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ABSTRACT

Dynamic stability of multimachine and single machine-infinite bus
systems is considered. System models are de;cribed, which include de-
tailed generator, turbine, governor and exciter components, in addition
to dynamic representation of mechanical loads and electrical networks.

The overall modeling concepts are applied to a number of practical ap-
plications to demonstrate thei£ behavior in power systems dynamic studies.

A variety of linear dynamic equivalents are employed to reduce the
complexity of stability studies for multi machine power systems. Undrill's
technique for construc¢ting linear dynamic equivalents is extended and
iwproved in this thesis.

Various reéuction techniques aré applied to reduce the order of the
system. Mainly they are aggregation and singular perturbations tech-

‘

niques. The interactions between the reduction techniques and dynamic
;T .

g

.stability are explained.‘ : -

Insights are presented into the interpretation .of eigenvalues and
eigenvalue sensitivities as thi;)reflect the various aspects of power
system stability p¥pdictions in high order models, and they are extend-
ed to be appiied in reduced order models.t ‘

The concepts considered are employed'in the analysis of-several

examples utilizing actual power system data. ) }ﬁf
¢
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CHAPTER 1 N
‘ \
INTRODUCTION (\\ o :

1.1 Power System Stability ip Perspective /.

An interconnected power system presents, in the view of thé author,
an excellent example of‘a large scale complex multivariable system. The
overall system dynamics include electrical, mechanical, thermal, and hy-
draulic processes. It also includes dynamic loads such as synchronous
and inducfion motors. ,The system loads may be dynamic or static in nature.
The question of stability has traditionally been concerned with whether or
not the system remains in synchronism after a crgdible disturbance (1).

Actually, the study of the system dynamics around steady-state and
under transient conditions is of primary interest to power system engin-
eers. Dynamics of power systems cover a wide spectrum of phenomena: elec-
trical, electromechanical, and thermomechanical in nature (2). The probfems
involved in power system dynamic studies are always associated with the in-
clusion of damping of the mechanicél oscillations and thé stability of the
"load frequencf control loop.

Recently, new ;spects of stability have emerged as a result of in-
creased System size as well.as the growing complexity of the network. Due
to these changes, diffiCUltiesﬂéfb‘ereated in representing a major systém

in Hetpi and producing a study in reasonable time\and at reasonable cost

'(3). Therefore, the use of equivalents is considerkd as one of the pos-




o

.

-

§ible solutions. Also, the use of a number of numerical computer tech-
[

“

niques (3, 4, S) can reduce the size of the system as well as the cost.

Because of computer size, speed limitatiéns, and humerical instability (6),
it is frequently practical and economical to restrict the use of the dif-
ferential and algebraic eduations describing each component in detail to
those parts of the system where‘detailed results are required; and to use
simplified representation, or equivalents, to represent those parts of
the system which influence its performance but whose internal performance
is not under study (7 - 9). l

Undrill et al (7, 8) developed an analytical formulation of the power
system equivalencing problem in that if‘Produces equivalenis which are
capable of representing the dynamic effécts of the power system. For the
purpose of analysis, the interconnected power system is assumed to con-
sist of a "study" system represented in detail for stability éomputation
and an "external" system, connected.to the first (the study system) through
separating terminals and representeé by simplified dynamic equivalenés.

'The construction of the simplified dynamic equivalents was first
done b} representing the dynamics‘of the external system, with the mechan-
ical mode of one machine at each sepayating terminal (9). The inertia of
each equivalent machine at each terminal was determined by the summation
of the inertiasnof ali machines in the external system, after multiplying
each of them by a distributiop factor. The distribution factor was taken
as the short circuit current value at the corresponding terminal, when
all the other terminals were open circuited and with an injection of one
per unit current at each machine in the external system. \ -

To construct the linear dynamic equivalents, a new technique was in- -

troduced by Undrill et alsr(7,8). Th$y represented the dynamics of the ex-

O
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ternal system by a set of lincar differential equations. Then, the
dynamic equivalents were simplified using the dominant modes techmique.

Various techniques have been éroposed in the literature to simpli-
fy multivariable systems by reducing the order of the whole system. The
main order reduction techniques applied in this research work ‘are: de——r
coupling method (10), singulaf perturbations method (11), ané’aggrcga-
tion technique (12). /

To predict system stability, when small changes (or tunings) occur
in system parameters, e%geﬁxelue sensitivity ﬁcthods are employed. The

: )
advantages of using first-order sefisitivities have been complemented by
the development and application of second-order sensitivities to differ-
ent studies of power system dynamics (13, 14). In this thesis, the sen-
sitivity techniques are appliec?in the high order models as well as the
reduced order models.

In dynamic stability studies, it is of interest to investigate the
effect. of differént parameter settings on dynamic stability. Usually,
under certain parameter changes, only a small SUbi?t of the whole eigen-
value pattern would be sensitive and exhibit considerable movement due
to parameter variation. This situation has been considered in a recent
publication (15) which summarizes a teghnique to track the movement of
only this small sensitive subset. This tracking approach (6, 14) is used
in this study for reduced order models.,

This thesis is centered dround the simplification of power systems

for stability studies using various reduction techniques.
Q 5

[ 4
1.2 Important Aspects of Dynamic and Transient Stability

Powen system stability is usually divided into two main categories.
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‘ . v ¢
These are transient and dynamic stability. Transient stability i§ con-
cerned with syétcm response'to major disturbayces such as tie-iinc_fault§,
loss of excitation, etc. Immediate loss of synchronism is generally of
concern and the differential equations describing the system are non-lin-
ear (16),.duc to the sinusoi@al nature of the torque-load angle relation-
ship. Nonlinearities are also due to magnetic saturation, control ldmits,
the sinmsoidal transformation of reference frames, and nonlinear load char-
acteristics. Stability, or lack thereof, is a property of~the nature of
the disturbance as well as a property of the system.

Dynamic stability is associated with tnélsystcm-operating normally

without g4ny major disturbance. It describes the dynamic properties of

heri subjected to 'small disturbances'. For sufficiently

P .

small disturbances, linear differential equations may be used to describe
the systeg's dynamics. These equations are derived by perturbing the
nonlinear equations éf the sy;tem, about the equilibrium point,
Throughout this thesis, attention will be concentrated on hynamic .
stability aspects.
K

1.3 Formulation Approaches for Dyndmic Stability Evaluation

‘ The description of a power system involves large numbers of both.
differential and algebraic equations. For practical computation (either
analbg or digital) the equations mustsbe mapipulated into standard state
space form, For small singlé machine-infinite bus problems, this may be
possible manually. However, for large systems, it is required to have
systematic assembling techniques.

Enns et al (17) described one such technique. The differential and

algebraic eqdations are arramnged in the following form: P [

o K

]=‘ Qg+ Ry



where x 1s an n dimensional state vector
% s an r dimensional algebraic variable
vector
. 4 ds an m dimgnsional input-control vector

P, Q, R are Peal matrices of compatable order with x, £, . Upon re-

duction, we obtain, in general:

- k]

ko= oay ey -
' g Gy v Dy

Enns et al (17) classified three possibilities for the formulation
of composite systems: i) reduced subsystems - reduced composite system,

ii) unreduced subsystems - unreduced composite system, iii) reduced sub-
systems - unreduced composite system. It is further observed that (i)

directly yields the final (state space)} equations and is restrictive to
the type of subsyséem connection. (ii) introduces no restrictioézon the

-

connections between subsystems but is very wasteful of computer storage.

(iii) has no restrict connection possibilities but the unwanted algebraic

Vd
variables may be eliminated.
An alternative approach to the general problem of assembling large

sets of differential and algebraic equations into the state space form

has been devéloped by Van Ness (18). In this approach, state variables

are grouped according to’ the process type described, ie: the states as-
sociated with all pure integrators are together. This can be contrasted
with the approach of Enns et al (17) where states are grouped on the
basis of physical subsystems. )

The main formulation approaches for producing the machine'cquations
in state space form have been described in the following references:

Laughton in 1966 (19), Undrill in 1967 (20), Prabhashankar and Janis-

t
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'chcwskyj in 1963 (21), Anderson et al in 1973 (22), Smith-et al in 1974

(23), Nolan et al in 1974 (24),‘:ein El-Din et al in 1975 (3), and Kundur
ct 2l in 1975 (5).

For successful modeling of ar overall power system, it is impor-
tant to understand in depth the modeling and dynamic behavior of 1ts

>

individual subsystems. The development of these individual subsystem

- models and subsequent analysis is in'itself a formidable task.

1.4 Thesis QObjectives

The objectives of this research work are centered around the appli-

cation of reduction techniques in simplifying power systems for stability

~

studies.

The investigation will deal with a general formulation of the state
]
sﬁace form in analysing the dynamics of power systems. Both single-machine
infinite bus and multi-machine systems will be considered. Also, the dy-
namics of the induction motor are included since it is one of the most
important loads in power system studies.

The stability of lincar dynamic equivalents will be studied as a tool
to reduce the complexity of large scale power systems. Extension and }m-
provements to the technique developed by Undrill et al (7, 8) will be
carried out in this work to improve the accuracy in formulating the linear
dynamic equivalents.

Some reduction techniques will be employed (10 - 12) in obtaining
simplified models, which keep essentially the same dynamic behavior of

the full models. [igenvalue and eigenvalue sensitivity techniques (13,

14) are also used in comparing the results when reduced as well as full

models are studied.



The validity of using second order terms in estimating new values
of certain modes, which are sensitive to small changes in any of the

control parameters of the power system, is eXamined, in this work using

the tracking approach (6, 14).

1.5 Arrangement of the Material

A detailed representation of ‘the dynamics of the different compon-
ents in a multi-machine power system is given in Chapter 2. Synchronous
machine equations in d-d\coordinates are derived from those in abc co-
ordinates. The equations for the different machines are then trans-
formed into common network D-Q coordinates. The description of excita-
tion systems and voltage regulators, as well as hydro and speed govern-
ing systems are explained. Investigations of the dynamics of the in-
duction motor, as an important dynamic load in power systéms, are also
included in Chapter 2.

In (!)tcr 3, a five machine system is considered as a test system
in applying linear dynamic equivalents using the technique of Undrill
et al (7, 8) which is criticized by G. I. Stillman (Power Authorityfof
the State of New York) in the discussion of (8) concerning boundar?es
of the study system and the accuracy of the f?near dynamic quiValents,
Based on the discussion presented in this chapter concerning dynamic
equivalents, Undrill's technique is extended. A comparison of the two
techniques (original and modified) is given. The simplification of
linear dynamc equivalents using®the two methods is also explained.

The topic of order reduction- and sensitivity analysis is discus-

sed in Chapter 4. The maini order reduction techniques, used in this

thesfs, are: decoupling method (10), singular perturbation (11), and



4

aggregation (12). Eigenvalue and eigenvalue sensitivity techniques

-

are ‘reviewed for both high drder models as well as reduced order models

\ »

(24). The overall approach of trackiﬁg (6, 15) sensitive eigenvalues
of a system with varying parameters is also cons:Zercd in Chéptcr 4.
Chapter S is devoted to the analysis of three specific studies in
power systems. The first concerns the dynamic stability of an induc—
tion motor-infinite bus system. .The second examines the effect of

different system parameters and components on reduced order models

wing aggregation and singular perturbation techniques. The use of
the overall, tracking approach in the evaluation of'dynamiﬁ stability

o
is also applied to the reduced order model. The third study illus-
trates the use of oné of the reduction techniques (aggregaéion) applied
to the dynamic equivalents' of the external system 6f a multi-machine

. 5 .
power system. In Chapter 6 the main conclusions of the.thgsis are sum-

marized and the specific contributions of the research and suggestions

for future work_ are outlined.
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CHAPTER 2

Formulation of Models of Power System Devices for
Dynamic Stabality Studies

2.1 Introduction

" An integrated power system is comprised of a general number of
generators and load units. This chaptef documents a detailed represen;
tation of machine and control equipment model types as well as the load
u&ir. - ‘ .

Synchronous machine equations (in d-q coorgdinates) will be derived
from those in abc coordinates. Then the equations for each machine (when,
a multi-machine system is considered) are transformed into common network
D-Q coordinates. éimplified models for gynchronous machines represent-
ing 2nd, 3rd, and Sth order models will be descriﬁcd. The coupling of
machine equations and those of the network will also be explained.

This chapter will include a description of excitation systems and

voltage regulators, as well as hydro and thermal speed governing systems.

2.2 Synchronous Machine Electromagnetic Dynamics

Figure 2.1 shows a séhematlc representation of the winding arrange- -
ment of a synchronous generator (16). The three phase stator winding
is denoted by'phe letters a, b, and c. Tﬁe rotor damper windings are
simulated by two equivalent windings Kd on the direct axis, and Kq on

the quadrature axis, while the field winding is denoted by the letters

£d. : ' '
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.
The synchronous machine equations afe derived after considering
the following usual assumptions}
1. The machine inductances are considered independent of their cur-
rent. Thereforezjtﬁc satﬁration effect can be neglected.
2, Each of the self and mutual inductances of the machine windings
o is represented as a constant term plus~a simple sinusoidal varia-
tion of rotor angle. ) \
- -

The voltage equations for both stator and rotor windings may then be

written in abc coordinates as follows:

Va-l 13. d a
Vb = -T, iy + Fra Wb (2.1)
Y i ¥
| ¢ c c.
it _ . - -
Veal Ved 1eq Y4
. d
Val © Vid hatl *aE | Yk (2.2)
Ykq \ Ka| | *Kq ¥kq

where the stator and rotor flux Uinkages are given by:

wa ia_ ifdw

vl = [-1) | * M d | iy (2.3)
WC ~1C qu;

Yed| 'a Y£d |

tra| = DM iy | v D] | iy (2.4)
"X i ixq |

The [Lss], [Msr]’ [Mrs]’ and [er] inductance matrices are given by the

following equations: o

N
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(v 1

SS

11
L, + Lycos (26) "M+ Lpcos (26 - 120°)

- o ' )

= | -Mg + Lzcos (26 - 120°) L_ + Lycos (26 + 120%) M+ Lacos (26)

0
—Ms + Lpcos (206 + 1207) -Ms + Lacos (26)

(2.5)

14

where Lo and L are the amplitudes. of the constant term and the sinu-
soidal term of each stator winding self inductan&g, and Ms is the con-

stant term of each stator mutual inductance.

Mfd cos® MKdd cos®f ~Mqu sin6-
- 1900 _ 0 - . _ 0
[Msr] Mg, cos (8 - 1200) M., cos (6 - 1207) Mqu sin (8 - 1207)
o o} . )
Mfd cos (6 + 1207) MKdd cos (8 + 1207) —Mqu sin (6 + 1207)
t
= N
I ] (2.6)
Lefg Mera 0
(L] = | Myge Lyxd 0 L@
0 0 LKKq !
The rotor position angle: 8 = wt is measured from a fixed re-

ference, as shown in Figure 2.1. .
Equations (2.1) to (2.7) are nonlinear equations containing trig-
onometric time functions in the rotor angle 6, and difficult to solve.

To obtain the machine equations without the time varying terms 6, Park

(25) introduced a special variable transformation. These transformed

equations are written in terms of new variables, usually known as Park's
. - . . . ’ . 4 .
variables or axis variables. This transformation is purély mathematical

in nature. However, it has been physically interpreted by Kron (26, 27)

-M_ + Locos (26 + 120°)

L, + Laocos (26 - 120%)

-~

v
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who assurmed fictitious axis coils located on the two perpendicular d and

q axes of the rotor. The associated coil paramcters are then indepen-

dent of the rotor position 6, since their axes act on-a path of con-

stant permeance.

According to Park's transfo?%htion (25) and Kron's interpretation
(26,_27), it can he shpwn that the three stator windings (a, b, c¢) and
their three phase time varying parameters can be replaced by two Qind—
ings (d, q) and a zero sequence winding. Therefore, the axis variables
are time invariant during normal operating conditions.

The stator currents, voltages, and flux linkages are related to
e

their corresponding variables in the new dqo coordinates through the

transformation matﬁ}&*“\
\ y ]
i !/ \ e
a

’I’

b c '
120°)  cos @ + 120°%)
120°) -sin (@ + 120°)

e

d cos 6 cos (8
(2.8)

Cp = %— q |-sin @ Tsin ®

1
2

te

1
2

The rotor winding quantities do not need to be .transformed, since

"their windings are already fixed on the d-q axes.

Figure 2.2 shows the axis windings‘and their corresponding quan-
tities. The d and q windings represent the stator, fd represents the
field winding, and Kd and Kq represent the direct gnd quadrature axis
damper windings, respectively.

| The transformed generator equations, in terms of the dqo quanti-
tiés, will be derived dsing a per unit system defined As follows:

i) as a base power for each winding, the same MVA {§ cbnsidered.

W,
This makes all ﬁkg mutual reactances reciprocal (20), ie:

-
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,and X, =X

X ,
Kaqq qKq PN

Xeg = X xdf = Yexd

fd  Tdf’
ii) all per unit mutual reactances between windings of the same

=

axis are equgl, ie:
de = XKdd = Xde = Xad (for the direct axis w1nd§ngs)

and: X Xaq (for the quadrature axis windings)

o

The transformed p.u voltage equations that represent the electro-

magnetic‘dynamics (28), may be written as follows:

Vﬁi’%;pwﬁi*rm g
v; = %g Py, -t i,- %; v . (2.9)
Vka = é;p ¥ka * Txd kg = 0
A =‘%;-qu AR
Vg = %;-prq Tra ixq
=0

where the flux linkages are given“by:

Yeq = Xega 1pg * Xad Yka 7 Xaa ?

d

i

Yy = Xaq tga * Xag ika " ¥a Fd
¥ra = Xad Yra * Xkkd Tka " Yaa Ya
o 2.10
) ?q = Xaq qu - Xq 1q ' \ ( )
qu = XKKq qu - Xéq iq 0 Y

-

In order to be able to couple the electromagnetic equations of the

different machines in a system, rotor cu(;z?ts are eliminated from equa-
) S r !

/ N

P
, /\<
., ~

s

tions (2.9) as follows:



RS C

o PETEIH >

e

Cw<*~t.vm e e et o koIRGB o

o car b

L
7S N

Let

and

From equations (2

.-?ad

-

L]
><v

X
aq

= wad

¥
aq

.10) to (2.12) the following can be obtained:

_xad

_xad

X .
aq

fda

as

X X

ad

v

X +X X

- X

ad ~f£dR

ad X

X
aq

]
aq Kq J

ad

ad

ad+XKd

Vi

*Kq

T

g4

1] [rae

i

q
|
-

(2.

(2.

(2.14)

14

.11)

12)

13)

From equations (2.13) and (2.143, the current expressions are:

X

X

X

Xad *£de Xae

X + X

fde
Kdg

fde

1.

ad “Kdg. '

X + de

J

2 Xxae)

Xad¥xde

X1a¥kds

0

X

X

0.

o

(2.15)

-

adfig

ad£ds |
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*q 1 Mg * k) Kaq Yag

1kq Xaq XKq.o, -‘Xaq Xaq qu

(2.;6)

By elimiﬁating rotor currents from the Electromagnetic equations (2.9)

using equations (2.15) and (2.16), we get:

PY oy = wo’[vfd + (rpglXeq)) Moy - wfd)] (2.17a)
Pra. = Yo (Tea/*kae) (Maq = Yid) , (2.17p)
PWKq;= L (qu/qul) (Waq - WKq) (2.17¢) ,
ere Yog = Xag g il"" Yeg * x1 vay (2.18)
ad @ £ds Kde //A\
¥ . 1 .
Yooz ) i 4 ——— ¥
aq aq ( q Xqu Kq) o
and
ng‘= 1/(xi ¥ x1 ¥ xl )
© Tad fds Kdg .
‘ (2.19)
X = VG )
q. aq Kqf
~
The stator currents id and iq in equations (2.15) and (2.16} are related

to the stator voltages Vd and Vq (from equations (2.9), (2.13), and (2.19))

as follows: ‘ ' ¢

x4
= -1 i Yoox g - 24
Vd =-T.1 ¢+ o (Xq 1q X, ?Kq)
' Kat 2.20
. w Vo, X//d v X’/d v (2.20)
Yo = Talq vwp ale m 2L Yra T 2L e
£de “Kd2
where:
/4 '3
X4 = Xaq * Xae \
X? = x4 x |

q aq ag \
. " \
If the changes in the voltage terms due to speed variations are negledted,

the stator voltage equations become: ) \"
N
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v,= 29y v =2 .. y (2.22)
d Ky KT oa Xgqy Ed Xpg, K

This may be written in matrix form, as follows:
v o= -7 v 2.2
= -~ + Lol
m a *m m (2.23)
N - T "
where: Vd 1y ; ) Vd
Y =) i = i vioal
m |V m i * m l v
q 9. . aq
-, / o~
and , r, X! |
Z = q !
a Yy . ’
\ Xd I‘a
-t

~

2.3 Synchronous Machine Electromechanical Dynamics N

The electromechanical dynamics are governed by the p.u. torque as

follows: o
o= E(r -1 - T - (2.24)
P 20 “'m /. : .
= . 2.2

pS = &w - W, _ . (2.25)

where: aw = Y ’
W
o

(2:26)

-3
"

D the mechanical damping torque, and is usually
expressed as:

,TD =D+ Aw



o ) . 17

2.4 Synchronous Machine Simplified Models.

In representing the synchroﬁous maghine using differ qtial equa-
tions, the higher the order, the more accurats the:mo el. The fifth
order model is .already investigated in the previous séction. This model
is chosen to represent the.dynamics of the test system. The reasons
are stated in the next chapter. Two more simplified models are given
in Appendix A. They are the third 'and second order models.

The third order model represents the system by three differential
eqﬁations: two for the mechanical modeg, and one for the field wind-
ing, where the dynamics of the amortisseur windings are ign;red.
Theréfore, the equa%ions.describing this model can be written from

those of the fifth order by considering:

p ¥y = 0 . and p qu =0 :

In the case of the second order model, the dynamics of the syn-
chronous machine are expressed by two differential equations only.
They can be derived from those of the third order, simply by con-

sidering a constant field flux linkage or: p Wfd = 0,

) <

2.5 Network Equations

Interconnections between the different magchines in the power
systems are simulated by a set of algebraic equations. Network alge-

braic equations are usually expressed in the following nodal matrix

¢
form:

I=YV < (2.27)
When loads are represented by constant :;}edances, the analysis -
is simplified and the associated stability computation time is rela-

i
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tively reduced. This "is mainly because of the elimination of the

load buses. Therefore, the network equations can be expressed in
<

the following reduced form:

= ’ 2 92
IN YN VN N . (2.28)
= 7 —"E - -1 ‘ ' a2 2
or VN = QN \}N‘“‘\* J ZN = YN . (...’.'.9)

The variables §f cquaeioﬁ (2.28) are complex. These variables

can be written in common network D-Q axes as follows:

“ s

INg T e T Itqe
Yok = Bpx * by o "
) <Q R
Ve = Vpe * Vg
whére £ and K are bus numbers. )

For a system with n buses, let: -

ip) ] ’ Yoy .
rin R VQ1
;IN = |.: , 'vN =| (2.30)
S : i
| iDn " an
' ‘_iQn | _in |

.

tlien the YN matrix in terms of real variables' is:

— ) b . l- ) - .

g11 b l» 810 ~ Py ?

\ .

LSS 3 1ok \n &g

LAV ;_":‘_J"l ST T o7 (2.31)
- b . -
gn1 nj ' : gnn bnn
. ]
bnl En1 - bnn &an
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2.6 Coupling of Machines and Network Equations

The differential equations for the individual machine in the system
are derived in Section 2.2 in d-q coordinates. However, in Section 2.5
the netWork equations (2.28), (2.29) are expressed in the synchronously
rotating common network coordinates D and Q. The two systems of coor-
dinates are displayed in Figure 2.3.

In ordey to be able to couple the equatiif; of the machines and
the equations of the network, all machine variables should be expressed
in one ;ommon frame of reference, usually it is the D-Q coordinates.

The bus voltage of the machine can be written in d-q coordinates

as follows:
V=V, + 3V i (2.32)
and in the network coordinates D-Q, it can be expressed as follaws:

VN = VD + JVQ (2.33)

According to Figure 2.4, equations (2.32) and (2.33) are related
by the following relations:

v

"

- i 2.3
D Vd cos § Vq sin & ) (2.34)

Vv V, sin § +V_cos §
Q d q

or in the mattix form:

-
V =tV ) (2.35a)
N m N :
where
\Y cos 6 -sin &
D (2.35b)
’ = =
\N - v » b sin 6 cos § B
Ql

From equation (2.35a) the following is obtained:

Lt =t
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then V =tV (2

.36)

Similarly, expressions for machine current (im), in d-q coordin-

ates are related to those in network coordinates (iw) as follows:

i, =t 1

N m
and i o=t o (2.37)
: m Ny A
where: i,

g

lN Q

From cquations (2.36) and (2.37), a general transformation for the whole

system is obtained as follows:

IN =T Im
VN =T Vm
(2
ot
Im = ] IN .
¥
_ gt i
Vm T VN ,
: - 3
where: -
T = Tt , 1 1is the machine number.

- -

Employing this transformation to the networh equations (2.28)

the following is obtained:

and

and (2.29),

.10)

Augmenting voltage equations (2.33) for different machines together,

——~—

the following is obtained:

(2

A1)
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where: r -

- 5 y
2’ v

a m

- -4 " y/
4./: ‘.., ’ V = Vv

a a ) m m
- .
b -
an .

- cy
Vv

L mn |

Eliminagidg Vm from equations (2.40) and (2.41), the expression for the
\ :

current 1is:
1 o=[z7+ 1t 2 1]t v? (2.42)

2.7 Lxcitation Systems and Voltage Regulators

Accordiﬁg to an IEEE power generation committee report (i@), the
excitation system block diagram for rotating exciters and continuously
acting voltsge regulators is- as shown in Figure 2.4. As the filter <
time constant TR is usually very small (0.0 to 0.06 sec.), and the
feed-back excitation system stabilizing loop has negligible effect o;
the electromechanical dynamics of the sysfem, a simplified represen-
tation for excitation systems may be taken as shown in Figure 2.5. The
saturation effect is included in the diagram by considering:

KE = 1/ (Ke + Se) J

TE - Te / (Ke * se)

The differential equations describing the behavior of the excitation

system in the simplified form of Figure 2.6 are:

-

¢ K .

, ' 1 E . - < f .
- Pegg =" T. %fa T T Vab Cga~ %a % fd (2.43)
i E E
. ; )\

l ; .—é- ¢ - V . 4 v
PVa=-F Ya © T (Vg = Vo) £y
A .‘\

“&1 (:.44)
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2.8 Speed Governing Systems

Steam and hydro speed governing systems that are currently in wide

use are described in the following sections.

2.8.1 Speea Governing Systems for Steam Turbines

The functional block diagram of sdcb speed governing systems which
operate through a mechénical hydraulic mechanism, is shownyin Figure 2.6
(30). It includés a gpeed governdr that produces a position which is an
instantaneous indication of the speed; a speed relay‘(pr pilot relay);

¥

and a servomotor which contrﬁls the valves that govérn the steam f}ow to
the turbine. The input éignals are the speed and -speed changer signal.
The latter is préduced from the master system 5utomatic generation con-
trol, and this signal governs the load changing process.of a specific
generator. A\

A general ‘dynamic model for such a speed governing system with its
turbine is shown in Fiéure 2.7. “{n this model, the time constant T; simu-
lates the delay of the speed relay, and T; simulates a delay caused by
the steam feedback loop. The qonstantxé represents the total loop gain.
The rate of the_torque change’imposed by the control valves (aT) - is
" practically limited between ; maximum value ATmax and a minimum value

ATmin'« . -j -

N
-,

'

: The govérnor controlled valves are set at the inlet of the turbine
to produce a controlled éhange in the steam flow. This change in the
steam flow is delayed after the. valve movement because.of the steam

‘motion through the inlet piping and in the steam chest. This delay

is represented by the time constant TCh in the turbine transfer function.
TG ’



2.8.2 Speed ‘Governing System for Hydfa Turbines

The components of‘a typical system including the turbine are func-
tionally related as shown in Figure 2.8 (30). A simplifieq dynamic model
fo; this type 1s given in Figu?e 2.9: It is comﬁonly used in system )
stability studies. In this model, the total loop gain is‘represented
by the cqnstantkK. Delays of the dashpot and gate ser&omotor is neglec-

& .
ted. The net torque iﬁposed by the goverﬁing system, T,, is practically
limited to Tmax as a maximum value and 0 as a minimum value.

2.9 Power System Rotating Loads*

The importance of load behavior as a function:of voltage in-stabil-
ity studies of power systems has been recognized long ago (31). At that
time,(it was tradi;ional to represent loads in stability studies as con-
stant power, constant cﬁrrent or constant impedance elements. Recently,
power s&stem engineers have devoted much'effort to construct accurate
load models by analysing and combining the characteristics of each of
ghe individual comﬁonents of the load. In some stability studies, it
may be necessary to represent these loads witﬁ detailed dynamic model-
ing to the same extent:'that generafion is modeled.

Generally,hlafge industrial loads can include synchronous and asyg—
chronous motors. Both can have significant effects o; power system
dynamics. A‘syncﬁronous motor may be represented by a generator
model except that goverror effects are neglected and the shaft sys-

tem is modified to ac&nt for mechanical load dynamics.

Induction motor loads are usually numerous and scattered through-

- out the distribution network.
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2.10 Modeling of Induction Motor Connected to an Infinite-Bus

The modeling of induction motor loads in dynamic and transient

stability studies is the subject'oﬁ-mapy papers (32 - 35). Conse-
N\

‘quently, different approaches have been presented to construct dy-

1

namical equivalents for asynchronous motor groups in. stability studies

(32, 35).

,
”

2.10.1 The Non-Linear Equations of the Induction Motor >

The mathematical equations describing the performance of a single

induction motor can be arranged with reference to a synchronously ro-

tating frame (D, Q) as: ' »
r . 1 . .
. ¥ = [R] i+ ;;-[x] i+ (6] i (2.45)
A Dy +T =T (2.46)
W r T m e .
o <
Te = Xsr (er lsQ - 1rQ lsD) : (2.47)

where the stator-rotor voltage component vector is:

A ‘ t 9
y s [vsD, vsq, Ver vrQ] ( . (2.48)

The stator-rotor current component vector is:
: O or. . . \ t ‘ ) .
"l =E 2.49
R [1sD’ lsQ’ Lrp’ 1rQ] ( ‘ )
The stator-rotor resistance matrix is:

A ’ ' ,
[R] 2. diag [rs, L rr]“ . (2.50)

The motor reactance matrix is:

~ -
Xs 0 Xsr °
) (o} XS o] st | ot
[x] = : (2.51)
X o X o) ’
- ST . T
‘ . o} Xsr 0 Xr”J




- aram o Aen

and

‘[c] =

2.11 The Linearized fquations of the Induction Machine ‘Modeiling

Ay

-

Xsr(wo B wr)

-X (w0 - wr)

ST

(o)

o

X
sT

0o

te

‘ Xr(wo - wr)

/

/

: o)

[

Te is the electrical torque and T is the mechaniﬁél shaft torque. w

25

(2.52)

o -

is the synchronous angular frequency, and'wr(is the motor rotor speed

(elec. rad/sec). All the métor parameferé in equations (2.45) to (2.47)

are in per unit based on the induction motor ratings.

It has been stated in reference (32) that induction motor stator

transients usually have negligible effects in’power system stability

studies and these transients can be disregarded by setting the deriva-

tives of the stator flux terms to zero, ie:

-

o

0

XS 1sD * xsr er =
xs 1sQ * ?sr lrQ =0

(2.53)

The above physical assumption results in a third order model for L

hY

an induction motor and can be used as in (34) to construct the dynami-

cal equivalent of a group ¢f induction motors.

] «
Perturbing the voltage equation’around certain operating points,

one can obtain:

[RIag + [Llpag +

LSAw

Lsr(ch—AwT)

-LSAWC £

o

-Lsr(ch-Awr) o .

(o}

Lr(AwC-Awr)

-L_ aw
sT ¢

©

-Lr(AwC-Awr)

°|

it



e, By e A L Y LY
©a e SR

i b e L

e

26
OI‘. . ’ . A}\v:
oy = [R)ap + [L] pag + [K] A ' (2.54)
SN ) _ ) ¥ ¥
where:
\ (-Lg 'sq ~ Lsr 1rq) °
(Lsisd * Lsr ird) o
(k] =
(-L_ i -L_i.) (L_i_+L_i ) [>
'sT “sq r “rq sT 'sq T rq
(Lsr gt by lrd) (-bgp Igq - Ly irdzi

Also,.perturbing thée flux equation around the same operating point, \;;&
the following expression is obtained:

ay. = [L] o ‘ ‘ .
The fﬁgg;;>form of the tie line equations, after a sma

around the operating point is expressed as follows:-

(2.55)

disturbarice,

Y cw Xp as L ./ A8
Avbd = Avsd * vt bleg * PAlsd Xt Alsq w. Tt s

. X1 NS (2.56)
Aqu = AVsq + Vt Alsq + Wy pA;LSq + xt A od + \_v-; xt lsd

Torque and acceleration equations are lineariz

AT—. = L 3 . . - - 3 -B -' - 13 -
e - (lrd A}sq + lsq'Alrd 1rq Alsd i Aqu) (2.57)

; - : ‘ (2.58 .

j pow + f Av + ATm! ATe, ( : ).
where:

w_ = 8w .

T m . ’ .
and - X . )

WL is the electrical speed . . ,

Ia

8 is the number’ of pair poles of the machine

wmfis the mechanfcal speed

xt is the tie line reactance
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The equations represented previoﬁsly are the linear equations re-

»

lating the algebraic and state variables of the system, as well as the
inputs. ) ] . S
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a,b,c.are ftixed
axes

R
Figure 2.1 Schenatic Presentation of Sv

nchronous Geperator Windines

d4q. are
rotating axes:

 Figure 2.2 The Axial Windings -for Svnchronous Machine
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CHAPTER 3 ~

FORMULATION OF LINEAR DYNAMIC EQUIVALENTS

3.1 Introduction

The philosophx of simulating every component in the power system
in detail for dynamic studies has proven to be impractical and uneconom-
ical (18), especially in the case of complex interconnected networks.
This is mainly because of the large number of non-linear differential

equations, and thus the large computer time and'relatively high cost -

of the study.

.

As the stability is, in general, required to be predicted only for
those areas affected severely by the disturbance, it would be sufficient-

ly accurate to represent the rest of the system by simplified dynamic

equivalents.

The development of such equivalents has been carried out by Undrill

et al (7, 8) and is extended in this chapter.

The procedure of computing such dynamic equivalents and the use of

o

the methqﬂ is discussed in Section 3.5.

The practical limitations of Undrill's method as applied to power

systems, and the extended formulation to avoid these limitations are al-

so givenein Section 3.6. This extended formulation will be entitled

throughout this chapter as the second method.

-

Simplified linear dynmamic¢ equivalents using both Undridl's method

*
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and the second method are derived in Section 3.7.
Finally, the computational efficiency of these approaches as com-
pared with the exact eigenvalue method is discussed and the results are

explained. .

IS

3.2 Problem Statement ’

. The trend in digital analysis of power systems is to include more
of thb adjacent systems in greater detail. Theoretically, this should
produ%e more accurate results. Actually, the study cost is greatly in-
creasgp, and with doubtful gain in éccuracy. The increased cost is due
to lgnger computer running time and the increased work of assembling the
dara. Frequently, data preparation is such a chore that many 1tems are
;ggigned assumed values. Such a procedure can degrade the study rather
than improve it aﬁd may nullify the advantages of the more detailed re-
presentation. Further, the printed results become so voluminous that
they obscure the part of the study that is of value. From a practical
'engineering point of view, it would be ridiculous to attempt to deter-
mine the exact effect of every disturbance on every piece of equipment
throughout the interconpected system. Actually, such an analysis, even
if it were possible, would be useless because the probability of en-
countering the studied condition is extremely small. Generally, tor
stability studies, it is necessary to study only the areas affected
severely enough that instability or violent voltage cxcursions are ex-
perienced (9). If a sufficiently accurate and easily calculated sta-

bility equivalent could be developed, it would greatly reduce these

difficulties, and more useful information could be obtained for a given



o

analysis cost.

The development of such equivalents necessitates the division of
the power system into the following subsystems (see Figure 3.1).

(l) Study System (§8): }t includes the part of the original
system which contains the site of the assumed system disturbance, and

therefore, it is severely affected by it. Such a system must be re-

presented in detail.
*

(2) External System (E): It includes the remaining part of the
system. This system lies electrically far away from the site of the
disturbance, and thus is onl} slightly affected by it. Complete inter-
nal information of this system is not required. A simplified dynamic
equivalent for such a system would give reasonable simulation of its

dynamic interactions with the study system.

The nodes at whith the (S) and (E) systems are connected will be
referred to as “terminals",

Efforts were first devoted towards constructin%\such dynamic
equivalents by adopting similar concepts to those of :tatic equivalents

\
widely used in network salution methods. One.of these methods uses an
inertia éllocation concept (9). In such a method, the external system
is replaced by a simple me;h equivalent network between these terminals.
The inertia of each machine in the'external system is distributed among
the equivalent machiﬁés at the terminals. Using "distribution factors",
which are defined as the amount of current passing to ground at the
corresponding terminal due to an injection of one per unit current at

the bus of the machine, whose inertia is nceded to be distributed, when.

all terminals are grounded and all the other connections to earth are



36

~

open circuited. The mesh equivalent is obtained by the reduction of the
external system network. It is not difficult'to realize that dynamic
simplification using such a static method, in which all machine dxpamics
are neglected, ig not satisfactory (8). 1In 1972, a new concept on actual
and simulated dynamic equivalents using linear models was developed by
~Undrill et al.( This technique has been applied and ;esteé on actual and
simulated power systems. For‘more details, the reader is referred to

(36), (37), (38), (39), (40), and (41)..

3

[
3.3> Basic Contepts of Deriving Linear Dynamic Equivalents

Since the gxternal sy?tem (E) is slightly affected by the occur-

rence of the disturbénce in the study s?stem (S); the dynamics of the

() system can be simulated by a set of‘linearizéd differential equations.

The disturbing signal transmitted towards the external system is represen-
* ted by Ehe‘deviations in the terﬁina% Voltages (AVT), while the reflected

effect on the study system is simulated by the deviation in the output

%érminal current (AIT). The linearized model in sfate spate.form for

the dynamics of the (E) system may be written as follows:

POX = ABX + BAV. . | (3.1)

The state vector X contains all the state variables of the (E) system.

The reflected output signal IT may be written in the form:

g = Ap 5 8y By R R

wﬁgre the state vector X is abstracted from the external system state

vector X.

Equations (3.1) and (3.2) represent, completely, a linear dynamic

v

equivalent of the external system.

-t
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% 3.4  Linear ¥odel Construction
¥
% The linearized equations for the éxternal system components can
i « \
- be directly written from the equations of Chapter 2 as follows:
T T -
o - fd fd .
- POy = ¥Wol 3 Begg * - (B¥yy - Mfd)J (3.3a)
‘\(\ ad) fdg— -
o ' Tax
. pAaY, , =w (ay_, - &Y. ) {3.3b)
: kd ° Xp4g ad kd
K aY, =w_ 'k
. P %%q T Yo X—ﬂ- (a¥ - a¥, ) (3.3c¢)
' 1 .
. = o - 4
pow = 5w (AT ATg) (3.4)
’ pAs = LR Aw ' (3.5)
L
; vhere:
N ’ . ]
?Ig/— wado lmq aqo Ina * 1mqo a¥ d ~ *mdo a¥ q (3.6a)
P 5 ‘ by Ay, | .
YT Y S Y - R . | (3.6b)
*ad ad mq  Xeqo Xd
; oY, s .. _
av = XY ebi (3.6¢)
aq aq md kq® .
V deo vm : -
Y AV, # av_ (3.7)
: . t Vto md th- mq .
AV = -T Ai// + x” AL+ av? ' .
nd md mq nd ' (3.8)
. v, ¥
= - ! - 3.9
‘ Avmq T Almq Xd Almd + Pvmq ( )
x 3.0b
AV 4 - ag By , (3.9b)
. Rqe. *
. b N
-




s
1S
Bl

¥

Lrsk

R o
ST

AV’

LN

mq

<!
“ad

m}fd

Xede

kd
kd&

(&3 .
b e L T e L e o - L S
. T

(3.10)

The exciter and voltage regulator equations will still have the

same form asshown in Chapter 2, as follows:

B | Ke ‘
Phegy = -.q begy * i AV
(< e
K
| . 1 A .
| PAV, = - v, -2 av
BV T, AT T M

—

b

(3.11a)

o (3.11b)

Following the procedure previously presented in Section 2.5, the

linearized network equations for the external system may be written in

the form:

(3.12)

Then, from equations (3.2) to (3.12), the linear model for the external

system may be formulated as follows:

(1)

/ : - t
paY =W (cphep = T 01 B¥p ¥ T Yoo &Y

%

i where:
. _ :
, Yeq
- b4

¢ =f Yid .y, =] ad 1
) T .am*
f y b4
? : kq aq
i ) Tegg O 0

T, = 0 Tvd 0 1

0 0 T

!

am)

Equation (3.3) can be rewritten in matrix form as follows:

(3.13)



T A e e =

N >
3(—1—— 0 0
£d2 -
y = 0 R 0 ‘
re1 X, a 1 -
] 0 0 Xeqt
xl xl .0
_ | fde dakse . -
Yre2 , 1
. 0 0 Xeqt

If equation (3.13) is written for all s&stem machines, the result-

ing set of equations can be written in matrix form as follows:

e v (e am t e o
VP AWr =W (cf AEfd Rr Yr£1 AWr + RrY 22 AYam) (3.14)

where: .

N
‘

Cer Rr’ Yle’ and Yr22 are diagonal mgtrlces with the diagonals

cf, rr, yrll’ and yr22 of gach machine respectively, and Wr, wam’ and

Efd vectors are composed of the sub-vectors Wr, ¥ -+ and ey of each

\1

(2) An equation for Awam’ in terms of external system states and in-

put signal AVT should be derived in order to obtain a state space form.

machine, respectively.

.

for the Y. linearized differential equation. This is done in the follow-

ing manner:

-

From equatioﬂ (3.7), one may write: . . V

. . o ) | .
8¥ = X (83 4 vy Awr) S P - (3.15)
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. . ’1\’.
Equation (3.15) for all machines in the external system will have .
the form:

. Vi ' .
aY o= X (-AIm * Y 45 AWT) B - (3.16)

where:

y ) -
ad

— 1

~<
o
-1

X

1]

e
I

€

” . - ‘r
aq ) o 1

0

' (LI . X . . . -
and Xm is a diagonal matrix with diagonals being Xg of each machine.

(3) ° An equation for AIm, in terms of external.system states and AVT

is deriVed‘below:

: . t . . - .
Using 1=t iy \ . (3.17)
. . :t_ . .
. t .. 9t . \
then, Alm = to AlN +[-§E—J ivo AS , .
) . o .
) N N LY . ‘ ' (3.17a)
: o N o . . : ‘ .

‘where the transformation matrix t, is éomputed at the initial con-

ditions according to the equation:
cos § -sin § i
o . o , mqo
t = . " , and i0 =
in & s
sin 6 cos 60 ‘ i do
The equation for Im'may then be written using equation (3.17a) as
follows: ) . .

- t ' '
BL, = T, 8Ty + 1) 88 (3.18)

-

where'To is a diagonal matrix with diagonal elements t for each

. machine. I0 is a Nector,\coﬁposed of the subvectors"ié of all machines,

and & is a vector cqmposed-of § for each machine.
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N
(3.18), the following is obtained:

When we substitute for oI, using equation (3.12) in equation

‘. - L/ t '
a1 =T YAN BV k TAYy Vpv I 86 L, 619

~

N

equation (3.10):

To eliminate 4V. from equation (3.19), Avg equation i§'obtained from

vl/ _ ( " ) \P\ . _ 0 -1 : 320 .
BV = B Y 8%, 5 &S 4 (3.20)
. - 1 0
Since " N
e Vy =tV IR ‘ .
) . | ' '
;;E may write - )
- X -// i . / .
Wi st e 2 T s
N o m 8 mo
. o
_ # # PO
= to AVm * Uy AS ‘ ) (1.21).
. . ot
- which when substituting for AV from equation (3.20) becomes:
\ AV, = R L (3.22)-
VNN S R "No (3.
where:
. “
i "VNqo
" . UNo T v
Ndo

—

3

S : N
Equation (3.22) is re-written, for all machines. The resulting set of °

equations can be written in matrix form as:
v I il *
AV, =t gx'y AWr + uNo.AG ‘ . (3.23)

‘ " L o ; i
where G and uy, are diagonal matrices, with diagonal elements being

v

g and u&o of each machine respeétively.

’

Substitute for Avg from equation (3.23) into equation (3.19) _

to obtain the following:

Dot s e
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_ -t ¥ v t " :
AIm - To YNN Tq G Xm Yr22 A'r * (To YNN uNo * Ioj 46
X . . . |
TO YNY AYT. - 4 . (;.54)
which may be written in the fotm:
— o S \r
‘AIm = YR Avr + I A8+ YT AVT . , (3.25)
‘ s v
where ' . ) ra
. ot p
YR To YNN To G Xm erz i . 4
! (o] - t I ' ‘
\ I To YNN PNo * Io
t -
Yp = 15 YNt :

i3

Substituting equations (3.25) and (3.26) in equation' (3.16), .an equation

for Awam’ in terms of the states and AVT, is obtained in the form:

.A¢

an = Cp AY. - ¥Ons - Cp AV, (3.26)
wheTe
Cp =X Yeg2 = ¥p Y :
" ¥ = X” 1°
m
Cp = Xy Yy

The state space form for the AWr differential equation is thgn obtained

from equation. (3.14) using equation (3.26), as follows: N
. ) i . )
p oY, = wo‘cf BEga * Yo (Rp Yrg2 CR Ry lel) MYy
. : t t . . R
v -w_ R_Y ¥aé- w_ R_ Y C.. AV (3.27) !

a o T.,'ri2 o r 12 T T

The state space ferm for the‘mechaniéal modes of all.machines

3

are derived from equation (3.4) and (3.5Y, “by neglecting governor dy-
. ‘ ) \S

namics by letting AT = 0. o
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" done in the following:
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\
The result is: ) ' ¢ R 8
) =,-M 8Ty (3.28)
where: ' ‘ ,
- — -
r-wl" . Tgl ' 01/251 ‘
. O R T
Re=|l f, To=| g2 , M= .
. wn : . ’ . .
7 T ‘ /20 .
gn —~ = -

The notation n represents the number of machines of the external systém,

and AIb should be expressed in terms of system states only. This is

4

From equation (3.6) one may write:
8T =(- ¥t - g . ad }}(;t g oY) | (3.29)
-mo m Vmo am
which, whq? wlitten'for all machines has the form:
oT. = 10 a¥_ + ¥O AT - (3.30)
G "m am m o m "
where ' .
=1 .G ¥0=.¥ _g

m mo m amo \
The state space form for the mechanical modes is then obtained
using equations (3.4), (3.25), (3.26), (3.28), and (3.30). The result

is:. o o
paQ=-M (Im CR + Wm YR) AWI

' o 0 o .0
M (-1 m ¥+ vm I17) AS
0 o
-M F-I w Cp * ¥ Yo) AV (3.31)
_and from equation (3.5):
A8 = wy AR - © o (3.32)

The linearized dynamic equations for the exciters and voltage regu-

lators of the external system in state space form are derived by first

R
X M

v e A X
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considering equation (3.11) for'all machines. Let this be in the form:

PAEg = -Eel AEfd + FeZ,AvA ‘ (3.33)
P AV, = -F, AV, - F\ AV, (3.34)
where:
Fer = { YA » Fep = , Ke/t, ‘ ’
VA = V R FAl = l/TA N
) A c.
Fao = [ Ka/Tal » Ve© Ve I
j o "L .oq

AVt should he expressed in terms of system states. Using equation (3.7),

the following can be written:

AVt =‘c AVm
:yhere:
vméo Vngo
[ v —v—q—
to . to
ot I
then AVm.— AVm - Za A1m
One may writé:
N R
AVt =C AVm CLa Alm (3.35)\

where C is a diagonal matrix, whose diagonals are the ¢ matrix .of each

machine.
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Avm equation as obtained from equation ¢(3.20) when written for all

‘machines is:

N\\§‘°

\l

-

(3.36)

P AVA equation in state space form is then obtained using equations

(3.25), (3.35), and (3.36) with eguation (3.34). The result is:

¢ I
POV, = -F,, (CG X.Y_

+

F.

A2

)
c Z
a

»

22

o)

-

I7 A8 - FAl

\ '?
AVA + FA2 C ?a Y

\

] '
- CZ, Y) AY

T

Av

T

(3.37)

"Finally, the linearized equations (3:27), (3.31), (3.32), (3.33), and

' (3.37) are augmented together to obfain the following matrix form:

~

AY
T

AQ
AS
AE

fd

-

1l

All 0
AZl’ 0
= 0 A32
0 0
_ASI .0
Bl
) BZ
10
0
t
Wo(Ry Yiga SR -
t o
Wo Re Ypgp ¥
wO'Cf
’ [o] O
M (Ip Cp ¢ ¥p Y

13
23

> o o B »

53°

AV

Rr Yr£1

1

R

)

o » o . o »

14

44

> » o © o

45
55

—

AY
T
AQ
Ad
AE

AVA

fd

(3.

(3.

&

(3.

(3.

39.al1)

.39.a2)-

39.a3)

39.a4)

R o P P el

~
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-M (-I: O 4 w; 1°) (3:39.25)

W : | - (3.39a6)

A44 = -Fel ) (3.39.a7)
Ags = Foy ‘ » (3.39.28)

R I o ‘

Agy = =Fp, (CG X7 Trzz - €z, Yp) ’ (3.39.29)
A.=F_cz'1° k ’ ’ 3.39.a10
53 7 "Az ¢ “a N 8-390810)
Ags = ~Fpy ( (3.;9.a11)
. ‘ o ,

B, = -w R_Y., C; (3.39.b1)
|

B, = -M (~1°C. + ¥°Y) ‘ (3.39.b2)

2 m T m =T . . T
—3 ” ’ ’
B, = F,, CZ¥ Y. - (3.39.b3)

A linearized formula for the output signal ALy in terms of the

linearized external system states and the deviation in the terminal

voltage is derived in the following, from equation (3.12):

3.5

- - 4 ; "o .
AIT = YTN TO me Yre2 AWr T YTN UNo AS + YTT A\T (3.40)

Computational Structure of Linear Dynamic Equivalents

Q

A S-machine power system with the configuration shown in Figure

3.2 is considered as a test system for the linear dynamic equivalent

study.

N

Network and machine parameters are given in Table 3.1, in per

7N
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unit quantities op-a base of 1000 MVA. The sypchronous machine para-
meters based on t e-gircuit modeling are calculated from those of the

conventional parapfeters. These parameters are given in Table 3.2.
\

Load flow calculations are carried out and load buses are then

" -

'

eliminated. The resultént network is represented diagramatically in
Figure 3.5. Load flow results, under normal operating conditions,

are given on the diagram.

'3.5.1 .Load Flow Computation

Load flow calculdtion is the first computational step in any

sf%bility progr§m$gn:hese results are a must for the initialization

process of both tramsient and dynamic stability studies.

4

Each bus in %£§BWer network is usually characterized by the four

variables:

P

which represents an active injected bus power.

2
~ =
|

which represents a reactive injected bus power.

<
]

K which represents a bus volta e~magnitude.

¥

<
1

X which represents a bus voltag aﬁgle, measured from the
refererice bus. '

where K refers to the Kth bus.

According to the type of bus, only two of the aforementioned four
{
variables are known. The load flow problem is simply the solution for

the other unknown variables using the network algebraic equations.

According te-the bus variables specified (PK’ Q. IVK , and OK)’

the network buses are classified as follows (37, 38):

Type 1: ?K and QK are known, and is identified as load bus.

T et e
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Type 2: P, and IVKI are known, and is called a voltage con-

trolled bus or a generating bus.

nge 3: IVKI and eK are known, eK 1s usually taken as zero.
This bus is called the reference bus, slack buse or

swing bus. $

Load flow equations are those that relate the four bus variables,
the complex power (Pk + JQk),.and the complex bus voltage (|VK|L3E).
These equations are non-linear and they are often derived in terms of

complex variables, but here they are derived in the real variable form

in order to be.able.to imited—eOpputational facilities that do not

permit the use of complex variables

Let the network equations of the n bus systég\hgfﬁritten as:

1 =YV (3.41)
the th bus current is then given by: ‘
n +
i = Z Yie Vg (3.42)
where:
kT otak T gk
ke T Be t ) Py (3.43)
Vo = Vag * 3 Vg ’
\ the injected power at the th bus (SK) is given by:
'SK = PK + 3 QK (3.44)
. W
= VK 1.

From equations (3.43) and (3.45),

* n .
- i = 3.4
Py -3 Q= Yy zgl Yes Vs (3.49)
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For an iterative solution using the Gauss-Sicdel technique (44,
45), equation (3.45) is re-written in the following form (using equa-
: —

tions (3.45)): ) \

. 1 . )
Vi *+ 3V o= =4 [P, - jQ) (V, -3V )] -
-« dk qk gKK+}bKK { K K dk qK

=

(g * 3b) Vg * jvq2<} (3.46) .

=1
L#K

U}

Equating the real and imaginary parts of both sides, one may obtain the

following matrix voltage equation for the;KEh—bus:

Vax . gk  Prx | | Cax
= L v (3.47)
Vak %kk] | Pxe 8k | | Sqk

where CdK and CqK are given by:

n
1
\ = - :
\ Cak = IT Cx Vax T % Vi) Z
#

(3.48)

n .
1 o i _
Cok V2] Py Vak ~ % Vax? 221 Ve Pre = Vae 8ke)
. _
\ 2#K

. . co . . th . .
The vih iteration of this iterative technique for the K™ bus is Aritten

as follows:
(v) (v-1)
Vax . Bk - Ok €4k
= ' (3.49)
V(V) Iy KK{ 'b g C(V‘l)
qK KK KK qK
where CU1) and ¢! are evaluated for the best available values of

dK qK

bus variables using equation (3.48).

| -

[ S

A s vt = AT

s e sty i P
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However, for a generating bus where QK is‘hbt known; an estimated

v

-

value for it should be used, using the equation:

: (v=1) _ y(v-1) ,(v-1) (v-l) 3 (v-1)
% qu 4K o Vik 7 Tk (3j50)

i

The current components idK and qu'aretcalgulatedifrom equation (3.41).
The resulting bus voltage components for such a bus must be modified to

meet the scheduled yoltage-magnitude ‘VKl as follows:

6" = tan wW)v“)

... K dK
“
then .
(v) _ ] V) (3.51)
VdK = IVK| cos qK
P N TR O
and VqK 'VKl sin 8y S P o

¢

The iterative scheme is usually started as follows:

LS

for generator bus:

NONE MO
dk ' vai qK = 0 ‘
~jz‘or loadlbﬁs: ' l (3.52)
' © . gy () '
VdK = ]V1|. , qu = 0 - ‘
V, is the slack bus voltage. ) . -

"

The iteration continues until the magnitude of the maximum bus

voltage deviation, given be}dw, becomes less than a certain pre-speci-

fied tolerance factor e:

IAVév?J _ [}vsz) e 1)) . (V(v) (v 1)) ] 39

)



s e 0

PR N

——— e

51

b4
v

A maximum allowable number of iterations v % is usually set for limit-

ing computer time\ in case of nonconvergence. The flow chart for these

computational steps is given in Figure (3.3). The chart is designed

.

for an n-bus sysﬁém including n. generatiﬁg‘buées with the following

bu?/ﬁoding:
t \ Bus Number Bus_Type
K=1 : slack bus
K=2,3 ..., ne . generator buses
K ='nG+1, tee, N load buses

i
b
/ |
3.5.2 Network Reduction ‘2
§

In order to eliminate the computations in reducing the network to

the state Space’férm, a network reduction technique is employed (38, 39).

.In this technique, loads are represented by constant impedances. The re-

< N

sul&s of the load flow calculations are used to calculate the load ad-

mittance (y,) at the K™ bus using the equation:

B - , ‘ .
YLK - (PK - JQK) / lVK l ' ‘ (3-54) 3
The reduction process is based on eliminating load buses -using

the fact that, the injected current at load buses aften replacementvof‘f

loads with constant impedances is zero. The derivation for the reduc-

tion procedure is given below. . ‘

— - . — —

!
U R4 SR ST AR A T Y
i® I'a Yk Ykn Yk (3.55)
S ) 5
‘ = Y1 Yok Yan vn A

s
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Inter-changing the position of iK and VX of load bus K, the follow-
. ‘ ‘ -

T

e
©

ing equatidéns are obtained:

A . ‘
3 , . VK = ‘()’Kl/)’KK) Vl = ':" + (l/yKK) 1K - (
T— O/ Yx) Vi . ( &\56)
“and’ ‘
‘ L= O = Y YaVxd Vit O/ g
.y
it '
;:: cee * (YZH - YJLKv )’Kn/YKK)Vn (3'57)
i ‘ As a reéult, the admittance matrix should.be modified to meet the inter- :
changing (pivoting) proceés, as follows:
(1) - The pivot element yKKcmust be changed to: l/yKK.
) . (2) The elements of the pivot row Yij+ except the pivot element,
! ,
. _are changed to: -ij/XKK’
ﬁi (3) The eleyent? of the pivot column Yog 2re changed to: le/yKK’

L # K.n

(4) All other elements ygj for £, j f K, are changed to:

-

. Vo5 7 Yax Ve Yk

Y

TH@S inter-changing process'is continued for all load buses. The

' resultant network equations may be written as:

Ay gy g —

Il I S| (W
| ] = . ) (3.58)
| ST N I PV ROl I () -
y' where: VL and IL are voltage and current vectors for load buses,
}

-

VN and IN'are voltage- and current vectors for the remaining.

- buses.
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L As mentioned before, the load bus currents are zero, thus IE = 0,

Then, the resultant reduced network equations have the form:

' N NN
A flow chart for this computation’ procedure is given in Figure‘3.4

with the same bus coding as already mentioned before in Section 3.4.2.

[y

.°3.é Formulation of Li?ear Dynamic Equivalents Using the Second Method
" The formulation of dynamic equivalents using Undrill's method (7,

8) is explained in éetail in Section 3.2. Although t£e discdssor§ of
(8). encouraged the authors for their clga% and concise work in a funda-
mental and difficult area of stability evaluation, G.I. Stillman (Powef

Authority of the State of Néw York) criticized the choice of the boun-
. daries for the external system and the change in the accuracy of the
results whiéh represent‘the equivalents as the site of the disturb;nce

*is changed. -

Generally, the éssumption of choosing the external system's Bbpn-

. darigs far away from the site of the disturbance is considered rela-

tively very important to allow linearized Tepresentation of the external '

system dynamics. The questions of what is "far enough" and '"small enough" 3

- have always plagued_perébnnél engaged in studying stabilit}. These ques-
tions have usﬁally been resolved by the use ;f "engineering judgment''. )
*  This discussion.has focused on the question ofrigderiving the ~°
equivalents;,i.e.'for eacg choice ;f the external system boundaries,

one may obtain different values representing these equivalents.

Op the other hand, the fact that the linear dynémip equivalent

A T S
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using Undrill's method is constructed after the subdivision of the

system into its subsystems, produces some damage to the representation
| .

of dynamic interactions in ‘the whole system. This fact is also men-

. ~< ’ -
“tioned by J-.E. Vah Ness (Northwestern qhiversity, Evanston) in the

disqussion~of-(8).

In order, to avoid these limitations an extended method (build-

ing on references 7 and 8) is 1nvest1gated in this section.

7

In a very similar. procedure to that previously descrlbed in Sec—

tion 3.1 and 3.2, the dynamic equlvalent of the external system will be

represented in the following manner.

. Let this be expressed in the following partitioned matrix form:

ot
|5 Aee | es| | e
S I R S S O S § . (3.59)
Ms Ase | fss| | s |

where . | .

-

XE is the vector containing the states of the external
o . :

system machines,

XS is the vector containing the states of the sludy system
~ . ‘
machines.

From equation (3.59) the linearized equations describing the external

system dynamics can be written.as follows:

2

' P A% AEE Xg * Aps OX : - (3.60)
Equation (3.60) represents the dynamic equivalent of the external sys-

tem and has a similar form to that of eﬁuation (3.1) which is expressed

as follows:

p BX = ASX + \BAV, : S (3.1)
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where, in equatidn (3.1) the control vector is AVT (the deviation of the

terminal voltage after the occurrence of.the disturbance), and in equa-

~.

‘tion (3.60), the control vec%br is AXS.

The formulation of the.Simplified dynamic equivalents using equa-

~

tion (3.60) improves the accuracy of the equivalent more than that ob-

tained by the use of the formulation of equation (3.1). This improve-
St

ment results from including relatively more dynamic interactions be- ’—\)

tween the study and the external systems. represehted in the coékigl,ﬁéc—
tor AXS. On the other hand, this choice of AXS instead of AVT as a con-~
trol vector produces less sensitivity to the site of the separating ter-

minals in constructing such equivalents. These results are demonstrated

in Table 3.3,

In summary, the new formulation of the dynamit equivalents decrea§g§/
]
the sénsitivity of the equivaﬂents to the choice of the boundaries, and,

increases the capability of including more dynamic interactions between

the different subsystems..

3.7, Simplificatioh of Linear Dynamic Equivalents

The analysis described in Section 3.3 forms the basis for the con-
struction of electromechanical equivalents which represent both the sta-
. . 1
tic and dynamic behavior\of the .power system as it appears from the in- .

terconnection point. The dynamic effects of generator rotor circuits,

valtage regulators, and speed governors are accurately repreéented in

L3

" these equivalents. - ' . . -~

The modal analysis technique used in the construction of the equi-

valents takes advantage of "the fact that notnéll modes of.response of a

.
L

e e e
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power system are of importance with respect to the effect of the system:

4

on the stability of an,ﬁnterconﬂected neighboring system. Thérefore,

¢

simplified linear dynamic ‘equivalents can be described as -follows.

~

3.7.1 | Simplified Linear Dynamic Equivalents Using.Undrill's
". 'Approach

Equations (3.1) and (3.2) describe the high order model of the

linear dynamic equivalents. It is required to form a simplified
. .

model whiéh is essentially approiimates _the behavior of the original

. ' dynamic equivalents by a model of reduced complexity. Also, it is re-

o NI AID A TN S e

quired to express AIT in terms of the reduced system states.
v This can be achieved by first transforming the set of equations

of (3.1) to another set of decoupled equations (8, 10), and this may be

-
o
¢
dv

| ‘ realized by'cbnsidering the following transformation:

(3.61)

BX =V Z (
in which the columns of the transformatioq matrix’vr are the eigenvectors
éqrresponding to the eigenvalues of the'A.matrix.

Applying this transformation to equation (3.1), the followiqg set

of Iinear decoupied differential equations are obtained:

.
. . <

pz = Az + B AV, - - (3.62)
where ) - . ~ K
A= v3iaAav, <, o \
T T .-
’ ‘ A\
B = vl S (5.63)
- \ : : -
. and A is a diagonal matrix, whose diagonal elements are the .

eigenvalues .of the matrix A.

. Under  conditions of distinct eigenvalues and known step change AVT,
e

“the solution for the transformed states z may be obtained as follows:

»

A t

25" .
AN

-
A
B
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200) = (U - Mty A7

B A Vp s (3.64)

Vo R PTATC

In such a solution, each element of the vector z(t) is talled an exter-

] : [

nal mode, and is ‘completely indépendent of the response of other ele-

~ \ T
. The matrix Vr consists of those rows in'Vr which correspond to the states

of the abstracted vector X. . o

°

By sutStitﬁting fromqequation (%.65) in'equaiion (3.60), the form

R . ments. Low
j « . “‘

H s ‘ To express the output signal AIT in terms of the]new state vec-
é ' : tor z, let: _ : ’ \

» ~ ~~ :
g aX = V. z | (3.65)
hd T . .

?

!

.
—— e

of equation (3.2) is obtained as follows:

: I.-= A,V
“Alp = A Vs

z e By oV, : . (3.66)
The-fo{lgwiﬂg,simplification criteria may then be suggeste@:
(a)\The real éart of the corresponding eigenvalue (diagona{

» . o elemént of (&; is such a large negative numﬁer in relation
v o . to othir eigenvalueé that tpe mode‘may éepassumed to.jump
. instantly toyits new steady state value in response {5 a
.? : . step disturbance. This can be seen in equation (3.64).
\ ) | ~ This méy‘be Tealized mathema£ica11y by considering the
' correspond@ng‘elements ib_the vector'p; to be zero:

(b) The corresﬁonding‘row\of’(qu) cgntéins such small numbers-
- in relation to other rows that &he‘mode may be assumed not
to be excited by the input Aq%. Therefor;, the correspond-

ing elements in the z vector may be assumed equal to zero.

‘(¢) The corresponding column of (AI V;) contains such small

M .




>

.

58

numbers in relation to other columns that the mode may be
assumed to contribute nothing to the output signal AIT,
then such modes may be considered to be completely non-

excited (i.e. their elements in the 2z  vector are of zero

‘k't.

value).

Thus, equation (3.62) may be expressed in the partitioned form:

I Ai zy ’ 81
Pl 2z, |= A, . 2, | * ' B, | vy {3.67)
. . "
| 3 | % b3

where:
2" these elements,correspond to simplification number
1; (pz, = 0?. '
25t these elements correspond to simplification numbers
2 and 3; (23 < 0).
KR remainder state in.thé z vector.

N
'3

The requited low order simplified dynamic equivalent is then given by:
pz, = A1 zl + Bl AVT . s o (3.68)

The external system output signal AIT‘is expressed in terms of the-

reduced system states in the following, having

N ) . . ‘ .
. - pz, = 0 .
then, from equation (3.67),
c-1 . : _
29 = -ﬂz 82 AVT . (3.69)
equation‘(3.6S) can be re-written in the form: Ve
X = V. v, V.] [z ' \
rl ‘r2 r3 1 (3.70)
2, . - .

A ) H

T ot
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-

and having

25 = 0 . L ' . (3.71)

then, by using equations’ (3.69), (3.70), and (3.71) with equation (3.66),

the following is obtained:.

’ &
. -AIT = S1 Z1 + 52 AVT K (3.72)
where <i . ’ B
517 A1 Vg (
-1\ : (3.73)
82-= 8 - A 82

I 2

3.7.2 Simplified Linear Dynamic Equivalents Using the Second
Method

A simplified dynaﬁic equivalent of the external system can be

easily derived,ain a.similar‘way to those of section 3.7.1 f£from the
ﬁigh order equivalents of’éduation (3.59) as follows:
First, by transforming equation (3.59) to a set of decoupled linear

»

equations of the form:

“pz = Az o+ BXg , (3.74a)
where 4 ‘ ‘ .
z = Vr . AXE o (3.74b)
= ! ’
A Vr AEE Vr . , (3.74¢)
“ ~ vl .

- Applying the'same simplifiéation\techniques of sectfion 3.7.1 and
noting tha; AES of equation (3.59) corresponds to B of e ation (3.1),

the resul&ant simplified equivalent can be written in’ the same form as

equation (3.68); as follows:
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pzy = Azl + Bl AXS (3.75)
where \ :
Zl 81 ‘ b
z =1z, , and . g = 82
24 85
' d
and

[
I

2 = A3 8y Mg .
e (3.76)
izs = '0‘ ‘
In d?der to obéain an expression for the currenf relations in

the whole connecting éystem, using the séconé method, -in a simplified
" model, it is réquired to express thecstudy‘system mach?ﬁe currents (IS)
in terms of both the study sy;tem states (XS) and the simplified equi-
valent states z). Actually, this representation will be extended to in-
clude some transient studies which is out of the scope of this thesis.,

Thereféré, the application of these simpliYied nodels may be applied in

othgr future work.

‘3.8 Eigenvalue Analysis and Comparison

_The techniques and concepts developed in this chapter have been
applied to a specific practical system which has already been qescr;bed

: \
in section 3.%. The formulation explained in sections 3.5 and §.6 has

Co . - ) - |
been used to arrange the linearized system equations in state sﬁace form.

N Thislsection demonstrates the apylication of the dynamic equiva-

lents approach to the analysis of a five machine power system.
In order to be able to supply the linear dynamic equivalent tech-

-
N

Cm o e 4 e

LN SN L
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nique of Undrill et al (7, 8), the system is divided into study and ex-
ternal systems. The séparating termiﬂql is taken at bus 9. The.con-
figuration of the external system, aﬁter eliminating all load buses

and appending the subtransient reactancé of each machine at its bus,

is shown in Figure 3.6.

.

The construction of linear dynamic equivalents requires the

computation of the A and B matrices of equation (3.3.8) of Undrill's

methog. On the qther hand, A E and AE matrices of equation (3.60)

E S

of the second method are also calculated. The eigenvalues and eigen-

vectors of the A matrix as well as AEE in both methods are then com-

puted.
- - . ’ » a\

First- and second-order sensitivities of the whole eigenvalue )
pattern are determined w%;h respect to a variety of control parameters.
Using this information, the eigenvalues corresponding to the different
modes in the system are identified. Then, the eigenvalues are class-

> ‘

ified in their different modes and given in Table 3.3.

Exact eigenvalues of the external system are computed from the

A matrix of the original sysgem and listed in the first column of Table

3.3. The other two sets of the eigenvalues which are representing the

_ simplified dynamic equivalents using the different methods are listed

in the second and third columns of Table 3.3. ?hese results demonstrate
that the second method for constructing the si?piﬁijed dynamic equiva-
lénts is' relatively more reliable and accurate than* Undrill's method.
This means that the dynamic interactions between the study and extern-

nal systems are preserved using the second method, whereas, they are not
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using Undrill's method.

Using the two methods of equations (3.1) and (3.60), Table 3.4
illustrates the percentage error of the linear dynamic equivalent
modes of the' external system in relation to those of the exact eigen-
values. This percentage error may indicate that the accuracy of con-

structing such linear dynamic equivalents of the external system is

improved using the second method.

-

s
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. . /
Network Parameters with p.u Values (o is the ncutral node)

Table 3.1
Element Admittance yij
6 0 0.146 -0.123
7 0 0.026 0.085
8 0 0.006 0.082
9 0 0:055 0.278
10 0 0.050 0.040
11 0 0.045 -0.038
12 0 0.078 -0.016
13 0 0.004 -0.016
14 0 0.004 0.000
15 0 0.034 0.040
16 0 0.005 -0.008
1770 0.006 -0.000
18 0 -0.010 0.023
19 0 0.001 -0.001
20 0 0.003 -0.00T
2 0 0.018 -0.006
.22 0 0.018 -0.001
23 0 0.006 0.005
24 0 0.000 -0.004
25 0 0.002 -0.004
26 0 0.008 -0.005
27 0 0.007 -0.010
28 0 0.001 -0.005
29 0 0.001 -0.005
1 6 0.000 -=9.000
2 10 | 0.000 -2.373
3 15 0.000 -0.547
4 18 0.000 -0.804
S 28 | 0.000 -0.936
? 7 0.400 -5.863
8 0.455 -5.863
-

Element Admltteﬁce yij

i j gij bij

8 9 3.045 -6.770
9 10 1.000 19.417
9 11 0,551 -8.751
9 22 1.677 -2.161
10 11 0.180 212.643
11 12 0.270 -3,400
11 13- 0.164 . -0.970
13 14 0.008 -0.926
13 15 0.008 -0.257
14 15 0:010 -0.257
15 16 0.360 -0.020
15 21 0.970 -1.200
15 29 0.927 -2.163
16 17 0.927 -0.947
17 18 0.130 -0.947
18 19 0.673 -0.570
18 22 0.161 -2.467
18 23 0.857 -0.260
18 24 0.267 -3.641
19. 20 0.070 -0.961
20 21 0.424 -0.116
21 22 0.211 -1.540
2129 0.517 -0.873
23 24 0.910 -0.753 |
2425 0.703 -0.954
24 27 0.931 -0.983
26 27 2.460 -0.951
24 28 0.687 -4.680
25 26 0.931 -0.910
26 27 0.164 -0.951
1213 -0,926

0.175
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'

The Parameters‘of the Synchronous Machines of the Test System
‘| No. Rating { Parameters| Values 0 No. {‘Rating | Parameters| Values
MVA ‘ MVA
1 1150 Xy 0.953 2 | 200 Xy 1.635
Xq 0.542 ‘xq 1.635
Xag <0.084 X 0.045
Xds 0.268 dex‘ 0.268
Xy 0.258, Xy ae 0.258
Xkas . 0.153 Xeqe 0.153
rfd‘ ~0.001 . Teq 0.002
Teq - 0.021 ' T 0.002
Trq 0.075 rgq~ 0.045
¥eq 1.3850 Yeq 0.958
vKé 0.9551 ( Yed 0.802
Yiq -0.3712 Yxq .0.704
ey i.283 €eq 29.890
« . .vA “ 1.234 Vy 1.895
Vo 1.011 Vop 1.110
. Ky 101,000 Ky 37.000
. K 1.000 . 1.000
: T, '0.060 T, .| 0.120
T F:' Tg 0.830 ) T, 0.480
| R | 2s.000 ' . 60 28.950
< & wo. -1 10.000 ) H 5,000
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Table 3.2 (continued)
oL “

No. | Rating: Parameters Values No. | Rating Parameters Values
MVA MVA g

3 60 Xy .1.5154 "4 80 Xy 1.658

, X 1.§s4 Xy 1.658

Xa -0.053 Xyq 0.063

Xeqq 1.658 Xeds 2.038

Xeas 2.899 Xeqs 2.068

'qug 1.059 ) 1,038

Teq 0.009 Tey 0.011

Ty 0.269 Ty 0.270

qu 1.235 qu 0.911.

¥ 1.179 Yo 1.238

¥y | 0.988 Yy 1.023

S -0.310 ¥ya . -0.407

i | €4 0.691 €eq 3.381

vy 2.381 v, 2.154

Veg 1.075 Vep 1.130

K, 37.000 Ky 37.000

LK 1.000 Kg - 1.000

T, 0.120 T, # 0.120

Te 0.480 * Ty 0.480

§° 0.703 80 3.401

CH 5.500 . H 4.450 .

Sk

S s

A v, e A mAATR e € =
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?able 3.2,

3

(continued)

No. Ra}:c“iizg Parameters Values

5 80 Xy 1.358

. - X, 1.358

4 xal 0.058
. Xeqq 0.918

: Xean 1.488

Xxéz 0.489

’ Ty 0.008

T 0.201

qu 0.929
.wﬁa 1.090 °

L 0.959

ery o:§32

Va 1.781

Ver 1;057

| K, 37.000

Ke. 1.000

, T, 0.120

Tg 0.480

) §° 0.498

H 4.680
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Table 3.3 Comparison of External System Eiéén§alues

67

nAsSumptions: None

Exact (total S)

Undrill Approach

External System

Second Method

External System

(w_ and 6)

' Mechaniéal

-0.4870237.2444

-0.4754+36.4037

-0.3106j5.7558
-0.2012+3j5.0625

-0.7460%38.4586
-0.4686%76.4130
-0.33Q1j5.8800
-0.2733%3j5.5541

-0.4527%57.2156
-0.4733£j6.4046
-0.3037£§5.7555
-0,1770£35.0587

Exciters & voltage Régﬁ-

lators

(Feqr a2 Vp)

~7.7570+j0.0000
-7.2640+§0.0000

~7.2330+j0.0000

~7.1430+j0.0000
-0.7310%j1.0805
~0.8673+j0,9618
-0.9120§0", 9610
-0.9000#j0.9166

I

-7.5006+j0.0000
-7.2341+30.0000
-7.2110+j0.0000
-7.0570+j0.0000
-0.6308+j1.0804
-0.9010%3j0.9608
-0.8742+30.9606

.~0.7870%j0.9220

~7..7404+j0.0000
~7.2635+30.0000
~7.2324+j0.0000
-7.1434+30.0000

-0.7500%31:0580

-0.8526%j0.9627
-0.9011+j0.9608
-0.8680+30.8200

A

Kq

Damper windings de and Y

o

£122.2800+30. 0000~

-101.7100+j0.0000

87.7330+j0.0000

56.3010+j0.0000 .-

20.1660+j0.0000
16.3650+50.0000
11.0720+j0.0000 .

1 - *15.1810+j0;0000

L

' al

~123.2800+30.000D

-122.5300+j0.

0000.

©101.2500+j0.0000

80.5200+50.0000
20.2080+j0.0000

16,6150 +j0.0000.

11.0790+0. 0000
10.2680+3j0.0000 "

|

-122.2800+j0.0000
-101.7000+j0.0000

87.5210+j0.0000 _

51.2800+j0.0000
20.1640+j0.0000
16.3600+30.0000
11.0760+350.0000
18..0810+50.0000

T T
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Table 3.4 The Percentage Error in Different Approaches in Caiculating the
' Dynamic Equivalent of the External System '
E-U Error % E-S Error % | %(U-S) (Dif-| Error Im-
) ference) proved
0.0590%j1.2142 | %17.00 | ~-0.0343+j0.0288 | % 0.62 %16.38 27.4203
'c-; ‘ : . . times
-E‘o -0.0068%30.0093 % 0.17 -0.0021£3j0.0009 % 0.04 % 0.03 4,2500
_%‘: 0..0195+j0.1242 % 2.00 -0.0069£j0.0003 % 0.20 % 1.80 10.0000
2 0.0721+30.4916 % 9.80 -0,1242£j0.0038 | - %, 2.50 % 7.30 3.2000
-0.2564+j0.0000 % 3.30 -0.0166+30.0000 % 0.21 % 3.09 15. 4400
~-0.0294+3j0.0000 % 0.41 -0.0001+j0.0000 % 0.01. % 0.40 41,0000
< | -0.0215+30.0000 % 0.35 -0.0001+j0.0000 % 0.01 % 0.34 35. 0000
> -0.0855+j0.0000 % 1.20 |- -0.0009+j0.0000 % 0.02 % 1.18 . 60.0000
s 0.0192+j0.2250 % 7.00 —O.lQOO4j0.OOQ1_ % 2.29 . % 4.71 3.0600
o | 0.0337£j0.0009 % 2.61 ~0.0147+30.0009 % 1.08 % 1.53 2,4166
" -0.0378+j0.0004 % 2.81--] -0.0109+j0.0002 % 0.83 % 1.98 ~3.3800
. , ) . . '
> |-0.1130+j0.0054 % 8.81 -0.0320+30.0966 % 8.00 % 0.81 11100
1,0000+30.0 % 0.82 0.0000+j0.0 % 0.00 % 0.82 oo
10.8200+30.0 %10.00 -0.01004j0.0 % 0.01 % 9.99 1000, 0000 -
13.4770+3j0.0 %15.00 -D.2520%j0.0 % 0.29 %14.71 51.7421
g 24:2190+j0.0 %43.00 -5.02104j0.0 % 9.00 %34.00 . 4.7777
S 0.:0420+30.0 - % 0.21 -0.00204j0.0 % 0.01 % 0.20 21.0000
~ | 0.2510+0.0 % 1.60 ~-0.0040+j0.0 % 0.03 % 1.57 5.3333
2 | 0.0070+50.0. % 0.06 0.0040+j0.0 % 0.04 . % 0.02 1.5000
> ]-7.9130+j0.0 %43.00 | -0.1000+j0.0 % 0.55 %42.45 || 78.1818
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Figure 3.2 TJhe i‘est System
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’Read: Y. matrix, PK (for X=.2, ..., n), QK (for K = NGyp?

.'T'n)"' lVKIS (forvK =1, >, nG); £, and \\)max -

Initiater V set v =‘1

dx 1K

g

and V
- fal
1\

X

Set Bus Count K = 2 and &V__ "= 0
i)

NO

Generating Bus

ES \ - L%

AV

Replace |VK(v—1)| by JVKl and compute QK(v-l)

S

Compute s Vox and AvéY)' using Eﬁua;iod (3:51) -

mnax:

Replace Vézfl)

o

# AUl S en rbas g st a7

o



‘ Start *’

Read:. (1) The.admittance matrix (Y)

(2) Number of"buses (n)

(3) Number of load buses (n

L)

Replace y, by 1 ¥yy

-,

Q\
N

Replace Ykj by (—ijyKK)*

/

for = 1,2, .0, (K1)

o

Replace y,, by (Yzj * Yox ij)

for %, j=1,2, .:., (K1)

replace K by K-1

NO o

Figure 3.4  Flow Chart for Network Reduction
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N\ CHAPTER 4

ORDER REDUCTION AND SENSITIVITY ANALYSIS

4.1 Introduction

The goal of this chapter is to combine the method of order reduction

with that of sensitivity analysis, in such a way as to include the separate

- I

advantages of e;ch technique in one system. These advantages are exﬁlained
- throughout the entire sections. <
N . In fact, this chapter provides a review of existing. work in a major
Lo area of reduction, concentrating oneaggregation and singular perturba-

\ tions reduction techniques. The two methods are discussed in détail.

bk L]

a
The expressions of first and second-order eigenvalue sensitivities

for the andlysis of high order models are presented. The eigenvalue sen-

sitivity coefficients are given in terms of system parameters rather than

4

systeh‘matrix entries. This allows greater flexibility and convenience

»

in the anhlysis of large scale power systems. s

Analytical expressions

also derived for first and second-order

eigenvalue sensitivities of
A

gated models wﬂ{h respect to the parameters of the original high-order

educed order models concerning the aggre-

-~

system. ' o~
In order to.deternine systgm dynamic stability as a function of

system parameters when a relativ small number of the system eigen-
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of these critical eigenvalues is tracked over relatively wide parameter

variations without the need to recompute the whole set of eigenvalues

.

OoT eigenvectors.

In this chapter, the téacking approach as developed by Zein E1-Din
(15) is explaingd in detail. Thiéltrackiﬁg approach is extended and
applied to‘reduced‘order models. Analytical expressions of the tracking
approach in reduced order models will be given in section 4.6.

TN
4.2 .Some Basic Concepts in Order Reduction

Model reduction is essentially the practice of apbroximating the be-
havior of a complex mathematical model of a physical system by a modelv
of reduced complexity.

In the past decade, much literature has appeared on the subject of
model reduction, most of which deals with the reduction of order (number
of state variables) of linear time-invariant dynamical systems.

In(geqeral, the idea and application of reduced models is devoted
towards studyiﬁg the class of linear, ;ime invariant, irreducible dynami-
cal” systems Having a large number of states,\whlch may be modelled by
d1fferent1a1 equatlons of the form X = AX + Bu, y = Cx + Du, where x is

(h\éigie vector, u an 1nput vector, Yy an output vector, and A, B, C, D
are matrices haV1ng entries in the field of real numbers. The direct
t;ansmission map D:u + y actually may be taken as zero withouttloss in
generality for the purposes of developing reduction techniques, so atten-

_.—tion is mainly focused on the matrices A, B, and C, which are assumed to'
be /known exactly. From the view poiht of power ‘engineers, the A matrix

is’ the most important one ih hetermiﬁing the stability of the system.

The model reductiow problem may therefore Be loosely stated as: given

-- Sin Sk ey %
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X = AX + Bu, ¥y = ¢s, find a model z = Fz + Gu, y = Hz which approximates

the given system in some specified manner, where z has fewer components

than X.

Mainly, in this section attention will bé focused on two important
reduétion techniques! singular perturbation, and aggregation. The sin-
gular perturbation technique (11} may suffer from some disadvantages, but
it ri?ains the only method which allowg the partial recovery of the ipfor—
maﬁioé.lost upon passage to the reduced model. On’the other hand, the ag-
gregé£ion technique (10) has the advantages of remaining at the same sen-

o~

sitivity in both reduced-order models and high-order models. Both tech-

'Eiques will be described briefly in the following sections.’ Advantages

and disadvantages of applying the two techniques to practical applications

will be investigated in Chapter S.

4.2,1 Aggregation Technique

During the past twelve years, a g&eat deal of work has been done on
the reduction of high-order ﬁodels. It\has‘been shown (47) that the ag-
gregation method ;ropoéed by Aoki'(48) is very general, and the earlfer,
approaches of Davison (43) and Mitra (49), which were called projéctive
reductién methods, are Specialvcases of aggregation. A considerable
amount of simplification in the computation of the aggreghtion matrix

has also been introduced (50, 51).

‘Let the large-scale linear time-invariant system be described by

the equations: . ‘ .

!

X = AX + Bu ) (4.1)

i

' -

y = cx ' . ‘ (4.2) -

where x ¢ R, u ¢ RP, and y ¢ RY with q << n.-
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'

.The reduced-order m%deling is represented in the following equations:

. x = Fx_ + Gu . (4.3)

r er . (4.4)

<
"

m . RS . .
where X, € R, with q € m << n, so that yr(t) is a close approximation

[

to y(t) for all t. "7

.Aoki (52) proposed the relationship:

x. = Kx (4.5)

. . . . mo,
vhere the m x n matrix K, representing a projection from R" to R , 1s

called the aggregation matrix. Such a matrix was shown té satisfy the
following relationships:

FK = KA (4.6)

G* = KB (4.7) ‘ ' :
HK = C (4.8)

\

where, in general, equation (4.8) can only be satisfied approximately.

A minimum-norm solution is obtained by using the pseudoinverse (40}, and

this leads to the following relationships:

1

+

F = KAK ' (4.9)
G = Ké . - ' (4.10)
H = cK ’ _ (4.11)
where ) | t
K+ 8 KT (KKT)TI . ’ v ‘ (4.1;) '

is the pseudoinverse of K, with the superscript T representing trans-

- position. It is also known that a nontrivial solution for F is obtained

only if all of its eigenvalues are also the eigenvalues of A. In other
' [

words, in the aggregation method, certain eigenvalues of the original

high-order system are retained in the low-order approximation.
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The development of a straightforward procedure for determining the

”

aggregation matrix (50, S1) has taken a long time. This methéd requires

the determination of the eigenvectors of AT; For the sake of simplicity,

it will be assumed that the eigenvalues of A are distinct, and these can
be denoted by Ay, Az, ... > An. The corresponding eigenvectors can be

denoted by Vy, V2, ... , Vn’ so that the modal matrix is obtained as:

ve=lDvi Vo ...V ] - (4.13)

It may be added that extension to the general zase of repeated eigen-
values is fairly straighfforward in terms of genefaliged eigenvectors
(24). .

The eigenvalues of AT are the same as those of A, but the eigen-

vectors are diffferent from Vi' Let these be denoted by Wl, i=1, 2,

.., n. Since wi are orthagonal to Vi’ it is possible to scale them

in su;;\s\vay that:

\
wr o= vl - . (4.14)
. Where . A L
\ W=[W W ... wn] (4.15)

The aggregation matrix can be outlined directly as

T ‘ ¢

= in}
‘ K=R Wr “ (4.16)
where R is an arbifTary %vx m nonsingular matrix and
LYY //'
W= (wyyw, oL wq] (4.17)
ecorresponding to the eigenvalues X, kzl‘... Ap of the original system

which are retained® in the agé&egated model .

"It follows that the choice of K is not unique due to the arbitrari-

N

ness of R. Making R equal to the identity matrix gives a special aggre-

gation matrix, which we can denote by KI. Hence:
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K. = W T ’ (4.18)
I T
T

. ’ = diag. . 4.19
and [ =W AV = diag Ay, A, Ap) ( ) -

n
u

It is evident that for any other choice of the matrix R, the aggre-

gated model is simply a linear transformation of FI, given by:

F = R'IFI R (4.20)

v

4.2.2 Singular Perturbations

Recent results on singular perturbations are surveyed as a tool

l

for order reduction and separation of time scales in control system de-
sign. The interaction of fast and slow phenomena in high-order systems
‘results fin stiff numerical problems which require expensive computer

costs.

The singular perturbation appfoach (11) lowers the model order by

L4
first neglecting the fast phenomena, then it improves the approximation

by reintroducing their effects as boundary layer corrections calculated
' ! 4

in separate time scales.

|

| 4.2.3 Order Reduction Procedure

Assuming the dynamical equations of the large-scale system to.be in

|

the following form:

X

f (x, z, u, t, u) ' (4.21a)
o _ wZ= g (x, z, u, t, u) : (4.21b)
where 1 is a small, generally positive parameter, reduction is accom-
plished by setting up, = 0 and solving the new algebraig equation (4.21)

to yield:

|
"

$(x, u, t) ‘ (4.22a)

|
#

f(x: d)(Z, u) t)} U, t, 0) ! , (4.22b)

@t
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Under certain conditions, the states X will closely approximate the
sgates x after an initial transienf where the magnitude of the error
may be quite large. The nature of the reduction method also allows a
boundary layer approximation to the behavior of the dynamics of the

system that one neglected when u # o as

dt - = 8 (X(t), z(t), u(0), o, 1), T = t./m (4.23)

In applications, models of v;rious physical systems are represented
in the form‘of equations (4.21a) and (4.21b) by expressing small time con-
stants Ti’ sma}l masses mi, large gains Ki, étc., as T, ciu, mj = cju,
where <5 and Cj are known coefficien?s. In industrial control systems,
ip may represent mean time éon;tants of drives and aétuators. In bio-
chemical models, u can indicate a smalL‘§uantity of an enzyme. In power
system models, which are considered oué main goal, u can represent machine
Teactance or frané}ents in voltage regulators.

Singular perturbations are.extensively used in aircraft and rocket

flight models and also in _chemical reaction diffusion theqryl Other

order reduction techniques can be interpreted as singular perturbations.

- <

4,3 Eigenvalue Sensitivities
In dynamic stability studies of large interconnected power systems
described in the state-space form the evaluation of system performance

under a variety of operating conditions is necessaty in both planning

and operation. , Dynamic stability prediction of such systems is.a dirqtt'

function of the system coefficient matrix eigenvalues. Eigenvalue tech-"

niques are receiving widespread application in the analysis of power sys-

»

tem dynamics (S),.(éO),'(SZ), (53).
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Normally, it is required to locate khp system eigenvalues for cer-

<™
tain operating conditions and, in addition, it is necessary to examine
- [Pl

theé possible movement of the critical subset under changes in system con-
trol and desigﬁ parameters around the chosen base condition. This can

generaﬂéﬁ be achieved by either eigenvalue recalculation for different

parameter seftings, or by employing eigenvalue sensitivities around the -
base case. The second apbroach is much more efficient and convenient,
éépecially for relatively large systems.
Eigenvalue sensitivity studies have presentéd a variety of results
that demonstfate the-advantages of ‘employing these techniqﬁes in:
I .
1. Identifying different system modes.
2. Cho9sing appropriate model p?ecision.

v3.._Esfimating the Tequired accuracy.of field measurements for

systém simulation studies.

4,3.1 First—brder Senéitivitx

The eigenvalues of the system coefficient matrix [A] are indicative
of system dynami; stability. These eigeﬁvalues are, in general, functions
~of all control and design parameters in the system. System performance’

can be affected by a change in any of these parameters, and hence, a shift
A . .

. in the whole eigenvalue pattern can occur. An esiimated value x. of a
i

»

specific eigenvalue Aio due to a change Af in a certain parameter £ can

be obtained using Taylor series around the base value A.O as follows:
l 1

. ) - '
- i 132y '
YT Ao e (8g) + PR (AE)2 + ... (4.24)
\ 3 ’ &

i 0] (¢}
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In equation (4.24) the term

is defined as the first order sensitivity coefficient of the eigenvalue
‘xi with respect to the parameter £ at Eo' If the estimation process is
terminated after the second terﬁ, the estimation ig a first-order approx-
|
imation and it is only valid for small parameter changes. Consequently, -
a low sensitivity 'value can not be taken, in general, as_an indication
that larger variations in the parameter will continue to have a small
effect on system stability (13).
Eigenvalue first-order sensitivity analysis has been applied'in
(14), (54), (3), (55), (56). The expression for the second-order sen-
sitivity coefficient with respect to a general system parameter is de-
rived in (13). ‘

24.3.2 Second-Order Sensitivity

The third term in Taylor series expansion (the second-order partial
derivative) is called the second-order sensitivity coefficient of the

eigenvatue Ai with respect to the system parameter £. The use of the

second-order term azxi tends to improve the accuracy of the sen-
352
E:o .
sitivity analysis (13). . Zﬁf

For more details, the analytical expressions,and the advantages
of using the second-order sensitivity coefficients are reparted in re-
ference . (57).

oo

s " .
P - N B ) ' *
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. 4 £
4,4 Eigenvalue Sensifivity of Reduced Models

It is evident that the concept of sensitivity evaluations has been
developed by Porter apd Crossley (58). Recently, Zein El-Din et al (13)
have extended fhe exbreésions of Porter and Crossley for use in engineer-
ing systems. T@ese expressions have been de;eloped by Porter and Crossley
in terms of system matrix entries rather than system parameters., and ié

is very difficult to re-express their formulations as each element of the

system matrix can be a complex function of more than one parameter and

more than one element can be a func£ion_of a particular sys;eﬁ_pargmeter.
For use in physical systéms,.Faddeev and’#addeeva (593, Ze'n El-pin et
al (13) have developed the first-order’and the second-order sensitivity
expressiéns in terms of system.parameters.f ‘

Later, Hickin et al (60) has extendéd the expressibﬁs of Zein El-Din
et al to the use of the reduced order models. Theylhave derived the ex-
" pressions for theffirst- ajd second-order eigenvalue sensitivitiés.éf
aggregated models Qitgjrespect to the parameters of the original syséem
as-follows:

Let the modal matrix of A and its inverse be taken as in Section 4.2,

and let A be'a function of the parameters &, i. Then set

7 =1 ., T 9A e ' o
‘ pij = g}j Ai) Wi 3E Vj ; 1 #73 . (4.2%3)
' -1, T 3A <, .
L. = .o AL . = V. 4. O
qlJ (AJ Al) Wl 3\ VJ , 1#7] ( %?b)

The scalars Py and qii'are arbitrary but it is advantageous to take them

as zero (24). The first order eigenvalue ‘and eigenvector sensitivities
' ' - e
are then given.by: ) .

- AN.V// -

v et
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& =W T .a_A.. A\ ’
) 3E i 3E j (4.26a)
avi n
—2 = V. p.. i=1, 2, , R (4.26b)"
¢ 3= ) -
p
The last equation may now be written as:
av. '
;ﬁ 3 - VP (4.27a)
. .
, B = [py51 . pyy=0 (4.27b)
These then follow: »
[ av! 1V A1
=yl a = - -1
3E ViggV pv (4.28)
The second order eigenvalues sensitivities are given by:
922y T (9A A e A2A
LANEAD SR utd atA
‘ TR SR AL T T T L (4.29)
whére Q = [qij] and Py 9 are the ith‘columns of ‘P, Q, respectm/&’
The sensitivities of an aggregated model (F,G,H) of (A,B,C) are now
easily written. The aggregation matrix K and any right inVerée K" are
K=[T o]v-! (4.30a)
K= v ['g,']] - (4.300)
where S is an arbitrary constant matrix. Hence:
oF 3 - ™ . A1 9A2 2 1
= =T 0]+ (V =Td ==, ..., =BT
9%F _ . 32x1 322 320, ) T?
R A U T U T Y (4.32)
2 .a__G— = —-8—- -1 = -1 EE - -1 33
T [T o] 5E (y B) =T 0] (v 5t f‘ B} (4.33)
H aC LT <
— = {=—== . .34
T; _{38 v+ cvpig ] (4.34)
”, ™~ -~ (’
/"“"
>
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[t has been shown in (24) that the sensitivities of the aggregated

models are identical with the corresponding eigenvalue sensitivities of

the original high-order system. This is a very useful charactéristic

of aggregated models, and represents an advantage’ of aggregation over

other methods of model reduction. t

In Chapter<5, two reduction techniques (aggregation and singular per-

turbations) are employed to reduce a variety of power system examples.

Sensitivity evaluations and their effects on the overall system perfor-

mance in bgth of high-order models as well as in reduced order models

v

are also considered.

4.5 Eigenvalue Estimation and Tracking

The evaluation of dynamic stability of interconnected power systems

T
through eigenvalue location and movement is considered attractive because
it is far more-efficient than the alternative of time integration to pre-

dict system time response. In the analysis of such large systems, it is

usually of interest to track the movement of a small number of eigenvalues

-

under specific parameter variations.

In this section, an approach for determining system dynamic stability
as a function of system parameters is described. The method is particu-

larly applicable in situations where a relatively small number of the

system eigenvalues are known to be critical in describing stability. A

full set of eigenvalues and eigenvectotrs is determined once, as a base

-

case, then the movement of these critical eigenvalues is tracked over

elatively wide parameter variations without the nced to re-compute the

A Y
-
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N

whgle set of eigenvalues or eigenvectors. The new values are estimated
using first and second-order eigenvalue sensitivity terms followed by
an iterative technique to refine the estimate.

To refine the estimated value, the inverse iteration method developed
by Wilkinson (61) and -the modification developed by Van Ness (52) have
been used (§7) to find accura&e eigenvalues with the corresponding eigen-

vectors for different parameter settings. Recently, Zein E1-Din et al

(15) developed the tracking approach for use in power system applications.

"The method has been applied in non-reduced models and is extended in this

thesis in Chapter S for use in reduced order models.

4.6 Eigenvalue .Tracking Applied to Reduced Order Models .

In this method, the first and second-order sensitivities of the system

eigenvalues with respect to a specific parameter are computed at a certain
base condition. Then, the corresponding second-order approximation ui,due

to a cﬁange A¢ in a system parameter § is obtained using Taylor series ex-

.

pansion around the base condition as:

_ ONi,T l3%i,r AE)2 <
S i MCORS & ol
: (o] (o]

It is known that the error in the estimated value using equation (4.35)

is proportional to (AE)s. Consequently, g is a good approximation to the

exact value (57), especially for a relatively small per unit change in th%

parameter £. If an accurate Value is desired or if the change in § is re-
latively large where the estimation is not accurate enough, the estimation
is refined using the inverse iteration method.

‘The inverse i;eration method (61, 62) is basically used to find ac-

curate eigenvalues and .the corresponding eigenvectors for different para-

¢

H
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meter settings.

The basic inverse iteration method is described by the following two

RRES " ora sl Tt A
.o

equations:
r T -
(Ar - ui,r nw 5] ° XS (4.36)
- CXF ——-5-}'——wr > (4.37)
s+1  max (w s+l)
where
Miop = the estimated reduced eigenvalue of Ai

; : max(wrs*l) = the element Oénwrs+1 with the largest magnitude
XO = initial value of X (chosen usually as one )

(and r denotes reduced order models).

Tht iteration process is terminated when the change in X at any step

is less than some prescribed value (taken usually as 10™* - 10°®). Then

X is the desired eigenvector,

{\\ The correct eigenvalue can then be obtained by using the residual

-

S
correction method (15). After the method converges to the exact eigen-
/

vector, the factor (xi R r) will dominate in the dominator of the

element max(wF
( S+1), ther
_ T B
. xi,r =Wy + Y/max(w s+1) , (4.38)

The tracking approach can be summarized in the following steps:

1. Compute system eigenvalues, normal and transposed eigenvectors: at
base conditions.

2. Compute first and second-order sensitivities of the eigenvalues
wi¥h respect to system parameters of interest.

3. Consideriﬁg a specifiq parameter, identify the subset of sensitive
eigenvalues and choose the one(s) to be tracked over different set-

tings of the parameter.




Wt

.

89

4. Estimate the new eigenvalue location due to a specific change in
the parameter (using Taylor series expansion and first and second-
order sensitivity terms a; the base case).

S. The accurate value for the eigenvalue of interest due to the new
parameter setting can be obtained by using the estimated value

with the updated system matrix to compute the exact value (using

the inverse iteration technique).
A

4.7 7 Summar R

A review of two major methods of model reduction has been pre-
sented: aggregation and singular perturbations techniques.
Actually, the aggregation comes from the fact that the state vector

of the reduced model is the image of a linear map (or aggregate) of the

original state vector. This map may be factored as the product of another
map with a projection, thus giving the term projective mainly to reduce

' A S
the large computational effort associated with the dominant ecigenvalue

technique. -

On the other hand, the singular perturbation technique is the only’
method which allows the partial recovery of the information lost wﬂen
the reduced order model is constructed.

The analytical expressions and the use of first and second-order
eirgenvalue sensitivities have been presented. As it has been stated in
Section 4.3, the inclusion of second-order terms in an eigenvaluc sensi-
tivity package is recommended for more improvement in efficiency of the
sensitivity package and its attendent use in eigenvalue analysis.

Expressions for the eigenvalue sensitivities of aggregated models

with respect to the parameters of the originmal system have been derived.

} v



90

Eigenvalue tracking, which is a useful tool available to examine

trends in system dynamic stability as some parameters of the syspez{!ge

> 5

changed, has also been presan%ed.
Three 'simplified examples will be considered,}n Chapter 5 to iltus-
trate the applicability of the reduction methods and eigenvalue sensiti-

»

vity techniques as well as the tracking approach.

e et e, e

e ) g e B e W
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CHAPTER 5

APPLICATION TO PRACTICAL SYSTEMS .

5.1 Introduction

In Chapter 4, two reduction techniques have been developed to re-
duce large scale syitems. Eigenvalue sensitivities have been derived
for reduced order models: A technique to track the critical eigenvalues
over the practical range of control énd design parameters has also been

described. The tracking approach is based on the use of eigenvalue

-~

sensitivities in estimating the possible eigenvalue movement.

«s

In this cﬁépter, applications of these approaches are considered

for three specific cases:

P

1, An examination of the relation between the reduced order models
and the high order models using reduction techniques is represented.
This leads to an investigation of the advantages and disadvantages

of both techniques, in particular, their use in power systems.

L

Sections 5.2 and 5.3 give a detailed analysis of this situation

applied to single machine-infinite bus systems and ipduction
Al

»

motor dynamics. *

N~

- 2. Eigenvalue sensitivities are used to determine system character-

istics (as control parameters are chinged) in both high order

and reduced order models. Sections %.2, 5.3, and 5.4 also demon-

"
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strate the use of sensitivity analysis.

The eigenvalue tracking approach is used in reduced order models: /

/
/

to re-evaluate system stability as some parameters of the system/

are changed. The overall -study is presented in Section 5.3. 9én-b

’

eral concluding Gomments are made in Section 5.5./ /

/
/

/

~ o 7
5.2 Prac;ibél Application - Induction Motor-Infinite Bus Systep
7 R 7

4 s
\‘/\ e

~\Thé effect of load characteristics is a significant part of the
c%rrent interest in powef system stability gtudies. This general inter-
es; has developed in recent years as stability margins have been reduced
due to economic and environmental pressufes. As developments have occur-
red in the representation and analysis of generati9n and transmission
systems, attention is now being focused on the adequacy of load represen-

tation in analysis programs. ’
‘ - ;

Induction iMachines represent a large proportion of electrical loads
, .

in power pools, thus the need for accurate dynamic models in order to

predict the dynamic stability is important.(:zyafefore, this section
will be devoted towards the study of an induction motor-infinite bus

system,

5

5.2.1 Test System and Discussion of Results

In this section, the model which has been developed in Section 10
of Chapter 2 is applied to a three-phase induction motor . The trans-
formation required to obtain the equivalent two-phase motor has also been
applied. The system equations, linearized around the¢ chosen operating

point, have been derived in the state space form using the PQR technique

-

\ N
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to obtain A, B, C, and D matrices, with programming on a CDC 6400 com-
puter. The eigenvalues listed in-TablesS.l and 5.2 for the different
cases considered were obtained for the system using a standard library
subroutine.

The study will investigate the effect of changing H (the inertia

|
constant) on the behavior of the other modes.as well as the effect of

changing the damping factor*Fw. The effect of the external reactance

Xt on the dynamic stability of the system is also included.

As is already known, the system eigenvalues are related to the
different modes in the system. While the real parf is a measure of the
amount of damping, the imaginary part is related to the natural fre-
quency of oscillation of the corresponding mode. System eigenvalues
are, in general, functions of all control and design parameters. The
change in any of these parameters affects the system performance, and
hence, causes a shift in the whole eigenvalue pattern. The amount of
shift depends on the sensitivity of the different eigenvalues to, as

‘ »
well as the amount of change in, the parameter.

For the small induction motor kbelow 100 HP) which is used in
the test system, first- and second-order sensitivities of the whole
eigenvalue pattern are obtained with respect to some of the control
parameters. Using this'informatioﬁ, the eiéenvalues corresponding to
each mode are identified. In Tables 5.1 and 5.2, and for the different
cases considered, the %irst two eigenvalues correspond to the stator
current oscillétions, the third and the fourth correépoqd to the rotor

v

current oscillations, and the fifth corresponds to the mechanical
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5.2.1-a Small Induction Motor Connected Directly to an Infinite
Bus
. —_

For a small induction motor connected directly to a constant volt-
age and frequency bus (Z£

0.0).the electrical transients decay much
faster than the mechanical transients. This can be seen from the eigen-

value pattern in Table 5.1 for the different cases considered.

It is also shown in case (1) of Table 5.1 that doubling the value

of the inertia constant H results in only a slight change, primarily

in the imaginary parts in the four eigenvalues correésponding to the

electrical transients in the four cases considered.

50%

0.

On the other hand,
the eigenvalue corresponding to the mechanical transient is changed by

This means that with respect tgQ a change in the inertia constant,
electrical and mechanical modes may be effectively considered decoupled.
Examining columns 2 and 3 of Table 5.1 yields the‘fact that the
increase of the viscous damping effect (CM) adds no change in the modes
corresponding to the electrical transients, especially those associated
with the stator. The'amount of damping in the rotor modes in columns

imately 50%,

2 and 3 is seen to be reduced in proportion to CM' On the other hand,
the amount of damping in the mechanical transients increased by approx-

Consider the effect of the mechanical load dynamics represented
by the coefficient (Fw

- Cles.s)‘

The set oé eigenvalues correspond-
ing to the modes of the different cases considered in Table 5.1 reflect

the slight variation in the electrical transients, but there is still

no visible increase in the amount of damping corresponding to the

LS anh
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mechanical transient. The coefficiént'Fw may be considered normally

-~

unchanged with the speed. ' 1
f

5.2.1-b Small Induction Motor Connected to an Infinite Bus
Through Zt )

" Concentrating on the effect of an impedance Eonnecting the in-

duction motor andffﬁ% infinite bus, the results obtained describing
»
this relation are listed for the different cases in Table 5.2. Com-

paring cases 3 and 7, which considex@éﬁz samé degree of variation of
» H, F , the inclusion of the network parameters

M v,
Rt and_Xt in case 7 has an obvious effect on the damping coefficients

the control factors C

as well as the natural frequency of response, especially on those of
the rotor electrical transients. On the other hand, it can be noticed
that the decoupliqg between the eiecérical_and the me;hanical traﬁ-
sients still gxists.\ This can be recognized if one ogserves‘that

the fifth eigenvalue greal part) is reiatively unchanged, but the
electrical modes are damped faster than the mechanical modes. The :
results which are expressed in Téble 5.2 in cases ‘6, ;, and 8, show
clearly that the stator damping coefficients are fqnctions of éhe
ratio {XtIRt). This can be observed from the fact that, when the
value of Xt is reduced from 0.1 p.u. to .bS p.u.; and Rt is still

.07 p.u., the real parf of the electrical transients become more
negative. . ‘ .
Generally, the‘effect Af the network and the transforme? equi-

valent impedance as well as the model considered in the study, are

ve}y important in defining the dynamic effect of a group of induction

°

)
i

o
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motors connected to a multi-machine system.

5.2.2 Reduced Models of Induction Motor System

This section demonstrates the application of the eigenvalue sen-
sitivity approach to reduced order models. Two identical model cases

have been selected to be reduced. They are cases 3 and 7. In case 3,

the nétwork representation is neglected, and in case 7, the inclusion

¢ 3
of Zt is taken into.consideration. Employing both singular pgrturba-
tion and aggregation techniques (10, 11), the system is reduced. In
Tables 5.3 and 5.4 where the singular'perturbation is applied, the
elimination of ghe derivatives corresponding to the stator tramsients
produces a reduced order model containing the rotor transients and the
mechanical transients. Such elimination of the stator transients has
a significant effect on the mechanical transients and relatively little
effect on the electrical transients. First and second order sensitivi-
ties of the reduced order models are obtained with respect to a change
in the speed. Using the singular perturbation tgchnique to reduce the
model, the two sets of eigenvalué sensitivities in both the full order
and the reduced one, a*e siightly different. On the other hand, using ™\«
the aggregation technique to reduce %he full modél by retaining the
dominant eigenvalues, the two sets in the sensit?vity énalysis are

fully the same. This partieular relation is. discussed briefly in

Chapter 4. These sensitivities are listed, for both techniques, in

'Taﬁles 5.3 and 5.4.' Actually, the main.goal of this section is to

study the dynamics of the induction motor and the effect of the para-

.

meter change on the system performance. The induction motor islcon—

£
v
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Transmission Line

Te;mipﬁl

Bis N
e W V| Awm &
.| Mech. | Y . fB??T___/\f_________ﬁ—‘\ Infinite Bus
. U l o | S -

Figure 5.1 Induction Motor System

Data for Figure 5.1:

Induction«hotor -

; 3.7 KVA, 220 volt, n = 1710 rpm

r =T = .0325 p.u., XS = Xr’= 3.0 p.u.
) X, - 2.92pu., S=0.05, H=.144 sec,,
D=28.2x10 ' p.u. sec.
Network Parameters -
N . . ) .
. Fi¥rst Case: Rt Xt 0
Second Case: Rt = .01 p.u., Xt = .01 p.u.
Third Case: R, = .0l p.u., X, = 0.05 p.u.
" Fourth Case: R_ = .0l p.u., X, = 0.2 p.u.
< ’
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sidered the most important load in power system stability studies.

) -
Ve

5.3 Practical Application:- Synchronous Machine System

A single machine-infinite bus configuration is considered in

this section. This system has been chosen 'to depict some aspects of

“power system stability - specifically, those aspects which involve
* (

reduction methods and sensitivity analysis and the application of the
tracking approach. A block diagram describing the system in shown in

Figure 5.3.

A line diagram of the system is shown in Figure 5.2. It consists

of a synchronous machine gith a static excitation scheme and second-
order governor representation, feeding through a®transmission line and

transformer into an infinite bus. The lineaa,equdtions Tepresenting

the small scale dynamics are based on the models presented in references
(21) and (56).
The set of equations describing the dynamic performance of the

system are stated in Appendix B. The eigenvalues of the system coeffi-
p
cient matrix A, as given in Table 5.6, -are as follows:

H

{
s

. Synchronous
Machine

. F *
' " Infinite Bus
A
<:::::> E
AN N

‘ Flgure 5.2 Hydro System

Transmission Line

Data for FEfgure 5.

Machine is typical to the 500 MW units in Ontario Hydro system,

In p.u. based on machine rating:
\

4§f : : v ?‘

Ye - AY
N .
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Xd = 1.30, Xq = 1.20, Xf = 1.22, de =1.14,

qu =1.04, XKd = 1.23, XKq = 1.26, rf = ,00075, )

= = = = )””"

r, = -00183, ry, = .00805, X = .00253, X_ = .25, {~—/
re = .02, w, = 377 rads/sec., H = 3.38 seconds, ‘

Kd = .00268, Ke = .102, Kq = 063, Kh = 1, Kt = .35,
T = .005, Tg = 0.2, T, = .3, Th = .1, TS LOl’

(all time constants in seconds), e_= 1 p.u.

t

The following are the equilibrium values:'

§ = .859 rads, e, = .578, e'= .816, i, = .876,
d q d

1q = ,483, Wd = 817, Wq = -. 380, Tm = ,902,

ey = .899,

The eigenvalues of the system are:

+

-.0368 + j10.25, -1.235, -3.075, -5.683, -9.707,

‘

-15.10 £ j12.31, -15.88 # j377.0, -87.13, -205.0.

' 5.3.1 ‘Reduced-order, Models

Two methods of reduction are considered in this section:

A method (aégregation) which yields a'model which has the same

dominant eigenvalues as the system model. This method Has pre-
. .

viously been applied in the design of suboptimal contfol}ers

(53) and is extended to the use of power system applications

in this chapter.

v

A method (singular perturbation) which results in a model which
neglects the effect of the derivatives of some states by divid-

ing the original system equations by a small parameter which,

L4
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when set to zero, produces a reduced-order model and a
singular-derivative (l1).
The analytical expressions for both of the twe techniques are

derived and given in Chapter 4.

v

Tables 5.6 and 5.8 illustrate the different reduced-order models
using both of the two reduction methods which are derived on the basis

of mathematical and physical assumptions.

5.3.2 Sensitivit) Consideratjons

[y

fables 5.7 and §.9 illustrate first and second-order sensitivity
terms in both the full order model and the different reduced-order
models, with respect to the exc;:Qr éain.

An estimate of a specific eigenvalue with respect to a certain
change in a specific control parameter (for example, exciter gain),

can be obtained using Taylor series expansion around th%'base value:

>
%]
>

321,

_ i,r 1 i,r 4.2
Mo T et TEe Y2 Tae? (45
3 £
o o
where r denotes the reduced model. ; /'
N

Actually, this estimated value has an error proportional to
(Ag)a, therefore, this estimation m;y need to be refined to its exact
value using the inverse iteration method (54).

Figures 5.4 and 5.5 show the first and second-order approximations
toothé different eigenvqlug‘movements as compared to the exact values

computed using the inverse iteration methed.
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5.3.3 Discussion of Results \

The development of results is divided into three sections. The
first describes two reduction techniques to formulate the reduced
models. The second section describes the sensitivity analysis of

\
these reduced models and the third describes a fijhnique to track the

critical eigenvalues over the practical range of’control and design ”
5 -
parameters.
w‘\
5.3.3-a Reduction Results ‘ I

.

Considering less sophisticated models rG%rpsenting the study
© !
system, we shall limit/our attention to approximate models derived on
the basis of mathematical and physical assumptions. Such assumptions

are the neglect of the state derivatives relating to:

1. Damperﬁtransients,

2. Stator transients, ’
3. Exciter action,

4. Governor action.

¢

>

The above assumptions span the range of modeling complexities
from the full model to the simplest possible case of constakt field

linkage. ) -

-

Table 5.5 State Constraints for Reduced-Order Models

AR
Assump- | Order - \
tion Reduc- State Derivative set toflexo
No. tion
1 2 Derivative Bf d-q axis damper\winding flux
linkage .
2 2 Derivative of d-q axis stator {1y linkages®
3 2 Derivative of voltage sensor ouypdt and
. field voltage
4 3 Derivative of all governor andjfturbine states |

PPN
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The first column in each of Tables 5.6 and 5.8 shows that the

overall system is stable. When the model is modified by using the

O
singular perturbations concept, considering assumption 1 in Table S.5,
the dqmping modes are eliminated with little effect on the oscillatory

modes and the exciter modes, but no effect on the governor action.modes

This is shown in Table 5.6. On the other hand, the modes related to
the torque-load angle loop oscillation are changed. The oscillation

.
'

~varied from 10.09 rads/sec. to 8.952 rads/sec. (1.625 hertz to 1.441
hertz). The damping in this mode varied by about 50% from the original

value. It is seen that in the presence of the static excitation scheme,

the neglect of the derivatives of the damper winding flux linkage re~

R e ..
\,

sults in decreased dampiﬁﬁrin the oscillatory modes.

: ”\;C“\\ Elimination of network and stator transients removes the next

two oscillatory modes, and produces a slight variation on the other

modes, includingthe torque-load angle loop oscillation. The removal
! ,
3

of the governor effect produces negligible loss of accuracy on the re-

maining modes. Elimination of the exciter effects (constant field

voltage) slightly varies the torque-load angle loop modes.

In Table 5.8, the aggregation technique is applied to reduce
the model. Actually, as it was stated in Chapter 4, the aggregation
(53) comes from the fact that the state vector of the reduced model

is the image of & linear map (or aggregate) of the original state
vector. This map may be factored as the product of another map with

a projection, thus giving the term projective mainly to reduce the

large computational effort associated with the dominant eigenvalue
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technique. In Table 5.8, the second, third, fourth, and fifth columns
represent the aggregated models, each of them being a selection of

some of the eigenvalues of the high order-model which are to be re-

tained in the reduced model. Actually, they are the dominant eigen-

values which give good response to the behavior of the reduced models.

-~

5.3.3-b Sensitivities

The sensitivities are normalized in the sense that they give

directly the shift in the eigenvalue due to a unit change in the cor-

responding parameter. The estimated shift is calculated using Taylor's

series, including both the first and second order terms.

’
~

First and second order sensitivities of the whole eigenvalue pat-
tern have been obtained with respect to one of the control parameters

(exciter gain). These are listed in Table 5.7. The relevant system

eigenvalues are listed at the left. The eigenvalues corresponding to

the stator and rotor modes (rows 1 - 3), governor modes (rows 4 - 6},

and exciter modes {rows 7, 8) are also listed in Table 5.7.

The normalized sensitivities in the full model are listed in the
second column, then the normalized sensitivities in the different re-

duced models w.r.t. the same control parameter are listed in columns

3, 4, and S.

The main goal of studying the sensitivities in singularly per-

turbed models is to compare them with the sensitivities of the full

-

model, therefore we turn our attention to this point. Actually, by |

examining the entries in Table 5.7, we note that both of the first

and second order sensitivitics in the reduced models are slightly
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changed from those in the full model, but these changes are relatively

o am e s

small.”  On the other hand, in some modes, -the—sensitivities are iden-

tical.

i

In Table 5.9, the sensitivities-of the aggregated models are
|

listed in columns 3 and 4. The sensitivities of the full model are

listed in the second column. "It is shown that the two sets of sensi- ,
tivities are identical. This fact can be considered useful to power

system engineers, but it suffers from the limitation of differently

identifying each mode in the system. Usually these limitations can

be handled. This will be discussed in the next section.

5.3.3-c Eigenvalue Tracking

Recently, a tracking approach has been developed foy use in
analysis in® power systems (15) to track the system eigenvalues which
are kql'p to be critical over relatively wide parameter variations.
This has been done in high order models and is extended in this sec-
tion for use in reduced models.

In order to apply the tracking apfroach, the s1ngu15r1y ﬁ%i-

turbed model is preferred in order to avoid the complexity which

[y

arises from manipulating the complex aggregated matrices. Figures

-

5.3 and 5.4 show the first and second order approximations to the

T em e

different eigenvalue movements as compared to the exact values com-
puted by the inverse itcratiqp technique. The results‘dcmonstratc

that second order estimation is sufficiently accurate, in the cases
considered,- for changes in the selected control parameters (exéltcr

€
gain and amplifier gain) up to £0.45 p.u., *0.55 p.u. (around the

base value) respectively. . \
k)
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The results obtained by the inverse iteration technique have been

double-checked using repeated eigenvalue computation at the selected

»
points. The results obtained by both methods are in relatively close

agreement.

5.3.4 Comparison of Singular Perturbation and Aggreqatlon
Techniques Applied to Power Systems

Of the two methods of reduction considered, from the viewpoint
—- . . ’ -’

oﬁithe author, that of singular perturbation is relatively superior

" to that, of aggregation in employing both techniques tb power system

stability evaluation,

.

The cémparison in apﬁlying the two techniques in a power system
can be summarized by the following points:
1. In singular perturbatio#, each of the redu;ed models is depen-
dent analyticaily and physically on the previous one, neglect-

’

ing completely the transients of the eliminated modes, but in-
cluding their behavior in steady state conditions. On the other-
hand, in applying the aggregation technique, the reduced models

retain the dominant eigenvalues of the high order model (or

those modes whlch are of interest).
F

2. .In singular perturbation, it is much simpler and easier to

identify the system modes through the reduction operationj in
aggregation, it is much more complex and difficult to identify

the modes (more calculations, more computing time, and addition-

v

al cost).
n -

"In order to track some critical eigenvalues over relatively
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wide parameter variations in reduced order models, the.singular
perturbation technique is preferable, since it avoids the evalua-
tion of complex matrices which resﬁlt when the aggregation
technique is applied. Actually, the minimization of computa-

1

tional costs and running time are important properties of any

reduction scheme. ¢ .
4, The aggregated models have the advantage of unchanged sensi-
tivities, since the two sets of the eigenvalues sensitivities
in both full order model and reduced order model are identi-
:
cal. If fé%‘grqblem of identification in aggregated models
can be overcome, taking into consideration the costs and the

running time, the aggregation technique will be very useful

in power system evaluations.

5.4 Practical Application - Multi-Machine System

A multi-machine system is considered in this section. The study
is concerned with the validity of using sensitivity analysis in reduced
models and the accuracy of using such estimated values in investigating

power system stability. Using the repeated eigenvalue method, the re-

4

sults from the first order estimation in the Taylor expansion series

are compared with those of the repeated eigenvalue method for the new
’

operating point.

In order to utilize the advantage of having the two sets of sen-

sitivities, identical in the high order model and in the reduced order

~

model, the aggregation technique is chosen to reduce the system model.

PR A e e
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The representation of the dynamic equivalénts of the external system
(7, 8) is employed in this study. A line diagram of the system is

shown in Figure 3.6. Actually, the main goal of this study is to

.compare the results, using both the tracking approach and repeated

eiéenvalue method without concern for the "dynamic equivalent ‘con-

siderations discussed in the preceeding chapter.

The study investigated in this section can be summarized in the

following steps: a

1. A standard library subroutine is used to calculate the eigen-
values and eigenvectors of the representation of the dynamic
equivalents of the external system as well as the whole syétem.
Then, with respect to a variety of control parameters, first
and second order sensitivities of the whole eigenvalue pattern
of the whole system ére obtained and the‘d%fferent modes of
the external system are identified.

2. Then, the aggregation technique is used to reduce both cases
(previously described) by retaining the dominant eigenvalues.
The system order is reduced in orde; from 28 to 16.

3. Considering a specific parametef, {the exciter gain of machine
number 2 of Fhe extern;l system,) compute the first And second
order terms and estimate the new eigenvalue locations due to a
specific‘chdnéb in the control parameter (in this example, the
change in the exciter gain covers the range of 0.1 p.c. to 10
p.c.).by using Taylor series expansiop at the base cases, the

tracking approach is applied.

[}

B
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4., Using the repeated eigenvalue method, the new eigenvalues are
calcilated with respect to the new operating conditions.
S. Comparing the two sets of results (resulting from steps 3

and 4 aboyve), the error of using those two methods %or the

different cases considered is obtained.

Tables 5.10, 5.11, and 5.12 illustrate the application of this
method. The results demonstrate that there'®s some error resulting
from using both the tracking approach and the repeated cigenvalue
method. In tﬁé cases studied in this section, it is noted that the
resulting error in most of the eigenvalues (corresponding to the dif-
ferent modes) is relati?ely small. Actually, this error is approxi-
mately proportional to the control parameter variations.

This suggests that t&o conclusions are applicabie, at least in
the cases studied. Application of the~aggregation reduction method
to the external system is effective in reducing the order éignificant-
ly without a degradation in the representation error. .Use of the

~

tracking approach is validated for reduced order models in’ that there

/

is no significant increase in error in determining the eigenvalues
when using the tracking approach as opposed to repeated cigenvalue
- - \

evaluations. 1In addition, for the cases studied, the “simplest track-
ing algorithm (using only first order terms) is adequate.

In summary, although the two sets of the sensitivity terms in both
the high order model and the reduced order model are identical when us-
ing the aggregation technique for reduction, there is still a shift or

an error between the two sets of eigenvalues which are calculated using

-
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Both the tracking approacﬁ and the repéateq eigenvalue method.
Generaily; the computational advantage of the tracking approacL
over the repeqted'eigenvalue method can be predicted in cases where the
effect of many parameters needs fo be studied [(50). However, it
should be mentioned that the tracking approach is particularly advan-
tageous if the number.of'the critical eigenvalue is small (<20% of the
total number of system eigenvalues), for more detai1,~the reader is
referred to (13), (15), (50). It has been shown that where it.is re-
quired to stuéx the movement of almost all the eigenvalues of the

system, it is better to use the repeated eigenvalue-method.

R g
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Table 5.10 First Eigenvalue Estimation Applied to the
Aggregated Models of the Dynamic Equivalents

A
b

of the External Systenm

The sensitivity analysis is w.r.t 0.1 p.c. change in the exciter )

, gain in machine number 2 in the external system.
hJ
N First Estimation (Exact Eigen- First Estimation (Undrill
values) Order Reduction 2816 Approach) Order Reduction
28 »16
i,2 ~0._2217:j$.1032 -0.2612£j6.9312
. 3,4 -0.3215%j5.9312 -0.3612%36.3321
' 5,6 -0.41212j6.4067 -0.53412j7.3213 »
o 7,8 -0.4410£j7.3341 -0.7821%j9.0561
9,10 -0.7320%51.0804 -0.4932%j1.1193
4 11,12 -0.8321%j0.8831 -0.8966%j0.8921
X 13,14 | -0.83912j0.8966 -0.6911+j0.9966
15,16 -0.9123xj0.9803 -0.8332%j0.8977
N ‘ The Error ./ The Error
1,2 -0.1304E-04+),7632E-03 -0.21979R-02+j.94784E~04

e S
(%]
~-
o

9,10
11,12
13,14
\ 4 15,16

-0.8340E-05+j,8750E-02
-0.5132E-04+j.8530E-03
+0,3123E-02+j.7230E-02
-0.1110E-03+j.6532E-04
+0.2315E-06%j.3145E-05
+0.1313E-052j.1023E-07
<0.2304E-08%j.2304E-06

-0.95133E-041’. 608 79E-04
~0.55594E-03+] . 1004SE-04
,0.10817E-04+j . 37022E-04
~0.38453E-03¢j . 11920E-05
+0.34655E-052 j . 95670E-03
+0. 2087 4E-D32 J994279L-03
0. 6706DE-0u+j.73342E-03




argps .

. _ ‘ 119

Figure 5.11 First Eigenvalue Estimation Applied to the
Aggregated Models of the Dynamic Equivalents
of the External System

The sensitivity analysis is w.r.t. 1 p.c. change in the exciter gain in

machine number 2 in the external system.

f

PR Lo e L TR

N " First Estimation (Exact '~ First Estimation (Undriil
Eigenvalues) Order Reduc- Approach) Ordér Reduction
tion 28—16 _ 28 16

1,2 -0.3217 + j6.1342 © 20.3713 £ §7.6312

3,4 | -0.4325 # j6.9321 ~0.4613 + j7.3421

5,6 -0.5121 *$j7.5037 0.6342 + j8.3214

7,8 0.5411 + j8.3421 ©-0.8831 * j10.0392

9,10 | -0.8321 # j2.0804 -0.5231 # j2.1814

11,12| -0.9323 + j0.9931 ~0.9934 + 50,9981

13,14| -0.9391 % 3j0.9966 -0.7924 + j1.3211

15,16 | -1.1211 * j1.0031 -0.9987 + j0.9988

N The Error \' : The Error

1,2 | _.35870E+04xj0.0000 -0.27561E-0123.11573E-01

3,4 | _.12096E-03%j.15326E-03  -0.38966E-03+j.77427E-02"

5,6 | ..22396E-03%j.16536E-03 +0.27182E-011j.45139E-02

7,8 | . .85815E-04+30.0000 +0. 1085 1E+00+3 . 33597E-01

9,10 | -.29758E 03%j.24342E-03 -0.37154E-02+j .47009E-03

11,12 | -.33858E-03j.33442E-03 -0.36721E+004j .93441E-01

13,14 | -.45565E-03%j.53021E-03 .0.21055E+004 . 89344

15,16 | -=.35515E-03%j.43001E-03 ’ uO.SSIObE-Olfj.6238E~01F
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Table 5.12 First Eigenvalue Estimation Applied to’ the
Aggregated Models of the Dynamic Equivalents

of the External System

The sensitivity analysis is w.r.t. 10 p.c. change in the exciter

gain in machine number 2 in the external system.

A
-. 8‘)!3-01:3'

.69399E+01

| >
N First Estimation (Exact First Esf?gation (ﬁndrill
Eigenvalues) Orxrder Reduc- Approach) Order Reduction
tion 2816 2816
- 1,2 -0.3891 * j6.8341 -0.4131 * 36.9342
3,4 -0.4982 "+ j7.0321 -0.5332 + j8.0321
5,6 "-0.5678 * j8.0132 -0.6767 * 39.3211
7,8 -0.5832 # j8.6342 -0.6432 2 3j9.9321
9,10 | -0.9238 * j3.0092 1-1.1}42 + 34,1213
11,12 -0.9878 * 3j1.0012 -1.1410 * j1.0034
13,14 | ~0.9787 +3j1.0341 -0.9998 * j2.1101
15,16 -1.8763 + j1.0363 -2.0304 + j1.9837
N ’ The Error The Error
1,2 ...41208E—Oétj.3215-02 -.27322E-01%j.1146
3,4 ~-12137E-01%j.11616E-01 ~-.50455E+03+j .1278E-01
5,6 ++-13547E-07£3.23616E-01 4+ 22373£3.12472
7,8 ~.19716E+00+j.60344E+01 -.10365E+01#j .41554
9,10 -.23607E-01#j.17683E-01 -.10441E+014j . 36963E-01
11,12 | -.15586E+004j.89434E+00 _.3697E+01%j.90186
13,14 -.26202E-01#j.28901E-01 ~.21116E+01%j.1574E+01
15,16 _.55122E+Oéij.5499Ef02
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Figure

S.4 Eigenvalue Movement vs Machme Exciter Gain K
in _the Fifth Order Model

—————— lst-Order Estimate
—_— 2nd-Order Estimate

Exact Value

/
Yoo A7
0.162 0.142 0.122 fo.osz 0.062 0.042 0.1820.162 9.142 0.12} 0.082 0.062
P » “ A — Ke 4 A )/ 4 - T — K
, B )& . 7
BN 1 -200
1—
<205 _
-210 SRy
-215
-220 /// 1t -100
2
1 -225 -105
Real {A ) ‘ A '
0.1820.162 0.142 0.122 {S 0.082.0.062, 0.182 0.162 0.142 0.122§ 0.082 0.062 ”
- e > . . : 4 < >
| e
¥
-0.20 - 1-0.5
1 ’ -
~ 1-0.25 1-1.0_ -
. ~ _ =
. ~
27— —T s 1-1.5
\ -2.0
1-2.5
-3.0
3
-0.50 1-3.5
€

3 a S £ v




A 123
6 A
0.2 0.4.0.6 0.8 1i.o 1.2 1.4 1.6 0.2 0.4 0.6 0.3 %1.0 1.2 1.4
1 + * ” > Th ¥ i R ™
N\ 4*’ 5*’ ‘ @
RN L -200 | -80 i
\\\
-85 =7
£ had
L ~90
/;-’
2 / ” 3 ~
- -215 el 1.~ = -95
E l//
I—220 { p _100
- 225 . L -105
b -230 K
N
: A
. ' Real (Ag) 9
0.2 0.4 0.6 0.8 * 1.2 1.4 ¢ 0.2 0.4 0.6 0.8 1.2 1.4, 4
. . : - , ' —c
A B
“+ o~z .
e
-.020 [ o5
P~ 1.0
-.025 %::;:::5::;;3=;==HL*\_\ .
E ‘
-.030 Sem
) oL NS -
E =2 [ -:035 -2.0
1- T -7 *\\
-.040 .25
-fo@s 3.0
-: 050" -3.5 -
. ‘ O
T -.055 , \

Figure 5.5 Eigenvalue Movement Vs Machine Amplifier Gain

Kh in the Fifth Order Model
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‘CHAPTER 6

SUMMARY,. CONCLUSIONS, AND RECOMMENDATION ¥0R FUTURE WORK «

S \

6.1 Summary and Conclusion

m-aey

The mainvaspects of power system dynamic stability including order
reduction, have been considered. A formulatior has been p;esented which
includes reprTSentation of detailed generator, turbine, governor, and
exciter components, in addition to the induction motor as a mechanical
load and the electric'network elements. . « o g

The overall system model is structured so that a wide variétf of
subsystem model types and complexities may be included. An important
requirement  .in the model development was tge facility for ease of
differentiation of the overall coefficien; matrix - this leads to the
efficient determination of eigenvalue sensitivities with respect to

system parameters. N

‘Derivation and application of simple expressions for eigenvalue

- first and second order sensitivities with respect to general system para-

meters have been applied to practical power systéms in both high order
and reduced order models.
The tracking algorithm has been described for the purpose of com-.

puting the critical system eigenvalues over a wide range of system para-

‘meter settings in reduced order models. This dlgorithm is essentialiy

based on the use of the second-order -sensitivity téchnique in obtaining
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ka‘good“estiméte for the eigenvalue pattern shift due to parameter varia-
tions.

In order to reduce the whole system order, some reduction tech-
‘niques have been applied to different practical systems. These £ech-.
niques are singular perturbation and aggregation. The advantages and
disadvantages of employing such reduction techniahes, from the view-
point of éower system engineers, havé been discussed.

’ For order reduction of a high order system model, it is important

to simplify such a model to a family of reduced models which one cur-

Tently uses in the industry. This provides a basis for the choice of

,modeliﬁg cémpl;aity since a variety-of models (each with ideﬁsifiable
assgmpxions corresponding to iﬁdustry standard models) may be reédily
developed from a single model ahé subsequently compared. In analysing
fhe dynamics of gomplex systems, sources of instability can be identi-
fied by isolating specific effects, T?ese aspects have be%p dgveloped
in thig wotk. ) -

' In the area of order reéuction, a variety of linear dynam;c equi-
valqnts'hébe been épplied to reduce the complexity‘of‘multi-ﬁaghine

systems. Since 1972, when Undrill et al 7, 8) developed the analytical . '

—y ri

formulation approach of constructing such dynamic equivalents -of the
system, research workers in power systems have Qggn encouraged to use
this simplified analytical approach in ordeér to apply and test it in

actual power systems. Although the field of dynamic equivalents is

very complicated, it is currently considered one- of the most important

research. areas. This is mainly because of the potential advantage in



-

simplifying the representation’ of a large-scale power system tq permit

analysis of the complex interactions between the large number of control |

parameters. These existing techﬂiques for constructing the linear dy-

namic-equivalents and subsequent simplification have been explained in

full detail. Their applicatioms to a multi-machine test system have been

investigatéd. In this thésis, due to some limitation in the existihg
formulation technique, an extended formﬁlation (dependent on thé exist-
ing one) has been constructed and applied to the same test system, En
wh%ch an impr;ved accuracy has been obtained.

One of the important problems now-rece}ving attention is the
analysis of load effects on power system dynamics. An attémﬁt has
beeq made in ‘this thesis to derive some conclusions related to.load
syétems, in particular‘relating to the dynamics of an induction motor-
infinite ?us system, and the effect of the variation of the different
control parameters on the stability of the system.

The appiication of these techniques to the analysis of different

systems with practical data has been investigated..

6.2 Suggestions for Further Research

Specific topicé which seem worthy of future studx are:

1. In this thesis, dttention has been focused on the formulation of
linear dynamic equivalents. It would be useful to exteﬁd such
a study by formulating non-linear dynamic equivalents. Speéifif
cally, such development would permit analysis of '"larger' dis-

.. \
turbances,. . i

PRRRNEEPEE Y

;
;
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o . N .
The construction of the linear dynamic equivalents of the

°

external system has been performed in isolation. It would

be of interest to inv&it\igate the response of the study system

(due to the occurrente O¥ the large diéturbance).by a coupling

of the study system dynamics with the external system équi-

valents. This ‘extension could use either Undrill's™ method

or the proposed method.
Eigenvalue tracking has been shown to be acceptable in reduced
order - models when changing one parameter at a time. It would

\

be of interest to examine changing two or more parameters simul-

taneously.

)
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APPENDIX A -

SYNCHRONOUS MACHINE SIMPLIFIED MODELS

In this Appendix (as mentioned in Section 2.4 of.Chapter.2), the
development of simplified models will be detaifed. Synchronous machines

may be represented by models of different order according to the detail

and accuracy level requ;red. As the model order increaseJ, the stability

computing time increases, therefore stability computations of.systems

t

with Aumerous machines consume a large amount of computationm time. Sim- '

plified models with a limited degree of accuracy may be a good compromise

between computing time involved and accuracy ‘of results. Second- and

" third-order models will be fepresented here.

s

A.1l Third-Order Model

In such a modei,\the dynémics o% the sypchrondus machine are ex-
pressed by only three differential equations which are: two for the
mechaﬁicai mgdés,-aﬁa‘one for the ¥ie1d-w%nding. fhis means that the
dynamics‘of the dampér windings are igno;;d. Therefore, the equations
describing this model can be deriyed from those of the fifth order-model

which is described in Chapter 2 by simply putting:

P ¥ = 0
kd (A1)

P qu 0

As a result, the currents in the damper windings (in and qu) become

’zero. This is simulated in the équgtions of the fifth order model by

v
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considering that the damper winding reactances equal infinity or

v

P ¥pg = Wy Vg v (Tpa/Xeqp) oy - ¥yl . (A2
with:
_ 1
p O = 5§'(Tm - 'I'g - JD) (A3)
PS8 = AW W o ' ‘ ‘ (A4)
where: ‘
Tg = wad 1q - yaq i (AS)
¥y x . (-i, + 1 ¥Y.) (A6) f/
= -1 )
] -ad . ad d xfdl fd’, ‘
Taq =" X0 1 y ‘ (A7)
- Xg = -1/(1/xad + l/xfdz) (A8) -
= g X

In order to couple machine equations with each other, the terminal
voltage equations for the different machines in the network are written

in a similar form to those of the fifth order model as:
!

= - .’- ! : [ ‘
Vo= eI i e vl - | (A9)
\, (
where:
: v . k
Vo= d , i = d " (A10)
v i
S L4
- ' ' C X
/ / - .
voo=| 0. ~and z = 2 q (AIl)
m a < r ‘
N ’ d a
L. q -
and ‘ X/
. N ad
vV = LY (A12)
"4 Xfge T

e AP -
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B ‘ ¢
‘Then, the algebraic¢ equations that couple the system machingé to-

gethef may be directly written from the network equation as follows:
o
I = [za + T ZNT] v (A13)
where Z; is a diagonal matrix whose diagonals are submatrices Zg of the

. . : I . .
different machines, and Vm is the transient voltage vector for the system

machines and is composed of subvectors va‘of each machine. \

Referring to the phasor diagram of Figure Al, with the V phasor
defined as the voltage behind the transient impedance (ra + Xé), if
the amplitude variation of V is taken as that of Vq approximgyely, or
in other words,.the transient saliency is neglected (xa‘ﬁ xé), the al-

gebraic coupling equation of equation (A13) becomes: *
o \ y

L=y V) (A14)
where: . .
ot b ool -1

Ym =T Y, T, YN = [za + zN]' ) (A15)

N

YN is the nodal admittance matrix of the network after appendiﬁg trans-
ient impedances (ra + xé) at their correspénding generating nodes.

g

A.2 Second Order Model

In such a model, the dynamics of the synchronous machine are ex- °
pressed by only the two differential equatioms of fhe mechanical modes:
This ﬁodel may be deriveq from the third order model, by considering
a constant field flux linkage (p wfd = 0); consequently Vq of equation
Al2 is constant as well. The electric output torque equation in terms

of Vq may be expressed as (63):

\
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(A16)

‘_ﬁ’“g‘qg.’:«“‘%{\. %
L e g wyEEL ey

iy "

L e renprr R R

Vt is the machine terminal voltage, Gijis the ‘internal power angle,

_between Vt and the q-axis of the machine (Figure Al), and it may be

expresséd as: ‘
| 6 = 1/2 - tan L vy - - (A17)
The damping effect ‘of the aamper windings can be included in. this =
model by adding their damping torque to th; mechaniéal equation as fol-
1ow§:
P JT = 3 (T - T, - Ty - Ky ) . (A18)
where the term Kd Aw represents appfoxi@ately the damping torque due to
the damper windings where Kd is called the damping factor and is given
by (63);. _ .
Ky = asin® &, +b cos? &, , (A19)
where:

= 2 ‘_ t i /4 2
a = Vo Gy - xg) T/ Xy

_ (A20)
b =V2 (x - x¥) TY /x? -
t ( q q) qo/ q
An average value for Kd may be taken as:

Kd (av) = (a + b)/2 . . (A21)
The different machines of the multi-machine system are coupled to
_each ofher_by the same algebraic equations of equation Al3 which, when

the transient saliency is neglected, becomes the same as equation Al4.

™
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APPENDIX B

STATE-SPACE MODEL FOR THE SYNCHRONOUS MACHINE SYSTEM

In this appendix, the formulation of the overall small scale dy-
namics of the system are obtained by perturbing the‘noﬁ-linear equa-
tions of the system abou£ the equilibrium operating point. The equa-
" tions are based on those presented in reéerences (21) and (56).

The equations can be classified according to the part of the

system which they describe:

1. #arks euntions for the syﬁchronops machine:
Ye = Xele* Xgikq - Xpala - (81)
Ya = Xmals * Xnlka " Xald ' \ L)
Yyq = Xnale * Xkalkd " *mald (B3)
Wq =.xmquq - kqiq (B4)
WKq = ququ - xmqiq (BS)
ep = LW, ¥p + Telg | - B
ey = ]‘;/wo Yeq - Talq - /¥, Wq S (B7)-
0 = i/wo ‘PK;: rKdin " (B8)
eq = }/wo Wq - e w/w; Yy ” ( (B9)
o = Ly ¥y * Tyl .(B10)
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. \
2. Transformer anj»transmission line: .
R ey - ebad =T i, +";§. ig - X ' (B12)
o . . :
ey - ebq = relq + W; 1q *x iy (B13)
ebd = e sin ¢ ) o . (Bl4)
Cpq = ©p COS § ’ : “(BIS)
3: Prime-mover and equationg-of Totﬂon: )
AS = Aw (B16)
Tm = Jwe+ de + Té (B17)
Pm =*Tm v/yo ) \ (B18)
Tté? + P o=Kg, o o (B19)
twh+h = -Kg+KP :' | (B20)
ng rg =KW | ‘ (B21)
4, eExcitati#n control scheme:
T, * e, = e, ) '  (B22)
ezt’= e2d + e2q (B23)
regtep =K (E_ -e) (B24)

The equations are arranged so that they appear in general form corres-

ponding to small increments about the ‘equilibrium point:

p s o ¢ Ry . (825)

where: . '
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‘X isr n dimensional state vector
Y 1s 2 dimensional algebraic vector

X is m dimensional input vector

U

P, Q and R are appropriately dimensiohe@ matrices.” The approach for .

the reduction to standard state space form is to pre-multiply equation’

¢

(B25) by p~:

By appropriately partitioning S and T we obtain:

; = Ax + Bu

A LY A

y = Cx

A, ¢

where:

X 1is a 12-dimensional state vector with the following components:

X} = 8¥pq = idcfemental'deaxiS'dgmper windingvflux linkage.
xz' = AQKq = incrempntal’q-axis'damper winding flux linkage..
X3 = 0¥, = incremental d-axis flux linkage.

X, = Awq = incremental élaxis flux linkage._

.xg = MY = incremental field flux linkage:

Xg = Aw = incremental angula$ velocity (rad./sec.).

N . |

U

X9 = 46 incremental load angle (rads).
xg = Ae. = incremental field voltage.
Xg =-de = incremental measured terminal voltage.

~
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X10

X1

X12

bg

bh

Apm

y 1is a 2-dimensional

Y1

Y2

X7

e
AI‘..
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incremental. governor output.

incremental steam valve movement.
(Y

»

incremental mechanical power.

output vector with components:

¥ is a 2-dimensional input bector with components:

u]

uz

AE

AP

ref

C

incremental reference voltage.

incremental command power.
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