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Abstract

The thermodynamic behaviour of the enhanced hole-hopping model of high temper-
ature superconductivity is investigated using the numerical Density Renormalization
Group (DMRG) technique. The enhanced hole-hopping or At model is a Hubbard-
like lattice model that has been proposed to account for superconductivity in the high
temperature superconducting materials. Extensive results for this model have been
obtained by others within the BCS approximation. This thesis does not attempt to
motivate the use of the At model but rather it is the goal of this work to characterize
the accuracy of two techniques used to study this model. In particular, the ground
state energy and binding energy for a pair of particles as calculated within the DMRG
are compared to similar results obtained from BCS and Exact Diagonalization stud-
ies. The DMRG is a relatively new numerical technique and consequently a detailed
discussion of its implementation is given. Application of the DMRG necessarily con-
fines investigation to one dimension. Analysis of finite size effects is also presented

where warranted.
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Chapter 1

Introduction

”... whatever we mean by what we say is not what the thing actually is, though
it may be similar. For the thing is always more than what we mean and is never

exhausted by our concepts.” [1]

The study and subsequent attempt to explain physical processes is most often done
through the medium of models. Models are a mathematical representation of simple
ideas which account for the main physical features of a system. As a result, a model
can often only be a modest representation of the real physical process. It is frequently
the case that the model cannot be solved exactly and consequently approximation
schemes must be utilized. It is then necessary to characterize how well the approxi-
mate solution reflects the exact properties of the model and in turn, whether this is
an accurate portrayal of reality. The validity of a model is judged by its ability to
account for currently observed behaviour and also by the integrity of its predictive
capabilities. Often this hinges upon the degree to which the model must be extended

in order to explain additional features. Model failures signify a design flaw or lack of



understanding and are manifest of some striking or unexpected behaviour. It is these
fascinations which lend to the continual progression of understanding. The characteri-
zation of techniques used to describe a model of High Temperature Superconductivity
will be the focus of this thesis.

A superconducting phase transition was first observed in 1908 when Onnes [2] re-
ported the disappearance of resistivity in Hg when cooled to below a critical temper-
ature T, of 4.2 K. A microscopic theory describing this transition was put forth in
1956 by Bardeen, Cooper, and Schrieffer (BCS) [3]. The BCS theory of superconduc-
tivity is a general theory of quasiparticle pairing starting from a Fermi liquid state.
The BCS model of superconductivity further specifies that the pairing is mediated
by the instantaneous exchange of phonons and that the symmetry of the supercon-
ducting order parameter is s-wave (zero angular momentum pairs). For the most
part, the BCS model predicts universal parameter free features for many elemental
and superconducting compounds which are in excellent agreement with experimental
results. However slight deviations from these predictions exist and are accounted
for by a more accurate generalization of BCS theory in which the electron-phonon
interaction time is included. This model is referred to as Eliashberg theory [4].
Besides the solid state, the BCS theory has found remarkable success describing pair-
ing correlations within the nucleus [5} and the physics of neutron stars. In recognition
of the significance of their theory, Bardeen, Cooper, and Schrieffer were awarded the

Nobel prize in physics in 1972. Before 1986, the record high T, was about 23 IX for



the compound Nb3Ge and it was generally accepted that the highest possible critical
temperature could be elevated by at most a few degrees beyond this. Superconductors
of this era are now commonly referred to as conventional superconductors.

In 1986 Bednorz and Muller [6] made the serendipitous discovery that an appropri-
ately doped La;CuOy4 ceramic compound would superconduct at 30K. Moreover it has
become clear that this superconductor (and others) possess features uncharacteristic
of the predictions of the BCS microscopic model of superconductivity. In particular,
phonons do not play a significant role in the mechanism leading to superconductivity
nor does the order parameter seem to possess s-wave symmetry. To date the highest
T is approximately 133 K for the compound HgBa,Ca;Cu30s. Unconventionally na-
tured and numbering in the hundreds, these superconductors have been labelled High
Temperature Superconductors (HTSCs). Whether or not, or to what degree, BCS
theory may be applicable to the HTSCs remains an open question. Consequently,
many models have been put forth to describe the HTSCs. The extreme relevance
of Bednorz and Muller’s discovery is reflected in the fact that they were awarded a
Nobel prize in 1987, the shortest time ever between discovery and winning a Nobel
prize. This finding has led to unprecedented furore in the physics community and vet
despite intense efforts by experimentalists and theorists alike, a complete theory of
HTSCs has remained elusive.

There are many proposed models of high temperature superconductivity, each with

their own merits and inadequacies. For most, if not all of these models, exact solution



for realistic parameters is unavailable and some type of approximation is required.
Even so, in many cases only numerical solutions are possible. The goal of this thesis is
to characterize one particular model which is thought to be appropriate in describing
the superconducting regime of HTSCs. By this it is meant that this thesis is not
advocating the model which best governs the HTSCs, but rather the scope of this
work is to assess the validity of various techniques used to study specific properties
of the model in question. Study is restricted to one dimensional (1D) analysis where
the likelihood for extracting exact behaviour is greatest. While 1D Systems may not
be very realistic the techniques utilized and conclusions reached in this thesis should

prove useful for higher dimensional studies where exact solutions are not attainable.

1.1 BCS Superconductivity

Paramount to the formulation of BCS theory is the Cooper-pair problem [7] which
initiated the direction in which the microscopic theory should proceed. Based on this
concept, BCS intuitively determined the necessary stable ground state wavefunction
in the presence of electron pairing. Subsequently, they were able to predict universal
characteristics of the superconducting state which provided detailed agreement with
experiments.

Cooper pointed out that the ground state of a normal metal at zero temperature is
unstable. This instability is indicative of a phase transition to the superconducting
state. While the demonstration of a pairing instability is not a description of the

superconducting state, it is suggestive of the process by which superconductivity
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occurs. Built into Cooper’s pairing theory is the idea that when a pair of electrons
in opposite spin and momentum states are added to a non-interacting Fermi gas. the
electrons will bind together for an arbitrarily small, but attractive potential. But
how could a pair of electrons overcome the repulsive Coulomb interaction and bind?
What is the source of the attraction? The answer to these questions was established
prior to Cooper’s work. Experimentally it was observed that good conductors were
poor superconductors. The reason for this became clear with the discovery of the
isotope effect by Maxwell [8] and Reynolds et al. [9] These groups found that T, was
strongly dependent on the mass of the constituent isotopes, M. In particular, for tin

and thallium the following relation was formulated

T, < M7,

These experiments clearly indicated that the lattice was somehow responsible for
superconductivity. Frohlich [10] further studied the interactions of electrons in a metal
with acoustic lattice vibrations (phonons). He demonstrated that phonons could
mediate an attractive interaction between electrons at the Fermi surface. Phonon
effects could be included in an indirect manner in an instantaneous effective electron-
electron interaction

2|95 [*hwp_g
(e —ew)? —wl

Vip =

where g;_p is the amplitude for an electron being scattered by a phonon and Wi
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is the phonon dispersion. This potential is attractive for lex — ext| < hwg_p. Thus
the electron-phonon scattering which limits conductivity in the normal state can also
provide an attractive potential necessary for binding. Physically the attraction can
be pictured as resulting from the first electron polarizing the ionic crystal field around
it, which in turn serves as an enhanced positive field to which a second electron is

attracted. Cooper replaced the overall potential with a model interaction of the form

Vie = =V forlel, |ep| < wp

= O  otherwise (1.1)

where wp is the Debye frequency which characterizes the energy of the i)honons ex-
changed in the scattering process. Scattering events in conventional superconductors
are essentially confined to the Fermi surface as wp ~ 10meV while the Fermi energy
is of order 10eV'.

Assuming the two electrons are in a spin singlet state a ground state trial wavefunction

can be taken as

[¥) = Za(k)c{-,Tcik,llF>
k

where |F) represents the filled Fermi sea and c}:,T creates an electron in momentum
state k with spin-up. For |¢) to be normalized the coefficients a(k) must satisfy the

condition



; |o(k)J? = 1.

Using the above model potential, wavefunction, and normalization, minimization of
the energy within a variational approach, shows that two electrons bind with an

energy

—2
E = —2hwpeTow

where N(0) is the density of states at the Fermi surface. !
In the many-body (pair) case, BCS assumed the pairs had zero center-of-mass mo-
mentum and that the appropriate many-body Hamiltonian had the following reduced

form

1
Hpeg=3" 6kcllfc,ack.a + N > Vk,k’CI-,TCT_k,lC._kl’lCk/,T
ko k,k!
where ¢ is the single particle energy and Vj 4 is the two body potential. The deriva-

tion of such a many-body Hamiltonian will be elaborated on later in Chapter 2. BCS

proposed that the ground state wavefunction of a superconducting system is given by

k

1One could have taken a trial wavefunction with the spins in the triplet state, however no non-
trivial solution exists for the energy. See [11]



where |0) is the vacuum state and the coefficients u; and v, indicate the probabil-
ity amplitude for a state k being unoccupied or occupied by a pair, respectively. It
is interesting to note that unlike the Cooper pair wavefunction, the BCS wavefunc-
tion does not conserve particle number but rather contains a mixture of states with
0,2,4,6,...,N —2,N,N +2,... particles. This violation of particle conservation is
handled by working in the grand canonical ensemble and invoking the condition that
only the average number of particles be equal to the actual number of particles in
the system. The statistical fluctuation in particle number is then of order N% which
when compared to NV for macroscopic systems is insignificant.

Invoking the variational principle u; and v, can be determined by minimizing the

energy. The results are [12]

1 €.

= -[1--=%

v = gll-g

1 €L

2 f— -_— —

vp = 2[1+Ek
w4+ =1 (1.2)

with the excitation spectrum in the superconducting state given by



E;y = \/6% + A,zc.

Ay is the superconducting order parameter or gap in the quasiparticle spectrum and
it signifies the minimum excitation energy required to break up a quasiparticle pair.

The solution for Ay is given by the non-linear integral equation
Ay = _Wl ; Vk,k'%
while the chemical potential must be determined self-consistently from
n=1- % Z;.: ;—i

where n is the density of particles.

It should be pointed out that the condensation energy of the superconducting state is
of the order of meV while the correlation energies in a metal are typically in eV range.
It is remarkable that BCS were able to isolate the interaction responsible for pairing
considering the disparity between energy scales involved. This is reconciled by the fact
that the pairing is between Landau quasiparticles rather than bare electrons. Within
Fermi liquid theory [13] the large correlation energy is folded into the renormalized
mass of the quasiparticles so that in actuality, superconductivity occurs due to the

weak attraction of long-lived quasiparticles.
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Figure 1.1: Crystal Unit Cell for HTSC Lanthanum Copper Oxide

1.2 Overview of High Temperature Superconduc-
tors (HTSCs)

High temperature superconductors possess properties markedly different from conven-
tional BCS superconductors such as aluminum (Al). As such the application of BCS
theory to explain high temperature superconductivity is questionable. HTSC com-
pounds are formed from complex crystal structures which reflect their multi-atom

unit cells. The crystal anisotropy in these materials is the basis for their striking
10



characteristics. Figure 1.1 illustrates the unit cell for the HTSC parent compound
lanthanum copper oxide (La;CuOy4) or 214. When optimally doped with strontium
to form La; g5Srg15CuQy, this compound becomes superconducting at a transition
temperature (T.) of about 35 K. The crystal structure contains two copper oxide
planes per unit cell. It is these planes where conduction is thought to take place in
the HTSCs with the surrounding structure functioning as a charge reservoir. There
exists a large number of HTSC variants but all do not seem to have copper-oxygen
planes in common. For example the compound Ba,_.K,BiO, with a T, =~ 30" does
not possess copper-oxide planes and is almost isotropic. Consequently the term ozides
is occasionally used to refer to high temperature superconductors.

A simple, yet extremely rich, phase diagram for the properties of the HTSC compound
214 as a function of temperature and Sr doping is shown in Figure 1.2. HTSC cuprates
in general posess the same attributes depicted by this phase diagram. At zero doping
(z = 0) there is an antiferromagnetic insulating state which disappears quickly upon
substitution with a small amount of dopant. If the temperature is low enough. the
transition is to the superconducting phase otherwise it is to a metallic state. The
metal-insulator phase change is known as the Mott transition.

Various experiments such as flux quantization confirm that the carrier charge in the
superconducting state in these compounds is twice that of the electron charge. Ad-
ditionally, measurement of the sign of the Hall coefficent indicates that holes are

being doped into the system. Superconductivity is attained with a T, which at first

11
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Figure 1.2: Phase Diagram for the HTSC Lanthanum Copper Oxide

increases (underdoped regime), reaches a maximum and then decreases as doping in-
creases (overdoped regime). The hole doping at which the maximum T, is reached
is known as optimal doping. As the superconducting phase vanishes with increased
doping, free electron behaviour sets in and the normal metal phase is established.
This is to be contrasted with a localized metallic phase which results from doping
the insulating state at temperatures too high to produce superconductivity. Besides

electronic phases, there is also a structural transition where the material transforms

12



from an orthorhombic crystal structure to a tetragonal one. This structural distortion
can be viewed in terms of the tilting of oxygen octahedra which are formed from the
apical oxygen ions on either side of the CuO, planes. The generic phase diagram
just described classifies the HTSCs known as hole-doped superconductors. There also
exists a class of HTSCs referred to as electron-doped cuprates, a typical example be-
ing the compound Nd,_,Ce,CuQ4. However, the sign of the Hall coefficient in the
electron doped materials and its correlation to carrier charge is not as precise as it is
for the hole case [14]. The phase diagram for the electron-doped compounds contains
the same generic features as the hole-doped cuprates with a few subtle differences.
The insulating state in the electron case does not disappear as quickly with doping
as in the hole case and the transition to the superconducting state is much sharper.
Another discrepancy not portrayed by the phase diagrams is the symmetry of the
order parameter. Electron-doped HTSCs seem to be capably described by a BCS-
type order parameter whereas it appears that the hole doped materials do not have
s-wave order. In particular, photoemission measurements [15] suggest a large degree
of gap anisotropy with the gap actually going to zero (gap nodes) at several points on
the Fermi surface. Tunneling experiments have been performed [16] which can probe
the symmetry of the gap or pair wavefunction. These measurements suggest that the
superconducting pairs are of d-wave z? — y? symmetry. This symmetry is consistent
with gap nodes on the Fermi surface. The fact that both cuprates apparently have dif-

ferent order parameters is suggestive of two possible pairing mechanisms, troublesome

13



concept for some theorists to accept.

By examining the electronic structure of the HTSCs light can be shed on some as-
pects of the phase diagram. Analysis will be with regards to the hole doped cuprates
using the lanthanum compound as the archetype. As the copper-oxide planes are
responsible for conduction discussion is restricted to their role. Naive electron count-
ing suggests the valence states for the constituents in the 214 parent compound are
0?7, La®, and Cu®*. Thus the Cu®* ion has a partially filled degenerate 3d electron
shell with a single hole. The six oxygen electrons also form a degenerate level of
2p character and lower in energy than the copper level. In the presence of crystal
field splitting (Jahn-Teller effect) these degeneracies are lifted to leave a half-filled
Cu level of 3d,2_,2 character with all other states filled. In the absence of electron
interactions the 214 compound would be classified as a metal according to coventional
band theory arguments. However, as indicated on the phase diagram it is actually
an antiferromagnetic insulator. To place another electron in the Cu shell would cost
an additional Coulomb energy of about 10eV and it is this localization of copper mo-
ments that gives rise to the observed magnetic effects. Consequently, in the HTSCs
strong correlations must be taken into account, that is the average interaction energy
significantly exceeds the average kinetic energy. The existence of strong interactions
contradicts the requirements of Landau’s Fermi liquid theory where the effect of weak
interactions is folded into a renormalized mass. Upon doping 214, as Sr prefers to

be in a 2+ ionic state, each ionic substitution of La donates a hole carrier to the

14



CuO; planes. Electronic motion then arises from hopping between weakly correlated
oxygen p-orbitals.

In conventional superconductors the electron-phonon mechanism manifests itself in
an observed isotope effect. Most elemental superconductors have only one atom
per primitive cell and within the Debye model the phonon frequency is inversely
proportional to the ionic mass. With the HTSC compounds having many atoms per
primitive cell the phonon modes are much more complicated. Nevertheless the lack
of a definitive isotope effect seems to rule out phonon-mediated pairing.

As previously mentioned BCS theory is constructed within a Fermi liquid paradigm.
Fermi liquid theory predic.ts the temperature dependence of the electrical resistivity
in the normal state. By examining scattering events at the Fermi surface simple
arguments [17] dictate that the scattering rate of quasiparticles or the resistivity
goes as (kgT)? where kp is the Boltzmann constant. The normal state temperature
dependence of the resistivity in the copper oxide planes of the HTSCs is linear over
a large temperature range. The implications of this are that Fermi liquid theory
demands that excitations close to the Fermi surface must be sufficiently long lived
that the quasiparticles are well defined near the Fermi energy. That is, the scattering
or damping rate must be small. This suggests that Landau’s theory is valid for energy
scales much smaller than the Fermi energy or that the theory is applicable only in
the zero temperature limit. Since resistivity varies linearly with T in the HTSCs,

the average decay width of the low lying excitations is comparable to their average

15



energy. This feature raises serious doubts about the application of Fermi liquid and
hence BCS theory, to the HTSCs, particularly in the underdoped regime [18].

The foregoing overview serves to illustrate the unusual behaviour of the high-T, oxides
and the key features of these compounds which must be accounted for in a proposed
model. It is widely believed by many that to properly account for these materials

electronic correlations must be taken into account with greater detail.
1.3 Overview

There is strong evidence that HTSCs do not conform to the conventional model of
superconductivity as put forth by BCS. In particular, it is apparent that attempts to
theoretically model the HTSCs must take strong correlations into account. In Chapter
2 theoretical models used to study electronic correlations will be presented. Many-
body problems are inherently difficult to solve exactly and consequently exact study
is often restricted to one-dimensional systems where the mathematics and numerics is
tractable. In Chapter 3 model results will be presented within Exact Diagonalization
studies and contrasted to related investigations. The Density Matrix Renormalization
Group will be the focus of Chapter 4. This numerical technique will be reviewed in
detail and then applied to the theoretical models under study. The results of this
approach will be compared to the observations of Chapter 3. Finally, Chapter 5 will

give the conclusions of this work.
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Chapter 2

Theoretical Models

2.1 Correlation

The characteristic effects of electronic correlations can be appreciated by studying
small systems such as molecules. In particular, correlations were studied with re-
gards to chemical bonding in the hydrogen molecule H, by two distinct processes.
Heitler and London [19] proposed a ground state wavefunction for H; whereby the
two electrons are strongly correlated. Specifically, the ground state is a singlet of the

form
Uue( ) = S0 + b - fran),  (21)

where ¢,(7) and ¢,(7) are centered on atoms 1 and 2 and the spinors o and [ repre-
sent spin up and spin down, respectively. The ionic configurations ¢;(77)¢,(73) and
®2(71)P2(73) are excluded so that the two electrons stay completely away from one

another. In the limit of small atomic separation, however, this wavefunction does
17



not reduce to the proper limit, that being the wavefunction of a helium atom. Con-
versely, Hartree, Fock and Slater [20] presented a different approach to this problem.
They regarded the electrons as being independent of one another but experiencing
an average self-consistent field generated by the other N — 1 electrons. Within this

approximation the ground state wavefunction is given by

Yur(ri,73) = %[¢>1(T-i)¢1(73)+¢1(T-i)¢2(7"5)+¢2(7"i)¢1(T3)+¢2(T_i)¢2('r_é)](alﬂz-ﬂlaz)-

(2.2)
In this case the ionic states enter with equal weight compared to the non-ionic ones.
When two hydrogen atoms are pulled apart, this wavefunction does not reduce to the
proper atomic description of two separate H atoms. In fact the true ground state
wavefunction of the H, system lies somewhere between these two extremes. These
arguments are general and apply to the description of the solid state as well. The
spatial extent of the valence electronic wavefunction R is large and comparable to
the separation between lattice sites d, so that the electrons are essentially free and
have a large dispersion or bandwidth. In the opposite extreme where R << d, there
is very little dispersion (narrow bandwidth) and the electrons are best described by
atomic-like states. The former case where correlations are weak corresponds to the
metallic state wheres in the latter case very strong electronic interactions prevent
charge fluctuations and the solid is an insulator. A model which attempts to account

for both extremes as well as the more difficult intermediate crossover region, is known
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as the Hubbard model [21].

2.2 The Hubbard Model

The Hubbard model represents one of the simplest models which can be used to
describe interacting fermions on a lattice. This model was proposed by Hubbard in
1963 in order to study the approximate behaviour of electronic correlations in narrow
energy bands. Simply stated, the Hubbard model expresses the competition between
the repulsive Coulomb interaction and the kinetic energy or single particle hopping
from site to site.

In general the Hamiltonian for a group of NV particles interacting on a lattice can be

written in second quantized notation as,

H=- Z(ti,jc;!:a.c_j’o» +hc)+1/2 > Z(z’jll/c"“l‘|llc)c}‘,¢,cj-'¢,,c,‘,,rck'¢7 (2.3)

’i,j,d i,j,k,l 0',(7'

where c}\’o(ci,,) creates (annihilates) a fermion at site ¢ with spin o(o =1 or }) and

where

4 o K .
tig = 4B =~ ) = - [ a0 (7 (5-v)8;() = 85, (2.4)

i3IV k) = [ drdri®}(R)@;(7)V (7~ 7)0x(7) @) (2.5)
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®,(™) represents the Wannier function for the i** lattice site with lattice vector 7.
Equation (2.4) is usually referred to as the overlap integral which specifies the hopping
amplitude from site ¢ to j while (2.5) is just the spin-independent Coulomb matrix
element.

Equation (2.3) can yet be simplified further and still retain the essential physics of
strongly correlated fermions. Within the tight-binding model, ¢; ; decays fairly rapidly
with distance so that the hopping occurs only between nearest-neighbour (n.n.) sites

with a constant amplitude i.e.,

ti;j =t if i,j are n.n.,

= 0  otherwise. (2.6)

Furthermore, the electron-electron Coulomb interaction is taken to be effectively
screened when the particles are far apart. Hubbard assumed that the dominant
Coulomb contribution results when i = j = k& = [, that is when two fermions of

opposite spin occupy the same lattice site. The resulting model Hamiltonian

H=-—t Z (CZO.C]',U + hC) +U Z i, 174 (27)
(4.3)0 i
is known as the one-band Hubbard model in the tight-binding approximation. The

sums run over lattice sites with (7, j) denoting a sum over nearest neighbour sites and
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the number operator #; , = c:-',ac,-'a just counts whether or not a site is occupied. The
Hilbert space of this system is a tensor product of only four states per site |0), the
vacuum, | T) a single spin up particle, | |) a single down spin particle and | T]) an
up-down pair. This Hamiltonian can be written in k-space by Fourier transforming

Equation 2.7 to

U
H=>)" ekc};,ack,a + i > CL'TCLk+q’lC_k'+q,1Ck"T (2.8)
k.o k'\k,q
where the band energies are given by
€ = —2t)_ cosk-§ (2.9)
s

with § summing over the coordinates. It can be verified that Equation 2.7 is electron-
hole symmetric by making an electron-hole transformation assuming a bipartite lattice
structure (27, 28].

The Hamiltonian discussed thus far is actually referred to as the single-band Hubbard
model. A schematic band structure for this model is shown in the top diagram of
Figure 2.1. In this diagram there is a lower Hubbard band (LHB) and an upper
Hubbard band (UHB) separated from one another by an energy gap (Mott-Hubbard
gap) of magnitude U. Half-filling corresponds to the situation where there is one

particle on each site so that the LHB is completely filled while the UHB is empty. To
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Figure 2.1: Schematic Band Structure Diagrams for the Hubbard Model.

add an extra particle at this filling, one lattice site would become doubly occupied and
this cost in energy forces the particle to reside in the UHB. For particle occupations
less than half-filling the valence state lies in the LHB. In this case there is no gap
to the single particle excitations and this scenario corresponds to the metallic state
whereas at half-filling the gap in the spectrum signifies the insulating state. In the
HTSCs it is widely believed that the electronic behaviour in the copper-oxide planes

is best described by a &-band Hubbard model. The copper-oxide unit cell is shown
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in Figure 2.2 and the three bands referred to are the Cu d;2_,2 orbital and two O
2p, orbitals. The corresponding density of states is shown in the bottom diagram of
Figure 2.1. The band structure has an upper and lower Hubbard band similar to the
one band case but lying between the two is a separate band. In the HTSCs the UHB
and LHB are associated with the copper orbital while the band in between arises from
the oxygen orbitals. In the parent HTSC compounds the copper band is half-filled
while the oxygen band is completely filled. The gap of about 1.5 — 2.0eV between
the filled O band and the empty copper UHB is commonly called the charge-transfer
gap . In this model holes are doped into a full oxygen band whereas electrons would
be doped into a half-filled copper band. It has been shown [22] that the 3-band
Hubbard model can be reduced to a one-band Hubbard model with a coupling that
approximately reproduces the spectrum of the more involved Hamiltonian. This is
accomplished by folding the O orbitals in the 3-band model into the copper orbitals
so as to produce a single-band model which mimics the charge-transfer gap with an
effective value of the Hubbard Coulomb repulsion U, £7- Unlike the 3-band model,
doping in the single-band model for both holes and electrons is with respect to a half-
filled band. There are those [23] that believe that the physics of the HTSC planes
can be properly achieved with only the 3-band model.

As previously stated the Hubbard model is the simplest model one can utilize to study

electronic correlations in a solid. However, the physics of such a model is extremely

!This charge-transfer gap is not related to the gap of the same name defined in Chapter. 3. The
latter is defined as the energy required to break up a pair of bound particles.
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Figure 2.2: The Unit Cell for the Copper-Oxide Planes in the HTSCs.

rich and at times, subtle. In fact an exact solution for the Hubbard model exists
in only 1D [24] and infinite [25] dimensions and even here the physics is not easy
to extract. The 1D Hubbard model will be discussed in further detail in the next
Section. A complete understanding of this model in 2D and 3D is still lacking despite
years of intense study. Useful physics has been obtained with this model in certain
limits utilizing various approximation schemes. In particular, the behaviour appears

to be well understood at half-filling in the U = 0 case and the large U coupling regime.
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In the weak coupling case, the interaction represents a weak perturbation on an
otherwise free fermion system. In the strong coupling range and at half-filling, it
costs too much energy for a particle to hop onto an occupied site. Using second
order perturbation theory it can be shown [28] that the half-filled strong coupling
Hubbard Hamiltonian maps onto the spin-% Heisenberg antiferromagnet. It is this
insulating phase which makes the Hubbard model a particularly attractive paradigm
for discussing microscopic theories of HTSCs. Just away from half-filling the kinetic
energy term will permit charge motion and the effective Hamiltonian now has the
form of the ¢-J model [26]. The t-J model corresponds to the strong coupling limit of
the Hubbard model where double site occupancy is forbidden.

Despite intense efforts, no consensus on the existence of superconductivity in the

Hubbard model has yet been reached.

2.3 1D Hubbard Model

In this thesis properties of the 1D Hubbard and 1D Hubbard-like models are to be
studied. One dimensional Hamiltonians are worthy of study since the mathematics
and numerics are more manageable than in higher dimensions thereby increasing
the potential for finding an exact solution. However, it is often not known to what
degree 1D results may be carried over to higher dimension. In reality no system
is one-dimensional but in some cases because interactions are dominant only in one
direction, the system can be effectively modelled in 1D. As previously mentioned
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the 2D and 3D Hubbard models are far too complex to be solved exactly. In 1D an
exact solution has been found [24] utilizing the Bethe Ansatz [29]. The exact energies
of the ground state and all the excited states are given in terms of the solution of
a system of coupled nonlinear equations. The drawback to this solution is that the
corresponding wavefunctions have an extremely complex form making the explicit
calculation of matrix elements, correlation functions and other physical quantities
very difficult. The conditions for integrability using the Bethe Ansatz technique are
very restrictive so that only a small class of models, such as the 1D repulsive and
attractive Hubbard models, can be solved with it. For 1D models in which an exact
solution is lacking, a new numerical technique has been developed which allows for
the examination of the thermodynamic limit. This technique will be used in Chapter
4 to test approximations made for models where the Bethe Ansatz canrnot be applied.
The development, application, and results of this technique form the crux of this
dissertation.

The Bethe Ansatz was first formulated by Bethe to solve the Heisenberg spin chain
system. Many years later Lieb and Wu [24] successfully applied the technique to
the 1D Hubbard model. By no means will the technique be outlined here as it is
rather involved and there are many references on the topic [30]. Rather an overview
of the results for the 1D Hubbard model will be presented. Lieb and Wu were able
to obtain the following analytic expression for the ground state energy per particle

at half-filling
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Jo(z)Jy(x)

z[1 + ezp(§)] (2.10)

E, 0

where the J,(z) are Bessel functions. Their work also revealed that in the half-
filled ground state (one electron per lattice site) there is a Mott-Hubbard or metal-to-
insulator transition. That is, for all values of U > 0 the ground state is insulating and
is necessarily antiferromagnetic as dictated by a theorem due to Lieb and Mattis [31)
which states that in 1D systems the total spin in the ground state must be zero. As
an aside, it should be pointed out that Landau and Lifshitz’s [32] proof that long
range order (LRO) cannot exist in 1D systems holds only for finite temperatures,
while the ground state is another matter.

Numerical results for the ground state energy as a function of density and U were
later provided by Shiba [33]. Shiba presented useful analytical expressions for the

ground state energy as a function of density for certain values of the coupling |U|/t.

They are
E, -4 1 N
N, = ?sm(?rm) for U=0,
2 N, 42, N, sin2ri)
= ~—|— —_— —_—{ - — 2.
[ﬂ_sm(wNa)-i-t i (Na) 1 271_}% ] for U>>t, (2.11)

where the density n is given by the total number of particles NV over the total number

of lattice sites NV,. For [U|/¢ — oo the expression reduces to
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Figure 2.3: The Ground State Energy vs. Density for Various Coupling Strengths

E, -2
= Zsin(r— 2.12
A - szn('era (2.12)

and in the case of half-filling n = (Nﬂa) = 1, this expression also reduces to the
ground state energy of the 1D Heisenberg antiferromagnet with the exchange coupling
constant J = %

In Figure 2.3 the ground state energy is plotted against number density for couplings
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of U/t = 0, 10.0, and 100 using Equation 2.11. This plot illustrates some of the
features of electron correlation. At low density the effect of correlation on the ground
state energy is not significant as the three curves follow one another closely. In the
low density or dilute limit, the electrons can avoid each other without compromising
their kinetic energies. For non-interacting electrons in 1D the dispersion relation is

simply
€x = —2tcosk,, (2.13)

where £ is the 1D momentum, so that the density of states N(e) or the number of

states between dk and k + dk is

2
N(e)de = Edk

_ 1, de,_,
Ne) = 25
1 1

2t . [1 — (£)?

(2.14)

This 1D density of states is plotted in Figure 2.4. This plot illustrates the fact that
in the dilute limit because electrons occupy the bottom of the band (energies close to
—2t) there is a high density of states.

It can be seen in Figure 2.3 that as the density increases correlation effects set in and

are most dominant at half-filling. In this case correlations prevent charge fluctuations
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Figure 2.4: The 1D Density of States.

necessary for conduction and the insulating state sets in. Also of note is that as |U|/t
increases the minimum in the ground state energy shifts away from half-filling. This
conveys the fact that the system can only gain (kinetic) energy through hopping

processes involving vacant sites, so that the minimum shifts as U increases.
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2.4 Spin-Charge Separation

As previously mentioned one of the motivations for studying 1D systems is to elu-
cidate characteristics that may be generalized to higher dimension. In particular, in
the case of the Hubbard model there are unsettled raging debates over the existence
of quasiparticles in the 2D system. There are basically two schools of thought in this
scenario, one principally founded and backed by Philip Anderson [34], which is com-
monly called exotic, and stems from results obtained in 1D. The other camp, which
includes many backers, takes a conventional point of view, that 2D systems, like 3D
systems, are Fermi liquid based with well-defined quasiparticles. While this contro-
versy is beyond the scope of this thesis, it is nonetheless an extremely interesting
problem which illustrates radical new concepts and serves to demonstrate the discre-
tion required in generalizing a model’s characteristics. It is well established that a 1D
interacting Hubbard system is not a Fermi liquid, that is, there are no quasiparticle-
like excitations. In fact, in the vicinity of the Fermi level the momentum distribution
does not show a finite discontinuity characteristic of a Fermi liquid system. In Fermi
liquid theory a step-like discontinuity in the momentum distribution implies the exis-
tence of well-defined quasiparticles. In this case there is no discontinuity at the Fermi
level. Behaviour of this type is associated with a Luttinger liquid in which there are
collective low energy excitations with a separation of the spin and charge degrees of
freedom. The spin excitations which do not posess charge, are called spinons, while

the name holons has been given to the excitations which are endowed with charge but
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lack spin. The 1D repulsive Hubbard model is a Luttinger liquid while the attractive

Hubbard model is not.

2.5 At Model

It has been argued [35] that the one-band Hubbard model is incapable of properly
describing the physics of high temperature superconductors. Moreover, recent ex-
periments [36] find a doping asymmetry between electron and hole HTSCs in accord
with electronic stracture models based on the 3-band rather than the single-band
Hubbard model. Hirsch [37] argues that the reason for this is that the one-band Hub-
bard model assumes two electrons on a doubly occupied site share the same atomic
orbital. This is incorrect as the intra-atomic Coulomb repulsion between electrons
is larger than the spacing of atomic energy levels. First principles calculations [38]
of the energetics of H~ system support this view. If both electrons occupy the 1s
orbital they would experience a repulsion of 17eV and the total atomic energy would
be —10.20eV. If however, the second electron was to occupy the 2s level its energy
would be 10.20eV above the 1s orbital. The repulsion energy between the 1s and
the 2s electron is only 5.71¢V. The sum of these energies are smaller than U and
consequently a more accurate wavefunction would include partial occupation of this
orbital to reduce the intra-atomic Coulomb repulsion. It can be shown that in this
scenario the total system energy would be —13.89eV, much lower than the —10.20eV
for double 1s occupation. The exact energy for H~ is known to be —14.36eV [39] a
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result which could be approached by allowing the two electrons to partially occupy
other atomic orbitals besides the 1s and 2s states. The essence of this behaviour can
be captured without resorting to a complex multiple orbital per site Hamiltonian.
The low energy behaviour may be mapped onto an effective single band tight-binding
Hamiltonian provided that the single particle hopping amplitude be allowed to vary
with the electronic occupation of the two sites involved. These arguments have led
to to a 1D Hubbard-like model which on performing a particle-hole transformation

can be written in terms of holes as 2

H = —t Z (CL,.C{.H‘U + hC) + UZni,Tn,-,l +V Z N1
,i+1 i i,i+1
— At Y (dyeir10 + he)(niop + Nit1,~0), (2.15)
1,i+1

where the c:-',,(ci,,,) are hole creation and destruction operators, U is the usual Hubbard
on-site screened Coulomb repulsion and V is the intersite Coulomb interaction. The

At term is an off-diagonal Coulomb matrix element

At = (i 4|1/r]i i + 1). (2.16)

The At interaction term only becomes active when the site from which or to which

the hole is hopping is already occupied by a hole. Thus there is an overall increase

2While the physics in either representation must be the same, it turns out (Chapter 3) that the
hole formalism is more amenable to numerical lattice studies.
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in kinetic energy for holes when other holes are present. The At term is sometimes
referred to in the literature as the bond-charge interaction term. In this model it is

assumed that

At = at, (2.17)

with o > 0. The supposition that the hopping interaction is proportional to the
hopping is viable considering that both terms are derived by the same overlap matrix
element of whichever electronic orbitals are involved. The magnitude and sign of A¢
has been the subject of much debate [39, 40). Nevertheless it is to be accepted as
positive and non-zero although small compared to U throughout this thesis.

The single particle hopping amplitude ¢, is actually modified by the Hartree terms
that arise from the At interaction in the above Hamiltonian. The hopping gets

renormalized to the effective value

t(n) =t + nAt, (2.18)

where n is density of hole carriers present. This in turn implies that the non-

interacting 1D bandwidth, D = 4¢ is also now density dependent

D(n) = 4(t + nAt). (2.19)
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Within tight-binding models, the hopping strength is inversely proportional to the
effective mass m*. Thus the above two equations show that as the number of holes
in a band increases the hopping amplitude and bandwidth increase which signifies a
decrease in the effective mass. That is to say, the effective mass for holes at the top
of the band is larger than that for electrons at the bottom of the band. When written

in terms of electron operators, the effective hopping for electrons in the At model is

given by
t°(n) = t¢ — nAt, (2.20)

which in essence re-iterates the above statements concerning electron-hole asymmetry.
Clearly the electron representation for n > 1 is equivalent to the hole formalism for
n < 1. In this thesis the hole Hamiltonian is utilized but more will be said about the

electron At model in Chapter 3.

The hole Hamiltonian admits a reduced interaction between Cooper pairs of the

following form
Vew =U+V 3 R85 _gns (iR 4 i8-8 (2.21)
5 5

where § sums over coordinates. At the bottom of the hole band (k = ' = 0) the

pairing interaction becomes
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Voo =U + 2V — 4zAt (2.22)
while at the top of the hole band (k = &' = ),
Var =U + 2V + 42At¢, (2.23)

with z the number of nearest neighbours equal to two in 1D. Clearly the interaction
is less repulsive in the dilute hole limit. These equations emphasize that occupation
near the top or bottom of the band has significant consequences with regards to the
net effect of the Coulomb repulsion. Throughout this thesis V will be taken to be
zero as its inclusion is not expected to overly influence the robustness of observed

properties 3.

2.5.1 BCS Theory for the A t Model

The At model has been studied rigourously within BCS theory by Marsiglio and
Hirsch [41] and Hirsch [42]. This model is found to exhibit superconductivity in the
dilute hole regime without explicitly introducing an attractive Coulomb interaction,
as is done, for example, in the attractive Hubbard Model. Pairing originates in a gain

of kinetic energy rather than potential energy as is the case for conventional BCS

3The effects of including V on the properties of this model are reported in reference [41].
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superconductors. That is, when particles pair their mobility increases and the total
energy is lowered. ¢
The derivation of the At BCS equations proceeds analogously to the procedure out-

lined in Chapter 1. To begin the reduced Hamiltonian in k-space is defined as

1
H=Y (&~ p)c} ,cno + N > Vikralh el irg i CorrraiChnt, (2.24)
k.o k.k'q
where the band dispersion is
€ = —2tcosk, (2.25)
and
At o o 0o o 9
‘/k,k',q =U+ T(fk + E—k-}-q + € + 6—k'+q)' (..26)

The self-consistent superconducting gap and number density equations at zero tem-

perature are obtained as

| D

— 2.27
J2Ek' 9 ( I)

-1 2At
Ak = W- E [U + T(Gz -+ fz/)
kl

“Interestingly, another albeit different theory that utilizes kinetic energy arguments to account
for high-T. superconductivity is Anderson’s inter-plane tunneling theory [43).
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where the single particle dispersion is renormalized to

At
ex = €2(1+ "T), (2.29)
and the quasi-particle energy is
By = /(& — u)? + AL (2.30)

Clearly Equation 2.27 suggests the following form for the gap

Ap = A (c+cosk), (2.31)
where
4AtL Ap
= — _— 9 39
Am N ; 2F’ (2.32)
and
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c= —Wl U+ =—e)(c— ;—zt')/ZEk,. (2.33)

At finite temperature in the weak coupling limit an analytic expression for the critical

temperature T, and gap function are found to be [41]

eY
—_ — —_ -a/b
T, - D, +\/n(2 — n)e™®?, (2.34)

A, = Dpy/n(2 = n)e™*?, (2.35)

where D,, is the renormalized bandwidth and 3’ is a density-dependent density of

states factor. Roughly speaking the exponential may be re-written as

e NEY, (2.36)

which at low density approaches one due to the divergence of the 1D density of states

(Section 2.4) and thus
Ay ~ dtny/n(2 — n). (2.37)
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Figure 2.5: T, vs. Carrier Density

Clearly at low density both the gap function and T, within BCS theory rises as the
hole carrier density increases. Figure 2.5.1 shows the typical behaviour of T. with
hole concentration as given by Equation 2.34 for a 1D density of states.

The Schrodinger equation for two holes yields an analytic condition on the parameters
that give rise to the pairing of the holes [42]. Furthermore, it was demonstrated [44]
that this condition coincides with the case for non-zero T, obtained from BCS theory

in the zero density hole limit in 1D and 2D. The restriction for hole pairing is
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A
— — —1. 2.
P 1+ 527 (2.38)
The density range n. beyond which superconductivity vanishes within weak coupling
BCS theory is determined by the requirement
2At u A n?

0= T(l —n.) — 4—t-+(7t)2(1—nc+§-). (2.39)

2.5.2 The At Model and High-T, Oxides

It has been argued [37, 38, 41, 42] that the characteristic doping asymmetry between
electrons and holes portrayed by the At model underlies the origins of superconduc-
tivity in the high-T. oxides. That is, holes conducting through O%" anions in the
copper-oxide planes will tend to pair when hopping in the presence of other holes.
This scenario is consistent with an electronic structure based on a 3-band Hubbard
model. The physics of this model is hypothesized to explain only the superconduct-
ing behaviour of the high-T. oxides as holes are doped into a full band. A complete
model describing the magnetic aspects of the HTSCs would necessarily have to take
the copper d;2_, orbitals into account. Nevertheless, the At model posesses several
features which make it a viable candidate for discussing high temperature supercon-
ductivity. The behaviour of T, with hole doping in the high-T. oxides is captured by

the At model in BCS theory as shown by Figure 2.5.1. This model could be applica-
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ble to non-magnetic oxides such as Ba;_:K;BiO4. It has also been pointed out [45]
that superconductivity in solids is correlated to a positive value of the Hall coefficient
thereby indicating that holes are the carriers.

As previously mentioned, BCS superconductivity in the At model is driven by kinetic
energy or hopping processes. Specifically, the gap equation depends explicitly on
the band energy (Equation 2.31) which is manifest of the hopping process. Thus
the superconducting state is intrinsically isotropic because as the band structure or
Fermi surface varies, the gap varies along with it in the same manner. While the
hole-doped superconductors appear to have an anisotropic gap, the same cannot be
said for electron-doped superconductors.

In this thesis the 1D properties of the At model will be characterized while greater
detail for its motivation can be found in the references given at the beginning of this

section.
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Chapter 3

Exact Diagonalization Studies

3.1 Construction and Diagonalization of Hamilto-
nian Matrices

This thesis examines the numerical modelling of strongly interacting electrons on finite
lattices. A major component of such studies is the construction of the Hamiltonian
matrix for the system in question which is then subsequently diagonalized to yield the
system eigenvalues and eigenvectors. This process is commonly referred to as Ezact
Diagonalization and is only limited by the size of the Hilbert space or order of the
matrix to be diagonalized.

The process by which the Hamiltonian matrix is constructed will be illustrated using
the 1D Hubbard model. Nevertheless the procedure is the same for the At model. To
start, consider the possible electronic configurations or basis states for a single lattice
point. Keeping in mind the Pauli Exclusion Principle, there can be arrangements
with zero, one, and two electrons per site. Specifically the states are designated as

1 0), 11}, |1), |Tl), representing, the vacuum state, a single spin-up particle, a single
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spin-down particle, and a doubly occupied spin-up and spin-down state respectively.
Note the order of spins on the doubly occupied site. Throughout the thesis this
order, spin-up first, will be used although the opposite order could equally well have
been chosen. The important point is that the order is consistently maintained since
electrons are fermions and they anti-commute with one another . Therefore, in
general a 1D Hubbard chain of L sites has 4% possible basis states. The Hamiltonian
matrix is square in dimension and its order is given by the number of basis states.
"The basis states or Hilbert space for an L site chain can be generated by taking the

tensor product of each site’s basis states with all the others i.e.,

Nel2eB)e...|L)

where |i) , ¢ = 1,2,3,..., L, represents all the basis states for site . Each matrix
element is then computed by operating the Hamiltonian on each of the individual

basis states a by

Ha,p = (B|H|e).

For a chain of 12 sites the number of basis states is 412 or 16,777,216. While a
chain this length may be considered small, a matrix of this dimension is far and
away too enormous to be diagonalized. However all is not lost as the Hamiltonian

posesses certain symmetries which can reduce the size of the matrix that needs to

1This concept of order is particularly important in the Density Matrix Renormalization Group
calculations to be discussed later.
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be diagonalized. In particular there are no terms in the Hubbard Hamiltonian which
flip spins or create or destroy extraneous particles. That is to say, the Hamiltonian
conserves spin and particle number 2 . Furthermore, translational invariance in real-
space directly implies the conservation of momentum in k-space. Each basis state
may then be identified with a unique set of quantum numbers for total momentum
(Ktot), spin (S;), and particle number (N). The upshot of these symmetries is that
the Hamiltonian matrix can be made block diagonal in these quantum number sectors
and rather than diagonalizing the matrix for the entire Hilbert space, each smaller
block can be diagonalized individually. For example, in the two site problem there
are 16 basis states in total but the largest block in the Hamiltonian matrix is of
dimension 4x4 for the sector with N = 2,5, =0, and K;,;, = 0. In addition this
happens to be the sector where the ground state for the entire system lies although
in general each sector must examined for this possibility 3. It is worth emphasizing
the fact that the above example is a trivial system and often much larger systems
must be studied which contain blocks that cannot be diagonalized in their entirety
using conventional routines such as Householder’s method [46]. Fortunately, in many
cases the ground state energy F,, and the ground state wavevector ¥,, are adequate
enough to characterize the low temperature properties of a system thereby making

a complete or dense diagonalization unnecessary. In this case a technique known

?In group symmetry terms, a Hamiltonian that conserves spin posesses SU(2) symmetry while
the conservation of charge or particle number is designated by the symmetry U(1).

3In some cases additional knowledge may be used to guess which sector contains the ground
state. For example, in the 1D Hubbard model the ground state must be a singlet.
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as the Lanczos method [47, 48] may be implemented to diagonalize the matrix in
question. The advantage of this process is that a few eigenenergies and eigenvectors
of extremely large sparse matrices may be obtained. Typically a sparsity 4 of less
than 5% is desirable.

Many standard Lanczos algorithms are available and in most instances it may be
sufficient to treat such routines as ‘black boxes’. However, the concepts are straight-
forward enough that one could write their own routine. Furthermore, exact diago-
nalization studies employing a Lanczos routine can be utilized to obtain dynamical
response functions such as spectral densities. For further discussion see (48].

The algorithm is an iterative method whereby a special basis can be constructed
using the basis of the original Hamiltonian. In this representation the original matrix
can be partially tridiagonalized and the extremal eigenvalues of the initial matrix can
be extracted. The accuracy of Lanczos results will be discussed in the sections that
follow. Exact diagonalization routines are an integral part of the recently developed
real space numerical studies called the Density Matrix Renormalization Group. This

technique is the focus of Chapter 4.
3.2 Pair Binding

In this thesis the binding energy of two particles within Hubbard-like models will

be extensively studied. While pair binding does not guarantee the existence of a

4The sparseness of a matrix is represented by the ratio of the number of non-zero elements to the
maximum number of possible elements (this is simply given as the dimension of the matrix squared).
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superconducting condensate, it is an essential ingredient for Cooper pair formation
and the onset of superconductivity. Moreover, a clear distinction must be made
between pair formation and superconductivity, versus phase separation. In general

the pair binding energy is defined as

E"™(N) = 2E,(N) = [Eo(N + 1) + E,(N — 1)) (3.1)

where E,(N) represents the ground state energy of a many body system with N
particles added to it, V being an odd number. For finite lattice studies even and odd
particle densities are easily kept track of while in the thermodynamic limit (Bethe
Ansatz) this differentiation is lost. Consequently finite size effects must be checked.

The binding energy can be used to define the single particle or charge-transfer gap as

Ac(N) = E¥ind/2, (3.2)

This name is misleading as it implies the existence of an order parameter while the
above equation is only indicative of whether attractive forces are at work. E,(N)
is obtained from the diagonalization of the appropriate Hamiltonian matrix and is
negative in value. Simply stated, E®"¢, represents the difference in energy between
two non-interacting particles and that of two interacting particles in a many body

system. As defined above when E®"d is positive a pair of interacting particles forms a
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bound state. Generally the pair binding energy is a small difference of large numbers
and hence individual energies must be computed with high precision.

It should be noted that a negative binding energy is not physical and it typifies a
finite size effect. A negative value of E¥"® implies that the interaction between two
particles is repulsive. In the thermodynamic limit then, two particles will tend to stay
as far apart as possible and are essentially non-interacting. Thus E*" has a minimum
of zero as there would be no distinction between interacting and free particles.

A positive value for E%* could also signify particle clustering or a system’s tendency
to phase separate. To test for phase separtion the binding energy of three particles

with respect to splitting into a pair and a single particle can be calculated as [49]

E¥n3 = [E,(3) + Eo(0)] — [E,(2) + E,(1)]. (3.3)

Similarly the binding of four particles with respect to double pair formation would be

E¥rt = [E,(4) + E,(0)] - 2E,(2). (3.4)

E®nd3 and EY"d4 would both be positive if phase separation did not occur.
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3.3 Spin Gap

An alternate measure of pairing is provided by the spin gap. A gap in the spin

excitation spectrum for a fixed number of particles is defined by

Ay = E(Stot = 1) - E(Stot = 0), (35)

where E'(Siot) is the ground state energy in the particle subspace with fixed spin. The
spin gap denotes the lower critical magnetic field required to flip a spin and break up
a singlet pair. This field is zero in the absence of a spin excitation gap. Unlike the
charge gap, calculation of the spin gap is amenable to Bethe Ansatz techniques only

in the thermodynamic limit.

3.4 Discussion of Exact Diagonalization Studies

3.4.1 The Hubbard Model

Exact diagonalization studies have been performed for the 1D Hubbard and At mod-
els on chains up to 12 sites in length. In order to ensure that the numerical routines
were functioning properly the 1D Hubbard model was studied within exact diagonal-
ization and benchmarked against the true results as obtained from the Bethe Ansatz
solution. One may be led to question the significance of performing exact diagonal-
ization studies for this model when the true result is provided by the Bethe Ansatz

solution. The reason for this is to provide a reliable technique to study any model
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Figure 3.1: Comparison of the Ground State Energy vs. Hubbard Coupling for a 10
Site Chain and the Bulk Limit.

where the true solution is not known. To compare results the analytic expressions
from the Bethe Ansatz listed in the previous chapter were used. In Figure 3.1 the
ground state energy for a 10 site Hubbard chain is plotted against the repulsive inter-
action strength U at half filling (n = 1). For each value of U examined over the entire
range of coupling strengths there is good agreement between the exact diagonaliza-
tion and Bethe Ansatz results. In Figure 3.2 the ground state energy at U = 8.0t is
plotted against number density for chains of length 6, 8, 10, and 12 sites. This plot
illustrates several features. First this graph serves as a check on finite size effects

in the system. As the lattice size increases from 6 to 12 sites the overall agreement

50



’-0-6 T T T T T
- //:-_—— -Re 1
(2 AN
g AR
% N
-0.6 i~ A B -
/
Q /
- 4
- gy - -
n
~ \\
QO -04[ N\
o, \
\
T i p
8 U= 8.0t
= — Bethe Ansatz (Shiba)
-0.2 - 4 B8 Sites —
® B Sites
| ® 10 Sites i
x 12 Sites
0 . I . 1 ) 1 ) 1 )
0 0.2 0.4 0.6 0.8 1

Number Density

Figure 3.2: Variation of Energy with Lattice Size.

with the Bethe Ansatz result improves however it appears from examining the 8, 10,
and 12 site chains that the energies are converging properly to the energies in the
thermodynamic limit. For low densities (n < 0.3) there is excellent agreement for all
the chains. It is safe to conclude that the ground state energies provided by exact
diagonalization for the 1D repulsive Hubbard model are accurate.

In Figure 3.4.1 the exact diagonalization energy versus density for a 10 site chain
is plotted as the interaction strength crosses over from the attractive (U < 0) to
repulsive (U > 0) regime. In the cases of U > 0 the energy curves are relatively
smooth functions of density while as U becomes increasingly negative the curves

become more ragged. At first glance one might be led to the conclusion that the data
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Figure 3.3: Energy vs. Density for Various Coupling Strengths for a 10 Site Chain.

in the attractive regime has a larger uncertainty which increases with decreasing U.
However, the lack of smoothness in the U < 0 curves is simply attributed to the
fact that the stronger the attraction the greater the distinction between even and
odd numbers of particles in the system. In the attractive case particles prefer to be
as close to one another as possible while the opposite is true for U/ > 0. That is
there is an increase in the magnitude of the ground state energy on the order of |U]|
when proceeding from an odd to an even number of particles. There is no a priors
reason for taking the potential U to be negative without explaining how the repulsive
Coulomb potential between two electrons is overcome. Consequently the attractive

Hubbard model lacks credibility as a physical model compared to the more realistic
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repulsive model.

The ground state energies are used to calculate the pair binding energies via Equa-
tion 3.1. As mentioned in the introduction there is no conclusive evidence for the
existence of superconductivity in the repulsive Hubbard model. Various techniques
have been used to search for superconducting signatures all varying in degrees of com-
plexity. In order to assess the exact diagonalization procedure, studies were used to

calculate binding energies in the 1D Hubbard chain. One could use the Bethe Ansatz
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to do this but as previously mentioned in the thermodynamic or bulk limit particle
number distinction is lost so that Equation 3.1 is not applicable. In Figure 3.4 the
binding energy is plotted against interaction strength for 8, 10 and 12 site chains with
periodic boundary conditions. Recall that for E%"¢ > Q there is pairing. In all three
chain sizes for U < 0 there is pairing while for U > 0 the results are less clear. For
the 8 site chain there is a small amount of binding in the range 0 < U < 9.0t for a

pair of holes near half filling (curve E(7) on the plot). For all other densities available
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there is no binding. As the chain length is increased to 10 sites there is no binding at
any density for positive U. For 12 sites there is no binding for electron number den-
sities up to 7/12 or 0.583. Computer resources prevented the investigation of pairing
near half filling for the 12 site chain. While not shown, 4 and 6 site chains were also
examined with there being a small degree of binding for a pair of holes in the 4 site
case and no binding whatsoever in the 6 site case. Thus as there is binding in the 4
an 8 site chains for a pair of holes it could be the case that there is also binding in the
12 site case. However since there is no binding in the 6 and 10 site cases it is likely
that the binding is an artifact of finite size effects. A study addressing the binding of
holes in the 1D Hubbard chain was carried out by Fye et. al [50]. They used Bethe
Ansatz equations to calculate binding energies just off half filling. To check that their
procedure was functioning properly they also made extensive comparisons with exact
diagonalizations results for 2, 4, 6, 8 and 10 sites. What this work showed was the
existence of binding in chains with periodic boundary conditions of length N = 4i
and binding in chains of length N = 4i + 2 with anti-periodic boundary conditions.
Specifically for 4, 8, and 16 sites the binding increased in range and magnitude as the
lattice size increased. The fact that the range over U in which binding occurs actually
increases with increasing lattice size is non-intuitive as the larger the lattice is, the
more room there is for electrons to spread out and avoid one another. However, when
a 64 site chain was examined there was binding but it decreased in going from 16 to

64 sites. These results suggest that the pairing is a finite size effect and eventually
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vanishes in the thermodynamic limit as expected. Moreover this study serves notice
that extreme caution must be used in studying finite size systems in order to separate
artefact from reality.

As already shown in Figure 3.4 the attractive Hubbard model displays pairing. In
Figure 3.5 the binding energy is plotted against electron density for 8, 10 and 12
site chains as the coupling strength changes from weak (U = —1.0t) to strong (U =
—12.0t) coupling. In weak coupling the binding energy at first increases with density
then as the density continues to increase the binding energy decreases monotonically.
As the lattice size increases there is a downward shift in the magnitude of the binding
energy at intermediate to high densities. In the low density regime there is good
agreement between binding energies for all three lattice sizes. In the strong coupling
regime finite size effects are less prominent and there is less variation of the pairing

energy with density.

3.4.2 The At Model

Now the At model will be addressed. Recall that in extending the Hubbard model
to form the At model, it has been shown (within the BCS approximation) that
superconductivity exists for a certain range of model parameters. In Figure 3.6 the
effect of lattice size on the ground state energy as a function of density is plotted for
U =0t and At = 1.0t. It should be pointed out that the ground state energy path
of convergence depends on whether the lattice contains an even number of particles

or odd. For example, at a density n = 0.5 the ground state energy per site for a 6
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Figure 3.6: Ground State Energy vs. Density for Various Coupling Strengths in the
At Model

site lattice (not shown on the plot) is approximately —1.2896¢, while for the 8, 10,
and 12 site cases the energies are —1.4697¢, —1.3954¢, and —1.4757¢, respectively.
At this filling, there are an odd number of particles on the 6 and 10 site chains
(3 and 5 particles, respectively) and an even particle count on the 8 and 12 site
chains (4 and 6 particles, respectively). This behaviour can be attributed to the
difference in energy between the singlet ground state of the evenly occupied chain
and the doublet ground state of a chain with an odd particle number occupation.
In the thermodynamic limit both energy sequences must eventualiy converge to the

same value as the discernment between even and odd occupations is inconsequential.
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Figure 3.7: Ground State Energy vs. Deunsity for Various Coupling Strengths in the
At Model

Nevertheless, the deviation between the curves for all three lattice sizes at all densities
is relatively small indicating that convergence is adequate.

In Figure 3.7 the ground state energy for the At model is plotted against hole number
density for At = 1.0t and various positive values of U. As U is decreased in magnitude
the corresponding curves follow behaviour similar to that shown in Figure 3.4.1 as
there is a crossover from the repulsive to the attractive regime. However unlike
Figure 3.4.1 U is always repulsive in this case. Moreover this plot suggests that
as U is decreased the effect of the At term becomes more dominant. This is in

direct agreement with the BCS prediction of the constraints on At as a function of U
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(Equation 2.38). Also of note is that those curves which do display choppiness become
smoother as the density increases thereby signifying less of a distinction between even
and odd numbers of particles. The increased effect of At on the energy is displayed

in Figure 3.8 as U is held fixed. As At increase the curves display a higher degree of
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structure reminiscent of the behaviour in Figure 3.4.1 for U < 0.

The binding energy for various allowed hole densities versus U is plotted in Figure
3.9 for 8, 10, and 12 site chains. In each case the parameter At = 1.0¢t. Keep in
mind that there are constraints on the allowed densities so that the actual data is
represented by the symbols while the lines are just a guide to the eye. Also note that

the curve depicted by F(1) represents the low density or dilute limit of hole carriers
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Figure 3.9: Binding Energy vs. U for an 8, 10, and 12 Site Chains in the A¢ Model

and that the density for F(1) in the 8 site case is not at the same density for E(1)
in the 10 site case. In the former the density is 1/8 = 0.125 while in the latter it
is 1/10 = 0.100. These plots show that there is pair binding for a wide range of
potential. Furthermore the finite size effects are small as the critical potential U, at
which binding disappears changes little as the lattice size changes. A very important
feature of these curves is that the binding is density dependent. For constant I/ as the

number of holes increases the binding decreases (E(1) > E(3) > E(5) >...) in direct
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Figure 3.10: Binding Energy vs. Density for an 8, 10, and 12 Site Chains in the At

Model

agreement with the BCS model predictions. The density at which binding disappears
is in similar agreement with the predictions of BCS theory in Chapter 2 as is the
constraint on parameter values necessary for binding. In particular, for At = 1.0¢
and U = 4.0t BCS theory predicts that pairing will occur only up to a critical carrier
density of n ~ 0.764. Also for At = 1.0¢ pairing will only occur if U < 12t. Inspection
of the binding energy curves in Figure 3.9 shows that both theses conditions are met.

In Figures 3.10 the pair binding energy is plotted against hole density for various
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paramaters and lattice sizes. Here the qualitative features of the binding energy
curves show variation with parameter values and are not overly influenced by finite
size effects. For U = 0 and At = 1.0¢ the binding energy decreases monotonically with
increasing density. These results are contrary to BCS gap behaviour of this model
as predicted by Hirsch and Marsiglio in Chapter 2. Also it is known [51] that BCS
theory is exact in the weak and strong coupling limits. This discrepancy suggests
that the agreement is only exact in the zero density limit. However, for decreased
coupling strength the density dependence is less clear. For U = 4.0¢ and At = 1.0¢
in the 8 site chain the binding energy decreases with increasing density while for the
10 and 12 site chains the binding at increases at first with density then decreases as
the density continues to increase. Similar behaviour is observed for the parameters
U = 8.0t and At = 1.0¢. Note that U = 0 and At = 1.0t is at stronger coupling than
U = 4.0t and At = 1.0t as is reflected by the difference in energy scales. In weak
coupling it appears that finite size effects for the smallest lattice size are still too
significant and that the true behaviour of the binding energy follows that predicted
by BCS theory. The fact that the binding energy curves in strong coupling do not
conform qualitatively to BCS predictions appears puzzling and prompts further study.

In addition no evidence of phase separation was found.

3.5 Other Studies of the At Model

Hirsch and Lin [52] have also studied pairing in the At model within exact diag-

onalization studies and made comparisons to BCS predictions. In particular they
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attempted to classify the density range over which BCS theory is accurate. As previ-
ously mentioned BCS theory is in a sense a mean field approximation which accurately
describes pair binding but does account for interactions between pairs except for the
Pauli Exclusion Principle. They presented energy gap versus density results for finite
size and bulk systems and came to the overall same conclusion in both cases.

Their exact results (Figure 3.11) were presented for a 12 site chain while BCS pre-

dictions were given for the infinite and 12 site systems. The infinite BCS results are
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given by the solid curve while the finite BCS results are given by the dash-dot curve.
Exact diagonalization data is represented by the dashed curve. Data for three sets
of parameters was used, U = 2.5, t = 0.2, At = 20,U =25,t =04, At = 1.0,
and U = 4.1, t = 0.4, At = 1.0 which correspond to strong, intermediate, and weak
coupling regimes respectively. In all three coupling ranges the infinite size BCS gap
versus density had the behaviour as presented in Chapter 2. That is, as a function of
density the magnitude of the gap at first rises with hole density, reaches a maximum,
and then decreases as the density increases until it vanishes at the maximum density
as given by Equation 2.39. For the strong and intermediate coupling cases the finite
size BCS plots display the same qualitative behaviour as in the infinite size scenario.
However, for the weak coupling strength the gap does not increase with density but
decreases monotonically with denisty. For the 12 site chain the pair binding energy
decreases as a function of increasing carrier concentration for the strong and weak
coupling regimes but increases slightly in the intermediate region. The authors claim
that this overall decrease in the exact case is due to the limited discrete values of
density that can be probed. While the effect of finite size on the exact solution is not
formally presented, the authors state that ... from results for a large set of lattices
and parameter ranges we conclude that also in the exact solution the pair binding
always first increase as the density increases from zero for a sufficiently large lattice.”
The evidence presented does not conclusively support this conjecture and if anything

may suggest otherwise.
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In the limit of zero carrier density the exact and BCS results are in good agreement
except for the weak coupling case. Although no mention is made, it turns out that
the cause of this disparity is finite size effects ( more will be said about this later).
The range over which pair binding occurs is less for the BCS solution than it is for
the exact case.

The study also showed there was no tendency towards phase separation or particle

clustering.
3.6 Electron At Model

One could also study the electron version of the At Hamiltonian. Recall that this
Hamiltonian is identical in form to the hole Hamiltonian except that the sign of At
is negative in this case. The physics is similar in that there is pairing of holes in
the dilute hole limit or the limit of a filled electron band. The handicap in using the
electron Hamiltonian is that to probe the superconducting region one must keep track
of a large number of electrons as opposed to a few number of particles in the hole
case. Additionally, subtleties arise in the electron picture in that the renormalized

single electron hopping amplitude

t=t—n.At,

can change sign as At increases when the electron density n,. is on the order of one.

That is, there is a range of parameters for which ¢ or the average hopping can go
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to zero. Whether or not these values are physical remains to be determined. By
adopting the hole picture this delicate characteristic can be avoided.

Nevertheless, some features of the At electron Hamiltonian have been investigated
by Quassier et al. [53]. In particular they compare the electron At model to a mod-
ified version of the At model known as the Bariev model [54]. In the Bariev model

Hamiltonian the effective hopping amplitude is given by
gBariev — ¢ _ Atnit(140)/2,~0s (3.6)

which is only one half of the original At interaction term. The significance of this
model is that it can be solved precisely by Bethe Ansatz techniques. While this model
does not contain the entire At interaction it does take correlated hopping into account
and thus it is plausible that this model retains essential features of the original model.
Exact diagonalization results for the two models are made on small chains for various
values of At while U is always taken to be zero. For chain sizes up to 16 sites the
ground state energy shows a good level of convergence. Furthermore, the energies of
the Bariev model for exact diagonalization correspond well with the Bethe Ansatz
solution. Thus finite size effects do not appear to be significant in this model. The
gound state energy of the At model shows good correspondence with that of the
Bariev model at small values of At while for At = 1.0¢, there is a noticeable difference

between the curves. In addition boundary conditions were varied in order to assess
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the impact of restricted lattice size. Overall, the authors conclude that finite size
effects are not serious and the ground state energy in the two models shows good
agreement for small values of At.

The pair binding energy was also investigated on a 12 chain for both models at an
electron density of 20/12. Binding is found to exist in both models however in the
electron At model pairing vanishes beyond a critical value of At ~ 1.5¢. In the
hole picture, for U = 0 there is binding for all values of At > 0. The pairing in
the electron picture goes to zero because as mentioned earlier the effective hopping
amplitude passes through zero as At is increased. The behaviour for this choice of
parameters could be indicative of some ancillary action such as a metal-insulator or
superconductor-insulator transition for which further study is required. The authors
make no mention of this fact and should not have examined only the superconductivity
in this case. This subtlety can be avoided by working within the hole description
where only the the superconducting features can be probed. Investigations which
examine the electron At model and superconducting transitions as well as possible
non-superconducting transitions have been undertaken by Arrachea et al. [55] and by

Airoldi and Parola [56].

3.7 Characterization of the BCS Approximation

Recently Marsiglio [57] has evaluated the BCS approximation for the attractive Hub-
bard model in one dimension. The essence of this study is to test the accuracy of

the BCS theory by comparing its predictions to the true solution of 1D Hubbard
67



U= -2.0t, At= 0
A 8 Sites

-1.5 =10 Sites

® 12 Sites

| — Bethe Ansatz
- BCS

E..q pPer site
I

-0.5

) 2 | L . L 1 L
0 0.2 0.4 0.6 0.8 1

Density

Figure 3.12: Ground State Energy for the Attractive Hubbard Model Case U = —2.0t

model which is provided by the Bethe Ansatz equations (Chapter 2). Specifically the
ground state energy and energy gap to the first excited state were calculated using
both the variational BCS wavefunction and the Bethe Ansatz technique. Furthermore
the influence of finite size effects on the results in both cases was also investigated.
Even though the exact solution to the 1D Hubbard model is known, the influence of
finite size is beneficial to studies of similar models where only a numerical solution is
possible.

In this study comparisons between the two procedures were provided as a function of
the electron density and coupling interaction strength U. Note that the form of the

attractive Hubbard Hamiltonian is identical to that of the repulsive case except for
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Figure 3.13: Binding Energy for the Attractive Hubbard Model Case I/ = —2.0¢

the sign of U being negative in this case. In Figure 3.12 the ground state energy for
U = -2.0t is plotted against density for both the BCS and Bethe Ansatz cases [58]
along with data for three finite lattices 5. As can be seen the agreement between the
two is excellent for low density while as the density increases a progressive deviation
sets in among the two although the correspondence is still good. In fact what is
found is that BCS theory very accurately represents the true ground state energy for
all densities in the strong and weak coupling regimes. BCS theory disagrees slightly

with the exact results for intermediate coupling ranges with the largest deviation on

5All BCS data presented in this thesis is taken from Reference [68]. The sharp kink in the BCS
curves is an artifact of the numerical analysis.
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the order of 4 percent at half-filling. All in all then, BCS theory appears to faithfully
reproduce the correct energies in 1D in the same way exact diagonalization studies
duplicated energies in the repulsive Hubbard model.

As previously noted the solution to the BCS energy gap equations is exact in the low
density limit independent of coupling strength. For the attractive Hubbard model
Marsiglio found that as the electron density increases the true gap decreases mono-
tonically for all coupling strengths. Furthermore, the BCS gap is found to increase
for all coupling strengths as the density increases. The deviation of the BCS gap
from the true gap can be seen in Figure 3.13 where the pairing energy is plotted
against electron density for the case U = —2.0¢t. This figure demonstrates the sig-
nificance finite size can have on the gap obtained by exact diagonalization studies.
In general it was found that for weak and intermediate coupling strengths the gap
increases to a maximum and then decreases while in the strong coupling limit the gap
only increases and reaches a maximum at half-filling. For all couplings BCS theory
significantly overestimates the magnitude of the gap for all non-zero fillings while in
the limit of zero density it is identical to the Bethe Ansatz result and can be given

analytically as [57]

A= -2+ \/(@)2 + (2t)2. (3.7)

The largest discrepancies are found to occur at half-filling for weak coupling where
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the true gap is found to be given by

Avas(n=1) = 2 [Ulteap(T2) (38)
and the BCS gap is
Dyear(n = 1) = 8texp( JU,) (3.9)

In strong coupling the dominant terms in the true gap are

U]

Astrong(n =1)= _2_ -2t (3.10)
while the strong coupling BCS gap is
BCS (. _ 1\ _ M _ 2_?52
Astron_q(""’ - 1) - 2 IUI (311)

Thus the energy gap, unlike the ground state energy, is not accurately duplicated by

BCS theory.
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3.8 Finite Size Effects

As many models can only be solved numerically on small systems they are subject to
finite size effects. Since the exact solution for this model exists the effects of finite
size can be systematically accentuated. The effect of system size on the ground state
energy as produced by BCS theory is relatively small compared to the true value.
This fact complements earlier discussions which showed that the ground state of the
repulsive Hubbard model as given by Bethe Ansatz, is accurately reproduced within
exact diagonalization studies on small chains. Furthermore, this fact lends credibility
to the ground state energies as derived by exact diagonalization for the A¢ model.

Within exact diagonalization studies the pair binding energy or charge-transfer gap
was calculated as opposed to the spin gap. Finite size effects are found to be more
severe in a spin gap calculation. Consider the case of two particles on 16 sites in
the attractive Hubbard model with U = —2.0¢. The spin gap is found to be 0.7855¢
while the pair binding energy is 0.4809¢. For two particles on 32 sites the spin gap is
0.5531¢ and the pair binding is 0.4762¢. Similarly, for 64 sites the spin gap and binding
energies are 0.4934¢ and 0.4742¢, respectively. Thus a calculation of the charge gap
or pair binding starts to converge much earlier than a similar spin gap calculation.

The effect of finite size on the gap was also investigated for both the BCS and Bethe
Ansatz approaches. It turns out that finite size effects are prominent only in the
weak and intermediate coupling ranges. The overall structure of the BCS gap curves
at various finite lattice sizes is qualitatively similar to the bulk case. As the lattice
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size approaches the bulk limit the magnitudes of the gap shifts downward. In the
exact case for small lattice sizes (N < 16) the gap is found to display features similar
to the BCS results (Figure 3.13). That is, the gap tends to rise first with density
then decrease as the density is continuously increased. However as the bulk limit is
approached the true gap only decreases as a function of increasing carrier concentra-
tion. Thus while finite size effects cause the BCS gap to shift downwards slightly with
increasing lattice size its overall structure remains the same as the thermodynamic
limit is approached. The same conclusions cannot be said for the true gap. Without
the bulk result the behaviour of the true gap would not be correctly revealed.

This study futher calls into question the conclusions reached by Hirsch and Lin with

regards to the accuracy of BCS theory predictions for the At model.

3.9 Re-examination of the Dilute Limit within Ex-
act Diagonalization

The study of Marsiglio further calls into question the conclusions reached by Hirsch
and Lin with regards to the accuracy of BCS theory predictions for the At model. In
particular the initial increase in gap magnitude as a function of hole doping in the low
density regime is suspect. The Hubbard Hamiltonian contains no explicit dependence
on density and the true gap is found to only decrease with density. Thus, for the At
model which contains a density dependent interaction term, it is not unreasonable to
assume that the gap can only decrease with increasing hole density. To investigate

this possiblity further, exact diagonalization studies on larger lattices for a dilute
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U =12.5¢, At =20t

Sites | Density | E(1) [ Density | E(3)
8 0.125 | 1.099 | 0.375 |0.9579
12 0.083 |[1.075| 0.250 1.064
16 0.063 | 1.111| 0.188 1.017
20 0.050 | 1.105| 0.150 1.007
24 0.042 [1.101| 0.125 1.006
32 0.031 [1.073| 0.094 1.031
35 0.029 | 1.072| 0.086 1.028
40 0.025 |1.073| 0.075 1.028
44 0.023 |1.073| 0.068 1.026
48 0.021 |1.088] 0.063 | 1.008
50 0.020 | 1.088| 0.060 | 1.009

100 | 0.010 |1.073| 0.030 —
200 0.005 |1.073| 0.015 —

Table 3.1: Low Density Exact Diagonalization Studies for U = 12.5¢, At = 2.0t

U =6.25t, At=1.0¢

Sites | Density | E(1) | Density [ E(3)
8 0.125 | 0.4036 | 0.375 | 0.3057
12 0.083 |0.3572 | 0.250 |0.3927
16 0.063 |[0.3605| 0.188 |0.3694
20 0.050 | 0.3566 | 0.150 | 0.3595
24 0.042 [0.3546 | 0.125 | 0.3518
32 0.031 |[0.3447| 0.094 | 0.3517
35 0.029 |0.3443 | 0.086 | 0.3491
40 0.025 | 0.3447 | 0.075 | 0.3469
44 0.023 | 0.3447 | 0.068 | 0.3456
48 0.021 | 0.3450 | 0.063 | 0.3388
50 0.020 |0.3497| 0.060 | 0.3386
100 0.010 {0.3447 | 0.030 —
200 0.005 |0.3447 | 0.015 —

Table 3.2: Low Density Exact Diagonalization Studies for U = 6.25t, At = 1.0¢.
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U =10.25t, At=1.0t

Sites | Density | E(1) | Density E(3)
8 0.125 | 0.0725| 0.375 | -0.0186
12 0.083 [ 0.0510 | 0.250 | 0.0101
16 0.063 | 0.0487 | 0.188 | 0.0208
20 0.050 | 0.0415| 0.150 | 0.0306
24 0.042 | 0.0371| 0.125 0.0331
32 0.031 | 0.0286 | 0.094 | 0.0385
35 0.029 | 0.0278 | 0.086 | 0.0371
40 0.025 | 0.0271 | 0.075 0.0354
44 0.023 [ 0.0267 | 0.068 | 0.0342
48 0.021 |0.0291 | 0.063 | 0.0300
50 0.020 [ 0.0289 | 0.060 | 0.0297
100 | 0.010 |0.0260 ( 0.030 —
200 | 0.005 |0.0260 | 0.015 —

Table 3.3: Low Density Exact Diagonalization Studies for U = 10.25¢, At = 1.0t.

density of holes were carried out. The results of this investigation are summarized
in Tables 3.1, 3.2, 3.3. The parameters investigated were the same ones used by
Hirsch and Lin (Figure 3.11) such that ¢ is normalized to one. The columns show
the lattice size investigated followed by the density and energy of the first and then
the second pairing point. In strong coupling, Table 3.1, the gap does not increase
(i.e. E(1) > E(3)) as a function of density in agreement with Hirsch and Lin’s 12
site case. For intermediate coupling, Table 3.2, the gap starts out decreasing at 8
sites, then increases at 12 sites, then continues to oscillate between increasing and
decreasing behaviour. The largest lattice size probed was 50 sites and in this case the
gap decreases as a function of density. These results do not support Lin and Hirsch’s

conjecture that the gap rises for this parameter set. In weak coupling (Table 3.3) at
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low lattice sizes (less than 24), the gap decreases with increasing density while for
larger lattices it increases slightly. The difference in pairing energy between the first
and second density at 50 lattice sites is on the order of 0.001¢. It is feasible that for
larger lattices the binding energy will be flat at low denisty and then decrease as a
function of increasing hole concentration.

In the next chapter the true gap behaviour of the At model will be examined by using
a recently developed numerical technique which allows the thermodynamic limit to

be probed.
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Chapter 4

Real Space Renormalization Group

As previously stated exact diagonalization studies are constrained due to the rapid
increase in the dimension of the Hilbert space with increasing lattice size. Moreover,
in small lattice systems finite size effects must be systematically studied in order to
elucidate and moderate the impact of their behaviour. A recently developed technique
called the Density Matrix Renormalization Group [59] (DMRG), makes it possible to
study larger lattice sizes and thereby more accurately delimit the thermodynamic or
bulk behaviour. In a nutshell, the DMRG process allows larger and larger lattice sizes
to be built up iteratively through selective management of the Hilbert space. The
DMRG is born out of conventional real space renormalization group techniques and
draws its name from these historical roots. The basic idea behind renormalization
group is, roughly speaking, a repeated change or redefinition of scale which involves
a coarse-graining transformation whereby a system looks like the original system.
Renormalization group traditionally has been associated with the process of summing

divergent perturbation series but here it is exploited in the context of an iterative
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Figure 4.1: Real Space 1D Blocking Configuration

numerical diagonalization process.

4.0.1 Conventional Real Space Renormalization Group

The initial architect of the real space renormalization group was Wilson [60]. The
basic ideas are presented for 1D systems. However the generalization to higher di-
mensions utilizes the same algorithm with the treatment of boundary conditions be-
coming a much more difficult issue [61]. The method will be applied to 1D Hubbard-
like Hamiltonians although the technique applies to other lattice models such as the
Heisenberg and Kondo model.

The quantum many-body problem is to be solved by first solving a small chain system
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and then piecewise building an infinite chain. Consider a 1D chain as in the top
diagram of Figure 4.1 which is broken up into finite identical left and right real space
blocks, each labelled B. It is convenient to start with blocks containing just one
site. In general block B will contain m basis states so that the Hamiltonian matrix
for block B has dimension m x m. The Hamiltonian matrix for the entire chain
Hpp is formed from the block Hamiltonians & 5 and Vgp where Vip is the matrix
representing the interaction between the two blocks. The Hamiltonian matrix for the
entire chain is designated as the superblock. The dimension of the superblock matrix

is given by the product of the sizes of both blocks, that is,

dim(Hpg) = dim(Hp) x dim(H3p), ‘ (4.1)

which in this case would be m2 x m2. The interactions in the Hamiltonians under
study involve only nearest neighbour sites and the dimension of the interaction matrix
is given by the product of the dimension of the left block with the dimension of the
right block. In this case since there is only one site in the left and right block
dim(Vpp) is equal to that of the superblock matrix. Thus the superblock matrix can

be constructed as

f{BB =I':’B®I(1)+I(l)®f{3+‘?33, (4.2)

79



where /(") denotes the identity matrix for N sites and in this case it is the identity
matrix with the dimensions of a single site. The first term on the right side of the
equation represents the embedding of the left block in the superblock Hilbert space
while the second term denotes the embedding of the right block !. The superblock
matrix is diagonalized and its lowest lying eigenvalue is the ground state energy for
the chain. A new left block Hamiltonian B’ which represents the chain BB can be
formed from the eigenstates of BB. This block will contain twice as many sites as B.

The formal procedure by which this is done is given by

E[BI = Oﬂggéf (4.3)

where O is an n x m? transformation matrix, the rows of which are n eigenstates
of Hgp. If this process were exact the dimension of B’ would be equal to that of
BB and O would be an m? x m? matrix. Instead only the n lowest lying eigenstates
of BB are used so that while B’ represents a two site block the dimension of its
Hilbert space is less than a two site system. In order to form the new interaction
matrix between blocks new operator matrices for the block edge sites must also be
constructed by applying the above transformation. For example, to form the matrix
which represents the hopping of an electron from the edge of the left block to the
edge of the right block the transformed matrix operators Clese and 61;ght are both

required. The superblock Hamiltonian matrix Hg g is now formed and diagonalized

1Note the order in which the arguments of the tensor products is placed is important.
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as above. This process is continually iterated such that the chain length progressively
increases but due to the truncating transformation of Equation 4.3, the dimension of
the superblock matrix is kept fixed at a size which can be handled by a computer.
This is shown schematically in Figure 4.1. Iteration proceeds until a fixed point has
been reached. Typically this means until the ground state energy E, has converged
to a specified accuracy. In keeping the prescribed set of eigenstates, it is assumed
that the ground state of larger blocks is well described by the low energy spectrum
of the previous block.

Wilson successfully solve the Kondo problem using this prescription. This approach
was also used by Bray and Chui [62] to study the eigenstates of the 1D Hubbbard
model at various fillings. The results they obtained, however, were quite poor and
totally unreliable for chains larger than 32 sites. Similarly, Hirsch [63] studied var-
ious properties of the 1D Hubbard model at half filling and found only qualitative
agreement with Bethe Ansatz predictions. At the time, a basis for the inaccuracies

in these studies could not be postulated.

4.0.2 The Density Matrix Renormalization Group Technique

It turns out that the above procedure is deficient in the method by which the transfor-
mation is handled. Noack and White [64] pointed out that the boundary conditions
between the end of the initial left block B and the right block are mismatched. In
other words blocks B do not include any connections to the surrounding blocks. In

particular, for free fermions the eigenstates of B have nodes on the boundary whereas
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the superblock wavefunction 95 would have a nonzero amplitude at the boundary
between the blocks. In order to remedy this law White [59] demonstrated that the
optimal set of BB eigenstates to keep is given by the reduced density matrix 2. One
way to see how the Density Matrix Renormalization Group ® improves upon the con-
ventional approach is to consider a system in contact with a heat reservoir at finite
temperature. The probability of the system being in an eigenstate ¢ of the block
Hamiltonian is proportional to the Boltzmann weight, e=#Fi which is also an eigen-
value of the systems density matrix. Under the assumption that the system is isolated,
the lowest energies correspond to the highest probability in Boltzmann weight and in
the conventional RG this is consistent with keeping the n most probable eigenstates.
Now for a block which is not isolated but strongly coupled to its environment its
density matrix is no longer e~#¥5 (it is defined through Equation 4.8 below.) The
eigenstates of the block Hamiltonian no longer share the same setvof eigenstates as
the density matrix. Consequently for a strongly interacting system rather than use
the eigenstates of the system Hamiltonian it is more fitting to utilize the eigenstates
of the density matrix to characterize the system.

The construction of the DMRG superblock matrix proceeds analogously to the con-
ventional RG method with a few small changes. It has been found [59, 64] that the

most accurate represention of the superblock occurs for open boundary conditions.

2See [65] for an excellent discussion on density matrices

3Incidentally there are two variations of the DMRG technique, the infinite system method and
the finite system method. This discussion and the calculations carried out in this thesis are for the
infinite system method.
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That is, a block connects to the rest of the chain only on one end rather than two as
in the case of periodic boundary conditions. Additionally, instead of the entire chain
potentially doubling in size at each iteration the chain grows by two sites at a time.
The DMRG blocking scheme is diagramatically portrayed in Figure 4.1 by the letter
A referenced blocks. The left block is designated A while the block on the right is
designated A® where the superscript stands for reflection. Block A% is the reflection
of block A. If block A contained the two sites labelled 1 and 2, then block A® would
have the same cites but inverted as 2 and 1. Placed in between blocks A and AR are
two single sites. The entire lattice or superblock can be represented with the notation
A e 0 A% where o denotes a single lattice site. Typically the block formed from Ae is
called the system while the block ®AR is called the environment. The environment
serves to mitigate boundary effects that arise from adding a single site to block A.

The superblock Hamiltonian matrix I-:fsu,,er is formed at the first iteration by embed-

ding all the constituent matrices in the superblock Hilbert space

Hoper = HAQ IO @ O g 147
+ I*QH®M @M g 147
+ I'IM @ A® g 14"
+ @IV eI g f4"
+ HA g g 14"

+ 4@ B g 147
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+ IY@IM g A*A®) (4.4)

where I is the identity matrix of the dimension of block A, H®) is the Hamiltonain

matrix for a single site and A(**) is the matrix representing the interaction between

the two single sites.

Now assume that a complete set of states of the system Ae is given by

liy,i=1,...1,

while the states of e AR are

7),i=1,...n.

Once the superblock is diagonalized its ground state wave function is represented as

a direct product of the system'’s states with those of the environment i.e.
9) = 3" u3(I5) ® 1), (4.5)
i,j
where the coefficients of ¢;; are real and T, ; |¢;|* = 1.

Now suppose there are an optimal set of system states |u®),a=1,...,n, with n < [.

That is the states of Ae can be approximated accurately by
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|u®) = Z ug). (4.6)
In this case the entire wavefunction of A e e AR can be faithfully re-written as
W) = 19) = gaa,jlu")h')- (4.7)
White examined the minimization problem
1) ~ 1),

subject to the constraint (u®|u®') = §, and varying over all ayj. White found
the solution to this problem is given by the optimal set of states |u®) being the
eigenvectors of the reduced demsity matrix of the system as part of the superblock
whose eigenvalues are largest in magnitude. The reduced density matriz depends on

the state of the superblock |+) and is formed from the following construction
PLE =" ¢i i 5. (4.8)
J

The eigenvalues of 5™*%, a, represent the probability of the system being in the state

Uq With
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D> as=1. (4.9)

The eigenvectors of the reduced density matrix v, form the rows of the transformation
matrix O in Equation 4.3 and each eigenvector represents one basis state in the new
truncated basis. Only n eigenvectors with the largest weights a, will be kept and the

accuracy of the truncation is measured by the deviation of the sum

Dy, =Y a, (4.10)

from unity. All the eigenvalues and eigenvectors of P are required so that a dense
matrix diagonalization routine must be used 4.

As in conventional RG in order to comstruct the superblock at the next iteration
information describing the interactions between blocks is also needed. Once these
operators are formed, Equation 4.3 is used to produce the interaction matrix FI(A'®)
between block A’ and a new single lattice site.

The above procedure is iterated until convergence is achieved as in the RG process.

The DMRG algorithm is summarized in Appendix 1.
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n L IN1I[N2| w1l [w2
060} 4 ) 2| 306104
060) 6 | 3 |4 (04106
060 8 | 4 | 502108
06010 6 | —| 1.0 | —
060 (12| 7 | 8 | 0.8 0.2
060{14 8 | 9 |0.60 |04

Table 4.1: Sample Table of Parameter Values for Targetting Procedure in DMRG

4.0.3 Arbitrary Band Filling

The particle density n for a fixed chain length L is defined in terms of the total

number of fermions as

NT+N |
n=—22="

7 (4.11)

where N T (N |) represent the number of spin-up (down) particles present. As the
number of N T and N | particles must be integers it is difficult to choose them so
that an arbitrary number density remains constant on different lattice sizes. In fact,
as the chain length is even in the total number of sites at each iteration, only the
half-filling (n = 1.0) and quarter filling (n = 0.5) densities remain invariant at each
iteration. To remedy this problem one can target one or more states closest to the

proper density [66]. Specifically two nearest integers N; and N, can be found such

4See reference [46] for example.
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that
Ny <nL < N,. (4.12)

Now the reduced density matrix can be constructed from the two ground states that
bracket the required density n. Specifically if the ground state wave function for N
particles is |¢(/V1)) and that for V; particles is |1(N;)) then the following construction

is engaged

P = wi ) ¢ii(N)@h (V) +wr Y 6i5(No) gy ;(IVa)
J J
nl = w1N1 + 'I.U2N2

1 = wy + wa. (413)

The equations in 4.13 ensure that the proper particle filling is targetted at each
iteration. If N, or NV, is odd, then the corresponding ground state wave function is
two fold degenerate as either total spin T or total spin | is possible. In this case both
states are used in the targetting process. In Table 4.1 a typical sample of parameters
is given for a target density of n = 0.60 as the lattice size grows. At a lattice size
of 8 sites the ground state wavefunction for occupations of 4 and 9 particles must be
calculated. Appropriate weights of these wavefunctions are then used to calculate the

reduced density matrix.
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4.04 Algorithm Implementation Tips

In all cases it is extremely important to utilize the fact that the reduced density matrix
and superblock Hamiltonian are block diagonal. The eigenvectors of the reduced
density matrix could be incorrectly produced otherwise thereby yielding an incorrect
transformation matrix. Eigenvectors of distinct eigenvalues are orthogonal whereas
for degenerate eigenvalues this may not necessarily be the case. Thus the reduced
density matrix must be block diagonalized to avoid complications that could arise
due to eigenvalue degeneracies in different quantum number sectors. Additionally,
a matrix which is block diagonal can be diagonalized block by block which is less
CPU intensive than diagonalizing the entire matrix at once. For the superblock
Hamiltonian only the block which contains the number of particles specific to the

density being probed is required.
4.0.5 Accuracy

The DMRG routine is a value added algorithm in that parameters must be carefully
optimized in order to attain acceptable results. The quality of the results hinges upon
how accurate the approximation in Equation 4.7 is. That is, accuracy of convergence
depends strongly on the number of states kept in the truncation procedure. In Fig-
ure 4.2 the reduced density matrix eigenvalues a, are plotted against eigenvalue index
a for a 100 site repulsive Hubbard system at half-filling and U = 4.0t. The number
of states kept in this case is chosen to be constant at 110. To appreciate what this

means consider the zeroeth iteration or the beginning of a DMRG process. If block B
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Figure 4.2: Reduced Density Matrix Eigenvalue versus Eigenvalue Index for a 100
Site Chain

is initially chosen to contain 3 sites the entire length of the initial superblock chain
1s 3+ 1+ 1+ 3 or 8 sites. The dimension of the superblock matrix is then 4% x 48
while the reduced density matrix (for the 3 + 1 site block) is of order 4* x 4%. Thus
there will be 256 eigenvalues from which 110 eigenvectors with the largest eigenval-
ues are chosen to construct the transformation matrix O. The truncated block B
at the next iteration is then of dimension 110 x 110 making superblock Hamiltonian
matrix of dimension 440? x 440% 5. The reduced density matrix in this case (and
every subsequent iteration) will contain 440 eigenvalues from which the 110 largest

are kept. As previously mentioned the partial sum of the eigenvalues retained relates

®Recall that the matrix is block diagonal so that the actual size of the matrix to be diagonalized
is much smaller than this very large dimension.
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to the accuarcy of the truncation. For this example Figure 4.2 shows that by keeping
110 eigenvalues when the lattice size is 100 sites the accuracy of the truncation is on
the order of 10~7. If the DMRG is repeated for the same set of parameters but only
70 states are kept at each iteration accuracy of the approximation drops to about
10~3. It must be stressed that the sum of the eigenvalues retained is only a useful
indicator of the accuracy of the calculation. A smaller sum indicates that a result
is less accurate than a larger sum. In the above example where 110 and 70 states
are kept, the ground state energy per site is found to be —0.57366¢ and —0.57243t,
respectively. The exact result from Bethe Ansatz is —0.57373¢. The 110 state case
is not accurate to within 10~7¢ of the Bethe Ansatz result. Incidentally, the step-like
structure in Figure 4.2 comes from the presence of spin degeneracies.

Another factor that has a direct bearing on the accuracy of DMRG ground state
energies is is the coupling strength. For the repulsive Hubbard model the DMRG is
least accurate for U = 0 while the accuracy is best for large values of U. One can
anticipate this fact as a system which is free particle-like requires many more local
basis states to describe it than would a system where large correlations restrict (and
thereby reduce) possible particle configurations.

As already mentioned the DMRG is most accurate at half-filling while away from half-
filling the targetting of particle occupations that bracket the desired density reduces
the accuracy. A measure of DMRG accuracy in this case can be realized by examining

the energy difference between a chain of length L with N and N — 1 particles. For
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the repulsive Hubbard model this difference should be equal to the coupling U. At
U = 2.0t and n = 0.10 this difference is equal to the Hubbard U to an accuracy of
about 1073,

In Chapter 3 it was pointed out that of the two possible methods by which the energy
gap can be calculated, the charge gap calculation is influenced by finite size effects
to a lesser degree than the spin gap. Consequently all DMRG pairing energies are
determined via the binding energy or charge gap method. In the context of a DMRG
calculation this means that in order to calculate one binding energy the ground state
energy at three different particle occupations (or densities) is required. If however,
the corresponding spin gap is to be calculated the ground state energy at only one
targetted density is required. In calculating the spin gap at a particular density the
ground state energy of the zero spin and spin-one sectors are obtained from the single
superblock matrix. This means only one run of the DMRG algorithm is required
versus three in the charge gap case where the ground state energy for the zero spin
sector at three densities is needed. Thus to minimize computer run time a spin gap
calculation would appear more beneficial than a charge gap calculation. The rates of
convergence in this scenario need to be compared before it can be definitely concluded

that the spin gap method is optimal.
4.1 Results

The intent of using the DMRG is to numerically ezpose the thermodynamic behaviour

of models for which an exact solution is lacking. In this thesis the model under study
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Figure 4.3: Comparison of the Convergence of the Ground State Energy with Lattice
Size.

is the At model while exact results from the Hubbard model are used to benchmark
the correct operation of the numerical routines. In particular the vDMRG is used as
a check on those results obtained from the exact diagonalization of finite chains and
to characterize the quality of the BCS approximation.

In discussing the exact diagonalization ground state energies for the At model it was
pointed out that for finite lattices there are actually two paths of convergence for the
ground state energy. One path is based on odd particle occupations and the other
is for even. Keeping this in mind, the best way to extract the ground state energy

per site is to take the difference in energy between superblocks which differ in size
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Figure 4.4: Comparison of the DMRG, BCS and Bethe Ansatz Ground State Energies
for the Attractive Hubbard Model Case U = —2.0t.

by four sites and then divide by four. Steps of four are chosen because superblock
sizes in multiples of four follow the same path of energy convergence. Additionally,
this method helps to reduce the effect of finite sizes. In Figure 4.3 the convergence of
energy with increasing lattice size at half-filling is shown for the repulsive Hubbard
model. The horizontal dashed line is the Bethe Ansatz ground state energy while the
dotted line shows the DMRG convergence of energy as obtained by the above energy
difference method while the solid line is just the DMRG energy at a specific lattice
size divided by that size. This plot shows that the difference method converges much

faster and accurately to the exact result.
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Figure 4.5: Comparison of the Binding Energies obtained in Exact Diagonalization,
DMRG, BCS, and Bethe Ansatz Studies for the Attractive Hubbard Model Case
U=-2.0t

The DMRG ground state energies for densities away from half-filling is benchmarked
against BCS and Bethe Ansatz results for the attractive Hubbard model in Figure 4.4.
The DMRG results are in excellent agreement with Bethe Ansatz predictions while
the BCS energies tend to underestimate the exact energy as the density increases.

The pair binding energies for the above techniques and for those obtained by Exact
Diagonalization are plotted in Figure 4.5. The DMRG and Bethe Ansatz gap are in
good agreement while the BCS and Exact Diagonalization outcomes tend to agree

with one another but not with the true results. The fact that the DMRGC results
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Energies for the At Model.

corroborate the true properties of the gap in this model (as well as the ground state
cnergies) points out its significance as a numerical technique able to reveal thermody-
namic behaviour. With this in mind, the At model Exact Diagonalization and BCS
results of Chapter 3 can now be cross-examined.

In Figure 4.6 the ground state energy is plotted against density in the At model for
U = 4.0t and At = 1.0¢. DMRG results for 50 and 100 sites are shown along with
BCS results and exact diagonalization results for a 10 site chain. In all cases the
correspondence between energies is good. The data points for the 50 and 100 site

energies coincide for the most part indicating that the energies have converged to the
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Figure 4.7: Comparison of the DMRG, BCS and Exact Diagonalization Pair Binding
Energies for the At Model.

bulk limit. The 10 site case deviates slightly from the larger lattices particularly at
higher densities where correlations are strongest. The agreement of energies is not
unexpected as there has been little indication of discrepancies in all of the methods
presented so far. The gap or pair binding energy has been a different matter.

‘The pair binding energies corresponding to the energies of the above techniques are
plotted in Figure 4.7. The DMRG data at the densities probed is shown as open
symbols, solid symbols represent Exact Diagonalization data and the dotted line is
Marsiglio’s BCS data. For this parameter set the DMRG gap is a decreasing function
of increasing density unlike the BCS and Exact Diagonalization plots. This data
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Figure 4.8: DMRG, BCS and Exact Diagonalization Pair Binding Energies for U =
12.5¢, At = 2.0t.

suggests that within Exact Diagonalization studies finite size effects are too significant
for the lattice sizes that can be investigated. Moreover, these results show that BCS
theory does not provide an adequate description of gap behaviour in the low density
limit but rather only in the zero density limit. This outcome reinforces suspicions
raised at the end of Chapter 3 as to the true gap behaviour in the At model as claimed
by Hirsch and Lin.

In Figure 4.8 DMRG results are shown for the parameters U = 12.5¢ and At =
2.0¢. Also presented are the corresponding results as obtained within BCS and Exact
Diagonalization studies. Hirsch and Lin’s Exact Diagonalization results (Figure 3.11)
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for these parameters show the gap to be flat at low density rather than increasing
as in the BCS case. The DMRG data in Figure 4.8 clearly show the gap to be a
decreasing function of density which could have a flat edge near zero density. For these
parameters the range over which there is pairing in the DMRG case is significantly
reduced from the BCS result. Figure 4.9 shows the DMRG binding energy versus
density for the weaker coupling case of U = 6.25¢ and At = 1.0¢. Once again the
gap shows no indication of the behaviour predicted by BCS theory. Hirsch and Lin
show the gap rising slightly in their Exact Diagonalization results on a 12 site chain.
In Chapter 3 low density Exact Diagonalization studies on chains up to 50 sites

(Table 3.2) hinted that finite size effects are too significant in the 12 site chain to
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conclude that the true behaviour of the gap is well-produced by BCS theory. The
DMRG data justifies the conclusion that the gap behaviour does not conform to BCS

predictions which is contrary to the conclusions of [52].
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Chapter 5

Conclusions

In this thesis the DMRG routine has been exploited to calculate the ground state
energy and pair binding energy of the At model in 1D. In doing so the BCS the-
ory predictions for this model as put forth by other authors have been evaluated.
Additionally, the effect of finite size on small cluster studies has been investigated.
The ground state energy as calculated within BCS, Exact Diagonalization, and DMRG
studies is found to compare favourably in all cases. Agreement at all coupling
strengths is best at low particle densities while the greatest deviation, which is still
small, occurs at half-filling. In the attractive Hubbard model the DMRG ground state
energy agrees with the Bethe Ansatz results even better than BCS predictions do.
This agreement reinforces the worthwhileness of the DMRG as a numerical technique
capable of soliciting thermodynamic or bulk behaviour.

The results for the energy gap or pair binding are not as synonymous. As found in the
attractive Hubbard model, the A¢ model BCS gap behaviour is contrary to the results

obtained with the DMRG. This result is antithetical to the conclusions reached in
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other parallel studies. BCS theory does not in general provide a reliable description
of the exact gap behaviour in 1D. Finite size effects in Exact Diagonalization studies
on small clusters are robust enough to mask true gap behaviour. This is especially
true for weak coupling parameters. Only in the limit of zero density is there direct
agreement between BCS theory and exact results. Whether or not this conclusion
carries over to higher dimensions remains an open question.

To reduce the time required to extract pairing energies from the DMRG it is recom-
mended that a detailed comparison between spin gap and charge gap calculations be
carried out. By further optimizing the routine speed a larger range of densities can
be probed thereby permitting the gap behaviour to be mapped out in greater detail
particularly at low densities.

On the basis of the results presented in this thesis it is the author’s opinion that the
use of BCS results (by others) to advocate the relevancy of the At model in describing

High Temperature Superconductors is suspect.
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Appendix A
1D DMRG Algorithm

1. Make 4 initial blocks where the first (left) block contains 1 or more sites*, the
'second’ and ’'third blocks’ consist of a single site and the fourth (right) block

is a spatial reflection of the 1% block (Figure 4.1).
2. Form the (sparse) Hamiltonian matrix Hsvrertlock for the superblock.

3. Diagonalize H**Pertlock ysing a Lanczos routine to obtain the ground state wave

function .
4. Form the reduced density matrix 5" for the block system 142 using Equation.

5. Diagonalize "% to obtain all the eigenvectors v, and eigenvalues a, and discard

all but the largest m eigenvalues and corresponding eigenvectors.

6. Form matrix representations for active spin operators (those on the ends) of the

two block system.

7. Generate new block 1 by changing basis to the v, using Equation 4.3. Transform

operators in 6.) using the same equation.
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8. Replace old block 1 with new block 1 and old block 4 with the reflection of new

block 1.

9. Repeat at step 2.) until convergence is obtained.
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