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ABSTRACT

This thesis deals with numerical modelling of the behaviour of soils
infiltrated with fluids. The main objectives are to study the effect of viscosity of
the fluid on the response of particulate media under static and dynamic loadings,
and to examine the influence of partial saturation on the behaviour under
undrained conditions. The latter study is relevant to low as well as high degrees

of saturation.

In the formulation incorporating the effect of viscous fluid, the effective
stress principle is modified by including the shear stress developed in the fluid
phase. As this shear stress depends on the rate of shear strains the overall response
is rate dependent. The formulation is implemented in a finite element algorithm
and a number of numerical examples ,including dynamic creep at low and high

stress levels, are provided.

In the next part of this thesis, the liquefaction of saturated soils is
investigated. In these studies the effect of viséosity of liquefied material on the
stability of the soil-foundation systems under earthquake excitation is examined.
Furthermore, the stability theory is reviewed and a simplified stability criterion

is introduced. The problems of stability of a strip foundation and a soil column

iii



are analyzed.

In the last part, a mathematical formulation for the behaviour of partially
saturated soils is implemented in the finite element algorithm and some boundary-
value problems are solved. In order to examine the performance of the
constitutive model, a series of experimental tests are carried out. Subsequently,
the effect of partial saturation on the stability of soil-foundation systems is
examined. The liquefaction phenomenon under earthquake loading is studied for
the case of high degrees of saturation, while the bearing capacity of fine grained

soils is analyzed for the case of low degrees of saturation.
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CHAPTER 1

INTRODUCTION

1.1 General remarks

Soils are assemblages of solid particles with interconnected voids which
can be occupied by a liquid. The study of the mechanical behaviour of soils
saturated with a liquid has always been an important part of soil mechanics. The
drained behaviour of non-cohesive soils is assumed to be rate-independent.
However, in case when the voids are filled with a viscous fluid, the response of
the soil structure will be rate sensitive. Furthermore, the soil can be partially
saturated, i.e. the liquid may contain gas (air) inclusions. This thesis is primarily
concerned with the dynamic behaviour of soils in both saturated and partially

saturated conditions.

The performance of soil structures under earthquake loading has been
studied very extensively. This is justified in view of disastrous damages which

occurred during Niigata and Alaska earthquakes (both in 1964), in San-Fernando

1
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dam (1971) and many other structures. Much of the damage caused by an
earthquake is due to liquefaction, which implies a progressive pore pressure build

up and the subsequent reduction of effective stress to zero.

Since the early seventies researchers began to use the finite element
approach incorporating the effective stress principle in the context of mechanics
of two-phase porous media. For the statics problems, the numerical predictions
often give identical results to the simple limit equilibrium approaches, and only
in special problems the advantage of the full two phase numerical analysis
becomes apparent. Generally, these are the problems in which the history of
loading affects the results significantly. However, in no area of activity is the
stress path effect more important than in the study of dynamic response of
saturated soil structures. Therefore, much research effort, over the last two
decades, has concentrated on the constitutive modelling of soil behaviour and

development of computational procedures for the dynamic analysis.

Without a reasonable constitutive model of soil the numerical predictions
are not very reliable. In order to adequately reproduce the soil behaviour under
cyclic loading same modifications have to be introduced in the classical plasticity
theory. In particular, the irreversibility of deformation histories involving stress
reversals, needs to be accounted for. Many soil models have been developed by
extending Critical State formulation (Schofield & Wroth (1968)) to the framework
of bounding surface plasticity. Pietruszczak and Poorooshasb (1985) presented

a two-surface model incorporating deviatoric hardening, which can cover a wide
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range of cohesionless soils' behaviour. This model is fairly simple and efficient
for the description of cyclic loading. It is capable of predicting the basic trends
of soil response over a wide range of initial void ratios. The original formulation
was later modified by Pietruszczak and Stolle (1986) and implemented in

liquefaction simulations.

The general dynamic formulation for describing the transient flow coupled
with the deformation was originally proposed by Biot ( 1955 ). In this framework,
the soil and fluid displacements were considered as principal variables. Later, it
was shown that for low frequency phenomena, which are associated with
earthquakes, a formulation based on soil displacement and pore pressure is more
convenient, Zienkiewicz & Bettes ( 1982 ). In this case, governing equations are
decoupled which corresponds to undrained conditions, For the coupled analysis,
there are two distinct formulations available, i.e. displacement based formulation
and mixed formulation incorporating pore pressures as additional nodal variables.
The latter proves to be more efficient, particularly when 'staggered' algorithms
are used ( Zienkiewicz et al. ( 1988)). In the present research, the numerical
simulations are restricted to undrained conditions, so that the system of governing

equations is decoupled.

Another major issue in the study of soils behaviour is the effect of partial
saturation. In general, three different approaches to the problem has been
developed. In the very first attempts, the effective stress principle was modified

(Bishop (1961)). This approach is simple but does not address the microstructure
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of unsaturated soils properly. In another approach the plasticity models have been
modified to account for the effect of partial saturation ( Gens et al. (1989)). This
approach modifies the drained response of the material as a function of the degree
of saturation, which is not appropriate. In the third approach, the soil is
considered as a three phase medium the suction pressure, is defined as an
independent state variable (Fredlund & Morgenstern (1977)). This approach can
not adequately model the cases where the moisture content changes due to the
wetting process. In this study another formulation, based on microstructure of
unsaturated soils, is used to investigate the effect of partial saturation on both

static and dynamic behaviour of soils.

1.2 Outline of the thesis

In Chapter 2 of this thesis a generalized two-surface model is discussed.
This model is based on the bounding surface plasticity incorporating a non-
associated flow rule. The model proves applicable for both loose and dense sands.
In particular, the liquefaction of loose sand deposits and the phenomenon of cyclic
mobility in dense sands can be adequately simulated. An implicit scheme for

integration of constitutive equations is developed.

The mechanical behaviour of granular media which contain a viscous fluid
is studied in chapter 3. The material is treated as a three phase composite

consisting of solid skeleton and voids penetrated by a mixture of Newtonian liquid
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and gas, the latter in the form of discrete inclusions in the liquid. A modified
effective stress principle, together with appropriate kinematic constraints, is used
to derive the constitutive relations governing the undrained response.
Subsequently, the finite element formulation is provided for the transient dynamic
analysis. The formulation is applied to study the mechanical characteristics of

loose granular deposits subjected to a broad range of loading rates.

Chapter 4 is devoted to modelling of liquefaction phenomenon in saturated
granular materials, with particular emphasis on the influence of the viscosity of
liquefied material on the deformation field. The formulation presented in
chapter 3, i.e. incorporating the viscosity of the liquid is employed. First the time
stepping scheme is reviewed. Then the dynamic response of a strip footing under
a combination of a sustained vertical load and horizontal earthquake excitations
is investigated. The results of the simulations incorporating different viscosities
of the liquefied material are compared. However, a basic notion of the stability
of structures under dynamic conditions is reviewed and the concept of a safety

factor is discussed. The latter concept is incorporated in the numerical analyses.

A complete study of partially saturated soils is presented in chapter 5.
This chapter consists of three major parts. The first part includes a review of the
framework for modelling the behaviour of soils at high as well as a low degrees
of saturation. This formulation is implemented in the finite element procedure.
In the second part, the results of a series of experiments, performed by the author,

are presented. The experimental program incorporates a series of undrained
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triaxial compression tests performed on the samples with different degrees of
saturation. Subsequently, the numerical simulations of the tests are carried out in
order to verify the performance of the constitutive model. In the third part of this
chapter, the liquefaction potential of a partially saturated soil layer subjected to
an earthquake excitations is examined. Subsequently, the influence of degree of

saturation on the bearing capacity of shallow foundations is studied.

In the last chapter, some conclusions drawn from this study and

recommendations for further research are presented.



CHAPTER 2

ELASTO-PLASTIC CONSTITUTIVE RELATIONS

2.1 Introduction

The in situ response of soil deposits to cyclic loading not only depends on
soil properties, but also on drainage characteristics of the material and the
boundary conditions. Thus, the application of experimental findings from
undrained cyclic loading tests to establish the in situ extent of liquefaction maybe
misleading. For this reason, much research has been directed toward the
development of nonlinear dynamic formulations along with their implementation
in numerical codes. In this approach, a realistic and meaningful solution to a
liquefaction problem depends to a large extent on the choice of an appropriate
constitutive law. Such a law must be capable of proper simulation of several
fundamental aspects of soil response to complex loadings, for example,
densifiction, progressive generation of excess pore pressure under undrained

conditions (loose sand), hysteresis , etc. Also , an accurate and stable integration
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algorithm for the model must be incorporated.

Since the early seventies, many constitutive models based on the classical
plasticity framework, have been developed. These ‘include the Critical State type
of formulations ( Schofield & Wroth (1968), Carter et al. (1982), Mroz et al.
(1981)), descriptions incorporating deviatoric hardening ( Batdorf and Budiansky
(1949), German & Hodge (1959)), combined volumetric and deviatoric hardening
( Nova & Wood (1979), Vermeer (1978), Ghaboussi & Momen (1982)), and the
concept of multiple yield loci ( Mroz (1967), Prevost & Hodge (1975),
Poorooshasb & Pietruszczak (1984)). However, none of these models was able to
adequately reproduce the phenomenon of liquefaction under cyclic loading.
Therefore, formulations employing Bounding Surface (Dafalias & Popov(1975),
Dafalias & Hermann (1982)), Reflecting Surfaces (Pande &Pietruszczak (1982))
and Generalized Plasticity (Pastor & Zienkiewicz (1986), Pastor et al. (1990))

were developed to improve the model performances.

In this chapter a constitutive concept formulated within the framework of
bounding surface plasticity and baséd on a non-associated flow rule is described.
The framework incorporates an anisotropic hardening rule, analogous to that
proposed by Poorooshasb and Pietruszczak (1985). First, the basic assumptions

embedded in the formulation are outlined, followed by a discussion on the

numerical integration scheme and derivation of an implicit algorithm.



2.2 Bounding surface plasticity

The principal reason that classical plasticity can not adequately describe
some aspects of soil behaviour, is that the stress trajectories penetrating the
interior of the yield surface result in an elastic response. Therefore the need for
new concepts, accounting for irreversibility of deformation on stress reversals,
became a necessity. Among the suggested approaches, the formulations based on
"Bounding Surface Plasticity", originally introduced by Dafalias & Popov (1975),
Dafalias & Popov (1979) , Dafalias & Hermann (1982), proved to be versatile.
The concept and the name were motivated by the observation that the stress-strain
curves converge with specific " bounds " , at a rate which depends on the distance
of the stress point from the bounds. The salient features of bounding surface
formulation are (/) that plastic deformation may occur for stress states within the
bounding surface and ( ii ) the possibility to have a continuous variation of plastic

hardening modulus.

Two sets of surfaces, both located in the stress space, play significant role
in the bounding surface model. A member of the first set is called a ' bounding
surface' ( F=0 ) and a member of the second family is called a ' yield surface'
(f=0). The variation in plastic hardening modulus is handled through introducing
'Image stress points'. These points are the projections of stress point, which
satisfies F <0, on the current bounding surface. The plastic modulus depends on
the distance between the stress point and its images. Referring to Fig. 2. 1; let the

loading process follow a path { in a so-called Z7plane of stress space a; ( for a
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plane Z7 the condition o, +0,+0,= const. holds ). As long as the loading process
does not experience a stress reversal, the bounding surface expands until a limiting
state (failure surface) is reached. Upon stress reversal, however, the behaviour is
predominantly governed by the yield surface, which undergoes an evolution within
the domain enclosed by the loading surface. If the stress reversal continues until
the stress point is once again on the bounding surface, and tends to move outside
it, the entire stress reversal history is erased from the material memory. It should
be emphasized that even during the stress reversal programs the size of the
bounding surface does not remain constant. It evolves depending on the variation

of the plastic strain.

2.3 Generalized two-surface model

The constitutive concept presented here is of a phenomenological nature
and is constructed within the framework of bounding surface plasticity theory. The
formulation is based on Pietruszczak & Stolle (1987) work. In order to provide
a general mathematical formulation, the following stress invariants can be

introduced:

I=-"%
V3

QI
I

2% 2.1)

J3 = 3‘s",.jsj,‘s,a.



11

where s; denotes the stress deviator

o1

The strain rate invariants, compatible with / and o are given by

P R Ei€;
/3 2.2)

where

o 1
eij—eijgijekk

represents the strain rate deviator.

2.3.1 Description of the model and specification of the constitutive relations

Bounding Surface

The equation of the bounding surface is postulated to be of the form:
F=0-1g(0)I=0 2.3
In the principal stress space, equation (2.3) represents an irregular cone having
its apex at the origin and its axis coinciding with the diagonal of principal stress
space, Fig. 2.2. The size of the bounding surface is determined by the parameter
n which is a scalar valued function of sf; . In particular, the following

representation is chosen :
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n=n(gf) 2.4

where

P[P P ;P s P
§—f§dt,§ (€ €;)

(2.4a)

. 'p Iy -
with g>01fs,.js,.j>0

Octahedral plane projection , g(4)

The shape of bounding surface is governed by the choice of £(0) function.
In equation (2.3) , @ represents the angle of measure of the third stress invariant

(analogous to Lode’s angle) and is specified by:

0=1sin"l(_ ‘Bﬁ) ; -T<g<™
3 2 7 6 6 (2.5)
The function g(0) is defined in such a manner that :
T m,_3-sing
8()=1;8(-=)=——"=k
6 6" 3+sing (2.6)
where :
oint (1)
n+2 2
@7

and @ represents a parameter analogous to the angle of internal friction. As (0}
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approaches the ultimate ( or limiting ) value ¢, equation (2.7) can be expressed
as:

2smcpf

n=m=—-2>~
7 3-sing, 2.8)

At the same time, for 7->7;, , equation (2.6) defining g (-m/6 ) takes the form:

in ¢
(——)— (forn— n;)
67 3+sin g, ’ 2.9)
The restriction on g(-m/6 ) ensures that the form of g(8) is not in conflict with the
conditions dictated by Mohr-Columb failure criterion. On the other hand, the case
7 - 0 results in

8(-7)=g(Z)=1 (forn—> 0)
6 6 (2.10)

which implies that, for small 7 , the surface defined by equation (2.3) may be
approximated by a regular cone. There are different functions proposed by
researchers for g(8), (e.g., William &Warnke ,1972 ,etc). The main restriction
imposed on g(f) is that of the convexity for a wide range of 6. This is discussed
by Jiang & Pietruszczak (1988) . In this study the following simple form is
adopted:

g(0)= (V1+a- \/E)k a— 1
kyl+a —\/1 -a +1-a(\/1- asin@) (2.11)

where a is an arbitrary constant close to 1.0 and k is the same as defined in (2.6).
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. , ,

In the present study , the function n=% ( & ) is assumed in a simple

hyperbolic form:

P

A+gf (2.12)

n="n

where A is a positive material constant. This type of function describes strain
hardening only and guarantees that bounding surface will asymptotically approach
the failure surface. Other more sophisticated functions, permitting strain softening
as well, are available in the literature (Ghaboussi & Momen (1979),

Vermeer(1978)).

Global plasti ial surf |
In this model a non-associated flow rule is assumed:

i 2.13)

where {r=const. represents the plastic potential surface. The latter is postulated in

the form:

y=o+7, 1 g(6) m(li)=o
0 2.14)

where 1. = const. and I, has the dimension of stress. The parameter 17 is defined

as the value of o /I for which &f=0 ( by analogy to Critical State concept ).
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Yield surface

Considering the stress reversal process, the plastic flow is described by
evolution of the yield surface, which is created inside the bounding surface. Upon
stress reversal, the yield surface is initially tangential to the bounding surface at
the stress point. For subsequent loading, if the stress point remains inside the
yield surface, the response of the material is elastic. Beyond this range,
irreversible deformation takes place and the yield surface moves within the

domain enclosed by the bounding surface.

Based on experimental evidence, it is assumed that the elastic domain is
restricted to nearly an infinitesimal size. Thus the equation of yield surface is

approximated as being independent of @ (i.e. g(6) - 1 ). This equation takes

the form:
f (aijaa,'j) = 5(’)‘ 7]11 O= 0
(2.15)
where
10=a;0;, 50= (05 5)
8= 0= a,.jI(’) 3 My < < 1g=const. 2.16)

Equation (2.15) represents a regular cone ( Drucker- Prager type of surface)

having its apex at the origin and its axis directed along the unit tensor a; .
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The parameter 7, defines the size of yield surface. In view of numerical
approximations involved, this parameter must be assigned a finite value in order

to avoid the ratcheting effect.

During the stress reversal process the yield surface undergoes kinematic
hardening. In geometrical terms, the axis of the yield surface is allowed to rotate
about the stress space origin, whereas the size , 7, , is for simplicity preserved.
The consistency condition reads:

.a_fd +a_fd =0
oo

| o " 2.17)
The kinematics of the yield surface is guided by a particular tensor known as the

conjugate stress tensor o;; , located on the bounding surface. Referring to

i

Fig. 2.3, which presents 7 plane section ( with normal ay ) of both the yield and

bounding surface, if o is the current state of stress, located on yield surface then
its conjugate is defined by:

o =0;+A (0 ~1 ! ;)

(2.18)

where A is a constant which can be determined from the bounding surface

equation, F (af-j-,g”) =0. The solution to equation (2.18) also provides the location

of a so-called datum stress tensor a:-j- (see Fig.(2.3) ) which is located on the

bounding surface and is coplanar with o, and of.
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In order to formulate the translation rule in such a way as to avoid the
intersection between the yield and the bounding surface, it is convenient to the
define a so called conjugate yield surface, f.=0. This surface is tangential to the
bounding surface at the conjugate stress point a;- and its location is specified by

unit tensor o :

) 0= A (;;-)
%= ) 1 (2.19)
e

satisfying the equation f(o o ]) =0 .

The rule of translation of the yield surface can now be formulated based
on a kinematic constraint that: the axis of this surface moves parallel to the plane
containing @, and af-. Since d.. must remain perpendicular to o " ( in view of
@ o= 1), after simple algebraic manipulations, we obtain :

u7upxu () J]
(2.20)

where fi is a positive constant which can be determined from the consistency

condition. Substituting (2.20) in (2.17) yields :

4 = ij

. ) [y~ o

(2.21)

Note that since 7,< < M, sufﬁcnent degree of accuracy may be preserved when

a;; is replaced by a unit tensor along ojin the translation rule (2.20).
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This surface, which is used in the formulation of the reverse loading
process, is postulated in the form of a surface of revolution about o axis having
one of its generating curves in common with the global plastic potential surface,

equation (2.14) . The equation of the § =0 is assumed in the form of:

I19-2508
=D+ 108 +B. (IV-2098 YIn{[——— 2} -
7 B, +B, ( B,) In{ 2 ) 0.2
where :
1
3 (&i‘a’i')z - 1
B,=1.2(9) , Bzz-\IE_Jak;— ’ aijzaij_gaiiakk (2.23)

The value of 8, is determined from the condition that equation (2.22) is satisfied

by the components of the current stress point 0.
Constitutive Relations

An arbitrary strain increment can result in either a virgin loading, reverse
plastic flow, or an elastic response. Each of these three cases can be considered

separately.

(1) Virgin Loading: This case corresponds to a situation when the stress point is

located on the bounding surface and tends to move outside it, i.e. :
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F=0 and X a0 =0
3. i

ii

2.24)
Satisfying the consistency condition:
oF . O 4 S oF on £?-0
0y o g7 2.25)
and utilizing (2.4) & (2.13) , we have:
oF
g..
1%
Ty (2.26)
P
where H, represents the plastic hardening modulus, given by:
oF 3 oy 13
H =———ﬂ[dev L dev ll!]z
Thus for this case, the constitutive relation will assume its usual form:
e Oy dF
ijpq ao. aa. D’"”H
G.= ¢ - £
ij ijkt K
[iF__De 6@_41 ] (2.28)
aam pa oo P

where D,-;;'d represents the elastic constitutive matrix.

(i7) Reverse plastic flow: This case corresponds to a condition in which the stress

point is inside bounding surface and tends to move toward the exterior of the
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current yield surface. In this case:

F<0,f=0 :_f do; =0
% (2.29)

For the considered loading process, the non-associated flow rule can be expressed

by:

éfj =hp(nld dld)ﬁ::i
(2.30)

Here, n; and n ; Tepresent unit tensors normal to the yield and plastic potential

surfaces, i.e. :
e v
n,.= g ;M= %;
i >
( F )% ( b oy )% (2.31)
aamn w’nll aamn wﬂm

and hp is the normalized plastic hardening modulus. The magnitude of hp is
assumed to depend on the position of the stress tensor relative to the bounding
surface , i.e. its relation to the conjugate and datum stress tensors. Let the spatial
angle between the stress and conjugate stress tensor be:

C

O,

9 Ty

8= cos! ¥

[(0uo) (@, 5)]

1
2 (2.32)

and the analogous angle between the datum and conjugate stress tensors be & 0"
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The proposed expression for hp is :

hy=hy (1 —ai )
0 2.33)

where ¥ is a constant and 4, is defined as:

th( oF 6F> oy oY )/H

p
%0 903" 80y 90y 2.34)

with Hp specified by equation (2.27). Given the above definitions, the

constitutive relations can be written as :

dij=D;jkI(e'ld - epld)

(2.35)
(#ii) Elastic response : This case corresponds to
f<0 or  f=0 and :_f do, <0
% (2.36)

implying that the stress trajectory penetrates the interior of the yield surface. The
response of the material is elastic. The performance of this model under different
conditions is presented in Fig. 2.4 and Fig. 2.5 (after Pietruszczak and
Poorooshasb(1985)). In appendix B an equation for elastic stress ratio in reverse

loading is presented.

2.4 Implicit integration scheme

The most common integration scheme is that based on explicit algorithm.

In order to improve the stability and accuracy of the explicit algorithm,
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subincrementation strategy has been proposed ( Nayak & Zienkiewicz (1972) ,
Bathe (1982), Sloan (1987)). This strategy increases the accuracy as the number
of subincrements is increased. In general it is difficult to decide q priori on the
number of subincrements. Also, it is not easy to determine the accuracy of
predictions. Therefore, implicit schemes for integration of the constitutive
equations have been developed ( Simo & Taylor ( 1985) , Taylor & Simo (1986),
Simo et al. (1988), Borja & Lee (1990), Borja (1991), Alawaji (1992), Ganendra
& Potts(1994)). The main features of an implicit integration scheme are discussed

in this section.

For the stress state satisfying the equation of the bounding surface, the
elasto-plastic constitutive equations may be formulated as:

o=D°(e-€") @37

and
R NCA
do (2.38)

In the above ¢ (@) =const. is the plastic potential function, A is a plastic
multiplier, D € is the elastic matrix, £ is the total strain rate and €’ is the

plastic strain rate.

The loading criteria are defined as :
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F=0 and ?_35 do >0 for virgin loading

of T (2.39)
f=0and ;{ do >0 for reverse loading
The consistency condition which requires that the stress must be on the yield

surface during virgin loading, is expressed as:

T T
dF = a_F do + oF
do de?

de? =0

(2.40)
After time discretization over a period [z,,¢,,] , equation (2.37) can be
written as:

on*l_an= De(snol_sn)_De n+1 eP) (2 41)

or

0" n+l

-D ¢ (€n+1 ) (2 42)

where o), = o, +D°(&l, -€) isthetrial stress. Equations (2.38) and (2.40)

can similarly be written as :

2aeh = Bla-a)( 2L a(2Y) ]

(2.43)

and
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F ,€7)=0
(olnl € ) (2.44)

with B=4 At . The approximation is particularly simple-and stable for a=1
(backward difference). In what follows we simply use a=1. Now, the above

nonlinear system of equations (2.42),(2.43) and (2.44) can be rewritten as :

@, (D °)Xo,,-0,.,) +ﬁ(ﬂ)’m=0

Jo (2.45)
and
¢,=F(o,,,)=0
(2.46)
Applying the Newton-Raphson method leads to :
i - i i 02\ i i OP \i
+(D )60, +p So, +8B (L) =0
@700 B(aaz JunBn (5, (2.47)
and
i oF\i 117 i i opi
©,+[{— oo, -H'§B' =0
2 [(aa)nfl] 1 X (2.48)

where H is a the plastic hardening / softening modulus and is defined as:

P B (2.49)
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Now, the following linearized equation can be obtained:

ot i
B () (2.50)
where
(pe)pi Yy (2]
Ai= L a”is«l
) aF\i 1T ; 25D
[(EL*I ] _H J

Finally the so-called closest-point-projection algorithm ( Simo et al. (1988) ) can

be formulated as follows :

(1) Define the residual Q; and (p; at iteration (i).

(2) Check whether convergence is attained. If | @ |< Tol then exit, else
continue.

(3) Compute the tangent matrix A'.

(4) Solve the linearized system ( 2.50).

(5) Update the solution

Bl =Bh.+88" .,
2.52)

i+l i i
0n+l = 0n~l +8¢7,”1

and go to step 1.
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The presented procedure is developed for the case when the stress state
satisfies the equation of the bounding surface. In case of reverse loading the
procedure will be similar with the difference that the current yield surface
represented by  f( 0;,a;) =0 replaces the F(o,£”)=0 . In this case the plastic
hardening modulus, H f is determined from the interpolation rule (2.33) and the
direction of a@; is known via eqn. (2.20). The system of equations presented in
(2.51) remains the same, but the term H' is defined as:

H":_i.ﬂ
de B (2.53)

In general the implicit integration scheme may not be very efficient for
complicated elasto-plastic constitutive models. For this reason, the explicit

algorithms and its variations are still widely adopted.
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Yield surface

Bounding surface

Fig. 2.2 Bounding and yield surfaces in the principle stress space.
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Fig. 2.3 Yield surface kinematics.

Fig. 2.4 Plastic potential surface in meridional plane.
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CHAPTER 3

DYNAMIC RESPONSE OF SOILS INFILTRATED WITH A
NEWTONIAN FLUID

3.1. Introduction

The study presented in this chapter is relevant to particulate materials
whose voids are filled with a Newtonian fluid, like oil or a similar viscous fluid.
Such a microstructure is typical for certain geological as well as manufactured
materials. Examples include natural deposits of oil sands, asphalt mixes used for

paving works and solder pastes used in the electronic industry.

Solder pastes consist of particles of eutectic tin-lead alloy (with particle
size of 20;4m-75.ym) and the solder flux. The mechanical characteristics are
strongly influenced by the viscosity of the flux as well as the concentration of air
entrapped in the paste. From the industrial view point, the most important

problem to be addressed is that of the phase transition, in particular the

31
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mechanical conditions governing the state of liquefaction and subsequent

solidification of the material.

Oil sands may: be considered as a four-constituent system: a skeleton of
predominantly quartz sand grains, with void space occupied by bitumen, water
and gas. The bitumen in oil sands is a Newtonian fluid which fills the largest
portion of the pore space. The quartz grains are hydrophillic and are surrounded
by a thin film of water. In addition, the gas is entrapped (in the form of discrete
bubbles) within the bitumen phase. The presence of bitumen provides a viscous
resistance and reduces the permeability of the formation from about 10 cm/s
(typical of clean sands) to approx. 107 cm/s. The largest deposits of oil sands are
found in Canada and Venezuela who share many common interests in petroleum
development. The modelling of mechanical characteristics of such deposits is
important in the context of a large class of Civil Engineering problems. These
include the settlement of foundations, stability of slopes and underground

openings, trafficability of machinery, etc. in oil sand formations,

The objective of this chapter is to study the behaviour of the above
mentioned class of materials in the dynamic range. This is particularly relevant
to oil sands, where the viscosity effects will manifest itself only at relatively high
loading rates. The analysis is also relevant to liquefied sands, when the grains
loose their contact and the mixture of sand and water behaves like a viscous fluid.
The formulation of the problem is based on the constitutivé model proposed by

Pietruszczak (1994). First, the basic equations governing the deformation process
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are reviewed. These include a modified effective stress principle, supplemented
by appropriate kinematic constraints pertinent to undrained conditions,
Subsequently, the finite element formulation governing the dynamic response of
the system is discussed. Finally, the framework is illustrated by a set of numerical
simulations. In particular, the influence of the viscosity of the liquid on the
liquefaction potential of loose granular deposits subjected to different loading rates

is examined.

3.2 Formulation of the problem; governing equations

The basic equations, commonly used in Soil Mechanics, need to be
modified to take into account the effect of viscosity of the fluid filling the voids.
The main assumptions and the governing relations are reviewed below ( after
Pietruszczak (1994)). This is followed by a finite element formulation of the
problems involving dynamic response of the considered class of materials

( Pietruszczak, Oulapour & Pande ( 1994)).

() Effective stress principle

Consider first a fully saturated sample, i.e. a two-phase heterogeneous
medium consisting of solid particles and voids filled with a viscous liquid.
Assume that the particles remain in point contacts, which have not been penetrated

by the liquid. Examine the equilibrium of a particular free-body as shown in
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Fig. 3.1. The body has been isolated from an elementary volume (regarded as
parallelepiped ) by a plane passing through the adjacent interparticle contacts. For
equilibrium in z-direction:

Ao =Y'N + | 5.dA
: ; f,, 3.1

where A is the total cross-sectional area, o is the vertical stress transmitted
through the liquid and N's are the normal components of the interparticle forces.
Equation (3.1) can be expressed in the form similar to that of Terzaghi's effective
stress principle’, i.e.

0,=0,+d, a’z=lEN, ai=lf o dA

A A 3.2)

where a’z represents the average ' effective ' stress and ai is the average
vertical stress transmitted through the liquid. Both averages are defined on an
arbitrary plane passing through the adjacent interparticle contacts. Considering the

equilibrium in the remaining directions, equation (3.2) can be generalized to:

3.3)
or

=g+ p,8.+s]
iy = 05 * P9%*S;j

3.4)

[ : L .
where p, and s; are the excess pressure and the average deviatoric stress in the

liquid, respectively.
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Assume now that the sample is partially saturated, i.e. the liquid contains
gas(air) inclusions embedded in the void space. Let p " be the average pressure
in the liquid-air mixture defined by
i - K &;
P =2 (3.5)
where K is the average bulk modulus of the mixture of air and fluid, 7 is the
porosity of the sample and é,.,. represents the volumetric strain rate. Denoting
the average deviatoric stress in the mixture by s,.j‘ , and observing that

p tzpl , si; = Sr sijl
(3.6)

where S, is the degree of saturation, the effective stress principle (3.4) reduces to

— ol * *_ !
0;=0:+p 8, +5; =0+ P8 +S, 5

3.7)
It is quite apparent that, if the liquid cannot transmit any shear stress, the standard

Terzaghi's effective stress principle, Terzaghi (1960), is recovered.
(i) Properties of constituent materials:
The constitutive relations for both the skeleton and the liquid part can be
summarized as:
./ * l 4 .. ]
0q=D']kl Sld N Su=2p,€u 9 p =K8..

(3.8')

Here D,.j,d is the constitutive tensor describing the drained response of the sample,
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which was discussed in previous chapter and p is the viscosity of the liquid
(considered here as a Newtonian fluid). Moreover é,.j are the overall strain rates,
e',.} are the deviatoric strain rates in the liquid phase and en is the rate of
volumetric strain in the liquid-air mixture. The bulk modulus K , appearing in
eq.(3.8), defines the average volumetric properties of the liquid-air mixture.
Considering the fluids as immiscible, i.e. separated by interfaces transmitting the

surface tension forces, an estimate of K has been derived in chapter § :

KI; B =

K, -B

a

S, +(1-S)

’ 3.9)

where K, is the bulk modulus of air, T is the surface tension force and p,
represents the average pore size. The latter is defined as P, =V,/S_ , where V,
is the volume of voids and S, is the internal solid surface area. Apparently, if soil

is fully saturated then S,=1, and thus K =K, .

(iif) Constraint of undrained deformation

Considering the undrained conditions and ignoring the deformation of

solid grains, we can write:

Vtol =I/s + Vv

8V, , =8V, + 8V,
(3.10)
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where 7 is the porosity of the material. Thus, the kinematic constraint of the
undrained deformation of the heterogenous particulate medium can be expressed

as:

- - .1
g;= 8‘.}.n &, *n S,e,-j

W | =

(3.11)

The above equations (3.10) and(3.11) are equivalent to :

£.=né. ; é.=nSé
i€ 5 €;=no¢€;

Consider now an arbitrary strain-controlled program i.e. the one involving Asij
prescribed over Af. According to equation (3.7), the stress rate at any (t+at)

satisfies:

WAy = @Al | t-Atyy = g, (-Ag (1-An)!
g ij j r y (3.13)

or

-+ - - * -*, l
(r A:)a‘_j= ( 'ajij+ 'p 3‘_1_) + Ap 3ij + @ A:)Sr ¢ N)S,'j (3 14)

Substituting the constitutive relations (3.8) in equation (3.14), results in:

. Ae;
' Ataijz( :a/ﬁ +'p 35) + D,.j,d Ae”+8,.jKA e *2p ¢ At)SrTAT] (3.15)

Introducing now the kinematic constraints specified in equation (3.12), one can
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obtain, after some algebraic manipulations, :

<At _ . K- 2[.‘; .
! Uq—( ‘U/b + tp 8']) + [Dlﬂd "‘(; —m)auau

2p
=k a,.kaﬂ] Ae, .16

Equation (3.16) defines the average macroscopic response of a granular
medium partially saturated with a viscous liquid. The response is rate-sensitive in
view of the viscosity of the liquid. It should be noted that, when u=0 the

standard rate-independent formulation is recovered.

Finally, consider an arbitrary stress-controlled program, involving Aoy
prescribed over At. According to the effective stress principle (3.7) , the stress

increment Ao is defined as

Aoy =Ao’; + Ap "84S, ( A0 g i 's,-]'.)

3.17)

Thus , equation (3.14) can be expressed in the following form:

Ag;+S, 'sj= Mo - (o + 'p"5,)

(3.18)

Substituting the equation (3.18) into (3.16) and solving for Asl.j we get

n I
AS‘J:ELUH (S' 'S,d +AUH)At
K, 1 (3.19)

Liﬂd:[aikaﬂ * ( ZN —-3-)81.]% + Enﬁ AtD,, -1
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3.3 General description of dynamic non-linear finite element analysis of saturated

soil structures

In the previous section a framework for describing the effect of viscosity
in the particulate material infiltrated with viscous fluid has been presented . This
framework invokes a phenomenological strain-hardening plasticity formulation
for the description of the drained behaviour of skeleton and a modified effective

stress principle for the rate-dependent behaviour of fluid.

In order to analyze a boundary value problem, the proposed framework
needs to be implemented within a finite element algorithm. In this section the

main features of the implementation procedure are described.

3.3.1 Finite element formulation ; general

The finite element formulation is commonly based on the principle of
virtual work. Consider a continuum, in which the total stresses oy, the distributed
loads/unit volume —b_, and boundary tractionst; form an equilibrating field. Impose
virtual displacements u; which result in compatible strains de;. In this case, the
principle of virtual work reads

f o; 8£,.j dﬂ=f b_, du, d.Q+f t; du, dr,
0 o T, (3.20)
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where Q is the domain of interest and T, is that part of the boundary on which

boundary tractions are prescribed. In matrix notation, eq. (3.20) becomes

fn{ae}T{a}dmL{su}T{E}dmfr{au V {t)ar,

4

(3.21)

In these equations the body force 17, includes all the volumetric body forces such
as gravity, damping and inertia forces. In the dynamic probiems the effect of
damping and inertia cannot be ignored. Therefore, { b} is expressed by
{bl-plat-clul}, waere { b } is the body force due to gravity alone, { i }
represents the acceleration vector and { « } the velocity vector. Including these

forces in equation ( 3.21 ), we have

fﬂ{ae}f{a}dm[n{au}T{b-pu-—cu-}dm
f{‘s" VT (¢}, (3.212)

¢

In the finite element discretization procedure the following relations between the
displacements {u} ( and its time derivatives ) and the nodal displacement vector

{U} (and corresponding time derivatives) are assumed

}
su}=[N] {8U) (.22

where [N] is the usual matrix of the displacement interpolation function or shape
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functions , {U} and {U} are the nodal velocity and acceleration vectors. For a

geometrically linear analysis, the strains can be defined as

te}=[L ] {u}-[L][N]{U}-{B] {U}

(8e}-(B] (30} [B]-[L][N] 6.2

where [ L ] is the differential operator matrix and [ B ] is the strain-displacement
matrix; the rows of [ B ] are obtained by appropriately differentiating and
combining rows of the matrix [N]. Substituting eqs. (3.22) and (3.23) into eq.
(3.21a) gives

[euyisrie)an-

n{sU}T[N]T{b}dQ +f U [N {t}dT,

r

I

- | {8UYT [NTT Q{U)- | {8UVT [N dQ{U
fa{ }T [NTTp[N] 40 {0) fn{ Fivemanigy

where the integrations are the sums of the individual element contributions. Since
the expression must hold true for any arbitrary virtual displacements, one obtains

the governing equations for a small-deformation analysis as

( fn [NY'p[N1dQ){U}+( fn [NT¢ [N14Q){U}» fn [B]{ o} dn-
[ (¥7 ppans [ vF {2y ar 6.29

¢t

or



42

[} 0 )+[elf v+ [ ()7 (o} an-{R }-0

(3.26)

where {R} is the equivalent external force acting at the nodal points,

R)- VT (o) doo [ [T (o), oz

and [ M ] and [ C ] are consistent mass and damping matrices respectively,

(M- [N e wiaa 5 [c]- [(WFe jaa

A A (3.272)

As the constitutive relations are path dependent, an incremental analysis
is required to solve these equations. In an incremental solution, the basic approach
is to assume that the solution for the (m)-th time step is known, and that the

solution at the consecutive (m+1)-th time step is

+ MU AU } (3.28)

Thus, eq. (3.26) becomes
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" F )= "R )

") [ (B "oy aniu) O[] wy 629

where { F } is the equivalent force acting at the nodal points, or

[plav)-[c)av)- [ [B) mi{ a0y da-

"R )= (R )-[ [B]" {0} 6.30

Three separate algorithms are required for solving eq. (3.30). One is a
time-stepping scheme used for the integration of these equations in the time
domain. Another is the algorithm used for solving a system of non-linear
simultaneous equations. Third is a numerical scheme of integration for the
constitutive equation , i.e. for determination of the stress increment { ac }
corresponding to a prescribed strain increment {a€} for a given stress state and the

deformation history.
3.3.2 Finite element formulation; particulate media saturated with a viscous fluid
Consider now the finite element formulation in the context of the material

described by constitutive relation (3.16). Neglecting the damping term, the

equations of equilibrium governing the dynamic response take the form

(4] (0} [[8] (o) av - 0y
/ (3.31)
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where

u=[N|{U}) ; [M]- f[N]Tp[N]dV
v (3.32)

The constitutive relation (3.16) can be expressed in the matrix form :

“Ao}=({o}- 15, (s)) +[1B]+ 2 (11) - L {m) (m))

(3.33)
where [ 1] is the identity matrix, and
mdT={1,1,0,1}

_ c 3.34
[D]=[D]+m)K ()7 -39
n

Substituting these relations in (3.31) and rearranging,

f [B]T[ (D]

4

[M] C-a{U}+

nzgt ([1]—%(m}{m}7)} [B]dV

(N0} - Uy ) = ©9(R) - f[B]T('{a}— ‘s, s}y av

1 4

(3.35)

Introducing now the identity
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(R} = (M) {0} + [[B]" o) av

(3.36)
the following set of differential equations is obtained
M{AT} + [K|A0}- (R} + s, (8] (s
) (3.37)
where
K] = [[B[10)+ 2 (11)- L m) my) 10w o

It should be noted that the stiffness matrix [K] is symmetric provided that
the constitutive matrix [D], describing the drained response of the material is
symmetric. The set of equations (3.37), governing the dynamic response for the
assemblage of finite elements, has been integrated using the predictor-corrector

form of the Newmark integration scheme, as discussed later in section 5.3.

3.4. Numerical simulations of dynamic response of loose oil sand deposits

The mechanical behaviour of oil sands has been investigated by a number

of researchers, Harris & Sobkowicz (1977), Wan, Chan & Kosar (1991), Agar

etal. (1986), Wong et al. (1994). The existing experimental evidence is restricted
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to triaxial tests performed at quasi-static loading rates . In such a case, the viscous
resistance of the bitumen becomes negligible and the response can be classified
as rate-independent. The tests are commonly drained, so that the properties of the
fluids play a marginal role and the material characteristics corresponds to those
of the soil skeleton alone. The numerical study conducted in this section is related
primarily to the mechanical behaviour at high loading rates. Since no relevant
experimental data is available, the results should be examined in qualitative terms.
Thus, the main objective is to identify typical trends in the undrained response of

oil sands under dynamic conditions.

Uniaxial compression , static and dynamic analyses

Consider a triaxial sample of an oil sand in a loose state of compaction.
Let the drained response of this sample be described by the deviatoric-hardening
model with the set of material parameters identical to those employed in
Pietruszczak (1994). Moreover, assume K;=2200 MPa and p=0.001 kPa*sec.
The sample (assumed to be 0.1m high and 0.05m in diameter) is initially under
the hydrostatic pressure of 40 kPa and is subjected to an increase in axial stress
(Q) under the constraint of no drainage. Given the boundary conditions, the static
analysis reduces to the point integration (9. (3.16) ). In the dynamic range, the
initial boundary-value problem has been solved by the finite element technique.
The problem was considered as axi-symmetric and the sample was discretized
using 8-noded isoparametric eiements with reduced 2x2 integration. Owing to a

fairly uniform deformation in the radial direction, the global load-displacement



47
characteristics proved to be virtually insensitive to the details of discretization (the
solution for 8-elements was within 5% error as compared to that for 120
elements, Fig. 3.6b). The geometry of the problem together with the boundary

conditions are presented in Fig. 3.2.

Fig. 3.3a shows the results of uniaxial compression for the loading rates
within the range 0 < Q <5000 kPa/sec. The average axial strain ¢ is defined as the
maximum surface displacement divided by the height (H) of the sample. At very
slow rates (Q—>0) the response becomes unstable and the sample liquefies, i.e.
contact between the particles is lost and the material behaves as a viscous fluid.
As the loading rate increases the characteristics remain stable prior to liquefaction.
The influence of partial saturation (S,=0.98) is essentially similar to that of an
increase in the applied loading rate. At higher loading rates, the static analysis is
clearly inadequate as the effect of inertia forces becomes quite significant. In
general, even for a rate-independent material (x=0) the response is rate-sensitive

at high loading rates.

Fig. 3.3b shows the profiles of effective pressure I' =(o,'+203')/3
normalized with respect to I'y=40 kPa, obtained for the dynamic analysis. The
largest reduction in I' (and thus the generation of the highest pore pressures)
occurs at the top of the sample. At some stage of the deformation process I'-0,

which results in the onset of liquefaction of the material.
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Dynami hish deviatori ——

The objective of this simulation is to study the effect of viscosity in the
dynamic loading and its interaction with the inertia force . It is expected that if
the sample is first loaded up to a high stress intensity, as compared to its ultimate
load capacity in a monotonic test, and then the external load is kept constant, the
viscosity effect can trigger the formation of a failure mechanism. This means that
part of the energy absorbed by the viscous component will be returned to system
and, along with the inertia effect, can cause further deformation under sustained

load, and bring the sample to failure.

The results shown in Fig. 3.4a correspond to a two-stage loading program.
The saturated sample, S,=1, is initially subjected to undrained compression with
a loading rate of Q=5000 kPa/sec. At a load level of Q=15 kPa , approximately
60% of the ultimate load, the deformation progresses further at the sustained load
level (dynamic equivalent of a creep test). Figures 3.4b and 3.4c show the time
history of the average axial strain and the evolution of normalized effective
pressure along the sample height. During the creep phase, the axial strain
increases and a progressive build-up of pore pressure takes place. The sample
liquefies at the top surface, which manifests itself in the reduction of effective

pressure to zero.

ress i i

Fig. 3.5a shows the results of a similar creep test conducted at the lower
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load intensity of Q=6 kPa, which is below the maximum value attained under
monotonic quasi-static (very slow) loading rates. In this case, the rate of
deformation progressively decreases and stationary conditions are approached,
Fig. 3.5b . Locally, the material goes through a series of loading-unloading cycles -
with a gradual reduction in the deviatoric stress amplitude Q / =a{ - a; (Fig. 3.5¢).
The maximum axial strain intensity reached during the creep stage is of the same

order as that attained under quasi-static conditions, Fig. 3.3a .

The influence of discretization and loading rate on the global response are
investigated, too. Fig. 3.6 represents the descretization effect and Fig. 3.7 shows

the effect of loading rate, for the case of x=0.01 kPa.
3.5 Conclusions

A finite element formulation has been presented governing the dynamic
response of granular materials partially saturated with a Newtonian fluid. In this
formulation the soil skeleton itself is assumed to be rate-independent, the overall
response however is rate-sensitive due to the viscosity of the fluid filling the void
space. The numerical examples provided here, illustrate the typical trends in the
dynamic response of this class of materials. Loose deposits subjected to undrained
uniaxial compression, undergo a i)rogressive build-up of pore pressure leading to
liquefaction. The mechanical effort required to induce liquefaction increases
substantially with an increase in the applied loading rate. For the dynamic creep

tests the response is qualitatively similar to that reported in Pietruszczak(1994).
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If the load is sustained above the maximum intensity reached under quasi-static
conditions, the sample spontaneously liquefies. On the other hand, if the test is
carried out below this critical intensity, the damping effects become prominent

and the stationary conditions are reached:

It is interesting to note that the response under high loading rates is rate-
sensitive even if the material is rate-independent. The simulations for uniaxial
compression corresponding to p=0 indicate similar trends to those depicted in
Fig.3.3a, i.e. the initial stiffness and the maximum load intensity reached, both
increase with an increase in the applied loading rate. The latter effects are
commonly described within the framework of theory of viscoplasticity,
Perzyna(1980), which attributes them strictly to the rate-sensitivity of the material,
Clearly, this may not be appropriate, for what is believed to be the effect of
material rate-dependence may simply be the effect of inertia. In order to
differentiate between the two, the identification of viscoplastic properties at high
loading rates should be based on the methodology followed here, i.e. it should

invoke a coupled dynamic analysis.
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Gas particle
bubble :

Fig. 3.1 Unsaturated soil containing small gas bubbles in a soil matrix
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Fig. 3.2 Finite element discretization for the dynamic simulations
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—A— Sr=1.0,Q—0
—@— Sr=1.0, Q=5000 kPa/sec
—4@— Sr=0.98; Q=5000 kPa/sec

————— Sr=1.0; Q=2000 kPa/sec; Dynamic
Sr=1.0; Q=5000 kPa/sec; Dynamic

Fig. 3.3 Numerical simulation of undrained uniaxial compression test ;
(a) axial pressure - axial strain characteristics for different loading rates;
(') distribution of normalized effective pressure along the z-axis at € =1%
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— Dynamic solution: uniaxial compression ( é=5000 kPa/sec)

—————— Dynamic solution: creep
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Fig. 3.4 Numerical simulation of a dynamic creep test at Q=15 kPa ;
( a ) average axial characteristics
(b ) time history of axial strains
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Fig. 3.4 (¢ ) normalized effective pressure profiles at different stages of the test

Elastic modulus (kPa) 6200
Poisson ratio 0.24
Total density (t/m* ) 1.9
Table 3.1- Material parameters -
Failure surface parameter, n £ 0.267
Slope of zero dilatancy line , n cl 0.267
Yield surface parameter, n 1 0.02
Porosity, n 0.44
Hardening constant, A . 0.0074
Plastic hardening exponent 4.0
Fluid bulk modulus, K f(MPa) 2200
Viscosity of fluid, u, (kPa - sec)] 20
Surface tension, (kN/m) | 65%10°°
Average pore size, (m ) 2.78*10
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Dynamic solution, uniaxial compression ( Q=5000 kPa/sec)

—————— - Dynamic solution, creep
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Fig. 3.5 Numerical simulation of dynamic creep test at Q=4 kPa ;
(a) average axial characteristics
(b ) time history of axial strains
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Fig. 3.5( ¢ ) time history of effective deviatoric stress at a
Gauss' point near the center of the surface
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Fig. 3.6 Influence of discretization |
(a) Deviatoric characteristics
(b) Normalized effective mean pressure profile
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Static Solution
Loading rate=5e3 kPa/sec
Loading rate=10e3 kPa/sec

"ot

Loading rate=15e3 kPa/sec
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Fig. 3.7 Sensivity of the response to loading rate, p=0.01 kPa-sec.



CHAPTER 4

MODELLING OF LIQUEFACTION UNDER SEISMIC
LOADING

4.1 Introduction

During earthquakes the ground excitations may cause a loss of stability of the
soil resulting in excessive settlements of structures, landslides, etc. The process
leading to the loss of strength is called soil liquefaction. This phenomenon is
primarily associated with saturated cohesionless soils and occurs due to the
tendency of the loose sands to decrease in volume when subjected to cyclic shear
stresses. As a result of this trend the pore water pressure increases and the
effective mean pressure is progressively reduced. When the pore water pressure
equals the initial effective mean stress, the soil loses its shear strength. This
phenomenon has been observed in most the of large earthquakes such as the 1964
earthquake of Niiggata ,Japan, the Alaskan earthquake of 1964 and the San
Fernando earthquake of 1971.

59
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In liquefied state the material behaves like a viscous fluid and the shear
strength is not regained until the excess pore-water pressure has dissipated due to
drainage. There are several factors which influence the soil liquefaction potential.
Some of these are related to the soil microstructure, i.e. grain-size distribution,
relative density, microstructure of saturation, etc. Other factors, are related to
external agents such as vibrations characteristics, drainage location, the magnitude

and nature of superimposed loads, etc.

In the previous chapter, a formulation for particulate material impregnated
with viscous liquid has been presented. This formulation is applied here to study
the liquefaction phenomenon. In particular, the effect of viscosity of liquefied
material on the stability of soil mass is examined. This phenomenon has been
reported in the literature, Finn et al (1971) , Whitman et al (1982), Scott (1986),
Vulliet and Hutter (1988). However, it has never been included in the analysis
of stability of soil structures. In section 2, the literature on the liquefaction
research is reviewed first. Subsequently, the governing equations for dynamic
behaviour of saturated porous media are presented. The discretization of these
partial differential equations has been discussed in the previous chapter, so that
only the solution procedure in time domain is described here. In section 3, the
stability of a soil mass subjected to dynamic excitation is investigated. First, the
basic principles in the stability theory are reviewed and then a stability criterion
is derived in the context of small deformations. This criterion is then implemented
in numerical simulations, the results of which are presented in the last part. The

objective of these simulations is to study the influence of viscosity of liquefied
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material on the stability of the systems.

4.2 Numerical analysis of liquefaction phenomenon in saturated porous media

There are three different sources of information concerning liquefaction
and its effects: (1) Field observations during and after the earthquake, (2)
Laboratory experiments on saturated samples and scaled models of foundations
and structures, (3) theoretical methods. The theoretical methods include both
analytical and numerical approaches. The mathematical theory governing the
behaviour of porous media saturated with a single fluid phase was established first
by Biot (1941, 1956) for linear elastic materials. Ghaboussi and Wilson (1972)
and Sandhu and Wilson (1969) derived the numerical formulation of Biot's
equations. Due to the complex boundary conditions, the practical problems are

solved by finite element method.

In the early attempts to describe liquefaction, the concept of 'autogenous
volumetric strain' was used to calculate the pore water pressure development.
(Zienkiewicz et al. (1978)). Zienkiewicz et al (1980) studied the range of
applicability of different formulations, such as consolidation and undrained
behaviour. Later, a generalized incremental formulation, which includes large
strain and non-linear material behaviour, was derived by Zienkiewicz & Shiomi
(1984). The development of numerical methods was accompanied by formulation

of more complex and realistic plasticity models. These models were discussed
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in chapter 2 of this thesis. A general mathematical framework for the static and
dynamic response of porous saturated media was presented by Zienkiewicz et al.
(1990). Similar formulations were developed by other researchers (Finn et al.
(1991b) , Krestelj and Prevost (1992), Gu et al. (1993) ). In ail of these
formulations a coupled system of equations for flow and deformation is developed
while the main difference lies in the constitutive model of soil skeleton. The
existing formulations adopt different primary variables, and all of them consider
the soil skeleton as an integral part of the material. This hypothesis is not strictly
valid after the material has liquefied. In the liquefied state, the grains lose their
contact as the effective pressure is reduced to zero. At this moment any further
excitation will cause the grains to move in a suspension and consequently new
instantaneous contacts between the particles may be established. This provides a
further resistance against shear deformation in the mixture. As the excitation
continues, the grains continue to slide over each other and if any structure is
formed, it will collapse very soon. Thus the liquid becomes 'thick' and its
viscosity is in general a function of the deviatoric strains in the mixture (Figueroa
et al. (1994), Prakash (1981), Shiomi et al. (1986)). The behaviour at this stage

is rate sensitive and can be described by the formulation presented in chapter 3.

4.2.1 Finite element formulation

The basic equations governing the response of fully saturated porous

media were discussed in chapter 3. The formulation has been developed assuming
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undrained conditions, which holds true for the period of excitations. The
constitutive relations and the discretized system of governing equations, (3.8) and
(3.37), can be re-written as:

. _ . _ . ..=" T+
{oh = [D]{e} , {sh =2uleh , p K.(m} {e"} @1

and

[M]{AU} + [K]{AU} = (AR} + S, [ [BT" *{S'}dV
v 4.2)

where [ D ] is the constitutive tensor describing the drained response of the
skeleton, p is the viscosity of liquid, {¢’} is the deviatoric strain rate in the liquid
and {£7}is the rate of volumetric strains in the liquid. The bulk modulus K
defines the average volumetric properties of pore fluids. Moreover [M] and [IE]
represent consistent mass and stiffness matrices, respectively, and are defined in
(3.32) and (3.38). {m}7 is the Kronecker delta arranged in a vector form

as { 1,1,0,1}.
4.2.2 Time domain solution procedure
In order to carry out the numerical analysis, it is necessary to integrate the

ordinary differential equations (4.2) in time domain. In this section, the time

stepping procedure used for numerical simulations is briefly reviewed. The
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method, which is referred to as Predictor-Corrector’', uses an iterative
algorithm. The scheme is convenient for programming since the iterative
algorithms are used in the solution of nonlinear system of equations of dynamic

equilibrium.

There are two different ways of formulating the time integration
algorithms. In some integration schemes, the differential equations are satisfied
in an average sense over the time interval ( Zienkiewicz (1977)). An alternative
way of formulating the problem is to satisfy the differential equations at each
discrete time station. One such a scheme, which has frequently been used in the
dynamic analysis, was proposed by Newmark (1959). This method is a single step
scheme, i.e. only the information at one time station is required to compute the
unknowns at the next time station. The method is very convenient for use in

nonlinear applications, particularly in cases involving variable time-step.

Newmark's Predictor- Corrector algorithm

In the original Newmark time stepping scheme the velocity and

displacement fields at time (¢ + At) are approximated as

HAUY= KUY + [(1-7) {O0)+ y "84TN] At “s

and
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HAUY =HUY+ U AL+ [(% -B) "{TU}+ B (L] Ar s

where B and y are parameters which control the accuracy and stability of the
integration scheme. In nonlinear case, the direct solution procedure, based on
tangential stiffness matrix, may not converge ( Bathe (1976)). Therefore, the
quasi-Newton methods are used. To avoid the numerical difficulties and to
maintain the convergence and positive - definitiveness of stiffness matrix, an
alternative predictor-corrector version of the method has been presented by Owen
and Hinton (1982). The latter algorithm, which is used in dynamic simulations

presented in this thesis, can be summerizd as follows :

(1) Set iteration counter i = 0

(2) Begin the predictor phase in which we set:

CAUNO = YN = U ALHUY - Af2 (1-2B) {0}/ 2
4.5)

and

AN = ) - {U}+ At (1-v) HO}
(4.6)

(3) Evaluate the residual forces using the predicted deformations:

(B)O= 4R - [M]ON - [C]"MOND - [[B)T{o)Pav
o @.7)
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(4) If required, form or update the effective stiffness matrix defined as:

M xIC), (k
KLy (Ar):B  AB K] 4.8)

(5) Solve the system of equations:

(K] (AUYD = {F}O

4.9)
(6) Enter the corrector phase in which :
I+AI{U}(1'+1) = t+At{U}(i) + {AU}(I)
(4.10)
t+At{U}(i+l) - [hAt{U}(id) _ “A’{U}o]/(AIZB)
4.11)
HAHITIG+Y) o tATT) L A y ML)

4.12)

(7 If {AUY and/or {¥}? do not satisfy the convergence criterion, then set
i=i+1 and go to step (3) , otherwise continue

(8) Update the variables for use in the next time step:

“A'{U} = nAt{U}(i«l)
toAt{U} - t+At{U}(i+l) (4 13)
1+A1{U} = nAr{U'}(iol)

(9) Set n=n+1 and go to step (1) for next time increment.
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The advantage of this predictor-corrector algorithm is that it is compatible
in structure with the iterative methods of solution of nonlinear systems of

equations, which are adopted in elasto-plastic analyses.

4.3 Stability of dynamic systems

The dynamic behaviour of structures requires an investigation of the
stability of the system. There are different aspects of stability. Material stability
is dealt with in the context of modeiling of the behaviour of time-independent
material ( Drucker (1959), Hill (1958)). The stability of saturated soils under
earthquake loading has been studied separately (Vardulakis (1986), Prisco et. al.
(1995), Osinov & Gudehus(1996)). In these studies the equation of wave
propagation is solved and the stability is examined based on the wave speed.
Imaginary roots for wave speed are assumed to represent the onset of instability.
An investigation into material stability is not directly relevant toa boundary value
problem, in which a variety of material properties and boundary conditions are
encountered. In this section general stability criteria for dynamic systems are

investigated.

4.3.1 Fundamentals of stability analysis

Consider a structure with a finite number of degrees of freedom,
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characterized by generalized displacements {U} . The behaviour of the continuous
systems may be approximated by a discretization procedure, such as finite element
method. The equations of motion of the structure can be written as:

[MI{U} + [C{U} + [K){U} = (R} @19

in which [M ], [ C] and [ K ] are mass, damping and stiffness matrices,
respectively and {R} is the vector of external applied forces. In order to study the
stability, the set of differential equations (4.14) is transformed to a set of first
order differential equations. This is accomplished by introducing new variables

{Y} ={U}, so that

[M]{Y}+[C{Y}+[K]{U}= (R}

{0} =y} 4.15)

Multiplying both sides of the first set with [M]"! , we can obtain a system of first
order equations in the standard form of :

(z) ={{U}}={F(Z,t)}={F(U,Y,z)}

{v} (4.16)

Since the stiffness and damping coefficient may depend on displacements,
members of function F can generally be nonlinear. The N-dimensional space of

variables Z,, Z,, ...Zy is called the phase space.

In general, we need to examine the stability of a certain solution {Z }
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which corresponds to certain initial values of { Z }, at time ¢=1z, . In static
problems { Z }, is constant, while in general case it may be a function of time.
The crucial question is that what happens when the system is disturbed, for
example when the initial values of { Z }, are changed to slightly different values
{Z},+{W}, , where {W}, are small initial perturbations. According to the
definition of stability, Lyapunov(1892) ,the variation in the solution due to a
limited perturbation must be limited and decaying with time. The solution

corresponding to the disturbed initial values may be written as:

zZ} = {Z},+{w}
4.17)
in which W is the change in the solution due to perturbation in initial values. In
order to establish a relationship for determination of W , we take the time
derivative of (4.16) and expand { F } in Taylor series about { Z, J. Ignoring the
higher order derivatives in Taylor series ( linearization) yields :
(W} =14]w}

(4.18)
where A,.j =0F,/ azj . Without the loss of generality, we can assume that the
system is initially in equilibrium. Thus, for the iinear system of equations (4.18),
the standard form is :

Z, =A,eM
k =Tk (4.19)

Substitution of this general solution into the equations of motion, (4.18), yields
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the characteristic equation in terms of A . This defines a standard eigenvalue

problem

-Au')t A, Ay - .. A
det Ay Apy-r Ay, ... A,y o
. . Ce . . 4.19)
Ay, Ay, . L
or its equivalent polynomial:
J(A)=AN+b AN eeicisp A +b, =0
1 N-1 N 4.20)

where N is the number of total degrees of freedom. It is clear that to ensure
stability the real part of all the roots of the characteristic equation must be
negative, R, A <0 . According to Hurwitz theorem, the necessary and sufficient
conditions for all the roots to have negative real part is that all the principle

minors of the Hurwitz matrix be negative. Hurwitz matrix is defined as:

bl bO

b, b, b, b,

bs b, by b, b, b, .
(4.21)

n-1

b,
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4.3.2 A simplified criterion for stability

The numerical implementation of the general stability criterion is quite
complex. Therefore, a simplified criterion (Pietruszczak (1992)) is discussed here

and later implemented in the finite element analysis.

Consider { U } as the initial displacements in equilibrium configuration
and { U’ }= {U }+{ AU } as the perturbed displacements. The equilibrium

equations for both cases, ignoring the damping effect, can be written as

[M]{O}+[K]{U} = {R)

(4.22)
[MI{U'}+[K){U"} ={R)
(4.23)
Differentiating the perturbed displacements with respect to time :
{U"} = {0} +{ AT}
(4.24)
Equations (4.22), (4.23) and (4.24) lead to:
[M]{AU} + [K]{AU}Y =0
4.25)
where
[K]=[M]" [K]
(4.26)

Equation (4.25) can be written as:

(amy| | 101 (1]
A [~

-[K] [0]

{AD
(AD) 4.27)
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Now, we can postulate the solution to free vibration problem (4.25) as:
{AU} = {AU,} Sin o (¢ +1,)

(4.28)
and identify { AU, } with the particular solution which corresponds to initial
velocity field at time t. Thus o is the frequency of vibration of { AU, } . Equation
(4.25). reduces to :

([K]- w?[M]) {AU,} = {0}
(4.29)

from which:

,  {AUJTKTAU)
W =
(AU V[ M]{AU,} (4.30)

The sufficient condition for stability is stated as ? > 0. It can be shown that the

denominator is always positive, therefore the condition reduces to:

{AU,} [K1 {AU .} >0
o [K] AU, > @30

The above inequality can be considered as a stability criterion. It should be noted
that the stiffness matrix in this relation is the tangential stiffness operator.

Inequality (4.31) can be further simplified to:

(AU [K] (AU} = {(AU,Y [ [BYF [D] [B]aV {AU,)
1 4

- onTAst >0 4.32)
14
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To ensure this inequality, it is sufficient that the integrand be always positive.
This is always satisfied in a material which is stable in Drucker sense. The
criterion (4.32) can be used to define a ' safety factor’ (FS) of a dynamic system

according to :

[ {AcYT{Ac}d V
Fs = X

 [tAe(as)a Y 4.33)
| 4

where the term in the denominator represents the second rate of work in an elastic
continuum. Thus , FS =1 for an elastic system and FS - 0 indicates an onset of

instability.

4.4 Numerical simulations

The objective of these simulations is to examine the effect of viscosity of
liquefied zones on the stability of soil structures. In the classical formulation the
liquefied material is essentially treated as a solid at a threshold value of confining
pressure. The present formulation models a phase transition (from solid to liquid)
as the confining pressure reduces to zero.

The problem investigated here is that of a strip footing resting on a
saturated loose sandy layer which is subjected to seismic excitation. First the
bearing capacity of the foundation is calculated. The purpose of this analysis is

to make sure that the applied load, at the beginning of excitations, is within an
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acceptable range. The material properties are given in Table 4.1, whereas the
geometry and finite element mesh are shown in Fig. 4.1. This discretization is
used for static analysis as well as simulations of horizontal earthquake excitations.
The conditions are assumed to be drained as there is enough time for the pore
water pressure to dissipate. The results of the simulations are presented in Fig.
4.2, which shows the load-displacement characteristic below the centre of the

foundation. The predicted ultimate bearing capacity is about 300 kPa.

Next, the dynamic response under horizontal accelerations corresponding
to N - S component of El-Centro earthquake ( Fig. 4.3) is studied. The
simulations correspond to a sustained vertical load of 200 kPa and the conditions
are assumed to be undrained. New kinematic conditions ( Fig. 4.4 ) are assumed
along vertical boundaries to avoid wave reflections. In the first set of simulations,
the viscosity of the liquefied zones is neglected and the initial stresses correspond
to in situ stresses. Fig. 4.5 shows the evolution of settlement at the footing centre
line during the earthquake. The liquefied zone is depicted in Fig. 4.6. It can be
seen that the liquefied region is distributed uniformly near the surface, where the
initial effective stresses are low. This result also confirms the suitability of the
boundary conditions used for earthquake analysis. The deformed mesh is plotted
in Fig. 4.7. and the variation of safety factor is presented in Fig. 4.8. It is
noticeable that the safety factor reduces to a very small value as the excitation

continues.

In the next set of simulations, the effect of viscosity of liquefied zones on
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the stability of the foundation is investigated. Since there is no experimental
information available on the equivalent viscosity of the liquefied material, a
parametric study is carried out. In particular three different analyses,
corresponding. to different viscosities, are performed. In these simulations the
building mass is added to account for the stress concentration effect of the
rocking mass and the conditions are again assumed to be undrained. The finite
element mesh is plotted in Fig.4.9. The behaviour of the distributed mass of the
structure (foundation) is assumed to be linearly elastic with the material properties
of E=2.0E+7 kPa, v=0.3 and p=2.4 t/m?. In the first analysis the viscosity of
liquefied zone is neglected while in the second and third analyses it is assumed to
be 0.005 kPa-sec and 0.0005 kPa-sec, respectively. The contours of liquefied
zones are plotted in Fig. 4.10, Fig. 4.11 and Fig. 4.12. The evolution of safety
factor is presented in Fig. 4.13. The deformed mesh at final stage is shown in

Fig.4.14 .

It is evident, from Fig. 4.104.12, that the liquefaction occurs in the area
near the surface and the corners of the foundation. This is consistent with the
observations reported in the literature (Popsecu &Prevost (1992)). In general,
when the viscosity of the liquefied soil is increased, the soil becomes more stable
(i.e. the safety factor reduces at a lower rate ). This is due to the fact that the
viscosity of liquefied material dissipates some kinetic energy. Moreover, since
there is more time for the stress to redistribute as the excitations continue, the

liquefied zone expands more rapidly.



76
Final remarks

The formulation describing a particulate material saturated with viscous
liquid has been employed to study the liquefaction response of granular soils. The
issue of dynamic stability has been addressed and a simplified stability criterion
has been introduced. The numerical results show that the proposed criterion can
be used as a suitable measure of 'safety factor’'. Furthermore, the effect of
viscosity of liquefied material on the dynamic response of the system was studied.
It is evident that the viscosity can stabilize the structure for a period of time after
the onset of liquefaction. This may account for the fact that a number of structures

failed some time after the excitations stopped.
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Elastic modulus (kPa) 20+ 10*
Poisson ratio, v 0.35
Total density,, ( t/m> ) 1.9
Failure surface parameter , Mg 0.4
Siope of zero dilatancy line , N, 0.383
Yield surface parameter, n i 0.02
Porosity , n 0.5
Hardening constant, A . 0.0005
Plastic hardening exponent , Y 4.0
Fluid bulk modulus, K f( MPa) 2200
Viscosity of fluid, Hf, (kPa-sec) 0

Surface tension , (kN/m )

Average pore size, Py (m)

Table 4.1 Material properties of soil
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Fig. 4.1 Finite element analysis of a strip foundation
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Fig. 4.2 Finite element analysis of a strip foundation ;
load-displacement characteristic under drained conditions.
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CHAPTER 5

MODELLING OF PARTIALLY SATURATED SOILS

5.1 Introduction

The subject of soil mechanics éncompasses a wide range of soil types.
Soils can be saturated with water or other fluids, such as oil and bitumen, or have
air in their voids. The principles of classical soil mechanics were developed with
the emphasis on particular types of soils (sandy or clayey soils) or particular soil
conditions (like saturated or dry conditions). There are various materials
encountered in engineering practice whose behaviour is not consistent with these
principles. Unsaturated soils form the largest category of such materials as their
mechanical response is significantly different from that corresponding to drained

or undrained conditions.

Natural deposits of soil are usually at relatively low water contents. Highly

plastic clays subjected to a changing environment have produced the category of

90
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materials known as swelling soils. The shrinkage of soils may pose another severe
situation. Loose silty soils often undergo collapse when subjected to wetting, and
possibly environmental loadings. The pore-water pressure in both of the above
cases is initially negative, and volume changes occur as a result of increases in the

pore-water pressure.

An unsaturated soil is commonly defined as having three phases, namely
1) solids, 2) water, 3) air. The presence of even the smallest amount of air
renders a soil unsaturated. A small amount of air, likely to occur as occluded air
bubbles, renders the pore fluid compressible. Generally, it is a large amount of
air which makes the air phase continuous through the soil. At the same time, the
pore-air and pore-water pressures begin to differ significantly, with the result that

the principles involved differ from those of classical soil mechanics.

Climate plays an important role in whether a soil is saturated or not. Water
is removed from soil by either evaporation from the ground surface or by
evapotranspiration from a vegetative cover. These processes produce an upward
flux of water out of the soil. A variation in environmental condition leads to
different distribution of pre-water pressure with depth. This happens mostly in

semi-arid areas of the world.

Most of the problems encountered in unsaturated soils are the result of the
reduction in the initial negative pore-water pressure ( which enhances the

stability) due to the changes in water content. The problems range from the loss



92
of bearing capacity of foundations to the instability of natural slopes and

excavations.

In this chapter a framework for modelling the behaviour of unsaturated
soils is reviewed first (after Pietruszczak & Pande (1991)). The cases of high as
well as low degrees of saturation are considered. Next the results of an
experimental programme, conducted by the writer, are presented. The tests were
carried out on Ottawa sand with different saturation ratios. The dbjective was to
verify the performance of the mathematical formulation. The material parameters
were identified from the results of a drained and an undrained test performed on
saturated samples, and then the behaviour in partially saturated state was
examined. The results of all numerical simulations are compared with the
experimental data. In the subsequent section, the behaviour of unsaturated samples
subjected to cyclic loading is investigated. Finally, the results of finite element
analysis of two different types of boundary value problems are presented. In the
first series of simulations, the effect of partial saturation on the liquefaction
potential of a soil column under earthquake loading is studied. In the second
series, the influence of the degree of saturation on the bearing capacity of soils

under shallow foundations is examined.

5.2 Description of mechanical behaviour of unsaturated soils

The mechanical behaviour of partially saturated soils is strongly influenced
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by the microstructure of saturation. In general, two basic types of microstructure
have been distinguished , Wroth and Houlsby (1985). At low degrees of saturation,
the gas phase is continuous and menisci of liquid adhere to most grain boundaries.
At high degrees of zaturation, the liquid phase is continuous whereas the gas phase

becomes discontinuous in the form of bubbles embedded in the liquid phase.

In the past few decades considerable research effort has been made to
describe the behaviour of unsaturated soils. A major part of this research has been
directed to a search for a suitable effective stress equation for unsaturated soils.
Bishop (1959) suggested a tentative effective stress principle which has gained

widespread reference

o;=0'; +p, -x(p,-P,)
where y is an empirical parameter which depends on S, P, is the air pressure and
P, is the pore water pressure. Later, Blight (1961) showed that X depends on
the type of soil too. Jennings and Burland (1962) suggested that Bishop's equation
did not provide an adequate relation between volumetric changes and effective
stress for most soils. They showed that the wetting induced collapse of partially
saturated soils can not be explained by Bishop's effective stress principle.
Later, Coleman (1962) suggested the use of " reduced " stress variables
(0, -p,), (05 - P,) (P, - p,) in formulation of the constitutive relations
for volumetric deformations. Aitchison (1967) pointed out the complexity
associated with the x parameter. He stated that a.speciﬁc value of x may only

relate to a single combination of { ¢ } and ( P, -p,,) for a particular stress path.
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A number of others followed the same trend, Matyas & Radhakrishna (1968) and
Richards (1966) . Fredlund & Morgenstern (1977) extended the use of
independent stress state variables ( i~ Pa 8,.1.) and (p, - p,) to describe the
shear strength behaviour of unsaturated soils. Using these stress variables, shear

strength equation is formulated as

Ty = ¢+ (@ - po) tane’ + (p, - p,); tan ¢* (5.1)

where ¢’ is the effective cohesion, (af - pa)f is the net normal stress along
failure plane, @’ the angle of internal friction, (p,-p, )y is called matric suction
and ¢° is an angle indicating the rate of increase in shear strength relative to the
matric suction. Alonso et al. (1990) proposed a Critical State framework for
modelling the behaviour of unsaturated soil involving four state variables, mean
effective pressure, deviatoric stress, suction and specific volume. Biarez et al.
(1992) used a micro structural model, which considers a regular packing of
isodiametral balls, in order to emphasize the mechanisms involved and to define
an effective stress. Kohgo et al. (1991) suggested that the suction affects both the
effective stress and the stiffness of the soil. Therefore, it must be considered in
effective stress equation and shear resistance characteristics as well as in
estimating the state surface suggested by Matyas. Modaressi and Abou-bekr
(1994) proposed-a unified approach to model saturated and unsaturated soils by
introducing "capillary pressure ". Starting from a given model for saturated soil,
they generalized it for unsaturated case by capillary hardening. They considered
the capillary pressure as an attracting force between the grains and therefore

introduced it as a cohesion. Also, the effective stress was defined by deducing the
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capillary pressure from the total stress. The problem with such models is that they
modify the elasto-plastic response of the skeleton, while the dry behaviour of soil

must not be influenced by the water content.

The literature pertaining to description of unsaturated soils is quite
extensive and comprehensive reviews are provided by Wood (1979), Wheeler
(1988), Sills et al. (1991), and Fredlund and Rahardjo (1993). In general three
major approaches can be distinguished. The first approach, as identified before,
concentrates around modifying the Terzaghi's effective stress principle. This is not
adequate to cover all aspects. The second approach assumes suction as an
independent stress state variable, which is controlled by an external agent or some
boundary traction. This leads to sophisticated testing procedures and equipment.
Also, this type of modelling can not be used to simulate drying / wetting process
due to environmental changes. The third approach is concerned with redefining
some parameters in the drained behaviour of skeleton as a function of suction
pressure ( Loret (1987), Krube (1989), Gens et al. (1989)). This approach has
been more problem-oriented (collapse) and does not lead to a general formulation

of the problem.

This part of the study is a review of the work by Pietruszczak and Pande
(1991,1992). In this approach the suction pressure is expressed as a function of
soil microstructure and it is assumed to affect the shear strength as well as
deformation characteristics. 'f‘his approach does not introduce any new stress

variables and does not impose any constraint on the evolution of suction pressure,
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It is also more realistic, as the drained behaviour of soil skeleton does not change

based on the external conditions.

5.2.1 Constitutive relations for soils at high degrees of saturation

At high degrees of saturation the liquid phase (water) forms an
interconnected network of channels and it is assumed to be continuous. At the
same time, the air phase is in the form of a large number of small bubbles
embedded in the pore water, Anderson & Hampton (1980), Okusa (1985), Chang
& Duncan (1983). The pore-water and pore-air pressures are different due to
assumption of the existence of an interface transmitting the surface tension force.
In order to describe the constitutive relations, the principle of effective stress is
expressed in the incremental form as;

(5.2)
where p is the average pressure in the air-water mixture and a,{j represents the
effective stress. The evolution of the effective stress and average pore pressure are
governed by the constitutive relations

d,-J/- =Dy &y ;5 P -Ké&
5.3
where D, is the constitutive tensor which describes the drained response of soil,

K is the average bulk modulus of air-water mixture and g ! is the volumetric
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strain in the mixture. The constraint of undrained deformation can be

expressed as
Y

E = __'
Y n (5.4)

in which n is the porosity of the sample and &, represents the volumetric strain.

Substituting (5.3) and (5.4) in (5.2), results in

[/

) . K,.
o; = D,.J.,ds,d + ;(skISH)S,.j

K .
= (Dyy +2:848;) 3, ©.52)
Therefore, the constitutive relation can be expressed as
. - s - IE . s 8u

In order to define the average pore pressure in the air-water mixture, p ,
consider a hypothetical test plane passing through the sample. The equilibrium

requires

v 0 1 (5.6)

wheré T,is the normal component of the surface tension force T (per unit length

of the air-water meniscus) and / is the total perimeter of the air-water menisci.
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The variables p and P, represent the excess pressures in air and water
components of the mixture.

Considering that

o ) " 5.7)

where S, is the total surface area of the air-water menisci, the pressure
decomposition (5.6) in terms of averages, becomes

S
T

p=Sp,+(1-S)p -=_=
( ) v, (5.8)

(IENY

where S, = V, / V, represents the degree of saturation.

In order to provide an approximation to § ./ V., introduce the average
pore size, Corey (1977), P, , defined as:
Vv
P, =<
S, (5.9
where S is the internal solid surface area. The value of §_and thus the average
pore size can be determined experimentally ( Donaldson et al. (1973)). Noting

that the average ratio of A,/A on a setof parallel test planes passed through the

sample equals to (I-S,), one can write an approximation

s, /T3,

B e

v, s, (5.10)
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Therefore, the average pore pressure, eqn. (5.8) , becomes

1-§

r

=S 1-S)p, -
P rpw +( r)pll (5.11)

v

In order to.define K , the constitutive relations for both constituents are
assumed in the form
P, =K. ; p, =K &; K =p, +p,
(5.12)
Here K , is the bulk modulus of water, K, is the bulk modulus of air derived from
Boyle's law and p,, is the atmospheric pressure. The volumetric strain rates in

the fluids are uniquely related to the average macroscopic rate &, ,i.e.

5.13)
where Ba and B ,, are referred to as strain concentration factors. Since in this case

p=p., the set of equations (5.11),(5.12) and (5.13) yields

1 K

B A T
ni{s+(1-8)_——~L @ Phigh (5.14)
{ Ka_Bhigh}
where
By = < —
" 3p, TS (5.15)

Thus, the average bulk modulus K , €an now be evaluated as:
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" - K
K _ B,K, - K = f
n_. Kf
S’ + (I“S’)r'— (5.16)
a _Bhgz

The proposed formulation incorporates a characteristic dimension identified with
the average pore size, p , . This is a measurable quantity which governs the
evolution of soil suction. In cases where o ,1s very small, as in fine grained soils,

a considerable pressure difference will occur.

5.2.2 Constitutive relations for soils at low degrees of saturation

In this case a similar approach is followed to formulate the constitutive
relations. At low degrees of saturation, the gas phase is assumed to be continuous
while the menisci of liquid adhere to grain boundaries. The average pressure, p

, can be written as

p=S,p,+ (1-S)p, -

S (5.17)
where p and P, represent the excess pressure in the water and air, respectively.
Approximating S _as the total surface area of solids, S ,»Which is a measurable
quantity, we can express the suction pressure as:

T B,.

Pa™Pu” p,(1-5) (5.18)
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The undrained behaviour of soils at low degrees of saturation is governed
by the constitutive relations analogous to those corresponding to high degrees of
saturation. One significant difference is that the value of 8 is defined by equation
(5.18) rather than (5.15). The other basic difference stems -from the initial
conditions within the sample. Assuming that the air pressure is at the atmospheric
level and ignoring the stress due to the weight of the sample

o= Pudy =B,
(5.19)

This means that under such conditions the water pressure is negative and it acts
like a confining pressure applied to the skeleton. The magnitude of this confining
pressure is considerable in fine grained soils due to a very small average pore
size. In general the integration of both relations, for high and low degrees of
saturation §n one framework is quite straightfdrward. It is enough to check the
degree of saturation, choose the appropriate 8 function and specify the initial

conditions.

5.3 Experimental study and model verification

5.3.1 General remarks

The theoretical research in the area of modelling of partially saturated soils

has to be coupled with experimental testing. In order to verify a model, the testing

procedure and technique must suit the theoretical formulation. The current testing
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techniques and tools used for partially saturated soils are quite complicated. The
complexity of methods is the result of introducing suction pressure as an
independent state variable. In this case, the conventional triaxial and direct shear
equipment require modifications to accommodate the independent measurement
and control of pore-air pressure. In addition the pore-water pressure, at low.
degrees of saturation, is usually negative and this can result in water cavitation

problems.

5.3.2 Experimental results

In order to verify the constitutive model presented in the previous section,
a set of experimental tests was conducted. The objective was to study the
influence of partial saturation on liquefaction behaviour of loose sands. The tests
were performed under undrained condition. The material used for testing was
Ottawa sand with a uniform size distribution which included passing #20 and
remaining on #50 standard sieves. The samples of two different sizes were tested,
the regular 3.5cm (in diameter) and large 10cm samples. The results of the tests
on fully saturated samples, under undrained condition with different initial
confining pressures, were very close. Therefore, the main series of tests were
conducted on regular size samples in order to save the time spent on sample
preparation. All the samples were prepared to the same initial porosity of n=0.44
which corresponds to a relative density ratio of 0.2 . All the tests were strain

controlled.
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Description of samol ion method

The samples were prepared in a very loose condition by using " Moist
Tamping” method. In this method the weight of dry soil and the water are
determined based on the results of preliminary tests, G; , and the volume of split
mould. The proper amount of distilled de-aired water, to get a water content of
5%, was then added and thoroughly mixed with sand. The samples were prepared
in five equally thick layers. First the soil was spooned in the mould carefully and
levelled with a spatula. Calipers were used to position the set ring on the tamping
rod for the height of each layer. The tamper was then lowered into the mould,
and the soil was compressed gently until the set ring contacted the top of the split
mould. Since the tamping foot was equal to one-half the diameter of the split
mould, the entire surface was compacted by moving the tamper around the
perimeter of the mould. The top of the compacted layer was then scarified slightly
to improve bonding of the next layer. This procedure was followed for each of
the 5 layers. This way the target dry density was achieved. The sample was then
carried to the loading chamber. The low moisture content helped to maintain the
stability of the sample during transportation. In order to saturate the sample, it
was necessary to‘expel the air from inside the sample. Therefore, the sample was
flushed by CO, gas. This gas replaces the air and can be easily expelled from
the sample. Also, the small remaining of the gas dissolve in water. After expelling
the air, the sample was saturated very slowly. The details of the sample

preparation and saturation procedure are presented in Appendix A.
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First, a series of undrained and drained tests were performed on fully
saturated samples in order to identify the basic parameters of the material. The
undrained tests were carried out at three different initial effective confining
stresses of 100, 200 and 300 kPa. In the case of drained tests the volume change
was measured via water drainage, while in undrained tests the pore-water pressure

was recorded.

The test results are presented in Figs 5.1 - 5.3. Fig. 5.1 shows the
mechanical characteristics for a drained test with initial confining pressure of 200
kPa, whereas Fig. 5.2 presents the analogous characteristics under undrained
conditions. Fig. 5.3 shows the effective stress trajectories for undrained test at
three different initial confining pressures. It is evident that the response is typical
of a very loose sand. The pore pressure progressively increases until liquefaction
occurs. Under drained conditions the response is stable and the material undergoes

progressive compaction.

The basic material parameters have been identified from the results of

these tests. The values of these parameters are provided in Table. 5.1 .

The procedure for performing an undrained test on unsaturated specimen
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is similar to that for a saturated specimen. The specimens are first consolidated
in drained conditions and then axially compressed, usually at a strain rate of 0.02-
0.03 %/sec. Conventional triaxial equipment is used and specimen is enclosed in
a rubber membrane during the test. In these tests the pore water pressure is
measured. The saturation ratio is determined through a precise weighting
procedure combined with an analytical relationship between Skempton's pore

pressure parameter, B, and the saturation ratio.

The results of the tests are presented in Fig. 5.4, Fig. 5.5 and Fig. 5.6 for
§_ =0.96, 0.92 ahd 0.87, respectively. It is evident that as the saturation ratio
is reduced the liquefaction potential decreases rapidly and the response tends
toward that corresponding to drained conditions. In the test carried out on the
specimen with a degree of saturation of 96%, the response is similar to that of a
saturated sample. In particular, the pore water pressure increases up to 140 kPa
and the maximum deviatoric stress reaches 200 kPa at 1% of axial deformation
( Fig. 5.4). The sample with lower saturation degree, 87%, sustains a higher
deviatoric stress of 300 kPa at 4% of axial deformation (Fig. 5.6). In this case,
the pore water pressure increase is 80 kPa , which is much lower than in the
previous test. The response of the sample with 92% saturation degree ( Fig. 5.5)
is intermediated of the other two tests. The deviatoric stress increases up to 220
kPa at the axial strain of 2% and the pore water pressure rises to 128 kPa. It can
be observed that, at a lower degree of saturation, the sample is more stable and

has less potential to liquefy.
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5.3.3 Numerical simulation of experimental results; verification of the model

performance

The material parameters (see Table 5.1 ) were identified froxﬁ the results
of drained and undrained tests on saturated samples. Figures 5.7 and 5.8 present
the numerical simulations of these tests. Fig. 5.7 shows the deviatoric and
volumetric characteristics corresponding to drained tesfs, whereas Fig. 5.8

presents the effective stress trajectories under undrained conditions.

The experimental tests on unsaturated samples were simulated based on the
same set of material parameters. The only additional variable was the degree of
saturation. The results of these simulations are presented in Fig. 5.9, 5.10 and

5.11. The results are quite consistent with the experimental data.

imulations of the response under ic loadin

In addition to the numerical simulations presented in Fig. 5.7 - 5.11, a set
of supplementary simulations were carried out. These simulations were performed
as a preliminary step for the dynamic analysis. The objective was to study the
liquefaction potential of partially saturated material under a cyclic loading history.
The material properties and other related data are presented in Table 5.2. The
results of analyses are presented in Fig. 5.12 and Fig. 5.13. These include two

undrained tests on samples with degrees of saturation of 100% and 90% and one
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test under drained condition. In Fig. 5. 12, the effective stress paths are presented.
As expected, the saturated sample liquefies after a few cycles. The sample with
90% degree of saturation requires more loading cycles to liquefy. The evolution
of excess pore-water pressure is presented in Fig. 5.13. In the partially saturated
sample the pore water pressure build up is coupled with significant volumetric
deformation, as the air-water mixture is compressible. Fig. 5.14 presents the

deviatoric characteristics for saturated and partially saturated cases.

5.4 Finite element analysis of problems involving unsaturated soils

In recent years the finite element method has been applied to engineering
problems involving unsaturated soils. The numerical procedure has been based on
the formulation used in the coupled flow-deformation analysis. Two different
approaches have been followed. In the early formulations, Bishop's principle of
effective stress was used instead of Terzaghi's principle and the y parameter was
approximated by saturation ratio, S, . In this approach the air pressure and the
evolution of saturation ratio due to volumetric deformations, were ignored ( Xie
(1992) ). In the later formulations, the equations governing the three phase flow
were introduced and the suction pressure was included as an additional state
variable (Schrefler & Simoni (1988), Li & Charlier (1995)). Although the latter
approach is quite general, it does not incorporate the evolution of saturation ratio

and the suction pressure due to deformation process.
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In this part of the study two boundary value problems are examined. First,
the liquefaction potential of a sand layer subjected to an earthquake excitation is
investigated. Next, the bearing capacity of a strip footing is analyzed. In the latter
case, the objective is to examine the influence of suction pressure on the bearing

capacity of soil at low degrees of saturation.

5.4.1 Liquefaction potential of a partially saturated soil deposit

The problem analyzed here is that of a sand layer subjected to an
earthquake excitation ( Fig. 5.15a). The acceleration characteristics used in the
analysis correspond to the N-S component of the El- Centro earthquake of May
1940, as shown in Fig. 5.15b . The sand layer is modelled as a column with both
sides and the bottom assumed to be impermeable. To model the uniformity of
deformation in the horizontal direction, repeated boundary conditions are assumed
for the lateral nodes, which implies that the displacement of a right-hand side
node is equal to that of the corresponding left hand side node. The finite element
mesh is shown in Fig. 5.16 . Eight noded elements with a 2 X2 Gauss integration
scheme are used. Material properties and other relevant data are presented in

Table 5.3 .

The study is focused on the evolution of excess pore pressure and
subsequent decrease of the effective stress during the earthquake. Four different

configurations are studied. First the whole layer is assumed to be saturated. Next,
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the depth of the water table is reduced to half the depth of the layer and the
degree of saturation in the upper part is varied from dry condition to §,=80% and

§,=90%. Initial effective stresses are calculated based on K,-conditions.

The evolution of normalized mean effective stress in time domain is
presented in Fig. 5.17. The results correspond to the most critical points in the
layer. Liquefaction can be defined as the development of pore pressure to the
point of balancing the soil stresses due to own weight, which manifests itself in
very small normalized mean effective stress ( /// Io’ — 0 ). In the fully saturated
soil the liquefaction occurs shortly after 3 seconds ( Fig. 5.17) and the liquefied
point is located in the top layer. This is quite reasonable as the points in the
vicinity of the surface have smaller initial effective stresses. It is noticeable that
as the degree of saturation decreases the tendency for liquefaction also decreases.

This means that the time required to reach the liquefaction is increased.

The profiles of the normalized mean effective stress with depth, at
different time stations and for different configurations, are presented in Fig. 5.18,
Fig. 5.19 and Fig. 5.20. Fig. 5.18 corresponds to the case in which the upper
part of the layer is saturated. It is evident that the region close to the surface is
more susceptible to liquefaction than the rest of the soil domain. However, in
the second configuration, the pore pressure develops at a slower rate in the upper
half of the layer as it is unsaturated, $,=90% ( Fig. 5.19 ). Therefore, the
saturated part is subjected to a longer period of e;(citation, which results in a

higher pore pressure and subsequent liquefaction. Fig. 5.20 shows a substantial
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decrease in the liquefaction potential of unsaturated material where S,=80% . In
this case liquefaction occurs in the saturated part. Also, as the initial effective

stresses are high, it takes more time (t=6.5 sec) to reach liquefaction state.

5.4.2 Bearing capacity of a strip foundation on partially saturated soil

The bearing capacity of a foundation on a normally consolidated clay at
a low degree is examined here. Both the depth of unsatﬁrated layer and its degree
of saturation are varied. The geometry of the problem, the finite element mesh
and assumed boundary conditions are shown in Fig. 5.21, and the material
properties are presented in Table. 5.4 . The analysis is relevant to plane-strain
conditions. The discretization is based on the 8-noded quadrilateral elements.
Reduced integration technique is used due to its simplicity and the simulations are

performed in a load-control manner.

Fig. 5.22 presents the load-displacement characteristics for three different
depth of unsaturated layer . As the thickness of the layer is increased the ultimate
load capacity increases, too. This is due to the fact that, in unsaturated state, the
suction induced in the soil provides an additional confining pressure, which

subsequently leads to higher ultimate bearing capacity.

The evolution of safety factor during loading is presented in Fig. 5.23. It

is evident that as the ultimate load is approached the factor of safety drops to 0.
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In Fig. 5.24 the load-displacement curves for two cases are compared. In
the first case, upper layer is assumed to be dry, whereas in the second case the
same layer is unsaturated with S§,=40% .The deformed mesh corresponding to |
first case (dry upper layer) is presented in Fig. 5.25. The unsaturated material
undergo larger deformations than the saturated part, which is incompressible. It
is evident that the bearing capacity increases by introducing a low water content.
These results can be compared with another method of estimating the bearing
capacity increase due to the suction, as suggested by Rahardjo & Fredlund
(1992). In this approach, the ultimate bearing capacity of clayey soils is expressed
in terms of their undrained shear strength , g , =N_C . Meanwhile, according to
(5.1 ), an increase in matric suction (p,-p,) is considered to result in a

proportional increase in undrained shear strength, C . Thus, the final relation is

Ag; A @, -w,)

¢b
qf CuO

where ¢ ° is a soil parameter similar to the friction angle of the soil and C,,
represents the initial undrained shear strength. With the parameters presented in
Table 5.3 and assuming ¢° to be close to the friction angle, the predicted increase
is of the order of 15%, which is consistent with predictions presented in Fig.

5.24,

Final remarks

The mechanical response of partially saturated soils at low as well as high

degrees of saturation has been examined. The existing theoretical approaches are
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commonly developed based on the idea that the suction pressure can be regarded
as an independent state variable. In the present formulation, the average pore size
is incorporated as a parameter governing the evolution of suction pressure in the
soil. This parameter can be related to average grain size. The microstructure of
soils at low and high degrees of saturation are described within the same
framework. In order to study the performance of the model, a series of
experimental tests have been carried out and numerically simulated. The numerical
results appear to be consistent with the experimental data, proving that the suction
pressure and its evolution can be determined for a specific microstructure of
saturation. Moreover, finite element simulations, incorporating the suggested
model, have been carried out to investigate the effect of partial saturation in some
engineering problems of practical significance, such as liquefaction of loose sand

deposits and bearing capacity of shallow foundation.
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Fig. 5.1 Experimental results of drained triaxial test on Ottawa sand
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Fig. 5.2 Experimental results of undrained triaxial test on Ottawa sand
at initial effective confining pressure of 200 kPa.
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Fig. 5.3 Effective stress trajectories for undrained tests on Ottawa sand
at different initial confining pressures.

Table 5.1 Properties of the tested sand

Elastic shear modulus, G , (kPa) |7.0%10°
Elastic bulk modulus, K , (kPa) | 1.25 «10°
Dry density, ( t/m? ) 1.45
Failure surface parameter , n £ 12
Slope of zero dilatancy line , n c 1.18
Yield surface parameter , n] 0.02
Porosity , n 0.44
Hardening constant, A , 0.005
Plastic hardening exponent , y 4.0
Fluid bulk modulus, K ¢(MPa) 2200
Viscosity of fluid, p f,(kPa-sec) 0
Surface tension, (kN/m ) 56 =107
-Average pore size , Pyo(m) 5.7 +10™
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Fig. 5.4 Experimental results of undrained test on Ottawa sand
at initial degree of saturation of 96%.
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Fig. 5.5 Experimental results of undrained test on Ottawa sand
at initial degree of saturation of 92%.
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Fig. 5.6 Experimental results of undrained test on Ottawa sand
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Fig. 5.7 Numerical simulation of drained test on Ottawa sand,
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Fig. 5.8 Numerical simulation of undrained triaxial test on saturated
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4
Elastic shear modulus, G, (kPa) |1.2*10

Elastic bulk modulus, B=-K/I' 100
Dry density, (t/m” ) 1.3

Failure surface parameter, g £ 0.52
Slope of zero dilatancy line , n c 043

Yield surface parameter , 7 1 0.02
Porosity , n 04

Hardening constant, A \ 0.0025
Plastic hardening exponent ,y 4.0

Fluid bulk modulus, K f( MPa) 2200

Aeg,= —2+A¢g, -0.001
Surface tension, ( kN/m ) 56 10
Average pore size, P, (m) 8.0 x10~°

Table 5.2 Material properties in cyclic loading simulations
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Fig. 5.12 Numerical simulations of cyclic triaxial tests on medium dense sand;
Effective stress trajectories for drained, saturated and partially saturated cases.
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Fig. 5.13 Pore pressure evolution for saturated and partially saturated cases.
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Fig. 5.14 Deviatoric characteristics for saturated and partially saturated cases.
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Fig. 5.15 A loose sand layer subjected to earthquake excitations; (a) Geometry
of the problem ; (b ) Time history of accelerations applied at the base.
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4
Elastic shear modulus, G, (kPa) [1.2+10

Elastic bulk modulus, B=-K /I' 200

Total density, ( t/m’> ) 1.9

Failure surface parameter, £ 0.52

. . Slope of zero dilatancy line , 0.43

Table 5.3 Material properties of i d e
Yield surface parameter, n 1 0.02
sand layer

Porosity , n 0.44
Hardening constant, A \ 0.0025

Plastic hardening exponent , y 4.0

Fluid bulk modulus, K f( MPa ) 2200

Dry density , (t/m 3) 1.6

Surface tension, (kN/m ) 56 #10°

Average pore size, P, (m) 8.0 »10°°
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Fig. 5.17 Time history of normalized mean effective stress at four different locations.
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Fig. 5.18 Profiles of normalized mean effective stress at different intervals (Conf. #1)
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Fig. 5.19 Profiles of normalized mean effective stress at different time intervals (Conf. #2)



133

— t=0.0sec
—A&A— t=1.5sec
—l— t=3.0sec
—@— t=45sec
—Jk— =6.0sec
1.0 4
Z
| H
0.8 -
0.6 -
0.4 —
0.2
. 0.0
0.0

Config. 3

Fig. 5.20 Profiles of normalized mean effective stress at different intervals (Conf. #3)
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Fig. 5.22 Load-settlement characteristics for different configurations ;
('S =40% above the water table).
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Fig. 5.23 Evolution of safety factor.
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Fig. 5.24 Load-settlement characteristics for dry and partially saturated
conditions above the water table.

Elastic modulus, E, (kPa) u 1.0« ﬂ
Poisson ratio I 0.325
Total density, ( t/m°’ ) 1.9
Failure surface parameter , n ¢ 0.4

Slope of zero dilatancy line , n. 0.383

Yield surface parameter , n 1 0.02

Porosity , n 0.5
Hardening constant, A \ 0.0002

Table 5.4 Properties of foundation Plastic hardening exponent ,y 4.0
material Fluid bulk modulus, K .(MPa) | 2200

Dry density , (t/m 3) 1.6

Cohesion, (kPa) 100

L Average pore size, P, (m) 50107
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and conclusions

The mechanical response of soils infiltrated with fluids is influenced by
many factors including the microstructure of saturation, the properties of
constituent material and the degree of saturation. In fully saturated state, loose
granular sands tend to liquefy. The experimental studies of liquefaction potential
can be misleading as the stress history may be quite different. Therefore,
numerical procedures based on nonlinear dynamic formulations have been
developed. The classical formulations considers the liquefied material as a solid
at very low mean effective pressure, which is not the case in view of the
experimental studies. Also, the response of the granular soils in drained conditions

is rate-independent, but the viscosity of the liquid induces rate-dependency.

The effect of partial saturation on the response of soils has received much

139
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attention. There are different formulations proposed. The simplest one invokes the
modification of the effective stress principle which is not enough to cover all the
aspects. Other formulations are based on the modification of the material
parameters as a function of the suction pressure. These formulations are more
problem oriented. There is a third approach which is based on the introduction of
suction pressure as an independent state variable. This formulation is complex and

needs expensive testing,

This thesis has been focused on the numerical modelling of the behaviour
of soils infiltrated with fluids. A new mathematical formulation for the behaviour
of partially saturated soils has been implemented in the finite element algorithm
and a number of boundary-value problems have been solved. These include
studies related to low as well as high degrees of saturation and stability of

structures under dynamic loading.

In the first part of this thesis the essentia] features of the plasticity model
incorporated in the finite element code were introduced and an implicit algorithm
for integration of the constitutive model was proposed. In the second part, the
dynamic response of granular materials partially saturated with a Newtonian fluid
was examined. Due to the viscosity of the liquid, the overall response proved to
be rate-sensitive, while the soil skeleton was assumed to be rate-independent. The
numerical examples show the response in different conditions. The material in a
very loose condition liquefy due to a progressive accumulation of pore pressure.

The mechanical effort required to liquefy the sample increases significantly with
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an increase in the loading rate. It was shown that if the load is sustained above a
critical intensity, the sample will spontaneously liquefy. On the other hand, if the
test is carried out at a load level below that intensity, the damping effects become
significant and the sample reaches the stationary conditions. It was also interesting
to note that under high loading rates a rate-independent elasto-plastic material
shows a rate-sensitive response.Such a response is usually described within the
context of viscoplasticity, in which it is attributed to rate sensitivity of the
material. Apparently, the latter is not necessarily true if the effect of the inertia

is included.

In the third part of this thesis the liquefaction phenomenon in fully
saturated soils was investigated. The study was focused on the behaviour of
liquefied material and its influence on the stability of the soil structures. The
theory of stability was briefly reviewed and a simplified criterion for the factor
of safety was introduced. The numerical simulations, under dynamic conditions
were performed assuming different viscosities of the liquefied material. A
comparison of the results indicated that the viscosity of liquefied material can
stabilize the response of the structural system. It can also reduce the rate of
propagation of liquefied zones. In general, this phenomenon may account for the

failure of structures some time after the excitations stop.

In the fourth part, the mechanical response of partially saturated soils at
low as well as high degrees of saturation was investigated. In order to examine

the performance of the constitutive model, a series of experimental tests were
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carried out. The results of numerical simulations of the tests were consistent with
the experimental results, proving that the suction pressure and its evolution can ‘
be determined for a specific microstructure of saturation. Furthermore, two
classes of boundary value problems were solved. In the first one the stability of
loose sand layer, with different degrees of saturation, under earthquake excitations
was studied. The numerical simulations showed that the liquefaction potential of
a sand layer can be reduced significantly if the material is unsaturated. In order
to further investigate this aspect, a series of cyclic loading point integration
simulations were performed. The results confirmed that the samples with 90%
degree of saturation are less susceptible to liquefaction than the saturated ones.
Another series of finite element simulations were concerned with the bearing
capacity of shallow foundations on soils at low degrees of saturation. The results
show that the bearing capacity significantly increases with a decrease in the

saturation ratio.

On the basis of this study, the following major conclusions can be

restated:;

The mechanical behaviour of the soil infiltrated with fluids may be rate

sensitive despite the rate - independent behaviour of solid skeleton.

— A new microstructural model for partially saturated material was verified

based on a series of experimental tests. In this model, the evolution of

suction pressure is governed by the average pore size, i.e. a material
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parameter which can be related to grain size distribution. The model
has several advantages such as: (i) it eliminates the need for expensive
and complex tests, where the suction is controlled through a sophisticated
procedure; (i) the framework covers both low as well as high degrees of
saturation ; ( iii ) it can be implemented in a finite element algorithm

using any plasticity model describing the drained response.

— The study of stability of soil structures showed that the concept of factor
of safety can be introduced to assess the structural integrity of the system.

6.2 Recommendations for future researches

In the present research, some fundamental aspects of the behaviour of soils
infiltrated with fluids have been studied. Although the proposed approaches are
quite promising, further research is still required to verify their performance under
more complex loading conditions. In the following some recommendations for

future research are given based on the present study.
(1) An experimental study is required for investigating the effect of the viscosity
of the fluid impregnating the soil, in order to verify the performance of the

formulation described in Chapter 3.

(2) The numerical analysis could be extended to transient post-liquefaction
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behaviour of soil structures under earthquake conditions. This requires an
experimental investigation of the parameters affecting the viscosity of the liquefied
material. It also, requires numerical modelling of resolidification of liquefied

material under drained conditions.

(3) In order to complete the formulation for partially saturated soils, an
experimental study regarding the influence of the average-pore-size is required.

Also, the methods of testing could be enhanced.

(4) Theoretical and experimental studies are required to investigate the transition
from low degrees of saturation to high degrees, or vice versa. Also, the case when
the liquid phase can no longer be considered as continuous, needs to be

examined.

The above recommendations, together with other points suggested
throughout this study, appear to be a logical continuation of the present research.
Upon completion of these studies, the proposed theory may provide an efficient

tool for the study of soil structures infiltrated with fluids.



APPENDIX A
SAMPLE PREPARATION PROCEDURE
MOIST TAMPING METHOD-

The procedure outlined below has been used for preparation of saturated

and partially saturated samples :

- Fill the de-aired with water.

- Apply vacuum and de-air the water.

- Calculate the required weight of sand by assuming a target dry density.

- Mix sand with 5% (by weight) water.

- Take dial gauge reference reading at the top of the loading ram by placing a
dummy sample of known height between bottom and top pedestal with the
porous stones.

- In order to saturate the sample it is necessary to have top drainage and a small
vacuum should be applied to the sample before removing the vacuum mould.
Hence, it is always convenient to have the top drainage through the cell.

- Place the bottom porous stone and wrap Teflon tape around its edge.

- Insert the membrane into the bottom pedestal.

- Seal the membrane to the bottom pedestal with an 'O’ ring.
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Place the vacuum mould around the bottom pedestal and make sure not to
pinch the membrane.
Screw in all the nuts for the vacuum mould.
Pull the membrane and flip it around the top of the vacuum mould. ¥
Apply vacuum to the mould through the vacuum outlets. Make sure the
membrane is stretched to the mould so that uniform samples can form in the
cavity.
Divide the sand into five (or even ten) equal volumes. The sand must be kept
in a air-tight dish, so that it doesn't loose moisture due to evaporation.
Mark the compaction handle so that it reads zero when placed on the porous
stone. A piece of measured tape can be used.
Place first equal volume and compact the sand. The final height can be
calculated based on the required height of the sample and number of parts. As
the tamping is being carried out, the reading on the handle can measure the
height of the sample. This ensures that the sand is compacted up to required
volume. The achievement of the target height depends on the experience. The
compaction procedure must be performed carefully.
At the end of compacting each layer, its surface must be scarified slightly.
The same procedure must be followed for the other parts, till the whole sand
is placed in the cavity.
Level the top surface of the sample.
Place the top porous stone in the top cap and wrap Teflon tape around the
edge.

Connect the top drainage line to the top cap.
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Place the top cap on the sample surface.
Pull the membrane and seal it with the top cap (apply a small load on the cap
by pressing it while pulling the membrane).
Measure the height of the sample by taking another dial reading and deducting
the reading of step. 5 plus the thickness of the caps. The result must be in
accordance with the target height.
Close the top drainage valve and apply a 20 kPa vacuum through the bottom
drainage line.
Remove the vacuum connection to the mould and carefully dismantle the
mould.
Measure the perimeter of the sample at top, middle and bottom.
Assemble the loading cell and lock the vacuum inside the sample by closing the
bottom drainage valve.
Take the cell to where it must be filled with the cell fluid ( de-aired water).
Place the cell in the loading frame and apply a small confining pressure (20
kPa) through a separate line, while releasing the locked vacuum inside the

sample.

Adjust the CO, inlet pressure to S kPa.
Open the top drainage valve and put the tip in a beaker full of water.
Connect the CO, inlet to the bottom drainage line.

As the gas flows in the sample, air is expelled out. After 15-20 min. remove
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the CO, connection.

- Percolate de-aired water through the bottom drainage line. During this period,
the bubbles of CO, gas come out the top drainage line in the beaker.

- When the sample is saturated, water starts flowing through the sample .
Therefore there will be no more bubbles and the saturation procedure is
finished.

- The volume of water inside the sample can be calculated based on the readings
on the small storage tank and the beaker before and after the saturation period.

- Connect the bottom and top drainage lines to measuring lines.

- Take a reference reading of all the transducers.

- Measure 'B' value by the cell and back pressure at 50 kPa effective stress.

- When 'B’ value of 0.99 or greater is achieved, stop increasing the back
pressure and increase the cell pressure in 20-30 kPa increments by allowing 5
min. at each stage until the desired effective consolidation stress is achieved.

- Take a second reference reading of all the transducers and start the test.

There is no standard procedure for preparation of partially saturated samples.
Therefore, in order to prepare a partially saturated sample, the saturation
procedure was terminated before reaching full saturation condition. The degree of
saturation was then determined through a precise weighting method and checked
by a relation established between Skempton's 'B' parameter and degree of

saturation.



APPENDIX B

DETERMINATION OF ELASTIC STRESS RATIO
IN REVERSE LOADING

During the reverse plastic loading, the stress point moves from the inside
of the yield surface to its outside. Therefore, the response is elastic in one part of
the loading process and elasto-plastic in the rest. The ratio of elastic part of the
total stress increment is usually calculated by an iterative procedure. Here, a

simple analytical solution is presented.

Assuming the current stress point as o; and stress increment as Aa,.j ,a

ratio, R, is sought, so that

f{ai},a’,j} =5‘(1)_1,I I"O=q. (B.1)

where @; represents a unit normal along the axis of the yield surface and ag.

is defined as

0. =0.+R Ao. B.2)

Substituting (B.2) in (B.1), a quadratic equation in terms of R is obtained, which
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can be solved analytically. Using (B.2) , we can write

1" =1"(ey =4 R+B

(B.3)
and
- 1 2 2 2 2
() = = (D+A?-24B)R*+2(E-B?)R+(C-B
where
A = Aaij , B=a,.j o;
C=a,.j o; D=Aai}. Aa,.]. ®.5)
E=a,.]. Aaij
Substituting (B.3) and (B.4) in (B.1) ,
(D-A*-2An;A%) R? + 2(E-A B-2n'A B) R
+ (C-B? -29}B?) =0. (B.6)

The above quadratic equation can be solved for R.
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