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Abstract

The thermodynamic behaviour of the enhanced hole-hopping model of high temper­

ature superconductivity is investigated using the numerical Density Renormalization

Group (DMRG) technique. The enhanced hole-hopping or ilt model is a Hubbard­

like lattice model that has been proposed to account for superconductivity in the high

temperature superconducting materials. Extensive results for this model have been

obtained by others within the BCS approximation. This thesis does not attempt to

motivate the use of the ilt model but rather it is the goal of this work to characterize

the accuracy of two techniques used to study this model. In particular, the ground

state energy and binding energy for a pair of particles as calculated within the DMRG

are compared to similar results obtained from BCS and Exact Diagonalization stud­

ies. The DMRG is a relatively new numerical technique and consequently a detailed

discussion of its implementation is given. Application of the DMRG necessarily con­

fines investigation to one dimension. Analysis of finite size effects is also presented

where warranted.
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Chapter 1

Introduction

" whatever we mean by what we say is not what the thing actually is, though

it may be similar. For the thing is always more than what we mean and is never

exhausted by our concepts." [1]

The study and subsequent attempt to explain physical processes is most often done

through the medium of models. Models are a mathematical representation of simple

ideas which account for the main physical features of a system. As a result, a model

can often only be a modest representation of the real physical process. It is frequently

the case that the model cannot be solved exactly and consequently approximation

schemes must be utilized. It is then necessary to characterize how well the approxi­

nlate solution reflects the exact properties of the model and in turn, whether this is

an accurate portrayal of reality. The validity of a model is judged by its ability to

account for currently observed behaviour and also by the integrity of its predictive

capabilities. Often this hinges upon the degree to which the modef must be extended

in order to explain additional features. Model failures signify a design flaw or lack of
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understanding and are manifest of some striking or unexpected behaviour. It is these

fascinations which lend to the continual progression of understanding. The characteri­

zation of techniques used to describe a model of High Temperature Superconductivity

will be the focus of this thesis.

A superconducting phase transition was first observed in 1908 when Dnnes [2] re­

ported the disappearance of resistivity in Hg when cooled to below a critical temper­

ature Te, of 4.2 K. A microscopic theory describing this transition was put forth in

1956 by Bardeen, Cooper, and Schrieffer (BCS) [3J. The BCS theory of superconduc­

tivity is a general theory of quasiparticle pairing starting from a Fermi liquid state.

The BCS model of superconductivity further specifies that the pairing is mediated

by the instantaneous exchange of phonons and that the symmetry of the supercon­

ducting order parameter is s-wave (zero angular momentum pairs). For the most

part, the BCS model predicts universal parameter free features for many elelllental

and superconducting compounds which are in excellent agreement with experimental

results. However slight deviations from these predictions exist and are accounted

for by a more accurate generalization of BOS theory in which the electron-phonon

interaction time is included. This model is referred to as Eliashberg theory [4].

Besides the solid state, the BCS theory has found remarkable success describing pair­

ing correlations within the nucleus [5] and the physics of neutron stars. In recognition

of the significance of their theory, Bardeen, Cooper, and Schrieffer were awarded the

Nobel prize in physics in 1972. Before 1986, the record high T c was about 23 K for

2






























































































































































































































