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Abstract

The phenomenon of high-temperature superconductivity (HTSC) is one of the most
intensively studied ones in the modern condensed matter physics. The initial drive to
produce a room-temperature superconductor led to the discovery of completely new
physics, that can not be explained by the existing theories. This includes not only the
properties of HTSC materials in the superconducting state but in the normal state
as well. I fact, much of the current research effort is aimed at the understanding of
the unconventional normal-state properties of HT'SC materials, in a hope that this
understanding will unlock the mystery of the superconductivity phenomenon.

The superconducting transition temperature of a HTSC material can be changed
by chemical doping. While at the initial stages of the HTSC research the research
effort was focused on the so-called "optimal” doping regime, the one with a highest su-
perconducting transition temperature, recently attention has begun shifting towards
the whole doping range.

The work, results of which are presented in this thesis, is aimed at the under-
standing of the doping dependence of the optical properties of the high-temperature
superconducting materials. In particular, we are interested in the infrared energy
range since it provides a wealth of information about the low-energy electronic exci-
tations. Mostly the normal-state properties were studied. Several materials studied
in this work allowed us to cover the whole metallic doping range of HT'SC. The main
emphasis of the work presented in this thesis is, however, the "overdoped” regime,
where the transition temperature decreases as the material becomes a better metal.
This part of the HTSC phase diagram was largely ignored before. We believe there-
fore, that the new results, presented in this thesis, are an important contribution to
the general effort in the field of high-temperature superconductivity research.

iii



A cknowledgements

I would like to thank my supervisor, Tom Timusk, for his guidance and continued
support during the last four years. His many suggestions and discussions are a very
valuable contribution.

I would also like to thank Dimitry Basov, for his help and for teaching me the
art of infrared spectroscopy.

Over the last several years I have enjoyed illuminating discussions with a num-
ber of people. In particular, many wonderful discussions with J.P. Carbotte and
C.C. Kallin are very much appreciated. I would also like to thank all the faculty
members, post docs and graduate students at the Physics Department for answering
all my questions.

I would like to thank C.V. Stager for the magnetic susceptibility measurements.

I am grateful to Andy Duncan for keeping the lab in order and for his computer
expertise, and to Gord Hewitson for supplying the liquid helium.

I am very grateful to the secretaries in the Physics office: Rose McNiece,
Wendy Malarek, and Marg Wilby; for the much appreciated help with the endless
paperwork.

I would like to thank Tatiana Startseva for her help with the manuscript
preparation.

Finally, my warmest thanks to Anya Rivkin, for her patience and tolerance of
the strange working hours.

iv



Preface

This thesis is a result of the author’s experimental work in the field of optical spec-
troscopy of high-temperature superconductivity phenomenon. As any experimental
work, it involved an extensive collaboration with other research groups. Below we
briefly list the people who participated in the work, as well as their personal contri-
bution.

The material presented in chapter 2 is based on the original work by A.V.
Puchkov, P. Fournier, T. Timusk, and N.N. Kolesnikov [Puchkov96c]). The infrared
optical measurements were performed by A.V. Puchkov and T. Timusk, the Bi2212
single crystals were grown by P. Fournier and T12201 single crystals were grown by
N.N. Kolesnikov. The text of the paper was written by A.V. Puchkov.

The work presented in chapter 3 is a part of a broader review article entitled
?Pseudogap state in high-T, Superconductors: an Infrared Study” by A.V. Puchkov,
D.N. Basov, and T. Timusk. [Puchkov96d] While the manuscript was in a pro-
cess of refereeing at the time of writing this thesis, no copyright transfer has been
made. The author of this thesis performed reflectivity measurements on Bi2212,
(Bi/Pb)2212, and T12201 materials. The measurements on Y123 and Y124 materials
were performed by D.N. Basov and are reproduced in this thesis, with permission
of D.N. Basov and appropriate annotation, to give a reader a broader view on the
subject.

Chapter 4 consists of two articles, one has been published in Physical Review
B [Puchkov95c] and another one [Puchkov96a] is to appear in Physical Review B 54,
p. 6686, 1996. The work was done in collaboration with a research group from the
University of Illinois at Urbana-Champaign. The single crystals of BKBO at differ-
ent doping levels were grown by P.D. Han and D.A. Payne, while the ellipsometric
measurements were performed by M.A. Karlow and S.L. Cooper.
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Chapter 1

Introduction

1.1 Optical Properties of Solids

1.1.1 Maxwell’s equations and the dielectric function

Since this topic is described in detail in several publications, [Ashcroft76, Kittel86,
Wooten72, Landau84] for the reader’s convenience, we will only reproduce the essen-
tial highlights of the theory.

We start with Maxwell’s equations in macroscopic form (in Gaussian units):

V.-E = 47p (1.1)
- 18B

F = —-— 1.2
VX c Ot (1.2)
V-B =0 (1.3)
- o 10E  4x -

B —_— o s—— — -/
V x o + p J, (1.4)

where E and B are the electric and magnetic fields respectively, p and J are respec-
tively the total charge and current densities and c is the speed of light in a vacuum.
There are two contributions to the charge density p. The first one is due to
polarization of the medium in the presence of an electro-magnetic field and is given
by —V - P, where P is the dipole moment per unit volume. The second one is a
contribution due to external charges, p®*t.
The local current density consists of four contributions: (i) The electric current

1



Bﬁ/at due to the time-dependence of the polarization P in the presence of time-
varying electric field; (ii) the magnetic induction current, given by c(€7 x M ) where
M is the magnetic dipole moment per unit volume; (iii) the electric current due to
the conduction electrons, Jeond — odCE’ , where oy, is the dc¢ conductivity; and (iv)
external current sources.

We will first consider the quasistatic case of a slowly varying electromagnetic
field, so that the frequency of the electromagnetic radiation is small compared to
the characteristic relaxation frequencies of the processes that determine the electrical
and magnetic polarization of a media. In this case we can introduce the following
definitions:

]
]

13=E'+47r

H=B—4rM

¢E, (1.5)
B (1.6)

il

I

where constants e and p are the static dielectric constant and the magnetic perme-
ability, respectively. Assuming no external charges, we arrive at the set of Maxwell’s
equations for an isotropic materiall:

V-eE =0 (1.7)
= = ,U,Bﬁ

— _koH 1
VxE — 5 (1.8)
VopH = 0 (1.9)
Gxg = 9F [ Am%p (1.10)

c Ot c

Using the Maxwell’s equation and the vector identity

Vx(VxA)=V(V-4) V4 (1.11)

we obtain the wave equations:

In an anisotropic material g, € and o4, are replaced by the corresponding tensors



VE_C262t+ 2 Ot
05 £82H dmogcp OH
Vi = ct 9% ¢z It

We now look for a solution to Egs. 1.12,1.13 with time dependence exp(—iwt):

(1.12)

(1.13)

~V2E = %u(e-ﬁ-i 194\ (1.14)
- 2 4 ~
V2 H = %u(e—i-z' 194\ g, (1.15)

Since V- £ = 0 and V - H = 0, the solution of Egs. 1.14,1.15 is necessarily
transverse, that is the directions of the electrical and magnetic fields are always
perpendicular to the direction of propagation.

In the low-frequency limit there is a distinction between an insulator and a
metal. In case of an insulator o4, = 0 and Eq. 1.14 reduces to the following:?

— He =
—V2E=w2—c7f,. (1.16)

This is the equation for an electromagnetic wave propagating in a non- ab-
sorbing medium. One can see that the velocity of the wave is given by v = c(eu) /2.

Let us now consider the case of electromagnetic fields of frequencies high
enough to be comparable to the relaxation frequencies in the medium, and the cor-
responding dispersion effects for ¢(w) and p{w). To begin with, it is obvious that
at extremely high frequencies, when the wavelength of an electromagnetic wave. A,
becomes comparable to the interatomic distances in a material, a, the macroscopic
description in terms of € and p becomes invalid. Still, there is always a large fre-
quency range where, on the one hand, dispersion phenomena are important, and, on
the other hand, the macroscopic description is valid. For example, the fastest relax-
ation time in solids is electronic, with a characteristic time of the order of a/v,, where
Ve is a typical electronic speed. However, since v.< ¢, the corresponding wavelength

A~ac/ v, is still much larger than a.

2From now on we will only show equations for E since equations for H are similar



Unlike e(w), the magnetic permeability u(w) loses its physical meaning al-
ready at relatively low frequencies. Without elaborating, we state that taking into
account deviations of u(w) from 1 at optical frequencies is, strictly speaking, unjus-
tified [Landau84].

In the limit discussed in the previous paragraph, and assuming that the field
intensity is small enough so that relation between D and E is linear, we can write:

D) = B@) + /o ¥ Hr)E(t - 1)dr. (1.17)

Here f(7) is determined by the medium. After a Fourier transform we arrive
at:

-t

D = €eWw)E, (1.18)
e(w) = 1+/Oo°f(r)ei‘“7dr (1.19)

Therefore, if the frequency of the incident electromagnetic wave is comparable
to the relaxation frequencies in the medium, € in Maxwell’s equations must be replaced
by e{w). The e(w) is in principle complex: e(w) = €{w) + i€y(w). From the Eq. 1.19
one can immediately see that:

a(—w) = a(w), o(-w) = —e(w). (1.20)

Therefore, while the real part of e(w) is even, the imaginary part is odd.

In the limit of low frequencies compared to the onset of a dispersion, and if e{w)
is a smooth function, ¢(w) can be expanded in powers of w.® The expansion of ¢;(w)
contains only even powers while expansion of e€;(w) contains only odd powers. In a
dielectric material, €;(w) approaches the static dielectric constant, €, while expansion
of €5(w) starts in principle from a term proportional to w.

One can consider ¢(w) at low frequencies in conductors as well. However, in
this case, to preserve the form of Eq. 1.16, an additional imaginary term idwoy. /w,

3QObviously, this is not true if e{w) has a singularity at the energy corresponding to the beginning
of dispersion. Such is the case of a van Hove singularity in a joint density of states for an interband
transition where, in a simplest case, e2(w)~(w — Ey)'/? at w > E; and ez(w) = 0 at w < E, where
E, is the interband gap energy. [Lynch85]



due to the conduction electrons, has to be added to the dielectric function (compare
Eq.’s 1.14,1.16). This means that in a good conductor, propagation of a low-frequency
electromagnetic wave is dissipative. The next term in €(w) is a real constant which,
however, does not have the same physical meaning as in dielectrics. Recognizing the
difference between a metal and an insulator, the wave equation can be written in a
more general form:

2 W a
- V°E = c—26(w)E. (1.21)

In the opposite limit of very high frequencies, €(w) approaches unity. This
has a simple physical meaning: for a sufficiently rapidly varying field the polarization
processes, which lead to E being different from D, do not have enough time to develop.
At a sufficiently high frequency of an electromagnetic field, all (or almost all) of the
electrons in a medium (including the inner-shell) may be considered as free electrons,
and their interactions with each other and with nuclei can be neglected. In this case
a solution of a kinetic equation (for a more thorough discussion please see section
1.1.4) gives:

) 4rne?
lim e(w) =1- —,
w—00 mew

(1.22)
where n is the total density of electrons in the medium and m, is the electronic
mass. At high frequencies there is no distinction between dielectric and conducting
materials. Of course, for e(w) to have the same physical meaning as in Maxwell’s
equations, the frequency must not be too large:* w < c/a.

The complex index of refraction, N(w), is given by:

N(w) = n(w) + ik(w) = (1 (w) + dea(w)) Y2, (1.23)

so that
e6w) = nfw) -k (w) (1.24)
ew) = 2n(w)k(w). (1.25)

“However, even if the frequency does not satisfy this requirement, e¢(w) may have a well-defined
physical meaning [Landau84]



Finally, the power absorption coefficient is:

weg(w)
cn
From the last equation one can see that it is the imaginary part of the dielectric

a(w) = Qka(w) = (1.26)

function that is responsible for a dissipation of energy.

1.1.2 Kramers Kronig relations

It can be shown [Kittel86, Landau84] that any complex function, f(w) = Ref(w) +
iImf(w), that satisfies the following conditions: (1) The poles of f(w) are below the
real axis; (ii) f(w)—0 uniformly as |w|—oo; (iii) The function Ref (w) is even and
Imf(w) is odd with respect to real w; also satisfies the Kramers-Kronig relations:

Ref(w) = P/wﬂgmfgz (1.27)
Imf(w) = P/ Ref(Q (1.28)

Here, P means ”principal part”.

The Kramers-Kronig (KK) relations are extremely important in the analysis
of optical experiments in solids since they enable us to find the real part of the re-
sponse of a linear passive system if we know the imaginary part of the response at all
frequencies, and vice versa. Despite the somewhat complicated mathematical repre-
sentation, the physical meaning behind the KK relations is simple and fundamental:
they are a direct consequence of the causality principle. Therefore, any physical
response function that satisfies the KK relations is said to be causal.

In particular, the dielectric function is causal:

Qey(Q
alw) -1 = 27, [ 9262_( w)2 dQ (1.29)
2w €(Q 4704,
62((4)) = / ;2(2 _) w2 + —w—d (130)

Therefore, the real and imaginary parts of é(w) are not independent, rather one follows
from the knowledge of the other over the whole frequency range. However, the last
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condition is not likely to be satisfied in a real experimental situation. In the above
equations we have used the properties of ¢(w) represented by Eq. 1.20. Also, the
second term on the right-hand side of Eq. 1.30 appears only for metals.

In the case of metals it is customary to consider the complex optical conduc-
tivity o(w) = 01(w) + i03(w) instead of e(w). The relation between the two can be

written as:

o(w) =i%(l — e(w)). (1.31)

Therefore, the real part of optical conductivity is defined as a; (w) = wea(w)/(47) and
the imaginary part is oy(w) = w(l — € (w))/(47). The KK relations for the optical
conductivity are:

2w o g (Q
2w? % g9(2) /02
al(w) = '%P A %_)—Zﬂdﬂ-i-o'dc. (133)

Obviously, in the limit of w—0 the real part of optical conductivity is just the
dc conductivity, og..

1.1.3 Sum rules

The sum rules for different optical response functions are fundamental tools of optical
spectroscopy. The most important of the sum rules, the conductivity f sum rule, can
be obtained as follows. In the expression for €, (w) at high enough frequencies we can
neglect 2 in the denominator. In this case:
2 o]
el(w) —1= '—m 0 QCz(Q)dQ (134)
On the other hand, for the dielectric function at very high frequencies we have
Eq. 1.22. Comparing the two equations we obtain the f sum rule:

1 o o meln
4_7_;/0 weg(w)dwz/o o1(w)dw = py (1.35)

where n is the density of all electrons in the material and m is the bare electron mass.
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Other important sum rules, which we present without derivation, include the
following: [Smith85]

/ooo(l—el(w))dw = 47r/0°°a—2‘f)w—)dw=27r2adc, (1.36)
/Ooowk(w)dw = Wznjez, (1.37)
/Ooo(n(w)—l)dw = 0 (1.38)

1.1.4 The classical theory of metals

The simplest model for the optical response of a metal was developed by Drude
and Sommerfeld [Kittel86]. According to this model, when the electrons in a metal
are subjected to an external field the entire Fermi surface is displaced rigidly in a
direction opposite to the field by an amount proportional to the current density. The
corresponding equation of motion for the momentum § per electron in a material
subjected to an electromagnetic field, £ = E, exp(—iwt), is:

@__P_ g

dt T
Here 1/7 is a constant scattering rate (and 7 is an electronic life time), deter-

(1.39)

mined by impurities (1/7;), sample surface (1/7,), phonons (1 /Ton), other electrons
(1/7), etc. All these contributions are generally independent, so the scattering rates
add:

1/7'=l/Ti+1/Td+1/7‘ph+1/7‘e. (1.40)
We note that the last two contributions may become temperature (and/or frequency)
dependent at high temperatures and frequencies. However, for the moment we will
assume that 1/7 is independent of frequency while the other case will be discussed
in section 3 and appendix A. It can be easily shown [Ashcroft76] that a solution to
equation 1.39 with the periodicity of an applied field, exp(—iwt), gives the expression
for the optical conductivity:

Odc

o(w) = (1.41)

1 —jwr’
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where 04 = ne’r/m is the dc conductivity. If an optical conductivity has the shape
given by Eq. 1.41, it is said to be Drude-like. The real and imaginary part of optical

conductivity are given by:
UJ2 T
e
o1(w) 4 1 + w?r? (1.42)
2
w
a (1.43)

_ wT
o2(w) = dr 1 + wire’

Here, w, = 4mne’/m is the plasma frequency of the free carriers. An example of the

frequency dependence given by Eq.s 1.42 and 1.43 is shown in Fig. 1.1.

1.2 T T T T
o,(®
o8|\ T @

3 i

©

~ -

-~

<)

o) "0 ~.\‘ -

04 |- l’ ~‘.‘
[ LI
] ey
l' ~-‘~~
’ .. .
YN Seeaa
N Tmeeaaa.
] d
[}
i
1 1 ]
3 4 5 6

0.0
0 1 2
T

Figure 1.1: The frequency dependence of the real and imaginary parts of optical

conductivity given by the Drude theory.
If the frequency w is high enough to satisfy wr>>1, and recalling the definition
(1.44)

2
ew)=1~- UT’;
Therefore, at frequencies w < w, the dielectric function is real and negative.

of o(w), Eq. 1.31, we obtain:
w
The solution for Eq. 1.21 decays exponentially in this case, z.e. no radiation can
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propagate. One can estimate the penetration depth of an electromagnetic wave into
a metal at frequencies 1/7<w<w,. Solving Eq. 1.21 with ¢(w) = —w?/w? we obtain:

E = E, exp(——% — iwt), (1.45)

where 2 is the direction of propagation, normal to the metal surface, and 6 = c/w, is
the penetration depth. When w > wp, €(w) is positive and the metal should become
transparent.

1.1.5 Bound electrical charges

Eq. 1.39 can be extended to include bound charges present in a system, such as
phonons or bound electrons. In this case one can assume that the charges are bound
by a harmonic potential to a site in the solid and that the motion in this potential is
subject to a viscous force. The equation of motion is given by:

d*z m dT ”

— — —_————— —— 2_‘_

m—s L eF (1.46)
__ iz
P= "

Here, w, is the center frequency and 1 /7 is a damping constant.
Again, looking for a solution with time dependence exp(—iwt), we obtain for
the optical conductivity:

2
wp w

47 i(w? — W) + w/T

o(w) = (1.47)

Here, w, is a plasma frequency, or oscillator strength. It is given by wg = dmrnge? /m,
where 7 is the number density of oscillators and m is their effective mass. In the
limiting case of w, = 0 one obtains expression 1.41.

Eq. 1.47 can be applied to phonons, in which case w, is the phonon frequency
and 1/7 is the phonon damping. In the case of applying Eq. 1.47 to an interband
transitions it is tempting to associate w, with the interband energy gap and 1/7 with
the lifetime of the excited carriers. The association is valid only if the width of the
band is a result of lifetime effects, as in atomic absorption. If, however, the width
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is due to the initial and final states being located in broad bands, the association is
invalid. In this case, the gap should be associated with the onset of the absorption
rather than with its center frequency. [Lynch85]

An example of the frequency dependence given by Eq. 1.47 is shown in Fig. 1.2.
The optical conductivity is additive so that, for example, the spectrum corresponding
to a metal with an interband transition can be modeled by a sum of the spectra shown
in Fig.’s 1.1 and 1.2 (with appropriate parameters).

1.0

p

4nto(w) / (02 T)

Figure 1.2: The frequency dependence of the real and imaginary parts of optical
conductivity given by the oscillator model.

1.1.6 The method of infrared reflectance spectroscopy

Knowing the dielectric function (or the optical conductivity) of a material gives one
a wealth of an information about free carriers, interband transitions, phonon spectra,
elastic and inelastic scattering processes, etc. There are many experimental methods
[Palik85] aimed at obtaining the dielectric function, each having its own advantages in
a certain frequency range. For example, microwave spectroscopy is very useful in the
frequency range Aw = 10— 30 GHz= 0.04—0.12 meV while optical ellipsometry gives
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the optical constants with high accuracy in the range Aw = 16000 — 48000 cm~! =
2 — 6 eV. However, in the frequency range Aw = 100 — 20000 cm™~'~0.01 — 2.5 eV,
which is the most important frequency region if one is interested in the intraband
or low-order interband electronic transitions (such as excitations of conducting elec-
trons or transitions across a semiconducting gap), the method of infrared reflectance
spectroscopy is so far the most powerful.

Intensity detector

Monochromated light

l
IR \\\\\\\\\\\\\\ )\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“

Figure 1.3: Sketch of the experimental geometry used in the reflectance spectroscopy

A sketch of the experimental geometry, used in infrared reflectance spec-
troscopy, is shown in Fig. 1.3. Incident monochromated light of frequency w is
directed normal to the surface of a material. The measured quantity is the inten-
sity of the reflected light, I,.s(w). If the intensity of incident radiation, I;,.(w), is
known then the ratio of these two can be obtained. The ratio is called the reflectance,
R(w) = Lief(w)/Iinc(w). By changing the frequency of the incident radiation contin-
uously a spectrum of R(w) can be obtained. Obviously, R(w)<1.

Since the ultimate goal of the experiment is to obtain both the real and imagi-
nary parts of e(w), that is two functions, one needs an additional quantity in addition
to the measured R(w). To obtain this additional information, Kramers-Kronig rela-
tions can be used again. The complex reflectance coefficient can be written as:

r(w) = |R(w)|"? exp(if(w)). (1.48)

Here, R(w) is the amplitude of the reflectance coefficient, that can be measured
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directly, and f(w) is the phase shift. The phase shift is related to the amplitude by
the KK integral:

O(w) = % /0 °° :)—Izli(—%)zdg. (1.49)

The range of the KK integral extends over all frequencies, requiring extension of ex-
perimental results beyond the measured frequency interval. For the extension one
can use results of other experiments, such as microwave at low frequencies or ellip-
sometery at high frequencies, or an extrapolation. For the extrapolations, power laws
are typically used at high frequencies, R~w= with 0<p<4. At low frequencies the
reflectance is assumed to be constant if the sample is an insulator and to follow the
Hagen-Rubens relation, R = 1 — (2wpy./7)/?, where Pdc 1s a dc resistivity, if it is a
metal. More thorough discussions of the low- and high-frequency approximations can
be found elsewhere [Timusk89, Bosovic90].

As soon as both 7(w) and §(w) are known, the complex index of refraction can
be calculated from the relation:

_ nw) = 1+ ik(w)
rw)= n(w) + 1+ ik(w)’
and other optical constants follow from Eq.’s 1.23,1.31.

(1.50)

Of course, the real experiments are much more complicated than the sketchy
outline presented above. For example, a Fourier-transform technique is normally used
in the infrared frequency range, 100-8000 cm™!, instead of the frequency-scanning
approach. To obtain the experimental results presented in this thesis, the infrared
frequency range reflectivity measurements were carried out using a rapid scan inter-
ferometer with the optics focused on a sample mounted in a continuous flow cryostat.
For near-infrared and visible, a grating spectrometer with appropriate detector-filter
combinations with overlapping frequency ranges was used. To obtain the absolute
value of the reflectance, geometrical scattering losses were accounted for by in situ
evaporation of a metallic film (Au or Al) onto the surface of the sample. The coated
sample was then remeasured and the absolute value of R is then given by the ratio of
spectra before and after plating, corrected for the absolute reflectance of the metallic
film. [Palik85] The experimental details, as well as the interferometer design, are
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described in great detail in the original work by Homes [Homes93a] and will not be
presented in this thesis.

1.2 The superconductivity phenomenon: an op-
tical perspective

1.2.1 Conventional superconductivity

The superconductivity phenomenon was discovered in mercury by Kamerlingh-Ones
in 1911, shortly after he had built the first helium liquefying machine. The phe-
nomenon was largely unexplained until 1957 when the BCS theory [Bardeen57] (named
after Bardeen, Cooper, and Schrieffer) was advanced and has subsequently proven to
be one of the most successful theories in modern solid state physics. Even before the
development of the BCS model there was an understanding that to become supercon-
ducting, charge carriers must be bound into bosonic pairs that would condense into
a superfluid much like ordinary bosons. The problem was to find a force that would
bind electrons into bosonic pairs despite their Coulomb repulsion. The discovery of
the isotope effect, that is the fact that the transition temperature is inversely pro-
portional to the square root of the mass of the ions constituting a superconductor,
provided an important and much needed boost to the theoretical work in this field.
The resulting BCS model identified the pairing interaction as an electron-phonon
interaction.’ In the BCS theory the pairing occurs between electrons with opposite
momenta and opposite spins. The resulting pair is called a Cooper pair. The boson
condensation temperature for the density of Cooper pairs achieved in conventional
metals is of order of a Fermi temperature, which is much larger than T, in conven-
tional superconductors. Therefore, as soon as the bosonic Cooper pairs are formed,
they condense into a superfluid.

The famous formula for the superconducting transition temperature in the
BCS model is:

kT, = 1.13hwpexp(— (1.51)

I
N(0)g

50One must distinguish, however, between the BCS model and the BCS theory. The theory is
valid for any boson-exchange pairing while the model works specifically with phonons.
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Here, hwp is the Debye energy.® Unfortunately, the exponential factor that includes
a product of the density of states at the Fermi level, N(0), and the strength of
electron-phonon interaction, g, is usually very small, thus making conventional su-
perconductivity a very low-temperature phenomenon. For example, while the Debye
temperature in aluminum is almost 400 K, the 7T, is only 1 K. The Fermi tempera-
ture for aluminum is 136,000 K, which is much larger than either T, or the Debye

temperature.
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Figure 1.4: A sketch of the renormalization of a one-particle density of states upon
entering the superconducting state in the BCS theory.

Note a gap opening at the Fermi surface and (square root) singularities on both sides
of the superconducting gap.

As a result of a superconducting transition, the electronic density of states
is renormalized and the fully-developed superconducting state has a gap, 2A, where
A is called the superconducting gap. This is schematically shown in Fig. 1.4. The
gap results from the fact that in order to create a one-particle excitation (that is an
unpaired electron) in the BCS ground state one needs to supply an energy A. Since
there are two electrons in each of the Cooper pairs, the energy to create a lowest-
energy excitation in a BCS ground state, at the same time conserving the number of

5In a more broad interpretation of this formula, fwp is a characteristic frequency of bosons which
mediate the electron-electron pairing. In this case g is a strength of the electron-boson pairing.
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electrons in a system, is 2A - one A for an excited electron and and another A for a
hole that is left behind. Above the gap frequency the electronic density of states has
a singularity. It is a fundamental result of BCS theory that the gap value is related
to T; in the following manner:

2A
kBTc -
There are many other exciting properties of superconductors that are, however,

3.52. (1.52)

too numerous to be listed in this brief overview. An interested reader can find much
more information elsewhere. [Kittel86, Ashcroft76, Tinkham80, Carbotte90] In the
rest of this section we will concentrate on the optical properties of superconductors.

Figure 1.5: Real and imaginary parts of the optical conductivity of a superconductor,
calculated from the Mattis-Bardeen theory.

Opening of a gap in the electronic density of states upon entering the super-
conducting state greatly affects the optical response functions of a material. Since
is optical experiments no electrons are taken out of a system, the minimum energy
required to create an excitation is 2A. Therefore, at photon energies below twice
the gap energy, 2A, a material in the superconducting state becomes a perfect re-
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flector, with R = 1. The real and imaginary parts of optical conductivity within
weak-coupling BCS theory were calculated by Mattis and Bardeen. [Mattis58] The
calculation is valid either in the extreme clean limit, defined as 2A>>1 /T, or the ex-
treme dirty limit, 2A<1/7. Fig. 1.5 shows the Mattis-Bardeen theory results for
the real and imaginary parts of optical conductivity as a function of frequency at
T = 0. The theoretical results are in complete agreement with the experimental
work. [Glover56, Glover57]

The characteristic feature of the real part of optical conductivity (that de-
scribes energy losses) of a superconductor is the formation of a low-energy gap, with
o1{w) = 0 at all non-zero energies w<2A.” One must realize, however, that the f
sum rule is still in effect and the integrated value of o, (w), or its spectral weight,
remains unchanged. The spectral weight that seems to be missing is in fact contained
in a 6-peak at zero frequency that is responsible for the infinite dc conductivity. The
weight of the §-peak is determined by the number of superconducting carriers, so that
limy o 01(w) = w?,6(w)/8, where wy, is a plasma frequency of the superconducting
carriers. At energies much larger than the gap energy, the real part of the conductivity
in the superconducting state rises to join the normal-state conductivity.

The corresponding changes in the imaginary part of the optical conductivity
can be understood by assuming the scattering rate in formula 1.31 to be zero for the
superconducting carriers. One obtains lim,,_¢ g3(w) = 2,/(4mw), that is oo(w) in a
superconducting state is dominated at low frequencies by an inductive 1/w term, as
seen in Fig 1.5.

It is important to note that Fig. 1.5 is somewhat misleading because it shows
not the conductivity but the ratio of conductivity to its normal-state value. One must
distinguish between the clean and dirty limits of a superconductor. In the clean limit
the inequality 2A>1/7 is true and, therefore, all (or most of ) the conducting carriers
condense into a superfluid. In this case wps™~wp and, since most of the conductivity
spectral weight condenses to the §(w) peak, the gap feature is very weak or not
observable. In the dirty limit, 2A<1/7, only a fraction of the conduction carriers
condenses into a superfluid. In this case wps<KLw, and the gap feature is intense. The
superconducting gap in a conventional BCS superconductor can also be suppressed by

"We put h=1.



18

introducing magnetic impurities (so called gap-less superconductivity). Therefore, the
manifestation of a superconducting gap is not the only effect the superconductivity
phenomenon has on the optical properties. The main feature is the disappearance of
01(w) spectral weight (and associated 1/w singularity in o2(w)) that is a direct result
of the formation of a superfluid condensate.

We note that by analogy with derivation of Eq. 1.45 for the penetration depth
of electromagnetic radiation into a metal, one can obtain the low-frequency penetra-
tion depth in a superconductor. This is called the London penetration depth and it
is given by:

AL = ¢/wpys. (1.53)

Therefore, the penetration depth can be obtained from the optical results in two
ways. One way involves integration of ¢y (w) over frequencies much larger than the
superconducting gap and determining the "missing” spectral weight. Another way
involves analysis of the frequency dependence of o5(w) at the frequencies much lower
than 2A.

1.2.2 High-temperature superconductivity

This year is the 10th year since publication of the original paper by Bednorz and
Miiller, {Bednorz86] marking the discovery of high-temperature superconductivity, or
HTSC, in multiphase La-Ba-Cu-O material.

Let us first ask ourselves, what value of T, should be considered ” high”? There
is no intrinsic limit on T, even in the BCS model, provided that the pairing interaction
and/or density of states on a Fermi surface can be infinitely enhanced. Therefore,
one way to determine if a material is a high-T, superconductor is to compare the T,
value to the density of states at the Fermi level, N(0). Two graphs that make this
comparison are shown in Fig. 1.6. The first one is adopted from the work by Batlogg
et al. [Batlogg89] and shows two experimental quantities plotted against each other:
the T, value and the Sommerfeld constant y~N(0), determined from specific heat
measurements. The HTSC materials are easily identified in the plot, all of them have
a much larger T, than the conventional superconductors with the same N (0).

The second plot, adopted from the work by Uemura et al., [Uemura91] is
similar but instead of the Sommerfeld constant, a Fermi temperature, defined as
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Figure 1.6: A comparison of T, with the free-carrier density in a superconductor.
The graph on the left is reproduced from an article by Batlogg et al. [Batlogg88] and
shows T, against the Sommerfeld constant <, proportional to the density of states at
the Fermi level, for different superconductors. The graph on the right is reproduced
from an article by Uemura et al. [Uemura91] and shows 7% against Fermi temperature,
Tr, determined from the density of superconducting carriers n;, plotted on the top

axis. Note that the formula connecting Er and n; is different for the 2D (the cuprates)
and the 3D cases.
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Er/kg, is plotted. Since the density of states at the Fermi surface is proportional to
a power of Er, the second graph represents the same idea as the first one: having
fairly small electronic density of states the high-temperature superconductors show
(relatively) very high T, values. This may be thought of as a definition of high-
temperature superconductivity.

The high-temperature superconductors not only show high T, values, their
normal-state properties are equally unusual. In fact, it is believed that these normal-
state properties contain the key to the solution of the HTSC puzzle. Below we will
summarize some of the essential properties of HTSC materials with, again, special
emphasis on the infrared optical properties.

TI-O Bi-O

Ba-O Sr-0
Cu-O2

Ti2201, Tg‘”‘=90K Bi2212, 1'2‘”‘:90K

Figure 1.7: Crystal structure of T12201 and Bi2212.

To start with, most of the HTSC materials (with the marked exception of
Ba;_,K;BiO3 (BKBO) and Ba,_,Pb,BiO3 (BPBO)) have a layered perovskite struc-
ture and contain Cu (therefore they are called the cuprates). The structures of
two materials, Tl;Ba;CuOgys (T12201) and BiySryCaCuyOgys (Bi2212), are shown
in Fig. 1.7. These two materials have been studied intensively in the experimen-
tal work presented in this thesis. The main structural unit, common to all cuprate
superconductors, is a 2-dimensional CuO, plane. It is in fact believed that the super-
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conductivity occurs in the CuO, planes with the rest of the structure being merely
a ”charge reservoir”, supplying charge carriers to the planes. In TI2201 material the
charge reservoirs are the double T1O planes while in Bi2212 they are the double BiO
planes. The CuO, planes may enter the crystal structure in different combinations,
for example T12201 is a single-layer material while Bi2212 is a, double-layer material
since two CuQO, planes occur close together. Other HTSC materials can have a 3-
layer, 4-layer and even a so-called infinite-layer structure. [Egami94, Hazen90] It is
common to refer to the CuO, planes as the ab-planes while the interplane direction
is usually referred to as the c-axis. More information on structure of HTSC materials
can be found in the review articles [Egami94, Hazen90]. Since the structure of the
HTSC materials is very anisotropic, the transport properties are anisotropic as well,
with ratios between the interplane and in-plane dc resistivity, p./pe, reaching 1000-
10000 in Bi2212. In this thesis, only results obtained in the ab-plane configuration
(that is the material surface shown in Fig. 1.3 can be thought of as a CuO, plane)
are presented.

The superconducting transition temperature of HTSC materials can be changed
by doping. In most of the cuprate superconductors (with the exception of (NdCe), CuOy)
the charge carriers are holes and the doping is p-type. It can be achieved by either
adding O~? ions to a material or by substituting positive ions by ions of smaller va-
lence, such as La*® by Ba*? in La,_,Ba,CuO, (La214). In both TI2201 and Bi2212
systems the doping is realized by adding or removing additional oxygen atoms. The
extra oxygens are interstitial in these materials, that is they are located in between
the double T1O or BiO planes.

The dependence of the superconducting transition temperature 7T, on the dop-
ing level is not monotonic and is schematically shown in Fig. 1.8 by the solid line. It
is customary to divide the metallic region of the phase diagram of HTSC materials
into 3 different regimes: (1) the "underdoped” regime, where the superconducting
phase is adjacent to the insulating phase and 7, increases with increasing (p-type)
doping; (2) the "optimum” T, regime, where T, reaches the highest value within a
given series; (3) the ”overdoped” regime where 7., decreases with further doping while
the material becomes a better metal. Below the underdoped regime lies the insulating
regime where the cuprate materials are antiferromagnetic (AFM) insulators. There
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is also ample evidence that a local AFM ordering may extend well into the metallic
region of the phase diagram, although the exact boundary where these fluctuations
into local AFM ordering disappear is not clear at the moment. The materials chosen
for this study together cover the whole metallic doping range since Bi2212 can be
underdoped and slightly overdoped, while T12201 can not be underdoped but can be
strongly overdoped.

Te
7))
uper-////////%

cond/%//}///y///%

doping level

=
normal metal

-

Figure 1.8: T, vs. doping level in high-temperature superconductors.

One of the most interesting normal-state properties of the high-temperature
superconductors is the linear in T behavior of the ab-plane dc resistivity, pq,(T), in the
optimally doped materials [Gurvitch87, 1t093]. For example, in La,_,Sr,CuQO, mate-
rial with z = 0.15 the resistivity is linear from T = T = 40 K to over 800 K. [Takagi92]
Although the electron-phonon interaction can in principle produce a high-temperature
T-linear p(T'), the dependence observed in the cuprates cannot be reproduced in the
electron-phonon scenario since: (i) The temperature range of the linear dependence is
very large; (ii) The intercept of the high-temperature linear law with the vertical axis
is almost zero, while it is expected to be negative for the electron-phonon interaction.

Without elaboration, that can be found in the original papers, other un-
usual normal-state properties of HTSC include: peculiar temperature dependence



23

of the uniform spin susceptibility [Warren89, Yoshinari90], intense electronic back-
ground in the Raman scattering intensity spectra [Sugai89), the peculiar temperature
and doping dependence of the Hall effect [Stromer88, Ong87] and the thermoelectric
power, [Obertelli92] the linear V-shape background in normal-state tunneling data,
[Sharifi91] etc.

The optical properties of the high-temperature superconductors are truly un-
conventional. The normal-state spectrum of the real part of the optical conductivity
is shown in Fig. 1.9 for an example Bi2212 material. While the spectrum is in general
metallic, since 0;(w) increases monotonically as frequency approaches zero, the shape
of o;(w) is non-Drude like. For example, the dashed line in Fig. 1.9 shows a Drude
curve, calculated using Eq. 1.41 with parameters chosen to fit the low-frequency part
of o1(w). One can see that the frequency dependence of the experimental o, (w) is
much slower than the 1/w? law predicted by the Drude theory. As a result, the op-
tical conductivity has too much spectral weight at high frequencies and can not be
described using Eq. 1.41, as derived for normal metals. The excess conductivity at
high frequencies in HTSC materials is called a mid-infrared, or "MIR”, absorption.

In the superconducting state the HTSC materials do not reveal the clean su-
perconducting gap that is predicted by the BCS theory and was observed in conven-
tional superconductors. [Glover56, Glover57] While results of all of the experimental
techniques show a significantly depressed one-particle density of states in the super-
conducting regime, the low-energy system response always remains finite. An example
is the optical conductivity, the real part of which in the superconducting state is plot-
ted in Fig. 1.9 by the thinner line. One can see that while the total spectral weight
of o1(w) is significantly suppressed as temperature is reduced below T,, which is an
unmistakable signature of the formation of a superconducting condensate, the con-
ductivity remains finite at all frequencies even at T = 10 K=~0.17,. Furthermore, one
of the most fascinating recent experimental results is that the superconducting pair-
ing, with the corresponding reconstruction of the optical conductivity spectra, may be
actually occurring at temperatures well above the bulk superconducting temperature
T.!

While most of high-T, superconductors are cuprates, two materials, BKBO and
BPBO, are exceptions. While both have T, values remarkably large compared to the
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Figure 1.9: The typical spectrum of the real part of the optical conductivity of a
HTSC material in the normal and the superconducting states.
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density of states at the Fermi level (see Fig. 1.6), they do not contain copper and have
an isotropic structure. The normal-state and the superconducting-state properties of
BKBO and BPBO are in many ways similar to those of the cuprate superconductors.
In particular, the optical conductivity in the metallic doping regime is non-Drude like
and, although the superconducting gap onset 2A is easily identified at temperatures
T < T, 01(w) at frequencies below 2A remains finite.

A wealth of theoretical models have been advanced in an attempt to explain
both the normal and the superconducting properties of the HTSC materials. The
models range from the most exotic ones, such as: the resonating valence bond (RVB)
model, [Anderson73, Anderson87] the ¢ — J model, [Kotliarss, Wen96)] the anion su-
perconductivity model, [Chen89, Laughlin88] the quantum phase fluctuations model,
(Emery95a,, Emery95b)] the interplane pair tunneling model, [Chakravarty93], the po-
laron superconductivity models [Micnas90, Mott90]; to more conventional ones, such
as: the marginal Fermi-liquid (MFL) model, [Schmitt-Rink88] nearly antiferromag-
netic Fermi liquid (NAFL) model, [Montoux92, Pines94] and the model involving an
enhancement of the electronic density of states due to an extended van Hove singu-
larity. [Abrikosov93, Abrikosov94]

In the following sections of this thesis we will discuss the experimental optical
results for the HTSC materials in both the normal and the superconducting states as
well as their relation to the other experimental data and some of the existing theories.



Chapter 2

Doping dependence of the
free-carrier density in high-7,
superconductors: Optical results

2.1 Introduction

One of the most striking features of the high-T, phenomenon is the peculiar depen-
dence of the superconducting transition temperature T, on the doping level, shown
in Fig. 1.8.

While the underdoped and optimally doped regimes have been studied exten-
sively, the overdoped regime has not enjoyed this kind of attention. It is generally
believed that the decrease of T, with overdoping is associated with an increasing con-
centration of mobile carriers (holes). For example, a "universal” dependence T.(p).
where p is a number of holes per planar Cu, was suggested where T, reduces parabol-
ically with p for p > 0.16 (overdoped regime). [Presland91, Tallon95] If true, this
behavior is most unusual and surprising, since in the conventional superconductors
an increased carrier density normally leads to an increased T¢, according to the rela-
tion 1.51.

Information about the mobile carrier density can be obtained from the spectral
weight (SW) contained in the low-frequency real part of optical conductivity o;(w).
In an analogy with the f sum rule (section 1.1.3), a finite energy sum rule can be
formulated. [Smith85, Timusk89] According to the finite-energy sum rule an effective

26
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density of carriers contributing to optical transitions below a certain cut-off energy
fiwg, nesf(wo), is given by a SW of o (w), integrated over energies from zero to hwyg:

Me [wo
Nesf(wy) = 8“2/0 o1 {w)dw, (2.1)

where m, is a bare electron mass.

In the rest of this chapter we will use the finite-energy sum rule analysis of the
optical conductivity of HTSC to determine whether or not the conventional view on
overdoped HTSC, with the density of mobile carriers monotonically increasing with
doping level, is consistent with the experimental results on the optical conductivity.

2.2 Experimental details

In order to cover a broad range of doping regimes we performed reflectivity measure-
ments upon two families of high-T, cuprates: Bi2212 and T12201. This was necessary
because, with the exception of La214, none of the existing cuprates allows one to
explore a full spectrum of doping regimes. For instance, Bi2212 material can be con-
veniently underdoped and slightly overdoped by reducing/increasing the amount of
oxygen from the optimally doped level. However these crystals are not suitable for
strong overdoping. On the contrary, T12201 samples could be only overdoped by in-
troducing interstitial O atoms between the T1O planes so that T, is suppressed from
about 90 K in the stoichiometric composition down to less than 4 K in the overdoped
composition.

We have performed reflectivity measurements on two underdoped (T, = 67 K
and T, = 82 K), one optimally doped (7, = 90 K), and one overdoped (7, = 82 K)
Bi2212 single crystal. All the Bi2212 crystals were prepared from the as-grown crys-
tals by annealing in argon and/or oxygen. The three T2201 single crystals used in the
measurements had T;’s of 90 K (highest T achievable), 60 K, and 23 K (both over-
doped). The single crystals used in this work were grown by P. Fournier at Stanford
University (Bi2212) and by N.N. Kolesnikov at the Institute of Solid State Physics,
Russia (T12201). The detailed information of the crystal growth technique is given
elsewhere. [Fournier96, Kolesnikov95] The superconducting transition temperatures
for all samples were measured in a SQUID magnetometer.
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The reflectivity was measured over a broad energy range: from 30- 50 cm~! up
to 20,000 cm™ for Bi2212 samples; from 30 - 50 cm~! up to 50,000 cm~! for TI2201
samples. The complex optical conductivity o1(w)-+icy(w) of single crystalline samples
was obtained from Kramers-Kronig analysis of reflectivity. To perform the required
integrations it was necessary to extend the reflectance beyond the actually measured
range, as described in chapter 1. Below the lowest frequency measured we have tried
different types of reflectivity approximations, from the Hagen-Rubens formula with
the parameters taken from the de resistivity measurements, [Kendziora93, Manako92)]
to a straight line between unity at zero frequency and the last experimental point. We
found that in the frequency region that will be of interest in this work (w> 100 cm™?)
the particular choice of the low-frequency approximation is not important. At high
frequencies, the reflectivity of T12201 was approximated by a constant between 50,000-
300,000 cm™!. For Bi2212, the results of ellipsometric measurements [Humlicek90]
were used between 20,000-50,000 cm~! while above this frequency range a constant
reflectivity approximation was used up to 300,000 cm~!. Above 300,000 cm~! for
Bi2212 and T12201 the reflectivity was allowed to fall as w1,

2.3 Experimental results

The spectral weight of the real part of optical conductivity in all of the samples
measured was found to be temperature-independent at energies below 1 eV. Since
this is the energy range that we will be interested in this work, in this section we
will consider only the room temperature results. The low temperature results will be
considered in the next chapter.

The real part of the optical conductivity for Bi2212 material at three doping
levels is shown in Fig. 2.1 at room temperature. The inset on the lowest panel
of Fig. 2.1 shows the difference between o;(w) obtained for the 7, = 82 K slightly
overdoped sample (upper panel) and the T, = 67 K underdoped sample (lower panel).!
First, the low-frequency conductivity SW increases with doping in the underdoped
regime. Second, the differential conductivity spectrum has a Lorentzian (Drude-like)

!The room-temperature o; (w) spectra for under- and overdoped T, = 82 K samples are almost
identical. Therefore, the differential spectrum for the two underdoped samples will be similar.
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Figure 2.1: The optical conductivity of Bi2212 at several doping levels.
The inset: solid line is a difference between o (w) shown in the upper panel and o, (w)
shown in the lower panel. The open symbols represent a fit to a Drude form.
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shape characteristic for a free-carrier absorption. [Timusk89, Ashcroft76] The Drude-
like shape of the differential conductivity suggests that it is a difference of two spectra
that contain free-carrier contributions with similar scattering rates 1/7 but different
plasma frequencies (larger for the more heavily doped sample). The increase in the
plasma frequency of the Drude part is consistent with the scenario where doping in
the underdoped regime produces additional mobile carriers. [Orenstein90, Rotter9l]
One can also see from the inset of Fig. 2.1 that the increase of the low-frequency SW
with doping in the underdoped regime is confined to the energy range below 1 eV. 2
We note that the doping-induced conductivity increase was found to be confined to
below 1 eV in metallic YBa;Cu3O7_; as well. [Orenstein90, Rotter91]

The 01(w) in the overdoped regime is shown in Fig. 2.2 for TI2201 system at
three doping levels, from the one with the highest T, achievable (90 K) to the strongly
overdoped one with T, = 23 K. The inset in the lowest panel shows the difference
between o1(w) for the T, = 23 K and 7, = 90 K samples. The resulting differential
spectrum is qualitatively different from the one obtained for Bi2212: now there is
no doping-induced increase in the conductivity SW. Instead, the SW is redistributed
with part of it moved from the mid-infrared frequencies to the lower frequencies with
(over)doping. This behavior is reminiscent of what was observed by Tamasaku et al.
in La214 system: [Tamasaku94] although the transfer of conductivity SW from above
the charge-transfer gap is nearly saturated as doping is increased above optimal, the
SW is biased towards the lower-energy region with overdoping. Again, the redistri-
bution of the SW occurs in the energy range below 1 eV. The differential spectrum
can no longer be fitted to a difference of two spectra containing Drude absorption
peaks with a same scattering rates but different plasma frequencies. However, now it
has a shape of a difference of two Drude peaks with the same plasma frequency but
different scattering rates, as is shown in the inset. The parameters used in the fit were
wp = 13,000 cm™, 1/7(T. = 23K) = 560 cm™!, 1/7(T, = 90K) = 660 cm=?, values
that are not at all unreasonable. For illustration, a Drude peak with wp = 13,000 cm ™!
and 1/7 =560 cm™! is shown in the bottom panel of Fig. 2.2.

To make the analysis more quantitative in Fig. 2.3 we have plotted the SW of
the low-frequency (fiwy = 1 eV) optical conductivity as a function of T,. The fiw, =

*The parameters used in the fit where Aw, = 6200 cm™! and 1 /T =550 cm~! «1 eV.
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Figure 2.2: The optical conductivity of T12201 at several doping levels.
On the upper panel o (w) for slightly overdoped Bi2212 is shown for comparison. On
the lower panel a Drude curve with w, = 13,000 cm~! and 1/7 = 560 cm~! is shown
for illustration as described in text. The inset: solid line is a difference between o) (w)
for the T,=23 K and T.=90 K samples. The open symbols show a fit to a difference
of two Drude curves with a same w, but different 1 /T as described in text.
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1 eV was chosen to isolate the energy region where the conductivity actually changes
with doping in the doping range considered in this work. For reasons described
below we will mainly be interested in relative changes in the SW as a function of
doping as opposed to its absolute values. Therefore, we have normalized our results
to those obtained for the optimal doping concentrations within each series. On the
horizontal axis we plot T, in the functional form +(1 — T./T***), with minus sign for
the underdoped materials and plus sign for the overdoped ones. Previously published
results [Tamasaku94, Cooper93] for several other cuprate materials are plotted as
well.®> We also include data obtained on 3D HTSC material BKBO [Puchkov96al
at doping levels with T, = 31 K,28 IK,21 K.* All of the data points fall on the
same curve which is highly asymmetrical with respect to the point of optimal doping
(0,1). While in the underdoped regime increase in T, is accompanied by an increase
in the low-frequency conductivity SW, this behavior changes abruptly at the optimal
doping: in the overdoped regime increase in the low-frequency SW is not observed.
In fact, if it changes at all, it decreases with decreasing T..

2.4 Discussion

The results presented above suggest that the optimal doping level is not only the
one with the highest T, in a given series, but it also separates two distinctly different
regimes of optical conductivity behavior as a function of doping. While in the un-
derdoped regime the total low-frequency conductivity spectral weight increases with
doping, which can be attributed to the increasing density of the mobile charge carri-
ers, in the overdoped regime the total spectral weight below 1 eV does not increase
and the changes in ¢;(w) are more likely to be due to the changing scattering rate of
the mobile carriers.

Before we use the finite-energy sum rule analysis to make a connection between
the doping dependence of the conductivity SW and the mobile carrier density, we show
how despite some of its shortcomings the essential information can be extracted. The

3While plotting the results by Tamasaku et al. [Tamasaku94] we have used the parabolic T(z)
relation, obtained for Lag_;Sr;CuOy4 (Ref. [Presland91]), to calculate T,'s from z.

4We plot BKBO data in the overdoped part of Fig. 2.3 as it becomes a better metal as T,
decreases. The integration has been done up to iw = 2 eV.
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sponds to overdoped regime. The dashed line shows a low-frequency spectral weight
expected on the basis of parabolic dependence T.(p) proposed for the HTSC cuprates.
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HTSC materials demonstrate a complicated non-Drude shape of o;(w) where the
free-carrier absorption is not obviously defined. [Timusk89] This makes a choice of
hwy ambiguous. There are two approaches to describe the optical conductivity of
the HTSC cuprates. The first one is a two-component approach in which the total
conductivity is divided into a free-carrier Drude and bound-carrier mid-infrared (MIR)
parts, independent of each other. The alternative approach is a one-component one,
in which both parts are due to excitations of the same "kind” of charge carriers
that have frequency-dependent effective mass and scattering rate. This may result in
an intensive conductivity sideband at the MIR frequencies as in the case of metals
with strong electron-phonon interaction. [Allen71, Shulga91] The SW of the MIR
sideband is taken from the Drude absorption so that their total SW represents the
actual free-carrier density.

It is outside the scope of this discussion to decide which description is the
correct one but we can outline the consequences that each of them may have on the
analysis of Eq. 2.1. (i) The two-component model: An integration of Eq. 2.1 will give
an overestimated absolute value of the mobile carrier density as it will include the
" parasitic” MIR absorption. However, as the SW of the MIR, conductivity does not
change very much with doping (see the insets of Figs. 2.1, 2.2), we can still conduct a
comparative analysis of changes in the free carrier density with doping within a given
series. (ii) The one-component model: An integration in the range from 0 to 1 eV,
which essentially includes both the free-carrier part and the MIR sideband, may in
fact give us the absolute value of the free carrier density close to the correct one.
However, the MIR absorption may still include, for example, an interband transition.
In this case while the absolute values of carrier density obtained using Eq. 2.1 may
be misleading, the comparative analysis still can be conducted.

In the light of the above discussion we believe that the doping-induced changes
in the low-frequency SW reflect changes in the mobile carrier density. This puts the
results presented in Fig. 2.3 in contradiction with the scenario where the decrease of
T. in the overdoped regime is a consequence, or associated with, the increasing mobile
carrier density. For comparison, in Fig. 2.3 we have plotted the SW expected from
the relation 1 — T, /T["** = 82.6(0.16 — p)?, proposed as a universal relation for HTSC
cuprates. [Tallon95] While in the underdoped regime this relation is in qualitative
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agreement with the experiment (the density of the mobile carriers increases with
doping), there is a qualitative difference in the overdoped regime: the experimental
free-carrier density is not increasing with overdoping.’

The optical conductivities of Bi2212 double-plane and T12201 single-plane are
very similar, the only difference being the bias of the SW towards lower frequencies
in TL2201 (see the upper panel of Fig. 2.2). This suggests that the 3D densities of
mobile charge carriers are similar in both materials. Taking into account corrections
for the volume per formula unit makes the carrier density per plane 50% smaller in
Bi2212 than in TI2201. One may argue that it is not clear if T. = 90 K TI2201 is
optimally doped, as the peak in 7. as a function of doping has not been observed
for this material. However, the Bi2212 sample is doped close to optimal. The 50%
larger carrier density substituted into the parabolic relation of the previous paragraph
would make the T, = 90 K T12201 a strongly overdoped material with hypothetical
T**~190 K! On the other hand, if T, = 90 K= T7** for T12201, the whole idea of
T, being determined by the normal-state free-carrier density per planar Cu is put in
question. One can assume that TIO planes may also be conducting, and therefore
contribute to the low-frequency ab-plane conductivity SW. However, while theoretical
estimates support this possibility, they predict that T1O planes contribute only a small
fraction of the total SW. [Pickett92]

In an attempt to understand why progressive p-type doping does not produce
a monotonic increase of the free-carrier density we examine how the dc transport
properties evolve with doping. It has been reported that the room-temperature ther-
moelectric power coefficient (TEP) of HTSC cuprates has a universal behavior as
a function of doping: it is large and positive in underdoped samples, almost zero
in optimally doped samples and becomes small and negative upon crossing into the
overdoped regime. [Obertelli92] The Hall coefficient Ry is large and positive in the
underdoped regime, decreases in magnitude with doping and crosses zero somewhere
in the overdoped regime. It was suggested, in an attempt to explain the doping de-
pendence of Ry in La,_,Sr,CuQy, that the zero crossing may be a result of a change

5The results of previous transmission measurements on overdoped Bi2212 [Kendziora93] indicate
an increase in the conductivity SW in the frequency region 200-600 cm ™! upon overdoping. Although
the authors interpreted it as an increase in the total SW, it may be a result of the SW redistribution
as in T12201.
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in the topology of the Fermi-surface from hole-like to electron-like. [Ong87, Allen87]
Indeed, the doping dependence of TEP, which in a simple model is negative/positive
for an electron/hole-like Fermi surface, [Ashcroft76] would support this scenario.

On the other hand o4(w), unlike TEP and Ry, does not distinguish between
the sign of the charge carriers and depends only on their density, that is on the
volume of the (hole-like or electron-like) Fermi surface. In a simple rigid-band picture,
illustrated in Fig. 2.4, the density of mobile charge carriers, and therefore the low-
frequency conductivity SW, will attain its maximum as a function of doping at the
band filling corresponding to an inflection point where the inverse effective mass goes
to zero. This corresponds to a band filling at which the Fermi surface changes its
topology from hole-like to electron-like as a function of p-type doping. As a result,
Hall coefficient and TEP also change sign. Although these arguments are likely to
be oversimplified and the rigid-band picture may not be applicable to the HTSC
cuprates, the change of topology of the Fermi surface might provide a qualitative
explanation for the observed turning point in the conductivity SW behavior as a
function of doping. Another interesting implication of this result is that the highest
T. is achieved at the doping concentration corresponding to the highest density of
states at the Fermi level. It remains unclear, however, why the scattering rate of the
mobile carriers seems to decrease with overdoping.

In summary, our optical results show that, while in the underdoped regime,
an increase in the low-frequency conductivity SW provides a clear indication of the
increase in the free carriers density as 7, is increasing. Overdoping decreases T, but
does not lead to an increase in the conductivity SW. Therefore, optical conductivity
shows no signature of increasing mobile-carrier density with overdoping. The doping-
induced changes in ¢;(w) in the overdoped regime are more consistent with a reduction
in the scattering rate of the mobile carriers.

Note added in proof: Recently, Fukuzumi et al., [Fukuzumi96] while using a
completely different experimental approach, have arrived at a similar conclusion. In
particular, their results suggest that the free-carrier density increases with doping in
the underdoped regime, while it decreases with doping in the overdoped regime.



Chapter 3

The pseudogap state in the
cuprate high-T, superconductors

3.1 Introduction

There is mounting evidence that the normal state of underdoped high-T, supercon-
ductors (HTSC) is dominated by a pseudogap. A number of physical probes show
that below a characteristic temperature 7%, which can be well above the supercon-
ducting transition temperature T}, the physical response of HTSC materials can be
interpreted in terms of the formation of a partial gap or a pseudogap in the spec-
trum of low-energy excitations. This gap persists in the superconducting state. T*
decreases with increasing doping in the underdoped regime and since 7, rises with
doping, the two curves meet at the optimal doping level, as shown in the schematic
phase diagram in Fig. 3.1.

The earliest experiments to reveal gap-like behavior in the normal state were
nuclear magnetic resonance (NMR) measurements of the Knight shift, [Warren89,
Yoshinari90] which probes the uniform spin susceptibility. In conventional supercon-
ductors and the cuprates at optimal doping, the Knight shift is temperature indepen-
dent in the normal state but drops rapidly below 7% due to pairing of electronic spins
into (singlet) superconducting Cooper pairs. In underdoped cuprates, however, the
Knight shift begins to drop well above the superconducting transition temperature.
Warren et al. concluded that in these materials spin pairing takes place well above
the bulk superconducting transition at 7%, thus producing a normal-state energy gap,

38
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referred to as a "spin gap”. [Warreng9)

Deviations from the well known linear temperature dependence of the ab-
plane resistivity, [Gurvitch87] pqs(T"), were observed in underdoped cuprates as well,
[Batlogg94, Bucher93, 1to93, Walkes93] with the slope of pe(T) changing below a
characteristic temperature 7*. As the doping is increased towards the optimal level,
T decreases and the near-optimal doping p,,(T) is linear over the range of tempera-
tures from T, to above 800 K. [Batlogg94, 1t093]

The magnitude of T* as well as its variation with doping suggest that the
suppression of the spin susceptibility observed in NMR measurements and the change
of slope of pe(T) have a common physical origin. It has been suggested that if
the scattering responsible for the linear temperature dependence of p,;(T) involves
scattering on spin fluctuations, then the spin gap seen in NMR below T* would
naturally account for the depression of p,(T) below T* as well. Similar evidence for
the suppression of the spin susceptibility has been extracted from neutron scattering
experimental results. [Rossat-Mignod91, Tranquada92] Specific heat measurements
on underdoped Y123, however, show that there is a large decrease in entropy below a
temperature, closely related to T*, which can not be accounted for by assuming that
a gap in the spin degrees of freedom is solely responsible. [Loram94]

There is spectroscopic evidence of anomalies in the properties of HTSC that
were originally associated with the formation of the superconducting gap, but were
found to occur at T > T in underdoped samples. The shift in the position and width
of Raman frequencies of certain phonons, associated with the onset of superconduc-
tivity, [Friedl90] were shown to occur in the normal state of underdoped cuprates and
it was suggested they were related to the spin gap. [Litvinchuk92] Similarly, broad
peaks in the electronic Raman continuum, also interpreted as an evidence for the
formation of a superconducting gap, [Cooper88] were found to occur well above T. in
underdoped samples. [Slakey90]

Indications of normal-state gap-like anomalies in underdoped cuprates were
observed in the infrared optical measurements as well. The ab-plane reflectance re-
sults of most high temperature superconductors were found to have a structure in
the form of a "knee” at approximately 500 cm~!. This structure was sometimes
interpreted as a manifestation of a conventional superconducting gap. It has been



41

found, however, that in underdoped materials the knee starts to develop in the normal
state. [Kamards90, Orenstein90, Reedyk8s, Rotter91, Schlesinger90, Schlesinger94,
Thomas88, Marel91] A comparison with other probes suggests that the knee struc-
ture and deviations observed in the dc transport and NMR experiments all occur at
a characteristic temperature remarkably similar to 7*. The corresponding changes
in the complex optical conductivity o(w) = o1(w) + ioy(w) involve a shift of part
of the o;(w) spectral weight from 300-700 cm—! to lower frequencies, resulting in a
formation of a highly coherent narrow low-frequency peak. This behavior is in accord
with decreasing dc resistivity and was interpreted in terms of coupling of electrons to
the longitudinal optical (LO) phonons [Reedyk92, Timusk91] or as a manifestation of
the spin gap. [Orenstein90, Rotter91, Schlesinger94]

It should be emphasized that in the case of a coherent system, such as the
underdoped cuprates in ab-plane direction, there is no direct mapping between the
electronic density of states (DOS) and the shape of the real part of conductivity,
01(w). For example, even if there is a gap in the electronic DOS and its magnitude
is larger than the characteristic energy associated with the elastic scattering (clean
limit [Kamards90, Timusk88]), the gap will not manifest itself in the o) (w) spectra.
In the same way, a pseudogap in the electronic DOS of a coherent system, that may
appear due to strong interactions in the system, does not manifest itself as an obvious
gap in the conductivity.

The charge dynamics along the interplane c-direction is incoherent, at least in
the underdoped materials. While both underdoped Y123 and Y124 compounds, col-
lectively referred as YBCO, exhibit a gap-like depression in the c-axis conductivity as
well, [Basov94, Homes93b, Tajima95] the c-axis conductivity shows no coherent peak
at low frequencies, Fig. 3.2. Contrary to the ab-plane response, as the temperature
decreases from 300 K to 7, the c-axis o1(w) spectral weight is transferred from the
gap region to higher frequencies. [Homes93b, Legget92] The magnitude of the low-
frequency conductivity is in good agreement with the de resistivity [Homes95] which
shows a "semiconducting” behavior (i.e. resistivity increases at low T). A number of
mechanisms have been proposed that would result in an incoherent conductivity spec-
trum. [Alexandrov, Clarke95, Graf93, Ioffe93, Kumar90, Kumar92, Nyhus95, Rojo93]
The c-axis conductivity depression in both Y123 and Y124 occurs at a temperature
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scale that matches the spin susceptibility determined from the NMR measurements.
This is shown in the inset of Fig. 3.2 where the Knight shift [Takigawa91] is shown
along with the experimental c-axis conductivity. The onset energy of the c-axis gap
in YBCO is 200 cm™! and the half value point is ~300 cm~!. Above 500 cm™!, the
c-axis conductivity is both temperature and frequency independent. [Homes95]
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Figure 3.2: The c-axis conductivity of an underdoped Y123 crystal.
After Homes et al. [Homes95]. As the temperature is lowered the pseudogap develops.
The inset: The NMR Knight shift (normalized at 300 K) is plotted as a function of
temperature for an underdoped Y123 crystal. The circles show the low frequency
c-axis conductivity for samples of the same doping level.

A pseudogap has also been observed in the c-axis conductivity of La214 where
for x=0.14 a very large gap has been reported [Basov95] and for x=0.12 a gap of the
same magnitude as in YBCO can clearly be seen. [Uchida96] The Pb,Sr2(Y/Ca)Cu,Og
material also shows a c-axis pseudogap. [Reedyk96]

Recent angular-resolved photoemission (ARPES) results for Bi2212 show evi-
dence of a normal-state gap-like depression of the electronic density of states of under-
doped cuprates as well. [Ding96, Loeser96, Marshall96] The momentum dependence
of this gap resembles that of the dg2_,2 gap observed in the superconducting state.
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[Loeser96] This, and the fact that no significant changes are observed upon crossing
into the superconducting regime, have led to the suggestion that the normal-state
gap may be a precursor of the superconducting gap. As the doping level is increased
to near- and above optimal the normal-state gap-like feature disappears.

In the following, we summarize the recent experimental optical results obtained
from several series of HTSC materials at doping levels ranging from underdoped to
strongly overdoped. We use experimental results obtained by the author of the thesis
(Bi2212, (Bi/Pb)2212, T12201), as well as by D.N. Basov et al. (Y123, Y124). We find
that in the pseudogap state the optical response of underdoped cuprates is marked by
an abrupt increase in coherence of the electronic system. Since the coherence effects
are seen more clearly trough the frequency dependent charge-carrier scattering, or
through memory function analysis, we have chosen to use this approach. The essential
features of this very general formalism are described in Appendix A. We will briefly
address the question of the correlation between the ab-plane and the c-axis pseudogap
properties.

3.2 Experimental details

We have performed reflectivity measurements, at temperatures ranging from 10 K to
300 K, on two underdoped (7,=67 K and T,=82 K), one optimally doped (7, = 90 K),
and one overdoped (7.=82 K) Bi2212 single crystal. All the Bi2212 crystals were pre-
pared from the as-grown crystals by annealing in argon and/or oxygen.[Fournier96,
Kolesnikov95] To achieve a higher degree of overdoping we have performed measure-
ments on Pb-doped Bi2212 Bi; ¢6Pbp 34Sr2CaCuyOg s ((Bi/Pb)2212) with T.=70 K
(optimum T,=88 K). The two T2201 single crystals used in the measurements had T.’s
of 90 K (highest T achievable) and 23 K (strongly overdoped). The superconducting
transition temperatures for all samples were measured in a SQUID magnetometer.
The frequency ranges of the reflectivity measurements, as well as the low- and
high-frequency reflectivity approximations for the KK analysis, for Bi2212 and T12201
materials are described in section 2.2. The (Bi/Pb)2212 material has been measured
optically from 30-8000 cm™!. Above 8000 cm™! reflectivity results for Bi2212 mate-
rial were used. The low-frequency approximation was done using the Hagen-Rubens



44

formula (section 1.1.6) while the high frequency approximation was the same as for
Bi2212 materials.

Experimental details concerning the Y123 and Y124 material, measured by
D.N. Basov, can be found in the original paper. [Puchkov96d|

3.3 Experimental results

This section is divided into three subsections: underdoped, optimally doped and
overdoped materials. In each of the subsections we first present the raw experimental
results in the form of absorption A(w) = 1 — R(w) for a selected material at many
different temperatures. Before we proceed to the memory function analysis, we will
also present the results for the same material in terms of the more commonly used
real optical conductivity o;(w). However, we will focus the analysis on the real and
imaginary parts of the memory function M(w) = M'(w) + iM"(w), that will be
presented for several materials on a second diagram in each subsection. While for
a selected material in each subsection we will show many different temperatures, to
simplify the diagrams for others, only three temperatures will be shown: T=300 Ik,
T'~T, and the lowest (superconducting) temperature.

As described in Appendix A, we are fully aware that in most real situa-
tions, and especially in HTSC, the real and imaginary parts of M (w) are not solely
determined by the scattering effects and the corresponding enhancement of an ef-
fective mass. Nevertheless, mostly for historical reasons, we will refer to the ef-
fective scattering rate and to the effective mass defined as 1/7(w) = M'(w) and
m* = 1+ Aw) = 1 — M"(w)/w respectively. Keeping this in mind, we will now
present the experimental results and indicate the common trends, leaving the in-
terpretation for the discussion section. Since we will mainly be interested in the
evolution of the optical response in the pseudogap energy region we will present the
experimental data up to 2000 cm™! only.

3.3.1 Underdoped cuprates.

A typical plot of the temperature dependence of raw absorption data A(w,T) for an
underdoped HTSC is shown in Fig. 3.3, this particular example being underdoped
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Figure 3.3: Absorption and optical conductivity for underdoped Bi2212.
The absorption A = 1 — R, top panel, and the optical conductivity o) (w) for under-
doped B2212 (T, = 67 K). The absorption rises linearly at high temperatures but
develops a depression below 800 cm™! due to the formation of the pseudogap. In the
optical conductivity the pseudogap shows up as a narrowing of the coherent Drude
peak at low frequency (the dashed curve corresponds to T=150 K).
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Bi2212 material with T, = 67 K. In the temperature range 300-150 K the absolute
value of the low-frequency absorption decreases smoothly with decreasing tempera-
ture without any sharp features. However, at a temperature T < T*~150 K, the
absorption below 600-700 cm™! starts to decrease faster than at higher frequencies,
developing a threshold structure which is characteristic for an underdoped HTSC in
the pseudogap state.

The corresponding changes in the real part of optical conductivity o;(w) are
also shown in Fig. 3.3 at selected temperatures. The in-plane response of all samples is
metallic, i.e. the absolute value of o, (w) decreases from its dc value with increasing w.
However, while the o;(w) spectra are quite broad at temperatures above 7*, the rapid
decrease of the low-frequency absorption below 7T* results in an abrupt narrowing
of the low-frequency conductivity with substantial spectral weight being transferred
towards zero frequency. As the temperature is reduced below T, no dramatic changes
are observed in the optical response of underdoped cuprates: the only change is just
a continued narrowing of the intense low-frequency peak, that was already initiated
in the normal state.

The scattering rate 1/7 and the effective mass m*/m, = 1 + \ for the Bi2212
crystal with T, = 67 K, calculated from the optical conductivity using the formulae
described in Appendix A, are shown in Fig. 3.4. We have used a plasma frequency
value of w, = 14300 cm™!, obtained by using the conductivity sum-rule analysis
[Puchkov96b, Timusk89] with integration of o1 (w) over all frequencies up to 1 eV. We
note that the value of w, obtained in this way is somewhat ambiguous since there is no
clear separation between the frequency regions of the free- and bound-carrier optical
responses. However, a particular choice of wp only affects the absolute value or, in
other words, sets up the units of measuring 1/7(w) and m*(w). Since in this section we
are mostly interested in the frequency dependence of these quantities, the exact value
of wp is not of primary importance. To keep the absolute values consistent, in the
Bi2212 and TI2201 series, we will use plasma frequency values obtained by integrating
the real part of optical conductivity up to 1 eV, which seems to be an energy below
which the conductivity is substantially changed by doping. [Orenstein90, Puchkov96b]
In the YBCO series an energy of 1.5 eV was used as an upper integration limit since
the reflectivity plasma minimum is higher for these materials. [Timusk89]
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The scattering rate 1/7(w) of underdoped Bi2212 with T, = 67 K is linear at
frequencies from 800 cm™ to at least 3000 cm™! at all temperatures. While at room
temperature the low-frequency 1/7(w) deviates upwards from the high-frequency lin-
ear law, at T = 200K the spectrum is linear over the whole frequency range from
100-3000 cm~!. However, as temperature is reduced below T*, the scattering rate is
suppressed more rapidly at low frequencies (w < 700 cm™') while it remains nearly
unaffected at higher energies. A result of this development is an appearance of a dis-
tinct threshold in the 1/7(w) spectra. Another interesting phenomenon, that we will
return to later, is the remarkable temperature-independence of the high-frequency
1/7(w).

Similar to other quantities, the effective mass m*(w) displays a rapid change
at frequencies below 700 cm™! as the temperature is reduced below 7*. We note that
the narrowing of the low-frequency optical conductivity is a result of both a decrease
of 1/7(w) and an increase of m*(w) since heavy carriers are more difficult to scatter.
The width of a conductivity peak is determined by a renormalized scattering rate
1/m(w) = m/(T(w)m*(w)). At low temperatures the effective mass saturates at
m*(0)~3 — 4.

The experimental results obtained for several other cuprate materials at dif-
ferent doping levels in the underdoped state are qualitatively similar. In the rest
of Fig. 3.4. we show the effective scattering rate and the carrier mass obtained for
Y123 with oxygen content 2 = 6.6 and T. = 58 K, naturally underdoped Y124 with
T, = 80 K, and slightly underdoped Bi2212 with 7, = 82 K. The in-plane plasma
frequency w,, related to the conductivity by wf,/S = [;°01{w)dw, scales with T.
in accordance with earlier measurements. [Orenstein90, Puchkov96b] Integration of
the conductivity up to 1.5 eV yields the following values of the plasma frequency:
15000 cm™! in YBayCu30s6, 16000 cm~! in YBa,CusOg and 15600 cm~! in Bi2212.
For clarity, only three temperatures are shown for each material: room temperature,
just above T, and well below 7.

All of the samples show the same characteristic suppression of the amplitude
of the scattering rate at T < T*, which seems to increase as doping level decreases.
Despite the differences in the values of T* in the different samples, the energy scale
associated with the suppression of 1/7(w), does not change significantly with dop-
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ing. In particular, a deviation from the linear behavior in all studied samples occurs
at the same frequency w < 700 cm~!. As the doping level is increased towards
the optimal, the normal state depression of 1 /7(w) becomes progressively shallower,
while in the superconducting state the depression remains almost unchanged. The
net effect is that the difference between the low-temperature normal-state and the
superconducting-state 1/7(w) becomes more prominent as doping level approaches
the optimal. At the same time, qualitatively, the shape of the normal-state 1/7(w)
at T < T™* remains similar to that in the superconducting state. With the exception
of the Y124 sample, the high-frequency 1/7(w) is linear up to at least 3000 cm~!
(2000 cm™! for Y124) and for all samples it is nearly temperature-independent. The
low-temperature effective mass m*(w) becomes enhanced at low frequencies when
temperature is reduced below T*. In all samples m*(w) saturates at about the same
value of ~3 — 4.

To summarize, the optical response of underdoped cuprates is characterized
by the following generic features: (i) the scattering rate is nearly linear with w at
T > T (i) At T < T* (the pseudogap state) the low-frequency scattering rate
is suppressed corresponding to the rapid narrowing of the Drude-like feature in the
conductivity spectra. The energy scale associated with the changes of 1/7(w) spectra
was found to be the same in all samples. The magnitude of the depression becomes
smaller as doping is increased towards the optimal level. (iii) The high-frequency
1/7(w) remains effectively temperature-independent and linear from 700 cm™?! up to
at least 3000 cm™! in most underdoped HTSC samples.

3.3.2 Optimally doped and lightly overdoped cuprates.

A similar threshold structure in the raw absorption spectra is observed in the opti-
mally doped crystals as well. As an example, in Fig. 3.5 we show absorption and
conductivity data obtained from optimally doped Y123 material. The important dif-
ference from the underdoped cuprates is that now a threshold in A(w) develops only
at temperatures below T,. The corresponding 1/7(w) and m*(w) spectra are plotted
in Fig. 3.6. We have used a plasma frequency wp = 18000 cm™!, obtained from the
sum-rule analysis with integration up to 1.5 eV. All of the optical constants show
the same characteristic features as in underdoped cuprates but the onset tempera-
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Figure 3.5: Absorption and optical conductivity for optimally doped Y123.
The absorption 4 = 1 — R and the optical conductivity for optimally doped Y123
with z = 6.95 (T, = 93.5 K). Results are obtained by D.N. Basov. A depression of A
is seen below 800 cm™! but only below the superconducting transition temperature
T.. The same is true for the characteristic narrowing of the optical conductivity (the
dashed line corresponds to T=95 K).
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ture now is determined by T.. A remarkable feature of the optimally doped samples
is the similarity between the behavior of the superconducting-state optical response
obtained in these crystals with the data obtained in the underdoped materials at
T, < T < T*. This may suggest a similar nature in the physical processes that lead
to the formation of the pseudogap state and superconducting state. This would be
consistent with the notion that the T, and T* boundaries in Fig. 3.1 cross around
the optimal doping. As a result, the difference between the normal-state and the
superconducting state spectra becomes dramatic in optimally doped samples.

In the normal state, as the temperature is reduced from 300 K down to T~T,,
both the scattering rate and the renormalized effective mass, in optimally doped
samples, show relatively minor changes. These changes are mainly restricted to the
decrease of the absolute value of 1/7(w) in the low frequency parts of the spectra.
However, in contrast to the underdoped materials, the normal-state scattering rate in
Y123 does not reveal any sharp changes in the frequency dependence as temperature
is reduced.

In the rest of Fig. 3.6 we show data obtained on Bi2212 with T. = 90 K
and T12201 with 7, = 90 K. We should note that although we assigned the material
T12201 to this section, the peak in T as a function of doping has not yet been observed
for T12201 and some data suggest that this material may be somewhat overdoped.
[Puchkov96b] The plasma frequency used for Bi2212 was wp = 16000 cm™! and for
T12201 w, = 15300 cm™'. The normal-state spectra of 1/7(w) are featureless. In
case of T12201 the threshold structure appears only at 7 < T, but in Bi2212 a weak
structure can still be seen at T=90 K. In fact, it persists even in the lightly overdoped
samples. Thus it is possible that the pseudogap state in Fig. 3.1 can somewhat
penetrate into the overdoped regime. Qualitatively, the depression in 1 /T(w) at T <
T. in the optimally doped cuprates is very similar to what is observed in the 1 /7(w)
spectra in the pseudogap state of the underdoped cuprates. However in contrast
with the underdoped materials, the temperature dependence of the scattering rate
now seems to extend over a broader frequency range. In particular, in the Bi2212
and T12201 samples the 1/7(w) spectra reveal some shift in the high-frequency part
(above the 700 cm™! threshold) whereas in the underdoped materials no temperature
dependence was observed at these frequencies.
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Figure 3.6: Memory function for optimally doped cuprates.
The scattering rate and the effective mass for the cuprate superconductors doped
close to optimal. The scattering rate now has a degree of temperature dependence at
low frequencies. In the superconducting state the scattering rate is depressed at low
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Another weak feature that seems to be common for both the optimally doped
Y123 and T, = 90 K TI2201 is an "overshoot” of the superconducting-state 1/7(w)
above the spectrum of 1/7(w) for T~T..

In summary, the response of the optimally doped high-T. cuprates demon-
strates the following features: (i) A threshold feature in 1/7(w) spectra is either
strongly suppressed or disappears completely when the doping level approaches opti-
mal; (ii) The high-frequency 1/7(w) remains linear but may acquire a weak temper-
ature dependence in lightly overdoped cuprates.

3.3.3 Overdoped cuprates.

Since the strongly overdoped regime is not accessible in the Bi2212 or in the YBCO
materials, we have chosen T12201, (Bi/Pb)2212 and slightly overdoped Bi2212 in
order to study this doping regime. In Fig. 3.7 we show the data for a strongly over-
doped high-T, superconductor (TI2201 with 7, = 23 K). The raw absorption spectra
are qualitatively different from those obtained in optimally doped or underdoped
regimes. A(w) is temperature-dependent over a much broader frequency range. The
spectra shift down uniformly as temperature decreases but no sharp features develop.
Unfortunately, in this crystal absorption is already very small in the normal state at
T = 35 K. It is difficult to determine the exact shape of A(w) in the superconducting
state. Thus it remains unclear if the absorption spectra of this crystal show the same
threshold structure as the less heavily doped materials.

The 01 (w) spectra for the strongly overdoped T12201 are shown in the bottom
panel of Fig. 3.7 while 1/7(w) and m*(w) spectra are shown in Fig. 3.8. The plasma
frequency is w, = 15100 cm™!. Consistent with the behavior of the absorption spec-
tra there is no sharp change in the frequency dependence in any of these response
functions as the temperature is decreased in the normal state. Instead, the 1/7(w)
spectra scale downwards almost parallel to each other. This is in sharp contrast with
the 1/7(w) behavior in the underdoped regime, where the scattering rate was found
to be temperature independent above 1000 cm~!. We also note that the frequency
dependence of 1/7(w) for this strongly overdoped material may become superlinear,
flattening out at low frequencies. The effective mass m*(w) does not show any pro-
nounced temperature dependence and remains largely flat in the whole frequency
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Figure 3.7: Absorption and optical conductivity for overdoped T12201.
The absorption of strongly overdoped T12201 (T. = 23 K), top panel, and the optical
conductivity, lower panel. The absorption is strongly temperature dependent but no
threshold develops at low temperatures. The optical conductivity becomes narrower
as temperature decreases but does not show any sharp changes (the dashed line
corresponds to T=120 K).
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Figure 3.8: Memory function for overdoped cuprates.
The scattering rate, top row, and the effective mass, bottom row, for the overdoped
cuprates. In overdoped samples the high-frequency scattering rate shows an increas-
ingly strong temperature dependence. As a part of the high-frequency scattering
disappears at low temperatures, the low-frequency depression of 1 /7(w) and the ef-
fective mass enhancement decrease in magnitude, even in the superconducting state.
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region shown. To show the continuity in the evolution of the optical response of
the cuprates from under- and optimally doped to the strongly overdoped case we
plot 1/7(w) and m*(w) spectra for other overdoped samples in the rest of Fig. 3.8.
These include Bi2212 (T, = 82 K) and (Bi/Pb)2212 (T, = 70 K) annealed in oxygen
(wp = 15600 cm™! for Bi2212 and 16500 cm™! for (Bi/Pb)2212). As we have noted in
the previous section, the 1/7(w) spectrum for slightly overdoped Bi2212 still shows a
weak normal-state pseudogap feature at T=90 K, defined as a downwards deviation
from the linear high-frequency behavior. However, (Bi/Pb)2212 shows no sign of a
threshold formation above T,. While the scattering rate remains close to linear in w
at high frequencies, it seems to gradually pick up a temperature dependence as the
doping level is increased from the optimal to overdoped. Also, the absolute value of
the scattering rate is gradually suppressed with increased doping.

In the superconducting state the threshold structure seems to weaken as doping
is increased towards strong overdoping. Correspondingly, the superconducting-state
mass enhancement also becomes weaker. Unfortunately, as in the case of absorption,
we can not unambiguously determine the exact nature of the changes that occur below
T, in either 1/7(w) or m*(w) for the T12201 sample with T, = 90 K.

In summary, as the doping level is increased above optimal to overdoped and
strongly overdoped levels: (i) No threshold is observed in 1/7(w) at T > T.. (ii)
The scattering rate 1/7(w) acquires temperature dependence over a much broader
frequency range than in underdoped cuprates. (ili) The frequency dependence of
1/7(w) may become superlinear in the strongly overdoped cuprates.

3.4 Discussion

3.4.1 General trends in 1/7(w) data.

With regards to the underdoped cuprates, two distinct features in the 1 /7(w) spectra
deserve mentioning. First, it must be recognized that 1/7(w) is linear and almost
temperature independent at high frequencies. Second, a threshold structure develops
at low frequencies and temperatures below T*. When the doping reaches the optimal
level the threshold structure in the ab-plane scattering rate shows up only in the
superconducting state. This is in accord with the phase diagram where the two
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Table 3.1: The linear-fit parameters for the high-frequency 1/7(w).
The slopes and zero-frequency intercepts of the high-frequency linear part of 1/7(w) =
aw + (3, third and fourth columns. The linear coefficients normalized to the plasma
frequency, o' = 47ra/w§ and 8 = 47r,6/w3, firth and sixth columns. The fit was
performed over a frequency range from 900-3000 cm~!. The Y124 material is not
shown since the high-frequency scattering rate significantly deviates from linear above

2000 cm~1,
Material T, a Blem™!) T o (uQem?) | F'(uSicm)
Y123 (u.d) 58 K || 1.26 (1.45) | 790 (560) | 0.34 (0.39) | 210 (149)
Y123 (opt.d) | 93.5K || 0.79 (0.93) | 890 (590) | 0.15 (0.17) | 165 (108)
Bi2212 (ud) | 67K | 0.84 (001) | 1280 (1200) || 0.25 (0.27) | 377 (352)
Bi2212 (u.d) 82K | 0.76 (0.95) | 990 (750) || 0.19 (0.23) | 243 (185)
Bi2212 (opt.d) | 90K |0.71 (0.72) | 850 (650) | 0.17 (0.17) | 200 (150)
Bi2212 (0.d.) | 82K [0.73(0.77) | 890 (550) | 0.18 (0.19) | 219 (135)
(Bi/Pb)2212 (0.d.) | 70K | 0.63 (0.65) | 551 (118) | 0.13 (0.14) | 117 (25)
TI2212 (0.d.?) | 90K | 0.64 (0.75) | 473 (90) | 0.16 (0.19) | 121 (23)
TI2212 (0.d.) | 23K | 0.63 (0.54) | 337 (-318) | 0.17 (0.14) | 89 (-84)

curves, the pseudogap boundary and the superconducting transition temperature 7,
cross at optimal doping (T*<T.). In the overdoped cuprates the threshold structure
appears only below T, and seems to become weaker even in the superconducting state
as doping progresses. Unfortunately, the limitations of our experiment do not allow
us to say with certainty if the structure persists in the strongly overdoped materials.
The important difference between 1/7(w) for overdoped and underdoped materials is a
strong temperature dependence of the high-frequency part of 1 /7(w) in the overdoped
case.

The common feature in all spectra is the linear in frequency dependence of
the high-frequency scattering rate. The linear frequency dependence has been seen
previously in the scattering rate of the a-axis Y123 both in the optimally doped and
underdoped spectra. [Rotter91, Schlesinger90] In Table. 3.1 we present the slopes
and zero-frequency intercepts of the high-frequency part of scattering rate obtained
by fitting it to a straight line 1/7(w) = aw + B. The results are presented at two
temperatures: T=300 K and at the lowest normal temperature (in parentheses).

We note here that the coefficients determined directly from 1/7(w) may be
ambiguous since they involve the plasma frequencies that were obtained by integrating
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the real part of conductivity up to a somewhat arbitrarily chosen frequency. However,
the same cut-off integration frequency was used for each of the series at 2!l doping
levels (1.5 eV for YBCO and 1 eV for Bi2212 and T12201). While the absolute value
of w, obtained in this manner may still be ambiguous, the changes in w, with doping
reflect changes in the carrier density for each of the material series (see discussion in
chapter 2). For these reasons the materials presented in Table. 3.1 are grouped by
series. Another way to get around the problem of the unknown plasma frequency is
to divide the scattering rate by wg: 4/ (w,fT). This quantity may be called ”optical
resistivity”, or pop, since it has the same functional form as a dc resistivity in a simple
Drude model (Eq. 1.42 at w = 0). Since it is directly obtained from the measured
complex optical conductivity: pe(w) = Re(1/0(w)), it may be useful to examine
variations of the slope and zero-frequency intercept of p,p(w) instead of 1 /T(w). The
corresponding results are listed in the last two columns of Table. 3.1.

The result of both approaches is that both & and 8 seem to decrease with
doping for all of the series. However, while the decrease in the slope is insignificant
(and may even be inside our error bar estimated to be about 20%), the drop in the
intercept, especially its low-temperature value, is dramatic. We also note the large
difference between the room-temperature and low-temperature (numbers in paren-
thesis) intercept values in the overdoped cuprates, which is a result of the strong
temperature dependence of the high-frequency part of 1 /7(w). The low-temperature
intercept even becomes negative for strongly overdoped T12201.

The low intercept values in overdoped cuprates suggest that the temperature
dependence and the low-frequency threshold in 1/ 7(w) are closely related. The strong
temperature-induced suppression of 1/7(w) over a large frequency range makes the
high-frequency background at T~T, very small. Any further suppression of 1/7(w),
similar to that observed in under- and optimally doped samples, could potentially
produce only a weak feature that would be difficult to detect experimentally.

To conclude this sub-subsection, we make a comparison between our data on
the temperature/frequency dependence of the scattering rate with earlier results. In
the optimally doped Y123 and Bi2212 samples, microwave and infrared experiments
demonstrated that 1/7(w — 0) drops abruptly below the superconducting transition
temperature. [Bonn92, Romero92] A suppression of the scattering rate in the super-
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conducting state was confirmed through transport experiments. [Yu92] These results
are consistent with the behavior of 1/7(w) plotted in Fig. 3.6.

In the underdoped regime, the suppression of the scattering rate occurs already
in the normal state and thus a comparison can be made with dc resistivity data. In
underdoped cuprates the resistivity is a linear function of T for T > T*, but it shows
a crossover to a steeper slope at T < T*. [It093] Since dc resistivity is, within a
constant factor, the zero frequency limit of 1/7(w), the crossover behavior could be
completely accounted for by the low-frequency suppression of the scattering rate.
We also note that the dc resistivity of underdoped cuprates, at least below 300 K.
is determined by the charge dynamics in a relatively small energy range (below the
threshold structure) while in the strongly overdoped cuprates, much larger energies
are involved. It is not quite clear, however, how the 1/7(w) spectra in the underdoped
cuprates will evolve above room temperatures where dc pab(T') is still increasing with
temperature. In particular, it is not clear whether the 1/7(w) will remain linear and
temperature-independent at high frequencies.

3.4.2 Theoretical models for 1/7(w)

There is yet to be a clearly superior theoretical explanation for the peculiar behavior
of the infrared optical response presented in the previous section, but a few models
deserve mentioning. We will start here with the models that rely on inelastic scat-
tering processes as the mechanism that determines the frequency and temperature
behavior of the real and imaginary parts of the memory function, and will continue
with other models later.

As we have stressed previously, the modeling of the real part of M(w) in terms
of carrier-scattering only makes sense if there are reasons to believe that the optical
response in the energy region under study is predominantly due to mobile carriers
(no interband contribution) and that there is only one type of carrier participat-
ing in optical excitations (one-component model). It is not at all clear that these
requirements are satisfied in the HTSC cuprates at all frequencies, particularly in
the midinfrared range, where some of the interband transition processes may have
energies comparable with those of the intraband excitations. The situation is com-
plicated further by the fact that these contributions do not have characteristic sharp
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features which would facilitate their separation. As an example, a typical frequency
dependence of the room-temperature ab-plane complex memory function M (w). in
the functional form of 1/7(w) and m*(w), is shown in Fig. 3.9 on a large frequency
scale for Y123 (x = 6.95) material (E||a). Evidence for the interband process comes
from, for example, m*(w) being negative ! at w > 8000 cm~!.

Nevertheless, there are reasons to believe that the carrier-scattering approach
can be used at frequencies below 2000-3000 cm~! where we have presented data in
section 3.3. First, the conductivity is observed to be temperature dependent® at
w < 2000 — 3000 cm™!, and it is natural to assign the temperature- dependent part
to the "free” carrier contribution; Second, as it was noted earlier by Thomas et
al., [Thomas88] the number of carriers that one obtains using the sum rule analysis
for the real part of optical conductivity is consistent with estimates from chemical
valence arguments for the carrier density provided, the sum rule is taken up to about
8000 cm™!.

Therefore the carrier-scattering mechanisms is at least a plausible mechanism
for the optical response in HTSC at frequencies less than 2000-3000 cm™!. Below we
will outline some approaches that are based on carrier-scattering mechanisms as well
as some problems associated with them.

The first approach is electron-phonon scattering. [Shulga91] While this model
qualitatively reproduces the gap-like depression in 1 /7(w) at low temperatures (see,
for example, calculations presented in Figs. A.1,A.2), it is not nearly as sharp as
that seen in the experimental data. An even more severe problem is the absence of
the predicted temperature dependence of 1 /T(w) at high frequencies. A signature
of the electron-phonon theories is their prediction of significant temperature-induced
changes (proportional to kT at high temperatures). Furthermore, as discussed in

!Since an interband transition can be roughly modeled by an oscillator centered at wi, the imag-
inary part of the conductivity is negative below w;.

2Romero et al. proposed a somewhat similar way of differentiating the two contributions.
[Romero92] They suggest that the response of conducting carriers completely collapses into a -
function at T<«T.. Therefore, the spectrum of o0;(w) at T<«T. represents the "midinfrared compo-
nent” in the conductivity. While this approach appears to be useful under the circumstances and
allows one to extract the temperature dependence of the scattering rate below T, it also has serious
deficiencies. The most significant one stems from the fact that the conductivity in the superconduct-
ing state remains finite down to the lowest available frequencies and even increases in a Drude-like
fashion at w < 50 cm™! (Fig. 3.5).
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Figure 3.9: Optical response functions for optimally doped Y123, broad frequency

range.

Results were obtained by D.N. Basov. The reflectivity R (top panel), the effective
mass (middle panel), and the frequency dependent scattering rate (lower panel) for an
optimally doped Y123 crystal are shown over a wide frequency range. Temperature
is 90 K. The effective mass becomes negative for w > 6000 cm—* suggesting a break-
down of the validity of the single-component approach due to onset of an interband

transition.
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Appendix A, within the electron-boson scattering scenario, the characteristic tem-
perature below which a low-frequency depression in 1 /7(w) occurs is determined by
the high-energy cut-off of the bosonic spectrum A,.(£2). The experimental fact is
that the characteristic temperature in the cuprates, T*, depends on the doping level.
This is inconsistent with the electron-phonon scenario, since the phonon cut-off is
doping-independent. Thus we believe that the electron-phonon scattering model fails
to reproduce the essential features of the experimental data for underdoped cuprates.

It is still possible, however, that phonons play some role in the mechanism
responsible for the experimentally observed behavior of 1/7(w), but in a more un-
conventional way. We note in this respect that the frequency scale in the spectra
of 1/7(w) associated with the pseudogap state, which does not significantly change
with doping, remarkably coincidences with the high-frequency cut-off energy of the
phonon density of states in HTSC. [Renker88]

More generally, a serious defect of all models that employ scattering of elec-
trons by bosonic excitations to describe the optical response of underdoped HTSC
is their failure to account for the observed behavior in the high-frequency part of
1/7(w) spectra. As discussed in section 3.3, underdoped cuprates do not show any
temperature dependence in 1/7(w) at w > 700—800 cm™!. On the other hand, in Ap-
pendix A it was shown that scattering of electrons by any temperature-independent
bosonic spectrum leads to a strong temperature dependence of 1 /7(w) at high fre-
quencies. The only way to get around this contradiction is to assume that the boson
spectral function A;(w) is also a function of temperature: Air(w,T). In this case,
if the absolute value of Ay (w,T) scales properly with temperature, it may account
for the observed temperature-independent scattering rate at high frequencies. The
phonon density of states does not show any such changes. [Renker88]

One of the mechanisms that may yield a temperature-dependent 4(w) function
is the scattering of charge carriers on local fluctuations towards an antiferromagnetic
order. The energy scale associated with spin fluctuations is measured [Bourges95] to
be of the order of 50 meV. The features in the scattering rate spectra that we observe
in the pseudogap state are on the same energy scale, supporting such models. This
mechanism would also provide a qualitative explanation for the doping dependence
of the pseudogap.
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Figure 3.10: An estimated boson spectral density in the pseudogap state.
Top panel: scattering rate above T, in the pseudogap state is approximated by straight
line segments. Bottom panel: slopes of the straight segments are plotted as a function

of frequency.
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Finally, we can roughly estimate the boson spectral function that is needed
to obtain the threshold structure in 1/7(w) in the pseudogap state at T' < T*. This
estimate can be obtained by inverting the lowest temperature normal-state experi-
mental results for 1/7(w) using Allen’s expression (Eq. A.14). The complete inversion
formula can be written as A(w) = 1/wd/dw|w?d/dw(1 /7(w))]. [Marsiglio96] Since the
process of numerical differentiating greatly amplifies the noise level of our spectra,
we have chosen the following approach to minimize the added noise: The experimen-
tally obtained 1/7(w) for underdoped Bi2212 was fitted with four straight lines, as
shown in Fig. 3.10 and then the inversion formula was applied to the resulting arti-
ficial spectrum composed of the straight pieces. In this scheme, the exact inversion
formula reduces to the first derivative, that is the slope of the straight lines. The
resulting Ay (w) spectrum is shown in the bottom panel of Fig. 3.10. Obviously the
rather crude approximation of the experimental curve prevents us from observing
any fine details of the spectrum. The significant result is, however, that an intense
peak in A (w) at 500-700 cm™!, superimposed on a broad background, is needed to
account for the behavior of the scattering rate in the pseudogap state if one adopts
an electron-boson scattering model.

We note that at least some of the current electron-electron scattering models
suffer from the same problems as the electron-boson ones. In particular, they cannot
account for the weak or completely absent temperature dependence of 1/7(w) spectra
in underdoped cuprates at high frequencies. In the conventional Fermi liquid theory,
for example, the electron-electron scattering rate is proportional to (hw)? + (nkpT)?,
that is the frequency and temperature dependence of the scattering rate ”mirror”
one another. [Pines96] Another example of this type of mirroring is provided by the
heavy fermion compound URu,Si, [Bonn88| or the perovskite SroRuQ,. [Katsufujioe]
In both cases a scaling of hiw = 2kpT collapses the dc resistivity curve on the frequency
dependent scattering rate curve. This is in contrast to the experimental observations
in underdoped cuprates where a significant frequency dependence, but no temperature
dependence, were observed at frequencies above 1000 cm=!. Other Fermi-liquid type
models, such as the nested Fermi-liquid (NFL) model or the marginal Fermi-liquid
(MFL) model, also predict a significant temperature dependence at high frequencies.
[Rieck95, Schmitt-Rink88] For example, the main assumption of the phenomenologi-



65

cal MFL model is that the scattering rate varies as 1 /T(w, T) = aw+ BT where o and
B are constants of the order of unity. It is clear that in the underdoped materials 1/7
does not follow this behavior since 8 = 0, i.e. there is no temperature dependence
associated with the linear in frequency scattering rate. As we have seen, a tempera-
ture dependence of the scattering rate does develop, except in optimally doped and
overdoped materials.

We note that from a completely different point of view, the two component
model of optical conductivity [Tanner92] in which the infrared conductivity is divided
into a free-carrier and a midinfrared component, these observations imply that the
mid infrared component is temperature independent in underdoped materials.

Some hints regarding the microscopic origin of the scattering mechanism in
HTSC can be obtained from the analysis of impurity effects. For example, substituting
1.275% of the Cu atoms with Zn in Y124 completely destroys the pseudogap structure
in 1/7(w) spectra, not only in the normal state but in the superconducting state as
well. [Puchkov96d] The c-axis results obtained for a Y124 sample with 0.425 % Zn
also reveal a complete suppression of the pseudogap. [Basov96] The effect of Zn on
the c-axis pseudogap is similar to the one observed in the spin-lattice relaxation time
1/TT;. [Ishida93, Zheng93]

There are several other theoretical models that attempt to explain the pseu-
dogap phenomenon from different assumptions.

The model due to Emery and Kivelson [Emery95b] predicts that the low carrier
density in the underdoped regime may result in quasiparticle pairing without pair-
pair coherence at temperatures well above the actual T, thus producing a pseudogap.
As the temperature is lowered the phase coherence is established, leading to bulk
superconductivity. This model would provide an explanation for the lack of dramatic
changes upon crossing into the superconducting state, which is consistent with our
optical experiments as well as ARPES measurements. However, it is not quite clear
why the high-frequency onset energy of the optical pseudogap does not change as a
function of doping while T* and 7. do.

In the spin-charge separation picture, [Anderson87] spin singlets form at T*,
giving rise to a spin gap while the charge carriers (holons, which are bosons) Bose
condense at the superconducting transition. [Fukuyama92, Kotliar88, Lee92, Rice92]
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Other models invoke a spin density wave (Kampf90, Barzykin95] in the context of a
normal Fermi liquid to form a gap in the spin excitations which are the predominant
scatterers of the charge carriers.

3.4.3 The relation between ab-plane and c-axis pseudogap.

A comparison of a-axis results for Y123 materials with earlier c-axis data [Homes93b,
Basov94] suggests that the pseudogap directly observed in the c-axis conductivity
at T < T* is necessarily accompanied by a suppression of the in-plane 1/7(w) at
low frequencies. Indeed, the threshold feature in 1/7,(w) is found in underdoped
crystals at T < T™* only when the spectrum of o.(w) exhibits a pseudogap. The
suppression of the pseudogap in o.(w), either by an increase of temperature above
T*, or by an increase of the carrier density from x=6.6 to x=6.95 in Y123, or by
the substitution of Cu with Zn in underdoped Y124, [Basov96] restores the nearly-
linear frequency dependence of the in-plane scattering rate. Therefore, we conclude
that the same microscopic mechanism leads to the opening of the pseudogap in the
interplane response and the low-frequency anomalies in the lifetime effects within the
CuO; planes.

3.4.4 The superconducting state

One of the most striking features is how closely the 1 /T curves for the underdoped
cuprates in the superconducting state resemble those in the pseudogap state. It
is useful to compare the energy scales for the various experiments that reveal the
presence of a pseudogap.

The maximum gap seen in ARPES experiment is about 2A = 360 cm™! (45
meV) whereas the c-axis conductivity (in YBCO) shows an onset at ~200 cm~" (25
meV) rising to a plateau at 360 cm™ (45 meV). The ab plane 1 /7 scale is considerably
higher with the steepest part of the curve at ~500 cm™! (62 meV) merging with
the high frequency linear curve around 750 cm™! (93 meV) in all of the materials
studied. Another high energy scale is the depression of the c-axis conductivity at the
superconducting transition — of the order of or larger than 600 cm™.

Thus it appears to us that the energy scales associated with the pseudogap and
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with the superconducting state are distinct: the pseudogap has a smaller magnitude
and is gradually destroyed by doping. In Y124 crystals with Zn substitution, super-
conductivity persists while the pseudogap is suppressed. [Puchkov96d] We also note
that in all samples we find finite absorption extending down to the lowest frequencies.
In an s-wave superconductivity scenario, this absorption implies a very anisotropic
superconducting gap. As for the d-wave gap models, our data may be consistent with
the theoretical predictions [Carbotte95, Jiang96, Quinlan96] only if one assumes a
significant amount of impurities present in the crystals. This assumption is, however,
inconsistent with the linear penetration depth observed in the high quality YBCO
crystals used in this work. [Hardy93, Zhang94]

Although changes in 1/7(w) upon crossing into the superconducting regime in
the optimally doped cuprates are apparently dramatic, it may simply be due to the
simultaneous formation of the pseudogap and superconducting condensate. Also, as
noted above, it is only in the c-axis conductivity where we see evidence of a larger
energy scale associated with the superconducting state. [Basov94]

In the superconducting state, the spectra of the effective mass are remarkably
similar in all crystals we have studied. As noted in Appendix A, the zero frequency
extrapolation of the effective mass gives a square of a ratio of the total plasma fre-
quency, wp, to the plasma frequency of the superconducting condensate, wy,. This
value is in good agreement with the results obtained directly from the use of the sum
rule analysis of o1(w) or from an analysis of the imaginary part of the conductiv-
ity. The fact that the zero-frequency extrapolations of the effective mass are roughly
the same, m*(w — 0)~3.5 — 4, for all underdoped materials suggests that the su-
perfluid condensate density scales with the total carrier density in the underdoped
cuprates. Therefore, we conclude that there are no pair-breaking effects in the pseu-
dogap state. However, as doping is increased above optimal, the mass enhancement
becomes weaker, which indicates a decrease in the superfluid density. This behavior
is in agreement with the earlier SR results. [Uemura89, Uemura9l, Niedermayer93]

3.4.5 Open questions

At the time of writing this thesis, there remain many open questions. The first
question that must be addressed is whether or not the pseudogap state is generic
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among all high-T, materials.

It has been suggested that the pseudogap is a manifestation of interlayer cou-
pling and is specific to the double layer materials such as YBCO and Bi2212. [Millis90]
Support for this view comes from NMR measurements, which show a rather weak de-
pression of magnetic susceptibility in La214 in the temperature range where the trans-
port data show evidence of a strong suppression of scattering. As we have seen from
our presentation of the data for overdoped single-plane T12201 samples, the ab-plane
1/7(w) curves look similar to those of the two-plane materials in the superconducting
state.

Experimental optical data exists for the one plane La214 material [Gao93,
Uchida96, Startseva] which, in the underdoped regime, shows a very strong depres-
sion in 1/7(w) at low temperatures which is consistent with the pseudogap picture.
However, one must be cautious at this stage since the data from various laborato-
ries show considerable variation in the magnitude of the effect. In some cases, the
structure in reflectivity is so strong that it produces an unphysical singularity in the
1/7(w) curves. [Uchida96] More work on a range of samples must be done for this sys-
tem. Similar strong features are seen in the electron-doped Nd,_,Ce,CuO, material.
[Startseva]

It has been suggested that the one-component model of charge transport in the
cuprates is particularly unsuited for the La214 system where, at least at low doping
levels, o(w) shows a separate midinfrared band [Cooper94] rather than a smooth free-
carrier band with excess conductivity at high frequencies. It is also known that at
very low doping levels, in the insulating state, there is a separate band or several
bands [Perkins93, Thomas91] and a one component picture is clearly inappropriate.

Another important effect that needs to be examined is the role of impurities.
It was shown, [Puchkov96d] that Zn has the effect of destroying the pseudogap in
Y124, both in the c-axis 0)(w) and in the ab-plane 1 /T(w). Since Zn is an impurity
that has a strong effect on T,, a systematic study of the influence of Zn may help
us to isolate its effect on T*, the onset of the pseudogap phase, and T,, the onset of
superconductivity.

Phonons play an important, if perhaps subsidiary, role in high temperature
superconductivity. As is shown in Appendix A, the standard electron-phonon mecha-
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nism predicts a temperature dependent 1 /7(w) at all frequencies whereas the observa-
tions in the pseudogap state show a temperature independent high-frequency 1/ T(w).
On the other hand, the frequency range of the steepest rise of 1/7(w) falls in the oxy-
gen mode region of the phonon spectrum and seems to vary little with temperature,
chemical composition or doping. This inertness of the pseudogap frequency suggests
that phonons may be involved in some indirect way.

One process that affects the ab-plane conductivity in all high-T, materials is the
coupling of the ab-plane electrodynamic response to c-axis LO phonons. [Reedyk92,
Timusk91, Kostur96] To separate this process from other processes, it is necessary to
measure the in-plane optical response on the ac face of an underdoped crystal where
the LO, coupled structure vanishes. [Reedyk92]

The signature of the pseudogap state of YBCO materials is that the in-plane
conductivity is enhanced whereas the interplane conductivity is suppressed. It is
important to find out whether this is manifested by other cuprates.

3.5 Conclusions

We see that there is a universal depression of the real part of the memory function
M'(w), or 1/7(w), below an energy of the order of 700-800 cm=" in all underdoped
materials below a characteristic temperature T*. At the optimal doping level T.~T*
and in the strongly overdoped regime the gap-like depression is not seen. While
the high-frequency 1/7(w) was found to be temperature-independent in the under-
doped cuprates, an obvious temperature dependence is seen in the strongly overdoped
cuprates. We believe that these optical results add to the growing evidence for the
existence of a normal state pseudogap in the physical response function of the under-
doped HTSC.

While intense theoretical work has been done to explain the observed phe-
nomenon, none of it has been completely successful. It is necessary for any theoretical
model to explain not only the formation of the gap in the ab-plane response, but also
a wealth of phenomena, such as the c-axis transport and the remarkable temperature
dependencies that are observed, both for the c-axis pseudogap as well as the ab-plane
response.



Chapter 4

The non-cuprate high-T7.
superconductor Ba;_,K;BiOj

4.1 Introduction

Ba,_.K;BiO3 or BKBO (as well as BaPb;Bi;_,03 or BPBO) is a family of super-
conductors based on the perovskite BaBiOj. Superconductivity in this compound
was discovered by Mattheiss, Gyorgy, and Johnson in 1988 [Mattheiss88] and since
then BKBO has attracted a great deal of attention because of a combination of high
1. values with a relatively simple isotropic structure (cubic perovskite in the metal-
lic phase [Pei90], see Fig. 4.1), and lack of Cu. Nevertheless, just as in the copper
based HTSC materials, normal state properties, their doping dependence, and the
mechanism of superconductivity in BKBO are far from being understood.

Despite its relatively low — 31 K — superconducting transition temperature.
there are several reasons to place BKBO in the same group of high-temperature su-
perconductors as the cuprates: 1) As was first pointed out by Batlogg [Batlogg89].
the value of T is exceptionally high in relation to an extremely low density of states
N(0) at the Fermi level (see Fig. 1.6). This is an extremely unfavorable situation
for the phonon-mediated BCS mechanism and yet BKBO has a higher T, than any
other known copper-free material, except for Cgy. This puts into question the ap-
plication of the BCS model with electron-phonon mediated coupling for BKBO but
is in agreement with the general trend in all high-7T, superconductors: large T, de-
spite of low N(0). 2) The maximum 7, was observed near the insulator-metal (IM)
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Figure 4.1: The crystal structure of BKBO in the metallic doping regime.

transition followed by a decrease in T, with overdoping — another signature of high
temperature superconductivity. 3) The normal-state optical conductivity of metal-
lic BKBO shows similar MIR absorption features as in the cuprate superconductors.
4) Other similarities have been observed in tunneling, uSR, and optical experiments.
[Sharifi91, Uemura9l, Bosovic92]

There are some differences as well. We will list only the main ones: 1) The
undoped component BaBiO; is diamagnetic. [Cava89] 2) The charge carriers are
electrons [Sato89, Affronte93] while in all copper oxide superconductors (except for
(Nd,Ce);CuOy) they are holes. 3) There is a well defined onset of a superconducting
gap in BKBO [Schlesinger89, Dunmore95, Sato90, Sharifi91, Zasadzinski89, Sato93],
while in the cuprates this issue is still an open one. [Timusk89, Tanner92, Orenstein90]
4) The isotope shift was reported to be 0.2-0.4 [Batlogg88, HinksS8, Loong91] in
contrast with much smaller values for the cuprates.

It is still not understood why undoped BaBiQj, which has one electron per Bi
atom and therefore should be a metal with a half-filled conduction band, is in fact
an insulator. The nature of the insulator-metal (IM) transition at the doping level
z.~0.35 is also a mystery and the focus of intensive experimental work. Recently,
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we have performed reflectivity measurements on non-metallic BKBO single crystals
at a doping level just below the IM boundary. A peculiar temperature dependence
observed was interpreted as evidence for bipolaron formation in non-metallic BKBO.
The results were published in the Physical Review B. [Puchkov95c] In a subsequent
paper, [Puchkov96b] we used the large amount of the experimental data on BKBO,
accumulated to date, to extend these arguments to the whole doping range of BKBO.

Previous optical studies of superconductivity in BKBO have been done mainly
on thin films. [Schlesinger89, Blanton93, Sato93] Although ratios of reflectivities
in the superconducting and normal states have been obtained for the thin films
[Schlesinger89, Sato93], in none of the above experiments were absolute low- tem-
perature reflectivity measurements performed. Recently, absolute reflectance results
in the normal and the superconducting states were obtained on single crystals of
BKBO, but only at one doping level. [Puchkov95a] As a result, the detailed behavior
of the optical conductivity as a function of doping still needs to be clarified. We con-
tributed to the this effort by performing reflectivity and ellipsometric measurements
in a combined range of 30-50000 cm™! on three superconducting BKBO single crystals
(Tc’s=21 K,28 K,31 K) at temperatures ranging from T = T./3 to T = 300 K.

Both papers are reproduced in this thesis in a complete form with the permis-
sion of the American Physical Society.

4.2 Optical conductivity of non-metallic
Baj 6K(3:BiO3 single crystals: Evidence for
bipolaron formation.

In this paper we present the experimental optical data obtained on non-metallic
single crystals of Bag I 3;BiO3. We interpret the results as evidence for bipolaron
formation in this material.
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We repon the far-infrared to near-uitraviolet reflectivity and ellipsometric measurements on an insulating
Ba, ., K,BiO, singie crystal, with a doping level x=0.31 just below the insulator-metal transition boundary.
The optical conductivity was calculated using Kramers-Kronig analysis. We examine the experimental data in
terms of a small bipolaron model. This model, with no free parameters, allows us to obtain a satisfactory
agreement with our experimental resuits, including the overall shape and the peculiar temperature dependence
of the optical conductivity. The same model provides a qualitative explanation for some aspects of the

transport-measurement resuits reported previously.

During the last few years much work has been done, in-
cluding optical studies.'? on the nature of the insulating state
and insulator to metal (IM) transition in the Ba, ., K,BiO,
(BKBO) system. The most popular point of view is that the
undoped BaBiO;, which has one electron per Bi atom, is
made insulating by frozen breathing mode distortions. These
distortions effectively double the unit cell and may open a
gap in the middle of the initially half-filled conduction band
of BaBiO;. Results of band structure calculations indicate
that the experimentally measured values of the breathing
mode distortion can indeed induce a direct gap at the Bril-
louin zone (BZ) boundary. However, these distortions are not
large enough to produce a real gap in the density of states,’
which has led to the conclusion that the strong correlation
effects of the Bi 6° clectrons should be taken into account.

We have performed reflectivity measurements on insulat-
ing Bag Ko 11BiO; which is just below the IM transition.
Unlike previous optical measurements on the insulating
members of the BKBO family we have performed reflectiv-
ity measurements in a frequency range down to 25 cm ™! and
at temperatures ranging from 7'=35 to 300 K. This and the
combination of the reflectivity and ellipsometric measure-
ments used in our study allowed us to obtain accurate data
that may be helpful in understanding the peculiar propertics
of BKBO in the insulating state and at the IM transition
boundary.

The Bag 9Ky 3, BiO, single crystal was grown by an elec-
trochemical method.* The lattice parameters were measured
by x-ray diffraction using a Rigagy D-max diffractometer
(Cu Ka. A =1.5405 A). After the optical measurements, the
crystal was ground into powder and x-ray diffraction mea-
surements were carried out on the powdered sample inter-
mixed with high-purity Ge powder which acted as an internal

Reprinted from Phys. Rev. B, p. R9855 (1995).

x-fay standard. The lattice parameters were refined by a
least-square fit routine with calibration against Ge. The po-
tassium concentration x was estimated from the linear rela-
tionship between pseudocubic lattice parameter @ and potas-
sium concentration x.°

For the optical measurements, one of the sample’s faces
was mechanically polished with a 1-u abrasive. Reflectivity
measurements were performed in the frequency range 25—
40000 cm ™! using the procedure described previously.® The .
optical conductivity was calculated by Kramers-Kronig
analysis of the reflectivity spectra, approximating the reflec-
tivity below 25 cm™! by a Hagen-Rubens formula at
T'=300 and 200 K and by a constant at the lower tempera-
tures. Ellipsometric measurements were performed on the
same crystal at frequencies from 10 000 to 50 000 cm ™!, and
the high-frequency reflectivity approximation was chosen in
such a way that the calculated optical conductivity was in
agreement with the direct ellipsometric results.

The reflectivity results presented on the upper panel of
Fig. 1(a) are unusual. As temperature is reduced from 300 to
120 K the reflectivity spectrum changes dramatically from
one typical of a (poor) conductor to that of a typical insula-
tor. Reflectivity changes with temperature at frequencies up
10 at least 8000 cm ™! (=11 600 K) and perhaps even higher.
While reflectivity changes rapidly at temperatures from 300
down to 120 K. below 120 K no temperature dependence
was observed. As a result, reflectivity spectra at 7=120 K
and T=35 K almost coincide except for some phonon sharp-
ening. This resembles the temperature dependence at midin-
frared frequencies seen in our previous study on a T,=31 K
sample.

The real part of the optical conductivity is shown in Fig,
1(b) and in Fig. 2. The inset of Fig. 2 shows that the high-

©1995 The American Physical Society.
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FIG. 1. (a) The experimentally obtained reflectivity spectra at
different temperatures. Note that T=120 and T=35 K spectra al-
most coincide. (b) The oy(w,T) spectra calculated from the reflec.
tivity resuits using the Kramers-Kronig analysis. Phonon spectrum
in BaBiO; [offset by 240 (0 cm)~'] is presented by the thin
dashed line.

frequency optical conductivity, obtained from Kramers-
Kronig analysis of the reflectivity, is in excellent agreement
with the ellipsometric results. Reliable resuits for the low-
temperature o(w) were obtained up to about 0.8 eV, limited
by the high-frequency limit of our low-temperature measure-
ments.

First we will concentrate on room-temperature results.
The optical conductivity clearly does nor show the narrow
Drude-like free-catrier part that was observed in the metallic
superconducting samples.® This indicates that the IM transi-
tion is directly associated with the appearance of this free-
carrier Drude component. The fact that the material becomes
a superconductor with T,=7"™*=3] K as soon as the K
doping is high enough for the Drude component to appear
strongly supports the suggestion made previously® that the
charge carriers responsible for the midinfrared component do
not directly participate in the superconductivity. Only the
itinerant metallic carriers responsible for the Drude compo-
nent contribute to the superconducting current at T<T.. The
incoherent [mean-free path [=~6-7 A (Ref. 6) compared
with the cubic lattice parameter a=4.3 A] midinfrared car-
riers remain normal, thus accounting for the finite absorption
below the superconducting gap frequency observed in the
optical experiments.®’

To compare the phonon spectra of BaggKg31BiO3 with
that of the undoped BaBiO; we have plotted the phonon
spectrum of BaBiO, (Ref. 8) using a thin-dashed line in Fig.
1(b). The same four modes are present in both materials but
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FIG. 2. The experimental optical conductivity spectra at several
temperatures (solid lines). The o\(w,T) spectra calculated using
Eqgs. (1) and (2) and parameters in text (dashed lines). The inset: the
optical conductivity at T=300 K calculated using the KK analysis
which includes high- and low-frequency reflectivity approximations
(solid line) and obtained from the direct cllipsometric measure-
meats (open circles).

at somewhat different frequencies. The frequency of the low-
est mode does not change significantly with increasing x and
the frequencies of the second and fourth modes move up
indicating an increase in their stiffness. Only the third mode
shows some softening with frequency reducing from about
245 cm™! at x=0 down t0 214 cm ™! at x=0.31 which may
be an indication of stronger electron-phonon coupling for
this mode.

We now focus on the temperature dependence of the re-
fiectivity and the optical conductivity. This dependence can-
not be understood in terms of a simple rigid band model with
a temperature-independent electronic band structure, First, as
we mentioned before, the temperature dependence occurs in
the energy range fiw=1 eV=11604 K which is much
higher than the experimental temperatures. Second, the rapid
temperatute dependence above T'* =120-150 K changes to
almost no temperature dependence below T°.

It should be noted that features at the characteristic tem-
perature T* can be seen in other transport experiments as
well. The dc resistivity py.(T) changes behavior at about this
temperature in both the highly doped (near the IM transition)
insulating samples and some of the metailic samples.”'©
Variable-range hopping (VRH) behavior with Pec(D)~
exp[ —(Ty/T)"*] where Ty=3-5x10® K has been re-
ported for the low-doped insulating samples.” The Hall
coefficient!! and the V-shaped linear background in the tun-
neling measurements on the metallic samples also show
changes in temperature dependence at T=T*,12 being tem-
perature independent below T°*.

In the rest of the paper we will show that the results of our
experiment, as well as the features at 7* in the transport



experiments pointed out above, can be understood at least
qualitatively in the framework of a polaronic model. A po-
laron is a quasiparticle composed of a carrier self-trapped by
its own interaction with a lattice taken together with the pat-
tern of atomic displacements that produces the self-trapping.
There are two types of polarons: large polarons (LP) where
the carrier is spread over several lattice sites and small po-
larons (SP) involving a single site.'® It was found in Ref, 13
that LP and SP systems have qualitatively different absorp-
tion spectra. Comparing these results with the observed
o(w) we conclude that if a polaronic model is to be used
for BKBO it should involve smail polarons. Because no iso-
lated spins have been observed at doping levels close to
x=03," a bipolaronic model with two electrons self.
trapped in a singlet at the Bi sites must be utilized. As a
result of the bipolaron formation, charge disproportionation
should occur giving, in the extreme case, alternating
Bi*3=(Bi**+2e") and Bi*$ configurations, Unfortunately,
although the optical conductivity of a polaronic system has
been described in detail,'*® bipojaronic models have at-
tracted much less attention. As a result, although the bipo-
laronic absorption has been described qualitatively," detailed
formulas for o\(w) are not available at this time.

The absorption process of a small polaron is one in which
a self-trapped carrier is excited from its localized state to a
localized state at a site adjacent to the original site. The small

polaron c;ptical conductivity can be described by the
equation:!

sinh(4E kw/A?)
oy(w,T)=0,(0,T) TﬁbwA—z——exp[—(ﬁw)z/Az],

1
A=2\2E,E,, @

where E, is the small polaron  binding energy,
a(0,T)=1/ps(T) is the dc conductivity, and A is a broad-
ening factor indicating by how much the localized levels,
between which the transition occurs, are broadened by the
atomic vibration with the characteristic energy E,;,. At low
temperature £, is just the zero-point vibrational energy
fiwyy2. At temperatures high enough for the vibrational mo-
tion to be treated classically, Eyi,=ksT. For sufficiently
strong electron-lattice coupling the small polaron absorption
is peaked at Aw=2E,.
The dc conductivity o,(0,T) is given by:!S

e | _16E 4g?
oy(0,T) =-’Z"cT“"/; T’zexP( - Kzﬁ

2
=1.08% 10572 2 eyp| — B2 (Q em]™!, (2)
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where J is the electronic transfer energy, n.=8.5% 102!
cm™? is the carrier concentration (assuming one electron per
Bi atom) and a=4.3%10"8 cm is the lattice constant,

The absorption process for a smail bipolaron is one where
the two electrons of the bipolaron are separated from one
another; one remains on the initial site while the second is
transferred to an undeformed neighboring site. The absorp-
tion spectra of small bipolarons are similar to those of small
polarons with the following modifications, 7 The peak en-
ergy of the absorption is 2E,=4E,~ U, where U=<2E,isa
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Coulomb energy associated with two carriers being on the
same site. In addition, having two carriers on the same site
doubles the uncertainty of the electronic energy, arising from
the atomic vibrations about the equilibrium positions. That
is, the broadening of the corresponding absorption peak
doubles. If one takes these semiempirical modifications into
account, Egs. (1) and (2) can be used to describe, at least
qualitatively, the small bipolaron absorption process pro-
vided that the substitutions 2E,—2E;=4E,—U and
A—oA'=4\/25vibE,', are made.

In the low-temperature limit, the optical conductivity of a
(bi)polaronic system does not show temperature dependence
(Eviv="H wyy2 is temperature independent) while extra peaks
may appear at frequencies equal to multiples of the phonon
energies.'*!S This is a consequence of the fact that if the
photon energy £w is not a multiple of a phonon energy
fiwg, especially in the weak-dispersion phonon limit, pro-
cesses involving both the absorption and emission of a large
number of phonons may be required in order to conserve
energy in a hop between sites. In the low-temperature limit
such processes will have much smaller jump rates compared
to the rates when fiw/hwy, is an integer. Indeed, as can be
seen in Fig. 1(b), as temperature is lowered, an additional
feature appears in the optical conductivity spectrum with a
frequency double that of the third phonon mode,
Aw=2fwy=428 cm™!. We note that this phonon mode is
the one that demonstrates softening with increasing
K-doping level. No other additional features have been ob-
served 1o appear with decreasing temperature which may be
due to either stronger dispersion of the other phonons or their
relative unimportance for the bipolaronic excitations. If one
considers the mode at Awy=214 cm™! to be the main con-
tributor to the bipolaron formation then the characteristic
lemperature of the crossover into the low-temperature regime
T* can be estimated as T* =fw;/2kg=150 K in good agree-
ment with 7* =120 K found in our experiment.

We start by using Eq. (1) to describe the optical con-
ductivity at T=300 K. From Fig. 1(b) we obtain
@1(0,300 K)=380 (£ cm)~'. Taking the high-temperature
limit E;,=kgT we have only one parameter £, left and it is
completely determined by the position of the absorption
maximum to be £,=5200 cm™*. The calculated oy(w,300
K) is shown in Fig. 2 by the dashed line. Having determined
E; we can estimate J=1775 cm ™~} =220 meV. Using this J
value we can determine &,(0,200 K)=147 (2 cm)~! and
calculate o,(w,200 K) for this temperature using Eq. (1).
The o) (w,200 K) thus calculated is presented in Fig. 2. The
optical conductivity at temperatures T'= 35 and 120 K should
be considered to be in the low-temperature limit. In this case
we substitute for E.p the zero-point motion energy
Awp/2=ksT*=83 cem™!. Using (0,120 K)=14
(2em)™! we calculate o1(w,120 K) which is shown in
Fig. 2.

One can see that even this oversimplified analysis with no
free parameters gives a reasonable description of the overali
shape and the temperature dependence of the optical conduc-
tivity observed experimentaily. On the high-frequency side,
agreement with the experimental results can be improved by
including in our analysis the high-frequency interband tran-
sition seen in Fig. 2. On the low-frequency side the main



difference is that while the calculated oy(w) has an expo-
nential frequency dependence, the experimental o (w) is al-
most linear in frequency. Disorder is an additional system
complication which may be included. A distribution of local
fields generaily replaces a single absorption band by a distri-
bution of absorption bands whose centroids are displaced
from one another. In this manner, disorder due to the mixture
of K and Ba ions will broaden small bipolaron absorption.
Different disorder models would yield different distributions
of the peak’s centroids.!?

Smali (bi)polarons are generally hard to form in the pres-
ence of only short-range interaction. A fair amount of a “sta-
bilizing” long-range (Frohlich) electron-phonon interaction
makes the small (bi)polaron formation much casier. The
long-range electron-phonon interaction with A<0.35 (Refs.
6, 14, 18) reported for the superconducting phase of BKBO
may serve this purpose. It is interesting that some models of
high-temperature superconductivity in the cuprate materials
involve short-range next-neighbor interactions as well, for
example, the d-wave model'¥ where the interaction is taken
to be mediated by the local magnetic moments. One can
speculate that a short-range electron-mediator-electron inter-
action might be the common feature for the mechanism of
high-temperature superconductivity in the cuprates and
BKBO system.

Recently, an explanation of the temperature and voltage
dependence of the V-shaped tunneling background in terms
of bipolaron (negativc-U two-particle state) formation has
been suggested.! Bipolaronic models have been discussed
for this material based on the results of Raman-scattering
measurements® and foom-temperature optical absorption
measurements performed on powdered samples.’! The tem-
perature dependence of the dc resistivity in a disordered po-
laronic system can be casily mistaken for variable range hop-
ping behavior. The exceptionally high values of Ty~ 108 K
obtained in Ref. 9 supports this hypothesis. Namely, an esti-
mate of the localization length d from the equation
kyTo=16[N(EF)d*]™" using density of states N(Ej)

~10%" (cmeV)™! and T,=10% K gives d=1.2 A, smaller
than the interatomic distance. The polaronic model allows
explanation for the large values of T,.2

Finally we note that although the bipolaronic model used
in this study allowed us to explain both the shape and tem-
perature dependence of o,(w,T) for Bay 0K 3;BiO;, the
absorption peak in the undoped BaBiO; is too narrow by a
factor of two to be described by Egs. (1) and (2). There are
several possible reasons for this discrepancy: (i) The real
CDW order accompanied by the frozen breathing-mode dis-
tortions, which were observed experimentally at low x,’ may
modify the simple model presented in this work; (ii) Our
choice of the bipolaronic model was based on the experimen-
tal fact that no isolated spin is present at doping level
x=031. However, it was reported at least for
BaPb,Bi, _, 0, that with decreasing x, the paramagnetic part
Xpan Of the total magnetic susceptibility x,o is rising, mak-
ing BaBiO, more paramagnetic than the metallic material.
Therefore, our choice of the bipolaronic model may be inap-
propriate for BaBiO,.

Summarizing, we have performed refiectivity and ellipso-
metric measurements on the nonmetailic member of the
BKBO family Bayg 9Ky 3,BiO; in a frequency range from the
far infrared to the near ultraviolet. The optical conductivity
has been caiculated using a combination of Kramers-Kronig
analysis of the reflectivity spectra and direct ellipsometric
results. Analysis of the experimental results in terms of a
small bipolaron model allowed us to explain both the shape
and peculiar temperature dependence of the optical conduc-

tivity as well as qualitative behavior of some other transport
properties.
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4.3 The doping dependence of the optical prop-
erties of Ba;_,K,BiO;

This paper is an extension of the results and discussion presented in the preceding
article. Since we believe that we have obtained a good evidence for formation of
the space-localized electronic pairs, or bipolarons, in BKBO with = = 0.31, it is
logical now to examine if bipolaron formation can be responsible for the other unusual
properties of BKBO, in particular the doping dependence of the optical conductivity
and the IM transition.

In this paper we analyze the doping dependence of the optical conductivity of
Ba,_.K;BiO; in the whole accessible doping range using the partial sum rule analysis
of the conductivity. We argue that the bipolaronic model presented in the previous
section is at least a plausible possibility for explaining the nature of the doping-
induced changes in the physical properties of BKBO. However, only more research,
in particular theoretical, can provide a final answer on the validity of this model.

We also present the experimental data on three metallic and superconducting
single crystals at different doping levels. We examine the doping dependence of the
normal-state optical conductivity, the superconducting gap energy, and the density
of the superconducting charge carriers.



78

The doping dependence of the optical properties of Ba,_.,K.BiO;.
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We analyze the doping dependence of the optical conductivity of the Ba,-.K.BiO3; (BKBO) system
in the full doping range from z = 0 to z = 0.46. We have used the results of our reflectivity and
ellipsometric measurements at z = 0.31,0.38,0.4,0.46, as well as the results obtained by other
experimental groups at different doping levels, to analyze the doping dependence of the spectral
weight distribution. At the insulator-metal transition boundary we observe the appearance of a
Drude-like free-carrier peak in the optical conductivity. In the metallic phase, we have performed
measurements in the normal as well as the superconducting state. The data show that BKBO
becomes a better metal with increasing z in the metalilic regime due to a decrease in the scattering
rate of the metallic charge carriers, while the density of the mobile (Drude) charge carriers does
not significantly change with doping. The London penetration depth A_ is also found to be almost
doping (and T.) independent while the superconducting gap scales with T: as 24, /ky T = 4.240.3.

PACS numbers:71.30.+h, 71.38.+i, 74.25.Gz

In the last two years several experimental reports re-
garding the insulator-metal (IM) transition and the evo-
lution of optical properties as a function of doping level
z in Ba;_;K;BiO3; (BKBO) have been published.!? In
this paper we use the large amount of experimental ma-
terial accumulated to date to discuss the properties of
the BKBO system in the non-metallic phase using sum-
rule analysis. In the metallic phase, optical studies of
the doping dependence have previously been done, to our
knowledge, only at room temperature and at relatively
high photon energies. We fill this gap by performing re-
flectivity and ellipsometric measurements in a combined
range of 30-50000 cm ™! on three superconducting BKBO
single crystals (T.=21, 28, 31K).

The BKBO single crystals used in this study were
grown by an electrochemical method.? The lattice param-
eters were measured by x-ray diffraction using a Rigagu
D-max diffractometer (Cu Ke, A = 1.5405 A). After the
optical measurements. the crystals were ground into pow-
der and x-ray diffraction measurements were carried out
on the powdered sample intermixed with high-purity Ge
powder which acted as an internal x-ray standard. The
lattice parameters were refined by a least-square fit rou-
tine with calibration against Ge. The potassium con-
centration z was estimated from the linear relationship
between pseudo-cubic lattice parameter ¢ and potassium
concentration z.4

The optical experiments were performed at tempera-
tures ranging from T./3 to room temperature. We have
used Kramers-Kronig (KK) analysis of reflectivity, sup-
plemented by results of ellipsometric measurements, to
obtain the complex optical conductivity o(w) in the nor-
mal and the superconducting states.

The undoped material BaBiO; has one electron per
unit cell and therefore should be a metal with a half-

OReprinted from Phys. Rev. B, p. 6686 (1996).

filled conduction band. However, it is in fact an in-
sulator. Experimentally observed frozen breathing-type
lattice distortions'® led to a suggestion that BaBiO; is
made insulating by a charge-density wave (CDW) insta-
bility that opens a gap on the Fermi level, splitting the
conduction band into two sub-bands: a filled lower CDW
sub-band and an empty upper CDW sub-band.¢® How-
ever, this model leaves some questions unanswered. In
particular, there is no clear understanding of the nature
of the mid-infrared, called hereafter "MIR", absorption
peak at non-zero doping levels. Also, results of band
structure calculations indicate that the observed lattice
distortions are not sufficient to produce a gap in the elec-
tronic density of states.” Another model, advanced to ex-
plain the insulating nature of BKBO at low doping levels,
involves real-space pairing of electrons in pairs strongly
localized on the Bi sites: small bipolarons.® There is a
number of experimental results that favor the bipola-
ronic model, including those of Raman scattering,? infra-
red reflectivity,!® and high-resolution electron energy loss
spectroscopy.!! Several recent reports on the doping de-
pendence of optical properties of the BKBO system!-2:10
allow us to examine this problem once again on a more
quantitative level.

We will first concentrate on the properties of the
BKBO system in the non-metallic phase and at the IM
transition boundary. The optical conductivity of in-
sulating BKBO shows a well resolved MIR peak with
a maximum at fiwmaz, equal to 2 eV in the undoped
BaBi0;.!*1? As the doping level z increases, the posi-
tion of the maximum of the MIR absorption shifts gradu-
ally to lower energies. However, this contribution to the
optical conductivity can be observed at all doping lev-
els. The IM transition occurs at z.~0.33 — 0.35 and is
illustrated in Fig. 1, where optical conductivity is shown

©1996 The American Physical Society.



§

§

Re Conductivity (Q cm)"

.. -
R IO A

o M U R B
0 5000 10000 15000 20000

Wave number (cm™')

FIG. 1. The optical conductivity of Ba1--K:BiO3a just be-
low and just above the insulator-metal transition. The charac-
teristic energies fuwmaz and fiwp, used in the text, are shown.
The inset: The lines represent the real part of the optical con-
ductivity obtained from the KK analysis of reflectivity spec-
tra. The symbols show results of ellipsometric measurements.

for the non-metallic sample with z = 0.31 and for the
metallic sample with £ = 0.38. The difference between
the two curves is qualitative: while in the metallic sample
hwmaz has collapsed to zero so that no clear maximum
can be seen in the MIR absorption band, an additional
free-carrier like narrow (1/7<300 cm~!) absorption band
has appeared at low frequency.!3 This latter absorption
component, called hereafter "Drude” absorption band, is
responsible for the metallic properties of this material at
doping levels = > z..

The MIR absorption band in BKBO is well separated
from the rest of the interband absorption allowing us to
employ a finite-energy f sum rule analysis to obtain the
plasma frequency associated with the MIR absorption,
wpmrr- The key requirement that must be satisfied in
order for the finite-energy f sum rule to hold is that the
absorption in question be sufficiently isolated. In this
case the plasma frequency associated with the isolated
absorption is calculated as an integral of the real part
of the optical conductivity over energies from zero to a
cut-off energy fiwg,' that must be chosen to exhaust the
oscillator strength of the absorption in question but lie
below the rest of the absorption bands. If fiwg is extended
to infinity one obtains conductivity f sum rule where
the plasma frequency w, is given by the total density of
electrons in the material (including inner-shell electrons),
w;", = 4mwne?/m,, where n is the density of electrons and
my is a bare electron mass.

In analogy with the f sum rule we can define an ef-
fective density of electrons contributing to the optical
transitions represented by the MIR band, n.s;, by
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FIG. 2. (a) Large symbols: the doping dependence of the
peak energy of the MIR absorption band. Crosses: the doping
dependence of temperature of structural transition into the
high-temperature cubic phase, Tcusic, plotted as described
in the text. (b) Large symbols: the doping dependence of
the spectral weight of the MIR absorption band obtained as
described in the text. The straight line shows the doping de-
pendence of the spectral weight as expected from the chemical
composition. The small dots near the straight line were ob-
tained using the actual lattice parameters. (c) The doping
dependence of the factor A(z), obtained using results shown
in panel (b).

w2y = 4mm.rre? fmp. On the other hand, the density
o{ electrons n can also be determined from the chem-
ical composition using the concentration of Bi ions z:
n(z) = (1 - £)/v., where v, is a volume per Bi ion. The
n(z), calculated this way, is plotted as the straight line
in Fig. 2b. To calculate the straight line, average lat-
tice parameters of the BKBO system were used to ob-
tain v.. Taking into account the actual changes in the
lattice parameters with doping does not change the re-
sult significantly: we have used experimentally obtained?
lattice parameters to calculate n(zx) at several z and the
results, shown by the small dots, are very close to the
straight line. In an analogy with the case of metals with
strong electron-phonon interaction,!® we define the opti-
cal effective mass m* = n/n.s;, or mass enhancement
factor A = m® — 1, as a quantity that measures the
amount of the conductivity spectral weight moved to en-
ergies hw > hwp through the optical transitions other
than those represented by the MIR absorption band. If



fuwy is large enough so that all possible optical transi-
tion processes are taken into account the optical effective
mass is equal to the bare electron mass m* = 1 and the
oscillator strength is determined only by the density of
electrons n. Filled core electron bands may give their
own correction to the effective mass value due to the
Pauli principle. This correction is, however, estimated to
increase valence/conduction electron oscillator strength
by only about 10 —20%"¢ and will therefore be neglected
in further discussions.

We have used gy(w) obtained by different groups on
Ba,_.K;BiO; at different doping levels to obtain the
doping dependence of the oscillator strength of the MIR
absorption peak, performing integration of ¢, (w) as de-
scribed above. The typical choice of the cut-off frequency
is shown in Fig. 1 while the results of our integration are
presented in Fig. 2b. We note that the Drude mobile elec-
trons at z > r. have a relatively small oscillator strength
(about 6% of the MIR) so that the resuits presented
in Fig. 2b effectively represent oscillator strength of the
MIR electrons even for the metallic samples. For the
metallic samples we have used the loss-function method!¢
(with the high-frequency dielectric constant taken from
our ellipsometric resuits) as an alternative to the sum-
rule method. The results obtained from the loss function
analysis are plotted by the open circles.

In this kind of calculation a high degree of accuracy
in measuring the absolute value of optical conductivity
is obviously very important. Therefore for the heavily
doped insulating as well as the metallic samples, where
both low- and high-frequency parts of the optical con-
ductivity spectrum contain significant spectral weight, a
combination of ellipsometric (above 1 eV) and reflectivity
(from 25 cm™! = 3.1 meV) results have been used. The
nearly perfect agreement between the ellipsometric re-
sults, which give dielectric constants above 1 eV directly,
and 0 (w) obtained from KK analysis of reflectivity data,
is shown in the inset of Fig. 1. Spectral weight values
obtained from results of different experimental groups at
different doping levels are consistent with each other giv-
ing a smooth doping dependence. A measure of incon-
sistency is given by the mismatch of the two oscillator
strength values at £ = 0 obtained from the results of
two different groups that used different optical methods
on thin films and single crystals. The inconsistency is
about 25% and can possibly be due to an error in choos-
ing a high-frequency reflectivity approximation in Ref. 2,
where o (w) was obtained by KK analysis of reflectivity.
Ellipsometric measurements give dielectric constants di-
rectly in the energy range of the MIR absorption at £ = 0
and therefore we consider the value obtained by Karlow
et al. to be more reliable. Still, 25% can be considered
to be our experimental error in evaluating the oscillator
strength.

Results for the doping dependence of the oscillator
strength n(z)/m*(z) obtained using sum-rule analysis
(large symbols in Fig. 2b) are remarkably different from
those expected from the chemical composition (straight
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line in Fig. 2b), leading to high values of m* at low dop-
ing levels, with the highest value being that for the un-
doped BaBiO; m*(0) =~ 3. These high values of m*
mean that there is a high-energy (hw > Awg) absorp-
tion, not included in our integration, that contains a
significant part of the spectral weight. Put differently,
not all possible optical transitions involving n(z) chem-
ically doped electrons have been included in our inte-
gration. The doping dependence of the mass enhance-
ment factor A(z) = m*(z) — 1, obtained from the ratio
of n(x) to n(z)/m*(z), is plotted in Fig. 2c. The value
of A(z)/(A(z) + 1) gives a fraction of the spectral weight
contained at high frequencies so that A(0) ~ 2 means that
in BaBiO3 about 2/3 of the total spectral weight due to
n(x) chemically doped electrons is contained in the high
energy region above fusp. The region of fastest change
in A(z) with doping is below z = 0.2. At z > 0.2 A(z)
is almost doping-independent and is approximately equal
to 0.5, that is the spectral weight contained in the higher
energy region is only half of that contained in the MIR
absorption band. Estimating our error range somewhat
pessimistically, we can not say with certainty whether or
not A is zero at z = 0.46.

Let us see if the CDW model where a single gap opens
in the spectrum of electronic excitations, can provide an
explanation for the observed doping behavior of the spec-
tral weight. The opening of a single gap in the middle
of an initially half filled conduction band redistributes
electronic density in the energy region covered by the
conduction band creating filled lower sub-band and an
empty upper sub-band. As a result a single peak ap-
pears in the absorption spectrum positioned at the gap
energy corresponding to electronic excitations from the
lower sub-band to the empty upper sub-band. Assuming
that no other optical transitions became possible with
the opening of the gap, that is, for example, electronic
states in both sub-bands are still well defined so that no
incoherent processes such as those involving emission or
absorption of a phonon occur, the optical effective mass
of the resulting interband absorption peak must still be
equal to unity. In other words opening of a single gap
piles up the spectral weight at energies above the gap
value, preserving its total integrated value. Therefore,
we conclude that the distribution of the spectral weight
discussed above can not be explained by a single gap in a
density of states only. Optical excitation processes other
than direct excitations across the gap are required.

One such possibility to account for the "missing” spec-
tral weight is to assume that it is contained in the ab-
sorption bands corresponding to high-order interband
excitations (that is transitions from lower CDW sub-
band to bands higher than upper CDW sub-band in the
CDW model, for example). However, high-order inter-
band transitions usually have matrix elements smaller
than that for the first interband transition and therefore
do not contain a significant part of the spectral weight.
Even if for some reason matrix elements of such transi-
tions are unusually large in BKBO so that they account
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FIG. 3. The antiferromagnetic-type (bi)polaronic lattice.
The (bi)polaronic sub-lattice is the sub-lattice A, the empty
sub-lattice is the sub-lattice B. The lower part of the dia-
gram shows schematically the energy configuration for one
Bi*3—Bi*? row with parameters discussed in the text. Pola-
ronic lattice, at doping z = 0.5, will look similar but each site
in the sub-lattice A will contain only one electron

for a considerable amount of the spectral weight (twice
that for the lower-to-upper sub-band transitions!) it is
unclear why the fastest change in the amount of this spec-
tral weight occur in the doping region from z = 0 to
z = 0.2, the region of slowest change in the position of the
MIR absorption peak fiuwvmqaz, associated with the elec-
tronic gap energy, and, therefore, with the band structure
itself. Also, the first interband absorption peak above
2 eV can be observed at all doping concentrations,! in-
cluding those where A~0 and therefore all of the chemi-
cally doped electrons are accounted for by the MIR ab-
sorption. We consider this behavior an indicator that it
is unlikely that the missing spectral weight is associated
with high-order interband transitions.

Another way to account for the spectral weight dis-
tribution is through incoherent processes. As we have
noted before, a number of publications appear to support
the real-space electron-pairing (small bipolaron or local
CDW) model for BKBO. This model is different from the
conventional CDW model in that bipolaron motion is in-
coherent due to severe localization of the electron pairs.
We will examine the small bipolaron model next.

A small bipolaron (SBP) consists of two charge carri-
ers strongly localized on a single site by their own short-
range interaction with the jattice, taken together with
the lattice displacement pattern caused by the interac-
tion. Although a small bipolaron can be formed with a
pair of holes as well as a pair of electrons. in the following
by a small bipolaron we will mean the one that includes a
pair of electrons. As a result of the electron-lattice inter-
action a potential well of depth —4E, is formed. where £},
is the small-polaron binding energy.!” The ground-state
energy of a SBP is, however, increased by the on-site
Coulomb interaction energy U, a result of two electrons
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being on the same site. A small polaron is similar to a
small bipolaron but contains only one electron.!” A sin-
gle SBP is stable with respect to decay into two small
polarons if the Coulomb energy U satisfies the condition
U< 2E¢,."

We note that the bipolaronic model implies a doubling
of the unit cell by a lattice modulation similar to what
is observed experimentally in the undoped BaBiOj;.45
In analogy with small polarons,!® there is a strong re-
pulsive interaction between two neighboring SBP's in
BKBO as they disturb each other’s pattern of oxygen
ion displacements, thus raising the total energy. The
interaction becomes weaker as the average distance be-
tween SBP’s is increased. BaBiO3 has one electron per
formula unit and therefore the number of SBP’s is half
the number of Bi ions. As a result, individual SBP’s are
situated close to each other and the energy of interaction
between SBP’s is an important part of the total energy.
Using a magnetic analog of this system it can be shown®
that, taking the interaction into account, the lowest en-
ergy is given by an antiferromagnetic-type configuration
such as the one shown in Fig. 3. There are two inter-
leaving fcc sub-lattices in this configuration: bipolaronic
(Bi*3=Bi** +2e~) sub-lattice A and empty (Bi+®) sub-
lattice B. The Bi*S sites are strongly screened by overlap
from the oxygens so that no site is strongly charged.!?

A bipolaron can be excited in two ways. In the first
scenario the pair of electrons associated with a bipolaron
is excited to a neighboring Bi*® site as a whole (two-
particle excitation). This gives a peak in the correspond-
ing absorption spectrum at fws = 8E}, + 2A,2° where by
A we denote the difference in energy between the two
sub-lattices due to bipolaron-bipolaron interaction. The
second scenario involves pair-breaking with excitation of
a single electron (single-particle excitation). This gives
an absorption peak at hw, = 4E, — U + A.?° The condi-
tion for formation of a single smail bipolaron. U < 2E;,
is relaxed to a condition of stability of a bipolaron with
respect to decay into one small polaron on sub-lattice
A and one on sub-lattice B, U < 2E, + A. In fact, if
2Ey, < U < 2E, + A a lattice of small bipolarons may
form although formation of individual small bipolarons
is not energetically favorable. The peak frequency of the
absorption band corresponding to the one-particle excita-
tions, fiwy, is always smaller than that corresponding to
the two-particle excitations, w;. The two processes can
in general coexist, giving two peaks in the correspond-
ing optical conductivity. The spectral weight under both
peaks must correspond to the total number of chemically
doped carriers (or double the number of bipolarons) in
a system. Therefore, the bipolaronic model can in prin-
ciple provide an explanation for the fact that the spec-
tral weight under the low-energy peak in the non-metallic
BKBO is too small — the rest of spectral weight may be
contained in the absorption peak corresponding to the
two-particle excitation process.

One difficulty arise here. It has been shown?! that the
exponential terms in the expressions describing intensi-



ties (and spectral weights) of the absorption peaks corre-
sponding to the two- and single-particle excitations are
comparable. However, the SBP absorption intensity in-
volves a pre-exponential factor, proportional to t2 for the
two-particle excitations and to ¢} for the single-particle
excitations. where t; is a two-electron transfer energy
(of order of an exchange energy) and ¢, is a one-electron
transfer energy. The value of ¢; is usually smaller than ¢,
and, therefore, at least for a dc motion of a single bipo-
laron by temperature-assisted hops in a periodic crys-
tal potential, the single-particle excitation mechanism is
thought to be more favorable!® so that the lower-energy
(single-particle) absorption peak is supposed to be more
intense. The experimental situation, at least for the un-
doped BaBiQj, is just the reverse: the low-frequency ab-
sorption peak contains just about 1/3 of the total spec-
tral weight. However, the transfer energies for the ther-
mal bipolaronic dc motion and the bipolaronic optical
absorption may be different as they strongly depend on
the atomic displacements.?® In case of dc motion one
is interested in the transfer energy of thermally equili-
brated carriers. In case of optical absorption one is con-
cerned with the transfer energy of a carrier at the coin-
cidence event between energies of initial and final elec-
tronic states. Also, imperfections in the bipolaronic lat-
tice, such as singly occupied sites, can give their own con-
tribution to the optical conductivity through such pro-
cesses as, for example, hop of an electron from a doubly
occupied site to the singly occupied site. The energy re-
quired by such processes may be smaller or larger than
the energy of the main single-particle excitation process,
hwy = 4E, — U + A, depending on the relation between
E, and A. Detailed perturbation theory calculations (in-
cluding terms up to t{) for a lattice of bipolarons would
be helpful to the understanding of the optical transition
probabilities and, therefore, the exact conductivity spec-
tral weight distribution expected for this system.
Doping with potassium destroys bipolarons. When z
is small, substituting K* for Ba2+ has an effect of tak-
ing one electron from a pair on an adjacent Bi3* site.
The electron that is left is, however, still localized on
the Bi site in a potential well created by the surround-
ing bipolaronic lattice. At the same time. destroying
a pair decreases the local energy difference A between
B and A sub-lattices, making the surrounding electron
pairs less stable and decreasing the bipolaronic hopping
energy. Therefore, the frequency of the one-particle ex-
citation peak in the optical conductivity will be reduced.
Also, the spectral weight will shift to lower frequencies
as there are fewer possibilities to excite a pair as a whole
— there are fewer pairs. When doping is large enough so
that a bipolaron coordination number z is smaller than
a certain critical value 2. and U > 2E, + A, a first-order
phase transition with discontinuous reduction of electron
pairs will occur. However, the remaining electrons still
strongly interact with the lattice so that in the hypothet-
ical case where the transition occurs at z, = 0.5 (and
there are no remaining bipolaronic islands) they would
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arrange themselves in a polaronic lattice similar to that
shown in Fig. 3 for bipolarons. However, if the transition
occurs at z. < 0.5, there are too many electrons left to
form the antiferromagnetic-type lattice of Fig. 3. The
extra (0.5 - z.) electrons have no place in the (now pola-
ronic) sub-lattice A since the Coulomb repulsion U is too
large to form a bipolaron. On the other hand, if they try
to form polarons on the sub-lattice B they disturb the
atomic displacement patterns of neighboring polarons on
sub-lattice A, reducing their stability and possibly releas-
ing some of the localized carries. Therefore, if z. < 0.5
the electronic system may consist of dynamically occu-
pied extended and localized states. This may explain
the two optical absorption components: the MIR band
represents electrons in the localized (experimental mean-
free path about 6 A) states and the Drude absorption is
due to charge carriers in the extended states (mean-free
path of several hundred A's). Experimentally, the spec-
tral weight of the Drude electrons is about 6% of that of
the MIR electrons at all metallic doping levels. However
it is difficult to assess if it is consistent with the model
described above without detailed self-consistent calcula-
tions, in part because some fraction of the electrons may
still be contained in the remaining bipolaronic islands.
We note that our results do not exclude a possibility that
the itinerant charge carriers are large bipolarons, which
are bosons and may condense into a superfluid-like state
at low temperatures.

It is interesting to compare the electronic gap in the
BKBO system with the transition temperature from the
"deformed” lattice configuration shown in Fig. 3 into
the simple-cubic lattice phase, Tcysic. We have plotted
Teubic, adopted from Ref. 7, by the crosses in Fig. 2a
as a function of doping together with the peak energy
of the MIR absorption. The temperature scale has been
chosen to normalize T, ypsc t0 Awmqr values. Also, we
have put the zero of Tys:c near the lowest fiwmax value
corresponding to the lowest excitation energy of paired
electrons, at z just below the IM transition boundary z..
This minimal value of fuwmg; is equal to the excitation
energy of a small polaron. Therefore, we effectively com-
pare Tcyup with the reduction of electronic energy due
to formation of pairs. The result is that the two quanti-
ties have surprisingly similar doping dependence suggest-
ing an intimate relationship between the lattice vibra-
tions and the dielectric properties of in BKBO. However,
the large difference in absolute values (about 20 times)
still needs an explanation. Also, high-temperature de
transport measurements would be useful to determine
the properties of the high-temperature phase of undoped
BaBiO3, in particular to dewermine if it is actually metal-
lic.

Although it has been shown a number of times*®:23
that the superconducting properties of metallic BKBO
are closely related to those of the BCS model. results of
a number of experiments indicate that the usual Fréhlich
electron-phonon interaction is not strong enough to ob-
tain T, ~ 31 K.22726 It was concluded therefore that,
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FIG. 4. The optical conductivity of the three metallic sam-
ples BKBO in the superconducting and the normal states.
The results of magnetization measurements are shown on the
inserts. The scattering rate values 1/r in the normal state
are shown on the frequency axis for all three samples. The
shaded squares represent the spectral weight of the supercon-
ducting carriers. The London penetration depth Ap is in-
versely proportional to the side of the square. The position of
the superconducting gap energy 24, is shown by the arrows

although the mechanism of superconductivity in BKBO
is probably BCS, electron-electron interaction is not me-
diated by phonons in the usual way.2?2 We note in this
respect that electrons, occupying the extended states in
the system described above, may be prone to a relatively
strong electron-electron interaction due to polarizability
of the localized states. It has been shown that high val-
ues of T, can be achieved in a BCS model with such
interaction.?”

The optical conductivity for the metallic samples just
above T. and at T=T./3 is plotted in Fig. 4 at three
different doping levels. The MIR absorption component
is an almost flat background in this frequency range and
has about the same value for all doping levels presented.
The metallic BKBO is frequently thought to be an "over-
doped” system,”® that is both decrease of T, and im-
provement of the metallic properties are thought to be
connected to an increase of the total density of metal-
lic carriers. However, we did not observe a significant
increase in the density of normal-state metallic (Drude)
electrons with increasing z from z = 0.38 to z = 0.46,
while low-temperature dc conductivity increased more
than twice and T, fell by 30%. The increase in the dc
conductivity value with doping is mainly due to the de-
crease in the scattering rate 1/r. The normal-state 1 /T
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values of the Drude absorption at different = were deter-
mined from a fit to a two-component model similar to
that used by us before?® and are shown on the horizon-
tal axis for the three doping levels. The simultaneous
reduction of T, and scattering rate with increasing z in
the metallic regime suggests that 1/ may include scat-
tering of free carriers on bosonic excitations that mediate
the superconducting pairing at low temperatures and are
responsible for transport scattering.

The low-frequency depression of oy (w) at T<T. is due
to formation of the superfluid. We can roughly esti-
mate the pasition of the superconducting gap 2A, as
shown in Fig. 4 by arrows on all three panels. The gap
energy decreases with decreasing T., keeping the ratio
24,/kgT. = 4.2£0.3 constant. The spectral weight that
disappears in the superconducting state is contained in
a é-peak at zero frequency and represents carriers that
have condensed into the superfiuid. Therefore the "miss-
ing" spectral weight is the spectral weight of the super-
conducting carriers and we can use it to estimate the
London penetration depth value A;. We have performed
the necessary calculations and the result is that within
our error range Ay has the same value 3750100 A at all
doping levels, despite different T.'s.28 To make it more
graphic we have drawn squares of areas equal to the spec-
tral weight "missing” in the superconducting state for ali
three doping levels. The sides of the squares are inversely
proportional to Ay and one can see that they are equal for
all three samples. The areas themselves are proportional
to the density of the superconducting carriers. Although
the physical reasons for insensitivity of A to the doping
level are not clear, one can see that there are two factors
contributing to it: decreasing superconducting gap value
and a decreasing scattering rate. While decrease in the
scattering rate tends to pile up more conductivity be-
low the superconducting gap energy in the normal state,
increasing the number of carriers that condense into a
superfluid at T<T., decrease of the superconducting gap
value tends to compensate for this.

In conclusion we have shown that the anomalous dop-
ing dependence of distribution of the optical conductivity
spectral weight in the BKBO system can not be explained
within the framework of a coherent-transport model with
well-defined energy bands. This naturally leads to lo-
cal a CDW. or bipolaronic, model. We have shown that
this model can, at least qualitatively, explain some of
the physical properties of the BKBO system. including
the IM transition. However, we strongly emphasize that
only more rigorous calculations than those presented in
this work can provide the final answer. Experimentally,
the IM transition at z = z, is associated with the appear-
ance of the narrow free-carrier like Drude absorption peak
in the optical conductivity spectra. As the doping level
increases in the metallic phase the width of the Drude
peak decreases, increasing the dc conductivity value. At
the same time the density of free carriers represented by
the Drude absorption, as well as the London penetration
depth value A, at T=T,./3, do not change much with



doping. The superconducting gap value A, scales with
Te in a rough proportion 2A,/ksT, = 4.240.3.
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Appendix A

The extended Drude formalism

A.1 The Complex Memory Function.

The classical Drude formula for the dynamical conductivity o(w) = o, (W) + ioa(w)
[Timusk89, Ashcroft76] can be obtained by using a standard Boltzmann equation and
approximating the collision integral with a single collision frequency 1/7. The Drude
formula describes the free-carrier contribution to o;(w) as a Lorentzian peak centered
at zero frequency with an oscillator strength w?/8, where w? = e?/(3w2h)[v-dSF and
v is the electron velocity and Sr is the element of Fermi surface. For a spherical Fermi
surface w) = 4wne’/m., where n is the free-carrier density and m, is the electronic
band mass. The Lorentzian width is determined by a constant scattering rate 1/7.
The imaginary part of o(w) is just the real part multiplied by wr:

2 w? T o T

drl/T —iw 471+ (wr)? | 1+ (wr)?

A derivation of Eq. A.1 by using the standard kinetic Boltzmann equation

(A1)

assumes that the system of elementary excitations are well-defined. However, a de-
scription of a system by using elementary excitations is possible, strictly speaking,
only if the (energy) width of the wave packet representing the electronic excitation is
small compared to the energy of the packet. In more formal language, for the approx-
imations leading to Eq. A.1 to be valid, a spectral function of electronic excitations,
defined as:
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1 1 Im¥(w)
Ak, w) = —;r-llmG(k,w)I T (w— e — ReZ(w))? + (ImZ(w))?’ (A-2)

must be a narrow peak centered at w = ¢ + ReX(w). Here G(k,w) is a Green
function of electronic excitation and L(w) is the self-energy part. The narrowness of
the peak means that the excitation energy must be much larger than the damping
term y(w) = —2ImXE(w). This is certainly true in case of standard Fermi-liquid
theory, where ReX(w) ~ w and ImE(w) ~ w? so that the electronic excitations
(quasiparticles) are well-defined at zero temperature and energies close to the Fermi
energy Er. [Abrikosov75] It can also be shown [Shulga91] that a weak electron-phonon
coupling, although it violates the quasiparticle description at energies very close to
E'r, does not drastically change the transport properties at low temperatures, since in
this case the number of electronic states where the quasiparticle description is violated
is small. Therefore, the Drude formula is applicable only for simple metals at low
frequencies and low temperatures where elastic scattering from impurities and weak
quasielastic scattering from thermally excited excitations such as phonons dominate.
[Timusk89, Shulga9l]

On the other hand, following the original ideas of Anderson, [Anderson87] it
is now widely accepted that the electronic system of HTSC materials represent a new
kind of quantum liquid and the simple Fermi-liquid quasiparticle description is not
applicable to the normal-state properties of these materials. For example, the key
ingredient of the phenomenological "marginal” Fermi-liquid theory, [Schmitt-Rink88)
advanced to explain these properties, is the assumption that the Im¥X(w) ~ w and,
consequently, ReX(w) diverges logarithmically at the Fermi energy, thus making
G(k,w) entirely incoherent at Er. On a more microscopic level, a similar result is
expected for the quasi-one dimensional Hubbard model, which was identified by An-
derson as an appropriate paradigm for the resonant valence bond (RVB) description.
[Anderson87] Even in more Fermi-liquid-like scenarios, sufficiently strong coupling of
an electronic system to a bosonic energy spectrum may result in a violation of the
quasiparticle description. [Shulga91] In addition, the Fermi energy is estimated to be
only Ep =1 — 2 eV, which is not much larger than the energies probed in infrared
experiments (4-300 meV). Such a low Er may be another reason for violation of a
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quasiparticle description. Since this implies the absence of well-defined elementary
excitations, the approximations used to obtain Eq. A.1 are not justified. The break-
down of the quasiparticle description has also been discussed by Emery and Kivelson
in the context of abnormally short values of the mean free path that lead to the
violation of the loffe-Rigel criterion. [Emery95a]

However, the optical conductivity can be described in a much more general way
by making the damping term in the Drude formula complex and frequency-dependent:
1/7 = M(w) = M'(w) +iM"(w), where M (w) is called a memory function. [Allen76,
Mori65, Gotze72] The M(w) satisfies M'(w) = M'(—w) and M"(w) = —=M"(~w). The
consequences of this formalism, usually referred to as the extended Drude model, have
been derived for the infrared conductivity of metals with a strong electron-phonon
interaction by Allen [Allen71] and Allen and Mikkelsen [Allen76] for the case of zero
temperature. The analysis was later extended for the case of finite temperatures by
Shulga et al. [Shulga91] It is also believed that the resulting theory is valid in the
case of coupling of a Fermi liquid to any bosonic energy spectrum. Some aspects
of the extended Drude model were also examined in detail by Goétze and Wolfe.
[G6tzeT2] We are not aware of any quantitative predictions regarding the extended
Drude model in the completely non-Fermi-liquid scenario, such as the Luttinger-
liquid theory. Therefore, in the following we will employ the Fermi-liquid terminology.
The formalism has been previously applied to transition-metal compounds, [Allen76]
heavy-fermion materials, [Webb86, Dolgov95] and the HTSC cuprates. [ThomasS8S,
Collins90, Rieck95, Basov96, Puchkov96c]

Rewriting the complex conductivity o(w) in terms of a complex memory func-
tion, M(w,T) =1/7(w,T) — iwA(w, T), we obtain [Timusk89, Mori65]:

1 w? 1 w?
SR = v rN s Err il sy = e o p s o] A

Although, in the case of a metal, Eq. A.3 can be obtained using Boltzmann-
equation formalism with a frequency dependent scattering rate, [Allen76] this form
has in fact a range of validity more general than the Boltzmann-equation approach.
[Allen76, Mori65] Adopting the Boltzmann-type terminology, the quantities 1 /7w, T)
and A(w, T') describe the frequency-dependent scattering rate and mass enhancement
of electronic excitations due to many-body interactions.
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Using the more general form of Eq. A.3, we can check the range of validity of
the classical Drude formula of Eq. A.1 by expanding the memory function into Taylor
series for small frequencies:

ii% M(w) = - A0)w + O(w?) (A.4)

(0)
Substituting this into Eq. A.3 we find:

1 w?

— A5

47 1/7(0) — iw(1 + A0))’ (A.5)
recovering Eq. A.1. The classical Drude result is thus valid whenever expansion of

ow,T)=

Eq. A.4 makes sense and A(0) is small compared to unity.
Eq. A.3 can be reduced to the familiar Drude form of Eq. A.1 by introducing

the so called renormalized scattering rate 1/7*(w,T) = 1 [[T(w, T)(1 + A(w,T))] and

the effective plasma frequency w;?(w, T) = w?/(1 + Mw, T)):

o(w, T) = wi(w, T)

47r 1/m(w,T) -

As it can be seen from this equation, the optical conductivity is now composed

(A.6)

of an infinite set of Drude peaks, each describing o(w) in the vicinity of a particular
frequency w with a set of parameters 1/7*(w) and A(w) (for simplicity in the following
we will drop the temperature parameter when it is not relevant to the discussion).
The 1/7*(w) has the phenomenological meaning of a width of the Drude peak local to
a frequency w while A(w) represents the interaction-induced velocity renormalization.
The renormalized scattering rate 1/7*(w) is not causal and, other than the local
Drude width, does not have a real physical meaning as it includes both the velocity
renormalization and the lifetime effects.
On the other hand, 1/7(w) is, up to a constant, the real part of 1/0(w)

1/7(w) = "Re( —), (A.7)

( )

that is, the real part of a physical response function. In the limit of zero frequency the
normal-state optical conductivity is completely real and Eq. A.4 becomes 1/04.(T) =
pic(T) = me/(T(T)ne?), where pg.(T) is the dc resistivity. This is the same form as
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the relaxation-time expression for the dc resistivity of a free electron gas and therefore
T(w, T)|w=0 may be viewed as an electronic lifetime.
The mass enhancement factor A(w) is given as the imaginary part of 1/0(w)
w2
1 1
T AMw) 47 w ™ o(w)

in Egs. A.7, A.8 can be can be found from

). (A.8)

2
]

the sum rule [g° o1(w)dw = w?/8. Since o(w) is causal, A(w) and 1/7(w) are not

The total plasma frequency w

independent and are related by the Kramers-Kronig relation. [Timusk89] Using the
relations 1/7(w) = 1/7(-w) and A(w) = A(~w) we obtain:

Aw) = WP =37 40 (A.9)
1/7(00) = 1/7(w) = 2p [7 A 4o (A.10)

7w Jo 02 —w?

If 1/7(w) and A(w) have no poles at w = 0 we immediately obtain the following
useful relation:

1/7(00) — 1/7(0) = % JAR (A.11)
We see that the complex memory function M(w) is a physical response function
and experimental data can be presented in terms of M (w,T) or the complex optical
conductivity o(w, T) equally well. The particular choice should be made judging from
the situation at hand. For example, the memory function analysis may be useful if one
is interested in the relaxation processes that determine a system response to electro-
magnetic radiation. Also, in certain cases the memory function is easier to calculate
analytically, thus making it easier to analyze the physics behind the system behavior
using experimental results for M(w). For example, simple analytical formulae for
M (w) have been derived for electron-phonon scattering while the optical conductivity
has to be calculated numerically. [Shulga91]
Finally, we would like to stress that, although Eq. A.3 is very general, obviously
the interpretation of experimental results for M(w,T) in terms of scattering rate and
mass enhancement only makes sense when a (generalized) Boltzmann equation can
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be used. For example, if the optical response is determined by two distinct charge
carrier systems (two-component), so that the optical conductivity takes form:

o(w) =o' (w) + o (w), (A.12)

the interpretation of M’(w) and M"(w) as a scattering rate and a mass enhancement
is meaningless, as can be seen from Eq.’s A.7, A.8. This is the case if an interband
transition is present in the same frequency region where there is an intraband re-
sponse. We note however, that the form (A.12) can arise from a double-relaxation
process (two different scattering mechanisms) as well. [Allen76]

Another example is the superconducting state at T = 0, when for a conven-
tional superconductor o, (w) is zero at all non-zero energies below 2A, where A is the
superconducting gap. According to the Eq. A.7, M’ (w) is zero in the same energy
range. However, this effect can not be meaningfully interpreted as a result of an
infinite quasiparticle lifetime since there are no quasiparticles in this energy range.
This is purely a density of states effect that has its origin in the redistribution of the
one-particle density of states, with creation of a superconducting gap upon entering
the superconducting state. This example shows that density of states may greatly
influence the memory function and serves as another reminder that the interpretation
of M(w) results purely in terms of the scattering rate and effective mass enhancement
should be approached with extreme care.

Since in the superconducting state o, (w) is suppressed, the low-frequency opti-
cal conductivity is dominated by the imaginary term o2(w) = w},/(47w). In this case
the low-frequency mass enhancement factor gives a ratio of the total plasma frequency,
wf,, to the plasma frequency of the superconducting carriers, wgs,: 14+ Aw) = w]'f /wf,s.

A.2 Electron-boson scattering.

Memory-function analysis has been most extensively developed for the case of electron-
phonon scattering. [Allen76, Allen71, Shulga91] It can be shown in the limit of fre-
quencies comparable to the Debye frequency and/or high enough temperature, the
quasiparticle description breaks down. [Shulga91] Using more general many-body
calculations Shulga et al. obtained the following expression for 1 J7(w, T):
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%(w, T)= g/ooo anfr(Q)F(Q)[choth(%) ~ (w + Q)coth( -;Q) +
+(w — Q)coth(Z TQ)] + .1 . (A13)

Here o ()F(f) is a phonon density of states weighted by the amplitude for
large-angle scattering on the Fermi surface and T is measured in frequency units. The
last term in (13) represents impurity scattering. In the limit of zero temperature this
reduces to Allen’s result: [Allen71]

loy=2 i " 40w ~ Q) (QF(Q) + ——. (A.14)
T w Jo imp

The dc scattering rate is obtained in the limit of w = 0 in Eq. A.13:

%(0, T)=x [ anf,(Q)F(Q)%sinh‘z(%) + imp (A.15)

At temperatures much higher than the phonon spectrum upper-energy cut-off,
T>>0., the above expression reduces to:

o QF(Q) | 1

’
Q T imp

1
Am  ~(0.7) = 4T / o

(A.16)

which is just the familiar result that the high-temperature electron-phonon contribu-
tion to a dc resistivity is linear in temperature.
In the limit of high w, w>Q,,

1

zmp

lim  S(w,T) = 2r / an"(Q)F(Q)coth(—)-e-

oam = (A.17)
which at high temperatures, 7>, assumes the same value as the zero-frequency
limit (A.16). Therefore, at very high temperatures the scattering rate becomes
frequency- independent and the Eq. A.6 reduces to the classical Drude expression
(A.1).

We note that the effective scattering rate 1/7(w) is different from the quasipar-
ticle attenuation y(w). For example, at zero temperature v(w) is given by: [AllenT71,

Millis88]
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Y(w) = -2ImE(w) = 27 /w dQE(Q)F(Q) + —1— (A.18)
0 Timp

Here o?(Q)F(RQ) is the isotropically weighted phonon density of states. One
can see from Eq’s A.14, A.18 that at T = 0 the effective scattering rate 1/7(w) is,
if the difference between o?. and o? is neglected, an average of y(w) over frequencies
from 0 to w and therefore y(w) enters into the effective scattering rate in a way non-
local in frequency. [Shulga91, Mori65, Allen71] As a consequence, 1/7(w) is actually
equal to the quasiparticle attenuation y(w) only at w = 0, where 1 /7(0) = v(0) =
1/Timp. The two quantities also asymptotically approach each other in the limit of
high frequencies, w>>Q,, where both y(w) and 1/ 7(w) become frequency-independent.
As the temperature is increased, the difference between v(w) and 1/7(w) is smeared
out, and in the limit of T>>0, they are asymptotically equal. Generally, however,
7(w, T') deviates from the quasi-particle lifetime v~1(w, T).

Eq’s. A.13, A.14, which have been derived for an electron-phonon scattering,
are believed to be valid in the case of coupling of an electronic spectrum to any bosonic
excitations. [Webb86, Dolgov95] In this case the Eliashberg function a2 (QDF(Q) in
Eqgs. A.13, A.14 is replaced by the corresponding, suitably weighted, bosonic spectral
density A (£2). To give a flavor of the results expected on the basis of Eq’s A.13,
A.14 we will perform calculations for several model shapes of A;.(w): a é-peak, a
"square”-like spectrum and Ay (w) = F'w/('? 4+ w?). The last spectrum is believed to
be appropriate for scattering of electrons on spin fluctuations. [Millis90]

In the case of A (w) = wob(w — wp) the integration of Eq. A.13 can easily be
done. The effective mass enhancement \(w) can be calculated using the Kramers-
Kronig relation (9). As soon as both 1/7(w,T) and A(w,T) are known, the optical
conductivity can be calculated using Eq. A.3. The impurity scattering has been set to
1/(27woTimp) = 0.01. The results obtained are presented in Fig. A.1 at five different
temperatures: T = 0, 0.125wy, 0.25wg, 0.5wq, wp.

For the two other choices of A (w), the integration of Eq. A.13 was done
numerically. We then used the Kramers-Kronig relation to obtain AMw,T). The same
impurity scattering rate as in the case of §-function was used to calculate o1(w). The
results are presented in Fig. A.2 and Fig. A.3 at different temperatures, measured in
units of the characteristic frequency of bosonic spectrum A, (w).
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Figure A.1: Electron-boson model calculations with boson spectral density Ay (w) =

wpd{w — wy).

Top panel is the optical conductivity, middle panel is the scattering rate and bottom
panel is the mass renormalizaton. The coupling constant is equal to 1.
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Figure A.2: Electron-boson model calculations with a "square” spectrum for the
boson spectral density.

Top panel shows the bosonic spectral density, next panel is the real part of the
optical conductivity, next panel is the scattering rate and bottom panel is the mass
renormalizaton. The coupling constant is equal to 1.
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As was discussed above, if the A (w) spectrum has a high-energy cut-off,
1/7(w,T) saturates at frequencies that are much higher than the cut-off. The value
of 1/7(w,T) in the saturation regime is strongly temperature-dependent, and linear
in T at high enough temperatures according to (17). However, if there is no cut-off
in As-(w), as in the case of magnetic spectrum in Fig. A.3, there is no high-frequency
saturation of 1/7(w, T), rather it continues to increase. The temperature dependence
of the absolute value of the scattering rate is, however, still strong.

In Fig. A.1, the effective mass enhancement Aw, T) is larger at low frequencies
and decreases to zero at high frequencies. This has a simple physical interpretation
that at high frequencies the boson ”cloud” is not capable of following the charge car-
riers. The sharp increase in the low-temperature A around the frequency of bosonic
excitation wy corresponds to the onset of boson-emission process, since only carri-
ers with energy greater than fiwy can emit a boson. A similar onset can be seen
in Fig. A.2. In the case of the magnetic A,-(w), this feature is not observed since
bosons can be emitted by a carrier with arbitrarily small energy. At high tempera-
tures A asymptotically approaches zero, in agreement with the frequency-independent
scattering rate 1/7.

The low-temperature conductivity in F ig. A.1 shows a pronounced absorption
band, called a Holstein band, with a sharp onset at wyg. The band corresponds to
an additional absorption channel associated with boson emission processes. Similar
absorption onset can be seen in Fig. A.2 but not in Fig. A.3. The reason for this,
as in the case of ), is the large boson spectral density at all non-zero frequencies for
the magnetic A, (w). As the temperature is increased, all sharp features in o, are
smeared out and at very high temperatures the conductivity can be described by a
single Lorentzian of Eq. A.l.
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Figure A.3: Electron-boson model calculations for the "magnetic” boson spectral

density.

Top panel shows the bosonic spectral density, Atr(w)~Tw/(T? + w?), next panel is
the real part of the optical conductivity, next panel is the scattering rate, and bottom
panel is the mass renormalizaton. The coupling constant is equal to 1.



Appendix B

Some useful information

B.1 Energy units:

1eV=28065.5 cm™' =2.41796x 10" Hz= 1160.4 K= 1.602x10-19 J.

B.2 Material abbreviations:

YBagCu3O7_5 (Y123)

YBa;CusO4 (Y124)

T1,Ba;CuOg.s (T12201)
BiySryCaCu; 0445 (Bi2212)
Biz_;Pb;SryCaCu,0g.5 ((Bi/Pb)2212)
Lay_;Sr,CuQOy4 (La214)

Ba;_.K;BiO3; (BKBO)
Ba,_.Pb;BiO; (BPBO)
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