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Abstract

Particle filters are being used in a number of state estimation applications because of their capa

bility to effectively solve nonlinear and non-Gaussian problems. However, they have high com

putational requirements and this becomes even more so in the case of multitarget tracking, where

data association is the bottleneck. In order to perform data association and estimation jointly,

typically an augmented state vector, whose dimensions depend on the number of targets, is used

in particle filters. As the number of targets increases, the corresponding computational load in

creases exponentially. In this case, parallelization is a possibility for achieving real-time feasibility

in large-scale multitarget tracking applications. In this paper, we present an optimization-based

scheduling algorithm that minimizes the total computation time for the bus-connected heteroge

neous primary-secondary architecture. This scheduler is capable of selecting the optimal number

of processors from a large pool of secondary processors and mapping the particles among the

selected ones. A new distributed resampling algorithm suitable for parallel computing is also pro

posed. Furthermore, a less communication intensive parallel implementation of the particle filter

without sacrificing tracking accuracy using an efficient load balancing technique, in which opti

mal particle migration among secondary processors is ensured, is presented. Simulation results

demonstrate the tracking effectiveness of the new parallel particle filter and the speedup achieved

using parallelization.
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Chapter 1

INTRODUCTION

1.1 Motivation and Contribution of the Thesis

Many real-world tracking problems, such as airborne surveillance, missile defence and maritime

surveillance, require the tracking of a large number, possibly, hundreds or even thousands, of

mobile objects (targets). For example, in ballistic missile tracking, the problem becomes compli

cated during the mid-course phase, in which spawning may create several hundreds of new targets

from a single target [31]. In ground target tracking, hundreds of targets may be tracked using the

Moving Target Indicator (MTI) measurements from airborne platforms [16]. Air traffic control is

another tracking application where real-time capability for large-scale scenarios is needed [32]. In

these cases, the computational requirement varies according to the number of targets in the sur

veillance region. Furthermore, with nonlinear target dynamics, nonlinear measurements, and/or

non-Gaussian noise, in which case the computationally intensive Particle Filter (PF) [2] [12] is the

common choice, the computational burden becomes significant. This limits the deployment of the

particle filter, which is also called the Sequential Monte Carlo (SMC) method, in large-scale real-

world applications. This is because the high computational time and memory requirements needed

1



CHAPTER 1. INTRODUCTION 2

to yield real-time feasible implementations cannot generally be met by uniprocessor systems. In

these cases, parallelization is a possibility for a real-time feasible implementation.

Particle filter parallelization has rarely been addressed in the literature and this becomes the

primary focus of this thesis. In the classic multitarget particle filter, an augmented state vector of

target dynamics, whose dimension depends on the number of targets being tracked, is used. This

is in contrast to traditional tracking algorithms like the Kalman Filter (KF), in which case differ

ent instances of the filter are run (with the same or different filter parameters) for different targets

in a sequential or parallel manner. Kalman filter based techniques consist of a data association

phase followed by estimation [3]. In the multitarget particle filter, data association and estima

tion are done jointly. Thus, multitarget particle filter parallelization is very different from Kalman

filter or Interacting Multiple Model (IMM) estimator [4] based parallel multitarget implementa

tions [29] [28], where an Auction based assignment is commonly used to handle measurement-to-

track association. For nonlinear systems, existing association techniques like assignment are not

directly applicable in conjunction with particle filter based techniques [15]. Instead, augmented

state multitarget tracking replaces measurement-to-track association in this case. The Gibbs' sam

pler based multitarget data association technique, which uses the augmented target states, was

introduced in [15]. In [26], a method called Couple Partition (CP), which makes it possible to

use the same number of particles even though the number of targets increases, was introduced.

In [18] [17] an independent partition technique was introduced together with augmented state.

This also handles the tracking when the targets undergo challenging transitions like crossings and

convoy movements.

In our current work, the classical multitarget particle filter with augmented state of target dy

namics is considered for parallelization in order to achieve real-time feasibility when many targets

are present in the scenario. Using a multiprocessor architecture or by connecting several personal

computers (i.e., network of workstations) the high computational requirement for problems like
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multitarget tracking can be overcome. We consider the problem in a master-slave (or, more appro

priately, primary-secondary) topology, which is suitable for both multiprocessor architectures and

network of workstations. Previously, scheduling algorithms for multitarget tracking were devel

oped [29] [27] within the IMM-Assignment framework. In this thesis, we are concerned with the

mapping of a multitarget particle filter onto a set of single instruction, multiple data stream (SIMD)

multiprocessors, wherein the processors may be homogeneous or heterogeneous.

Because of the time-varying nature of multitarget scenarios, we consider the development of

a dynamic scheduling algorithm for parallelization. Dynamic scheduling algorithms are computa

tionally costlier than a static one. However, the real-time mapping of particles is required in order

to utilize the resources efficiently and to handle the problem satisfactorily when critical situations

such as processor failures and changes in the performance of processors occur. Multitarget particle

filter is similar to running a single target particle filter except that the state space dimension will

vary, which in turn will cause computational and communication loads for particles to vary, with

the number of targets. Furthermore, most parallel processor systems are multiuser environments

and the performance of each node may vary with users' access to system resources. Thus, a load

balancer capable ofmonitoring the performance of each node and reacting accordingly in real-time

is needed.

The task mapping problem is usually NP-hard, i.e., the computational requirement of an opti

mal solution increases exponentially with the number of tasks and the number of processors. In

problems like particle filtering, each particle can be considered as a separate task. The number of

particles is typically very high and thus optimal real-time scheduling is not possible. For example,

standard mapping technique based on dynamic programming [11] cannot be used in real-time

there exists a need for efficient, possibly approximate or sub-optimal, task mapping solution.

Even though a number of particle filters can be run independently on several processors, there

are many issues that need to be addressed for parallelization. In particle filtering methods, the
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particles interact due to the resampling step [2] [12] and, thus, are statistically dependent. Conse

quently, with parallelization, the particles have to combined at the primary node in order to perform

resampling. This results in a large amount of data being transmitted between the primary and sec

ondary node processors. That is, resampling creates significant amount of communication at every

time step of filtering and it prevents the particle filter from being parallelized efficiently.

Some work has already been done on improving resampling for the parallelization of the parti

cle filter [13] [14] [7]. Even though they have improved the resampling process, they are suitable

only for hardware implementations. In the message passing parallel multiprocessor computing

interface, it is particularly desirable to reduce the communication overhead.

In [5], another method called the Compressed Distributed Particle Filter (CDPF), which en

ables significantly less data exchange between the primary and secondary nodes than direct par

allelization. The idea is to avoid sending duplicate particles that are generated when resampling.

However, there is no guarantee that particle duplication will occur at every time step. In such

situations, CDPF will be almost as complex as direct parallelization.

In this paper, we introduce a new Distributed Resampling Particle Filter (DRPF), which re

quires significantly less communication among the processors while maintaining the estimation

performance of the filter at the same level. The optimization based DRPF is complemented with

an efficient load balancing algorithm, which is needed in view of the fact that the DRPF may not

always generate the optimal number of particles to be scheduled at all secondary nodes.

1.2 Organization of the Thesis

This thesis is organized as follows. In Section 4, we describe the primary-secondary node model

used in our formulation together with an approximation that is suitable for multitarget particle

filter parallelization. In Section 5, we present the mathematical formulation for the particle filter
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mapping problem. The same algorithm can be used for our DRPF mapping as well. Section 6

describes the DRPF method, which minimizes the amount of data being transmitted between the

primary and the secondary nodes. The load balancing technique that helps the DRPF operate effi

ciently is discussed in Section 7. The performance measures used to demonstrate the effectiveness

of parallelization are discussed in Section 8. Finally, in Section 9 we present simulation results.

1.3 Related Publications

1. S. Sutharsan, A. Sinha, T. Kirubarajan and M. Farooq, "An Optimization-Based Parallel

Particle Filter forMultitarget Tracking", Proceedings of the SPIE Conference on Signal and

Data Processing ofSmall Targets, San Diego, CA, August 2005.

2. S. Sutharsan, A. Sinha and T. Kirubarajan, "An Optimization-Based Parallel Particle Fil

ter for Multitarget Tracking", Submitted to IEEE Transaction on Aerospace and Electronic

Systems, August 2005.



Chapter 2

OVERVIEW OF TARGET TRACKING

2.1 Target Tracking

The process of inferring the value of a quantity of interest from indirect, inaccurate and uncertain

observations is called estimation. The tracking process can be described as the task of estimating

the state of a target at the current time and at any point in the future. The estimation of the current

state of a dynamic system from noisy data is called filtering and estimating the future state is called

prediction [4]. In addition to the estimates, the tracking system should produce some measure of

the accuracy of the state estimates.

2.2 Multitarget Tracking

A track is a symbolic representation of a target moving through an area of interest. Internally, in the

tracking system, a track is represented by a filter state that gets updated on each new measurement.

Figure 2.1 illustrates the basic elements of a conventionalMultiple Target Tracking (MTT) sys

tem. A signal processing unit converts the signals from the sensor to measurements, which become

6



CHAPTER 2. OVERVIEW OF TARGET TRACKING 7

the input data to the MTT system. The incoming measurements are used for track maintenance.

Track maintenance refers to the functions of track initiation, confirmation, and deletion [3]. Obser

vations not assigned to existing tracks can initiate new tentative tracks. A tentative track becomes

confirmed when the number and the quality of the measurements included in that track satisfy a

certain confirmation criteria. Similarly, a track that is not updated becomes degraded, and it must

be deleted if not updated within some reasonable interval. Gating tests evaluate which possible

measurements-to-track pairings are reasonable and a more detailed association technique is used

to determine final pairings. After inclusion of new observations, tracks are predicted ahead to the

arrival time for the next set of observations. Gates are placed around these predicted positions and

the processing cycle repeats.

Sensor Data Processing
and Measurement

Processing

Observation-to

-Track

Association

Track Maintenance

(Initiation,

Confirmation and

Deletion)
,

"

Gating Filtering and

Compu ation Predic tion

Figure 2.1: Basic elements of a conventional multitarget tracking system.

If the true measurement conditioned on the past is normally (Gaussian) distributed with its

probability density function (PDF) given by

p(zk+i\Zk) = *C[zk+i;zk+i\k,S(k+l)] (2.1)

where ^;+i is the measurement at time k+ 1, Z,t = [z\,Z2,---,Zk], Zk+\\k is tne predicted (mean)

measurement at time k+l and S(k+ 1) is the measurement prediction covariance, then the true

measurement will be in the following region
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V (k+ 1,Y) = {z : [z-zk+l\k]'S(k+ ir^z-Zk+Hk] < Y} (2.2)

with the probability determined by the gate threshold y.

The region defined by (2.2) is called the gate or validation region {V) or association region.

It is also known as the ellipse (or ellipsoid) of probability concentration: the region of minimum

volume that contains a given probability mass.

The validation procedure limits the region in the measurement space where the information

processor looks to find the measurement from the target of interest. Measurements outside the val

idation region can be ignored, since they are too far from the predicted location and very unlikely

to have originated from the target of interest. It can so happen that more than one measurement is

found in the validation region.

Figures 2.2 and 2.3 illustrate the gating for two well-separated and closely-spaced targets,

respectively. In the figures, indicates the expected measurement and the * indicates the received

measurement.

Figure 2.2: Validation regions of two well-separated targets.

Any measurement falling inside the validation region is called a validated measurement. Since
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Figure 2.3: Validation regions of two closely spaced targets and the measurements inside those

validation region.

more than one measurement is validated in Figure 2.2, there is an association uncertainty. That is,

there is ambiguity as to which, if any, of the validated measurements is target originated, assuming

that at most one measurements is target generated.

In tracking multiple targets, the problem is basically the same as single target tracking provided

the targets are well-separated (Figure 2.2). However, if the targets are closely spaced, which causes

the corresponding validation regions to overlap (Figure 2.3), the validation region for a particular

target may also contain detections from nearby targets as well as clutter detections. Hence, there

is a need for a data association technique in order to resolve the measurement origin uncertainty.

2.2.1 Data Association

The problem of tracking multiple targets in clutter considers the situation where there are possibly

several measurements in the validation region of each target. The set of validated measurements

consists of:
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the correct measurement (if detected and falls within the gate)

the undesired measurements: false alarms

Then the problem, which is called as data association, is that of associating the measurements

in each validation region with the corresponding track (target). The simplest possible approach,

called Nearest Neighbor (NN), is to use the measurement nearest to the predicted measurement as

if it were the correct one. An alternative approach, called Strongest Neighbor (SN), is to select the

strongest measurement among the validated ones [3].

Since any of the validated measurements could have originated from the target, this suggests

that all the measurements from the validation region should be used in some fashion. A Bayesian

approach, called Probabilistic Data Association (PDA), associates probabilistically all the "neigh

bors" to the target of interest [3]. This is a standard technique used for data association in conjunc

tion with the Kalman filter or the extended Kalman filter. The Kalman filter can be applied only

if the models are linear and measurement and process noises are independent and white Gaussian.

In this thesis a bearing-only tracking scenario is used as the test case. Since this is a nonlinear

filtering problem, a particle filter is used to track each target [12]. For bearing-only tracking in

a cluttered environment the expected likelihood particle filter has been shown to outperform the

gated probabilistic data association (PDA) Extended Kalman Filter (EKF) [23].

2.3 Filtering Algorithms

In order to analyze and make inference about a dynamic system, at least two models are required:

First, a model describing the evolution of the state with time (the system model)

**+i =fk(xk) + vk (2.3)
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and, second, a model relating the noisy measurements to the state (the measurement model)

Zk
= hk{xk) + aik (2-4)

where Xk is the state of the target and Zk is the measurement vector at revisit time k. We will assume

that these models are available. The probabilistic state-space formulation and the requirement for

the updating of information on receipt of new measurements are ideally suited for the Bayesian

approach. This provides a rigorous general framework for dynamic state estimation problems.

In the Bayesian approach to dynamic state estimation, one attempts to construct the posterior

probability density function of the state based on all available information, including the set of

received measurements. Since this PDF embodies all available statistical information, it may be

said to be the complete solution to the estimation problem. In principle, an optimal estimate of

the state may be obtained from the PDF. A recursive filtering approach means that the received

data can be processed sequentially rather than as a batch so that it is not necessary to store the

complete data set nor to reprocess existing data if a new measurement becomes available. Such

a filter consists of essentially two stages: prediction and update. The prediction stage uses the

system model to predict the state PDF forward from one revisit time to the next. Since the state is

usually subject to unknown disturbances, prediction generally translates, deforms and spreads the

state PDF.

Suppose that the required PDF p{xk\Zk) at revisit time k is available, where Zk = [z\ ,zi, ,zk]-

The prediction stage involves using the system model (2.3) to obtain the prior PDF of the state at

time k + 1 and given by

p{xk+i \Zk) = I p(xk+l \xk)p(xk\Zk)dxk (2.5)

The update operation uses the latest measurement to modify the prediction PDF. At revisit time
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k, a measurement zk becomes available and will be used to update the prior via Bayes' rule

/

,7
x P{zk+\\xk+\)p{xk+l\Zk)

m+i4+i =

-, pt^ (2.6)
P[Zk+i\Zk)

In the above the likelihood function p(zk+i\xk+i) is defined by the measurement model (2.4).

The above recursive propagation of the posterior density is only a conceptual solution in that

in general, it cannot be determined analytically. Solutions do exist in a restrictive set of cases.

When both /() and h() are linear functions, the problem at hand is a linear problem and other

wise it is a nonlinear one. For a nonlinear problem that has a prior, process noise and measurement

noise being Gaussian, the problem is classified as a linear Gaussian problem. This kind of problem

presents a very important class that can be tractable in recursive Bayesian estimation framework,

which is easily implemented by Kalman filter. For non-linear problems, several classes of estima

tors have been developed. Extended Kalman Filter (EKF) linearizes the system function and/or

observation function at each time step and uses the Kalman filter to do the filtering. Another class

deals with nonlinearity and non-Gaussianity by discrete approximations of the posterior density,

which is grid-based filters. They associate with each grid point with a probability value. The last

class consists of Monte Carlo methods. They do not approximate the posterior density directly, but

sample it.

2.3.1 Kalman Filter

The Kalman filter assumes that the state and measurement models are linear and the initial state

error and all the noises entering into the system are Gaussian and, hence, parameterized by a mean

and covariance [4]. Under the above assumptions, if p(xk\Zk) is Gaussian, it can be proved that

p(xk+i \Zk+\) is also Gaussian.
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Then, the state and measurement equations are given by

xk+i
= Ekxk+vk (2.7)

Zk
= Hkxk + (Ok (2.8)

If Fk and Hk are known matrices, v* ~ 3\ (0, r*) and co^ ~ H. (0, *), the Kalman filter algorithm

can then be viewed as the following recursive relationship [4]

p(xk\Zk) = ,K{xk;mk\k,Pk\k) (2.9)

p{*k+\\Zk) = *C(xk+i;mk+i\k,Pk+l\k) (2-10)

p(xk+\\Zk+i) = *C{xk+i;mk+l\k+i,pk+i\k+i) (2-H)

where

mk+i\k
=

Fk+\k\k (2-12)

pk+l\k
= Fk + Fk+lPk\kFk+l (2.13)

mk+l\k+i
=

mk+x\k + Kk+x(zk+\-Hk+\mk+x\k) (2.14)

pk+\\k+\
=

pk+\\k~Kk+iHk+ipk+i\k (2-15)

with

Sk+i = HMPk+x\kHTM+J.k+i (2.16)

Kk+\ =

pk+i\kHk+iSk+i (2-17)

In the above, 5\ (x;m,P) is a Gaussian density with argument .v, mean m and covariance P
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This is the optimal solution to the tracking problem if the above assumptions hold. The impli

cation is that no algorithm can do better than a Kalman filter in this linear Gaussian environment.

In many situations of interest the assumptions made above do not hold. Hence the Kalman

filter cannot be used as described above, and approximations are necessary.

2.3.2 Extended Kalman Filter

If the functions in (2.3) and (2.4) are nonlinear, then a local linearization of the equations may be

a sufficient description of the nonlinearity. Local linearizations of the above functions are

dfdx
Fk =

JkK

Hk =

dx

dhk(x)

dx

(2.18)
x=m*-i|*-i

(2.19)
*=mk\k-\

The EKF is based on the assumption that p(xk\Zk) is approximated by a Gaussian. Then all the

equations of the Kalman filter can be used with this approximation and the linearized functions [4] .

If the true density is substantially non-Gaussian, then a Gaussian approximation can never

describe it well. In such cases, particle filters will yield an improvement in performance in com

parison to the EKF.

2.3.3 Grid Based Filters

The grid based approach is a numerical method that represents the distributions as numbers on a

fixed grid. The grid is simply a large series of points and to each grid-point is associated a number,

which is the density of the distribution in the grid-point. Grid-based methods provide the optimal

recursion of the filtered density, p(Xk\Zk), if the state space is discrete and consists of a finite

number of states. Suppose the state space at time k 1 consists if discrete states X^_x , i=l,....,N.

For each state XJ._j, let the conditional probability of that state, given measurements up to time
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k 1, be denoted by w^j,^,; that is, P{Xk_i =X^_1|Z^_1} wjt-ilit-i- Then' the posterior pdf

at fc 1 can be written as

piXk-ilZt-i) = ^k-i\k-A^k-\ -A-i) (2-20)

where 8(.) is the Dirac delta function. Then the prediction and update equations will be

N

p{Xk\Zk.x) = JJwiklk_lo(Xk-Xi) (2.21)
(=1

N

p(Xk\Zk) = ^wiklk_lo(Xk-Xi) (2.22)
i=i

respectively.

The grid must be sufficiently dense to get a good approximation to the continuous state space.

As the dimensionality of the state space increases, the computational cost of the approach therefore

increases dramatically.

2.3.4 Particle Filter

The particle filter represents the distribution p(xk\Zk) as a set of m particles, where each particle

consists of an hypothesized state, xk ,
and an associated weight, wk [12]. The weights sum to

unity over the m particles at each revisit time. From this representation, one can then obtain an

estimate of the expected value of any function, g(xk):

m

EkM^Xs^'Vi0 (2-23)
;=1

If g{xk) = xk then the above will give an estimator of the mean whereas if

g(xk) = (xk
-

E[**]) (.v,
- E[xk})T (2.24)
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it will give an estimate of the covariance.

The detailed description of the multitarget particle filter is given in Chapter 3.



Chapter 3

MULTITARGET PARTICLE FILTER

(MPF)

As mentioned in Chapter 1
,
the augmented state vector of target dynamic is used as particle state in

multitarget tracking. In the multitarget particle filter, each particle represents the joint state vector

of target dynamics. Let Xk
= [xJk,xJk,yk,y1k}' be the state vector of the j'h target at time k, then the

joint state vector is given by

Xk = (3.25)

Here, t is the number of targets in the surveillance region. Further^, can also be refereed to as the

tth partition of particle.

The Particle Filter [12] (see also [2] and [10]) provides a mechanism for representing the den

sity p(Xk\Zk) of the state vector Xk at sampling time k as a set of random samples (particles)

[Xk^ : i 1,2, . . .,m\, with associated weights {wk^ : r = 1,2,.. -,m}, where m is the number of

17
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particles. It then uses the principle of Importance Sampling to propagate and update these particles

and their associated weights as and when new measurements become available [9].

3.1 Sequential Importance Sampling

Importance sampling is a general Monte Carlo (MC) integration method that we apply to perform

nonlinear filtering. The resulting sequential importance sampling (SIS) algorithm is a MC method

that forms the basis for most sequential MC filters developed to date. This sequential Monte Carlo

approach is also known as bootstrap filtering [12], condensation algorithm [21], particle filtering

[2]. It is a technique for implementing a recursive Bayesian filter by Monte Carlo simulations.

The key idea is to represent the required posterior density function by a set of random samples

with associated weights and to compute estimates based on these samples and weights. As the

number of samples becomes very large, this Monte Carlo characterization becomes an equivalent

representation to the usual functional description of the posterior pdf, and the SIS filter approaches

the optimal Bayesian estimator.

3.2 Degeneracy Problem

Ideally, the importance density function should be the posterior distribution p(Xk\Zk) itself. The

variance of the importance weights can increase over time. This has a harmful effect on the accu

racy of the estimates andmay
lead to a common problem associated with the Sequential Importance

Sampling (SIS) particle filter: the degeneracy phenomenon.In practical terms this means that after

a certain number of recursive steps, all but one particle will have negligible normalized weights.

The degeneracy implies that a large portion of the computation is devoted to updating particles

whose contribution to the approximation of p(Xk\Zk) is almost zero. One suitable measure of
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degeneracy of an algorithm is the effective sample size Ne/f, which can be estimated as follows:

Neff = N
\

,.
(3.26)

2w=i K)2

where w'k is the normalized weight. It is straightforward to verify that 1 < Neff < N with the

following two extreme cases:

If the weights are uniform (i.e., w'k = ^ for / = 1, ...,A0 tnen M-// = N

if 3/ e{l, ....,/V} such that w'k = 1, and w'k = 0 for all i ^ j, then Ne/f = 1

Hence, small Neff indicates a severe degeneracy and vice versa. The next subsection presents a

strategy to overcome degeneracy of samples in SIS.

3.3 Resampling

Whenever significant degeneracy is is observed (i.e., when Nejf falls below some threshold Nthr,

resampling is required in the SIS algorithm. Resampling eliminates samples with low importance

weights and multiplies samples with high importance weights. It involves a mapping of random

measures {XJ.,w[.} into random measure {Xjj*,^} with uniform weights. The new set of random

samples {X^.*}^ is generated by the resampling N times from an approximate discrete represen

tation of p(Xk\Zk) is given by

N

p(Xt|Z*)2Hi8(X*-Xl) (3.27)

so that P{X'k* = Xk} = w^. The resulting sample is an i.i.d. sample from the discrete density 3.27,

and hence the new weights are uniform.
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Although the resampling step reduces the effects of degeneracy, it introduces other practical

problems. First, it limits the opportunity to parallelize the implementation since all the particles

must be combined. Second, the particle that have higher weights w'k are statistically selected many

times. This leads to a loss of diversity among the particles as the resultant sample will contain

many repeated points. This problem is known as sample impoverishment, and it is severe in the

case where the process noise in state dynamics is very small. It leads to the situation where all

particles will collapse to a single point within a few iterations. However, this problem can be

overcome by dithering. Third, since the diversity of the paths of the particles is reduced, any

smoothed estimate based on the particles' paths will degenerate.

3.4 MPF Algorithm

In this thesis we take the Importance Density to be the prior p{Xk\Xk_\) and use the method of

Sampling Importance Resampling (SIR) to produce a sample of equally weighted particles that

approximate p(Xk\Zk), i.e.,
1

m

p(Xk\Zk)
-

8(X* -X*W) (3.28)
m,=i

where 5(.) is the Dirac delta function. The SIR method works as follows:

Prediction: For each particle Xk_x, generate vj/j according to the known distribution of

the transition noise and then a sample Xk',k_{ from the prior distribution p(Xk\Xk-i) can be

obtained using the state propagation equation.

Weighting: The information given by the observation can be utilized to find the importance

weights. Each particle is given an importance weight wk^ using the formula

wkW = p(Zk\X) (3.29)
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Resampling: The weighted samples will be resampled to eliminate those with low weights,

multiply those with high weights and regenerate those with equal weights. The new m par

ticles are sampled with replacement from {Xuk_x,Xk,k_l, . . . ,^[^_i } so that the probability

of sampling particle i is proportional to wk'. Then new samples {Xk ,Xk ,... ,Xk } will

have equal weights (1/m).

At each stage, the mean of the posterior distribution is used to determine an estimate Xk of the

target state Xk, i.e.,

Xk = E[Xk\Zk] (3.30)
m

Yjxk{i) (3-31)

i m

1

I*/(/)
m,=1

A common problem with the SIR filter is the degeneracy phenomenon, where the particle set

quickly collapses to just a single particle. To overcome this problem, regularization [24] can be

used.
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PRIMARY-SECONDARY MODEL FOR

THE PARTICLE FILTER

4.1 Background

Most tracking algorithms can be considered as iterative or recursive ones, in which the same set of

steps is repeated at each update time with different parameters. For example, in particle filtering

algorithms, importance sampling, prediction, update, and resampling steps occurs over and over

again. Thus, multitarget particle filter can be treated as iterative computation and, in order to

parallelize, the scheduling of processes across a number of processors is considered at each scan.

(i) @
Figure 4.1: Primary-secondary architecture
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Symbol Description

Tf Time required to communicate one particle from the primary proces
sor to secondary processor i

T? Time required to perform the necessary computations on one particle

by processor i

P, Latency (overhead) of processor / to initiate communication from

the primary processor

n, Number of particles assigned to processor i

N Total number of particles

Ri Total communication time from the primary processor to secondary

processor i

Si Total communication time from secondary processor / to the primary

processor.

Ci Total computation time for secondary processor i

p Total number of available processors

q Selected number of processors for computation

Table 4.1: Notations

In the primary-secondary node model that we consider, since the secondary processors are

connected via a bus architecture, exclusive mode communication is possible. That is, at most one

communication will take place between the primary node and a secondary node at any time step [6].

Furthermore, we characterize point-to-point communication by the classical linear model (given

by P, + ,TC) [11] and the computing power is assumed to be constant and can be written as n(Tf,

where rc, is the number of particles to be assigned to secondary processor i and other parameters are

constant. The communication latency P, is significant especially for networks of workstations. The

actual latency and transmission times are dependent upon the specific computer system. Although

the processors are inter-connected via the bus architecture, the processors themselves and the inter-

processor communication among
them may be heterogeneous. The communication speed depends

not only on the interconnection architecture, but also on the power of the processors as well. Our

model is developed to specifically handle the heterogeneity in the network due to the differences

in the communication speeds of secondary processors.
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Scheduling of primary-secondary computations has been studied in [11] and [19]. However,

they consider the problem ofmapping tasks onto a fixed number of processors, which is not realis

tic in all problems. In addition, they do not consider the effect of communication loads. In particle

filtering, using a huge processor pool for computation is not always efficient. The excessive com

munication between processors may result in some processors being idle. In order to make the best

use of the available communication bandwidth and processor power, optimal resource allocation

has to be carried out in an efficient manner. In the multitarget particle filter, the data transferred

between the primary and the secondary nodes vary according to the number of targets. Therefore,

the challenge here is to select the number of processors and to find the number of particles to be

mapped onto the selected processors. As the number of targets increases, the computational re

quirement for each particle increases exponentially. This is due to the data association taking place

in each particle. Thus, the optimal number of processors will be different for different number of

targets. Because of the communication overhead, using an unnecessary number of processors will

only degrade performance.

4.2 Optimality Condition

In the optimal scheduling, ifwe assume that the total work can be divided into finely decomposable

tasks (divisible load), the idling time is zero and the corresponding timing diagram for optimal

mapping is shown in Figure 4.2. The communication mode is exclusive and thus, the primary

processor can send or receive data to or from only one secondary node at a time. With optimal

scheduling, after each node performs its computation, there may not be any idling [25]. However,

this assumption is valid only if the load is finely divisible.
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Figure 4.2: Timing diagram for finely decomposable tasks

4.3 Approximation

Particle scheduling of a particle filter is a special case of parallel task mapping. Since we have a

large number of small tasks of equal computational complexity, it is reasonable to assume that our

tasks can be decomposed finely. If the tasks are not identical, the above assumption is no longer

valid. In typical multitarget tracking problems, we use thousands of particles, and the assumption

of fine decomposability and the subsequent approximations are valid. If the load is not divisible

finely as in the particle filtering case, the computational load cannot be adjusted so as to avoid

processor idling. We show in the following section that this assumption makes the problem real

time feasible.
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SCHEDULING PROBLEM

FORMULATION

With a large pool ofprocessors in the system and problems like particle filtering, where computation-

to-communication ratio (CCR) is low, the timing diagram becomes as shown in Figure 5.1. In this

case, the primary processor cannot start receiving data from a secondary processor even after the

previous secondary processor finishes computation because of high communication load. Under

these circumstances, using all available processors for computation is not efficient. Then one has

Pa
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Pi

P\

,

c4 s4
1

Total send time

i
/?3
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r?

_^^__
<?'

Cn S-,

1

,

R\ c. : Si
1

i
rr. 1

^

lotai leceive tune *

Time

Figure 5.1: Timing diagram for a large number of processors
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Figure 5.2: Timing diagram with optimal mapping

to go an for optimization formulation to find the optimal number of processors and number of

particles to be mapped among the selected processors. From Figure 5.2 we can write the problem

as

(5.32)

subject to:

min Rx + C\ + d\ + ^ 5/
;=1

5>7 = N

7=1

dt > 0

p

Ci+di-^Rt > 0

1=2

Q + Si +di-Ri+i-Q+i-di+i = 0, i=l...p-l

(5.33)

(5.34)

(5.35)

(5.36)

Here,

Ri = Pi + ntTf

st = fr+mTf

Q = n{T?

(5.37)

(5.38)

(5.39)

(5.40)
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The above formulation will select the required number of secondary processors as well as the

number of particles to be mapped on each selected processor. However, the latencies of the unused

secondary processors are included in the above formulation. We introduce a binary variable p,,

which indicates the selected processors, and eliminate the unused latency in the formulation. Note

that

1 if processor ;' is selected

Pi={ (5.41)

0 otherwise

Therefore, the optimization problem will be as follows:

p

min PiPi+z/i^ +m^ +^ + Xd^^ +^^' + P^penalty) (5-42)
n;,P;

i=l

subject to:

5>y = N (5.43)

7=1

dt > 0 (5.44)

mTf +di-j^WiPi +mTf) > 0 (5.45)

1=2

mTP + P;p, +ntf + dt
- P,+ iP,+i (5-46)

-n/+i T[+ ,-,-+! T?+l -di+i = 0 (5.47)

rn < p,/V (5.48)

In (5.42), we introduce a penalty term rpenaity' which is necessary to account for the communi

cation overhead and to determine the resulting optimum number of processors. As we increase

the number of processors, there should be a significant improvement in overall computation time.
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This rpenaity will decide how beneficial it is to add one more processor for computation while tak

ing into account the communication overhead. In order to add a processor, the reduction in the

overall computation time should be greater than 7penaity. In the simulation results, it is clearly seen

that we have the problem of diminishing returns in terms of the overall computational time as we

increase the number of processors.
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DISTRIBUTED RESAMPLING

The obvious impediment in the direct parallelization of the particle filter is that a huge amount of

data has to be sent back and forth at every time step among the processors. This is done in order

to perform resampling, which avoids the degeneracy of particles. The resampling step statistically

multiplies and/or discards particles at each time step to adaptively concentrate particles in regions

of high posterior probability. In tracking problems, the data have to be combined at every time step

and in this section we introduce a less communication intensive method, which does not require

the particles to be sent between the primary and secondary nodes. Furthermore, in this method,

the resampling can be performed at each secondary node instead of doing it at the primary one.

The target pdf is distributed among the secondary nodes and the data from all secondary nodes

are combined at the primary one to find the estimates of targets. The idea is to have the pdf of

target motion independently at each secondary node and combine the local estimates to get the

global estimate, which is discussed in [5]. This is very similar to running several particle filters

independently with fewer particles and finding the the overall estimate by combining the local

estimates. However, in this case, there will be a tendency for filter divergence as the number of

particles in each local node is not enough to prevent particle depletion. In [5], another method

30
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called the Compressed Distributed Particle Filter (CDPF), which enables significantly less data

exchange between the primary and secondary nodes than direct parallelization. The idea is to avoid

sending duplicate particles that are generated when resampling. However, there is no guarantee

that particle duplication will occur at every time step. In such situations, CDPF will be almost as

complex as direct parallelization.

In [5] another algorithm known as the Local Distributed Particle Filter (LDPF) was also pre

sented. In LDPF samples are drawn and importance weights are calculated and normalized at

secondary nodes. Further, resampling is also performed locally, thus the need for sending particles

to the primary node is avoided. Each node sends only the local estimate to the primary node, where

global estimate is calculated. However, there is no exchange of information between the particles

at various nodes before resampling (i.e., resampling is done independently at each node), which

degrades the tracking performance. Simulation results for a selected problem in [5] show that the

LDPF performs better than the CDPF.

In this paper, we introduce the Distributed Resampling Particle Filter (DRPF), which reduces

the amount of data exchange among the processors. In this method, a modified version of resam

pling (compared with the standard one) is performed at secondary nodes. In the multitarget particle

filter, each particle represents the joint state vector of target dynamics. Let xJk = [x1k,x]k,y1k,y1k]' be

the state vector of jth target at time k, then the joint state vector is given by

Xk (6.49)

Here, / is the number of targets in the surveillance region. Further, x^ can also be refereed to as the
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tm partition of particles. The prediction of particles at time k can be written as

/ iUvl

Xk =

h\
Ak(H-i^kJ

\ A'k(Xk-VWk) J

(6.50)

Let {Xk'wk)i=\ denote the characterization of the joint posterior pdf p{Xk\zk) of targets in

node s, where w'k are the unnormalized weights of each particle.

V'v>'.v ,7,s<'s\N'Let {X'k'ls,w'k '}, = [
denote the set of importance sampling and their unnormalized weights of

node s

'.,=i

is=i

(6.51)

(6.52)

where

wl =

Lwk

wk
=

s=l

.5,1,

k
=

Wk /Wk

wsk = wk/wk

w,
-

=

(6.53)

(6.54)

(6.55)

(6.56)
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From the above, the primary node will find the global estimates as follows:

Xk = w$J (6.57)
5=1

pk = tllp[ + (Xk-Xk)(Xsk-Xky] (6.58)
.y=l

In the distributed resampling method, the resampling is performed at each node s according to

Nseft- At each time step, once the summation of local particle weights is available at the primary

processor, the load balancer is invoked. Depending on the predicted number of particles that will be

available after resampling, the load balancer decides how the particles should be migrated among

the nodes.

6.1 Algorithm

At the primary node

- Send measurement set (zk) to each node s = 1
,
2 S

At each secondary node s = 1
, ,

5

- Perform importance sampling on Xk_ j
to obtain Xk

- Evaluate importance weights wk

- Evaluate sum of local weights wsk

- Compute the local estimate X[

- Send (;>)

At the primary node

- Send wk
= Xf=i w[ to each node s = 1, ,5
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-

Compute the global estimate Xk

- If number of targets changes, call the scheduler for rescheduling

- Else call load balancer when the system is not balanced

At each secondary node s = 1
, ,

S

- Compute the number of samples Nk [N(w)]

- Resample the particles and get Nk particles

- Perform particle migration if the primary node requests it

In the distributed resampling particle filter, the number of particles for a specific node varies

after resampling. Thus, it creates a load imbalances in the previously balanced system. Therefore,

an efficient load balancing technique is required to balance system load and to enable the efficient

use of multiple processors. The number of particles on each node after resampling can be calcu

lated once the local wights from each node arrives at the primary processor. While the resampling

occurs at secondary nodes, the load balancer can be invoked to estimate the number of particles

to be migrated. This will facilitate load balance across the network. The efficient load balancing

algorithm is explained in the following section.
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LOAD BALANCING

In the primary-secondary mapping strategy, we developed algorithms for selecting the number

of processors and the number of particles for the corresponding secondary nodes. However, in

our distributed resampling method at every time step after resampling is done, the number of

particles will not be as optimal at each node. Therefore, we need to consider load balancing

by migrating the particles among the set of selected secondary nodes. Since the resampling is

a random process, it is impossible to estimate a priori the number of particles residing at each

node after resampling. Therefore, the load balancing in the parallel particle filter has to be done

dynamically at real time. A general four-phase dynamic load balancing (DLB) model is presented

in [22] and another approach is explained in [8].

In this paper, we present a new DLB algorithm for parallel particle filtering, which enables us

to have the stable load-balanced system obtained by primary-secondary task mapping as explained

in Section 5.

35
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Heavily Loaded Nodes Under Loaded Nodes

Figure 7.1: The load balancer

7.1 Processor Load Evaluation

The load at each processor has to be determined at each time step of particle filtering in order

to maintain the optimal number of particles at each node. These load values are used as inputs

to the load balancer to detect load imbalances and to perform task migration. In the distributed

resampling method, the load (number of particles) at each node after resampling can be estimated

at the primary node using the corresponding weights from each node. This enables us to run the

load balancer while the secondary nodes perform resampling. The predictable characteristic of

the number of particle at each node is of great benefit for the load balancer in deciding how the

particles have to be moved among the processors. The load of node / at a particular step L, can be

written as

Wj xN

Lj q
x computation per particle (7.59)

2j=lwj

7.2 Load Balancing Profitability Determination

In this phase, we estimate the potential speedup which is obtainable through load balancing. The

load imbalance factor O(f) is used in the profitability determination process, which is weighted
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against load balancing overhead to determine whether the load balancing should be performed or

not. Therefore, we do load balancing if <(? ) > roverhead

^'(0 ^unbalance -?bal (7.60)

We use our primary-secondary model to determine the load imbalance factor and the overhead

and then decide whether to invoke the load balancer or not. The load balancing decision has to be

taken within a very short time since the load balancer is invoked in real time. T^a\ is already known

and /"unbalance can be calculated using the primary-secondary model. The load balancing has to be

done so as to minimize roverhead> which requires an efficient task migration strategy.

In the primary-secondary mapping model, we considered the optimality condition for the bal

anced system to schedule the particles. However, those equations are is not useful in finding the

time required to compute when the system is unbalanced. The total time Tp required for balanced

or unbalanced systems can be written as [1 1]

p p

7> = i?1+Ci + X5, + Xmax('^) (7-61)
1=1 i=i

where d\ = 1 and, for i' > 1,

gi, ifdi-i>0
dt (7.62)

gi \di- 1 1 , otherwise

with gi
= (Ri+Q) (C,-_ i + Sj- 1 ) . dj holds the accumulated delay between the first / 1 processors

and processor i and gi
stands for the gap between processor ;' 1 and processor ;'.

However, the profitability determination mentioned above needs a lot of computation. The

unbalanced time and the particle migration pattern are to be calculated at every scan to determine

whether the load balancing has to be done or not. The whole exercise of distributed resampling
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method may be rendered meaningless if we do not reduce the total computation time. Therefore,

we use following method to decide the load balancing requirement.

In this method, instead of considering the load at the current time step, we consider the past few

steps of load (i.e., particles) on each node from the time particle migration occurred previously. Let

A be the number of overloaded particles or under-loaded particles at processor p,. Furthermore, if

A, > 0 the overloaded particles A//,- = A and if A,- < 0, the under-loaded particles At/,- = |A|. Thus,

we can write the load imbalance factor as

<K*) = S lAl <7-63)
/=i

In this method, the load balancer is invoked when fy(k) > ^Threshold-

7.3 ParticleMigration

Particle migration in the load balancing phase can be formulated as a search for appropriate pair

ing between processors that are heavily loaded and those that are under-loaded. The first task is

to classify the processor pool as overloaded or under-loaded. This can be determined very easily

using the number of optimally scheduled particles on each node and the estimated number of par

ticles that will be generated after resampling on each node. The second task is handing particle

migration or mapping between overloaded and under-loaded processors. Particle migration deter

mines the processors that are involved
in load transfer and the number of particles that are moved

during each transfer. The communication overhead associated with particle migration depends on

the communication mechanisms supported by the parallel machine. The goal is to minimize this

overhead. Then,

m n

minX X (Pi;P/; + cijnij) (7.64)
i=ly=l
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Subject To:

n

5>l7 = A//,-Vi (7.65)

7=1

m

X",; = AC/yV; (7.66)
i=i

Here,

c/7 is the time taken to communicate one particle from processor / to ptocessor j

P,y is the latency between processor / and j

nij is the number of particles to be migrated between processor i to processor j.
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PERFORMANCE MEASURES

The performance measures that show the effectiveness of a parallel algorithm are the speedup

factor and parallel efficiency. These measures depend on how a given set of tasks is mapped onto

the multiprocessor architecture. The speedup of a parallel algorithm is given by

Execution time using one processor
A = ^ : : r~. (8.67)

Execution time on a multiprocessor system

The algorithm efficiency r| is given as

Actual speedup
r] =

Number of processors used (q)

X

a

For a bus-connected homogeneous processor system, our scheduling algorithm selects q num

ber of processors out of p existing processors according to the number of targets present in the

scenario. The scheduler schedules 72, number of particles on each selected processor, and thus, the

total number of particles N can be written as f=1 m
= N. Also, 7c, is the average computational

time taken to perform computation on one particle at node P,. Thus, from the above definition of

40

(8.68)

(8.69)
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speedup, the maximum achievable speedup A of our algorithm can be given as

I =
NvaimTpi

Pi+ni(rci + rp1) + x?=1(pl-+nITcI-)

In the following, we assume that the idling time of each processor is negligible and that the

optimality condition is satisfied. Further, in the proposed DRPF method, the whole set of particles

are not transmitted and the maximum achievable speedup will be

l =
NmimTpi

(g7i)
Pi +mTm\ +n\Tp\ + X?=1 ($i + eTej)

Here, m is the average number ofmeasurements received at each scan and e is the number of targets

within the surveillance region. Note that the additional overhead in performing the load balancing

is not considered in the equation for the speedup A of the DRPF. Therefore, the maximum speedup

will not be achieved, i.e., unity efficiency is not possible. However, simulation results will show

that the speedup achieved using the DRPF is much higher than that of the exact implementation of

the particle filter.



Chapter 9

SIMULATION RESULTS

This section presents a two dimensional tracking example to illustrate the new mapping technique

and to compare the distributed resampling with the direct implementation of the parallel particle

filter. The single target Markov transition model that characterizes the fh target dynamic at time

/cis given by

AlA-x+< (9.72)

where x{ = [xk,xJk,yJk,y{] is the state of the the /h target, which consists of target position {x'k,y1k)

and target velocity {xj.,^) at time step k, and wj. is an i.i.d. sequence of zero-mean Gaussian noise

vectors with covariance Sj(. The matrices A[ and ZJk are given by

4 =

1 T 0 0

0 10 0

0 0 17/

0 0 0 1

(9.73)
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and

^k
~

T

TOO

T ~2

I (9.74)
2

0 0

0 0 ^ T

where / = lxl0~4m2s~3.

The observations are taken from a single sensor located at the origin of the reference coordinate

system. The measurements are available at discrete time sampling interval T = 5 seconds. The

target-generated measurements corresponding to target j on sensor / are given by

S'J V*-4)2+#-4)2

t*n-l{(yl-?s)n4-4))
+ vi (9.75)

where v'k is zero-mean Gaussian noise vector of dimension 2 with covariance diag[l x 104 m2,

3 x 10-4 rad2]. (j^,)^) and (je^,)^) denote the locations of target j and sensor i at time step k,

respectively.

We consider a varying number of targets in the scenario to illustrate parallelization efficiency.

Simulation results shows how the number of processors are selected depending on the number

of targets in the surveillance region. Furthermore, the selection of processors is different for the

distributed resampling method. This is due to the communication reduction in the proposed algo

rithm.

The parallel platform that we use to analyze the performance of our algorithm consists of a

cluster of 128 nodes with dual 2.4 GHz Pentium Xeon processors and 1 GB of memory on each

node. The cluster is connected via a high speed bus of 1 GB/s. All machines run the Debian

Linux operating system. The communication characteristics of the processors is determined by a

ping-pong experiment between
them. Figure 9. 1 shows the communication characteristics of the
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parallel architecture on which we perform our simulations. The latency P and the communication

speed x are calculated from the communication characteristics graph. The time required for one

particle on each node is calculated by taking the average time on each node.

The simulation results given below show that the optimal number of processors varies depend

ing on the number of targets. In order to justify the optimal number of processors we get using our

algorithm, we fix the number of processors and change n, < pxN to n, > 0 in (5.48) and find the

number of particles on each processor. Now we run the filter according to the above mapping and

find the required time for computation. By doing this, it is possible to explain how meaningful the

solution we get from the mapping algorithm is.

As the dimension of the state vector of the particle filter increases, the data transmission be

tween processors increases linearly. However, the computational requirement for each particle

increases exponentially due to the data association in each particle. Therefore, the optimal number

of processors does not vary linearly with the number of targets, which we can clearly observe from

the simulation results in Figures 9.2, 9.3 and 9.4. In the distributed resampling implementation,

the computational time is always below the direct parallel implementation. This time reduction is

achieved by reducing the huge amount of data transmission at each time step.

Figure 9.5 shows the efficiency of the parallel algorithm. From the curves we can note that

the distributed resampling method is highly efficient it reduces data transfer significantly and

selects the number of processors more efficiently than the direct parallel implementation of the

particle filter.

Figure 9.6 compares the root
mean squared errors (RMSE) of the two methods over 50 Monte

Carlo runs. Both methods show almost the same error. That is, the distributed resampling imple

mentation of the particle filter does not result in any performance degradation.

Because of the approximation resulting from the independent resampling at local nodes, LDPF' s

performance is worse than
that of the the serial particle filter (although the former outperforms the
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CDPF according to [5]). Theoretically, the proposed DRPF's performance will be the same as that

of the serial particle filter, which is verified through simulations. Thus, direct comparisons against

CDPF and LDPF are not performed.



Chapter 10

CONCLUSIONS

This thesis considered the parallelization of a particle filter for multitarget tracking problems with

non-linear non-Gaussian dynamics. The high computational load of standard multitarget particle

filters, which typically consists of stacked state vectors, is made tractable for real-time applica

tions through parallelization in a primary-secondary architecture using optimization techniques.

Furthermore, the proposed Distributed Resampling Particle Filter (DRPF) is shown to be more ef

ficient in terms of resource utilization. In the DRPF, the data transfer between the primary node and

secondary ones is reduced significantly without any apparent degradation in tracking performance.

However, the DRPF needs load balancing as the number of particles on each node after resamling

may not be optimal. A load balancing algorithm is proposed to make the overall algorithm efficient

and real-time feasible.
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