TOPICS IN U-LINE BALANCING
By

DAVID HAMILTON SPARLING, B.SC., M.B.A.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University
Copyright by David Hamilton Sparling, January 1997

TOPICS IN U-LINE BALANCING

DOCTOR OF PHILOSOPHY (1997) McMASTER UNIVERSITY
(Business Administration) Hamilton, Ontario

TITLE: Topics in U-Line Balancing

AUTHOR: David Hamilton Sparling, B.SC. (Queen's University)
M.B.A. (Wilfrid Laurier University)

SUPERVISOR: Dr. G. John Miltenburg

NUMBER OF PAGES: xiv, 216

ABSTRACT

The popularity of Just-In-Time (JIT) methods in manufacturing has been rising
steadily for the last two decades. U-shaped lines, or U-lines, are an important
component of many JIT systems. While production on these lines is similar, in many
respects, to that on other configurations, the U shape has significant impact on station
assignments, line efficiency and production characteristics of the line. An important
decision related to U-line production is the assignment of tasks to stations, the U-line
balancing problem. This thesis explores aspects of U-line balancing including the nature
of different U-line balancing problems, the production characteristics of U-lines and the
efficiency of different solution algorithms.

The investigation into U-line balancing begins with the simplest problem,
balancing a single U-line constrained only by precedence relationships and the cycle time.
The efficiency of U-lines compared to straight lines and the effectiveness of different
optimal solution algorithms is evaluated. An effective branch and bound algorithm is
identified. It forms a basis for solving more complex problems. One of the differences
between U-lines and straight lines relates to the effect of operator travel and station
layout on station feasibility. Consideration of operator travel is the second topic
explored. Since JIT facilities often include numerous U-lines operating in close
proximity, there is an opportunity to increase operator efficiency by constructing stations

which contain tasks from more than one U-line. Simultaneous balancing of more than

iii

one line is introduced as the two U-line balancing problem and extended to N U-line
balancing. If access to U-lines is restricted to the opening of each U-line, the first
problem may be solved optimally for typical problems. The complexity of N U-line
balancing dictates the use of heuristics solution algorithms.

The nature of JIT production frequently requires the mixing of production of
several product models on a single line. One of the difficulties with mixed-model
production is that different models require different production resources and task
processing times vary from one model to the next. During mixed-model production
station times will fluctuate, a condition termed model imbalance. Mixed-model
production on U-lines is examined and solution algorithms which smooth the degree of
model imbalance are offered. The particular advantages of U-lines for mixed-model
production are explored.

In the final section the problem of U-line balancing is extended to include
consideration of stochastic task processing times. A constrained version of this problem
may be solved using dynamic programming. For general stochastic U-line balancing
problems a heuristic solution is found by employing a simulated annealing algorithm.

In this thesis a number of advantages of U-lines over straight lines are illustrated.
These advantages provide an incentive for the incorporation of U-lines into manufacturing

processes.

iv

ACKNOWLEDGEMENT

A Ph.D. thesis is a monumental undertaking which would be impossible without the
participation of a few and the support of many. First, I would like to thank my
supervisor, Professor John Miltenburg. No supervisor could be a better mix of
advisor, associate and friend. His calm and insightful direction has provided both
guidance and inspiration. I would also like to thank the members of my committee,
Dr. George Steiner and Dr. Brian Baetz, for their time, analysis and recommendations.

Many members of my family have played a role in this educational odyssey. My
parents, Hamilton and Elizabeth Sparling have always been supportive of my
endeavours and may not be aware of the effect that truly great role models can play in
the lives of their children. My parents-in-law, George and Margaret Kersell have, on
occasions too numerous to mention, cheerfully helped with my family and business

responsibilities.

This thesis is dedicated to my wife, Jane, and to our children, Beth, Laura, Julie and
Cam. Jane has been my best friend and advisor through three academic programs. She
has continually given her unmitigated support, without which I could never have
succeeded. My children help keep the fun and laughter in my life. The love of my
family gives me the happiness and balance needed to recognize what is truly important
in life and to enjoy all aspects of it.

TABLE OF CONTENTS

Descriptive Note i ittt ittt ittt et inenenennn. ii
AbStract i e ittt et e e ii
ACKNOWIEdgements oot ittt it i e e e e e e e \
Tableof Contentso v vt ittt ittt ittt i eeee vi
s 3 -1 (R xi
Listof Tables0iii ittt rineneennns xiii
PREFACE i it i ittt it e e e e e 1

ThesisObjectives oottt iennnennn. 2

Thesis Organizationo v ittt ittt ittt eeenen e 3

PART I

OPTIMAL SOLUTION ALGORITHMS FOR

THE U-LINE BALANCINGPROBLEMccivvinenn.n. 7
X1 T+ 7
Lo Introductioncvi ittt ittt it e e e 8
2. A Model of the Simple U-Line Balancing Problem 14
3. Dynamic Programming Solution Algorithms 15

vi

3.1 Dynamic Programming Recursion0o0ou..... 16

3.2 Enumeration of Feasible Subsets 17
33 Bounds..........iii i e e, 20
3.4 Computational Complexityc0vverrnnn.. .. 22
4. Branch and Bound Solution Algorithmsovvvn... 23
4.1. Breadth-first Solution Algorithm 23
4.2. Depth-first Solution Algorithm 29
5. Empirical Resultso ovuu ittt it e 31
6. Summary and ConClusionso.uuuunnrnnnnnnnn. . 40
Referenceso 43
Appendix 1 A Reaching Dynamic Programming Example 46
Appendix 2 A Bound on the Number of Feasible Subsets 49
Appendix 3 Procedure for Enumerating Successor Nodes 53
Appendix 4 Procedure For Randomly Generating Line Balancing Problems 56
PART IT

EXTENDING THE U-LINE BALANCING PROBLEM:

TRAVEL DISTANCES AND BALANCING TWO U-LINES 58
AbSITaCt . . . o e e 58
L Introductiono 59
2. The Simple U-line Balancing Problem with Travel 66
2.1 Definitionsand Notation00ou...... 66
2.2 Calculating Travel Distance and Travel Time 69
2.3 A Model for the SULB-TProblemcovvoonn... 70
2.4 ABranchand Bound Algorithm 71
3. The Two U-line Balancing Problemc00ouo.... 75
3.1 Definitionsand Notation000vvunnn.... 75
3.2 A Model for the 2ULB-TProblem0.0...... 78

3.3 An Optimal Solution Algorithm For The 2ULB-T Problem 79

3.4 Computational Complexityc0oiivteneennennn.. 86

4. Computational Resultsciitit ittt enennnnennns 87

5. Discussionand Conclusionsccctiiti et an.. 98

S.LEXtensionsctiiiiniteiittnienenatannan. 100

Referencest iiiiiinininennnoroseonesnaennnnns 104

Appendix An Illustrative Example of the 2ULB-T Problem 106
PART IO

BALANCING JUST-IN-TIME PRODUCTION UNITS:

THE N U-LINE BALANCINGPROBLEMc..... 111
T 111
LIntroductionttt iiinrnnerneeneeenaneennns 112
2. Modelling the NULB-TProblemc.c0tviieeenennnnnnn. 118
2. L ASSUMPHONS & . . o ittt it e e et e e 118
22Notation i i e it e e e e e 120
23NULB-TModelcciiiiiiiininennnnnnnnennnn 121
3. A Solution Algorithm for the NULB-TProblem 122
3.1 Selecting Multi-lineSubsets00iviirnernn. 123
3.2 The Multi-line Station Assignment Problem - General Case 126

3.3 The Multi-line Station Assignment Problem
-Fixed U-lineLocationscc0uvvunn.n.. 138
3.4 A Comparison of Complexity of Line Balancing Problems 141
4. A Computational Study of the NULB-TProblem 141
4.1 Study ParametersandProcedure 141
4.2 Study Results ittt ittt it it e 145
S. DiSCUSSION . .. vt i ittt ittt et e e e et 148
5.1 Extensionsto NULB-TResearch 149

viii

PART IV

MIXED-MODEL LINE BALANCING:
U-LINES AND SMOOTHING STATION ASSIGNMENTS
N 13 - T

2. Review of Mixed Model Line Balancing for a StraightLine
3. The Mixed-Model U-Line Balancing (MMULB) Problem
K B i ¢

3.3. A Solution Algorithm for the MMULB Problem
3.4 A Smoothing Algorithm for the MMULB Problem
4. Discussionand SUMMATY oottt initnn e eneeneeennnn.
Referencesottt e e e
Appendix The Mixed-Model Multiple U-Line Balancing (N-MMULB) Problem .

PART V
STOCHASTIC U-LINE BALANCINGo v i,
N - T A
L, INtroduction ittt it ittt e e e e e e e e,

2. A Dynamic Programming Approach For Solving the Stochastic U-Line
Balancing Problem
201 Notationo ittt ittt it ie ettt e e
2.2 A Model For The Stochastic U-Line Balancing Problem
2.3 A Dynamic Programming Algorithm For Stochastic U-Line

Balancingoiiitii it i e e e i e e, 191

2.4 Consideration Of Station Travelcovv... 197
3. A Simulated Annealing Approach To Stochastic U-line Balancing 199
K B B 1 T 199
3.2 Objectives for Simulated Annealing 199
3.3 A Simulated Annealing Algorithm for the STULB Problem 200
3.4 The Impact of Exceeding Cycle TimeonaU-Line 203
4. Unbalancing In Stochastic Assembly Line Balancing 204
5. DESCUSSION .. v vttt ittt it it e e e e 206
Referencesottt i i i e e 207
Concluding Remarks0.iiitinrinennnnenenn. 210
Extensions To U-Line Balancing Research 213

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 1
Figure 2

LIST OF FIGURES

Straightlinesand U-Linesttt nnnn...
Precedence Graph for the LinesinFigure 1
Precedence Relations for Example 1......... et e
Illustrative Example of the Branch and Bound Algorithm
Bound on the Number of Feasible Subsets

PART II

Traditional Lineand U-Linesccc0tveunun...
An Instance of a Multiple U-Line Balancing Problem
U-Line with Travel Distance: Notation and Terminology
Two U-Lines with Multi-Line Stations
The Effect of Order Strength on Beta Selection
The Effect of Altering the Travel Time/Task Time Ratio.
Optimal Balance for Illustrative Example

PART Il
Two U-Lines with Multi-Line Stations
An Example of a Just-In-Time Production Unit
Precedence Graphs forExample 1
Example of a General NULB-T Balance with Divided Subsets
Example of a NULB-T Balance with Fixed Locations

PART IV
Precedence Graph and Straight Line Balance for Example in Section 2 .
Mixed-Model ProductiononaU-Line

Figure 1 A Typical U-Line Balance

Figure 2 Precedence Relations for Example 1

ooooooooooooooooooooooo

ooooooooooooooooooooooo

LIST OF TABLES

PART I

Table 1 Results from Part 1 of the Empirical Study
Table 2 An Ilustrative Example of the Reaching DP Algorithm
Table 3 Enumerating Nodes for the Examplein Figure 3
Table 4 Random Problem Generation Parameters
Table 5 Problem Set Characteristics oo oo v v vn e e iee e ne e e

PARTII

Table 1 Problem Set Characteristics and Study Parameters
Table 2 Three Methods of Implicitly Including Travel in U-Line Balancing
Table 3 Results from 50 U-Line Balancing Problems, each with Ten Tasks
Table 4 ProblemsintheSecondStudy00oou....
Table 5 Data for the Illustrative Example00c0uu.u....

Table 1

PART IIT
Results from Steps 1 and 2 of the NULB-T Algorithm

Table 2 Multi-Line Station Assignments After Heuristic 1
Table 3 Computational Complexity of Different Line Balancing Problems
Table 4 Selected Results for 100 NULB-T Problems Solved Using Criterion 1 . .

PART IV

Table 1 Task Data for Examplein Section2000....
Table 2 Total Time Required byeachModel
Table 3 Calculations for MMULB Examplein Section3
Table 4 Task Processing Time Variance and Correlation Coefficients for

Examplein Section 3 0ttt it

PART V
Table 1 An Ilustrative Example of the Stochastic DP Algorithm

Table 2 Dominance in Duplicate Subsets of Size n=3 in the Example

xiv

PREFACE

To succeed in the current competitive environment manufacturing organizations
must operate with smaller inventories, shorter lead times and have the ability to respond
rapidly to changes in demand. These companies must meet customer expectations for
continuous improvement in the value of their products by increasing quality and through
vigorous cost reduction efforts. For many organizations Just-In-Time (JIT) production is
seen as the means of meeting these challenges. The move to JIT involves major changes
in manufacturing operations: production switches from a push to a pull system; batch sizes
are reduced, with many facilities using mixed-model production; and layouts are altered,
often incorporating U-shaped production lines. It is the last factor, the use of U-lines,
which is the focus of this thesis.

U-lines are one element of Shojinka, the continuous effort to reduce waste in
manufacturing. Combined with the cross-training of operators and the continual review
and revision of work practices, U-lines contribute to improved manufacturing efficiency
and effectiveness. The shape of a U-line provides two benefits: better visibility and
greater line balancing flexibility. If an operator in one station experiences difficulties
other operators on the U-line can easily be alerted and provide assistance. A central
question to manufacturing on any type of line is how to assign operators to stations, the

Line Balancing Problem. On a U-line a station may be organized so that during a single

2

cycle an operator can complete tasks on the front of the line, cross to the back of the line,
complete tasks there and return to the beginning of the station (see stations 1 and 2 in
Figure 1 on page 10). A U-line provides greater flexibility in station cohstruction than a
straight line and the number of operators needed will be less than or equal to the number
required on an equivalent straight line.

This thesis considers several topics related to the problem of assigning tasks to
stations on U-lines, the U-Line Balancing (ULB) Problem. Although the production
process on a U-line is similar to that on a straight line, several characteristics of U-lines
and their use in JIT systems make balancing U-lines a significantly different problem from

straight line balancing.

Thesis Objectives

Little research exists on the ULB problem. The primary goal of this study is to
expand our understanding of U-line balancing and to explore how it differs from straight
line balancing. Each of the five papers forming this thesis considers different aspects of
U-line balancing. Two questions remain central to the investigation.

1) How does station construction and operation differ between U-lines and straight

lines?

2) What effect do the differences between U-lines and straight lines have on

manufacturing operations?

A secondary thesis objective is to present at least one algorithm for solving each

of the problems examined. Where possible the algorithms seek an optimal solution.

Thesis Organization

The analysis begins with the most basic ULB problem. Additional constraints and
capabilities are incorporated into successive versions, gradually building toward more
complex and realistic problem variations. The body of the thesis is organized into five
sections, each presented as a separate and complete paper prepared for publication. The

five papers are briefly described.

Part 1. Optimal Solution Algorithms For The U-Line Balancing Problem
The first problem examined is one of balancing a single U-line with stations
constrained by cycle time and precedence relationships only. This Simple U-Line
Balancing problem is equivalent to the Simple Assembly Line Balancing problem
on a straight line. Different optimal solution algorithms for the problem are

presented and their effectiveness is evaluated in a computational study.

Part 11. Extending The U-Line Balancing Problem:
Travel Distances and Balancing Two U-Lines
Station travel on a straight line is a function of task length. Time for this
travel may be implicitly included in the task processing times and has no further
impact on station feasibility. In contrast, travel in a U-line station varies
depending on task locations and line layout. Station feasibility is affected by both
travel time and travel paths. To ensure station feasibility, the SULB problem is

extended to include consideration of station travel time and task locations. An

4
optimal branch and bound algorithm for this Simple U-Line Balancing with Travel
problem is offered.

In some JIT facilities a number of U-lines operate in close proximity. The
opportunity exists to balance two or more U-lines simultaneously and reduce the
total number of operators required to operate the facility. The topic of multiple U-
line balancing is introduced through the Two U-Line Balancing with Travel
problem. An optimal branch and bound algorithm is offered and the effectiveness

of balancing two U-lines simultaneously is examiﬁed in a computational study.

Part 111. Balancing Just-In-Time Production Units: The N U-Line Balancing Problem
Multiple line balancing is extended to balancing more than two U-lines
simultaneously. The complexity of this N U-Line Balancing with Travel problem
is such that finding an optimal solution is not feasible for most problems. Heuristic
algorithms are offered for both the general case, where U-line locations are not
fixed, and for the fixed location problem. The effectiveness of multiple line

balancing is evaluated through a computational study.

Part IV. Mixed-Model Line Balancing: U-Lines and Smoothing Station Assignments
JIT manufacturing frequently requires the production of several product
models on a single line. Mixed-model production is scheduled so that models are
interspersed throughout the production sequence in proportion to their demand.
Since different models require different task combinations and task times, total

station times may vary significantly as the models flow along the line. A problem

5

for mixed-model line balancing is to minimize the impact of these variations, a
process termed smoothing the line balance. Algorithms are presented for mixed-

model line balancing with smoothing on single and multiple U-lines.

Part V. Stochastic U-Line Balancing
The line balancing problems in the first four parts of the thesis all assume
deterministic task processing times. In many production facilities this is not a valid
assumption. The problem of balancing U-lines with stochastic task processing
times is analysed. For one well defined formulation of the problem, an optimal
solution may be found using dynamic programming. For more general stochastic
U-line balancing problems a statistical search heuristic, simulated annealing, is

employed.

In this thesis, it will be shown that U-lines offer several advantages over straight
production lines. While a higher level of manufacturing capability is required to
successfully utilize U-lines, the potential benefits provide a strong incentive for integrating
U-lines into manufacturing facilities. However, the applicability of the research and
algorithms presented is not limited exclusively to U-lines. Any production configuration
where different lines, or line segments, are located close together provides an opportunity
to construct stations which include previously unrelated tasks. Where this occurs, the
methods proposed for U-line balancing may. be employed to capture some of the
advantages offered by U-lines and thereby improve manufacturing performance.

Directions for this and other future research are discussed.

6
All algorithms, analysis and computational studies are the work of the author, with

guidance and suggestions by Dr. G. J. Miltenburg in areas of model and algorithm

development, computations, analysis and organization.

OPTIMAL SOLUTION ALGORITHMS FOR

THE U-LINE BALANCING PROBLEM

Abstract

The simple U-line balancing (SULB) problem assigns a partially ordered set of
tasks to stations on a U-shaped production line. U-line facilities consist of many individual
U-lines, each typically having between 5 and 20 tasks. The traditional simple assembly
line balancing (SALB) problem, where stations are arranged on a straight production line,
is just a simple case of the SULB problem. Three optimal solution algorithms -- a
dynamic programming algorithm, a breadth-first branch and bound algorithm and a depth-
first branch and bound algorithm -- are presented in this paper. The complexity of the
dynamic programming algorithm is determined. The optimal solution algorithms are
capable of solving realistic problems. Insights into the SULB problem and algorithm

performance are developed through an empirical study.

This paper has undergone two revisions for IIE Transactions and has been resubmitted for

review.

1. Introduction

Manufacturers have traditionally used straight assembly lines (or fabrication lines)
to produce high-volume products. These lines consist of stations where production tasks
are completed on the product as it moves from station to station down the line. One of the
problems associated with designing and operating assembly lines is determining how to
assign tasks to stations. The simple assembly line balancing (SALB) problem assumes a
single product, a precedence graph, deterministic task processing times and a specified
cycle time, and assigns tasks in such a way that the number of stations is minimized.! This
problem, along with numerous optimal and heuristic solution algorithms, is the subject of
a considerable literature. Some of the more recent papers include Baybars [1986], Ghosh
and Gagnon [1989], Hackman, Magazine and Wee [1989], Johnson [1981, 1988a, 1988b],
Talbot and Patterson [1984], Talbot, Patterson and Gehrlein [1986], and Hoffmann
[1992].

Recently manufacturers have begun using U-shaped lines rather than straight lines,
most often as a consequence of the implementation of just-in-time (JIT) principles into
their operations. In his book, The Toyota Production System, Monden [1993] describes
the many elements that comprise just-in-time, including the use of U-lines. See also Hall

[ch. 6, 1983] and the Japan Management Association [pp. 122-125, 1987]. Miltenburg

! This is actually the SALB-I problem. There is an SALB-II problem that seeks to minimize the
cycle time for a given number of stations.

9
and Wijngaard [1994] presented a definition, model and solution algorithms for the
problem of assigning tasks to stations on this new line. They call the resulting problem
the simple U-line balancing (SULB) problem. As the goal is to minimize the number of
stations for a given cycle time, the SULB problem corresponds to the SALB problem.

Figure 1 shows a traditional straight-line and a U-line. Notice that on a straight-
line the tasks that comprise a station are located one after the other. In this example, the
operator at the first station performs task 1, then task 2 and finally task 6 at the end of the
station. He/she then returns to the beginning of the station and starts again. In the U-line,
stations are comprised of tasks that may be located on opposite sides of the line (such as
stations 1 and 2 in Figure 1), as well as tasks located one after the other (stations 3 and 4).
It will be shown that the straight-line is a special case of the U-line. Notice also that
operators are located inside the U-line, in close proximity to each other. This improves
communication and increases visibility. As operators are multi-skilled, it is relatively easy
for them to work together to identify and solve problems.

One feature of JIT is that the production rate changes when the demand changes
(to avoid the buildup of inventory). The effect of this on the U-line is the following. The
production rate of any line is the cycle time, specifying, as it does, the time between the
completion of consecutive products. The cycle time is also the upper bound on the time
a station has available for completing its tasks. When the demand changes, the cycle time
changes, which may require a change in the assignment of tasks to stations (that is, a re-
balancing of the line). Because the U-line offers more options for assigning tasks to

stations, it is easier to modify an existing balance for a U-line than it is for a straight-line.

Figure 1

Straight line and U-Line Production Processes

Entrance Exit

0,060,000 0000

r*—\ N TN N

| P, < \N e’/ N’ N/ N/
Station 1. 2. 3. 4. 5.
Straight-Line
Entrance

10

11
Consequently, the minimum number of stations on a U-line will be less than or equal to
the minimum number of stations on a sMght—ﬁe.

The precedence graph for the lines in Figure 1 is shown in Figure 2. (This is
Jackson's 11-task problem [1956].) Notice that stations on the straight-line consist of tasks
whose predecessor tasks have been assigned to the same station or to earlier stations. For
example, task 8 is the last task in station 2. Its predecessors, tasks 1, 2 and 6, are assigned
to an earlier station--station 1. Stations on a straight-line may be formed by moving
through the precedence graph in a forward (or backward) direction and assigning tasks to
stations whose predecessors (successors) have already been assigned. Stations on the U-
line are different. The tasks that comprise a station on a U-line are those whose
predecessors or successors have already been assigned to the same station or to earlier
stations. For example, task 10 is the last task in station 2 on the U-line in Figure 1.
While three of its predecessors, tasks 2, 6 and 8, have not yet been assigned, its successor,
task 11, is assigned to an earlier station—station 1. Stations on a U-line may be formed
by moving simultaneously through the precedence graph in a forward direction and a
backward direction, assigning tasks whose predecessors or successors have already been
assigned. (See Miltenburg and Wijngaard [1994].)

The SALB problem is well known to be an NP-hard problem. The SALB problem
is a special case of the SULB problem where tasks can only be assigned working through
the precedence relationships in one direction. Thus the SULB problem is also NP-hard.
The limits on finding an optimal solution for instances of both problems depend on several

factors including the number of tasks, the width and density of the precedence graph,

. 12
Figure 2

Precedence Graph for the Lines in Figure 1

Task Time

Task Number

13

the distribution of task processing times, and the cycle time. It will be shown that
computation time and storage space requirements for the SULB problem are significantly
higher than for the SALB problem, and that optimal solution algorithms are unable to
solve certain difficult instances, such as those with more than 30 tasks, within a reasonable
time. This limitation is not prohibitive, however, because most U-lines are small,
typically consisting of between 5 and 20 tasks.

Optimal solution algorithms for the SALB problem and the SULB problem fall into
two categories, dynamic programming (DP) and branch and bound (B&B) algorithms.
Dynamic programming algorithms use either a recursive fixing procedure (Schrage and
Baker [1978]) or a reaching procedure (Lawler [1978], Denardo and Fox [1984]) to
enumerate feasible subsets, and apply the DP recursion to evaluate the cost of the feasible
subsets. Miltenburg and Wijngaard [1994] presented a recursive fixing DP algoritlim for
the SULB problem and used it to solve instances with up to ten tasks. (They also
presented two heuristics--a modified Hoffmann enumeration heuristic and a ranked
positional weight heuristic--for solving larger instances.) Branch and bound algorithms
are of two types, breadth-first and depth-first. Various solution algorithms for the SALB
problem were reviewed by Johnson [1981], Talbot and Patterson [1984], Queyranne
[1985] and Hackman, Magazine and Wee [1989]. Computational comparisons in these
papers conclude that B&B algorithms are more effective than DP algorithms, and that the
breadth-first algorithm of Hackman, Magazine and Wee [1989] and the depth-first
algorithm of Talbot and Patterson [1984] are among the particularly effective algorithms.

More recently, two depth-first algorithms, Fable by Johnson [1988] and Eureka by

14
Hoffmann [1992], have been shown to be effective at solving SALB problems with
hundreds of tasks.
This paper extends the previous work on the SULB problem in three ways. First,
a reaching dynamic programming algorithm is presented. This algorithm is shown to be
more effective than the recursive fixing dynamic programming algorithm and permits
optimal solutions to be obtained for problems with up to 30 tasks. Second, the complexity
of the dynamic programming algorithm is determined and bounds are placed on ihe
number of feasible subsets that are enumerated. Third, two B&B algorithms are
developed, a breadth-first algorithm and a depth-first algorithm. The breadth-first
algorithm is shown to outperform the dynamic programming and depth-first algorithms.
The remainder of the paper is organized as follows. A model of the SULB problem
is reviewed in section 2. Dynamic programming and B&B algorithms are presented in
sections 3 and 4. Results of an empirical study are described in section 5. A summary

and discussion of areas where more research is needed are given in section 6.

2. A Model of the Simple U-Line Balancing Problem

The following model was presented in Miltenburg and Wijngaard [1994).
N = The number of tasks to be completed on the U-line.
S = {x | x=1,...,N}. The set of tasks.
t, = The (deterministic) processing time for task x.
P = {(x,y) | task y is an immediate successor of task x}. The set of precedence

constraints.

15
C = The cycle time.
ST, = {x | task x is performed at station m}. The tasks assigned to station m.

M = The number of stations.

The SULB problem is:
Subject to: M
.L.J=:ST‘” =S
ST, NST, =0

ury

Yt =<C m=1,.M

x€STp,

For every tasky € S

Either: If (x,y) € P,x€ ST, ye€ ST;, then i < j, for all x;

Or: If(y,z)e P,ye ST}, z € ST,, then k < j, for all z.
The objective is to minimize the number of stations, M. This is equivalent to

minimizing the total idle time, MC - ¥, since C and ¥,.t,, are constants. The first
constraint ensures that all tasks are assigned to a station. Tasks are assigned to only one
station as a consequence of the second constraint. The sum of the task times at a station
cannot exceed the cycle time because of the next constraint. The fourth constraint ensures
that tasks will be assigned to stations only when all their predecessors or successors have

already been assigned to the same station or to a previously constructed station.

3. Dynamic Programming Solution Algorithms
Dynamic programming algorithms find the optimal sequence in which the N tasks

are assigned to the M stations. The algorithms consist of twe procedures, the recursion

16

and the generation of feasible subsets. The dynamic programming recursion is discussed
in section 3.1. Two approaches for generating feasible subsets, recursive fixing and
reaching, are outlined in section 3.2. Bounds on the number of feasible subsets are
presented in section 3.3. The complexity of the dynamic programming algorithm is

determined in section 3.4.

3.1 Dynamic Programming Recursion
Define the following notation.

S;cS§ S; is a feasible subset of S if and only if for every task, x € S, all

predecessors or all successors of x are in S,.
k= A task which when removed from S; leaves the subset S-{k} feasible.
= Idle time at station m.

F[S] = The minimum cost of feasible subset S,. Cost is defined as the number of
“full” stations (those where there is no available task x with t < I,) required
to complete the tasks in S; plus the time in last station. The minimum cost
is achieved when tasks are arranged in an optimal sequence and assigned to
stations in that sequence.

g(k) = The additional cost incurred when task k is added to the end of the optimal
sequence of the tasks in S;-{k}.

The following dynamic programming recursion is applied to every feasible subset, S;.
F[S] = min { F[S], F[S;-{k}] + g(k) }, Q(S) = {keS;, S;-{k} is feasible}

keQ(s)
Fle] =0

17

The last feasible subset to be enumerated is S, the complete set of tasks. When this

is done, the optimal assignment of tasks to stations is constructed by backtracking through
F[S] to determine the optimal sequence of tasks (x(N), x(N-1), ..., x(1)), where task x@)
is the j'th task in the sequence. Tasks are then assigned to stations in reverse order, (x(1),

x(2), ..., x(N)), until each station is filled.
3.2 Enumeration of Feasible Subsets

Recursive Fixing Approach

Miltenburg and Wijngaard [1994] used the recursive fixing approach (see Schrage
and Baker [1978]) in their dynamic programming algorithm. They define forward and
backward feasible subsets, S and S). A subset S c § is forward feasible if and only if
for every task, x € S, all predecessors of x are also in S/. A subset S;” < S is backward
feasible if and only if for every task, y € S,’, all successors of y are also in SP. Their
algorithm may be described as follows.

S;” Loop:
* Select the next backward feasible subset, S® (by moving through P in a
backward direction).
S Loop:
® Select the next forward feasible subset, Sf, (by moving
through P in a forward direction) where no task x € S is
already in S;" and where the subset S; = S* U Sf was not
already considered during this loop.
e Perform the DP recursion:

F[S] = min {F[S], F[S-{k}] + g(k)}, Q(S) = {keS,, Si-{k} feasible}
keQ(s)

18

End of S, Loop.
End of S;> Loop.
For the SALB problem, Schrage and Baker [1978] provide a compact scheme for

assigning unique labels to subsets. It takes advantage of two features of the SALB
problem; 1) the task numbering scheme whereby if task i precedes task j then i < j, and
2) the problem is solved by working through the precedence relations in one direction
(either forward or backward). As neither feature is found in the SULB problem, the
labelling scheme cannot be extended to this problem. (It would, for example, assign the
same label to different subsets.) Consequently, in this paper a binary labelling scheme is
used for the SULB problem.

Let #(S) and #(S®) denote the number of forward and backward feasible subsets,
each including the null set. If S, is a forward feasible subset then its complement {S-S;}
must be a backward feasible subset. Similarly, the complement of each backward feasible
subset is a forward feasible subset. Therefore, #(SH = #SY), and a loose upper bound on
the total number of feasible subsets for the SULB problem is [#(SH]%

The drawback of the recursive fixing approach for the SULB problem is that
subsets may be considered more than once, and, because of . the way the subsets are
enumerated, all the data required to evaluate each S; - {k} will not be available until the

last time each subset S, is enumerated.

Reaching Approach
The reaching approach (Lawler [1979]) is an improvement over the recursive fixing

approach because each feasible subset is considered at one stage only and all data required

19
to determine F[S] is available at that time. The reaching approach generates subsets in
increasing order of subset size. Define S, to be the i'th feasible subset of size n tasks,
and #(S,”) to be the number of such subsets. Also define an assignable task, u(j),
i=1,2,..., for subset S to be a task that is not an element of S;, but whose predecessors
or successors are all elements of S;”. Finally let S,** be a feasible subset of size n+1
formed by adding one assignable task, u(j), to the end of S; S, ®*? = §® + {u(j)}.
Then the reaching DP algorithm is implemented as follows.

Set n=0, F[S,?]=0.
n Loop: Generate all feasible subsets of sizen = 1 to N.
e Setn=n+1, i=0.
Set List(a)=o, List(b)=o.
1 Loop: For each subset i, of size n-1, generate corresponding subsets of size n.
e Seti=i+1,j=0.
® Wheni > #(S;*"), exit i Loop.
j Loop: For a subset S, generate all feasible subsets S,/ = SV + {uj)}.
* j=j+1.
* Find the next task u(j) which is assignable and add u(j) to
the end of feasible subset S,*V; S,@ = S&V+{u(j)}.
Calculate the cost F[S;;®] = F[S;®"]+g(u(j)).
* For each j save S, u(j) and F[S,;®] in List(b), the current
subset data array.
* The j loop ends when there are no more tasks assignable to
subset S®,

End of j loop
Merge List(a) and List(b)

® When List(b) is completed, merge it with List(a), the master

20
subset data array. During merging, occurrences of the same
subset in both lists are identified and only the one with the
minimum cost is retained in List(a). Ties are broken by
retaining the subset from List(a) only.
¢ Set List(b)=o.
End of i Loop.
¢ Copy the results in List(a) to List(n), the list of subsets of
size n. Set List(a) = o
End of n Loop.
When the set of all tasks, S, is enumerated, the optimal sequence of tasks is

constructed by backtracking. An illustrative example is solved in Appendix 1.

3.3 Bounds

To estimate the computation time and storage space requirements for the SULB
problem, it is necessary to determine the number of feasible subsets. While this is a #P-
complete problem (Provan and Ball [1983)), it is possible to determine an upper bound on

the number of feasible subsets.

Bounds for the SALB problem

Schrage and Baker [1978] developed a labelling scheme that can be used in the
SALB problem to assign a label, L,, to each task x. The sum of the labels, ¥ xesLy, is an
upper bound on the actual number of forward feasible subsets, #(S%). Subsequent work by

Kao and Queyranne [1982] showed that the difference between this bound and the actual

21
number of subsets, Y.L, -#(S), grows exponentially as the order strength of the problem
decreases. Order strength is defined as the number of precedence relations, R, in the
precedence graph divided by the maximum number of possible precedence relations, N(N-
1)/2; order strength = R/[N(N-1)/2].

Steiner [1990] considered the effect of the width of the precedence graph, w, on
the number of (forward) feasible subsets. He defined width as follows. For any u,veS,
if u must precede v in every feasible sequence (that is, task u must be completed before
task v), then u<,v and, u and v are comparable. A subset CcS is a chain if for every
u,veC, uand v are comparable. A subset ACcS is an antichain if no two elements of AC
are comparable. The maximum size of an antichain in P is the width, w, of P. Steiner's

bound on #(S"), the number of forward feasible subsets, is, #(SH < [(N+w)/w]™.

Bounds for the SULB problem

A very loose upper bound on the number of feasible subsets for the SULB problem,
#(S), is found by squaring one of the bounds on the number of forward feasible subsets--
the Schrage and Baker bound or the Steiner bound. If #(Sf) was determined for the less
complex SALB problem then a tighter lower bound is provided by #(S) < #(S)?>. Using
this relationship, both previous lower bounds may be tightened further as a consequence
of the following lemma, the proof of which is given in Appendix 2.
Lemma: An upper bound oh the number of feasible subsets, #(S), for the SULB

problem is #(S) s [#(SH’+#(SH)/2.

Since the Schrage and Baker bound and the Steiner bound are upper bounds on

22
#(S", they may be tightened in the same manner. These bounds are more useful since the
SALB problem need not be solved prior to calculating the bound. In summary, the upper
bounds on the number of feasible subsets for the SULB problem are:
#(S) < [Qresl)’+Lresl/2,
#(S) < [((N+w)/w)™+((N+w)/w)*)/2, or

#(S) < [#(S)’+#(SH)/2, which cannot be used unless #(S) is found first.

3.4 Computational Complexity

The complexity of the dynamic programming algorithms is a function of the
number of feasible subsets, #(S), that are generated. Unfortunately, as determining #(S)
is itself an #P-complete problem, the best that can be done is to express the complexity as
a function of an upper bound on #(S); say #(S) < [#(S)>+#(S)/2. Thus #(S) may be
considered to be O(#(S%)?).

Under the reaching approach a single task, u, is added to each feasible subset,
provided all of its predecessors or successors are already in the subset. As there are N
tasks, each of which requires O(N?) computations to check for predecessors and
successors, the complexity of dynamic programming under the reaching approach is
O(N?[#(S)*]). The complexity is the same when the recursive fixing approach is used
because, rather than add a task, u, the recursive fixing approach removes a single task, k.

It is interesting to note that the complexity of dynamic programming for the SALB
problem is O(N*[#(SN]) (Kao and Queyranne [1982]). Clearly the SULB problem is a

very difficult problem.

23

4. Branch and Bound Solution Algorithms

A number of empirical studies of the SALB problem concluded that B&B
algorithms out-performed dynamic programming algorithms. See, for example, Johnson
[1981] and Talbot and Patterson [1984]. Recent efforts have shown that both breadth-first
(Hackman, Magazine and Wee [1989]) and depth-first (Talbot and Patterson [1984],
Hoffmann [1988] and Johnson [1988]) algorithms are effective for the SALB problem.
Because of the nature of the SULB problem, where tasks may be assigned from both ends
of the precedence graph, not all SALB algorithms translate effectively to the SULB
problem. A breadth-first algorithm and a depth-first algorithm are now described for the

SULB problem.

4.1. Breadth-first Solution Algorithm

The breadth-first B&B approach works well for the SULB problem. A particularly
effective algorithm, which builds on work of Van Assche and Herroelen [1978], Johnson
[1988] and Hackman, Magazine and Wee [1989] for the SALB problem, consists of the
following steps.
Step 1: Initial Bounds on the Number of Stations

1.1 An Upper Bound

Solve the SULB problem using a heuristic, H, to obtain an upper bound, Uy, on

the number of stations. Call this assignment of tasks to stations the current best

solution, U= Uy. A single pass, maximum task time heuristic was used in this

Step 2:

24
research because it is simple, fast and effective (Hackman, Magazine and Wee
[1989)). Tasi:s from a set of available tasks are assigned to stations in decreasing
order of task time and the set of available tasks is updated each time a task is
assigned.

1.2 A Lower Bound

Determine the theoretical lower bound on the number of stations, L* = [}, .¢t,/C].2
If Upyreee = L then stop.

Branch and Bound

2.1 Enumerate Successor Nodes (Stations) to the Branching Node

* Except for the first node, which is the starting node, each node represents a
station. In this step all nodes that follow the current node are enumerated using the
node enumeration procedure described Van Assche and Herroelen [1978] (see
Appendix 3).

* As successor nodes to node i are created, any nodes which are subsets of other
suécessor nodes of i are fathomed (Jackson [1956]).

® When each node is created, a label representing the set of assigned tasks in the
path to and including the node, is computed. Once all successor nodes to a node
i have been enumerated their labels are compared to labels of previously created
nodes. Where nodes have the same label, the node with the fewest number of

stations is retained, and the other nodes, with their successors, are fathomed. In

?[z] is the smallest integer > z and |z] is the integer portion of z.

25
the event of a tie, the first node that was generated is retained. This corresponds
to Johnson's [1988] labelling dominance rule, with the difference that a binary
labelling scheme is used instead of Schrage and Baker's [1978] labelling scheme.
* If a node completes z.a solution to the problem which improves on the current best
solution update U,,,.....

2.2 Determine the Lower Bound for each Node
* For each node, i, calculate the accumulated idle time, L, in the path to the node,
as well as a lower bound, LB, on the number of stations. The following four lower
bounds are determined. (LB2 is new, LB3 and LB4 were used by Johnson [1988].)
Lower Bound 1:
If D; is the depth of node i (that is, the number of nodes or stations in the
path to and including node i) then the theoretical lower bound is
LBL; =D, + [} t/C],

XEA;
where A, is the set of tasks not yet assigned to stations.

Lower Bound 2:
If t,,;, is the average of the two minimum unassigned task times and #(A)
is the number of unassigned tasks then

LB2; = [#(A)/[Cltein] T
Lower Bound 3:
All tasks in A; with task processing times exceeding half the cycle time
must be assigned to a different station:

LB3, = #(xcA, | C/2 < t).

26
Lower Bound 4:
LB4,= #(x€A, | 2C/3 < t) + 0.5#(xcA, | C/3< t, < 2C/3)

The lower bound for node i is LB; = max(LB1; , LB2,, LB3,, LB4).
2.3 Bounding
* Fathom any node, i, where LB, 2 U, 0.
® If Upre - LB; > 1, U, an upper bound on the number of stations in the solution
that contains node i; is calculated by using the single pass, maximum time
heuristic, H, to assign all unassigned tasks to stations.

U; = D,;+H(A). If U, < U,,.,, set U, ., = U..
2.4 Branching
Branching occurs as follows. Branch on the deepest node (that is, the node i with
the largest D). In case of a tie select the node with the minimum L/D; (that is, the
node in the path with the lowest accumulated idle time per station). If there is still
a tie select the first node that was checked.
2.5 Stopping Rule
Stop when there is no unfathomed node i with LB, < U, meaning that no
further improvement is possible. The optimal solution is the current solution and

it requires U, Stations.

Example 1
Consider the problem shown in Figure 3. A summary of the application of the

breadth-first algorithm to this problem is given in Figure 4. Using the maximum task time

27

Figure 3

Precedence Relations for Example 1

Task Time

11

Task Number

Cycle Time, C=20

2
Figure 4 8

Ilustrative Example of the Branch and Bound Algorithm

Level
0
Node Number
1
I=6 I= I=
Node Tasks
2
LB = Lower Bound on the number of stations LB=5
I= Station Idle Time =9
3
Optimal Solution
Station Tasks
1 8,6,4
2
7,5 4
3 1,3
4 2

29

heuristic, the initial upper bound is found to be § stations. This is the current best
solution, Uy, .= 5. The lower bound is L.°= [Xt/C1=["75/20] = 4 stations, which is less
than U,,.,, and so the algorithm moves to Step 2.

Four possible initial nodes are enumerated. Each represents an assignment of tasks
to the first station. Node 1, with tasks {1,8}, has a total task time of 14 minutes and an
idle time of 6 minutes. The lower bound at this node is LB, =max (5,3,4,4) =5
stations. That is, any solution that contains node 1--tasks {1,8} assigned to station 1--
would require at least 5 stations. Because node 1 does not improve on the current best
solution it is fathomed. Node 2 also has a lower bound of 5 stations and is fathomed.
Nodes 3 and 4 have lower bounds of 4 stations and so may lead to a solution that is better
than the current best solution. Consequently, they are considered for branching. As node
4 has less idle time than node 3, it is the node from which branching occurs. Only two
nodes follow from node 4. These are node 5 (task {1} assigned to station 2) and node 6
(tasks {7,5} assigned to station 2). The lower bound on node 5 is § stations and so node
5 is fathomed. This leaves nodes 3 and 6 for further branching. Node 6 is at a greater
depth than node 3 and so is selected for branching. This process continues as shown in
Figure 4. The optimal solution consists of nodes 4, 6, 7 and 8. The optimal assignment

of tasks to stations is shown in the figure.

4.2. Depth-first Solution Algorithm
Depth-first algorithms for the SALB problem construct a solution one branch ata

time, retaining only the current branch in memory. For this reason, they offer a

30
significant advantage over other algorithms in terms of storage space required. Depth-first
algorithms employ a variety of strategies to avoid complete enumeration of all possible
sequences of stations. Not all of these strategies are as successful for the SULB problem.
In Talbot and Patterson's [1986] algorithm for the SALB problem, upper and lower
bounds on the station number to which each task can be assigned and still improve the
current best solution are computed. Tasks are assigned to stations in such a way that these
bounds are not crossed. In the SULB problem stations are not created sequentially from
the beginning to the end of the line. The last station can occur at any point along the U-
line making Talbot and Patterson's bounds very loose when applied to the SULB problem.

The Fable and Eureka depth-first algorithms of Johnson [1988] and Hoffmann
[1992], respectively, may be applied to the SULB problem. The most successful
algorithm we tested was a combination of the two with some modifications. In the SALB
problem, depth-first ﬁ&B is facilitated by a numbering scheme in which if (x,y)eP, then
x <y. Thus, if station i contains task x and station j contains task y then i<j. This property
is not found in the SULB problem. The search for tasks to be added to a station after a
task x is assigned, proceeds in both directions from task x in the precedence graph.
Consequently the depth-first algorithm acts on an ordered list of available tasks similar to
the PEND list of Van Assche and Herroelen [1978] (appendix 3) instead of a list of tasks
ordered by task number. While this eliminates considering the same station assignment
twice at any branching point, it does not eliminate considering the duplicate subsets with
more than one station.

The procedure for implementing the depth-first algorithm is similar to that used in

31
the breadth-first algorithm. Initially a heuristic upper bound is found, U,=H(x|x€S), and
compared to a lower bound, L* = [}, /C), (steps 1.1 and 1.2 in the breadth-first
algorithm). If the upper bound exceeds the lower bound, U, > L°, the depth-first begins.
As in Eureka an initial current slack is defined, CS = L"-Y,, t,. The algorithm builds a
solution along a single branch until the accumulated idle time exceeds the current slack,
at which point backtracking occurs. If no solution can be found with the current slack, the
slack is increased by one cycle time, CS-CS+C, and the procedure recommences,
provided the new slack does not correspond to the heuristic upper bound. The explicit
search of the solution tree is further reduced by incorporating the following rules into the
algorithm. 1) If the label of a newly created station equals the label of a previous station
then backtracking occurs (Johnson [1988]). 2) A lower bound for station i,

LB; = max(LBl; , LB2;, LB3;, LB4) (step 2.2 in the breadth-first algorithm) on the
number of stations required to complete the remaining unassigned tasks is computed. If

it exceeds the upper bound corresponding to the current slack then backtracking occurs.

5. Empirical Results

An empirical study was undertaken to examine the SULB problem for the purpose
of gaining insights into the nature of the SULB problem and identifying the most efficient
optimal solution algorithms.

In the first part of the study, the efficiencies of the U-line and the straight-line were
compared (efficiency was defined to be the number of stations in the line). Then the

recursive fixing and reaching DP approaches were compared for the two problems. Next

32
the computation time and storage space requirements of the reaching DP algorithm, and
the breadth-first and depth-first B&B algorithms were investigated for the SULB problem.

Thirty small problems, ranging in size from 7 to 18 tasks, were selected. Five
were from the SALB literature (Bowman [1960], Dar-El [1964], Jackson [1956], Jaeschke

[1964] and Merten [1967]) and 25 were randomly generated (Problem Set 1 in Appendix

4). Six different randomly generated cycle times, ranging from C=max{t} to

C=2max{t}, were selected for each problem. The resulting 6 x30=180 instances were

solved first as SALB instances and then as SULB instances. In 87 SALB instances and 134

SULB instances, heuristic H gave a solution where the number of stations equalled the

theoretical lower bound, [Y't/C). For the remaining 46 "difficult" SULB instances,

optimal solutions were obtained using recursive fixing DP, reaching DP, breadth-first

B&B and depth-first B&B algorithms. The algorithms were coded in QuickBasic and run

on a 486, 50 mhz computer. The results, from which the following insights are gleaned,

are shown in Table 1.

1. The straight-line is a special case of the U-line. For a significant number of
instances, a straight-line is less efficient than a U-line. In 22 percent of the
instances studied the straight-line required more stations than the U-line, and
straight lines required an average of 4.3 % more stations than the U-lines.

2, Heuristic H was more effective for solving the SULB problem than for the SALB
problem. It gave an optimal solution in 81 percent of the SULB instances and 62
percent of the SALB instances. The SULB problem is less constrained than the

SALB problem, and so it is easier for a heuristic to find very good assignments

Table 1

Results from Part 1 of the Empirical Study of the SULB Problem

Section 1: A Comparison of SALB and SULB Optimal Solutions

| Percent of problems where fewer
stations were required

| Percent of problems where the solution
from the maximum task time heuristic
{ equals the theoretical lower bound

| Percent of problems where optimal
solution was obtained from the
maximum task time heuristic

= @
U-Line
2%
48% 74%
62% 81%

Section 2: A Comparison of Computational Requirements for the SALB and SULB
Problems when the Reaching Dynamic Programming Algorithm was Used

| Average number of feasible
| subsets enumerated

| Average time required to
generate feasible subsets

Bound for the
Straight-Line

#(SY{L, L,}

Actual Number of Subsets / Boynd

Sy #©S)
{[(N+w)/w)™ {I¥SY+4#(S91/2}
+((N+w)/w)")/2}

33

#(S7) subsets

#(S) subsets

Section 4: Comparison of Optimal Solution Algorithms for the SULB Problem’

the lower bound at each node.

Algorithm 6 Same as Algorithm 4 except that
lower bound LB,=max(LB3,, LB4)) is used.
Algorithm 7 Same as Algorithm 4 except that lower
bound LB;=max(LBl;, LB2, LB3, LB4) is used.

Depth-First Branch and Bound
Algorithm 1 A modification of the Eureka implicit
enumeration algorithm (Hoffmann [1992]).
Algorithm 2 Same as Algorithm 1 except that lower
bound LB,=max(LBI;, LB2,, LB3,, LB4) is used.
Algorithm 3 Same as Algorithm 2 except that label
dominance rule is used.

Note: 1. Solutions for the 46 problems in problem set 1 where the heu

does not achieve the theoretical lower bound.

e B e
Algoerithm Total Solution | Total # of
Time (seconds) Nodes
Dynamic programming (reaching method) 3814 N/A
Breadth-First Branch and Bound
| Algorithm 1 Branch on node i with the minimum 1302 3530
L/D;. Break ties by selecting i with the
maximum D;. Use lower bound LB1,. Do not use
label dominance rule.
Algorithm 2 Same as Algorithm 1 except that 522 1085
label dominance rule is used.
Algorithm 3 Branch on node i with the maximum 508 1020
level D; until first solution is found. Break
ties by selecting i with minimum I/D,. Use lower
bound LBI; and label dominance rule. When the
first solution is found revert to Algorithm 2.
Algorithm 4 Branch on node i with the maximum 471 803
level D;. Break ties by selecting i with the
minimum I/D,. Use label dominance rule. Use
lower bound LB2,.
Algorithm 5 Same as Algorithm 4 except that the 1181 803
maximum task time heuristic is used to calculate

ristic upper bound

Part 5: Comparison of Optimal Solution Algorithms for the SULB Problem for
Larger, More Difficult Problems®

Optimal Solution Algorithm | % Proven Optimal | Total # of Stations

Breadth-First B&B
Problem Set 2 91% 1241
Problem Set 3 70% 1168
Depth-First B&B
Problem Set 2 75% 1252
Problem Set 3 70% 1158

Note: 2. Solutions for the problems in problem sets 2 and 3.

36
of tasks to stations. Being greedy or myopic in the assignment of tasks to early
stations is less likely to cause difficulty with assignments at later stations.

A comparison of the computational requirements for the SALB and SULB
problems when the reaching DP algorithm is used, shows how difficult the SULB
problem is (section 2 of Table 1). The average number of subsets that are
generated was 55 for the SALB problem and 599 for the SULB problem, and the
average time to generate all these subsets was 6 seconds for the SALB problem
compared to 129 seconds for the SULB problem.

Section 3 of Table 1 shows that the Schrage and Baker bound and the Steiner
bound on the number of feasible subsets generated by dynamic programming is
poor for the SULB problem. The actual number of feasible subsets is only 14.7%
of the Schrage and Baker bound and 6.0% of the Steiner bound. This is not
surprising since these bounds were not very tight for the simpler SALB problem.
Solving a SALB problem to determine #(S'), the actual number of forward subsets,
and computing #(S) < [#(S)>+#(S))/2, gives a much better bound for the SULB
problem but since the SALB problem is a NP hard problem itself, the usefulness
of this bound is doubtful. Determination of tighter upper bounds is an area of on-
going research.

The reaching DP approach is more effective than the recursive fixing approach, in
terms of computation time and storage space. Due to space limitations in the
algorithm provided by Miltenburg and Wijngaard [1994] the recursive fixing

algorithm could only solve 150 of the 180 instances. For those instances which

37
both algorithms solved, the reaching approach was faster and created fewer
subsets. The computation time for the reaching approach was 43 percent of the
time for recursive fixing, and the number of subsets was 46 percent of the number
for recursive fixing. This result is consistent with Kao and Queyranne [1982] and
Steiner [1990] who also found that reaching outperformed recursive fixing.

The total time taken by the best breadth-first B&B algorithm (version 7 in section
4 of Table 1) to solve the 46 difficult SULB instances was 9% of the time taken by
the reaching DP algorithm (344 seconds versus 3814 seconds). Most of the time
the breadth-first algorithm is able to either find a solution or fathom all the
branches, and stop, after considering only a small fraction of the possible branches
and nodes. Because the upper and lower bounds are quite tight, the algorithm is
able to quickly determine when improvement beyond the current best solution is
not possible. DP on the other hand, does not stop until it has completed all its
computations. It is clear that the effectiveness of B&B depends on the quality of
the upper and lower bounds and that the bounds presented in this paper are of high
quality.

The best combination of branching and bounding rules for the problems considered
here was to branch on the depth, D,, break ties using average idle time per station,
use a lower bound at each node that was the maximum of four lower bounds, and
not use an upper bound at each node (version 7 in section 4 of Table 1). The
dominance rules are even more important for the SULB problem than for the

SALB problem. This is because the potential for duplicating subsets and stations

38
is much higher on U-lines than on straight lines.

8. Although the best breadth-first algorithm solved the 46 difficult problems in 32%
of the time required by the depth-first algorithm, two observations suggested that
further investigation into depth-first B&B was warranted. Depth-first took less
time than breadth-first in 10 of the 46 problems, and 75% of the total computation
time for depth-first was spent on two problems. This suggested that Hoffmann's
observation that depth-first algorithms for the SALB problem either find solutions

quickly or take a very long time, also applies to the SULB problem.

In the next part of the study, the two most promising B&B algorithms—one
breadth-first and one depth-first—were tested on two sets of randomly generated, difficult
instances.

Problem Set 2 (see Appendix 4) was similar to Problem Set 1, except that the
number of tasks was larger—an average of 15 versus 11 tasks—and the minimum task
completion time was constrained to be at least as large as half the maximum completion
time. Each problem was tested with six different randomly selected cycle times, uniformly
distributed between max{t} and 2max{t}, giving a total of 6X40=240 instances.
Heuristic H achieved the lower bound in 26% of these problems.

Even larger U-lines were considered in Problem Set 3 (see Appendix 4). The
number of tasks ranged from 20 to 40 and averaged 30. Again each problem was tested
with six randomly selected cycle times, giving a total of 6 X 15=90 instances. Heuristic

H achieved the lower bound in 47% of these problems.

39

A maximum computation time limit of 300 seconds was set for each instance. (As

the intent of the study was to compare optimal solution algorithms, the depth-first

algorithm does not employ Hoffmann's heuristic to solve the instance once the time limit

is exceeded.) The results are summarized in section 5 of Table 1.

9.

10.

11.

Neither the best breadth-first or depth-first algorithm was able to find the optimal
solution for all instances within 300 seconds.

The size of the solution space grows rapidly with the number of tasks, the width
of the precedence graph and the number of precedence relationships. The
relationship of cycle time to task completion times also affects the performance of
the algorithms. The instances which could not be solved within the time limit by
the breadth-first algorithm had the following (average) characteristics: size=17.9
tasks, width=4.7 tasks, cycle time/maximum task completion time=1.36, and
computation time > 300 seconds. These compare to the (average) characteristics
for the instances which were solved optimally: size=14.8 tasks, width=3.85 tasks,
cycle time/maximum task completion time=1.56, and computation time=52.6
seconds.

Breadth-first outperforms depth-first for the smaller instances (Problem Set 2).
Depth-first is slightly better than breadth-first for the larger problems (Problem Set
3). As the number of tasks increase, the size of the branch and bound tree grows
until the number of successor nodes to any node is so large that the breadth-first
algorithm spends most of its time enumerating successor nodes and very little time

working through the tree to a solution. Depth-first, on the other hand, works down

40
a single branch and may at least find a good solution in the time allowed.

12. The smaller instances (Problem Set 2) that breadth-first and depth-first could not
solve were identical, with one exception. For the larger instances (Problem Set 3),
each was unable to solve 27 instances, with nine of them being different.
Consequently, it may a good idea to try both algorithms for certain types of large

instances.

6. Summary and Conclusions

The SULB problem differs from the SALB problem in one major way. In the
SULB problem, tasks may be assigned to stations while moving through the precedence
graph in two directions (forward and backward) simultaneously, while in the SALB
problem tasks may be assigned while moving through the graph in one direction (forward
or backward) only. Although this causes the complexity of the problem to increase
dramatically, it also increases the number of ways tasks can be combined into stations,
with the result that better solutions (relative to the SALB problem) often exist. For
example, in the empirical study reported here, 22% of 180 small SULB problems required
fewer stations than the corresponding SALB problems. The increased complexity of the
SULB problem (relative to the SALB problem) has the unfortunate effect that some
approaches that work well for the SALB problem--recursive fixing dynamic programming
and Talbot and Patterson's depth-first B&B algorithm—both of which take advantage of the
simpler structure of the SALB problem do not work well for the SULB problem.

Three new SULB algorithms were presented in this paper--a reaching dynamic

41
programming algorithm, a breadth-first B&B algorithm and a depth-first B&B algorithm.
The complexity of the dynamic programming algorithm is O(N2[#(S")]*), compared to
O(N’[#(Sh)) for the SALB problem. In an empirical study, the reaching dynamic
programming algorithm was found to be more than twice as effective as the recursive
fixing algorithm. The breadth-first and depth-first B&B algorithms were more efficient
than the reaching dynamic programming approach, a result that is consistent with findings
reported in the literature for the SALB problem. However there are limitations on the size
and difficulty that these B&B algorithms can solve to optimality. The best algorithm was
able to prove optimality in 91% of 10-20 task problems and 70% of 20-40 task problems
within a 300 second time limit. One finding which will influence future research is that
in more difficult problems, where there are potentially hundreds of successor nodes to any
node, the time required to enumerate all potential successors is so large that algorithms
which require enumeration of most or all potential successors cannot be used.

The U-line balancing problem is a new problem and more research work, including
the following, needs to be done to understand it better. Some promising directions for
future research are:

1. Better bounds on the number of feasible subsets are needed for the DP algorithm.
Work can be done to incorporate bounds into the DP algorithm.

2. More work can be done on the B&B algorithms to investigate the effect of different
branching rules, upper and lower bounds, dominance rules, and so on.

3. The SULB model can be broadened to include other considerations such as

a) concentrate the idle in one station so that improvement efforts can be focussed

42
at that station (in accordance with JIT practices),

b) minimize the distance travelled by operators, and
c) locate certain tasks or stations in pre-specified locations.
4. Research is needed on multi-product U-lines, multiple U-lines, and U-lines where the
task processing times are stochastic.

5. The development of fast effective heuristics for solving U-line balancing problems.

43
References

Baybars, I. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing
Problem,"” Mgmt. Sci., 32 (1986), 909-932.

Bowman, E.H., "Assembly Line Balancing by Linear Programming," Oper. Res., 8, 3
(1960), 385-389.

Dar-El, E.M., "Assembly Line Balancing - An Improvement on the Ranked Positional
Weight Technique,” Jour. of Industrial Engineering, 15, 2, (1964), 73-717.

Denardo, E.V. and B.L. Fox, "Shortest-Route Methods: 1. Reaching, Pruning, and
Buckets," Oper. Res.,27 (1979), 161-186.

Ghosh S. and R.J. Gagnon, "A Comprehensive Literature Review and Analysis of the
Design, Balancing and Scheduling of Assembly Systems," Inz. J. Prod. Res., 27,
4 (1989) 637-670.

Hackman, §.T., M.J. Magazine and T. S. Wee, "Fast, Effective Algorithms For Simple
Assembly Line Balancing Problems,” Oper. Res., 37, 6 (1989), 916-924.

Hall, R. W., Zero Inventories, Dow Jones-Irwin, Homewood, Illinois (1983).

Hoffmann, T.R., "Eureka: A Hybrid System For Assembly Line Balancing," Mgm:. Sci.,
38, 1(1992), 39-47.

Jackson, J.R., "A Computing Procedure for a Line Balancing Problem," Mgmt. Sci., 2,3
(1956), 261-271.

Jaeschke, G., " Eineallgemaine Methods Zur Losung Kombinatorisher Probleme, "
Ablaufund Planungforschung, 5, (1964), 133-153.

Japan Management Association, Canon Production System, Productivity Press, Portland,

OR, 1987.

Johnson, R.V., "Assembly Line Balancing Algorithms: Computational Comparisons, "Int.
J. Prod. Res., 19, (1981), 277-287.

Johnson, R.V., "Optimally Balancing Large Assembly Lines with 'Fable’ ", Mgmt. Sci. ,
34, 1, (1988), 240-253.

Kao, E.P.C. and M. Queyranne, "On Dynamic Programming Methods for Assembly Line
Balancing," Oper. Res., 30, (1982), 375-390.

Lawler, E.L. "Efficient Implementation of Dynamic Programming Algorithms for
Sequencing Problems,"” Reporr BW 106/79, Stichting Mathematisch Centrum,
Amsterdam, (1979).

Merten, P., "Assembly Line Balancing by Partial Enumeration”, Ablaufund
Planungforschung, 8, (1967), 429-433.

Miltenburg G.J. and J. Wijngaard, "The U-Line Balancing Problem,"” Man. Sci., 40, 10,
(1994), 1378-1388.

Monden, Y., Toyota Production System, Second Edition, Industrial Engineering Press,
Institute of Industrial Engineers, Norcross, GA, (1993).

Provan J.S. and M.O. Ball, "The Complexity of Counting Cuts and of Computing the
Probability that a Graph is Connected,” SIAM J. Comput., 12, (1983), 777-788.

Queyranne M., "Bounds for Assembly Line Balancing Heuristics," Oper. Res., 33,
(1985), 1353-1359.

Schrage L. and K.R. Baker,"Dynamic Programming Solution of Sequencing Problems

with Precedence Constraints, " Oper. Res., 26, (1978), 444-449.

45

Steiner G., "On The Complexity Of Dynamic Programming For Sequencing Problems
With Precedence Constraints," Annals of Oper. Res., 26, (1990), 103-123.

Talbot, F.B. and J.H. Patterson, "An Integer Programming Algorithm With Network Cuts
for Solving The Assembly Line Balancing Problem," Mgnu. Sci., 30, 1, (1984),
85-99.

Talbot, F.B., Patterson, J.H., and W. V. Gehrlein, "A Comparative Evaluation of
Heuristic Line Balancing Techniques," Mgmt. Sci., 32, 4, (1986), 430-454.

Van Assche, F. and W.S. Herreolen, "An Optimal Procedure for the Single-Model
Deterministic Assembly Line Balancing Problem," Eur. J. of 0. R., 3, (1978),
142-149.

Wee, T.S. and M. J. Magazine, "Assembly Line Balancing As Generalized Bin Packing,"

Operations Research Letters, 1, (1982), 56-58.

46

Appendix 1

A Reaching Dynamic Programming Example

Consider a problem with the tasks, processing times and precedence constraints
shown in Figure 3. Table 2 shows the implementation of the reaching approach for this
problem.

First all subsets of size n=1 task are generated. They are {1}, {7} and {8}. The
costs are F[{1}] = O full stations + 11 time units, F{{7}]=0+10 and F[{8}]1=0+3.
These subsets are stored in List(1) and are denoted {1}=S,%, {7}=S," and {8} =S,"; and
#S") =3,

Next all subsets of size n=2, S;;%, are generated from the subsets of size one, S, in
List(1). For §,"=({1} this gives, S,,?=8,"+{2}={1,2}, §,,® =S,+{7}={1,7} and
S1:?=5,"+{8}={1,8}. The costs of these subsets are FIS;®]1=FI[S")+g({2})=1+17,
FIS,,®1=FIS,"1+g({7})=1+10, and F[S,,”]=0+14. These results are stored in
List(a).

When S,"={7}, §,,®=8,"+{1}={7,1} and F[S,,®]1=F[S,"1+g({1})=1+11;
$,:%=8,"+{5}={17,5} and FIS,,?]=F[S,"]+g({5})=0+18; and S,3:@={7,8} with
F[S,,?1=0+13. These results are stored in List(b).

List(a) and List(b) are now merged. Two subsets in these lists contain the same tasks,
$,2,%=8,,7={1,7}. Since the cost F[S,,?] < F[S,,?], S,,? is retained and S,,@ is
dropped. The results of the merge are stored in List(a). The process continues for S, J“’.

S3,®, u(j) and F[S, ;?] are stored in List(b) which, when completed, is merged with

- .
+1 8+1 H+1 | ™Sl
{o's'L} {s's‘'L} {1'8'L} oS
€ z 1 f| e+o L
Ol+1 0Z+0 1+t | ™Sl
{L'8'9} {v's'o} {1'8'9} LN
€ (4 1 fI si+o 9
£+1 141 | ™Sl
{8's'L} {1'e's} @S
4 1 (] si+o S
o1+1 LI+1 (AUNT]
{L's'n} {z's'1) @S
r4 I] #vi+o0 8
EI+1 8I+1 L1+2 [o™sla
{8'c'1} {s'L'1} {z'e'n} oS
€ z 1 fl o1+1 L
0Z+1 01+2 S+2 6+2 [o™'sla
{8'z'1} {re'n {v'z'1} {e'z'1} oS
v € T 1] ua+1 rA
£1+0 ST1+0 vi+0 | [p"Sla
{L'8} {o's} {1's} oS
€ 4 1 | €+0 8
€140 81+0 1+t | o™l
{8'e) {s'L} {1y oS
£ r4 1 1l oi+o L
p1+0 01+1 LI+1 [o"'sla
{81} {'n) {1} oS
€ z 1 fl w+o i
£+0 o1+0 1n+o | p™sla
{8} {L} {1} LY
€ z ¥ { 0 -
{8} +uu's {1} +qu'S {9} +ou'S {s} +au'S {9} +eu'S {€}+g0S T +ew'S {1} +qu'S [w'SlA n
ey T —— T

wpuodly 4 Suryoesy sy Jo sidurexy sAnensnyy uy
ZdqeL

48

List(a). As this completes the generation of subsets of size two, the results are stored in
List(n=2).

This process then continues for n=3,4,...,N.

49
Appendix 2
A Bound on the Number of Feasible Subsets
Define the following notation:
B; = a backward feasible subset of S.
S-B; = the forward feasible subset which is the complement to B..
f(B) = the number of backward feasible subsets contained in B;including o.
f(S-B)) = the number of forward feasible subsets contained in S-B; including @.

#(S) = the total number of feasible subsets enumerated in the DP algorithm

Consider a problem consisting of the four tasks shown in Figure 5. The backward
feasible subsets for this problem are B,=eo, B,={3}, B,={4}, B,={4,2}, B;={4,3},
Bs={4,3,2} and B,={4,3,2,1}, with the total number f(S) =7. For each backward
feasible subset B; the complementary subset S-B; is a forward feasible subset. For
example, S-B,={1,3}. Thus the total number of forward feasible subsets f (S)=£(S)=17.
Recall the recursive fixing approach for generating feasible subsets (section 3.2). Each
backward feasible subset, B;, i=1,2,...,f(S), is combined with every forward feasible
subset in S-B;, including the null subset. Therefore an initial upper bound on the total

number of feasible subsets, #(S), will be
S) .
#S) = ¥ f(S-B) < f(S)xf(S) = £(S)*

This bound may be reduced further by the following observation. Consider any subset B,.

With the exception of the complete subset B,, for every backward feasible subset contained

Figure § 30

Bound on the Number of Feasible Subsets

Part 1: The Precedence Graph E H

Part 2: Combining Forward Subsets With Backward Subsets

S? Subsets of S/=8-S?, #(SH
si.ir9 j= 192" - -’n(si')

2,
{3} 2.{
{4 D .{
{4,2} 2,{
{4,3} D
432} |3
{4,3,2,1} | @

NOAWVEAEWN =

a(s%)
ZnSH =25

i=1

-3
“
~~
]
~
!
l! =N WWWK A

Subsets of S,>=S-S,f,
S.," v=1,2,...,n(8.%)

2,{4},{3},{4,3},{4,2},{4,3,2},{4,3,2,1}
2,{4},{3},{4,3},{4.2},{4,3,2}
2,{4},{3},{4,3}

@,{4},{4,2}

,{4}

2,{3}

@

n(s9h
ZnSh) =25

u=]

51
in b; there will be one complementary forward feasible subset whose tasks are not all in
S-B; and are thus not feasible. For example, B,={4,2} contains feasible backward subsets
{2}, {4} as well as {4,2} so subsets {1,2,3,4} and {1,2,3} can no longer be contained in
§-B,. Note also that there may be other forward subsets which are no longer feasible, in
this case {1,2}. Thus for any subset B; with f(B,) backward feasible subsets the number
of forward feasible subsets in S-B; is

f(S-B) < f(S) - f(B) + 1.
This leads to the following lemma.
Lemma: An upper bound on the number of feasible subsets, #(S), for the SULB
problem is #(S) < [f(S)*+£(S))/2.
Proof: fS)
#(S) = i};",l f(S-B)

1)
- #O) < El[f(S) -fB) + 1]

1(S)

- #(S) s Zl[f(S) -f(B) + 1]

£(S) f(S)

= #S) < .);lf(S) - Y fB) + £(S)

i=1

s))
= #(S) + X fB) < ¥ f(S) + £(S)

i=1 i=1
f(S)
~ #(S) + #(S) < £(S)? + £(S) because Zsf(Bi) = #(S)
i=1
- #(S) < [f(S)* + f(S))/2

In Section 3.4 the number of forward feasible subsets in S has been denoted as #(S). The

52

upper bound on the number of feasible subsets which must be enumerated in a dynamic

programming algorithm may be restated as #(S) < [#(S")® + #(S%))/2.

53
Appendix 3
Procedure for Enumerating Successor Nodes
The following procedure builds on Van Assche and Herreolen's [1978] work for
the SALB problem. From the set of unassigned tasks, A, make a list, L, of tasks available
to be assigned to the next node (station) following a node, i. These tasks are those whose
predecessors or successors have already been assigned to nodes 1,2,...,i. Place a pointer
ahead of the first task on the list.
e Search from task 1 to N create the initial list of available tasks, L. Set Idle=C.
i Loop: (Successor node enumeration loop)
e Seti=i+l.
t Loop: (Task loop)
e If Idle=0 then exit t loop.

e Starting at the first task past the pointer, move down the list, L, to the first
task x with t, < Idle and assign this task to station i. Move the pointer to
this task. If no such task can be found exit t loop.

e Idle = Idle - t,

¢ Identify and add to the end of the list the predecessors or successors of task
X, not already in L, whose predecessors or successors are all already on the

list or assigned to previous stations.
Loop to t Loop.

* If the subset of tasks assigned to node i is a subset of a previously enumerated node
in this group of successor nodes, set and i = i-1 and exit to the b loop. (That is,
do not create this new node.)

® The tasks assigned to node i form a station with idle time I, = Idle

54

b Loop: (Backtracking loop)

Remove the task, x, at the pointer from the node i.

If the task at the pointer has already been removed by a previous backtrack
then move back in the list to the Iast task assigned to the node that has not
been removed. Move the pointer to this task, denote it as x, and remove
x from the node.
Idle = Idle + t,

Check tasks from the pointer to the end of L which are successors or
predecessors of the task removed to determine if they are still available.
If they are not remove them from the list.

If backtracking removes the last task assigned to the node and this task is
at the end of the list of assignable tasks then the process of enumerating
successor nodes is complete.

Exit the b loop and return to the i loop.

End of b Loop.

End of i Loop.

Example 2

Recall the problem shown in Figure 3. Table 3 shows the enumeration of the

nodes that follow the initial node, node 0, each of which represents a possible station 1

assignment,

Table 3
Enumerating Nodes for the Example in Figure 3

Pointer ’

Idle Time

55

1,7,8
1,7,8
1,7,8,2
1,7,8,2,6

Backtrack
Drop 8; 1,7,-,2
1,7,-,2

Backtrack
Drop 1; -,7,8
-7,8

-7,8,5
-7,8,5,6

Backtrack
Drop 8; 1,7,-,5
1,7,-,5
1,7,-,5,3

Backtrack
Drop §; 1,7,8,-
1,7,8,-

Backtrack
Drop 7; 1,-,8
1,-,8

1,-,8,6
1,-,8,6,4

Backtrack
Drop 4; 1,7,8,6,-
1,7,8,6,-

Backtrack
Drop 6; 1,7,8,-
1,7,8,-

Backtrack
Drop 8; 1,7,-

'1,7,8
17,8
1,7,8,2
1,7,8",2,6

-,7,8
-7,8
'v7)8,v5
-7.8,5,6

1,7,-',5
1)71'95’
1,7,-,5°,3

1’718"’
1’7’83'

1,-,8
1,-,8’
1,-,8,6
1,-8,6,4°

1,7,8,6,-’
1,7,8,6,-

1,7,8,
1,7,8,~

1,7,»

%

20
20-11=9
9-3=6
no x with
<6

9
no x with
t,<9

20
20-10=10
10-3=7
no x with
<7

10
10-8=2
no x with
<2

10
no x with
<10

20
20-3=17
17-12=5
5-5=0

no x with
t.<S5

17
no x with
t,<17

Enumeration

is complete.

1
1,8
1,8 Node 1

1; Subset of
node 1

7
7,8
7,8 Node 2

7
7,5
7,5 Node 3

7
7; Subset of
node 2

8
8,6
8,6,4 Node 4

8,6
8,6; Subset of
node 4

8
8; Subset of
node 4

56
Appendix 4
Procedure For Randomly Generating Line Balancing Problems

Complete the following steps for each problem in problem sets 1, 2 and 3 using the

parameters specified in Table 4.
1. Randomly generate the number of tasks, N.
2. Randomly generate the maximum processing time for a task, t_,..
3. Randomly generate the individual task processing times, t, i=1,2,...,N.
4. Randomly generate s,,,, the maximum number of immediate successors for any task.
5. Use the following procedure to randomly generate the successors for each task
x=1,2,...,N.
5.1 Randomly generate the number of immediate successors for task X, S, from
a uniform distribution between 1 and s,
5.2 The possible immediate successors are x+ 1,x +2,...,s,. Let the probability
that each is a successor be s,/s,.. Randomly select the immediate
Successors.
6. Check the precedence graph for redundant paths. A redundant path occurs when

(x,Y)€P, that is y is an immediate successor of X, and another path from x to y already
exists in the precedence graph. When a redundant path is found the precedence

relation (x,y) may be eliminated according to the rule specified in Table 4.

Some characteristics of the problem sets generated by this procedure are listed in Table 5.

Note that the problem set one includes five problems from the literature.

Table 4

Random Problem Generation Parameters

Problem Set 1

Problem Set 2

Problem Set 3

57

Number of problems

Number of tasks, N

Maximum task time,

toax
Task processing time, t,

Maximum number of
SUCCESSOrs, S,,

Rule for eliminating
redundant paths

30

u.d.(7-18)

u.d.(10-35) u.d.(10-35) u.d.(10-35)
ud.(1tot,) u.d. (St tn) u.d.(1-t,,)
u.d.(3-7) u.d.(3-7) u.d.(3-7)
Eliminate later Eliminate earlier Eliminate earlier
relation or later relation or later relation
(each with a

u.d.(10-20)

40

Note: 1. A uniform distribution over an interval from 7 to 18 tasks.

u.d.(20-40)

15

Table 5§
Problem Set Characteristics
@

Characteristic Problem Set 1 | Problem Set 2 | Problem Set 3
Number of Tasks:

Average, minimum, maximum 11.1,7, 18 15.1, 10, 20 30.3, 20, 40
Number of Precedence Relations:

Average, minimum, maximum 13.8, 6, 20 22.0,11, 35 42.1, 30, 58
Width of Precedence Graph:

Average, minimum, maximum 35,2,5 39,2,6 4.2,3,6
Density of Precedence Graph:

Average, minimum, maximum .26, .17, .48 21, .12, .33 .10, .07, .16

EXTENDING THE U-LINE BALANCING PROBLEM:

TRAVEL DISTANCES AND BALANCING TWO U-LINES

Abstract

U-shaped production lines are an important part of modern production systems.
This paper extends the literature on U-lines in two ways. First, the simple U-line
balancing problem is extended to include consideration of operator travel. The total
distance traveled by operators in U-lines depends on the line balance. This is different
from the traditional line where the total travel distance is independent of the balance, and
hence is not considered when developing a balance. Different alternatives for
incorporating travel are evaluated. Second, the multiple U-line balancing problem,
wherein stations can include tasks from more than one U-line, is introduced through the
problem of balancing two U-lines simultaneously. In facilities where U-lines are located
in close proximity an opportunity exists to balance two or more U-lines together and
reduce the total number of stations required in the facility. Models are formulated for
these problems, and branch and bound algorithms are developed to determine optimal line
balances. Some computational results are reported.
This article has undergone two revisions for the Journal of Naval Logistics Research and

has been submitted for review.

58

59
1. Introduction

Just-In-Time (JIT) production methods were introduced in Japan as a means of
reducing production costs. By lowering inventory levels, JIT identifies production
inefficiencies that can be targeted for improvement. An important feature of JIT is its
flexibility to adjust to changes in demand. This is called shojinka, and three factors are
necessary for achieving it (Monden, [p.160, 1993]):

1. "Proper design of machinery layout",

2. "A Multi-function worker", and

3. "Continuous evaluation and ... revisions of the standard operations”.
U-shaped production lines are an important part of the first factor. In addition to
improving visibility and communication between operators, U-lines can reduce the number
of operators required in a facility. Because of the proximity of one side of the U-line to
the other, stations may include tasks on both sides of the U-line. This increases the
number of possible assignments of tasks to stations, with the result that the number of
stations and, consequently, the number of operators needed to operate a U-line will be less
than or equal to the number required for the corresponding traditional straight line (Figure
1). Some facilities position U-lines in close proximity and link them together with stations
that cross neighbouring lines to provide more opportunities to reduce the number of
stations and operators that are needed (Figure 2).

An extensive literature exists on balancing traditional straight lines. See, for
example, Talbot and Patterson [1984, 1986], Baybars [1986), Johnson [1981, 1988a,

1988b], Hackman, Magazine and Wee [1989], Ghosh and Gagnon [1989] and Hoffmann

Figure 1

Traditional Line and U-Lines

g2 —{3 ¢ —{s }—{s {7 }—{s }> raes

(e (e Do) Coazii,

1. Traditional Line

A. Desirable balance B. Undesirable balance C. Undesirable balance
2. U-Lines
Task Distance Line Total

1 6 —_distance
2 7 Traditional 88

3 4 U-line A 84.8

4 5 U-line B 97.3

5 5

6 5

7 8

8 4

Figure 1. Traditional Line and U-Lines

Figure 2
An Instance of a Multiple U-Line Balancing Problem

BED

%{jj
Balance During a Busy Period (13 stations)

s

oo

O [C 9

0 1 4

Balance During a Slower Period (10 stations)

62
[1992). The problem of assigning tasks to stations on U-shaped assembly lines, the U-line
balancing problem, was introduced by Monden [ch. 11, 1993]. See also Hall [ch. 6,
1983] and the Japan Management Association [pp. 122-125, 1987]. Miltenburg and
Wijngaard [1994] formulated a model for the simple U-line balancing (SULB) problem
and developed a recursive fixing dynamic programming algorithm to obtain optimal
balances for small instances of the problem. More efficient optimal solution algorithms
for the U-line balancing problem were presented in Part I of this thesis and an effective
branch and bound algorithm for solving SULB problems of typical size (5-20 tasks) was
identified.

The SULB problem is the U-line equivalent of the Simple Assembly Line Balancing
(SALB-I) problem. While the problems bear many similarities, they differ in several
respects because of the difference in line shape and the way the lines are utilized in
production. This paper extends the investigation of U-line balancing by considering two
such differences: operator travel and the simultaneous balancing of multiple U-lines.

Line balancing algorithms in the literature do not explicitly consider station travel
or travel time. This is reasonable on traditional lines for two reasons.

1. An operator on a traditional line starts at the beginning of the station, completes all
tasks in the station, and returns to the beginning of the station, all during one cycle
time. The distance traveled is twice the sum of the task distances, regardless of
where the station is located on the line. (See part 1 of Figure 1.)

2. The total distance traveled by all operators on a traditional line is a constant, equal to

twice the sum of all the task distances. As this constant does not depend on how

63
the line is balanced, travel distance need not be considered in the SALB problem,

other than to assume that travel time is part of task completion time.
However, the U-line is different.

1. Travel distance is not a constant. It depends on how tasks are assigned to stations.
U-lines A and B in Figure 1 have total travel distances of 89.6 and 99.4 feet
respectively because the assignment of tasks to stations is different.

2. The travel distance for a station depends on the shape of the U-line and the }location
of the station. For example, the last station on U-lines A and B in Figure 1 each
contain tasks 5 and 6. However, the time required in these stations is not the same
because the travel distances, and hence travel times, aré different.

3. In facilities where a number of U-lines are located in close proximity, it is possible
to link U-lines with multi-line stations that contain tasks from two or more U-lines.
In such cases, account must be taken of the time required to travel between U-lines
(Figure 2).

4. The shape of a U-line imposes restrictions on the shape and location of stations. In
order to prevent stations from interfering with each other and avoid stations that
sprawl and require excessive amounts of travel, location constraints must be added
to the model. These are in addition to the cycle time and precedence constraints
of the SULB problem. U-line C in Figure 1 is an example of the type of balance
that is avoided when location constraints are used and station travel is monitored.
At the Toyota Motor Corporation in Cambridge, Ontario 30-40% of the processes

operate on U-lines. During line balancing all task times are considered independent of

64
travel. As tasks are assigned to stations an allowance is made for time to travel to the next
task and to return at the end of the cycle. This time can be a significant portion of total
station time. Monden gives a detailed operations routine sheet for a station with 11 tasks
and a cycle time of two minutes, where total travel is 22 seconds or 18.3% of the cycle
time (p.150, Monden [1993]). Travel is regarded as a non value-added component of
production. Its measurement is vital to the activities of the Kaizen group who’s goal is to
minimize the non value-added components of production. Calculation of travel is also
used to limit the maximum travel in any station (In the Cambridge facility, for example,
for a 2.3 minute cycle time there is a limit of 5.4 metres of line travel plus travel for parts
pickup and returning to the beginning of the station).

Some facilities position U-lines in close proximity and link them together with
stations that cross to neighbouring lines to provide more opportunities to reduce the
number of stations and operators that are needed. Figure 2 is a good illustration of the
multiple U-line balancing problem. Another may be found in Monden [pp. 164-166,
1993]. Schonberger [pp. 140-141, 1982] was first to notice the preference among
Japanese manufacturers for multiple U-lines (which he calls U-shaped or parallel-
configured lines) with stations that span more than one U-line. "If the natural number of
stations for a reasonable balance is, say, two or three, Toyota's preference is to find
another two-station or three-station line segment to locate parallel to the first. The parallel
lines offer more staffing options.” Wantuck [pp.132-162, 1989] gives short case studies
of multiple U-lines (which he calls JIT group technology cells) at Ferro Manufacturing,

Johnson Controls (especially Figure 7-4), Fisher Guide, Miller Electric Manufacturing

65
(especially Figure 7-12), Jidosha Kiki Corporation, and Dayco Corporation.

This paper extends previous work on the U-line balancing problem in two ways.

1. The simple U-line balancing problem is extended to include consideration of
distances traveled by operators and location restrictions imposed by U-line shape.
An optimal branch and bound algorithm for the simple U-line balancing problem
with travel is presented. The necessity for explicit consideration of station travel
is demonstrated through a computational study. As well as giving better balances
for single U-lines, the model provides a framework for considering travel in more
complex multiple U-line balancing problems.

2. The simplest multiple U-line balancing problem, the problem of balancing two U-
lines simultaneously, is introduced. As we will see, this is the only multiple U-line
balancing problem for which optimal balances can be obtained routinely.

The remainder of the paper is organized as follows. A model and an optimal
solution algorithm for the simple U-line balancing problem with travel are presented in
section 2. In section 3 the two U-line balancing problem with travel is introduced and an
optimal solution algorithm is presented. Computational results in section 4 provide
justification for explicitly considering travel in U-lines and give insight into the two U-line
balancing problem. A discussion follows in section 5, and an illustrative example is

worked in the appendix.

66
2. The Simple U-line Balancing Problem with Travel

2.1 Definitions and Notation
Consider the U-line in Figure 3. An X-Y grid is used to describe the line.
Although U-lines may take on a variety of shapes, we assume, for ease of exposition, that
U-lines have the general form shown in the figure. A U-line consists of a front and back,
each with identical lengths, L, and a side of length W. The line starts at point (O,W) and
ends at point (0,0). It is relatively straight forward to consider U-lines with different
shapes by simply using grid measurements. Changing the shape of the line does not
significantly alter the problem but may require additional location constraints.
Define the following notation with tasks denoted by the subscript x and stations by
the subscript m.
N = The number of tasks to be completed on the U-line.
S = {x | x= 1,...,N}, the complete set of tasks.
P = {(x,y) | x,y € S, task x is an immediate predecessor of task y}, the set of precedence
constraints for the tasks in S.
C = The cycle time.
t, = The completion time for task x.
L = The length of each of the front and back of the U-line.
W = The width of the U-line.
{, = Task distance. The distance on the U-line required by task x.

g = Travel time per unit of travel distance.

67

Figure 3

U-Line with Travel Distance: Notation and Terminology

Y

Front of U-Line

Beginning 1 3
41l

§
w
N
3

l

o

I L4 0t

wn

o

End

TV TTrTT T T I T T I T I T I T Iy I T T T I T > X
0 s 10 1S 20 25 L=29

femd bt (e | Bl [deo |[am |
14! h3l 12 |ll| 10 9

Back of U-Line

Key: Task distance:
Crossover distance: = cmcmicmiamc-
Return distance -— e = —

Regular stations: 2,3,4
Crossover station: 1
Operator: O
Task: 0O

68
O<e,<1 The proportion of task distance not accounted for in task completion time. Hence
task travel time is go,¢,.
ST, = {x | task x is performed at station m}, the set of tasks assigned to station m.
M = The number of stations.
DT, = The total travel distance in station m.
g XDT,, = The total travel time in station m.
We assume without loss of generality that the line is designed in such a way that
Yos & =2L + W.

As discussed in Miltenburg and Wijngaard [1994], tasks may be assigned to stations
by working through the precedence graph, P, in either a forward or backward direction
or in both directions at the same time. Tasks assigned to stations by working through P
in a forward direction are located in sequence along the front of the line. Such tasks are
termed forward tasks. Tasks assigned by working through P in a backward direction are
located along the back of the line and are termed backward tasks.

Two types of stations are used on simple U-lines, regular stations and crossover
stations. A regular station is one whose tasks are arranged sequentially along the line.
Regular stations include either forward or backward tasks, but not both. Stations 2,3 and
4 in Figure 3 are regular stations. A crossover station includes forward and backward
tasks; that is, tasks located on both the front and back of the U-line. Station 1 in Figure
3 is a cross-over station.

Three types of travel distance are possible in a station, task distance, crossover

distance and return distance (Figure 3). Task distance, denoted as 4,, is the distance on

69
the line required to complete a task. In this analysis, only the travel time not already

included in task completion time is considered. Consequently, only ge.¢, is included in
the travel time. Crossover distance only occurs in crossover stations and is the distance
traveled when the operator moves from the front of the line to the back. Crossover
distance in station m is denoted d,°. Return distance is the distance the operator travels
at the end of a cycle returning to the beginning of the station. Return distance is denoted
as d,’. The total travel distance in station m is

DT, = } ¢, +d.° + d,"and the total travel time is
xeST,

gDT,) =g[Y ol + d.° +d.). Ateach station the operator must have sufficient
xeST,
complete the tasks assigned to the station and travel the total travel distance.

Yt +gXDT,sC, m=12,.. M.
xeST,

2.2 Calculating Travel Distance and Travel Time

The locations of the tasks, and the travel, crossover and return distances are simple
functions of the assignments of tasks to stations and the shape of the U-line. Consider the
U-line in Figure 3. Task length is shown inside the task box. The front and back of the
U-line are each 29 feet long and the U-line is 15 feet wide. Now consider station 1. The
operator begins at location (0, 15) and completes tasks 1 and 2 moving to location (16,15).
He/she crosses to the back of the line to the beginning of task 13 at (5,0) and completes
tasks 13 and 14 ending at (0,0). Before the next cycle starts, he/she must retum to the
beginning of the U-line at (0,15). Therefore the travel distance in station 1 is

DT, =3} +df+dSf
xeST,

= (5+11+2+3) + [(16-5)2+(15-0)21°° + [(15-0)2+(0-0)2]°°
=21 + 18.6 + 15 = 54.6 feet

If a,=1 for each task and g=.3 second/foot, then the travel time is

70

gXxDT,; = .3[1X21 + 18.6 + 15] = 16.4 seconds. If the cycle time is C=120 seconds,

then an operator spends 16.4/120 = 14% of the cycle time traveling.

2.3 A Model for the SULB-T Problem

The simple U-line balancing problem with travel time is denoted as the SULB-T

problem. The SULB-T problem is modeled as follows.

Subject to:
M
UST,=S
m=]
ST, N ST, =0 forall m
Yt +gxDT,sC forall m
xeST,
For each tasky € S

Either: If (x,y)€ P, xeST,, yeST,, then m < n, for all x;
Or: If (y,2)€ P, yeST,, zeST,, thenp < n, forall z.

Location constraints

(1)

@

@3)

@

©)

The objective is to minimize M, the number of stations. Constraint 1 requires that

all tasks be assigned to a station. Tasks are assigned to only one station as a consequence

of constraint 2. Constraint 3 ensures that the sum of the task completion times and the

travel time in a station does not exceed the cycle time. Constraint 4 imposes the following

71
condition on the tasks that may be assigned to a station. Only those tasks whose
predecessors or successors have been assigned to the same or an earlier station are eligible
for assignment to a station. Whenever a crossover is considered the current locations of
the most recently assigned forward and backward tasks are used to determine the path.
The path is checked for feasibility with respect to location constraints (5). Infeasibility
occurs when stations are arranged so that travel in one station interferes with work and
travel in another station.

While dynamic programming and integer programming approaches can be used to
find an optimal solution to the SULB problem, dynamic programming cannot be used for
the SULB-T problem because of the travel time. For this reason and because branch and
bound was effective for the SULB problem (Part I of the thesis), it is used here for the

SULB-T problem.

2.4 A Branch and Bound Algorithm
The following branch and bound algorithm computes an optimal balance for the

SULB-T problem.

Step 1: Initial bounds on the number of stations
1.1 An Upper Bound, UB"
Solve the SULB-T problem using a heuristic, H, to obtain an upper bound,

UBM=H(x|x€S), on the number of stations. Set the current upper bound
U umee=UB™. This solution represents the current best solution. While a few
heuristics are available for the SULB problem (Miltenburg and Wijngaard [1994]),

a single pass heuristic with priority based on task time is used in this work because

72
it is simple, fast and effective (Hackman, Magazine and Wee [1989]). Tasks from
a set of assignable tasks are assigned to stations in decreasing order of task time
according to the following procedure. When a task is tentatively assigned to a
station, its location on the U-line is determined and the co-ordinates of the starting
point and ending point of the task are determined. The current travel distance is
calculated. The travel time is determined and is added to the sum of the task
completion times. If the result does not exceed the cycle time, the assignment
becomes permanent, the station idle time is recalculated, and the set of assignable
tasks is updated. The process is then repeated.

1.2 A Lower Bound, LB

Calculate a lower bound on the number of stations, LBM.

LB =[{Yt,+gllat, +W1}IC],
X€S x€S

where [z] = z is the smallest integer > z. The expression contains two terms.
The first term is the sum of the task completion times. The second term is a lower
bound on the total travel time for the U-line found by assuming a single operator
completes all tasks from beginning to end and returns to the beginning of the line.
Thus the lower bound is the time to travel the task distances, g} ,.s @¢,, plus g
times the U-line width, W.

If UBM = LBM the heuristic solution is optimal and the algorithm stops.

Step 2: Branch and Bound Loop

2.1 Enumerate successor nodes to the branching node

Nodes represent stations (except for the first node which is a starting node).

where

73

In this step all nodes that follow the current node are enumerated using a
modification of the node enumeration procedure of Van Assche and Herroelen
[1978].
2.2 Bounding

For each node, i, select the largest of four lower bounds on the number of
stations, LB; = max(LB1;, LB2,, LB3,, LB4,). The first lower bound is based on
the sum of the processing times of the unassigned tasks, and the other three are
based on the distribution of the completion times of the unassigned tasks (LB3; and
LB4; were proposed by Johnson [1988b]).

LBl =D; + [{ ¥ t/C + g[¥ a0, + LB(return)] }/C],

xeNV, xeNV,
LB2;, = D, + [#(xeNV)/|C/t... |7,

LB3, = D; + #(xeNV, | t. > C/2),
LB4; = D; + #(xeNV, | t,> 2C/3) + 0.5#(xeNV, | C/3 < t_ < 2C/3),

[x] = The integer portion of x,
D; = The depth of node i—the number of nodes or stations in the path to and

including node i,
NV; = The set of tasks not yet assigned to stations,
#(xeNV,) = The number of tasks in NV,
twa = The average of the two minimum task times in NV;, and
LB(return) = A lower bound on the return distance that results if all unassigned
tasks are assigned to a single station.

Consider, for example, LB4,. Each task with processing time greater than

74
(2/3)C cannot be added to a station having a task with processing time greater than
C/3, and of the tasks with C/3 < t, < 2C/3 no more than two can be added to the
same station.

Fathom any node, i, where LB; > U, In this case, node i cannot
improve on the current best solution. If a node completes the U-line balance and
the solution improves on the current best solution then revise U, ...

2.3 Branching

Branch on the deepest node—the node i with the greatest D;. In the case of
a tie, select the node with the smallest accumulated task idle time per station, A,,
in the path to the node;

A, =(D;xC -Y t,)/D,,

x€V;

where V; = The set of tasks assigned to stations in the path to and including node
i
(Note that A; does not consider travel time. A variation of this branching rule
could consider travel time, although this might reward excessive travel. Alternate
branching procedures is an area of ongoing research.)
2.4 Stopping Rule

Stop when there is no node i with LB; < U,,.,. All nodes are fathomed
and no further improvement is possible. The optimal solution is the current solution

and the U-line is balanced with U,,,., stations.

75

3. The Two U-line Balancing Problem

3.1 Definitions and Notation

In facilities where a number of U-lines are operating, stations may contain tasks
on more than one U-line (Figure 2). These are called multi-line stations. This reduces
the number of stations and, consequently, the number of operators required to operate the
facility compared to the case where the U-lines are balanced separately. The simplest
multiple U-line balancing problem—the problem of balancing two U-lines
simultaneously—is considered in this paper. This is called the two U-line balancing
problem with travel time, the 2ULB-T problem. The location of the multi-line stations is
restricted to the openings of the U-lines. This restriction reduces the number of possible
multi-line stations that must be considered when determining an optimal balance. It is also
reasonable to locate multi-line stations here as this is where material enters and leaves the
U-lines. Since stations cannot cross each other, there can be no more than two multi-line
stations for any pair of U-lines. Figure 4 shows that when there are two multi-line
stations, each station includes tasks from one side of each U-line. When there is only one
multi-line station, it can include tasks from both sides of each U-line. Notice that the
maximum reduction in the total number of stations is one station. Define the following
notation.
Variables specific to U-lineu, u = 1, 2.
N, = The number of tasks to be completed on U-line u.

x(u) = Task x to be completed on U-line u. x = 1, ...,N,.

Figure 4

Two U-Lines with Multi-Line Stations

[4] B
3] 6]
U-Line 1 2] U-Line 2
s] O—OO—0—
o O
O
O—0O—©-
Two Multi-Line Stations
O—O—0—
o O
©
O—0O—®

One Multi-Line Station

77
S, = {x(u) | x=1,...,N,}, the set of tasks on U-line u.
P, = The set of precedence constraints for S,.
tiw = The processing time for task x on U-line u.
4w = The task distance on U-line u required by task x.
@, = The proportion of {,, to be included in travel time.
M’, = The minimum number of stations needed to balance U-line u.
$8;,) = A subset j of tasks from U-line u which forms a feasible subset of tasks for
assignment to one or two multi-line stations that removes & single line stations from u,
6=1,2. These are called multi-line subsets.
LB(s,) = A lower bound on the sum of task times from U-line u which must be assigned
to multi-line stations to reduce the number of single-line stations on u by 6.
L, = The length of each of the front and back of U-line u.
. W, = The width of U-line u.
We assume that U-lines are constructed of straight lines and right angles and
Ywess b = 2L, + W, for u=1,2,
Variables specific to a station:
Let m(A) denote a station, A=1,2,12. m(l) and m(2) denote stations on a single line,
A=1,2. m(12) denotes a multi-line station spanning U-lines 1 and 2, A=12.
M, = The number of stations of type A.
STuw = {x(u) | task x(u) is performed at station m(A)}.
DTy, = Travel distance in station m(A).

Variables specific to a problem instance:

78
C = The cycle time.
d = The minimum distance between the two U-lines at the multi-line station.
M..u = The total number of stations required to complete all tasks on both U-lines.

Munl=Ml+M2+M12

3.2 A Model for the 2ULB-T Problem

Minimize M,

Subject to: [M,,] [M, [M,]
USTauyn) UL U ST, UL UST,,)= s,Us, (6)
m=] m=1 m=]
STy N STuwy = o, all m(A) (7
m(A)*»m(A)’
)) tw + gXDT,, <C, all m(A) ®
x(W)eST .,
M, <2)

The assignment of tasks to single-line stations, m(1) and m(2), (10
and multi-line stations, m(12), must satisfy the precedence
constraints for each U-line.

Location constraints (11)
The objective is to minimize the total number of stations needed to complete the

tasks on both U-lines. All tasks on each U-line are either assigned to a station on their
respective U-line or to a multi-line station through the first constraint. Constraint 7
prevents any task from being assigned to more than one station. Constraint 8 ensures that
the sum of the task completion times plus the travel time in any station does not exceed the

cycle time. No more than two multi-line stations are permitted by constraint 9. Constraint

79

10 ensures that the following precedence constraints are satisfied for each U-line.

® When there is one multi-line station, each task in the station has all predecessors or
successors in the station.

® When there are two multi-line stations, one station contains tasks on the front (or back)
of the U-line, each of which has all predecessors (or successors) in the station. The
other station includes at least one task on the back (or front) of the U-line and every task
in the station has all predecessors or all successors in the two multi-line stations.

¢ For tasks in a single line station all predecessors or successors are in the same station,
an earlier station, or a multi-line station. (See Figure 4.)

Constraint 11 prevents infeasible crossovers.

3.3 An Optimal Solution Algorithm For The 2ULB-T Problem
Before presenting a detailed description of the optimal solution algorithm for the
2ULB-T problem, we give a general description of the four steps that comprise it.
Step 1: Balance the two U-lines separately to find the total number of stations required if
no multi-line stations are allowed. Call the result the balance for separate lines.
Step 2: Check whether it is theoretically possible to improve the balance for separate lines
by replacing two single-line stations, one from each U-line, with one multi-line
station. If it is, use a branch and bound procedure to identify such a single multi-
line station (if one exists). Call the result the balance with one multi-line station.
Step 3: Check whether it is theoretically possible to improve the balance for separate lines

by replacing three single-line stations with two multi-line stations. If it is, use a

Step 4:

80

branch and bound procedure to identify the two multi-line stations and call the
result the balance with two multi-line stations.

Select the balance that has the minimum number of stations from those that have
been determined—the balance for separate lines (step 1), the balance with one
multi-line station (step 2), and the balance with two multi-line stations (step 3).
In the case of a tie, select the balance that best satisfies some secondary criterion

such as uniform idle time across the stations, smallest total travel time, and so on.

A more detailed description of the algorithm follows.

Step 1.

Step 2.

Balance the two U-lines separately

Find M," and M,", the optimal number of stations on each line when the
lines are balanced separately, using the branch and bound algorithm in section 2.4.
A balance with one multi-line staﬁ'on
2.1 Compare M;" + M, to a lower bound on M (with one multi-line station)

A lower bound on the total number of stations when one multi-line station
is used is,

2 N

IB¥=[{ ¥ Z- t.w+ 8XLBT }/ C], where

u=1 x(u)=1

LB" = LB"™ + LB"™® + 2, is a lower bound on the total travel distance.
LB"" is comprised of lower bounds on the travel distance in each U-line and the
minimum travel distance back and forth between the U-lines.

IfLBM = M," + M," go to step 3. Otherwise continue.

2.2 For each U-line generate all subsets of tasks that can be assigned

81

to the one multi-line station
All feasible subsets of tasks that can be assigned to the one multi-line station
from each U-line, u=1,2, are generated. They are denoted Sli, i=1,2,3,-. A
modified version of the node enumeration procedure of Van Assche and Herreolen
[1978] is used to enumerate these subsets. A feasible subset satisfies three
conditions.
1. Each task in the subset must have all predecessors or successors already in
S1;,. (See Figure 4.)
2. The subset contains at least one task (or the result will be a balance for
separate lines).
3. It must be possible to assign the remaining tasks, S,-S L, to M,"-1 single-
line stations on line u.
A lower bound on the sum of task times for the tasks assigned to the one multi-line

station from U-line u, LB(t,,), follows from conditions 2 and 3.

NI
LB(tl(u)) = Max{ Z tx(n)-*- ngBDT(u) - (Mu.'l)cs min {tx(u)} }9 u=132’
xw=1 x(u)es,’
where S,’ is the set of tasks on line u that have no predecessors or successors.
If LB(t,yy) + LB(t,p) + gX2d > C, then no multi-line station exists that
improves the balance for separate lines, and the algorithm proceeds to step 3 where
two multi-line stations are considered.

Upper bounds on the sum of the task times for the tasks assigned to the

multi-line station from each U-line are:

82

UB(Tyq) = C - LB(1,g) - gXLB"T™®2) and

UB(T)q) = C - LB(t,(,) - g XLB™®(? where
LBPT®(? j5 a Jower bound on the total travel distance in the multi-line station,
m(12).

LB = g (0t +1) + bgp(tgy+1) + 2d.
x(u)'€S,’ is the task with the r?%rels{a,(u,ﬂxm} from each U-line, u = 1,2. dis the

x(u)es,’

distance between the two U-lines. Each subset, 8L, u=1,2, j=1,2,3, must

SatiSfy, LB(rl(u)) s Z tl(ll) < UB(tl(“))

x(u)eSl,y,
Note that two lists of subsets, one for each U-line, will be generated.
2.3 Find the optimal multi-line and single-line stations
The procedure for finding the optimal multi-line and single-line stations
works as follows. The U-line u, with the minimum number of subsets available to
be assigned to a multi-line station is selected and a subset S1,, is chosen from the
list of multi-line subsets. The SULB-T problem with tasks S,-S L, is solved using
the algorithm described in section 2.4 to find M(S 1,,), the number of stations on
U-line u when the tasks in S1,,) are assigned to the multi-line station. If M,(S L)
> M, ™1, the subset is fathomed. All subsets of SL, are also fathomed since they
cannot produce balances with M,"-1 stations. If M,(S1;,) = M,"1, then S1,, is
denoted S1;,. and the procedure searches for a multi-line subset from the other U-
line, say line v, which gives M,(S1,,)) = M,’-1 stations and requires

) tws C-) tw - g XLBPT®(D

x(v)eS],, x(u)eSl,,,.

Step 3.

&3
units of time in the multi-line station. If no such subset is found, subset S1,. is
fathomed and the process is repeated. To minimize the solution space evaluated,
any time the subset search repeats it selects the U-line, u, with the minimum
number of unfathomed subsets. Using binary search techniques when selecting the
next subset from U-line u can reduce the number of subsets that are considered and
thus the number of single U-line problems, S,- S1;,,, which must be solved.

A balance with two multi-line stations
3.1 Compare M,"+M,’ to a lower bound on M(with two multi-line stations)

Two multi-line stations are arranged in such a way that operators working
in stations do not cross paths. For example, the multi-line stations shown in Figure
4 are arranged so that one station consists of tasks from the beginning of U-line 1
and the end of U-line 2. The other multi-line station has tasks from the end of U-
line 1 and the beginning of U-line 2. Other arrangements would permit crossovers
to occur. A lower bound on the number of stations in a balance with two multi-
line stations is:

2 N,
LBY=[{Y Y t,+ gxLB""}/C], where
u=1 x@)=1

LB”'= LB"™® + LB”™ + 2(d,+d,), is a lower bound on the total travel distance.
d, and d, are the distances separating the two ends of U-line 1 from the
corresponding ends of U-line 2.

If LB = M;" + M, go to step 4. Otherwise continue.
3.2 For each U-line enumerate all subsets of tasks that can be assigned to either

multi-line station

84

Two multi-line stations are to replace three single-line stations. The

maximum number of single-line stations in the U-lines is M", + M", - 3 with one

station removed from one U-line and two from the other. (The numbering of the

U-lines is arbitrary.) LB(t,,) denotes a lower bound on the time that must be

removed from U-line u to reduce the required number of single-line stations by
8=1,2.

N'
LB(‘CG(U)) - Z tx(n) + [(M.u'B)/M.u]gXLBDT(u) - (M'“-ﬁ)C, 6=1’2s u=la2°
x(u)=1

The bound assumes that the total travel time on line u is proportional to the number
of stations.

For each U-line two sets of multi-line subsets are enumerated. Each set
contains subsets S8, , §=1,2, u=1,2, j=1,2,3,, which will theoretically allow
the remaining problem §,-83;, to be solved in M™-5 stations. Each subset S8,
will be divided between the two multi-line stations and so must contain at least one
task on both the front and back of the U-line. As in step 2.2 a modified version
of the node enumeration procedure of Van Assche and Herroelen [1978] is used to
generate these subsets. Upper and lower bounds on the sum of the task times,
Ty, for the tasks in the subsets are computed.

LB(Tyw) = Max[LB(ty,), Min{ t,, } + Min{t,, }1, u=1,2, 8=1,2
x(u)es’, x(u)es”,

UB(Ty,) = ¢éxC - LB(T ow) = gx(LBDT(N(lZ)) + LBDT(m(IZ)')),
where ¢ = 3-8 and S7, and S", are the sets of available tasks from the front and

back of U-line u that can be assigned to multi-line stations m(12) and m(12)’.

85
3.3 Find the optimal multi-line and single-line stations

A U-line, say u, is arbitrarily selected. A search is undertaken for a subset

82, which allows two single-line stations to be eliminated from u and the SULB-T
problem with tasks S,-S2;,, to be balanced with M°,-2 stations. If the search is
successful the procedure turns to the other U-line, v, and searches for a subset,
S1,, such that the tasks in $2,,. and S1,,, may be divided between two feasible
multi-line stations. Each subset must be divided into a set of tasks with at least the
first task at the front of the U-line, S8, and another beginning at the back of the
U-line, Sb",-(,,,. If, for example, we assume that the multi-line stations join the

tasks at the front of one line to the back of the other then

Yty + Lty +egOTP)sCand ¥t + Tt +gXDT=0? < C,

x(V)eS2y, x(est’,, x(v)esy, x(weSly,
where m(12) is the first multi-line station and m(12)’ is the second. The subset
S1,, must also permit =1 single-line station to be eliminated from line v; that is,
the tasks in S,-S1,, can be assigned to M",-1 single-line stations. If no Sl
achieves M',-1 then S2,, is fathomed along with any 82, = S2, and the process
is repeated.
Step 4. Select the best balance

Select the balance from the balance for separate lines (step 1), the balance
with one multi-line station (step 2), or the balance with two multi-line stations (step
3), that has the minimum total number of stations. This is the optimal balance. In

the case of a tie, select the balance that best satisfies some other criterion such as

86
uniform idle time across the stations, smallest total travel time, and so on.

The algorithm is illustrated with an example in the appendix.

3.4 Computational Complexity

The simple U-line balancing, SULB, problem is NP hard. Consequently, the
SULB-T problem and the 2ULB-T problem are also NP hard. Consider an instance of the
2ULB-T problem. The computational effort required to enumerate all feasible subsets in
the solution of a simple U-line, line u, is ON[#(S,N]?) where #(S,) = the number of
forward feasible subsets (Part I of this thesis). In solving the SULB-T problem N, and
#(S,) are variables that depend on 1) the U-line itself—number of tasks, task completion
times, width and density of the precedence graph, etc.—and 2) the subset of tasks removed
from line u and assigned to the multi-line station, $8,,), in that tasks S,-S8,,, remain to be
assigned to stations on line u.

For any 2ULB-T problem many such simple U-line problems will be solved. The
exact number depends on the characteristics of the problem instance. Suppose the optimal
balance for a 2ULB-T problem instance requires one multi-line station. If there are n, and
n, subsets of type S1,,, and S1,, an upper bound of n,;n, may be placed on the number of
SULB-T problems that have to be solved to identify the optimal balance. If the number
of U-lines to be balanced simultaneously is increased to Z then the upper bound on the
number of SULB-T problems which must be solved increases to n,n,-n,.

If the 2ULB-T problem is to be solved with two multi-line stations on U-lines with

nl,, n2,, nl, and n2, subsets of type S§, ,then the upper bound on the number of SULB-T

87
problems to be solved becomes n2,n1,+n1;n2,. For each SULB-T problem the additional
problem of partitioning the subsets into two multi-line stations must also be solved. The
curse of dimensionality makes it unlikely that any multiple U-line balancing problems

beyond the 2ULB-T problem may be solved optimally.

4. Computational Results

An empirical study was undertaken for two reasons; to determine whether it is
necessary to evaluate travel explicitly during line balancing and to gain insight into the
problem of balancing two U-lines simultaneously.

The importance of considering travel distance

The first study was structured along the lines of a study done by Johnson [1982].
Sets of 50 randomly generated problems were used to evaluate methods of including travel
in SULB algorithms. Since U-lines tend to be small (see Japan Management Association
[pp. 122-125, 1987], Schonberger [p. 141, 1982] and Wantuck [pp. 132-162, 1989)) the
problems sets contained 10, 12 or 15 tasks. As order strength is a significant factor in line
balancing, problem sets were generated with order strengths .2, .5 and .8 (4:.025) for each
size. The characteristics of the problems solved may be found in Table 1.

In the empirical study, each problem was solved first by considering travel
explicitly using the SULB-T algorithm of Section 2.4. Next travel was included implicitly
and the SULB problem was solved using the branch and bound algorithm of section 2.4,
with the travel provisions removed. Three methods of implicitly including travel in task

time were considered:

88

1. Task time for each task was increased by a factor p.
2. Task time for each task was increased by a multiple of the average task distance
on the U-line.
3. Task time for each task was increased by a multiple of the individual task
| distance.

The resulting task times used in the SULB problem are shown in Table 2.

For each of these methods six B values were tested. Every problem in the set
was solved with two different cycle times. For all problems ¢, was assumed to be 1.
Once a solution was found to a problem, each station was analyzed and actual station
travel and total time were calculated. Station feasibility relative to cycle time and
location constraints was checked. Some partial results are shown in Table 3 and
Figures 5 and 6. Several conclusions may be drawn.
1. There is a computational cost associated with considering task time explicitly. For
most sets the time required to solve the 100 SULB-T problems was at least twice that
for the SULB problems.
2. The computational time reductions for implicit methods are derived at the expense
of individual station feasibility and poorer quality solutions. There are two reasons for
explicitly including travel in U-line balancing algorithms.

i) to avoid stations which exceed cycle time because of inaccurately estimated

travel time, termed cycle time infeasibility.

ii) to avoid infeasible station travel paths, termed location infeasibility. (In this

study any crossover station which extended beyond the midpoint of the line was

Table 1
Part 1: Problem Set Characteristics

Characteristic Value
Number of tasks 10, 12, 15
Order Strength 0.2,05,0.8
Task times, t, u.d. (1-100)
Task length, ¢, u.d (2-10)
U-line width u.d. (10-15)

A set of 50 problems was created for each number of tasks/order strength combination.

Part 2: Study Parameters:

Parameter Values tested
Cycle time u.d.(120-200), u.d.(200-300)
Travel time per unit distance, g 0.15,0.3,0.6
Beta values Range dependent on the problem
o, 1

Table 2

90

Three Methods of Implicitly Including Travel in U-Line Balancing

Method of including travel in task time

Task time used in the SULB problem

[y

. Multiply task time by a factor p > 1
. Increase task time by a factor of the time

[

needed to travel the average task
distance for the problem, 1,,,.

3. Increase task time for task x by a factor
of the time needed to travel the

individual task distance for task x, 1,.

B xt,
t, + P Xg X4,

t, + P xg xe,

where t, = time for task x
B = weighting factor
g = travel time/unit distance
4., = average task length
¢, = length of task x.

9]
Table 3

Results from 50 U-Line Balancing Problems each with Ten Tasks

"Beta Solution Total # of # Cycle time # Location # Cycle time . m > T
Inclusionf| Value Time Stations Infeasible Infeasible and Location msulbt msulbt
Infeasible (inferior (infeas.

1.05

94

40

393 0 0 0 0 0

382 90 28

©
Q

11

Figure 5

The Effect of Order Strength on Beta Selection

Order Strength: 0.2

220 »12
8154 /95
%10\ / 6?
S
E5 — — 3 £
X0 0 =N

2.2 24 26 28 3
Beta Value

~N

= % of stations sxcesding cycie ime ma= % of solutions worse than SULB-T

Order Strength: 0.5

N
o
t
-
N

o (4] o
L i
% inferior solutions

-
(]
[{e]

“_/
\

% stations infeasible

n

22 24 26 28 3
Beta Value

== % of stations excesding cycie time === % of solutions worse than SULB-T

Order Strength: 0.8

8

12

-
[]

[l
'

9
-6
3
0

22 24 26 28 3
Beta Value

% stations infeasible
a
% inferior solutions

o o

N

e % 0f sintions sxceading cycle time == % of solutions worse than SULB-T

Number of tasks = 10
g = .3 sec/unit
Cycle time u.d.(120-200)
Travel included implicitly as a factor of average task length

Figure 6

The Effect of Altering The Trave! Time/Task Time Ratio

Travel time/unit distance = 0.15
Travel time/cycle time = 3.47%

5401 12 9
s : (<}
530i 9 %
2)
- P 0
.20: ﬁ6 (3
& 1 -
F10 &~ - '3 &
3 ‘y- - c
R0 ig &®
22 2.4 26 28 3 3.2

Beta Value

=== % of stations exceeding cycle ime
=== % of solutions worse than SULB-T

Optimal SULB-T solution = 469 stations

Trave! time/unit distance = 0.3
Trave! time/cycle time = 6.68%

S 8 8
[{=]

% stations infeasible
|
[A)
% inferior solutions

2 22 24 26 28 3
Beta Value

=== % of stations exceeding cycle time
=== % of solutions worse than SULB-T

Optimal SULB-T solution for g = 0.3: 490

Travel time/unit distance = 0.6
Travel time/cycle time = 12.36%

24 e 12 o
2 j c
Py /9 g
E / L%
£ \ 6 8
$ 3 5
R 0= 0 =
1.6 1.8 2 22 24 26
Beta Value

=== % of stations exceeding cycie time
e % of solutions worse than SULB-T

Optimal SULB-T solution for = 525 stations
Number of tasks = 12 Cycle time u.d.(120-200)

93

94

assumed to include infeasible travel paths)
Cycle time infeasibility was more common than location infeasibility.
3. The effectiveness of implicit methods depends on several factors:

i. The value of B: There is a tradeoff between cycle time infeasibility and
inferior solutions (those with more stations than in the SULB-T solution).
Increasing the value of B reduces the number of stations infeasible relative to
cycle time but increases the number of solutions containing more stations than
the optimal SULB-T solution (see Figures 5 and 6). The issue is further
complicated by the observation that the effectiveness of B values depends on the
order strength of the problems solved. Note in Table 3 and Figures 5 and 6 that
no single value of P is optimal for all problem sets. The optimal beta value
varied directly with order strength and inversely with the ratio of travel time to
cycle time. It was also found to vary inversely with the number of tasks in the
problem. Adjusting B to fit different problem characteristics adds another
dimension to implicitly including travel.
ii. The ratio of travel time to cycle time: In the study this ratio was increased
by raising the value of g, the travel time/unit distance. Figure 6 illustrates the
effect of changing the ratio. Not only does the performance of the algorithm
deteriorate significantly as the ratio increases but the optimal value for B differs
depending on the value of g (or the value of the ratio). The travel time/cycle
time ratio is affected by several factors:

a) The travel time/unit distance, g,

95
b) The task lengths, ¢,
c) The proportion of task length included in travel time, «, and
d) The task time/travel time ratio.
A change in any one of the factors affects ratio of travel time/cycle time altering
the performance of the algorithm.
4. The approaches which consider task distances outperformed the approach of
increasing task time by some factor. A less intuitive result is that increasing task times
by a factor of average task distance performed as well or better than using a factor of
individual task distances.
5. Inindividual stations the implicitly calculated station times were relatively close to
actual station time. For example for a problem with 10 tasks, g = 0.3, order strength
= 0.2 and = 2.4 the average absolute difference between the two was less than 2%
with 97% less than 5%. However, individual stations varied widely with deviations
ranging from -7.4% to 18%.
6. Location feasibility also contributed significantly to station infeasibility. The
constraint used in this study, that crossover stations cannot occur once either forward or
backward tasks extend beyond the midpoint of the line is relatively loose. Stronger
location constraints will only provide greater incentive for using the SULB-T algorithm
proposed.
2ULB-T problems of practical size
The second study was undertaken to examine the problem of balancing two U-

lines simultaneously. For this study a mixture of U-lines ranging in size from 7 to 18

96
tasks was selected as the problem set. Five were from the SALB literature (Bowman)
[1960], Dar-El [1964], Jackson [1956], Jaeschke [1964] and Merten [1967])! and 23
were randomly generated. The parameters and characteristics of these test problems
are described in Table 4. 20 pairs of problems were randomly selected from the 28
problems in the problem set. Each pair comprised a two U-line problem instance.

Five different randomly generated cycle times, ranging from C=max{t,,,+1} to
C=2max{t .}, were selected for each of the 20 multiple U-line problems to create a
total of 5 X20=100 2ULB-T problem instances. The algorithm presented in sections
3.3 was used to determine the optimal balances. To simplify programming only
balances with one multi-line station were considered for the 2ULB-T problem. (This is
equivalent to the two U-line balancing approach taken at Toyota, Cambridge where a
single project leader is responsible for work shared between two U-lines while team
leaders and members complete work on their respective lines). Two performance
measures were tracked—the number of stations in the optimal balance, and the
computational effort required to obtain the optimal balance. The following results were
obtained.
1. 30 of the 100 2ULB-T problems had one multi-line station in the optimal
balance. 70 did not. That is, the optimal balance to the 70 2ULB-T problem
instances was comprised of the optimal balances to two separate SULB-T

problem instances. 32 of the 70 were already at the lower bound for the

! The authors thank Professor James Patterson of Indiana University for providing us with
these five problems.

Table 4

Problems In The Second Study

Parameter Random Problems

[’ Number of problems 23
| Number of tasks, N u.d.(7-18) H
{ Maximum task time, t_, u.d.(10-35)
| Task processing time, t_ ud(ltot,)
Task distances, ¢, u.d.(2-10)
U-line width, W u.d.(10-15)
length’ L L= °5(erscx - W)
Distance between U-lines, d u.d.(4-20)
| Maximum number of successors, s;,. | u.d.(3-7)
| ,=.8 for all tasks
g=.3
Rule for eliminating redundant paths

Eliminate later relation

1. A uniform distribution over an interval from 7 to 18 tasks.

Average, Minimum, Maximum

| Number of Tasks 11.6, 7, 18
| Number of Precedence Relations 14.6, 6, 28
| Width of Precedence Graph 34,2,6

| Order Strength of Precedence .45, .66, .89
| Graph

2. Characteristics for five problems from the literature and
23 randomly generated problems.

97
number of stations. The average reduction in the number of stations in the
optimal balance as a result of the multi-line stations was 4 percent for all 100
instances. The average reduction for the 30 instances where the optimal balance
included a multi-line station is 11.5 percent.

. For small U-lines, like the ones considered in this study, the computational
effort required to obtain the optimal balance for the 2ULB-T problems was
moderate. All problem instances were solved in less than 5 minutes. The
average upper bound on the number of SULB-T problem instances that needed
to be solved in a 2ULB-T problem instance was 17.3 problems. (This bound is
easily determined once all the feasible subsets of tasks, S5, that can be
assigned to the multi-line station are enumerated.) The upper bound was quite
loose in this study. The average number of instances that were actually solved
was 2.75. This was due in part to the use of binary search techniques in steps
2.3 and 3.3 of the algorithm.

While the effectiveness of heuristics for SULB-T and 2ULB-T problems was not
investigated in this study, it is worth noting that the maximum task time
heuristic (used in the solution algorithms for both problems to obtain an initial
upper bound on the number of stations) produced excellent results. Tightening
the lower bound on the number of stations will improve the recognition of
instances when the heuristic has actually achieved the optimal. The
development of heuristics for more complex multiple U-line problems is a

promising area for future research.

98
5. Discussion and Conclusions
The empirical studies illustrate that balancing two U-lines together can increase
operator efficiency. They also provide a rationale for including travel during U-line
balancing. The additional computational effort is a small price to pay for the increase
in accuracy and reduction in line balance adjustments which would be required using
implicit methods. A number of other considerations may provide a further incentive to

explicitly consider travel in U-line balancing,

Restrictions on the location of particular tasks

In many manufacturing settings, the location of a task is fixed or limited to a
specific section of a production line because of machine and material handling
constraints. The algorithms in this paper can be modified to include constraints on the
locations for these tasks. Any assignment of tasks to stations that violates these
constraints is infeasible. To illustrate, consider again the U-line in Figure 3. The line
is 73 feet long. Let O<us73 be a position along the line; with u=0 being the beginning
of the line and u=73 the end. Suppose that tasks 1 and 3 are predecessors of task 4,
and tasks 8, 9, 10, 12 and 14 are successors. &, +¢; = 13 and l3+0y+0,o+0;,+0,, = 32.
Define B, to be the beginning location of task 4. Then -

13 < B, < 73-32=41.
Now suppose that task 4 is to be performed on a machine that must be located between
u=10 and u=22. The machine is ¢,=5 feet long. Then B,>10 and B,+0,<22, or

B,<17. The resulting constraint on the beginning location of task 4 is:13 < B,< 17.

If task 1 is assigned first, it occupies the first five feet of the U-line. If task 2 is
assigned next, then a lower bound on B, is (¢, +,)+0,= 24, as task 3 must still be
completed prior to starting task 4. This violates the location constraint and so task 2
cannot be assigned. It is quite straight-forward to add this logic to the branch and

bound algorithms in this paper.

U-lines with different cycle times

Consider a 2ULB-T problem where two the U-lines, 1 and 2, have different
cycle times, C, * C,. Assume that C, < C,, and consider the following two
possibilities.

1. GJC, is an integer. This could occur when one line produces parts for the other
line, or both produce parts for the same downstream operation but the quantity
of each part used is different. The problem may be solved as described in
section 3 using C, as the cycle time for the multi-line station. The
implementation of the balance will require the operator to travel to U-line 2
once every C,/C, cycles to complete the tasks on U-line 2. The rest of the time
the operator remains in U-line 1.

2. G)/C, is not an integer. U-line 2 is visited every C,/C, cycles on average. On
those occasions when the time between visits exceeds C,/C, cycles, some
inventory will be needed in U-line 2 to prevent a shortage. The inventory will
be replenished during the other occasions when the time between visits is less

than C,/C, cycles. Greater attention will have to be paid to scheduling trips to

100

U-line 2 to avoid shortages and fluctuations in inventory levels.

Travel time functions
In this paper travel time is a scalar multiple of travel distance. Other functions
could be used to account for factors such as starting and stopping, changing lines,

fatigue when travel distance exceeds an acceptable level, and so on.

Rotating operators through stations

Part of the Shojinka concept calls for the rotation of operators through different
stations. The exact rotation depends on the skills of the operators, the training
objective, operator preferences, the physical health of the operators, and so on. Travel
distance may also be a factor. For example, the rotation may try to spread each

operator's travel evenly over an 8-hour shift.

5.1 Extensions

U-shaped production lines are an important part of modern production systems.
This paper extends the literature on these production lines in the two important ways.
First, the simple U-line balancing problem is extended to include consideration of
travel by operators in each station and the effect of location on station feasibility.
Second, the multiple U-line balancing problem, wherein stations can include tasks from
more than one U-line, is introduced through the 2ULB-T problem. The SULB problem
is known to be NP hard. Consequently, the SULB-T problem and the 2ULB-T

problem, which are more difficult problems, are also NP hard. The storage and

101
computational requirements for the branch and bound algorithms for these problems are
high. More research into the computational requirements of optimal solution
algorithms for these and other U-line problems is required. The development of
heuristics appears to be a promising area for future research. There are many other
areas where more research work can be done. Different branching procedures and
bounds for the branch and bound algorithm can be investigated. Stochastic task

completion times can be considered.

Designing facilities

It is not always the case that the front and back of a U-line are of equal length.
The lengths of the front, back and side of a U-line and its shape are design parameters.
During the process of designing a facility, different U-lines geometries may be
analyzed. Each configuration gives a different set of SULB-T problems which can be
solved for a range of possible cycle times. In this way the effect of different designs
on the number of stations and operators, travel distances, required floor space, and so

on, can be determined.

Other assembly line balancing problems

Shtub and Dar-El [1989] present a classification scheme for assembly systems in
which assembly systems are organized along three dimensions: division of
labour—individual assembly, workstations, or collective assembly; production
flow—paced or unpaced; and product mix—single model line, mixed model line, or

multi-model line. The traditional and U-line balancing problems are classified as

102

workstation, paced and single model assembly line problems. The difference between
the two is the type of workstation employed—straight in the case of the traditional
problem, and straight, crossover and multi-line in the case of the U-line problem.

The results in this paper can be extended to other assembly line problems and to
non-assembly line problems. For example, mixed model and multi-model U-line
problems, unpaced U-line problems, and collective assembly U-line problems can be
investigated. Travel time and location constraints can be applied to special assembly
line problems. Agnetis et al. [1995], for example, consider the problem of balancing
segmented assembly lines with incompatibilities among operations and groupings of
operations which must be performed together. They propose breaking a single line into
segments and allowing stations to include tasks on more than one segment to improve
productivity in a facility producing heaters for automobiles. This is not unlike
separating a U-line into a front and back and creating crossover stations that consider
travel time and satisfy location constraints.

While beyond the scope of this paper, it is appropriate to note that there is a
relationship between the multiple U-line problem and cellular manufacturing (also
called group technology). Hall [1983] and Wantuck [1989] both use the terms cellular
manufacturing and group technology when they discuss multiple U-lines. Burbidge [p.
5, 1991] defines group technology as "a method of organization for factories in which
organizational units known as "groups” each complete a particular set or "family” of
parts with no backflow, or crossflow between groups ...". Identifying the groups (i.e.

machines and parts) is an important problem in group technology. The mixed model or

103
multi-model multiple U-line problem would take the groups identified by group
technology, organize the machines in each group into stations on a U-line, and link the
U-lines with stations that cross neighbouring lines. See the special issue of the Journal
of Operations Management [1991] on "Group Technology and Cellular Manufacturing"

for a good review and recent list of references on the subject.

More complex multiple U-line balancing problems

The positions of multi-line stations are restricted to the opening of the U-lines.
Relaxing this restriction so that multi-line stations may be placed at other parts of the
U-lines gives a more difficult problem. This is an area where more research may be
done. Another area of ongoing research is the extension of the 2ULB-T problem to
the general case of simultaneously balancing N U-lines. Travel distances and location
constraints are more complex in this problem. It is unlikely that optimal balances can
be obtained for other than small problem instances and so heuristic solution algorithms

need to be developed.
5

104
References

Agnetis A., A. Ciancimino, M. Lucertini and M. Pizzichella, "Balancing Flexible
Lines for Car Component Assembly,” Int. J. Prod. Res., 33, 2, 333-350
(1995).

Bowman, E.H., "Assembly Line Balancing by Linear Programming", Oper. Res., 8,
3, 385-389 (1960).

Burbidge, J.L., "Production Flow Analysis for Planning Group Technology", Journal
of Operations Management, 10, 1, pp. 5-27 (1991).

Dar-El, E.M., "Assembly Line Balancing - An Improvement on the Ranked Positional
Weight Technique," Journ. of Indust. Engineering, 15, 2, 73-77 (1964)

Hackman, S.T., M.J. Magazine and T. S. Wee, "Fast, Effective Algorithms For
Simple Assembly Line Balancing Problems,"” Oper. Res., 37, 6, 916-924
(1989).

Jaeschke, G., " Eineallgemaine Methods Zur Losung Kombinatorisher Problemé, "
Ablaufund Planungforschung, 5, 133-153 (1964).

Jackson, J.R., "A Computing Procedure for a Line Balancing Problem", Mgmz. Sci.,
2, 3, 261-271 (1956).

Merten, P., "Assembly Line Balancing by Partial Enumeration", Ablaufund
Planungforschung, 8, 429-433 (1967).

Miltenburg G.J. and J. Wijngaard, "The U-Line Balancing Problem." Mgmz. Sci., 40,
10, 1378-1388 (1994).

Monden, Y., Toyota Production System, Second Edition, Industrial Engineering Press,

105

Institute of Industrial Engineers, Norcross, GA (1993).

Schonberger, R.J., Japanese Manufacturing Techniques, Nine Hidden Lessons in
Simplicity, The Free Press, New York, 1982.

Shtub, A. and E.M. Dar-El, “A Methodology for the Selection of Assembly Systems”,
Int. J. Prod. Res., 27, 1, 175-186 (1989).

"Special Issue on Group Technology and Cellular Manufacturing”, Journal of
Operations Management, 10, 1, 1991,

Van Assche, F. and W.S. Herreolen, "An Optimal Procedure for the Single-Model
Deterministic Assembly Line Balancing Problem," Eur. J. of O. R., 3, 142-
149 (1978).

Wantuck, K.A., Just In Time for America, The Forum Ltd., Milwaukee, WI, 1989,

106

Appendix

An Illustrative Example of the 2ULB-T Problem
A balance is required for the two U-lines described in Table 5. The lines are
arranged as previously shown in Figure 4. The algorithm of section 3.3 is applied as
follows to obtain the optimal balance.
Step 1. Balance the two U-lines separately
U-line u=1: UBM = H(x|xeS) = 4 stations. (H is the maximum task time heuristic.)
LB ={ ¥ t + & L ol + W/CT,
=[{219 + .3(.8x64 + 10)}/ 70]
= 4 stations.
Since LB" = UBM the heuristic balance is optimal; M, =4.
U-line u=2: UBM = H(x|xeS) = 4 stations.
LB = [{179 +.3(.8x48 + 10) } / 70]
= 3 stations.
LB" < UB™ the branch and bound SULB-T algorithm searches for a
solution that has 3 stations. None exists and so the heuristic solution is
optimal; M, =4,
Step 2. A balance with one multi-line station
2.1 Compare M,” + M,’ to a lower bound on M(with one mulsi-line station)
LB”"= W+Ya, 0 foru=1,2. Thatis; LF’™ = 10+.8x64 = 61.2 feet, and

LB”™ = 10+.8x48 = 48.4 feet.

| Product or

U-line, u L

feet

U-line Geometry

Table §

Data For Illustrative Example

W
feet

x(u)

b

second
s

107

Immediate
Predecessors

1 27

10

FOVRNAUHEWN -

14
34
23
15
21
31
9
20
8
16
28

=N N - W N

C = 70 seconds
=8 for all x(u)
g=.3 seconds/foot
d=10ft.

10

WA A WA -~

O

9
27
8
38
20
12
23
24
18

PO OANNWLWLL Qs

108
Then LB = LBP™® + LBP™® 4 24, So;
LB"T = 61.2 + 48.4 + 2x10 = 129.6
A lower bound on the number of stations is
2 N,

LB =[{¥ ¥ t,+ gXxLB™}/ C]=[{398+.3X129.6)}/70] =7.

us=] x(u)=1

Since LB® < M,;” + M,’ proceed to search for a multi-line station.
2.2 For each U-line generate all subsets of tasks that can be assigned
to the multi-line station
® Bounds
The lower and upper bounds on the sum of the task times for the tasks assigned to

the multi-line station from each U-line are:

LB(t,y) = Max{xglt,(u,+ gXLB"T® . (M,"1)C, x(u).es_:{t“")} }, u=1,2,
= LB(t,,) = Max{(219 + .3X61.2 - 3X70), 14} = 27.4 sec.

= LB(1,q,) = Max[(179 + .3x48.4 - 3x70), 9} = 9 sec.

UB(1,q,) = C - LB(T,)- g XLBPT@(»

= UB(Ty) = 70 -9 - .3(4X(.8+1) + 4X(.8+1) + 2x10) = 50.7
UB(T,q) = C - LB(T,)- g XLBPT®(®

= UB(t,g) = 70 - 27.4 -.3(4 X(.8+1) + 4X(.8+1) + 2X10) = 32.3

$027.4 < Y t,;,<50.7and 9 < ¥ t, < 32.3.
XES, 4y X€S8, 4,

The subsets on each U-line which fall within these bounds are:

St {1,2}, {1,3}, {1,9,11}, {1,11}, {2}, {2,10}, {9,11}, {10,11}, {11}

109

$2,;: {1}, {1,3}, {8}, {9}, {1,9}
As there are 14 subsets, there are at most 14 different SULB-T problems that need
to be solved.
2.3 Find the optimal multi-line and single-line stations

Start with line u=2 because it has fewer subsets. Subset §2,,,={1} is
selected. The remaining SULB-T problem has tasks S,-{1}. Applying the
algorithm of section 2.4 gives My(S2,,,) = 3, which is a reduction of one station
from M,". So the algorithm moves to the other U-line, u=1, and searches for a
subset S1,;, which gives M,(S1,;) = M,"-1 = 3 stations and whose total task time
is lessthan C - ¥, es1 50y tey - XLBPT®I? = 70 - 9 - 10.86 = 50.14 seconds.

The subset {10,11} is such a subset. The resulting optimal balance is shown in

Figure 7.

Single-line stations: U-line, u=1 Stations 1 2 3
Tasks {1,2,9} {345} {67}
Travel time 13.7 10.3 7.4

U-line, u=2 Stations 1 2 3

Tasks {2,3,9} {6,7,8} {4,5}
Travel time 9.4 9.2 6.4

Multi-line station: Station 1

Tasks {10,11 from u=1, 1 from u=2}
Travel time 15.2

110
Figure 7

Optimal Balance for Illustrative Example

(6 F—15]
7 o\ [«
(3] wine2
‘ in
2]
9 | ()E] U-line 1
! 6
o]

|
a

BALANCING JUST-IN-TIME PRODUCTION UNITS:

THE N U-LINE BALANCING PROBLEM

Abstract

U-shaped production lines are a common component of Just-In-Time systems.
When a number of U-lines operate in close proximity an opportunity exists to balance two
or more U-lines together and reduce the total number of stations required to operate the
facility. The concept of a JIT production unit, where a number of U-lines produce and
assemble parts for the same product line, is introduced. The problem of balancing a JIT
Production Unit is considered as the N U-line balancing problem considering travel. The
problem is modelled and heuristic solution algorithms are presented for both the general
case, where U-line locations are not fixed, and for the fixed location case. A sub-
problem, the problem of assigning tasks to stations which may include tasks from more
than one U-line, provides new challenges for operations managers. This new problem is
called the multi-line station assignment problem. The benefits of multiple U-line balancing

are examined in an empirical study.

This paper was a co-winner of the CORS student paper competition in May 1995. The

first revision has been re-submitted to INFOR for consideration for publication.

111

112
1. Introduction

In an increasingly competitive manufacturing environment many companies have
implemented Just In Time (JIT) practices in their production systems to identify production
inefficiencies and eliminate manufacturing waste (Monden [1993]). A major component
of waste reduction efforts in JIT systems is shojinka, the process of continually striving
to reduce waste in the workforce. Integral elements of shojinka are the use of U-shaped
production lines, cross-training of operators and continual review and revision of work
practices. The shape of U-lines improves visibility and allows the construction of stations
containing tasks on both sides of the line. This arrangement, combined with cross-trained
operators, provides greater flexibility in station construction than is available on a
comparable straight production line. As a result, the number of operators needed on a U-
line will be less than or equal to the number required on an equivalent straight line.

The problem of assigning tasks to stations on U-lines, the U-line balancing
problem, was first modelled by Miltenburg and Wijngaard [1994]. The basic version is
the Simple U-line Balancing (SULB) Problem which corresponds to the Simple Assembly
Line Balancing (SALB) Problem on a straight assembly line. Because U-line stations may
include tasks on both the front and back of the U-line a task may be assigned to a station
if all of its predecessors or successors have been assigned to the same or an earlier station
and there is sufficient idle time. Thus U-line balancing algorithms work through the task
precedence relations for the problem in both directions simultaneously. The greater

flexibility on U-lines comes at a price, U-line balancing problem is significantly more

113
complex than the straight line problem. For a SALB problem with N tasks and #(SH
feasible subsets (created by working through the precedence relationship in one direction)
the computational complexity is ON[#(S]) (Queyranne [1985]). This compares to
O(N’[#(S"))?) for a comparable SULB problem (Part I of this thesis). The increased
complexity limits the size and difficulty of the U-line problems which may be solved
optimally. Fortunately, since U-lines tend to be small, with 5-20 tasks in most instances,
this limitation is not severely prohibitive for single problems.

The SULB problem has been solved using optimally using a recursive fixing
dynamic programming (DP) algorithm (Miltenburg and Wijngaard [1994]), a reaching DP
algorithm, and by depth-first and breadth-first branch and bound integer programming
algorithms (Part I of this thesis). An effective breadth-first B&B algorithm for solving
problems of typical size was identified in Part I.

Two other differences between U-lines and straight lines are essential to extending
U-line balancing research, the time required for station travel and the necessity to avoid
interference between operators moving in adjacent stations. While the total distance
travelled by all workers on a straight line is fixed, regardless of the balance in effect, the
total travel distance on a U-line is a variable dependent on the current station assignments.
Since travel takes operator time, the sum of all task and travel times is also a variable
dependent on the balance. The layout of the U-line and location of tasks restricts the
ability of operators to cross from one side of the line to the other without interfering with
nearby stations. To avoid such interference location constraints must be added to the

problem formulation. In Part II of this thesis consideration of operator travel was

114
introduced into U-line balancing as the Simple U-line Balancing with Travel (SULB-T)
Problem. Three distinct components to U-line station travel distance were recognized.
Figure 1 in Part II shows examples of U-line balances and the travel distances associated
with them.

Because U-lines are more flexible than straight lines the number of stations in a U-
line balance will always be less than or equal to the number on a comparable straight line.
If the U-line balancing problem is extended to allow the construction of stations which
include tasks on more than one U-line further gains in productivity may be achieved. The
advantages of multi-line stations are discussed in Schonberger [1982], Wantuck [1989] and
Monden [1993]. Stations with tasks on two or more U-lines are called multi-line stations.
In this problem, where operators may walk between U-lines during a cycle, a fourth travel
distance, multi-line travel, is added. Part II introduced the problem of balancing two U-
lines together where access to the U-lines is allowed only at the opening of the U. Because
of this restriction, the number of multi-line stations in this Two U-line Balancing with
Travel (2ULB-T) problem cannot exceed two without interference between stations (see
Figure 1). If it is assumed that the distance between lines is no less than the width of the
U-lines at most one station may be removed from the total number of stations required to
balance the two U-lines. An optimal branch and bound algorithm was presented.

The ultimate objective of U-line balancing research would be to balance an entire
production facility simultaneously, minimizing the total labour force. However, in a
single JIT facility there may be several distinct types of products, each with its own

production lines. Because the cycle time for any U-line is determined by demand for the

115
Figure 1

.Two U-Lines with Multi-Line Stations

[6]
U-Line 1 (2] U-Line 2

] O—O—G0—
O

Two Multi-Line Stations

-]
e
()
()

One Multi-Line Station

116
product produced on that line, U-lines producing different products will frequently operate
with different cycle times. Those cycle times will change at different times corresponding
to changes in demand. Therefore, it is not possible to balance an entire facility as a single
unit. Instead, the concept of a JIT Production Unit is introduced. A JIT production unit
is defined to be group of U-lines all producing parts for the same product line, operating
at the same cycle time and located sufficiently close together that multi-line stations may
be built connecting combinations of the U-lines. Figure 2 would be considered to be a JIT
Production Unit. The U-lines all produce parts for the same product lines. As the
production rate changes in response to demand, the lines must be re-balanced and the
stations in the unit rearranged. Stations containing tasks on two or more U-lines are
allowed in the solution and these stations provide the flexibility needed to minimize the
number of stations required. The problem of balancing a JIT production unit with N U-
lines while considering travel time will be called the N U-Line Balancing with Travel
(NULB-T) Problem.

The SULB and SULB-T problems have been shown to be NP-hard and so the
NULB-T problem which contains several SULB-T problems is also NP-hard. While it is
possible to find an optimal solution for the two U-line balancing problem, the
computational requirements are intensive. Determining an optimal solution for the NULB-
T problem in a reasonable period of time is infeasible in all but the smallest problems.
However, because of the flexibility in U-line station construction even simple heuristics
have been shown to perform extremely well at finding optimal or near optimal solutions

(Part I of this thesis). While it may be impossible to prove an optimal solution due to

117
Figure 2

An Example of a Just In Time Production Unit

ey

%}% @P_\r\‘%\z

Balance During a Busy Period (13 stations)

© o

NETE
g@ 292

Balance During a Slower Period (10 stations)

O

118
computer memory and/or time limitations, the use of heuristic techniques should allow the
identification of good solutions.

This paper extends previous work on U-line balancing by modelling the N U-Line
Balagcing with Travel (NULB-T) problem and presenting solution algorithms for it. Two
variations of the problem will be considered. First, the general case, where there are no
restrictions on the locations of the N U-lines, will be discussed. Second, the more
restricted case in which U-line locations are fixed will be examined.

The remainder of the paper is organized in the following manner. In section 2 the
model for the N U-line balancing problem is presented. In section 3, solution algorithms
for the NULB-T problem are proposed. The procedure for solving both the general and
fixed location NULB-T problems is identical for two of the three steps in the algorithm.
This common procedure is contained in Section 3.1. In section 3.2, a procedure for multi-
line station formation for the general case is presented. In section 3.3, the problem of
assigning tasks to multi-line stations where U-line locations are fixed is considered and a
solution algorithm is offered. Computational complexity of U-line balancing problems is
compared in section 3.4. The performance of the NULB-T algorithm is evaluated in an

empirical study is presented in section 4, followed by a discussion in the last section.

2. A Model for the NULB-T Problem

2.1 Assumptions
Assumptions for the NULB-T are of two types, those for individual U-lines and

those for the JIT production unit.

119
For individual U-lines, the assumptions are those for the SULB-T problem:

1. Each U-line produces a single product.

2. Tasks are partially ordered by a set of precedence constraints, P.

3. All task times and task lengths are deterministic.

4. Task assignments to stations are limited by cycle time, precedence and location
constraints.

5. Task distance, ¢,, consist of two parts; one part, (1-e)!, is completed as part of
task completion and the second part, a(,, represents travel between
adjacent tasks. Only the second part, ,,, is assigned a travel time.

6. All distances are measured as Euclidean distances.

7. Travel time/unit distance is assumed to be identical for all operators.

For a JIT production unit the following assumptions are made:

8. There are N U-lines which may be considered for simultaneous balancing.

9. The N U-lines are located sufficiently close together that tasks from every U-
line may be included in a multi-line station with tasks from at least one
other U-line. In the general case, the location of the U-lines is not fixed.

10. All U-lines operate at the same cycle time. (The case where cycle times are
not identical is dealt with in the discussion)

11. Access to the U-lines is restricted to the opening of each U. Stations are not
permitted to cross paths and so the number of multi-line stations associated
with any U-line exceed two.

12. A multi-line station can include tasks from at most k U-lines.

120

13. All travel distances between U-lines are known constants.

2.2 Notation

NULB-T problem variables.

N = The number of U-lines in the JIT production unit.

C = The cycle time.

M, = The total number of stations required to complete all tasks on the N U-
lines.

k = The maximum number of U-lines whose tasks may be included in a

single multi-line station.
g = the travel time per unit of distance

Variables specific to each individual U-line, u, u = 1, ..., N

X, = The number of tasks to be completed on U-line u.

X(u) = Task x to be completed on U-line u. x = 1, ooy Xye

t.w = The processing time for task x on U-line u.

4w = The task distance on U-line u required by task x(u).

. = The proportion of {,, not directly included in the performance of task
x(u) and assigned a travel time.

S, = {x@) | x=1,...,X,}, the set of tasks on U-line u.

P, = The set of precedence constraints for S,.

M’, = The optimal number of stations required to balance U-line u separately.
L, = The length of each of the front and back of U-line u.

W, = The width of U-line u.
We assume without loss of generality that U-lines are constructed of straight lines and right
angles and that for each U-line u, ¥, sy by = 2L, + W,.

$8,, = A feasible subset, j, of tasks from U-line u which may be assigned to

121
multi-line stations. Each S8, is selected so that it is theoretically possible
to balance S, - §5;,, in M",-3 stations, with 6=1,2,

6 = the number of single line stations to be removed from a U-line and
assigned to multi-line stations.
Variables specific to a station:

Station variables may relate either to a station containing tasks from a single U-line u or
to a multi-line station including tasks from up to k different U-lines. A denotes the U-lines
which contribute tasks to a station m(A), where A = U, Uv, UVW, UVWX,.. ; U,V,W,...
= 1,...,N and urv=w=x=, ..

m(A) = Station m from U-line(s) A

M, = The number of stations from U-line(s) A.

STy = {x(u) | task x(u) is performed at station m(A)}.

DT, = Travel distance in station m(A) (excluding travel involved in task
performance).

g XDT,) = The time required to travel distance DTy

2.3 NULB-T Model

Minimize ~ My, = ¥ M,,
A

Subject to:

M, N

U (UST,) = Us, M)

A m=1 u=1

STuwy N STuwy = o, forall m(A) (3]
m(A)*m(A)’

Y t +gxDT,,, <C, forall m(A) 3)

X(U)EST,

M, + My, + M., + ... s 2, forany u C)

122

Multi-line stations can contain tasks from at most k U-lines. (&)
Precedence constraints for each U-line. ©6)
Location constraints @)

The objective of the NULB-T problem is to minimize the total number of stations
required to balance the JIT production unit. All tasks on the N U-lines are assigned to a
station (1). Each task is assigned to only one station (2). The total task time plus travel
time in each station cannot exceed the cycle time (3). Tasks from any U-line can be
contained in at most two multi-line stations (4), while the maximum number of U-lines
whose tasks may be included in a single multi-line station cannot exceed k (5). Location
constraints (7) restrict the physical arrangement and interaction of both single line and

multi-line stations.

3. A Solution Algorithm for the NULB-T Problem

The algorithm for solving the NULB-T problem consists of three steps.

Step 1: All N U-lines are balanced separately to find the total number of stations needed
to operate the JIT production unit if no multi-line stations are used.

Step 2: From each U-line, u, a subset of tasks to be assigned to the multi-line stations is
removed, reducing the number of single-line stations remaining on u. These
subs;ets are called multi-line subsets. Up to N multi-line subsets may be wlw@,
at most one from each U-line.

Step 3: The tasks in the multi-line subsets are assigned to multi-line stations in a way that

123

minimizes the total number of stations required to operate the JIT production unit.

The procedure for solving both the general and fixed location NULB-T problems

is identical for the first two steps in the algorithm. This common procedure is contained
in Section 3.1. Procedures for assigning tasks to multi-line stations are presented in
section 3.2 for the general case and section 3.3 for the fixed location case. A detailed

description of the algorithm follows.

3.1 Selecting Multi-line Subsets
Step 1. Balance all of the U-lines separately.

For each U-line, u, find M’,, the optimal number of stations required to balance
u alone. The SULB-T branch and bound algorithm from of Part II of this thesis is used
to solve the N individual SULB-T problems.

Step 2. Select a multi-line subset from each U-line.

Multi-line subsets from any U-line may take one of two forms, depending on
whether we are trying to reduce the number of single line stations on the line by one or
two (denoted by & = 1 or 2).

S1, - A subset which allows the remaining SULB-T problem, S, - S1,, to be solved
using M',-1 stations. This subset is assigned to one multi-line station or
may be divided between two multi-line stations if it is a crossover subset,
one with tasks on both the front and back of the U-line.

S2, - A subset which allows S, - S2,, to be balanced using M",-2 stations.

Including travel the subset time must exceed C and so the subset must be

124
divided between two multi-line stations. It is assumed that S2, must
contain tasks on both sides of the U-line.

All feasible subsets S8,, 8 = 1,2 and u=1,...N are found separately using the
following procedure.
Step 2.1 Bounds

Determine upper and lower bounds on the total task time plus travel time
which may be assigned to each subset S8,. These bounds are discussed in the
Appendix.

Step 2.2 Enumeration of potential multi-line subsets

Enumerate all candidate subsets falling within the bounds. The candidates
are denoted as S§,,, denoting the jth subset on U-line u which could potentially
remove & single line stations from u. Not all U-lines will have feasible candidate
subsets for 6=1,2.

Step 2.3 Selection of mulri-line subsets, S,

The algorithm searches for two smallest subsets Sbj(u), 8=1,2 which allow
the remaining ULB problems S.-S9,,, to be solved using M",-d stations. The
procedure is:

Subset Selection Loop
Select a candidate subset S5,
Solve SULB-T problem, S-S5, to find M.
IFM > M’, -5 THEN fathom S5, and any S8,,,c S5,

IF M = M, -d THEN fathom any S8, with time, S0 2

125
t(S;(,) and denote S8, as the current solution S3,.

Loop until all subsets are fathomed leaving the best S8,
A binary selection procedure is used to reduce the number of subsets tested.

Repeat the procedure for u=1,...,N and 8=1,2 until all feasible multi-line
subsets S8, have been identified. There will be a maximum of 2N subsets S6,.
Although the subset time for S8, is the smallest possible there is no guarantee that
some fathomed subset S8, with greater time might not have contained a better
mixture of tasks for combining with other subsets. Consequently, the algorithm
proposed is a heuristic.
Step 2.4 Selection of a single multi-line subset Jrom each U-line

From each U-line select the subset S8, with the maximum idle time.
The problem of assigning the tasks in multi-line subsets to stations will be called
the multi-line station assignment problem. Proving an optimal solution would
require testing every possible combination of feasible subsets 8,y in the N U-
lines. Even if it is assumed that the best S8, was selected, given a set of multi-line
subsets, S8,, 8§ = 1,2 and u = 1,...,N, proving the optimal multi-line station
assignments would still require solution of a multi-line station assignment problem
for every possible combination of the subsets, up to 2N problems. The multi-line
station assignment problem will be shown to be NP-hard so this is a significant
task. The decision on how many such problems to attempt depends on the size of
the problem, the importance and value the solution and the computing resources

available. In this paper, to reduce the problem to a manageable level, only one

126
subset is selected from each U-line and a single multi-line station assignment
problem is solved.

The procedure utilized to solve the multi-line station assignment problem depends
on whether U-line locations are restricted or not. In section 3.2, the general case will be

examined followed by the case where U-line locations are fixed in section 3.3.

3.2 The Multi-line Station Assignment Problem - General Case

The formulation for the multi-line station assignment problem is the similar to that
for the NULB-T problem except that all single line stations have already been constructed
and only the tasks in multi-line subsets remain to be assigned. All stations built from
multi-line subsets will be referred to as multi-line stations even though some may
ultimately contain tasks from only one U-line. The problem to be solved is:

Mlnimile Mmulu = EMAs
A

Subject to:
M, N
UST,,, = U 8§, i=lor2 8)
m=1 u=1
STawy N ST,y = o,)
m(A)m(A)’
Z tx(u) + g(DTm(A)) < C9 all m(A) (10)
X(u)ESTy,,
M, +M,, + M, +..52, foranyu (11)
Each multi-line station contains tasks from at most k U-lines (12)

Precedence constraints for the tasks in the multi-line subsets (13)

127

Location constraints on U-lines, paths and tasks (where applicable) (14)

where M,,.; = The total number of stations formed from the multi-line subsets.

In the general case of the multi-line station assignment problem, U-line locations
are determined after the station assignments are made. This could apply during facility
design or if machines are totally flexible and each U-line is capable of handling any set of
tasks §,. The problem bears a resemblance to the bin-packing problem, in that all multi-
line subsets must be packed into the minimum number of bins (stations) of size C.
However, a number of important differences complicate the problem.

i. Tasks assigned to each multi-line station can come from at most k U-lines.

ii. As tasks are added to each multi-line station, a time for operator travel is also
added. Thus, total problem time is a variable dependent on the multi-line
station assignments.

iii. Since subsets may be divided the total number of subsets to be assigned to
stations, #(S), varies depending on the type of subsets in the problem, their
composition and whether they are divided.

The bin-packing problem may be shown to be a special case of the multi-line

station assignment problem. In the multi-line station assignment problem, if constraint 12
is relaxed to k=#(S), travel time is assumed to be constant per station in constraint 10 and
subsets are divided prior to solution - that is, #(S) is fixed - the problem becomes a bin-
packing problem. The bin packing problem is NP hard and so the multi-line station

assignment problem is also NP hard.

128

Step 3. Solving the Multi-Line Station Assignment Problem - General Case

Once the multi-line subsets have been selected, solving the multi-line station
assignment problem involves assigning the tasks in those subsets to stations. It is assumed
that minimizing operator travel, particularly between U-lines, and minimizing potential
interference are secondary objectives to minimizing the number of stations. The following
priority ranking is made concerning the desirability of potential multi-line station
assignments. Provided that the total number of stations is not increased,

1. the preferred solution would be one in which multi-line subsets from individual

U-lines are not divided,

2. the next would be a solution in which subsets from a single U-line are divided
into one subset containing tasks from the front of the U-line and another
containing tasks from the back of the U-line and

3. the least attractive solution would be one where multi-line subsets with tasks on
both the front and back of the U-lines are divided in some other fashion,
with one of the subsets containing tasks on both sides of the U-line.

The following heuristic algorithm for solving the multi-line station assignment
problem considers the preference ranking above and uses three heuristics successively,
stopping if one of the solutions achieves the lower bound on M., the number of multi-
line stations.

Step 3.1 Lower Bounds On M,

Two lower bounds are calculated, with the maximum used as LB(M,_,,.).

129

The first bound is based on the total task time plus a lower bound on travel time.
The second considers, #(half), the number of indivisible subsets or tasks in other
subsets whose total time is such that no two may be added to the same multi-line

station. Therefore,

LBMou) = Max{[[t, + gXLB(DT,))/C], #(half) }

x(u)esd,, 8=1 or 2, u=1,...,N
where, LB(DT,,,;) is a lower bound on the travel within multi-line subsets and

between U-lines required to achieve LB(M,.,,),

#(half) = the number of non-crossover subsets with total time > [C-gXxd,}/2 plus
the number of tasks in other subsets with processing times plus travel time
> [C-gxd,)/2 and

d,, = the minimum travel distance between any two U-lines. d,, is assumed to be
constant in the general problem. For the fixed location problem d,, = min
d,, s=t.

Step 3.2 Heuristic 1

H1.1 Divide all S2, subsets into two parts, if possible into one subset with tasks
on the front of the U-line and one with tasks on the back. Do not divide
S1, subsets.

H1.2 A single-pass heuristic with priority based on non-increasing subset times is

used to assign the subsets to stations. As subsets are added, travel within the

station is calculated, a travel time is assigned to the station and feasibility with

respect to cycle time and location constraints is ascertained.

130
If M, s = LB(M,,,,) stop, otherwise continue to 3.3.
Step 3.3 Heuristic 2
H2.1 Without changing existing S2, divisions, divide all S1, subsets with tasks on
both sides of the U-line into two subsets, one containing only tasks at the
front of the U-line and one containing tasks at the back of the line.
H2.2 Solve the multi-line station assignment problem with the new list of subsets
using the heuristic in 3.3.2.
If M,;s = LB(M,,,;) then stop, otherwise continue to 3.4.
Step 3.4 Heuristic 3

H3.1 Calculate L,,,, the maximum average idle time per station which will allow
attainment of the lower bound on M_,,,.

N
Lux = [C X LBMu) - £ Yty + gXLB(DTpu) 1/ LB(M,,)

u=] x(u)eSs,

H3.2 For each S8, with tasks at both ends of the U-line, enumerate and store
every feasible division of the subset into two parts S8, and $8°,
Designate all non-crossover subsets which cannot be divided as S1%,.

H3.3 Assign subsets and tasks to multi-line stations using the following procedure:

Setm =1,[, =C.

1. From the set of available subsets, $1*, with t(S 1*) < I, select the subset with
max t(S1*,) and add it to station m. Update station travel distance, idle
time and the number of U-lines with tasks assigned to station m: DT, L,

and #(u),,. If the station is infeasible with respect to cycle time or location

131
constraints then remove S1*, and select the subset with the next greatest
time, otherwise continue.

" Repeat step 1 until nu,, = k or there is no S1*, which fits in the current
station.

* If there are no unassigned S1*, subsets proceed to step 5.

2. Calculate the average accumulated idle time per station created, I,,..

* If L, < I, g0 to step 4.

" Ifnu, <kandI,, > L., then proceed to step 3.

* If nu, = kandI,, > I, then determine if an available $&%,, or 8%,
can reduce L, if it replaced the last subset added to m. If there is
such a S8, or $8%, then backtrack by removing the last subset
added to the station and proceed to step 3, otherwise move on to
step 4.

3. Select the available S, or S6%,,, with largest time including travel s I_ and
add it to the current station. If the station is feasible then the complement
of that subset is now indivisible and is designated as S1*, for step 1. Return
to step 2. If the station is not feasible then fathom the subset and repeat
step 3. If no subset fits then proceed to step 4.

4. Create a new station; m=m+1, L, = C and #(u), = 0. Return to step 1.

5. If all §1%, subsets have been assigned, begin assigning §2% or §2°,,, subsets in
step 1, selecting the largest which fits into the current station. Its

complement becomes a S1™, subset. Finally, if there are no available 82‘}@)

132

or 52%,, subsets then S1Y, or S1°%, subsets are chosen.
Note that the optimal solution to the problems solved by heuristics 1 and 2 could
be found using a modified version of the SULB-T algorithm treating each subset as an
individual task to be assigned. However, since heuristic 3 offers more flexibility and a

greater opportunity to the lower bound the algorithm proceeds immediately to it.

Example 1. An example of the general case multi-line station assignment problem.

Consider a NULB-T problem with the following parameters: N =7, C=370
seconds, k = 3, g = 0.3 sec/ft, W,= 14 feet for all u, d_,= 20 feet for all uv and iy =
.8 for all tasks. The precedence graphs for the U-lines are shown in Figure 3. To
simplify the example only subsets S1, are considered.

Step 1. Each of the U-lines is solved separately. 28 stations are required to balance the
JIT production unit.

Step 2. All potential multi-line subsets S1,, are enumerated. The subset S1;,, with the
smallest total time which allows S,- S1, to be solved in M’,-1 stations is denoted
as S1,.

The results from the first two steps of the NULB-T algorithm are shown in
Table 1. All tasks except those in the multi-line subsets S1, have been assigned to
21 single-line stations. The multi-line station assignment problem is to assign the
tasks from the 7 S1, subsets shown in Table 1 to multi-line stations.

Step 3. The procedure described in section 3.2 is used to assign the multi-line subsets to

Figure 3
Precedence Graphs for Example 1
150,10 110,4 100,4 180,9 0
) 80,3 140,8
130,3
60,8
U-line 5
Task time
180,1 o Task distance

70,10 20,8

U-line 6

60,6 304
U-line 3

250,8 70,4 10,10

220,7 1006 2204

U-line 4 U-line 7

139

Table 1

SULB-T
solved to
identify S1,

Results from Steps 1 and 2 of the NULB-T Algorithm

Multi-line
subset, S1,

6
4
8

{1,2,13}
{2,5,7}
{1,4,5,8,9}
{11,12,13}
{1}
{4,12,13}

134

135
stations.
Step 3.1 Lower bounds on M,,,,;: At least [1442/3707 = [3.898] = 4 stations are
required. Since there are seven U-lines with feasible multi-line subsets, at least
three of the subsets must be combined with subsets from other lines to achieve this
lower bound. With k = 3 there will be a minimum of five traverses between U-
lines and so 5 Xg Xd,, = 5X.3%20= 30 seconds is added to the sum of the subset
times.
LBI(M,,») = [1472/370] = [3.98] = 4.

For the second lower bound, travel time and return between U-lines
requires 2X20 ft X .3 sec/ft. = 12 seconds. If a non-crossover subset or a task
plus its travel in another subset has total time > (370 -12)/2 = 179 it will not fit
into a station with another such non-crossover subset or task. Non-crossover
subsets S1,, S1; and S1, and tasks 12 on U-line 1 and 7 on U-line 2 all have total
time > 179 so LB2(M,,,,.) = 5.

o LB(Mpy) = 5 = L, = (5X%370 - 1472)/5 = 75.6 seconds per station.

Step 3.2 Heuristic 1: The undivided Sl,l subsets are assigned to stations using
Heuristic 1. The resulting assignment of tasks to six stations are shown in Table 2.
A single station has been removed but the lower bound on multi-line stations has
not been achieved so the algorithm proceeds to step 3.3.

Step 3.3 Heuristic 2: All crossover subsets are divided into front and back subsets.
Heuristic 2 is used to assign the resulting eleven subsets to five stations as shown

in Figure 4. This solution achieves the lower bound of five stations and the

Table 2

Multi-line Station Assignments After Heuristic 1.

Station time

259.6
249.7
210.0
362.3

192.7

179.8

136

137

Figure 4
Example of a General NULB-T Balance with Divided Subsets
as)
7
< U-line 5 U-line 2
» | 2 s
as 3 @ &)
(] (&))
4 1 1
<U—hnc 3 U-line 1
4
5 8 9 ‘
13— 12
Task Time(? @ @

\ 1 @ ay
Task Number

“@ @ @9

nHi 13
C
U-line 4

4] “) as)

12 13 4
. 2
<U—llnc 6 U-line 7

©

138
algorithm halts. The U-lines are arranged as dictated by the solution. Twenty-six
stations are needed to operate the seven U-lines in the facility, a 7.1% reduction

in the total labour requirement.

3.3 The Multi-line Station Assignment Problem - Fixed U-line Locations

When the location of U-lines is fixed, tasks from any U-line may be combined with
those from only a limited number of nearby U-lines into multi-line stations. Four factors
take on increased significance in the fixed location problem.

1) The number of U-lines close enough to contribute tasks to a multi-line station
with U-line u.

2) The actual distance between U-lines: Actual distances between U-lines are
measured from the centre of the U-line openings and stored in an NXN
array.

3) The feasibility of combining tasks from U-line pairs: Because of the layout
many pairs of U-lines may not be included in the same station. Such pairs
are assigned large separation distances which act to prohibit these pairs.

4) The paths between U-lines and interference between paths: Paths between U-
lines are drawn as one or a series of straight lines between the centre of
each U-line opening. A prospective path must be compared to existing
paths between other pairs to ensure interference does not occur.

Step 3. Solving the Multi-Line Station Assignment Problem - Fixed Location Case

When U-line locations are fixed, step 3 of the NULB-T algorithm is altered to

139
reflect the location restrictions placed on the solution. As in the general case, the objective
is to achieve the lower bound on M,,,;. The procedure begins with the station with the
least number of options, a non-crossover subset with the fewest potential U-lines with
which to share a station.

Step 3.1 Lower Bounds on M,

As in section 3.2, calculate the lower bound on the number of multi-line
stations, LB(M,,,;s), and the maximum accumulated idle time which will achieve
the bound, I,..

Step 3.2 Fixed location multi-line station assignment heuristic

Assign the subsets to stations using heuristic 4.

H4.1 Select the first S1™, subset from those which fit into the current multi-station
using the following priorities.

* Select the subset with the least number of available adjacent U-lines. A

U-line is considered available if it has unassigned tasks.

* Break ties by selecting the subset with the largest subset time. If no S1*,

subsets are available then proceed to step H4.7.
H4.2 If the first subset is taken from U-line v select the next subset with total time

s I, - d,, from the U-lines adjacent to v using the following priorities.

- Subsets are preferred in order:

S1%,>82,,82%,>S1,,S1%,, S1%q.
- From the preferred subsets select the subset with the least number of

available partner U-lines.

140

* Break ties by selecting the subset with total time < I, -d,.

H4.3 If the station contains two or more U-lines plot the station path(s) between
the U-lines.

* Check for interference by determining whether a current path between a
pair of U-lines uv intersects an existing multi-line station path, If
this happens the pair uv is infeasible. Remove the last subset added
and add a large number to the cell uv in the distance array to
prohibit the pair. Return to step H4.2.

H4.4 Update the idle time, I, and the average accumulated idle time, I,..

‘If L, < L., g0 to step H4.6.

- If #(w), < kand Ivg > L., then proceed to step H4.5.

" If #(u), = kand L,, > I, then determine if an available $6%, or S8%,
can improve the solution over the last subset added. If there is such
a 88/, or §8%,, then backtrack by removing the last subset added
in step H4.2 and proceed to step H4.5, otherwise proceed to H4.6.

H4.5 Select the available $3%, or S8%,, with largest time plus travel < I, and add
it to the current station. The complement of that subset now becomes
indivisible and is designated as S1*, for step H4.1. Return to step H4.3.

H4.6 Create a new station; m=m+1, I. = Cand #(u), = 0. Return to step

H4.1.

H4.7 As described in the general case, once all S1™, subsets have all been

assigned select §27, and §2°,, subsets and then S1%,,, and S1%, subsets.

141
H4.8 If M,,,, > LB(M,,,) then any subsets or stations with #(u) < k may be
considered for inclusion in stations with non-adjacent U-line subsets where

cycle time and location constraints permit.
Figure 5 shows a solution to the fixed location problem for Example 1 where U-

line locations are fixed. The solution achieves the lower bound of five stations.

3.4 A Comparison of Complexity of Line Balancing Problems

Although all line balancing problems are NP-hard, the computational complexity
involved in enumerating all feasible subsets varies depending on the particular problem.
For NULB-T problems the major computational effort required is for solving repeated
individual SULB-T problems to identify the multi-line subsets S8,. Once these subsets are
selected the multi-line station assignment problem must then be solved. The limit of k U-
lines per multi-line station means that the complexity of this problem is O(N!/(N-k)'k!).
A comparison of the computational complexity of the different types of line balancing

problems discussed in this paper is found in Table 3.

4. A Computational Study of the NULB-T Problem

A computational study was undertaken to investigate the benefits of multiple U-

lines and the effectiveness of the solution algorithms.

4.1 Study Parameters and Procedure

100 general NULB-T problems were generated and solved as follows.

1) N-U3,9].

142

Example of a NULB-T balance with fixed locations

Figure §

)

1

U-line 1 5
12 13
@ o

(3)

s 2

U-line 2 4

©

as

a

U-line 7
D)
4
a9
“@ ()]
13 12
2 /U-line6

U-lm#x U-line 5

@

@

@

NE

1r

U-line 4

ae

Task Number

AN

Task Time

)

Table 3

Computational Complexity of Different Line Balancing Problems

143

References

ON,2 #(S%)) Queyranne [1985]

O(N.?> (#(S'))?) part 1 of this thesis

| SULB-T OWN2(#(S"))) part II of this thesis
2ULB-T O (S muric) N2 (#(ST)] + part 1I of this thesis]1

#(S muriy) IN,> #(SD)D)
NULB-T | OQ,ai,..5 #(Smunic)INHS D)D) part Il of this thesis
+ O(NV/(N-kK)!k!)

Notes #(S",) = the number of forward feasible subsets from U-line u.

#(Smuniy) = the number of feasible multi-line subsets from U-line u.

144

2) N U-lines were randomly selected from a problem set of 30 U-lines, each containing
7-18 tasks. See Appendix 2 for a description of the problem set.

3) Cycle time for each problem was randomly selected to be between the maximum task
time in the problem + 10 seconds (to allow for travel) and twice the maximum
task time.

4) Only S1, multi-line subsets were considered in the algorithm to simplify both
programming and computation.

5) For all problems k = 3. This is a reasonable limit for travel between different U-
lines.

6) For any single U-line a maximum of 200 subsets S1,, was enumerated. This limit was
reached in 3.3% of the 604 U-lines whose subsets S1,,, were enumerated. It is
unlikely that increasing the maximum beyond 200 will significantly improve the
final solution.

7) Two criteria were tested for selecting subset S1, from the set of multi-line subsets.
Define Sy = {Sl, | S-S, is balanced with M, -1 stations}, the set of subsets
which allowed a single-line station to be removed from u. The two criteria used
were:

Criterion 1. Select the subset with the smallest subset time, t(S1;,).
Criterion 2. Identify the subset, S1,,,, with the smallest subset time and the

crossover subset, S1.,,, with the smallest subset time where S1i),S1. €

Slnuhi(u) .

145
j=c - S1, = S1,,
if t(1)) + 20 sec. 2 t(Sl,,) = SI, = Sl
U ift(Sly,) + 20sec. < t(Sl,,) = SI, =

then if {

S 1J‘(\l)
Thus, if a non-crossover subset S1;,, has the smallest time but a crossover subset
S1 is within 20 seconds of the total time then the more flexible crossover subset,

Sl is selected. Twenty seconds is approximately 10% of the average maximum
task time for the problem set.

8) The algorithm for solving the general case of the NULB-T problem was used as
described in sections 3.1 and 3.2 (with S1, subsets only). Because only S1, subsets

were considered, a third lower bound on M,,,; was added, LB(M,,,,) = [#(S 1)/k].

9) The multi-line station assignment problem was solved using heuristics, H1, H2 and
H3.

H1 - The problem with undivided subsets S1, was solved assigning tasks with

priority based on non-increasing subset times.

H2 - Any crossover subset, S1,, was divided into front and back subsets, S1, and

S1°,, and the problem was solved using the same heuristic as in H1.

H3 - The heuristic was used as described in section 3.4.
Programs were coded in QuickBasic and run on a 50 mhz 486 microcomputer.

4.2 The Study Results

The results of the study of 100 NULB-T problems are summarized in Table 4.
Several results are worthy of note.

1. The average NULB-T problem contained 6.04 U-lines but only 5.76 had feasible

146
Table 4

Selected Results for 100 NULB-T Problems Solved Using Criterion 1.

of LM, # of multi-
U-lines (sum of line subsets,
independent | S1,
solutions)
Min: 3 | Min: 8 | Min: 0
Max: 9 | Max: 38 | Max: 9
Mean:6.04 | Mean: 19.9 | Mean: 5.76
w%

147

multi-line subsets. On average the selection process involved solving 5.97 of the
possible 53.3 S1,,, subsets enumerated to select S1,. In the final solution an
average of 2.09 stations were eliminated, resulting in a mean reduction in the
number of stations of 10.59 % over separate solution of the U-lines.

2. The problems are difficult, typically taking about 4.5 minutes to solve. The reason is
obvious when we consider that to solve the average N U-line problem with 6 U-
lines the solution algorithm had to proceed through the following average process.

| Step 1. Solve 6 SULB-T problems with S, to find all M",.

Step 2. Enumerate an average of 53 potential multi-line subsets S1;, per
U-line and solve 6*6 = 36 SULB-T problems of S,- Sl to
identify the best multi-line subsets S1,,.

Step 3. Solve the multi-line station assignment problem.

3. In the multi-line station assignment problem the three heuristics used performed
effectively.

H1 achieved LB(M,,,;;) in 67 of the 100 problems and the algorithm halted.

H2 achieved the lower bound in 10 of the remaining 33 problems but improved the
solution over H1 in 13 problems.

H3 improved the solution over H2 in 9 of the 23 problems and reached the lower
bound in each of the nine problems.

Used together the three heuristics achieved the lower bound on multi-line

stations in 86% of the problems and obtained the optimal solution in 97% of the

problems.

148

4. If criterion 2 is used to select S1, subsets, the results are very similar. For the entire
problem set criterion 2 requires 1 more station than criterion 1. Using both criteria
together and solving all problems twice if the lower bound is not reached reduces

the total number of stations by 2, a decrease of 0.04% in M,,,,.

5. Discussion

Previous research has shown U-lines to be more efficient than comparable straight
production lines. Simultaneous balancing of multiple U-lines increases this productivity
advantage considerably. However, implementation of N U-line balancing requires
consideration of several factors. Operators must be trained to complete many tasks, not
just those on a single U-line. This is a more reasonable undertaking in the fixed location
problem where only a limited number of the tasks are feasible for any station. Material
handling methods and paths must support multi-line stations.

Numerous extensions to the problem exist. One which will appear in many
facilities is the problem of balancing multiple lines where the cycle times are not identical.
Although the case of unrelated cycle times is beyond the scope considered in this paper,
the situation where cycle times are integer multiples of the smallest cycle time may exist
where different parts for the final product are required in different quantities. The
problem may be solved as described in section 3 using the smallest cycle time, C_,, for
the multi-line station assignment problem. In implementing the solution, each U-line will

be visited only once every cycle, C,. This will be once every C,/C,, of the C,, cycles.

149

5.1 Extensions to NULB-T research
Solving the NULB-T problem is a complex process requiring substantial time and
memory. Numerous opportunities exist for future research into both the general and fixed

location problems including:

An investigation of means of improving solution algorithms through
- Improved bounds on travel distances and on the number of multi-line stations.
* Methods of reducing the number of multi-line subsets evaluated to find the best S5, .
* Identifying the best criteria for selecting multi-line subsets S8, and for choosing between
subsets S1, and S2,, where both exist.
Selection criteria for the final subset may be based on some combination of the
following factors:
- Idle time in each of the subsets,
* The number of tasks/minimum number of stations,
* The distribution of tasks and task times at the front and back of the line.
- The consideration of more than one multi-line subset from each line for the multi-line
subset assignment problem.
- The use of other heuristics to solve the problem.

- Integer programming approaches to the problem.

Improved heuristics for the fixed location problem
The heuristics proposed for solving the fixed location multi-line station assignment

problem examine only a small portion of the solution space. The final solution is

150

determined by the initial starting point and by the rules for adding tasks to the station.
Other algorithms which use different rules for determining starting location and selecting
the next subset or tasks to be added to a station should be considered. Statistical search

techniques such as simulated annealing may prove useful for this problem.

Allowing unrestricted access to U-lines

Removing the restriction on access to the U-lines dramatically increases flexibility
in multi-line station assignment and, with it, the size of the solution space. An
investigation of heuristic algorithms for the NULB-T problem where all or selected
sections of U-lines are available for multi-line station assignment would examine the effect
of a preference hierarchy for potential solution and combinations of heuristic strategies

which could be employed.

Extending the problem to other manufacturing layouts including lines with other shapes

Many advantages of multiple U-line balancing may be obtained to varying degrees
in other line configurations. If segments of two or more production lines are situated close
together it may be possible to apply multiple U-line balancing techniques to them to
capture some of the advantages of multiple line balancing. Many of these areas are topics
of ongoing research.

If the U-line problems are expanded to include multiple product lines and stochastic
processing times the N U-line balancing problem is complicated even further. An
extensive investigation into predominantly heuristic approaches to solving these problems

is essential to further research into U-line balancing. The productivity benefits of multiple

151

U-line balancing and the success of even simple heuristics in attaining these gains provide

a strong incentive for continuing this research.

152
References

Hackman, S.T., M.J. Magazine and T. S. Wee, "Fast, Effective Algorithms For
Simple Assembly Line Balancing Problems," Oper. Res., 37, 6, 916-924
(1989).

Monden, Y., Toyota Production System, Second Edition, Industrial Engineering Press,
Institute of Industrial Engineers, Norcross, GA (1993).

Queyranne M., "Bounds for Assembly Line Balancing Heuristics," Oper. Res., 33,
(1985), 1353-1359.

Schonberger, R.J., Japanese Manufacturing Techniques, Nine Hidden Lessons in
Simplicity, The Free Press, New York, 1982.

Van Assche, F. and W.S. Herroelen, "An Optimal Procedure for the Single-Model
Deterministic Assembly Line Balancing Problem," Eur. J. of O.R., 3, 142-49
(1978).

Wantuck, K.A., Just In Time for America, The Forum Ltd., Milwaukee, WI, 1989,

153
Appendix
Bounds on the sum of task times in a multi-line subset

The algorithm removes a subset of tasks from a single line to be assigned to multi-
line stations. A feasible subset S3,,, must have the potential to reduce the number of
single line stations by 6 and must meet the following conditions:
1) It must be theoretically possible to solve the problem S,-S6;, in M’ -3 stations.
2) At Jeast one task must be removed from S, and assigned to S5,
3) There must be sufficient idle time in S8, to accommodate at least one task from

another U-line and travel to the nearest U-line.
4) Tasks assigned to S8, must also obey the precedence relationship P,.
Based on these conditions upper and lower bounds on multi-line subset time, t(S3;,), may

be determined as:

Nl
LB[t(Saj(u))] = Max{ Z twt gXLB(DT) - (M.\I'a)cr min {tx(u)} b
x=1 available x(u)

UB[t(Saj(u))] = C- Min {tx(v)} + gxmin d,,
available x(v), v#u

where
- task x(u) is available if it has no predecessors or successors
- min d,, is the minimum separation distance between all pairs of U-lines, uv and

- LB(DT,) is the lower bound on the travel distance in stations on U-line u.

N,
LB(DT,)) =}, 4+ W,

x=1

Subsets 52, must be divided between two multi-line stations and must meet one

154
other condition in addition to those cited above., Because access to the U-lines is restricted
to the opening of the U, $2;, subsets must include task at both the front and back of U-

line u.

Enumerating all subsets of tasks from each U-line which could be assigned to A .

All feasible subsets on each U-line which could be assigned in the multi-line station
are enumerated using the procedure described in Part II of this thesis. These subsets are
feasible with respect to P, and satisfy the bounds on total task time computed previously.
That is:

UB[t(SGj(u))] 2 Z tl(ll) 2 LB[t(Saj(u))]

xeSy,,

Mixed-Model Line Balancing:

U-Lines and Smoothing Station Assignments

Abstract

Many manufacturers are switching their production lines from single product or
batch production to mixed-model production, often as a consequence of implementing just-
in-time (JIT) principles into their operations. In mixed-model production, different
products or models are produced on the same line with the models interspersed throughout
a production sequence. This helps manufacturers provide their customers with a variety
of products in a timely and cost-effective manner. The mixed-model U-line balancing
(MMULB) problem assigns the tasks required to produce all models to a minimum number
of stations on a U-shaped line. U-lines are widely used and well-suited to mixed-model
production. A model of the MMULB problem is developed in this paper. The problem
is NP-hard. An approximate solution algorithm is presented, and an illustrative example

7

is worked. Areas where more research is needed are identified.

This paper has been submitted to the International Journal for Production Research.

155

156
1. Introduction

Many manufacturers are switching their production lines from single product or
batch production to mived-model production, often as a consequence of implementing just-
in-time (JIT) principles into their operations. In mixed-model production, different
products or models are produced on the same line, with the models interspersed throughout
a production sequence. This allows manufacturers to provide their customers with a
variety of products in a timely and cost effective manner. Successful mixed-model
production requires solving the following problems.

1. The mixed-model line balancing problem: How will production tasks be assigned to
stations on the line?

2. The mixed-model sequencing problem: In what sequence will units of different models
be produced on the line?

This paper investigates the first problem, particularly as it relates to U-lines in JIT
production systems. We will see that U-lines are well suited for mixed-model production
and offer significant advantages over traditional straight lines.

Straight Line Literature: A large literature exists on the single-model line balancing
problem for straight lines. See, for example, Baybars [1986], Talbot et al. [1986], Ghosh
and Gagnon [1989], Hackman, Magazine and Wee [1989], Hoffmann [1992] and Johnson
[1988]. Thomopolous [1967, 1970] and Macaskill [1972] were first to study the mixed-
model line balancing problem for straight lines. The mixed-model sequencing problem

for straight lines has been studied by Bard et al. [1992], Yano and Rachamadugu [1991],

157
and others.
U-line Literature: A small but growing literature exists on the single-model U-line
balancing problem. See, for example, Miltenburg and Wijngaard [1994] and Parts I to I
of this thesis. To date, no one has studied the mixed-model U-line balancing problem.
The mixed-model sequencing problem (for U-lines) in JIT production systems is analysed
in Hall [1983], Kubiak [1993], Miltenburg and Goldstein [1991] and Monden [1993].

The nature of mixed-model production presents additional challenges for line
balancing compared to single-model production. In both cases, the line balancing problem
seeks to minimize the number of stations (or maximize a measure of balance efficiency),
subject to cycle time and precedence constraints. Because of the differences between
models, individual tasks, task completion times and precedence constraints vary from
model to model in the mixed-model problem. Consequently, two new assumptions are
made. 1) Precedence constraints are consistent from model to model. That is, if task x
precedes task y in any model there is no other model where task y must precede task x.
2) The same balance is used for all models. Tasks are not assigned to different stations
for different models.

The mixed-mode! line balancing problem for a traditional straight line is reviewed
in section 2. A model and solution algorithm for the mixed-model U-line balancing
problem are presented in section 3. The algorithm is extended in the Appendix to the
problem of balancing multiple mixed-model U-lines where multi-line stations with tasks
from two or more U-lines may be formed. A discussion and summary follow in section

4,

158

2. Review of Mixed-Model Line Balancing for a Straight Line

Thomopolous [1967, 1970] proposed a four-step heuristic procedure for balancing

a traditional straight line. We now review it with the aid of an illustrative example.

Example
Models A, B and C are produced, each at the rate of 25 units/planning period, on

a production line running at a cycle time of 1.7 time units/model. Tasks, task processing

times, and precedence constraints for each model are given in Table 1.

Step 1: Calculate the weighted average processing time for each task.

Total processing times for each task are calculated in Table 1. Consider, for
example, task 1. It is completed 25 times for model A and 25 times for model C.
Therefore, its total processing time is 25X.5+25%1=37.5 time units. Total
production during the planning period is 75 units, so the weighted average
processing time is 37.5/75=.5 time units/model.

Step 2: Merge the precedence graphs for all models into a single precedence graph.
Nodes and arcs on the merged precedence graph represent tasks and precedence
constraints between tasks, respectively. If, for any model, task x is an immediate
predecessor for task y, an arc xy is added to the merged precedence graph (if one
does not already exist). The merged precedence graph for the example is shown
in Figure 1.

Step 3: Solve a single-model line balancing problem with the tasks and average processing

times from step 1 and the merged precedence graph from step 2.

159
Table 1.

Task Data for Example in Section 2

Precedence Constraints Processing Times

Task A B C A B C Total Average | Distance
1 S| 0]10] 375 6
2 4| .8]12] 60 7
3 01.2]| .4 15 . 4
4 4101]0 10 133 4
5 21 .20 .2 15 2 8
6 1 21010 5 .067 2
7 1,2 2 12 4] 5| .6] 375 5 8
8 2 2 0| .5].5 25 333 9
9 2 2,3 23 14| 3| .2] 225 3 8

10 3 0101 .2 5 .067 2
11 4,5 5 5 313131 225 3 5
12 7 7,8 78 | 1] 3] .5 225 3 9
13 11 11 d1 0] .1 S .067 9
14 11 11 11 21.21.2 15 2 5
15 912 |1 9,12 | 9,12 | .7(1.0[{15] 80 1.067 10
16 3 o|.1}]0 2.5 .033 9
17 13 11 1510 25 333 2
18 14 14 14 31 5] .31 275 367

19 | 14,17 | 14,17 41310 17.5 233

I NN E—

Figure 1

160
1. Merged Precedence Graph for Example in Section 2
2. Straight Line Balance for Example in Section 2
iy 2 Ly 3 Ly 4
{1,2,8} {3,5,6,7,9,12} {4,11,13,15} {10,14,16,17,18,19}

Step 4:

161
Any single-model line balancing algorithm can be used to solve this problem. The
solution for the example is shown in Figure 1. Although it is optimal for the
average task processing times from step 1 and merged precedence graph from step
2, it may not even be feasible for individual models. Table 2 shows the times each
model requires in each station. In three cases the required time exceeds the
available time. This variation in station times is called model imbalance and can
lead to production disruptions.
Smooth the balance from step 3 to reduce model imbalance.
The balance determined in step 3 is adjusted by exchanging tasks between adjacent
stations in order to reduce model imbalance. On a straight line, the objective for
smoothing is to balance the line perfectly for each individual model. In this
example, tasks 9 and 12 from station 2 are exchanged with tasks task 4 from station
3, task 15 from station 3 is exchanged with tasks 10, 14, 16 and 17 from station
4, and task 1 from station 1 is moved to station 2. This reduces the model
imbalance as shown in part 2 of Table 2. Although there are still three cases when

the required time exceeds the available time, the differences are smaller.

Model sequencing can now be applied to the final balance from step 4 to lessen the effect

of any remaining imbalance. Model sequencing (see problem 2 in the previous section)

selects

the sequence in which models will be produced on the line.

Table 2.
Total Time Required by each Model

1. Initial Balance
T ——
Station 1 Station 2 Station 3 Station 4
{1,2,8} {3,5,6,7,9,12} | {4,11,13,15} {10,14,16,17,18,19}
0.9 1.3 1.5 1.4
1.3 1.5 1.3 1.6
21 19 1 0.7 l|
1.63 1.57 1.57 1.23 "

i,

Note: X% denotes an instan

cycle time of 1.7.

2. Final Balance After Smoothing

ce when the total time required by a model exceeds the

Station 2 Station 3 Station 4
{1,3,4,5,6,7} | {9-14,16,17} {15,18,19}
1.7 1.6 1.4
B 1.3 0.9 1.7 '
C 1.7 22 1.5
Average 1.13 1.60 1.60

162

163

3. The Mixed-Model U-Line Balancing (MMULB) Problem

3.1 Notation

Differences between straight lines and U-lines are greater in mixed-model
production than in single-model production. In a station on a straight line, all tasks
performed by the operator during a cycle are on a single unit and thus a single model. In
a station on a U-line the tasks performed on the front of the U-line are for a different unit,
and frequently a different model, than those on the back of the line. The mixing of models
in a single station allows the establishment of a single objective for smoothing on U-lines.
This objective will remain in effect over the entire production sequence.

To illustrate, consider the U-line in part 1 of Figure 2. The operator in station 1
completes tasks 1 and 3 on model A on the front of the U-line, and then crosses to the
back to complete tasks 12 and 11 on model C. Suppose the model sequence is CDACBA.
Part 2 of the figure shows the many different model mixes that will be produced at stations
1 and 2.

Define the following notation.

Indices
x — task
n — model
m — station
Parameters
N — number of models
S — set of tasks for all models
X — total number of tasks

Figure 2

164
1. Mixed-Model Production on a U-line
Model A Model B
| Model C
iy N Py Ry
: .. 3
i --c.-.'- 8
1 2
< 11 12 10 9 6
Model C Model D Model 4
Model Sequence: CDACB A
Task distance
Return distance
..................... Crossover distance

front back front back
{1,3} {11,12} {2,4} {10}

Models produced

cycle 1 A C B D
cycle 2 C D A A
cycle 3 D A Cc C
cycle 4 A C D B
cycle 5 C B A A

B A C C

165

P — set of merged precedence constraints for all models
t.,x — task processing time for task x on model n
— travel distance for task x on model n
g — time required to travel one unit of travel distance
d, — number of units of model n produced during the planning period
Calculated Parameters
= (CNaet 420/ o=) — weighted average processing time for task x
o= N 4,d)/ (N, d) — weighted average travel distance for task x

C=%a t)/CN-d) — cycletime
Decision Variables
M — total number of stations in the line balance
STF, — tasks in station m located on the front of the U-line
ST®, — tasks in station m located on the back of the U-line

Calculated Decision Variables
ST, = STF,UST®, — set of tasks assigned to station m
DT, — total travel distance in station m

[f,b], — amodel mix at station m: i.e., models f and b are produced at the
front and back, respectively, of station m

d([f,b].) — number of units of model mix [f,b], produced during the planning
period at station m

3.2 A Model for the MMULB Problem

Subject to: M
UST, =S (1)
m=1
ST, N ST, =¢ for all m)
m*m’
Y t, +gxDT, <C for all m 3)

xeST,

166

For every tasky € S
Either: If (x,y)€P, x€ST,, yeST,,, then m < m’, for all x; “@)
Or: If (y,2)e P, yeST,,, 2z€ST,., then m”< m’, for all z.
Location constraints (&)}
The model is similar to the single U-line balancing with travel (SULB-T) problem
with two differences:
1.Constraint (3) ensures that the sum of the weighted average task processing times for
each model and the travel time in each station, does not exceed the cycle time.

2. P, the merged precedence graph is used in constraint (4).

3.3 A Solution Algorithm for the MMULB Problem

Step 1: Calculate the weighted average processing time and weighted average travel
distance for each task. Calculate the cycle time (if required).

Step 2: Merge each model's precedence graph into a single precedence graph.

Step 3: Determine a balance.
Use the SULB-T branch and bound algorithm to find the optimal solution for the
problem parameters determined in steps 1 and 2. Call the solution the initial
balance.

Step 4: Smooth the initial balance from step 3 to reduce model imbalance.
Use the smoothing algorithm developed in the next section (section 3.4) to smooth

the initial balance determined in step 3. Call the result the final balance.

167

3.4 A Smoothing Algorithm for the MMULB Problem
A smoothing algorithm adjusts the initial balance to reduce the level of model
imbalance based on a given model sequence. This gives the final balance. At that point,
mode] sequencing may be used to lessen the effect of any remaining imbalance. To
improve the balance, different model sequences may be tested and the line rebalanced.
Model imbalance is measured by comparing the times required by models at stations with
target times. Usually the target is the cycle time (see measures ib® and ib® below) but
other targets may also be used (see measure ib® below). On a U-line because tasks from
different models are mixed in U-line stations a single goal, G, may be defined for every

station, for every cycle. Define the following additional notation.

ﬂ([f’b]m) = erS’l‘n tf.x + ExeSTn tb,x + gXDTm
— total time in station m for model mix [f,b],,

G = Laei{ Latrom muTTAE0])AAEb10) / Yo prspe wad([f0],) 3/M
— target for total time in a station
a®(f,b]y) =1 if TT(f,bl,) > C
{0 otherwise
— variable indicating whether total time exceeds cycle time
at station m for model mix [f,b],,

a®([f,b)) = max{0, TT(f,b],) - C}
— amount, if any, that total time exceeds cycle time station
m for model mix [f,b],,

a®((f,blw) = |TT(If,b],) - G|
— absolute deviation of total time from goal in station m
for model mix [f,b],,

ibl, = Yu ik inm A(f,0]) X a'([f,b],)
— imbalance measure i for stationm. i = 1, 2 or 3.

168

IBi - anl ibim
— imbalance measure i for the line. i = 1, 2 or 3.

The smoothing procedure exchanges tasks between stations so that the value of the
imbalance measure IB' decreases. The following observations suggest a procedure for
selecting the tasks that should be exchanged.

1. Tasks with high processing time variances are more likely to cause model imbalance
than tasks with low variances.

2. Pairs of tasks with positively-correlated processing times are more likely to cause
model imbalance than pairs of tasks with negatively-correlated processing times.

3. A task whose processing time is positively-correlated with the total time in a station
is more likely to cause model imbalance than a task whose processing time is
negatively correlated with total time in the station.

An implication of these observations is the following. The level of imbalance in station

m may be lowered by exchanging a task, whose processing time has a high variance and

a high positive-correlation with total time in the station, with a task from another station

m’ whose processing time has a low variance and a negative-correlation with total time in

station m. Define the following additional notation.

t, = XNt J/N — average processing time for task x
Tom = Yoesto tox — total time for model n in station m
I, = XN TJUN — average total time in station m

0% = [LNami (hx Z)V(N-1) — variance of processing time for task x

()
|

= [Na Tou-T)?V(N-1) =~ variance of total time in station m

169

Pry = [an-l (tn.x' i—x)(tn,y' t—;)]/ 0,0,
| — correlation coefficient of processing times
for task x and task y

px.m = [ZNn=l (tn.x' ;;)(Tn,m' 7Tm)]/ 00
— correlation coefficient of processing time
for task x and total time in station m

Smoothing Algorithm:
1. Select a measure of model imbalance. (If necessary calculate G, for each station m to reflect
travel differences.)
Specify K the number of exchanges to be considered.
Calculate the imbalance ib,, for each station m. Calculate IB and denote it IB,.
Calculate ¢ and p,,, for all tasks x,y.
For each station, sort tasks in decreasing order of o?,.
2. Select the (next) station m. (This is the one with the largest imbalance.)
Exit algorithm when none is left.

3. Select the (next) task x. (This is the one with the largest 62). If none is left go to 4.
Calculate p, ., (correlation coefficient between processing time for x and total time in m).
Ifp,,<0goto3.

Set Y'=o.
For each task x’ in station m’=m-1, m+1
If p, .- <0 and exchanging x, x’ does not violate precedence or location constraints

then

If exchanging x, x’ violates the cycle time constraints then
Check remaining tasks in m’ to see whether one or more can be
included with x’ in the exchange (i.e., such tasks will violate
precedence or cycle time constraints). Place these tasks in Y’'. If Y'=o
go to 3.

Calculate IB when x and x'UY’ are exchanged. Denote this IB(x,x'uY’).

Increment k-k+1. If k>K go to 4.

Go to 3.

4. Select the exchange x,x'UY "’ with the largest IBo-IB(x,x'UY’) > 0. Make the exchange.
Calculate ib,, for each station m. Set IB, ~ IB(x,x'UY’).
Go to 2.

170
Example
Suppose the three models from the example in section 2 are to be produced on a
U-line with the model sequence ABCABC.... Suppose also that model imbalance measure
IB® is used. Then the MMULB solution algorithm proceeds as follows.
Step 1: Calculate weighted average processing time and weighted average travel distance
Jor each task. Calculate the cycle time (if required).
This was done in Table 1. Cycle time is specified; C=1.7.
Step 2: Merge each model's precedence graph into a single precedence graph.
This was done in Figure 1.
Step 3: Determine a balance.
The SULB-T branch and bound algorithm from Part II of the thesis produced the
optimal solution shown in Figure 3 for the problem parameters specified in steps 1 and
2.

Step 4: Smooth the balance from step 3 to reduce model imbalance.

The target for the total time in a station is calculated from the initial balance in Figure

3; G = (1.659+1.682+1.653+1.635)/4 = 1.657.

Values of model imbalance measure ib®,, are calculated in part 1 of Table 3 for each

station m=1,2,3,4 in the intial balance from step 3.

Next, the task processing time variances and correlation coefficients are calculated (see

Table 4).

Station 1 has the largest imbalance and so efforts start here to reduce imbalance by

exchanging tasks between stations.

Figure 3

Initial Balance for Example in Section 3

171

> 1 2 7 4 8 - 3 s 6
i 7 i
/ / 10
f
1 2 3 i 1 4 11
i ; ! 1/ i
| ; /
i ;/ ;
A/ | 12
€<— 15 19 9 17— 18 16 14 13
Station: 1 2 3 4
Weighted average task processing time: 1.567 1.533 1.466 1.434
Weighted average travel time: 0.092 0.149 0.187 0.201
1.635

Weighted average total time:

1.659 1.682 1.653

Station time goal, G = (1.659+1.682+1.653+1.635)/4 = 1.657

1. Initial U-line balance

Table 3
Calculations for MMULB Example in Section 3

172

B®

2. Exchanges to reduce model imbalance

Station, m 1 2 3 4

Tasks, ST',, ST®, {1}, {15} {2,7}, {19} {4,8), {9,17,18}) {3,5,6,10,11,12,13,14,16}, 2
Model mix [f,b]. AA BB CC|AC BA CB |AB AC CA | A B C

Total time, TT(f,blL) 1.2 1 3.5 1.1 1.7 Z.’i 1.7 1 1.7 1.1 1.3 13
Difference, a®([f,b]) 365 565 935 | 408 .192 592 | .23 47 23 356 .156 44
Imbalance, ib®, 1.87 1.19 9 96

Station, {tasks}

Imbalance

{ib™,, ib,, ib®,, b™,} IB®

Initial balance
Iteration 1
Iteration 2

3. Final U-line balance

2, {2,19)
3, (17)
3, {4.8)

(137, 1,

{1.87,.1.19, .93, .96} 4.94
{1.37, .80, .93, .96} 4.04
{137, 80,.21, 34} 2.7
17, .34} 2.59

Station, m 1 2 4

Tasks, ST',, ST {1,2}, {19} {4,8), {15} (7,12}, {9,18} {3,5,6,10,11,13,14,16,17}, &
Model mix [f,b], AA BB CC AC BA CB |AB AC CA | A B C
Total time, TT(f,b]) 13 11 % lEy 12 18 e 15 14 | 1S 1.5 12
Difference, a™((f,b]) 265 465 635] .392 308 .008 | .07 .03 07 044 044 .256
Imbalance, ib™, 137 08 17 34

173

0
0
0
0
0
0
0
0
0
0
0
0
0

©C © © 0 0o O ©o ©o © o

© = N o ¥ vV VO B~ ® &
S e et e et e vt e e e

- N =T N O~ 0 &

€ Uonoas ur ajdurexy Joj “d sjuaioyye0) uonejaLIo) pue *;0 oueLIRA Swi], SuIsssoosd yse],

¥ dlqeL

[

174

Task 1 has the largest variance in station 1 and so is considered first. The correlation
coefficient between task 1's processing time and total time in station 1 is calculated
Next, Preym=1= .92. Since p>0 we attempt to exchange it with a task in station 2.
Of the three tasks in station 2, x’'=2,7,19, only x'=19 has p,_; ;.u;p=-.8 < 0.
However exchanging tasks 1 and 19 violates the precedence constraints.

Next, task 15 in station 1 is considered. Pr=15m=1= -88 >0 and so we attempt to
exchange task 15 with a task in station 2.

Of the tasks in station 2, x’=2,7,19, only x' =19 has Px=15x=19=-1 < 0. Exchanging
task 15 with task 19 does not violate the precedence constraints. However it violates
the cycle time constraint.

The remaining tasks in station 2, x’=2,7, are checked to see whether one or more can
be included with task 19 in the exchange. Task 2 is checked first. Exchanging task
15 with tasks 19 and 2 does not violate the precedence or the cycle time constraints.
So the exchange is feasible. The value of the imbalance measure is IB®=4.04 when
this exchange is made. Next task 7 is checked. Exchanging task 15 with tasks 19 and
7 violates the precedence constraints.

All tasks at station 1 have now been considered. The best (and only) exchange is task
15 from station 1 with tasks 2 and 19 from station 2. The exchange is made. (See
iteration 1 in part 2 of Table 3).

Now station 4 has the largest imbalance and so efforts to reduce imbalance by
exchanging tasks between stations move to this station. (See iteration 2 in part 2 of

Table 3).

175

- The smoothing algorithm continues in this way until all possible exchanges are made.
The final balance is shown in part 3 of Table 3. Smoothing has reduced model
imbalance from IB®=4.94 to 2.59 with only two model mixes exceeding the cycle
time. Note that if the same problem on a straight line achieved a perfect balance for
each model there would still be four instances where cycle time was exceeded. The
ability of U-lines to smooth mixed-model line balances beyond the level attainable on

a straight line is clearly illustrated.

4. Discussion and Summary

Many manufacturers use mixed-model production to produce different products on
the same line. This helps them provide their customers with a variety of products in a
timely and cost effective manner. The mixed-model U-line balancing (MMULB) problem
assigns the tasks required to produce all the products (or models) to a minimum number
of stations on a U-shaped production line. U-lines are widely used in just-in-time
production systems and are well-suited to mixed-model production.

It is well-known that the traditional assembly line balancing (ALB) problem is NP-
hard. The ALB problem is a special case of the (single-model) U-line balancing problem,
which, in tum, is a special case of the MMULB problem. So the MMULB problem is also
NP-hard, and approximate solution algorithms are needed to solve instances of realistic
size. A four-step algorithm is presented in this paper. It follows from an algorithm
developed by Thomopoulos [1970] for the mixed-model ALB problem. The first two steps

transform the multi-model problem into an "equivalent” single-mode! problem. The third

176
step finds the optimal balance to this problem (using a branch and bound algorithm from
the literature). While the computational requirements for this algorithm are exponential,
it is capable of solving single-mode! problem instances with up to 25 tasks. The fourth
step adjusts the balance from the previous step to make it feasible for the original multi-
model problem. The adjustment consists of interchanging tasks between adjacent stations.
The computational requirements for this step are O(X>*M).

This paper is the first study of the mixed-model U-line balancing problem. There

are still many areas where more study is needed.

Algorithm for the "equivalent” single-model problem in step three

The branch and bound algorithm used in step three cannot consider model imbalance. If
an algorithm that considers model imbalance could be developed, better initial balances
could be obtained. This might produce better smoothing targets and enable the smoothing

algorithm to produce better final balances.

Smoothing algorithm for step four

More research is needed to determine the effect of different measures of model imbalance
on the performance of mixed-model U-lines, and the benefits of expanding exchanges to
three or more stations. A problem with the smoothing algorithm presented in this paper
is that it may become trapped at a local minimum. To prevent this the algorithm could be
changed so that some exchanges that increase model imbalance are made. A statistical

search technique such as simulated annealing could be used to do this.

177

Irsegrating line balancing with model sequencing
Line balancing (LB) and model sequencing (MS) together determine how
effectively a mixed-model U-line works. Thus far, these problems have been considered
sequentially. (For example, the solution to the LB problem becomes a parameter for the
MS problem. The solution to the MS problem then becomes a parameter for the LB
problem, and the process is repeated until the solutions converge.) While the LB and MS
problems are each NP-hard, it may still be possible to develop good heuristics that solve
them simultaneously and give better solutions than those produced by a sequential

approach.

Multiple mixed-model U-lines
Some facilities contain numerous U-lines, some connected by multiline stations
(Part IIT). Some of these U-lines may be mixed-model lines. Research on balancing U-

lines in such facilities is needed. Some preliminary results are reported in the Appendix.

178

References

Bard, I.F., E. Dar-El, and A. Shtub, "An Analytic Framework for Sequencing Mixed-
Model Assembly Lines," Inz. J. Prod. Res., 30, 35-48, (1992).

Baybars, 1. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing
Problem," Mgmt. Sci., 32, 909-932 (1986).

Ghosh S. and R.J. Gagnon, "A Comprehensive Literature Review and Analysis of the
Design, Balancing and Scheduling of Assembly Systems,"” Inz. J. Prod. Res., 27,
4, 637-670 (1989).

Hackman, S.T., M.J. Magazine and T. S. Wee, "Fast, Effective Algorithms For Simple
Assembly Line Balancing Problems," Oper. Res., 37, 6, 916-924 (1989).

Hall, R.W., Zero Inventories, Dow Jones-Irwin, Homewood, Illinois (1983).

Hoffmann, T.R., "Eureka: A Hybrid System For Assembly Line Balancing," Mgmt. Sci.,
38, 1, 39-47 (1992).

Johnson, R.V., "Optimally Balancing Large Assembly Lines with 'Fable' ", Mgm:. Sci.,
34,1, 240-253 (1988).

Kubiak, W., "Minimizing Variation of Production Rates in Just-In-Time Systems: A
Survey", Eur. J. Oper. Res., 66, 259-271 (1993).

Macaskill, J.L.C., "Production Line Balances For Mixed-Model Lines," Mgm:. Sci., 19,
4, 423-434 (1972).

Miltenburg, J. and T. Goldstein, "Developing Production Schedules that Balance Part

Usage and Smooth Production Loads for Just-in-Time Production Systems", Naval

179

Research Logistics, 38, 893-910 (1991).

Miltenburg J. and J. Wijngaard, "The U-Line Balancing Problem." Mgmt. Sci., 40, 10,
1378-1388 (1994).

Monden, Y., Toyota Production System, Second Edition, Industrial Engineering Press,
Institute of Industrial Engineers, Norcross, GA, (1993).

Talbot, F.B., J. H. Patterson and W. V. Gehrlein, "A Comparative Evaluation of
Heuristic Line Balancing Techniques,” Mgmt. Sci., 32, 4, 430-454 (1986).

Thomopoulos, N.T., "Line Balancing Sequencing For Miced Model Assembly," Mgm.
Sci., 14,2, 59-75 (1967).

Thomopoulos, N.T., "Mixed Model Line Balancing With Smoothed Station
Assignments,” Mgmz. Sci., 16, 9, 593-603 (1970).

Yano, C.A. and R. Rachamadugu, "Sequencing to Minimize Work Overload in Assembly

Lines with Product Options," Mgmz. Sci., 37, 572-586 (1991).

180
Appendix
The Mixed-Model Multiple U-Line Balancing (N-MMULB) Problem
Part IIT of this thesis formulates and solves the problem of balancing a facility
with multiple U-lines where multiline stations with tasks from two or more U-lines may
be formed. The problem is called the N U-line balancing problem (NULB). Let NM
denote the number of mixed-model U-lines to be balanced simultaneously.

Furthermore assume:

1. The location of the U-lines is not fixed. Consequently tasks from every U-line may
be included in a multiline station with tasks from every other U-line.

2. All U-lines operate at the same cycle time.

3. Access to the U-lines is restricted to the opening of each U. That is, multiline
stations can only be located at the opening of each U. Stations are not permitted to
cross each other. Consequently the number of multiline stations associated with any
U-line cannot exceed two.

4. Travel distances between U-lines are known constants.

A Solution Algorithm for the N-MMULB Problem

The heuristic algorithm for the NULB (Part III) can be modified and used as follows to

solve the N-MMULB problem.

Step 1: Calculate weighted average task times and distances for each U-line.

Calculate the weighted average task processing time and the weighted average

travel distance for each task on each U-line.

Step 2:

Step 3.

Step 4:

Step 5.

Step 6:

181
Merge each model’s precedence graph into a single precedence graph for each
U-line.
Balance each U-line separately.
Balance each U-line separately using the SULB-T algorithm to find M",, the
minimum number of stations required to operate U-line u without multiline
stations.
Enumerate potential multiline subsets.
From each U-line u enumerate all subsets of tasks with the following two
properties.
1) All tasks in the subset may be assigned to multiline stations.
2) When the subset of tasks is assigned to a multiline station, the remaining
tasks can be assigned to M",- & stations, =1 or 2.
For each subset with these properties, sum the task processing time for each
task in the subset. Sort subsets in increasing order of this sum. Denote the
sorted subsets 8%, 8=1,2 and j=1,2,3,....
Assign the multiline subsets to multiline stations.
Using the algorithm from Part III solve the multiline station assignment
problem.
Smooth the balance from step 5.
Use the smoothing algorithm developed in the next section to smooth the

balance determined in step 5.

182
A Smoothing Algorithm for the N-MMULB Problem
An NULB-T balance involves both stations entirely on each of the NM U-lines and
multiline stations. A unique goal, G,, is set for each U-line, and G,, for each multiline

station m(A), where A =uv,uvw,... and Urvew,..:

M,
Gu = [Z ((Z —t-x.u)+ gXDTm(u))]/ (Mn)

m=] XEST oy

Gy = Y t,, +8XDT,,,, A=uv,uvw,... and usv+w...
x,ueST,,,,

Smoothing Algorithm:
The algorithm first smooths each individual U-line and then smooths the multiline
stations.

1. Seta goal for each U-line.
Select a measure of model imbalance.
Specify K and K4, the number of exchanges to be considered on each U-line and
multiline station respectively.
Calculate the imbalance ib,,,, for each station m(A). Calculate IB, for the U-lines
and IB,,,, for the multiline stations.

2. Select the U-line with the maximum IB, and smooth the single line stations m(u)
using the algorithm in section 3.4. Exchanges between the single line stations and
any multi-line stations on u are allowed.

Repeat 2 until all U-lines have been smoothed.

3. Calculate the goal for each multiline station m(A), A =uv,uvw,... and usv=w...
Calculate the imbalance ib,,,, for each multiline station m(A).

Calculate IB = ¥, jnm IBy + Yatma), A = wavw... IBugsy Set IBo= IB.

4. Select the (next) station m(A). (The unsmoothed station with the largest
imbalance.)

5. Select the (next) task x in m(A). (This is the one with the largest 02). If none is
left goto 6. Calculate p, ,, (correlation coefficient between processing time for x
and total time in m(A)).

183

Ifp,,<0goto5.
For each u € A analyse exchanges with stations adjacent to m(A).
Set Y'=e.
For each task x’ in stations m(u) adjacent to m(A)
If p, .- <0 and exchanging x, x’ does not violate precedence
or location constraints then
If exchanging x, x’ violates the cycle time constraints
then
Check remaining tasks in m(u) to see whether one or more
can be included with x’ in the exchange (i.e., such tasks
will violate precedence or cycle time constraints). Place
these tasksin Y. If Y'=2 go to 5.
~ Recalculate IB when x and x'vY’ are exchanged. Denote this
IB(x,x'vY’).
Increment k~k+1. If k>K_;,; go to 6.
Goto 5.
6. Select the exchange x,x'uY’ with the largest IB,-IB(x,x'UY’) > 0. Make the
exchange. '
Set IB, - IB(x,x'uY").
Go to 4.

STOCHASTIC U-LINE BALANCING

Abstract

Recent assembly line balancing research has placed greater emphasis on problems
with stochastic task processing times. Although some of the research involves just-in-time
production systems, none has considered the problem of stochastic U-line balancing. The
flexibility inherent in U-lines adds an additional level of complexity to the already difficult
stochastic line balancing problem. Under certain assumptions dynamic programming may
be used to balance a U-line. However, for more general problems finding an optimal

solution is infeasible. For such problems, simulated annealing is utilized.

184

185

1. Introduction

A critical design and implementation issue for assembly line production is the
assignment of production tasks to work stations, the assembly line balancing (ALB)
problem. ALB formulations usually assume deterministic task processing times.
Numerous algorithms exist for solving this NP-hard problem. In many production systems
task times are not constant. Unfortunately, incorporating stochastic task times into
assembly line balancing significantly complicates the problem. Not only must the number
of stations be minimized, but tasks must be assigned to stations in a way which minimizes
the disruptions caused by variations in total station times. Exceeding the cycle time in any
station may cause line stoppages, defective production or may require extra labour to bring

the station back to pace.

Stochastic Line Balancing with Normally Distributed Task Times

The first studies to incorporate stochastic task times into line balancing assumed
normally distributed task times. Various strategies were employed to reduce the
probability of stoppages due to station times exceeding the cycle time. Moodie and Young
[1965] solved the problem using a largest task time heuristic and then attempted to transfer
tasks between stations to equalize station time variance and minimize idle time. Reeve and
Thomas [1973] began with an initial solution and attempted to rearrange the task elements
in the stations so as to minimize the probability that one or more stations exceeds the cycle
time.

Kao [1976] altered the cycle time constraint so that for each station the probability

186
that total station time is less than cycle time is greater than or equal to &. He then used
a dynamic programming approach based on Mitten's [1974] preference order to balance
the line. Kao's formulation and preference order did not necessarily result in optimal
solutions (Sniedovich [1981]). Carraway [1989] revised Kao's algorithm to remove two
sources of potential suboptimality, the effect of negative task times due to the assumption
of normally distributed task times and the method proposed for resolving ties during the
recursion. If the probability of any task having a negative task time is < & then the
difficulty created by negative task times is eliminated. By relaxing the rules for resolving
ties and retaining more subsets during the solution procedure the algorithm finds an
optimal solution. Carraway introduced a second version of the algorithm with stronger
preference measures. This version outperformed the first in instances where task time
variances were relatively high.

Driscoll and Abel-Shafi [1985] used confidence levels to establish the task times
to be used in line balancing. Each task duration was fixed according to the desired level
of confidence and then the line was balanced using a ranking heuristic. This approach has
the advantage of being able to use any deterministic solution algorithm but it lacks
consistency. Any station with more than one task will exceed the level of confidence
specified for individual tasks. The probability of station time exceeding cycle time will
vary from station to station and the average level of confidence will be higher when cycle
time is high and lower as cycle time decreases (and with it the average number of tasks per
station). Their simulation model allowed the analysis of the effect of multiple factors

including cycle time, line balance, line layout, model-mix and multiple operator stations.

187
Other constrained versions of the problem can also be formulated and solved as
deterministic problems (Sphicas and Silverman [1976] and Sniedovich [1981]).

For general stochastic ALB formulations finding an optimal solution for most
problems is not possible and heuristic techniques must be employed. Early efforts used
Monte Carlo simulation, a capability incorporated into COMSOAL (Arcus [1966]). More
recently, Nkasu and Leung [1995] used a statistical sampling approach based on
COMSOAL to sample both cycle times and task times from specified distributions and
randomly assign tasks to stations. The simulation allows sampling from a variety of
distributions and the inclusion of single or multiple objectives.

Another statistical search technique which has proven effective for stochastic ALB
is simulated annealing (Suresh and Sahu [1994]). Simulated annealing (SA) is based on
an analogy between a minimization optimization problem and the physical process of
finding low energy states of a solid by slowly cooling a melted metal. If cooling is too
rapid the metal will solidify too quickly and will not attain the lowest energy state.
Similarly, in optimization, moving too quickly to a solution may lead to a local minimum.
Numerous papers describe the SA process including Kirkpatrick et al. [1983], Glover and
Greenburg [1989], and Eglese [1989]. Schmidt and Jackman [1995] use SA in a three tier
multi-echelon approach to assembly line design aimed at minimizing the cost of operating
prototype automated assembly lines.

Balancing U-lines
The main difference between balancing U-lines and straight lines is the ability to

create crossover stations. These crossover stations are responsible for many of the

188
performance differences between the two layouts. Operating differences examined in parts
Ito IV in this thesis relate to the construction and functioning of individual stations. When
task processing times are stochastic the interaction between stations becomes important,
since a problem in one station can affect production in succeeding stations. These
interactions differ between straight lines and U-lines. A straight line station, m, interacts
only with the preceding and succeeding stations. A problem in station m-1 may delay
station m which in turn affects station m+1. This is also the case for non-crossover U-line
stations, but a crossover station may interact with as many as 4 different stations, two
preceding and two following. In Figure 1, exceeding cycle time in stations 1 or 4 may
affect station 2 which in turn may delay its successor stations 1 and 3. The nature of
production on the U-line determines the impact of exceeding cycle time.

The stochastic U-line balancing (STULB) problem is examined in this paper. The
study begins with a model and DP algorithm for solving the U-line equivalent to
Carraway's problem (2). In section 3 a simulated annealing algorithm is offered for
solving general STULB problems heuristically. Deliberate unbalancing of an assembly

line to increase throughput is discussed in section 4. Discussion follows.

2. A Dynamic Programming Algorithm for Solving the Stochastic U-Line

Balancing Problem

If the STULB problem includes the constraint that the probability that total station
time is less than or equal to the cycle time must be at least a, then it may be solved using

Carraway's DP algorithm.

Figure 1
A Typical U-line Balance

4 4 o
’ /
’ /
’ ’ o,
g / ‘
’ s / ",
4 / v
’ 7
’ F K
’ ra J ,
¢ s
."f !
s ’
/ / ;
s Vi !
’ 4 / »
/ 4 Y«
i/ Fi S = .
4 i/ S e
’ ¢ S
! 4 s e
;"' S -
/ ! :" 1"
J / s e
! d S e
’ Z h e

139

12

11

10 9

Legend

Task distance
Return distance
Crossover distance

190
2.1 Notation
The following notation will be used in this paper.
S = the set of tasks to be assigned.
X = the number of tasks in S.
P = the set of precedence relations for S.
C = the cycle time.
S= the complete set of feasible subsets of S relative to P.
t, = task time for task x. Task times are assumed to be independently and normally
distributed random variables with mean p, and variance, o?,.
&, = the distribution function for task time for task x.
ST,, = the set of tasks assigned to station m.

Ta = X 4, the work content at station m.
xeSTm

¢ = Pr(t,< C), the minimum probability that tofal station time will be < C.
M = the number of stations required to balance the line.
; = a feasible subset of tasks of S.
F[S;] = the minimum cost of feasible subset S;. Cost is defined as the number of full

stations required to complete the tasks in S; plus the time in the last station.

191
2.2 A Model For The Stochastic U-Line Balancing Problem

The stochastic U-line balancing problem may be modelled as:

_Subject to: M
IIIL=Jl ST, = S (1)
ST, QVSTV =0 #))
P(t,<C)2 « form=1,....M 3
For every tasky € S 4)

Either: If (x,y) € P, x € ST,, y € ST,,, thenm < m’, for all x;
Or: 1If(y,2)eP,ye€ST,, z€ ST,., then m’ < m, for all z.
Task times are assumed to be normally distributed. This model differs from other
ULB problems in constraint (3) where the probability that total time in any station is less

than or equal to cycle time must be at least .

2.3 A Dynamic Programming Algorithm For Stochastic U-Line Balancing

An optimal solution may be found for the problem defined in 2.2 by modifying the
preference order dynamic programming (DP) algorithm of Carraway [1989].
The Cost Function

If a subset of tasks, S;, is assigned to m stations, the cost function, V, for adding
task j to the end of S, is defined as:

V[m,N(ﬂ,Uz),j] = { (m’ N(I‘+“j’02+oj2)) if [N(F+ﬂ'j,oz+ojz)]-l(a) sC
(m+1, N(y;,6%) otherwise

S; is assigned to m stations, with time in the last station distributed N(i,0%). Adding task

192

j to the end of this subset will result in the time in the last station, t,,, being distributed
N(u+y;,0°+0}). If & is the set of all normal distribution functions with non-negative
means and fe.#, Carraway defines f'(¢) = inf {t| f(t) 2a}, the smallest time, t, such that
the Pr(x < t) > a. Thus if P(t, s C) 2 « task j is assigned to station m, otherwise, the
assignment of j to station m is not feasible with respect to (3) and j is assigned to a new

station, m+1.

The Preference Order

Consider two ordered subsets which are arrangements of subset S;. The subsets are
assigned to stations with each subset requiring m, stations, with time in the last station
distributed N(g,,0%). Subset 1 with (m,,N(g,,0%)), is preferred to (=) subset 2 with
(m,, N(g,,0%)) if one of the following conditions exists.

Station dominance

m; < m,. 5)
Vector dominance
m; = m, and [N(g, +p,0% +0%)]"(0) < [N(uy+p,0%+0) (). ©

A preference relation exists if the number of stations for subset 1 is less than for subset 2,
or if the number of stations is equal and the o fractile for the distribution created by adding
any p and o to the subset 1 is no greater than the & fractile for the corresponding subset
2 distribution.

Condition (6) may be restated as

ot g +Z,0%+0%)'"? s pytp + Z,(6%+0)'"2)

193
Condition (7) holds under the following circumstances (Carraway, [1989])
a)ifa > 0.5, u; < p, and 0 < 0%, (8)
b)if ¢ < 0.5, pu; < p,and 6% > 6, o)
o if @ > 0.5, i, < p, and 6%, > 0% then (7) also holds if
Z,< (py - p/(0, - 0,). 10
d)if ¢ < 0.5, p; < p, and 6%, > ¢%, then (7) also holds if
Z;2 (- p)/(0; - 0). an
If any of conditions (5) - (11) apply then subset 1 is preferred to subset 2 and subset 2 may
be eliminated from further consideration. If not, both subsets are retained for further

consideration.

Dynamic Programming Recursion

Carraway describes the set of subsets which are not dominated as a set of maximal
elements of S. A set of maximal elements of a set Y with respect to the preference relation
= is defined as:

maxl(Y, 2) = {ye€ Y|2 y'e Y suchthaty’ > y and y>y’ }.
An element y is in maxI(Y, =) if thereisnoy’ in Y that is preferred to Y. The dynamic
programming recursion based on the preference ordering is:

F(e) = { [0, N(©0,0)]},

F(S) = maxl {u (V[m,N(,0%,j] | (m,N(x,0€ F(S:)), = } for Se S

Scjes

where § is the complete set of feasible subsets of S. For a given subset §; the cost of all

feasible arrangements S;j are compared and a preference order established. The

194
preference order will eliminate many S;-j from further consideration leaving the set of
maximal subsets with associated costs F(S)).

To avoid the problem created by the possibility of negative processing times either
o > 0.5 (Sniedovich[1981]) or f, (e)" > 0 for all x € S, meaning that every task has at
least a probability of a that processing time will be non-negative (Carraway [1989]). The
use of this DP formulation for solving STULB problems is illustrated in the following

example,

Example

Consider Bowman's [1960] problem with normally distributed task times, a cycle
time of 22 and @ = 0.95. The precedence relationships, task times and variances are
shown in Figure 2. Table 1 shows the first steps in the DP algorithm using a reaching
approach to enumerate feasible subsets. Different orderings of subset S; are denoted as
S;x. While certain orderings of each S; may be eliminated through the preference order,
others must be retained for several steps. For example, after subsets of size 2 are

enumerated the ordered subsets {1,7} and {7,1} are compared.

X S Lasttask,j __f(S;,)
1 {1,7 7 1+(10,3)
2 {7,1} 1 1+(11,1)

Station dominance: m; = m, = 2 so there is no station dominance.
Vector dominance: p, < p, so dominance exist if a) 6% < 0% or b) Z,< (u,-11,)/(0,-0,).
a) 6%, > 0%, s0 no dominance is established

b) Zgs = 1.645and (u,-,)/(0,-0) = (11-10)/(1.732-1) = 1.366 < Z 4 so no

Figure 2
195
Precedence Relations for Example 1

N(,1) N(8,2) (10,3)

N(11,1) N(17,3)

NG5,2) N(12,1) N(@3,1)

/\

Mean task time Variance of task time

—_ — .g
(Izo+1 @'8)+1 ' tD+1 Lo °Sh
{o's'L} {s's'L} {1'8'L} @S
£ 4 1 f| ¢'en+o {s‘L}
(€oD+1 @)+1 a'mw+1 | LS
{L's'9} {v's'9} {1's'9} @S
€ 4 I £l @sn+o {8‘o}
(1'e)+1 G+ | s
{8's'L} {1'e's} @S
4 1 [G'sn+o {L's}
€on+1 | @n+1 €LD+1 oS
{L's'1} {o's'1} {z's'1} oS
€ 4 1 | @vn+o {s'1}
@yD+1 (€'61)+1 (€'L1)+2 [o"sb
{81} {s'1'L} {zry oS
€ T 1 £l G+ a‘L}
FEN+1 (s'8D)+1 €L+ oSl
{811} {s'L1} AT} LN
£ 4 I £ (€on+1 {1}
a'o+z | €on+z @9+ a‘e)+z [o"'Sh
{8'z'1} {L'e'n} {v'z1) {eT1} ©'S
2 € 4 1 (| €L+ {z'1) €
W'en+0 @'sn+o @vn+o ey SU
{L'8} {9's} {1'g} oS
£ (4 1 f] G‘e)+o {s}
WeN+o (s's1)+0 am+1 | ™Sy
{8'L} {s'e} {r'e} oS
£ r4 1 (] (c'on)+0 {L}
@y+0 | (€on+1 €LD+1 [ARLN]
{8'1} {'n {1} oS
£ [4 I 1 Gan+o {1} ré
a'e+o €on+o a1D+o T 'S
{s} {L} {1} E_.-m
€ rA 1 f 0 2 1
u
{8} +ua'S {L}+¢u's {9} +uuS {S}+ea's {9} +ouS (€} +ews {7} +uwS {I}+ga'S [s'SD an'S L

WBLOS[Y Jq HSeyo0IS 3y} Jo Sjdurexs aAtexs[[] UY

1 31qeL

197
vector dominance is established. Both {1,7}, {7,1} are maximal elements of S and
must be retained for the next step, enumerating subsets of size 3. Table 2

demonstrates the use of dominance rules on subsets of size 3.

2.4 Consideration Of Station Travel

One problem with Carraway's DP algorithm for U-line balancing is that there is
no consideration of travel in the stations. As discussed in part II of this thesis, inclusion
of station travel is an important factor in ensuring feasibility during U-line balancing. The
DP algorithm can be modified to incorporate station travel but difficulty arises when
attempting to establish preference relations. As tasks are assigned to stations the choice
of task location affects the feasibility of later stations through their travel component. It
may be impossible to establish a preference relationship for many subset pairs because the
impact on travel in succeeding stations cannot be determined. If an optimal solution is
desired, all arrangements of a subset which do not have the same beginning and ending
points would have to be evaluated for their effect on the solution and in rhany cases no
preference order would be established. Thus, finding an optimal solution will be
computationally infeasible for larger problems.

One other travel consideration is the variability of operator travel times. Although
some variability will exist, its impact will be minor compared to the task time variability.
For this reason, travel time will be treated as a constant factor of travel distance with

variance of 0.

198

Table 2

Dominance in Duplicate Subsets of Size n=3 in the Example

Last task fIS] Dominance Retain
m+N(u, 6 Criteria
2 2+9,1) {1,2,3}
4 2+(5,2) {1,2,4}
7 2+(10,3) {1,2,7}
2 2+(17,3) vector(8)
2 2+(17,3) vector(8)
2 14(17,3) {1,8,2}
8 2+@3,1) station
1 1+(11,1) {7,5,1}
5 1+(18,5) vector(8)
5 1+(19,3) vector(8)
1 1+(11,1) {7,8,1}
7 1+(10,3) {1,8,7}
8 14(13,4) vector(8)
8 1+(14,2) vector(8)
6 1+(12,2) vector(8)
1 1+(11,1) {8,6,1}
4 1+(5,2) {8,6,4}
8 1+@3,1) | {7,5,8}
5 1+(8,2) vector(8)
6 14+(12,1) vector(10)
7 1+(10,3) {8,6,7}
—_ |

199

3. A Simulated Annealing Approach To Stochastic U-line Balancing
To overcome the problems posed by operator travel and by the introduction of
more general task time distributions a heuristic search technique is recommended. One
method suited to U-line balancing is simulated annealing (SA). Because SA samples the
solution space, problem structure may be more general and can easily accommodate travel

and location constraints.

3.1 Notation

E — the balance measure for the U-line.

T — the simulated annealing temperature.

T, — the initial simulated annealing temperature.

CR — the cooling ratio.

N. — the number of iterations at one temperature.

icount — The algorithm will stop after icount cooling cycles without a change in the
solution.

DT, - the travel distance in station m.

gXDT,— the time required to travel distance DT,,.

— the total time in station m. t,, = ¥ t, + gXDT,
xeST,

Tn

3.2 Objectives for Simulated Annealing
The line balancing objective is to minimize some balance measure, E. Two

objectives used on straight lines by Suresh and Sahu [1994] were based on early stochastic

200
line balancing research.
1. Minimize the probability of stopping the line, PS (Reeve [1971]).
M

E=PS =(1-[]PS,)

where PS,, = P: 2‘, > 0).
2. Minimize the smoothness index, SI, a measure of station times relative to maximum

station time (Moodie and Young [1965]).

E = SI = V(¥ o 1M (ToasTa)*)

Any other appropriate stochastic balance measure could used in the objective

function. SA also has the ability to accommodate multiple criteria objectives.

3.3 A Simulated Annealing Algorithm for the STULB Problem

The following simulated annealing algorithm based on the work of Suresh and Sahu
[1994] is proposed to solve the stochastic U-line balancing problem. An initial solution
is found and then small changes are made to the current solution and the effect on the
objective function value is assessed. All moves which improve E are accepted. If a move
worsens E a probabilistic test is used to determine whether the move is accepted.
Step 1. Initialize the algorithm.
1.1 Find an initial solution.

A single pass heuristic which assigns tasks based on largest mean task time

is find the initial solution.

1.2 Calculate the objective function value.

The objective function value, E,,,, is calculated as the probability of stopping the

201
line, PS.
1.3 Set the SA parameters.

Initial values are selected for T,, CR, N, and icount. T, is set using the
procedure described in Lee and Iwata[1991] and Rose ez al.[1990]. Its initial value
is set relatively high to accept many different potential solutions.

Step 2. Generate a move to a neighbour solution.

A move to a neighbour solution is a small change in the current solution
which results in a feasible solution. Two possibilities are allowed for generating
neighbours, transfers and trades. One will be randomly selected.

Transfer a task to another station.

A task and station are randomly selected. If the task is not currently in the

station it may be transferred into the station.
Trade two tasks between stations.

Two tasks are randomly selected. A neighbour may be generated by a

trade where the two jobs are exchanged between their respective stations.

Unlike on a straight line where a task must be physically connected to its
station, on a U-line a task may join a station through a crossover without moving.
Thus two options exist for making a transfer or trade: 1) changing task locations
or 2) changing operator paths. In some cases both will be feasible and the choice
between the two is random.

All transfers or trades being considered must be feasible with respect to P

and to location constraints or else the algorithm returns to the beginning of step 2.

202
Step 3. Determine whether to accept the new solution.
3.1 Calculate E,,,,, the objective function value for the new solution.
3.2 CompareE,, t10E,,.,,.
)IfE.,. < Ey
The configuration is accepted and E_ g, = Eg.. Compare the new value
to the best solution found to this point, Ey,. If E,p < Ei.., then the
current solution is recorded as the best solution and E,,,, = E,,__, .
i) If Bpove > Ecurrent
The move would cause a deterioration in E. Generate a random number T,
where r is distributed U[0,1). LetAE =E_,. -E_ ..
Ifr < exp(-AE/T) accept the move and set E,,,op, = E,.., Otherwise reject
it.
Return to step 2 for N, iterations at the current temperature, T.
Step 4. Revise the current temperature.
After N, iterations cool the current temperature. T = TXCR, O <CR<).
Step 5. Stopping
Stop when there is no change in the solution for icount values of T.
~ (Suresh and Sahu used an icount of 3.)
The performance of the algorithm depends on the values selected for the initial
temperature, the cooling ratio and the number of iterations at one temperature. If initial
temperature is too low or cooling is too rapid the algorithm may become trapped in a local

minimum,

203

During stochastic U-line balancing as tasks are shifted and crossovers added or
deleted the location of all tasks must be recalculated and feasibility of stations checked
with respect to P and location constraints. The overhead associated with record keeping
and feasibility checks can place extremely heavy computational demands on the algorithm.
Algorithm complexity is dramatically reduced if the assumption is made that all task
lengths are identical. This would create an ordered system of task locations from the
beginning of the U-line to the end, simplifying feasibility checks with respect to P. All
distances between the task locations can be calculated prior to solution and location
constraints may be expressed as task locations from which crossovers may not originate.

Path interference can also easily be checked through using task location numbers,

3.4 The Impact of Exceeding Cycle Time on a U-line.

A U-line station may interact directly with up to four adjacent stations. The effect
of exceeding cycle time in a station depends upon its position and the nature of the line.
For paced lines with non-removable items, exceeding cycle time in a crossover station may
affect two stations by starving them for product or by passing defective products to them.
However, the additional interactions may also act to reduce the effect of variability on
paced lines with removable items or on unpaced lines. For example in the U-line balance
shown in Figure 1, if tasks 3 and 4 in station 2 cannot be completed due to delays in
station 1 it may be possible for the operator to process tasks 10 and 11 on the back of the
line and then return to the front to complete tasks 3 and 4. In this way the effect of the

delay in station 1 may be mitigated to some extent.

204

| 4. Unbalancing In Stochastic Assembly Line Balancing

In the deterministic ALB problem, once the minimum number of stations is
achieved, a secondary objective of balancing the workload evenly over all stations is
frequently included. In stochastic line balancing the interaction between stations may
provide an incentive to deliberately unbalance a line to improve overall performance.
Hillier and Boling (1966) describe the bow! phenomenon where output in a production
system with stochastic times is increased through deliberate unbalancing. Mean station
times are progressively increased from the centre station to either end of the line. The
effect of unbalancing is frequently studied through simulation.

A variety of papers deal with unbalancing as a means of increasing production
above the level achieved on a perfectly balanced assembly line. See, for example, Payne
et al. [1972], Carnall and Wild [1979], El-Rayah [1979] and Sadowski and Medieros
[1979]. In these papers, the extent of improvement in unbalanced systems varied directly
with the variability of processing times in final assembly. One criticism of unbalancing
studies was that the task time variances used were higher than those typically found in
manufacturing environments. Research by Smunt and Perkins [1985] indicated that while
unbalancing is advantageous on short lines with high task-time variations, on longer lines
with low to moderate variations a balanced line performs best. Other work suggests that
the gains from unbalancing are small, generally in the order of 1% (Baker er al. [1993]).
However, studies by Hillier and Boling [1991] and Baker e al. [1993] do suggest that

gains above 1% may be achieved if parallel stations are included in the system or if the

205

coefficient of variation of task times is relatively large.

Villeda et. al. [1988] examined unbalancing in a JIT production system of three
lines with three stations each feeding a final assembly area. Their key findings were:

i. Unbalanced production produces higher output than a perfectly balanced system,

although the maximum improvement is < 2%.

ii. The best arrangement was a high-medium-low loading arrangement which

minimizes the probability of final assembly exceeding cycle time. Since final

assembly drives the entire system the effect of variability in this area is amplified

throughout the system.

Sarker and Harris [1988] studied the effect of different unbalancing strategies in
a six station JIT manufacturing process. Their results differed from those of Villeda et.
al., concluding that the best arrangement for a JIT system is a perfectly balanced line. JIT
production will operate smoothly if station times fluctuate within a + 10% range. They
recommended that planned imbalance be incorporated into line balances only to deal with
clearly identified issues of variability, such as different operator performance. The results
of Villeda et al. and Sarker and Harris appear to be consistent with the findings of Smut
and Perkins that unbalancing works best on shorter lines with highly variable task times.

Unbalancing is difficult on a U-line because crossover stations occupy two
positions, one at the front and one at the back of the line. For unbalancing purposes both
of these positions may require different treatment. The benefits of unbalancing on U-lines
are likely to be low since, in JIT production, a major emphasis is placed on the reduction

of variability of task processing times. Thus for most U-lines the best solution will be an

206

evenly balanced line.

5. Discussion

Two different versions of the STULB problem were considered in this paper. In
the first, tasks are constrained by the requirement that for every station Pr(t,<C) 2 a.
This problem may be solved using stochastic dynamic programming. One of the
difficulties with this approach is that if consideration of travel and task locations is
included the size of the solution space becomes prohibitively large. The more general
version of the problem is solved using a heuristic, simulated annealing. Use of SA allows
the incorporation of travel considerations. Making the assumption that all task lengths are
identical dramatically reduces the calculation and storage requirements for a SA algorithm.

A significant amount of research is required to determine the best objectives and
solution algorithms for stochastic U-line balancing. This research would examine the
effect of varying SA parameters and the effectiveness of other heuristic techniques. The
scenarios where unbalancing can be used to improve output are also of interest. However,
the application of unbalancing to U-lines presents a new set of problems since crossover
stations may simultaneously occupy segments on both the front and back of the U-line.
While the difficulties posed by stochastic U-line balancing are significant, the need to
accurately duplicate and analyse actual production scenarios provides a reason for

continuing and expanding this research.

207

References

Arcus, A.L., "COMSOAL: a computer method of sequencing operations for assembly
lines," Int. J. of Prod. Res., 1966, v. 4, 4.

Baker K.R., S.G. Powell and D.F. Pyke, "Optimal allocation of work in assembly
systems," Management Science, 1993, v. 39, 1, 101-106.

Carnall, C.A. and R. Wild, "The location of variable work stations and the
performance of production flow lines," Int. J. of Prod. Res., 1976, v. 14, 6.

Carraway, R.L., "A dynamic programming approach to stochastic assembly line
balancing," Ins. J. of Prod. Res., 1989, v. 35, 4, 459-471.
Driscoll, J. and A.A.A. Abel-Shafi, "A simulation approach to evaluating assembly
line balancing solutions," Int. J. of Prod. Res., 1985, v. 23, 5, 975-985.
Eglese, R.W., "Simulated annealing: A tool for OR," European J. of OR, 1990, v. 40,
271-281

El-Rayah, T.E., "The efficiency of balanced and unbalanced production lines," Inz. J.
of Prod. Res., 1979, v. 17, 1, 61-75.

Glover, F. and H.J Greenburg, "New approaches for heuristic search: A bilateral
linkage with artificial intelligence," European J. of OR, 1989, 39, 119-130.

Hillier, F.S. and Boling, R.N., The effect of some design factors on the efficiency of
production lines with variable operations times, J. of Industrial Engineering,
1966, 42, 651-658.

Kao, E.P.C., "A preference order dynamic program for stochastic assembly line

208
balancing," 1976, v. 22, 10, 1097-1104

Kirkpatrick, S., C.D. Gelatt,Jr. and M.P. Veechi, "Optimization by simulated
annealing,” Science, 1983, v. 220, 671-74.

Malakooth, B.B., "Assembly line balancing with buffers by multiple criteria
optimization," Ins. J. of Prod. Res., 1994, v. 32, 9,2159-2178.

Mitten, L.G., "Preference order dynamic programming,” Mgmt. Sci., 1974, v. 21, 1,
43-46.

Moodie, C.L. and H.H. Young, "A heuristic method of assembly line balancing for
assumptions of constant or variable work element times," Journal of Industrial
Engineering, 1965, 16, 1.

Nkasu M.M. and K.H. Leung, "A stochastic approach to assembly line balancing," Int.
J. of Prod. Res., 1995, v. 33, 4, 975-991..

Payne, S., N. Slack and R. Wild, "A note on the operating characteristics of 'balance’
and 'unbalanced' production flow lines. Int. J. of Prod. Res., 1972, v. 10, 1,
93-98.

Queyranne M., "Bounds for Assembly Line Balancing Heuristics, " Oper. Res., 33,
1985, 1353-1359.

Reeve, R.N. and W.H. Thomas, *Balancing stochastic assembly lines," AIIE
Transactions, 1973, 5, 223-229

Sadowski, R.P. and D.J. Medieros, "The effect of variability on the unbalanced
production line," Int. J. of Prod. Res., 1979, v. 17, 6.

Sarker, B.R. and R.D. Harris, "The effect of imbalance in a just-in-time production

209
system: A simulation study, Int. J. of Prod. Res., 1988, v. 26, 1, 1-18.
Schmidt, L.C. and J. Jackman, "Evaluating assembly sequences for automatic assembly
systems,” IIE Transactions, 1995, v.27, 23-31.
Smunt, T.L. and W.C. Perkins, "Stochastic unpaced line design: reviews and further
experimental results," Journal of Operations Management, 1985, v. 5, 3
Sniedovich, M., "Analysis of a preference order assembly line problem," Management
Science, v. 27, 9, 1067-1080.

Sphicas, G.P. and F.N. Silverman, "Deterministic Equivalents for stochastic assembly
line balancing," AIIE Transactions, 1976, v. 8, 2, 280-282.

Suresh, G., and S. Sahu, Stochastic assembly line balancing using simulated
annealing," Inz. J. of Prod. Res., 1994, v. 32, 8,1801-10.

Villeda, R., R. Dudek and M. Smith, Increasing the production rate of a just-in-time
production system with variable operation times, Int. J. of Prod. Res. , 1988, v.

26, 11,1749-68.

Concluding Remarks

The motivation for studying U-line balancing was to determine if there are
characteristics of U-lines and their use in JIT production which can provide a
competitive advantage to manufacturing organizations. Although the differences
between a U-line and a straight line appear minor, this research has demonstrated that
they can have a significant impact on manufacturing.

The investigation began with an indepth study of the problem of balancing a
single U-line constrained only by precedence and cycle time constraints, the SULB
problem. The lower labour requirements for U-lines compared to straight lines was
demonstrated in a computational study. Since the SULB problem is more complex than
the straight line balancing problem, ON’[#(S)?]) compared to ON? [#(SH]),
identifying an efficient optimal solution algorithm was essential. Different dynamic
programming and integer programming algorithms were tested and an effective depth-
first branch and bound algorithm was identified. It served as a component of solution
algorithms for more difficult ULB problems.

In Part II the SULB problem was extended to include consideration of operator
travel in stations. This extension was necessary for two reasons:

1) The time required for travel in a U-line station is a function of task length,

U-line layout and task locations. This time must be calculated to ensure

210

211
station feasibility relative to cycle time.

2) Paths for operator travel are not allowed to interfere with adjacent stations.
To avoid interference, task locations and travel paths must be recorded and non-
interference constraints must be added to the problem formulation.

These changes were incorporated into the SULB-T problem formulation and branch and
bound algorithm.

Additional gains in worker productivity may be made if two or more U-lines are
balanced simultaneously. The concept of multiple U-line balancing was introduced in
Part II through the two U-line balancing with travel problem. Access to each U-line
was restricted to the opening of the U and an optimal solution algorithm was proposed.
When more than two lines were balanced simultaneously, heuristic solution methods
were required. The procedure used depended on whether U-line locations were fixed
or not. In Part IIT the NULB-T problem was modelled and heuristic algorithms were
proposed for both the general and fixed location NULB-T problems. A computational
study demonstrated that the gains achieved by N U-line balancing compared to single
U-line balancing were substantial.

In many JIT facilities several product models are produced on a single line in
mixed-model production. Units of different models are interspersed through the
production sequence in proportion to their demand. Difficulties in mixed-model
production result primarily from model imbalance, the fluctuation in total station times.
On U-lines different models are mixed in crossover stations during a single cycle. This

provides U-lines with the unique ability to reduce model imbalance to levels

212
unattainable on straight lines. Algorithms for balancing and smoothing U-line balances
were offered for both single and multiple mixed-model U-lines.

In Part V the problem of U-line balancing where task times are stochastic was
examined. A preference order dynamic programming algorithm for solving one
strongly constrained version of the problem was presented. For more general task time
distributions or problem formulations a statistical search technique, simulated
annealing, was employed to find a heuristic solution.

Although this research focussed on issues and opportunities related to U-lines its
applicability reaches beyond this single configuration. The principles and advantages
of crossover stations, multiple line balancing and smoothing mixed-model balances may
be expanded into other line configurations where stations could contain non-adjacent
tasks including:

+ Manufacturing cells,

- Single assembly lines whose shape brings separate line segments close

together allowing stations to include tasks on different segments and

* Multiple lines of various layouts operating in close proximity.

Manufacturing efficiency will continue to be a critical factor in the ability of
companies to compete in the increasingly competitive global economy. The benefits of
using U-lines or of incorporating aspects of U-line balancing into assembly line
production are significant and can be an important component of future manufacturing

competitiveness.

213

Extensions To U-Line Balancing Research

Although many different aspects of U-line balancing were examined in this
thesis numerous research opportunities remain in the search for greater assembly line
efficiency and more accurate depiction of manufacturing situations and difficulties.
The purpose of the thesis was to model and investigate the characteristics of different
U-line balancing problems and to propose a method of solving each. The efficiency
and effectiveness of the algorithms may be improved through further research into the

following topics:

Bounds

Because of the flexibility associated with U-line balancing tight upper and lower
bounds on the number of stations and operator travel are significant factors in algorithm
performance. Although several bounds were introduced in the ULB algorithms, the
tightness of the bounds may be improved particularly relative to operator travel. The
tradeoff between computational requirements for bound calculation and potential

improvements in algorithm performance must be evaluated.

Search procedures.

For problems of typical size (5-20 tasks) the breadth-first B&B algorithm
proposed proved effective but solution time was high. Improved methods for depicting
the problem, better task numbering schemes and search procedures could contribute to

enhanced algorithm performance. The use of simplifying assumptions, such as

214

assuming all task lengths are equal, can dramatically improve performance at minimal

expense in terms of accuracy.

Heuristics
Further research into heuristics is encouraged for two reasons.
1. The heuristics used in this study proved effective for solving ULB problems. This
conclusion was supported by the computational studies of Parts I-III.
2. Complex ULB problems cannot be solved optimally.
The complexity of NULB-T, MMULB and STULB problems prevents optimal
solution and dictates the use of heuristic solution procedures.
The development and use of effective single and multiple heuristics will
improve both the solutions for difficult U-line balancing problems and the time

required to solve ULB problems.

Relaxation. of access restrictions for multiple U-line balancing

In the multiple U-line balancing problems considered in this thesis access to U-
lines was restricted. In certain environments there will be few or no physical
restrictions on access to U-line segments. While the nature of this problem is not
significantly different from that of the NULB problem where access is constrained, it
will require different solution methods, including rules for setting priorities for task

assignments and station layout.

Multiple line balancing on U-lines with unrelated cycle times

215
In facilities where adjacent lines produce parts for unrelated products, creating
multi-line stations is complicated by the fact that the lines generally operate with
different cycle times. Careful timing of production in each area of the multi-line
stations and the addition of work-in-process inventory will be critical to their successful
operation. Such stations would allow an opportunity for further reduction in labour
requirements but at the cost of increased manufacturing complexity and work in process

inventory. The tradeoff between these benefits and costs must be carefully assessed.

Improved smoothing algorithms for mixed-model U-line balancing

For mixed model line balancing two factors play a role in the success of the
final balance: the model imbalance measure employed and the procedure used to
smooth the line balance. Further research is required to define effective model
imbalance measures, to gauge the effect of model imbalance measure choice and to
determine the situations in which each measure should be used. Research into
smoothing methods should concentrate on evaluating procedures for selecting stations
and tasks to smooth and alternative task exchange rules. Research into the use of

statistical search algorithms may prove promising.

Extending U-line balancing concepts into other line configurations

As discussed in the concluding remarks many advantages of using U-lines may
be obtained to some degree in line 'conﬁgurations more common to North American
manufacturing. Although U-line methods can improve manufacturing efficiency

further research is required to define the situations where such methods may be used

216

and the conditions which must exist to make their use successful,

Many of these issues will be dealt with in future research.

TURAN
N\ &

22

I
= [l

- 122

3.2
-
L

o)
E EN =

EEEEPE

10

20

3
HEF]

w

I

I

4

125

150mm

SSSSS
T 00

W8ysro =)

-ouw

m

" =
-————— o
<

]

E

______ E
g
8
]

e

APPLIED

