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ABSTRACT

This thesis deals with numerical modelling of the behaviour of soils

infiltrated with fluids. The main objectives are to study the effect of viscosity of

the fluid on the response of particulate media under static and dynamic loadings,

and to examine the influence of partial saturation on the behaviour under

undrained conditions. The latter study is relevant to low as well as high degrees

of saturation.

In the formulation incorporating the effect of viscous fluid, the effective

stress principle is modified by including the shear stress developed in the fluid

phase. As this shear stress dePends on the rate of shear strains the overall response

is rate dependent. The formulation is implemented in a finite element algorithm

and a number of numerical examples ,including dynamic creep at low and high

stress levels, are provided.

In the next part of this thesis, the liquefaction of saturated soils is

investigated. In these studies the effect of viscosity of liquefied material on the

stability of the soil-foundation systems under earthquake excitation is examined.

Furthermore, the stability theory is reviewed and a simplified stability criterion

is introduced. The problems of stability of a strip foundation and a soil column

iii



are analyzed.

In the last pan, a mathematical formulation for the behaviour of partially

saturated soils is implemented in the finite element algorithm and some boundary­

value problems are solved. In order to examine the perfonnance of the

constitutive model, a series of experimental tests are carried out. Subsequently,

the effect of partial saturation on the stability of soil-foundation systems is

examined. The liquefaction phenomenon under earthquake loading is studied for

the case of high degrees of saturation, while the bearing capacity of fine grained

soils is analyzed for the case of low degrees of saturation.
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