;a;onaéle topology over X
if G is a topologicai group undef'this t9poiogy, and -

the coset space G/Cx (left cosets) is‘homeomorphic to .

X under the map n: G/C%

[Where C_ = {g € G: gi{x) = x}].

’. |
Définition 2.2. Let 'x be a Hausdorff :¥ace.' X is
a;Ax&aﬁg Local homagaxgiry (S;L.H;) if for aﬁy neighbour~ -
hood of any point x, there'gxists a éuﬁneighboﬁrhood
U{x) such that for each z ¢ U(x) there is a homéomor~
phism g with |
h (1) Cgi{x) = z.
(1) g e (Ux))".

Ford [6] claimed to have proved that if X 1is a
‘completely regular} Hausdorif S.L;H.;y;qd H{X) is a
f;ansitiﬁe group, then H(X) 1is reasonakle-over X

- under any topology- induced by a uniform structure on X.

b "]
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However Mostert [ 3] showed thet Ford had in fact not
proved this. MQétépt prbvad the follecwing:

3

Theorem 2.3  Llet X be a homegencous, Zocaﬂ&& com=

»

pact; Hawsdoxdd S.L.H. Then o

(i) - ;Aa untform Atauczuné on X obtained grom
| £ts one poind ccmpactLSLﬁdzionAinducés on H{X)

a ie&éonqbza topology cven X, ‘ .
(ﬁi]‘l ihe uniform siructure on X obtained fiom

its Stone-Cech compactigica}ioh induces on H(X}
. a‘aaﬁéoéabta t&p&iogy cver X, o &
[411) 14 X i& connebfed, them for any unifoamiiy

y on X, zhe gnoab‘oﬁ homeamohphi&ha unL -

-

goamly continuous relative o U L8 reascrable -

over X.

The:result used in the proof of,this’thgprém is that ;{)jﬁ
G is a groﬁp of uniformly continpous:homéomOrphisms on a-
uniform space X, then G ié a topological tiansformaﬁion |
group on X when given thiﬁuniform toﬁology. (See [6])
Nowfsdppqse‘that X isiany S.H. metric space. Then
by Tpeoremli.s,.x is a S.L.H. and X is homogeneous. Thus

from Theorem ,2.3, we have:
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Theorem 2.4. Let X bé.a S.H..Lceally ceoupact mét@iﬁ |
space. fhen |
(1) the aniﬁﬁnm dtnuctuki on X :ab;ainza ﬁaom
‘ ifb one poind cbmpactisicazian‘ﬁnduceb?on
H(xlf a.héaAqnab£a topology &Qén X.%;
(ii) the uniﬁo&m-§tnuc£dné on X S%taina& gﬁdm |
L1 $ioﬂe—§ecﬁ compacilflication {induces on
'_H(Xl a aeaéoggﬁzg Zopofogy over X,
(114} Lf X 43 connected, then the group of uni-
- formly continucus homéoﬁonphiémé'(thaf‘i¢,
homeomorphisms g such zhat‘ g 'aﬂd' a
are uniformly continuwous} Ls Aea&onabie~ouem

X, - '

igfd prerd that everj normad iineér~spa;é~i§ma

. & Lo
5.L.H.. We extend this result by proving that every

v

‘normed linear .Space is.S H. i(all'sﬁacés are.takép over

thQ/fleld of real numbers) ¢

Theorem 2 5. let X bn_gjionmad £¢nzan space and Let
S = {x: ||x|| < 1} Ther S 48z S.H. set.

Proof. Define £ : X+ S by

1+ x|

f_ is a homeomorphism from X onto S5 with inverse ”f

J

B e e it T g ek e ST o

ke’ e b B3 L u e P

. _
Rt s 5
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fLet\B be the usdal basis for the nor

_u,gv.

.Define T: X =+ X by

“

16.

"given by

"Let v, WeB be proper subsets of S with wrw(s =

and téﬁe vsV Say W= N(b, ) And. U = N(v,
We shall show that. Wa £(W:) and u=>f(u,) whgﬁe

€1, €2 > 00 - 4

. . . ' | -1 SRR
Assuming this is true, let a = £ (b) and v, =

) Ez . .'-
T(x) = — (x=a) + v,
. €, -

-

'topology on X.

S) 8
z‘) Aere

S . ) S .
"Wy = N(f 1(b), €1) and Uy = N(f (v), €2) for some

(1)

£ (v)

‘Then T cH(X), T(a) =w, and T(W = U, since ||x-al]
“if and only if ||Tx). - || < e,;" Now define
R :X+X by |

A 1. -
R(x) &2 (e 1F |[x]] < 1
= X £ [ix]] 21
{&;t‘

We show that R e H(X) and that R(w ) 5 V?:

To rhow

th;t R € H({X), e show that lim R(k) = ﬁf

FESRRS
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Take x ¢ S.

 R(x) = (£

L 17,
. ' i
) (%)
X )
X .82

_ ”f(ﬂ(l—_-—ﬂ-;n'_‘a) + g) " where a=e—1-

] X . _— *
G(m - _a) + V:-_‘

1+ |

<

_|ﬁ('l—:—‘[%r|' - a) + yi|

ax + (1 - ”xH)(v; aa)

T

So .

)] ‘

lxll Filox + (L= [1x[D (g - qal[|

.\. \ ,i

cxct (1= =} ) (vmga) =3 (1= x| 1) =x] Jax+ (1= il 1) (5 a)

1= [x]] + Jlax + (1 - |ix}) (g — ca)|]

- ' | - !
Therefore lim ~ [[R(x) - x|} = lim hHGx #_Hﬁxll Ll
Plel =27 Hxl 517D ax] | o
o e sllsll gy,
. B IEY | B Y
= 0. '
similarly Um _ [IR 100 - x]| = lin ||fT Lemhx) x| {0
- Hxd -1 -~ lell+

|

" or b B D DA i € it i 2 e

B TR L gl ot 3 T

S

FERr v

et EaRt A

Frapetdras oLt

P
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~ Now take x€£ ' (W). Then x = W where [{w-b|| < &/

3
[

18,

Thus ReEH(X): |
Also R(W) = (£T£~') (W) € (£T)(W,) = £(uU,) & U.

so R( ¢ T g V.. | o 2

© Finally R(b) = (£T£7') (b) = (£T)(a) = £(v,) = v. So VeR(N). {

!
| -1
It therefore remains to prove (l). To show that £ (W)

-1 . : : N .
N(f (b),e,) for some ¢,>0, note, that there is a number K>0

such that |[w]] < 1 - K for all weW, -

1
- w

then [ | = || ey - I ?Irbu-“.,': |

lw = b = [iblw + ||vib]]|

AW A= “blh .
¢ qrraEn v - el 2wliieD

[N - L

‘ 1 :
“Kll =3 (8, + 2)

‘ - 1. ‘4_“\ : .
Thus taking €, = !fl(lf—zub][) we have that £ (W) N4E~ (V), €,).

N

Now let €, =-62 - 2, and U1 = N(f-l(y),‘ea). Take yef(Ul).

v

_Then y = £{x) where {[x - ~T --<'6¥—‘2
oy . B '_ - -
so.x = gy on || e - e <o - 2 .

e e —pmen o A e =



4

| v v |z ly=v - IIVil'y + ilyll'VIl
But Hl—uyn T K2 “ PRI KA

-

iy = vl = 2 lylllivh

v

ally - vil-2

From (2) ||y - v|| < 82. Thus yeU and £(U,)<U.

Thus S is B freely open. Now any set of the form N(x,e) is
. homeomorphic to S, so B is a free basis for S and S is a S H.. !
set.

b4

: - Q
b .

Corollary 2.6. Every noimed Zinean Apacé L8 8.H.

J

Corollary 2.7. Fonr every posdidive inleger i, dny open,
Cindervel in R 4s a S.H. sed, and so " is o S.H. sa2z.
. . . . . . A

Proof.. The resul: follows from Theorem 2.5. and Lemma
1.4., since every open interval in R" is ‘homeomorphic
&

to {x e R :|]x|[s1}.

[+

— . . [

Corollary 2.8. Let X 'ba.d xopotag;;at space. 14 U
i5 an open subset of X which &8 hemeomorphic Zo R fox
some positive integear n, zthen U L8 e S.H. sei.

We can, in facﬁ, prove a much stronger result than

Corollary Z.7.

AN



-_—— T  — o — - ——w

Dafinition 2.9. Let U ‘be an open cubse!!?o'f a tépol'
éical space X. . U 1s said o be at&ongzj setwise he-
mogeneous (s S. ﬁ ) if each paxv of proger open s§:set

VW of U with W (U‘— U) ¢ has the prope*ty tHat _
~ for each x ¢ V there is a homeonorphism h e H(X) such ‘ -

that

<

\

(1) x e h(W) ama R cv :
(i} h ¢ U'.

il

It\}s pbvious that if U 1is S.S.H., then U is.S.H.
> ' | - § | \

¥ A Theorem 2.10.  Any open interval in RY &4 a S.S.H. set.

o : Proof. Let. J = (O,l)u By Lemma 1.4., it suffieces to -
| .show that J is S.S.H. Let V,W be proper opan sub-
sets of J with W n (J - J) = ¢. Choose v e V. Then

there is an open interval K = (v-g, v+e) with Kecv

<

2
) ' and there is an open interval L = (a,b)_-wiﬁh Wek
and L < J. | Choose &6 < ¢ and let M = (Q—é. v+s) .

Choose N = (c,d) .such that a < ¢ < d <b and- N < W..

/ Then we can define a homeomorphism h e H{B}) such thatA

’ ’
) he
(11)  h(N)

i

X for all x ¢ R-J

Ir

.
(131)  h{la,el) = {(v-g, v#§]
(1v)  h(E&,b)) = [v+s,vie) .
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Nog h(W) chil)=K gV, and v e hQ) ¢ h(Ww). Also

"hoe ?ix Thus J 1s S.S.H.



s

22,

Corollary 2.11. For every positive integer n, any

open interval in R" is $.5.H., and so R" is S.5.H.

-

Proof. Let J = (0,1). It suffices to show that J=

is S.S.H. 1n R, Let V,W be proper open spbséﬁs of
Jn.with-ﬁ n‘(EE - Jn) = ¢. Cﬁbose v =\'»(v') é <. £ V.
- : - . T k’1=k-=n :
Then there are proper ‘open subsets Vk"wk of/J‘%uch

n ' n.
that (I Vi € Vo Weyly W
.

gnd Wk N (q - J) =9 , VEL
<

n). Now_vkla"vk,for all k, 1 £k S n, S0

there are homebmorphisms hk € H(R') with

(i) v € h (W) and h (W) & vk -

(ii). by e J'.
n . N ,

Let £ = kgl-hk' Then f ¢ H(R") with £ ¢ J',

v e £(W) and £(W) ¢ V. Thus 3" is §.S.H. in R".

There are many examples of spaces which‘afe S.L.H. buﬁ

not S.H. (in the sense of Ford [61Y. For example, let
C he the Cantor set in [0,1]." et Y = C VU (2,3). Y is

obviously not S.H. since it is not homogeneocus. How-

ever Y is S.L.H.

I, v

k

-~
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The following definition is due tc Fletcher anc
> .

‘Snider [41.

Definition 2.12. A space X is a Gaioéz-apace‘if

' for each closed set F and each x ¢ CF there is a

homeomorphism h e H(X) such that h_is the idemtity

map on F and h (x) + x.

Every S.H. reguiar perfect space is a Galois space;

in fact every S.L-H..without isolated points is a Galois
'5pace. The following ekamplé, given by Fletcher and
Snider [ 4], is an example of a homoceneous spacg with'ﬁo
isolated points whiéh is not. a Galbié'space. Let X
bexyhe plane. For each pbint p = (2,b) let

-
+

Dig,e) = {p} G{(x,y) :y=b and /(x-a)*+(y-B)* < ek

- * . '/./ .
et B = {D :peX, €>0} Then B is a basis
{p,c) P
for a topology T and with this topology X  is a homo-
.geneous_space with no isolated points. However X is

not a Galois space {sae [ 2])-



8 e : .

Definition 2.13. A topological space X is said to be
representable provided that if F is a closed set and x & F
then {h{x): h = identity map on F, heH(X)} conta;ns’ah open -

set about X.

It is obvious that every S;H. metric space is'a'rep£e§entable
séace: in féct every S.L.H. is a representable space (see [5]).
In (5] Fletéher and McCoy prove that every homocgeneous completely
regular representable spabé X is a reésonable space f.g. there

is a topolcgy‘on H(X) such that H(x) is a topologibél group

and the map Y: H(X)/Cx +- X defined-by Y(gcx)-= é(x) is a
homeomofphism where H(X)/Cx has the quotient topology and

c, = {;EH(X): f(x) = x}. Thus we have
Theorem 2.14. Every S.H. metric space is reasonable.

L



D

'§3. A STRONGLY EOLOGEJEOUS SPACE ISNSTRONELY LOCALLY

'SETWISE HOMOGENEOUS.

The fo],lo«um_1 dexlnitlons are due to Brechner [2). ARl

spaces are‘tame" to be separakle metric. A contlﬁhum}7

is a compact, connected Hausdorff space.

pefinition 3.1. Let X Dbe a locally connected conti-

nuum, and let G be a subgroup of H(X). X is called
2oca££y Aetwi$e homegereous ugﬁa& G if and only if
there exist bot;.h a basis 8 of 'connect_:ed open sets .0of

X and a dense subé;et A c\;f X such that for any lB e' B
and a,b ¢ A n B, there is a homeomorphism g € G such
that 'gfe B' and g(a) =b. {xX,A,B,G} is called a ‘
L&cdtzy setwise homogeneous dtructure for X. : I£ X

~

is 1ocally setwfﬁe homogenﬂous under ' H ; Ehen ¥ is

'called Locclly s2twise nomogeneous, deroted i—s-h.'

-, ]
*

Definition 3.2. A locally connected continuum X & is
called strongly Locally setwisz homogeneous (s-l-s-h)
if and only if there exists a locally setwise homoger;eous

structure {\ A,B,G} for X such that for each B ¢« B

3 and x eQA n B there is a ne*ghbourhocd U of x. wi h

Uc B, satisfyu.pg the following property:
For each open sub=5t V ofi B there exists a%&maomo*—

phism h € G such that

Y

-
\
t

7 G D L B =

e Y T

i;- LS TR

‘ f
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(1) heB'.
(2) © R(E) e v.
Definition 3.3. Let '{X;A,S,H}_ be a l-s-ﬁ'structdfg

and let B ¢ B, B = $. Let H={n(B) : h ¢ H}. H

A

is called a near basis for X if and only if every open

. © ' ¥ : - -
set U ‘©of X contains the closure of an element of H

‘In [2], Brechner provéd that every's—l-s—h‘continuum

L

has a near basis.

To_prove that every locally connected, S.H. continuum is

. ' g
s—-1-s-h, we need the following:

Definition 3.4. A.simple Fhain connecting two points.
"a,b of a space ‘X is a sequence Uy rlUprennUy of open .
sels of X such that a € Ul-:only, b e Un only, and
U, r.'Uj‘_: s ifiand only if.|i = 3) € 1.

-Lemﬁa 3.5. 1§ X i# connected, and U ié aﬁy open‘.
gover o4 X, then any {fwo poinis a,b 04 X .can ke

connected by a bimpia chain o4 2lements of U.

Proof. See (121, page 195.

N
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W ‘ .
Corollary 3.6.  let B 5 arlt Easisrdor the topolegy

of a épaoe- X end L2t U te ‘any connceted oben';gé- -

Aé;vgéi X. , Then ang éwthcinzi— a,b 0f ‘U cai de.

| couﬁeote@'by'afiha;n 3;,323...Bn _oﬁ elementA c{ ‘B

. ' i guch that B, <l fox all .i; I, ‘ yen oMo

'; Proof. Let 'Bl - {BeB : B c.U}.i_ Then since .U-ViS‘
open, B ‘;s a basis f or the subspaoe tooology on hhe  ’

conneoted Subsgéce U. The result follows From 1erna

. 3.5.

Theoren 3.?., I§ X 4i¢& a Locally cannacied. S.H.

Continuum, then— X 48 s-L-a-h.

_ Ty o .
. :*gﬂe/>>\\ Prooct. et P be a free basis for X such that X
s, C N . : ‘

is p-freely open. We construct .a locally‘setwise“homo—

'_geneous'struoture "{X,A,B,G} by taking B to be any

.

-rbasis oﬁ cohnected'open,séts, AsS X, and G = H(X) -

Take B e B and let a,b ¢ B. Let ﬁl,Dz,...Dn_'be

a chaln of elenents of D connecting ‘a and b, with

Di < B for-all i =1, 2,.,.n.. Let- di € Di nfDi+l
for_ all i=1,2,...n"1. Now p, is S.H. and a,al's D

l.
. So by Theorem 1.5 there is a homecmorphism hy e HX)
such that _hlta) = dl. .Also, by the proof of Theorem '

;.5; ‘hy € Di. Now D, is'S.E. and d;,dp € Dy. SO

&F

-
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there is a hdmeomorphiSm hz.ﬁ'H(x) such that hztdi)-='d2
"and h2 £ Dé.‘ antinuing in this way_wé'get homeomor—
phisms hl'hﬁ;"'hn € H(X}) such_that _ .

. | .
(i) hl(a) = dl' h{+l(di) = di+l for ;ll i=1,...n-2,

h_(d _,) = b.
(i1) h e D! for all i = 1,...n-1.

&

Let £ = hnhn—l"‘hl' -;%eﬂ'f“e 3(x), f € B', and f({a) = b,

=

Thus X is 1a§-h.

& o , o : _ .
Now take B ¢ B and x ¢ B., Choose D e P with

XxeDecB, and let U e® with x e Ue D, Un (D-D) = 4.

Let. V be any -open subset cf B,, ahd'choose v.e V.

. —
Let Dl be the free basls for X "consisting of all the

elements of ' 7 with the restriction that the basis sets

-

containing. x must be contained in U. Now there is
& chain Ai,Az,...Ah of elements of Dl cohnecting x

and v. Since Al € Dl, A

integer m such that Un A = ¢ and T A ., = ¢,

1 0 U= g$. If there is an

' . i A e wini nnegcts :
conside;'Fhe;chaln p,Am. el ? An nich connects x

end v. If UsA =¢ for all m=1,2,...n, consider

. . * * * ) ’
the chain U,A,. let A ,A ..,.--A 4 be‘elements of‘
* : o -
Py such that A e Un 3, 2a* o (B -A) =06 and

* S - :
Ay < Af n Ay with Ay 0 (A; - A;) = ¢ for all

.
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<

i= ﬁ+l,m+2,;..n-l;‘ ilso‘chbose'.Dl € Ul‘ with
v c-Di c Vo An'

g

Now U; A e 2; are contained in the-Ul~freel¥ open
set D, and Un (D ~D) =4. So here is a homeomor-

: _ B o .
: ) oy SR
phis¢ hm ¢ H(X) such that hm_, D and _hm!U).i Am'

‘ ' I .
- The elemen;s A A of Ul are ccntgined in the _vl .

. - - . N
freely open set A ~and A n (Am i Am) = ¢.' So there
is a homgomorphism &m+ll£ H(X) such that h o1 € By

* - - - -
L Continuing in this way we get-

* .
and: hm+l(Am)

nun

o acie
homeomorpn_sgi oo

h J...hi_ in H{X) such that

!
- . . ¢

Tk * % -F' '
Amr hi(Ai_l) ghi kol o) of all

(1) ¥5ﬁ(ﬁ)'§ |
i = m+l,me2,...0-1, hn(K::I) s D,.
. N L ‘ o .
(11) h e DY, hy e Aj “qur all i = mtl,m+2,...n-1.

LN

4

Let £ =nh_h ..h Then £ ¢ H(X); £ ¢ B',

_ nfn-1" " PPy
and * £(U) ¢ Dy < V.
\ o 4 .
Therefore U 41s a neighbourhood of X with U ¢ B

suck that for each open subset: V of B there exists a
homecmorphism £ ¢ H(X) such that £ ¢ B' and. £{(J) = V.

. Thus X is s.l.s.h.

L ]

o

Noté that every S.H.'locally cdnnected_céntinﬁum hzs

-

,a near basis.
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“The following da:inition}'ééscntiallg due to Menger,

.

cah be found in'C7].

,Defihition 3.9. Let 1X Be'a sépér&ble metric-spa"e.‘
The emphy set, and orly the pmptv set, has di{mension ~-1.
‘x has dimension s n (where n is a non-negative integer)

-

at a p04u£ p if P has arbitrarilv small nnignbourhooab

) whose bounderieq have dimensigon < n-1.
X has dimension s n<if -X }z:§_dimens;on £ n at each
of its pé@htﬁ. . |
X has dimeu#édn ﬁ‘at‘a poirt p if X has.dineﬂsion < n.
at P but X does not have dimensign < n-1 at E-

~

x has dLmenALon n 1f X has dimension < n but does ﬁot

have dimension s n-1.

- X has dimensicn = if the dimension of X ¢ n for each n.

It is knowm that if X 4is a 1-s-h continuuwn, then H(X)

18 at least one dimensional (see' [ 15.

-
»

Definition‘B.lO. Let X be any topological space and
.let X ¢ X. Then the oxbit of . x, denoted o{x), is
defined by | ' |

- - - A e

0fx)

fh{x) :+ h ¢ H(X)}.
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continuum

31,

3

It is known- that if X 1s l-s-h -then for all x ¢ X,

if 0(x). is not dense, it is nowhere dsnse. . (See [2]).

‘wWe therefore have:

Theorem 3Fil. - Let X be a ldcally connected, S.E.

~

(1) H(X) 1is at least one dimeﬁsional.
(ii)_ If O(x)' is ﬁot dense in X for some x € X,

| then O(x) is nowhere dense. (If X is Metric

<

then 0(x) = X, so this is obvious).

We now give an example of a space which is g-l-s-h,
but not S.H. ‘The universal plane curve (or Sigininshdi
curve] is a continuum vhose standard censtruction is the

following: Let C /be a square plus its interior in'. l

. the plane. Divide C 1into nine equal sgquares, and re-

. .« :
nwove the interior of the middle nipth. Break each of

" the remaining eight squares into nine equal sguares, and

vemove the interiors of their middle ninths. .Continue
the process induptively. The set M which remains is

the desired continuum. It was proved in [1] that X

" has a basis E of connected open sets such that the clo-

ggre of each element ¢f EF is homeomorphic to ¥, " and

M was shown to be 1-g-h with locally setwise hcmogenecus

- structure {X,A,E, H(X)} ‘where A is the interior of M.
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It wés proved in [21 that M is s-l-h._' However . .
 Mazurkiewicz showed that M is not homcgeneons (seéd

£81), and so by Theorem 1.5 the universal plahe pﬁrve is

-
not S.H. . S .
I
1Y
.
L
La
[ 3
.
.
.
.
1 .
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.
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*of X 1is called a 4.ink invariant s2t under T 1f

. - - . N " ,‘ *, - v -
§4. ERGODIC HOMEONMORPHISMS RS.A SUBSET OF ALL SELF-
g : ’ o ST - .

| HOMEOMORPHISMS. =~ i

b

a
oo A
. . : !

; NS '
Deiinition 4.1. Let X be a Hausdoesf epacn end let

€ HYX)._ T is called QKQOdLu if evary closed proner
subset A of X ‘with T(A) = A is nowhere Gense in -
X. The subset of H(X) consistlng of the ergoclc ho—
necmorphisms is denoted E(X).
a. 2 ‘ o N
- L. ’ A < . . i o . .
It is - well kungwn that'if X 1is a second countable Baire N
spaCe‘and T e H(X), then T is ergodlc if and only

if there is an element x oE X ‘such that

LT (x) : n is an integer} is dense in X.

\
»

o

’

o ' rl\ .

Seaxs [Ih found a sufficient conﬁition for E{\)
to be nowhere dense in H(X), where (X,d) is a com-
'pacﬁ,“peffect metric space and H{x) has the unifo;m

topology generated by the metric

- ;J . PR “ {.
at(s,m) = sup a(s(x),T(x)), for 8,7 ¢ H(X).
. xeX : e

[y ‘ '

+

To do thisy'Sears made a number of definitionsL

) . o ()______.________ .

‘Definition 4.2. et X Le a compact, perﬁect metric a

space and let T e HX). A 2losed non-emocty subset T
N '

[

T(F) = F and there ls an open set U 'with P < U__such



‘ﬁn onto Itself satisfying

— - —— —g— 1

B ety - - —

3,

i

tliy) = F. F is callad a

iog

. _
that T(Ui‘.gU and 8y

sink periodic set unden T if . F is a sink invariant

" set under T' £for some n > G.
' The subset of H(X) consisting of the homeomorphisms

- 'which have sink periodic sets is denoted T(X}..

Theorem_4.3; Let X. be a compaci, perfeced, metric
Apace.. Then

'
t

(1) 1§ T e HIX) 44 such that T"(O)

c U fox
Aome;apén subset U of X, then T has
a sink periodic sed.

(11) ' r{X} n E(X)' = ¢

(i11) TIX) 4s open 4in H{X}.

Proof. -See 1.

r

Definition 4.4. Let X be a compact metric space.

is called sthengly hcmegenzous at a point xo“ 1€ there

' -

is a basis of neighboﬁfhoodé"{Un : n positive integer} -
at x_= such that every member of the basis satisfies
the following condition: SR .

r

.‘(*T“mmFéfMEVéfywfwowbpén”subsets”jV““and_—w~“of~ﬁuhnwwith~whn”w”

-

. —— 0 - i
W (Un_—‘Un) =3, there is a homeomgrphism h from .

¢



I
b
Fh
0
H
"
m
(=4}

{
c

(1)  hix)

n
<}

{11) & W) <

If U is a neighboﬁrpood of X, satisfying condition
(*), we call U a strongly homogeneous nelghbourhood
. X : ) . .| 2 .

of . . : :
X, . _ )

Sears related the concepts. of strbn&ﬁﬁggggéneity
and homogéneity by provi;g that if X lis strongly ho-
mogeﬁeous at a point X, aﬁal U is .a st¥0ngly homogef
neous neighbqﬁrhoéd of xé.' then ghEré is a aenée sub—‘ (
set A. of U 'with- xoée A such that X 4is strongly |
komogeneous at every point cf A and A is a hpﬁogene-'
ous set of X. (Ssee 1) . ~ Notice that if X has a
basis B 'and U 1is gthpeﬁ sﬁbset,of X such that evefy
point of U is étrongly hpmogeheous with respecé to the
basis of neighbourhoods of B, ther B8 .is a2 free basis

for U.

It was proved in EﬂJithat if X is a comﬁact metric spaé
with a gtronély homogeneous point, thén E(X) c T(X).
From this it was“deduced that if X is a ccnpact metric
;perfequépace‘%ith-abstréngly~homqgeﬁeous~point then
E{X) is nowhere deqée in .G(X). ﬁe pro;e 2 similar re-

sult. The method of proof follows closely that used by

"‘:-,/.
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Sears in [117. fh§5ughcut wa taks. X to be a compact
metric space;‘ ' | | )

- - .
Theorem 4.5. I{ X contains ar gpen set U which has a
frnee basis, then E(X} & T{X]. |

s

Préof. Let ¢ 3 0. . Let B, be a free;basis'for 9]
" and choose any B € B with-lé(B) < e£. Take T.% = (X} -
Then some point has denée orbit under T, -éo‘ thers is
an x e X and positive iﬁtegefs i. such that x € B

and T Y(x) .B. Let n be the smallest positive in-
- l "

o«

- teger with.*his property. Now T {Ef does not contain

3 - -2 - ' - . .
any of the moints T 2(x}, T “({x),...T n(x). Thus there

is 2 neighbourhood " B; < 8 of x such that 

(Bl) are all dis-
joint from ey, _ . ¢
‘(ii) By f's. .
(1ii). -ﬁl n (B - B)orF ¢
’ : Q

T_gtsl) n B is open and nonempty since T " (x} e B.
P . ’ _ n ]
- E ' : .
So Fhere is a B, ¢ B wjih B, < pd (Bl) n B. Thus;
since B is B-freely open there is a homeomorghism
' ] CnE Y - !

h € H(#) such. that h(51?¢5 B, < T (Bl) n B and
'h ¢ B'.. Define S : X+ X by

Styf

(h, Ti(y)' : fox all y e X.
v N . ‘&

w
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Then 'é < HX). ve shall show that- S e I'(X): Now

PP (s)) = s(sPTHIT(B))) = S(IVTTT () since
2 (3

h ¢« B' and the sets Tfn(Bl),...TT are all §is—

1)
joint from T L(B). Thus

sP (7" (By) = sttt = h(T(r " (8,))) =h(B)). .So

s“}r‘n(ﬁl))

h(ﬁi) ; T_n(Bl).. Therefore by Theoren

4.3 (L), B8 ¢ Ti{¥). Finally

"

atir,s) = sup ars{x) h(Tix)) = sup_,
) xeX . xeT ~(B)

d(T(x),h(T(x)))-
So d+(T,S) = Sup d(b,h(ﬂ)) < & since §8(B) < e.

. " beB

———

Thus E{X) < T (4) -

Corollary 4.6. 14 X contains an open subsel with.q

free basis, then E[X] 4s nowhexe dense in H{X).

Proof. This follows difectly from Theorem 4.3 (ii)  and

(1ii) and. from the.akove Theorem.

~

‘Thus if X is any compact metric perfect space which has

a S.H.'subset, then E(X) ié nowhere densg in H{X}.

Sears proved in [11] that every point of the Cantor set is
a strongly homogeneous point. Similarly by looking at the
Cantor subintervals of rank r (r = 1,2,3,...)} (see [10])

we seec that the Cantor set is S.H.
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\1/ ADDENDUM. .

T

Slnce c0mp1et1ng thls the51s, the hor has weakened the

metrlc condltlon in Theorem 1. 5 whlch now. becomes

0

Theorem 1.5% If ths a S.H. set in a ftrst countable, regular,

1 8pace X, then U is homogeneous.

| - N
Proof. Let B be a free basis for U such that U is B-freely open.

Let a,f be any two.-glements of U. We show that there is a

b. Let ¢ and D_ (n
: n n

homeomorphism F in H(X) with F(a)

LlN- -]
. : ' n g = f\l =
be elements of B such that n=l,cn {a}l and n= D, {b}.

let Wl, Yl £ B be proper sybsets of U with é £ szcl, b & CDl‘,

and wln(ﬁ - u) = §. Then there is a homeomorphism h;, € H(X)

such that o T - - - ' - ;
(1) b € hy (Ww;) and h; (W) %‘.’1'

(i1) hy e ut. ,

R

Let V1 = hl }WL), a; = hl(a), Bl = hl(B)'. Let WZf Y2 € Bl be

' \ A~ _ -1 '
. proper subsets of vy W1th ay € Wz, bey CD2, hl (WZ)C'Cz' .

wzr\(vl - Vl)‘= ¢. Since vy is .B,-freely open, theré is a

'homeomorphism h, € H(X) such that

(i) b e h, (wz') and h, (W,) ? Y,.

e .1
(ii) h2 £ Vl

Now let V2 = hz(W2); a, = hz(al),_32-= hz(Bl) and proceed as

before.
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"

Contlnulng in this way we get sequences (W ) and\

'(Vn) of S.H. sets and homeomorphlsms h e H(D such that for

' -

all n = 1,2/... we have: -,

(a) §n+l i Vn :
.Q.'

e (b) hn(ﬁn) =V, .s.md__'evn(‘\_(v-n -v) =
-1 -1 -1 T
(C), (hy"hy"...hy YW _,1)CC oy _and Ww,CCy
{d) XnC'Dn
L} 1 _
(e) hn'e Vi1 Vo = U) ‘
(£) a., = hn hn_l...hl(a)'e Wbl
Lee Fn-= hn hn-l"'hl'_ Define the map‘Fbe
F(x) = 1lim F_(x) . for all xeX
n+o n .

. We show that F exists for all xeX, that FeH(X) and that F{a) = b.

| rake xeX. If xt¢U, ﬁhen F(x) = x. If Fn(x)¢vn for
some n, then by (a) and (e),‘F(x) = F (x). If f (x)ev for all

n, then hn h v h (x)eh (W ) for all n so that xEF l(w )C.C

n-1
for all n. Thus x = a. Also F (a) =a €V . cD_ for all n,
_ T n on n n X
so F(a) = b. Thus F(x) exists for all xeX and F is one to one.

To show that F is onto’ take xeX.- If x$¢U, then F(x) = x. If

~ xeV_ for all n, then x ='b and F(a) = x. Otherwise x&Vn for

some n. Say x¢VN. Now there is an element y of X such that

FN(y) =-?,(becauée FN is onto). Then FN(y)¢VN ane.so F(y) =

FN(Y) - %. Thus F is onto. ®
We now show that F is continuous. Take xeX. /There

are two cases to consider.

.
L =

ERPPES N A L

LG T e

[ L R



.- (i) 1f x ¥ a, then there is a poéitive integer m

U

such that Fm(x)¢vm-and F(x) = F) (x) for all kim.r Now
ﬁm+ln(\7m - V) ¢, so if F (x)eﬁm+i,

" then Fm(x)¢§ - If |
Fm(x)¢ﬁm+l, then F +l(x)¢hm+l( +l), so F(x) = Fo (x)¢V : -

+l
-1

m+l
which is open. So there is a neighbourhood A of x such that

(X -V _..)

Thus.in both cases F(x)¢V mbl’ which wmeans that XeF il

Ac:F l(x V +1). Thus if yeA, then F(y) ='Fm+l(y). Now let
P be any nelgherhood of Fm:l_l(x) " Then there is a neighbourhood
Pl of x such that Fm+1(P )YCP. Let P, = A(\Pl. Then F(Pz) =

m+l(P JCP. So F is continuous at x for x + a. ‘
(ii) Suppose x = a and let Q be any neighbourhood

of F(x) = b. Then there is a positive integer N such that DycCQ.

Since:FN_l is continuous and aeF -1
-1

1 (WN), there is a nelghbourhood
B g‘f a su&:h that BCFN_

;1 (Wg). So if yeB, then FN_l(y)eW ¢ SO
FN(y)eVN. Thus F(y)eVNC Dcho. Therefore F(B)C Q and F is
conti?uous at x = a.
Thus‘F is continuous. -
It remains to show that Fql_is continuous. Take
x€X. There are again two cases to consider
(1) If x ¥ b, then there is an eiement z o£ x; z % a, -
with F(z) ='x. Now-F(z) = FN(z) § GN‘for some positive integer ‘
N, so that xeX - V. which is open. Thus there is a néighbourhood
S of x such that ScX —.ﬁN. So if yeS, then yi?N and F_l(y) =
VFEI (y). Now let E 5e~ény neighbourhood of F~1 ;l

of x such that F (E YC E.
-1

(x). Since F

.
is continuous, there is.a neighbourhood E

-1
N

1

Let‘E2 = Elr\s. Then F_l(EZ) = F (EZ)C.E. So F is-continuous

at x for x ¥ b.



(ii) If x = b, let 6 be any neighbourhood of Fl(x) -

Then there is a positive integer M such that Cy

neighhourhood‘df b and if yeV,, then F-l(y)eFﬂl(vﬁ)C.F;l(VM), S0

=

F"l(y)argilfwM). Thus from (c), F l(y)ec.c G. Therefore

'F—I(VM)C:G and so F-1 is continuous at x = b.. " )

Thus FeH(x) and F(a) = b. Thus U is a homo-

geneous set.

As a result of this improvemeﬁt, Theorem 2.4 and Theorem

i

2.14 can be strengthened respectively fo:

Theorem 2.4. Let X be a S.H. locally compact first countable

space. Then

(i) the ﬁniform structure on X-abtained from
its one-Point compac;ifi;atioﬁ induces on
| H{X) a reasonalbe topology.
(1i) the uniform structure on X obtained.from its
Shnu;ééch compactification induces on H(X)
a re&aonablg topology over X. |
(iii) ©f X is connected, then the group of uniformly
" econtinuous homeomorphisms (that is, homeomor-
phiems g such that g aﬁd g-I are ﬁniform}y |

1 -~

continuous) is reagonable over X.

. ’ v ) ~ :
Theorem 2.14. Every S.H.Tychonoff-firet,czuntable spage
is reasonable. |

S

C"C’; . Now VM .Iis' a

=3



