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ABSTRACT

During the past decade, discrete block transforms have evoked considerable interest in the
signal processing area. Discrete block transform is realized by first dividing the sample
sequence of a signal to be processed into a series of blocks. The transform operation is
then carried out by taking the inner products between the finite-length signal and a set of
basis functions. This produces a set of coefficients which may then be further processed
in compression, quantization, and encoding. Generally, block transforms can be divided
into two types. One is called “nonlapped transform”; the other, “lapped transform”. In
the first system, the blocks are contiguous and no overlap (conjunction) is involved. The
second system has overlapped operations: i.e., the data blocks may be overlapped.

In signal or image compression, it is well known that the non-lapped transforms
produce an artifact called the “blocking effect” in the reconstructed signal or image.
The blocking effect is partially due to the sharp cutoff of the data block. In lapped
transforms where the data blocks overlap, the gradual decay of the basis functions in the
overlapped region helps to reduce this blocking effect.

In this dissertation, we use a bell function to establish the discrete local sine (DLS)
transform and the discrete local cosine (DLC) transform. The basis functions of this
general type have a smooth cutoff and are shown to have orthogonality properties. The
orthonormality and lapped orthogonality of DLS/DLC transforms indicate that DLS and
DLC belong to the family of the lapped block transform system. We derive sufficient
and necessary conditions for perfect reconstruction for lapped block transforms based
on DLS/DLC basis functions, although,. in general, lapped transform matrices are not
unitary. These conditions are useful for designing optimum lapped block transforms in
special applications. For example, in image and speech coding, we can design an optimal

lapped transform system with the perfect signal reconstruction property.
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Other properties of the transforms are also discussed. These include scaling-in-time,
shifting-in-time, difference-in-time, the uniqueness property, and the convolution prop-
erty. Fast algorithms for implementing DLS and DLC are developed. Based on Given’s
rotations and butterfly operations, we decompose an Mth-order DLS or DLC with length
M + L'into a set of sparse matrices, where L is the length of the overlapped region. Be-
cause of the partially recursive nature of the structure, DLS and DLC fast algorithms
can be implemented with parallel processors.

As examples, we consider two applications using lapped transforms. The first appli-
cation is in acoustic echo cancellation. We use block transforms to implement a subband
acoustic echo canceller. However, due to the frequency aliasing problem in a filter bank
system [36], the direct application of block transforms in an echo canceller does not
function very well. We propose an improved method. By changing the subsampling rate
in block transforms, echo residuals can be reduced significantly. Moreover, we develop
an optimum lapped transform using a criterion of maximum energy concentration. With
the optimum designed lapped transform, an obvious performance improvement can be
observed from echo suppression. Image compression [65], a tool for efficiently encoding a
picture (two dimensional data), is the second application of lapped orthogonal tranforms
discussed in this thesis. We develop a new sub-optimal lapped transform based on DLS
and DLC for image coding. The results are compared with those obtained from using the
lapped orthogonal transform (LOT) and modulated lapped transform (MLT). Computer

simulation results show significant improvement in the reduction of block effects.
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Chapter 1

Introduction

1.1 Discrete Transform Signal Processing

During the past decade, discrete block transforms have evoked considerable interest
in the signal processing area. Some typical transforms are discrete Fourier transform
(DFT), discrete cosine transform (DCT) [66], Walsh-Hadamard transform (WHT) [62],
Haar transform (HT) [2] and slant transform (ST) [63], as well as block transforms with
optimum performance, such as the Kahunan-Loéve transform (KLT). All these trans-
forms can be viewed as “cutoff block transforms”, so named because the data sequence
is processed in contiguous blocks with no overlap. The transform operation is carried
out by taking the inner products between the finite-length signal and a set of basis func-
tions [1]. As a result, a set of coefficients is produced, which are then passed on for
further processing such as compression, quantization, and encoding, [34] (64] [16] [58].
In practice, many of these transforms have efficient implementations as cascades of “but-
terfly” computations [66] [78] [23] [45] [15] [25] [26]. They have found applications in
such diverse areas as speech and image coding [18] [27], data compression [22], pattern

recognition [33], and classification [21], to name just a few.

Most discrete block transforms represent a signal on a set of subbands in the frequency
domain [75]. They become a convenient tool for analysis and treatment of a set of data.
The relation between transform coding and subband coding can be found in [65], where
subband coding is based on multirate filter banks [20] [7] and transforms use matrix

operations [66]. We can treat a block transform as a set of decimated filter banks

1



2 CHAPTER 1. INTRODUCTION

[19] and the inverse transform as a set of expanded filter banks. A transform and its
inverse correspond to the impulse responses of analysis filters and synthesis filters in the
multirate filter banks [50] respectively. On the other hand, a filter bank can be viewed
as a transform with overlapped operation in which the transform of a block obtains not
only the data in that block but also the data in its neighboring blocks [76]. This relation
allows for easy signal processing in the transform domain when using multirate filter
banks [20].

Both block transforms and filter banks can be used in signal coding problems [65]; but
each method has its own characteristics. In data compression, block processing causes
discontinuities (nonsmoothness) between adjacent blocks in the reconstructed signal.
The discontinuities are referred to as blocking effects (51), [53]. In image processing, the
blocking effect results in a reconstructed image that seems to be built up by small tiles
across block boundaries, whereas in speech coding the blocking effect results in audible
periodic tones [72]. In using filter banks, the filter can have many tap weights, and
it is possible to build a filter in which the impulse responses decay smoothly to zero.
The blocking effects are thus reduced [71]. However, the development of such systems
is not easy. We need to design a long filter, because the longer the filter is, the less
is the boundary effect. In real time processing, a fast computation operation for filter
bank does not exist. In addition, the filter bank works well only for a small number
of subbands because high computational complexity is involved in the design of perfect
reconstruction M-bank filter banks [35). A perfect reconstruction system is defined as
the one in which the output signal (or the reconstructed signal) is a delayed copy of the
original signal [72].

Based on the inter-relation between transforms and filter banks, we are able to de-
velop a flexible time-frequency transform. Such a transform has not only good frequency
resolution but also good time resolution. References to the main issues in this area can
be found in {49}, [6], [48] and [80]. Cosine modulated systems with perfect reconstruction
property have been proposed recently from different approaches [52] [54] [42] [43] [76].
All of them belong to a set of “uniform paraunitary filter banks” [72] [76]. Lapped Or-
thogonal Transform (LOT) [49] (a special case of the lapped block transform systems),
modulated lapped transform (MLT) [52] and local sine transform [6] belong to the family
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of lapped block transforms, in which a signal is processed in each block, and only two
adjacent blocks are involved in the computation. As a result, blocking effects can be
reduced, and fast algorithms may be developed. Wavelet and wavelet packet transforms
are free from the blocking effect [77], but they require more intense computation than
some block transforms such as DCT and DST. In this thesis, we will focus on lapped

block transforms.

1.2 Major Contributions of Thesis

Block transform and filter bank are closely related, but each may have their own char-
acteristics. Transform techniques are usually based on orthogonal linear transforms.
Because the basis functions are mutually orthogonal and the blocks are chosen so that
they do not overlap, the coders employing the block transforms are typically classified as
transform coders [65]. The length of each basis function in a block can be chosen as short
as desired. For N basis functions, the shortest length in a block transform is N. Most
block transforms take the shortest length for their basis functions. However, because of
the abrupt “cutoff” at the boundary, some undesirable artifacts, such as the blocking ef-
fect, may appear in the reconstructed signal. On the other hand, filter banks process the
signal by convolving the input signal with a set of bandpass filters and then decimating
the result. Each decimated subband signal contains the information of the signal in a
particular portion of the frequency domain. To recover the signal, the subband signals
are upsampled, filtered, and re-combined. Thus, coders using filter banks are essentially
subband coders. Because of the absence of blocking effects, subband coding is still a
widely used technique in signal processing. Looking at the blocking effect in transform
coding, one may wish to merge filter banks with block transforms to alleviate the abrupt
change at the boundary. The cosine modulated system (also called as MLT), which is
the expanded LOT, is one such scheme [52]. Local sine and cosine basis functions [17]
[6] based on a selected bell function are another type of smooth cutoff system. Because
an arbitrarily smooth cutoff is involved, transforms based on local sine and cosine basis
functions may be considered as “smooth block transforms”. Their basis functions are

orthogonal to each other, and not only do they reduce blocking effects, but they also
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improve subband localization.

In this thesis, using the bell function proposed originally in {6], we derive a discrete
local sine (DLS) transform and a discrete local cosine (DLC) transform. The basis func-
tions which involve arbitrarily smooth cutoffs are shown to be orthogonal. In addition,
we prove that the basis functions are orthogonal in the overlapped portion - meaning that
the cross terms will not introduce errors when the data is reconstructed. By definition,
DLS and DLC belong to the family of lapped orthogonal transforms which satisfy lapped
orthogonal property. It is easily seen that the lapped transform cannot be unitary be-
cause the matrix of such transform is no longer square. Despite the lack of unitarity for
the transform matrix, we have derived necessary and sufficient conditions for the perfect
reconstruction by examining the product of the lapped transform matrix and its trans-
pose. These conditions will be used in the design of optimum lapped block transforms.
In image and speech coding, a best transform system can be designed with perfect signal
reconstruction property. In this thesis, other properties of transforms are discussed, such
as scale-in-time and shift-in-time properties, uniqueness property, difference-in-time and
convolution properties.

In addition to transform properties, fast algorithms for the general types of DLS
and DLC are considered and developed. These algorithms make DLS and DLC more
suitable for parallel processing. After derivations of properties and algorithms, we focus
on applications. In this thesis, we consider two applications of lapped transforms. The
first application is acoustic echo cancellation. We use block transforms to implement the
subband acoustic echo canceller. However, due to the frequency aliasing problem in filter
bank system [36], direct application of block transform in an echo canceller may not work
very well. In order to increase the echo suppression, we propose an improved method.
By changing the subsampling rate in the block transforms, the echo residuals can be
reduced significantly. Furthermore, we develop an optimum lapped transform by using a
criterion with maximum energy concentration. Using the optimum lapped transform, an
obvious improvement in echo suppression can be observed. Image compression [65], as a
tool for efficiently encoding picture (two dimensional) data, is the second application of
lapped orthogonal transforms discussed in this thesis. Through the transform, the data

are compressed by discarding many other coefficients with lower energy. Comparing
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with LOT and MLT, DLS and DLC are applied for image compression here. By further
developing a new sub-optimal lapped transform with the highest decorrelation of the
AR-model, the corresponding performance in image compression again indicates that

such transform reduces the blocking effect significantly.

1.3 Outline of Thesis

The thesis is organized as follows. The first chapter briefly describes the history of dis-
crete transform signal processing and states the problems to be solved in this thesis. In
the second chapter, we review the multirate filter banks and their relations to lapped
transform systems, followed by the development of the DLS and DLC transforms. Oper-
ational properties of these transforms are developed in Chapter 3. In the fourth chapter,
we develop a fast algorithm for implementing a general type of DLS and DLC transforms.
Applications — acoustic echo cancellation and image compression of lapped transforms
— are presented in Chapters 5 and 6, respectively. The final chapter concludes the thesis

with a summary of the contributions and some suggestions for further research.
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Chapter 2

Multirate Filter Banks and
Lapped Orthogonal Transforms

In this chapter, we first review the fundamentals of multirate signal processing such
as decimation, interpolation and perfect reconstruction of filter banks. The relation
between filter banks and block transforms is then discussed in Section 2.2. In Section
2.3, lapped orthogonal transform is introduced. Discrete local sine transform and discrete

local cosine transform are proposed in Section 2.4.

2.1 Multirate Filter Banks

In multirate digital signal processing, a signal may be processed with different rates at
the same time. This is different from the conventional digital signal processing system
in which only a single sampling rate is used. The multirate system basically uses two

operations, decimation and interpolation. We will now describe these two operations.

2.1.1 Decimation Operation

The decimation operation is also called downsampling or subsampling. A decimator
retains sample points spaced only at certain distances. Consider an input discrete signal
sequence z(n) with a sampling period T. The process of reducing the sampling rate of

z(n) by an integer factor M can be described as follows: only those sample points of

7



8 CHAPTER 2. MULTIRATE FILTER BANKS AND LAPPED ORTHOGONAL TRANSFORMS

z(n) at every M-th period are retained; i.e.,

Trew -
T M,
where T, is new sampling period. The new sampling rate is obtained by
fo. 1 _ 1 _F
new-Tnm - MT_M,

where F is the old sampling rate. The output v(n) of this process is given by
v(n) = z(M n).
It is easily seen that information will be lost after decimation. Let
] z(n) n=0,+M,12M,---
z(n)=
0 otherwise,

which can also be written as
' 1 %S an /M
-_— Tin
z(n)_z(n)[ﬂ—’z:e-’ ]
=0
Thus, we have
v(n)=z(Mn) = z (Mn).

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Now, let us analyze the process of decimation in the transform domain. Taking 2-

transform (z = €/*) on both sides of (2.6) and letting V(z) be z-transform of v(n), we

have

V(z) = i v(n)z™"

= Z z (Mn)z™"

= f: z (n)z" &
00 M-1
= 3 z(n) [i ) ej21rln/M] J
n=-o0 M =0
M-1

S 5 am [wis]”

1
M =0 n=-—00
1
M

M- s
3 x(wizw),

=0

2.7)
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Figure 2.1: Frequency-domain effect of decimation with M = 2

where W = e~i% and X (2) is z-transform of z(n). The effect of decimation in the
frequency domain can be illustrated by considering the special case where M = 2 and

z(n) is a low-pass signal bandlimited at %. (2.7) becomes

N

V(z) = ZX(W’zz lzlj =) (2.8)
=0

I—O

Figure 2.1 shows the decimation process for this special case. Furthermore, if z(n)
is low-pass signal bandlimited at 3%, then after downsampling by 2, the spectrum is
extended and overlapped. As a result, z(n) cannot be perfectly recovered by v(n) (shown
in figure 2.2). This indicates that if the input signal is not a low-pass signal, or even
if it is low-pass but the bandwidth is larger than %, then after downsampling by 2,
z(n) cannot be perfectly recovered from v(n). For a general case, if z(nr) is not a low-
pass signal at a region |w| < ¥y and if we want to recover the input signal from v(n),
the reconstructed signal may not hold the same information as the original (Detailed

reconstruction procedures will be discussed in the next subsection). This problem is
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Figure 2.2: Frequency-domain effect of decimation with M = 2 and signal bandwidth
larger than 5

commonly called aliasing. In order to avoid aliasing at this lower sampling rate, a low-
pass filter has to be added before the decimation operation. Such a system is shown in
Figure 2.3. The circle with the downward pointing arrow in this diagram indicates that
the output sequence of the filter is subsampled; i.e., only every M-th sample is retained.

If we denote the impulse response of the filter as h(n), we then have
o0
yn) = 3 h(k)z(n— k), (2.9)
=—00

where y(n) is the output of the filter. Thus, after downsampling, the output v(n) is

obtained as

v(n) = y(Mn). (2.10)

Combining (2.9) with (2.10), we have

v(n) = i h(k)z(Mn - k). (2.11)

k=-—0c0
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Figure 2.3: (2). Subsampling system with low-pass filter. (b). Input and output wave-
forms. The first graph shows the signal z(n); the second shows the signal = '(n); and the
last is the signal v(n). Here, M = 3.
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Taking 2-transform on both sides of (2.11), and applying the results in (2.7), we have

1 M=l 1 1
V(z) = 7 Y B(W':a)X(Wizw), (2.12)
=0

where H(z) is 2-transform of h(n). This is the result of low-pass filtering and decima-
tion. The combination is sometimes called a decimation filter. A system of decimation
filters consists of a number of properly chosen low-pass filters and decimators, such that
aliasing can be reduced or even eliminated. The choice of filters depends on the perfect
reconstruction property which implies that the reconstructed signal must be a delay copy
of the original signal [72]. We will address this property in Section 2.1.3.

2.1.2 Interpolation Operation

The interpolation operation is also called upsampling. As opposed to subsampling,
upsampling by M consists of placing M — 1 zeros between every two consecutive samples

of the input signal. Thus, we have
Tr:ew

1
=—. 2.1
T T (2.13)
The new sampling rate is
1 M
p—tg -_—_— . 2-14
Fﬂew Tncw T M F ( )

Obviously, interpolation is an inverse operation of decimation. However, no information
is lost in interpolation and the original signal can be simply recovered by the process:
subsampling by M. An interpolation filter can be described with the help of Figure
2.4. The circle with the upward pointing arrow in the diagram indicates that the input
sequence is upsampled: i.e., M = 1 zeros are inserted between two neighbouring sample
points. If v(n) is the input to the interpolator, y(n) is the output of v(n) after the
upsampling process, and z(n) is the output of the filter, and if the impulse response of
the filter is g(n), we then have

y(n)={ o(fy) m=0,£+M,+2M,.-, (2.15)

0 otherwise,

In the z-transform domain, we have
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Figure 2.4: (a). Upsampling system with low-pass filter. (b). Input and output wave-
forms. The top shows the signal v(n) and the bottom shows z(n). Here M = 3.
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Figure 2.5: Frequency-domain effect of interpolation operation with M = 2

Y(:) = Y ume

= n=2_°° U(PM')Z—'"'

= Z v(n)z~"M

n=-—0oc

= V(ZM), (216)
and the filter output is
X(2) = G(2)Y(2) = G(2)V(zM). (2.17)

Here, G(z) is the z-transform of g(n). (2.16) shows that in the frequency domain, after
upsampling by M, the original spectrum V'(e/¥) is compressed as V(e/M«) and a set of
copies, called images, is created. Figure 2.5 demonstrates this result. The compression
in the frequency domain causes no information loss and the original signal can easily be

recovered by using a low-pass filter G(z) in (2.17).

2.1.3 Perfect Reconstruction for Filter Banks

With both decimation and interpolation in one system, a multirate filter bank can be
constructed as shown in Figure 2.6. Block I consists of a set of band-pass filters and
associated subsamplers. The input signal is decomposed into subband signals or sub-

signals. Block I consists of upsamplers and the associated band-pass filters, provided
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Figure 2.6: Subband coding system with M subbands

for the reconstruction of the original signal from its subband decomposition. Between
Block I and Block II, additional processing such as noise suppression, quantization,
compression or coding and decoding can be applied in each subband. Without these
additional processings, the subband system should perfectly reconstruct the original
signal in Block II. We now derive the “perfect reconstruction” condition imposed on
the structures of the filters in this multirate filter bank.

Let X(Z) be the z-transform of £(n), the output of the multirate filter bank. From
(2.12) and (2.17), we get

N M-1
X(z) = Y Gi2)Vi(M)
=0
] M-1M-1
= o SIS Gi(2)H(W'2) X (W'z). (2.18)
=0 =0
(2.18) can be rewritten as
A 1 M- 1 M-1M1
X(2)= 37120 G H(X () + 37 21D Gi(2)H(W'2)JX(W'z).  (2.19)
=0 =1 i=0

The first term in (2.19) is the distortion term, and the second is the aliasing term. To

have perfect reconstruction (PR), the following conditions must be satisfied [72]:

M-1
3" Gi(z)Hi(2) = M, (2.20)

=0



16 CHAPTER 2. MULTIRATE FILTER BANKS AND LAPPED ORTHOGONAL TRANSFORMS

x(n)
Figure 2.7: Subband coding system with 2 subbands
and
M-1
Y Giz)H(W'z)=0; I=1,---,M>1. (2.21)
=0

For the special case of M = 2, as shown in Figure 2.7, (2.20) and (2.21) can be reduced

to

{ Go(2)Ho(2) + G1(2)H1(2) = 2, (2.22)

Go(2)Ho(~-2) + G1(2)H1(-2) = 0.

For the system shown in Figure 2.7, we first design Ho(e’*) as a low-pass filter, and
H1(e’) as a high-pass filter with its frequency response symmetric to that of Ho(e/*):
ie. Hy(e!) = Ho(e/“+™) [71]. We then choose Go(e?“) = Ho(e'*), and Gy(ei¥) =
—H,(e’*). With this choice, the aliasing term is cancelled, and the multirate filter bank
system is a perfect reconstruction system if |Ho(e’)|? 4+ |Ho(—€’“)|? = 2. Increasing
the number of subbands in the filter bank means that more complicated procedures are
required to design a PR system, as (2.20) and (2.21) become harder to satisfy. We may
conclude that filter banks work well only on a small number of subbands because of the
computational complexity of implementation in the perfect reconstruction requirement
of filter banks. Another difficulty in real-time processing is the requirement for filters of
fewer tap weights. Coupled with the PR condition, it implies that a fast computation

operation may not easily be developed. This is one of the reasons for considering block



2.2. RELATION BETWEEN FILTER BANKS AND BLOCK TRANSFORMS 17

transforms instead of filter banks in subband processing.

2.2 Relation between Filter Banks and Block Transforms

Before talking about the relation between filter banks and block transforms, let us look
at the block transform system. The purpose of block transform processing is to divide
the sampled sequence of a signal into a series of blocks (Figure 2.8 shows two blocks, each
with length 8, in a cutoff block system), and then apply transform on each individual
blocked signal.

Consider a sample sequence of a real data z(n), n = 1,---, K. This set of data
is divided into blocks and each block includes M samples. Let z,, represent data at
the m-th block: i.e., ®m = [Zm(0),Zm(1), -, En(M — 1)}T and E,(i) = z(mM + i);
m=0,1,---, ﬁ, assuming that K is an integer multiple of M. A transform matrix & is
defined as

® = (P01 - dM-1); (2.23)

with ¢; being the i-th basis function of the transform, which is a real column vector with

dimension M. We assume that {¢;} are orthonormal: i.e.,
& ¢; = 6. (2:24)

Here T denotes the transpose operation. §;; is the Kronecker Delta function: i.e., é;; = 1

when ¢ = j, and é;; = 0 for © # j. Furthermore, we have that & is a unitary matrix: i.e.,
T =dTH =1, (2.25)
where [ is an identity matrix. Then the transformed coefficients of x,, are given by
Xm=90T2,. (2.26)
Furthermore, the reconstructed data from X, is obtained by
&m = (1) ' X . (2.27)
Because & is a unitary matrix, we have

o1 = o7, (2.28)
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mth biock (m+1)th biock
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sample sequence

Figure 2.8: Cutoff block system

Thus, (2.26) becomes
R (2.29)

Substituting (2.26) and (2.25) into the above formula, we have
& =0 2, = 2,. (2.30)

(2.30) indicates that if a block transform is orthonormal, then it satisfies the perfect
reconstruction conditions when a signal is processed by using this transform. Here is a
complete picture for the processing of a signal using transforms: a signal is first divided
into a series of blocks, and each block is transformed individually. The transformed signal
in each block is then processed by further techniques, such as quantization, compression,
encoding or decoding. In order to recover the original signal, we can apply an inverse
transform to realize the reconstruction operation. Now we are going to show how the
block transform system is related to filter banks.

Let us go back to (2.26). Rewriting the mth block processing, we have

M-1
Xen(K) = 3 En(n)di(n), (231)

n=0

where X (k) is the k-th element of X,n, £n(n) is the n-th element of &,,, and @i(n) is
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the n-th element of ¢;. (2.31) can be written as follows:

M-1
Xm(k) = Y Em(n)gu[M ~1—(M —1~n)]
n=0
_ | S el - (M -1 -n)fy i=M -1 (2:32)
0 otherwise.
Let X (k,1) represent the first line in (2.32): i.e.,
) M-1
Xm(k,i)= Y Em(n)gxli— (M —1-1n)]. (2.33)
n=0
(2.33) can be described as a convolution operation:
Kon(kyi) = Em(n) * $e(M — 1= n), (2.34)
where * is a convolution operation. Thus, we have
Xm(k,i) i=M-1;
Xo(k) = 4 Xm(Er8) (2.35)
0 otherwise.

It is easily seen that (2.34) is a filtering operation while (2.35) is a decimating one. The
above results indicate that block transform systems are equivalent to a set of filter banks.
In the analysis filter banks, the impulse response of the k-th subband is ¢x(M — 1 — n),
which is obtained by reversing the basis function ¢x(n). The transformed coefficients are
collected after filtering and subsampling by M (as shown in Figure 2.9). Thus, for the
sampled sequence of the signal z(n), the subsampled outputs at times M —1,2M -1, -,
represent successive transform coefficient vectors corresponding to successive blocks of
data. Therefore, it is seen that the filter bank system can be realized by a block transform
system. Later, we will also see that this relation is not only limited to the cutoff block
transform, but also applicable to the smooth block transform and wavelet transform.
Similarly, in the synthesis filter banks, the impulse response is given by the inverse
transform. The reconstructed signal can be obtained by the process: upsampling by M,
and then filtering. Therefore, we conclude that a block transform can be viewed as a
decimation filter bank and the inverse transform as an expanding filter bank. On the

other hand, a filter bank can be viewed as a transform with the overlapped operation,
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Figure 2.9: Orthonormal transform analyzer as a multirate filter bank

in which the transform of a block contains not only the data in that block but also the
data in its neighbouring blocks. This relation allows for easy signal processing in the
transform domain by using the multirate filter banks.

Even though block transforms and filter banks have a one-to-one correspondence,
each one has its own characteristics. Traditional block transforms (cutoff block trans-
forms) allow for the short length of the basis functions. Corresponding to the concept
of filter banks, the impulse response does not go down to zero at the boundaries, be-
cause of the “cutoff” block processing. This causes discontinuities between two adjacent
blocks in the reconstructed signal and creates so-called blocking effects [51], [53]. In
image processing, the blocking effect results in a reconstructed image that seems to be
built up of small tiles across block boundaries, whereas in speech coding, it will result
in audible periodic tones [72]. Filter banks, as discussed in Section 2.1, show that with
long impulse response filters, it is possible to build a filter in which the impulse responses
decay smoothly to zero, and hence the blocking effects disappear [71]. In order to design
a filter with the impulse response decaying to zero smoothly, we require that the filter
be long. In general, the longer the filter length is, the less is the boundary effect. In

practice, developing such systems is not easy; it requires the design of a long filter. Fast
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algorithms may not be possible for real time processing. The relation between transforms
and filter banks enables us to develop a flexible time-frequency transform with a given
length for the impulse response filter. That implies that such transform has not only
good frequency resolution but also good time resolution. Lapped orthogonal transform

is one such transform.

2.3 Lapped Orthogonal Transform

As described in the last section, the traditional orthogonal block transform system has a
perfect reconstruction property. That is, given a signal, in order to examine its properties
on a finite sub-interval, we can map the signal into a transform domain by using a
block transform. The conventional block transforms process data block-by-block. No
overlapped operation is involved.

Lapped orthogonal transforms, proposed in [49], are slightly different from standard
block transforms. It transforms N sample points of a block into M transformed coeffi-
cients, where N > M. That is, the transform matrix is M X N rather than M x M. A
non-square matrix indicates that the sample sequence of a signal is divided into a set of
overlapped blocks (shown in Figure 2.10). Each block has length N and the length of
basis functions is also N. However, the total number of basis functions is M. Because
of overlapping, the blocking effect in data compression can be reduced. This will be
demonstrated in detail in Chapter 6.

Consider a real signal z(n), n =0,1,---, K. Let 2, be data of the m-th block. The
difference of the lapped orthogonal transforms from the traditional block transforms is
that two adjacent blocks @, and &4, have an overlapped portion. Let =, be a column

vector with dimension N. The transform coefficients of z,, can be written as
Xp =0Tz, (2.36)

where & is a lapped transform matrix with dimension N x M, in which the column
vectors correspond to basis functions with length N, N > M. X, is a column vector
with dimension M. (2.36) shows that lapped transform maps data with length N into

a set of coefficients with length M. The relation between lapped transforms and filter
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Figure 2.10: Smoothed block system — lapped block system

banks can also be described by Figure 2.9, with ¢;(M — 1 — n) being replaced with
#i(N —1 —n). It is worth noting that because & is not a square matrix, it can no longer
be unitary. Next, we will describe how to obtain the perfect reconstruction for lapped
transforms.

Now let us look at how lapped transform works for a sequence of data z(n) instead
of a single block z,,. Consider the overall transform matrix ,,, which is block diagonal.
Each matrix & corresponds to a block process. The subscript w represents processing
the whole data set. We could also use different lengths of basis functions so that the size
of one block matrix may be different from another. For simplicity, we consider the case
where all blocks are of the same size. Here, $’s are positioned so that &,, is a square

matrix or nearly a square matrix provided {z(n)} is long enough. &, is

L 2 o

B
g
]

(2.37)

o L 4

Now we describe how they are positioned. Considering three adjacent {®}s in (2.37), we
denote the block matrix at left top as $(!), the middle as (™), and the right bottom as
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(") where the superscript (1), (m) and () represent left, middle and right respectively.
&) is positioned (N — M) rows above the &™) block to its left, and () is positioned
(N = M) rows below the &™) to its right. To illustrate, we show some of the blocks in
&, when N = 4 and M =2 and the overlapped length is 2; i.e.,

&7 = a1 az1 @31 G4
- b
a12 a2 @32 Q42

and,
a1 a2
- . az a2
az; az2 ai a2
FIU)
~ as1 Qa42 a21 Qa22
éw = @(m) =
&) a3 az2 a1l 412
Q41 Q42 G211 422
B N as; as2
a41 Q42
L T

In order to get perfect reconstruction, &, must satisfy, assuming that its dimension is
K xK,

3.8 =Ix o &.&,=Ik. (2.38)
(2.38) implies
TP = Iy, (2.39)
and
STW = Oy, (2.40)
where W is defined as an M x M one-block shift matrix
W= [0‘ Ie ] . (2.41)
0, oOf

Here, It is an identity matrix with order L which is the length of the lapped portions.
O, is a L x (M ~ L) zero matrix, O, is a (M — L) x (M — L) zero matrix. From the above
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conditions, the second half in (2.38) can be obtained. The two conditions of (2.39) and
(2.40) represent the orthonormality and the lapped orthogonality for a lapped transform.

Thus, for given data z(n), n = 1,-.-, K, with K being an integer multiple of M and
x,, denoting a column vector with dimension K, the transformed coefficients of =, are

described as follows:
Xuw= 65‘”1{1’ (2.42)

where X, is a column vector with dimension K. The reconstructed signal is given by
&y = B Xy = BB (2.43)
Substituting (2.38) to (2.43), we then have
Ly = Loy (2.44)

(2.44) shows that if a lapped transform has orthogonality ( i.e., basis functions are
orthogonal to each other in a block) and lapped orthogonality (i.e., the inner products of
overlapped portions of any two basis functions in two adjacent blocks are equal to zero),
then such a transform has the perfect recomstruction property. Usually, this kind of
transform is called “lapped orthogonal transform”. Using lapped orthogonal transforms,
the blocking effect in data compression can be reduced. Lapped orthogonal transform, as
an overlapped block transform system, can have different types of basis functions. LOT,
proposed by [49], is developed based on the discrete cosine transform. The length of
basis functions N is fixed at 2M, where M is the number of basis functions. The length
of lapped portions L is M. Thus, the length of the lapped portions is half the length
of basis functions. Furthermore, a modulated lapped transform (MLT) [49] is proposed
which is similar to LOT but with a modulated function at the edges. Also, it satisfies
the requirements N = 2M, and L = M. Extended LOT [49] is an extended form of
LOT for a longer length of basis functions: i.e., N = 2PM, where P is an integer. The
length of lapped portions is (2P ~ 1) M.

2.4 DLS Transform and DLC Transform

As described before, the lapped orthogonal transforms, which merge filter banks into

conventional block transform and let the boundaries decay to zero graduately, can reduce
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the blocking effect. LOT is one such lapped orthogonal transform, and it has a limitation
for the length of the overlapped portions. Here, we introduce the discrete local sine
transform and the discrete local cosine transform, which allow for flexible length in the
lapped regions and arbitrarily smooth cutoff at the edges.

Considering a signal z(n), in order to analyse its properties on a finite sub-interval
I, we could process z(n) by using a block transform. To find a smooth cutoff, we borrow
a set of continuous bases from Coifman and Meyer [17], [6], the local sine bases and the
local cosine bases. Such bases allow for an arbitrarily smooth cutoff. By discretizing
these bases, we derive a set of discrete local sine (DLS) basis functions and a set of
discrete local cosine (DLC) basis functions. These are defined as the DLS and DLC

transforms respectively, given by

e the DLS transform:

Let &, be the DLS transform matrix, ®, = [¢q, 1, - -, @Par—1)- The basis function
@, (n) is

or(n) = \/%-—{bl(n) sin[2r; lr(% -e)hnelo,M+L—-1];7€[0,M —1],
(2.45)

where n represents the index of sample points, r represents the index of basis
functions, € = %ﬁ M is the number of basis functions and L is the length of the

lapped portion of the basis functions. b;(n) is called a bell function defined by

St(n)v n=0,1,---,L—1,
b(rn)=1¢ 1 - n=0L,--\M-1, (2.46)

where
. nmw 1, 2nx
S,(n) = Sln[?(—L-—_ﬁ - Zsm m], n=0,1,---,L -1, (2.47)
C(n):cos[—i-——l-sinﬁzr—] n=0,1,---,L - 1. (2.48)
€ 2(L-1) 4 L-1V ]

Figure 2.11 shows the bell function.
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Figure 2.11: Bell function

e the DLC transform:

Let &, be the DLC transform matrix. ®, =[¢q, @1, -, Ppr—1]- The basis function
@, is

ér(n) = \/%-{b,(n) cos[2"; lw(% —e}nel0,M+L—1;re(0,M—1]

(2.49)

where by(n) is defined as before.

In the next chapter, we will show that DLS and DLC transforms satisfy the orthogonality
and lapped orthogonality properties, similar to (2.39) and (2.40)

®, 8, = Iu (2.50)
STWS, =0y

o=l (2.51)
TWé,. = 0Op

The bases of DLS and DLC in time and frequency domains are shown in Figure 2.12
and 2.13, respectively where we have chosen M = 8 and L = 8.
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For comparison, we note that the LOT is defined as

1 De—Da De—Do

- ; 2.52
2| J(D.~ Do) —J(D.-D,) (252

$ =
with D, and D, being M x -1‘21 matrices containing the even and odd DCT functions
of length M, respectively. @ also satisfies the lapped orthogonal properties [49]. The
bases in time and frequency domains are presented in Figure 2.14. Figure 2.12 indicates
that DLS transform, based on a bell function, belongs to smooth cutoff system, while
LOT still has some boundary effects as shown in Figure 2.14 by examining the time
domain basis functions. Figure 2.15 shows MLT defined in Chapter 5 of [49]. The
results indicates that MLT has better frequency characteristics than DLS transform.

In this chapter, we discuss fundamentals of filter banks and their relations with block
transforms. Then we go further into lapped orthogonal transforms. The relation between
lapped transforms and filter banks is described in Figure 2.9, with ¢;(N — 1 — n) being
replaced by ¢;(M —1—-n). Computing a transform is equivalent to co-nvolving the signal
with each of the block basis functions and then subsampling by a factor equal to the
number of basis functions. Also, lapped orthogonal transforms could reduce the blocking
effect which appears in the application of data compression. Comparing with LOT, it is
seen that the DLS and DLC transforms, as a smooth cutoff system, may provide a more
efficient approach to reduce the blocking effect. Next, we will introduce the operational

properties of lapped transforms based on DLS and DLC basis functions.
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Figure 2.12: Bases in time and frequency domains (M = 8 and L =8; 8-basis DLS)
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r=7

Figure 2.13: Bases in time and frequency domains (M = 8 and L = 8; 8-basis DLC)
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Figure 2.14: Bases in time and frequency domains (M = 8 and L = 8; 8-basis LOT)
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Figure 2.15: Bases in time and frequency domains (M = 8 and L = 8; 8-basis MLT)
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Chapter 3

DLS and DLC Transforms:

Properties and Performance
Analysis

3.1 Introduction

In the last chapter, we reviewed the lapped orthogonal transforms and their relations
with multirate filter banks. Because of the smooth cutoff, DLS and DLC transforms have
the potential to significantly reduce the blocking effect. In this chapter, we derive impor-
tant operational properties and performance limitations for the discrete local sine/cosine
(DLS/DLC) transforms. In Sections 3.2, 3.3 and 3.4, we start with the DLS transform to
analyse the unitarity property and to derive the orthogonality and lapped orthogonality
properties. Following Section 3.4, we use a general form of lapped orthogonal transforms
to discuss the perfect reconstruction property, scaling-in-time, shift-in-time, uniqueness
properties and the convolution operation. According to the definitions of the DLS and
DLC transforms in the last chapter, we rewrite equation (2.45) and (2.49) respectively

as follows,

DLS: ¢r(n) = \/%{b(n) sin (27+1)(Z;{-L+1)1r} ne [O,M +I- 1],1‘ € [O,M _ 1]’
3.1)

DLC: ¢,(n) = /% {b(n)cos (2""1)(3;;[’“)"} ne0,M+L-1],r€[0,M —1],
(3.2)

33
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where M is the number of basis functions, L is the length of lapped portions (L < M)
and r is an integer. b(n) is a bell function defined in (2.46). Both the DLS and DLC
transforms may use the same bell function. The only difference between them is that
DLS uses the sine function and DLC uses the cosine function. Thus, we could use a
common notation ¢.(n) to examine their matrix forms. Let the matrix form of ¢,(n) be
& with dimension (M + L) x M. According to the characteristics of the DLS and DLC

basis functions, we could divide the matrix & into three parts:

&)
&= ™ |, (3.3)
k)
where the superscript (h), (m) and () represent the head, middle, and tail portions, as
shown in Figure 3.1, and

oM = (o) oM ... ¢ ], of dimension L x M,

s = [, (t), . (t) -1y of dimension L x M,
&M = [gl™, 5'"’, -, @87 ],  of dimension (M —L) x M, (3.4)
¢ = [p(M),$(M +1),---, (M + L- 1)[T,

o) = [6:(0),br(1), -, 8e(L —1)IT, (35)

¢™ = [:(L),¢e(L +1),- -, (M —1)]T.

Starting with these definitions, we will derive some important operational properties in
the following sections. First, we focus on the DLS basis functions; similar results can be

obtained for the DLC basis functions.

3.2 Orthonormality

Consider the two basis functions ¢, and ¢,. Their inner product is given by

M+ZL:-1 —2-62(11) sin @2r+1)(2n—-L+ )= sin (2t+1)2n~L + )=

4M 4aM

< ¢r;¢t >
n=0
M+L-1
2 —t)ern—-L+1)r  (r+t+1)2n—-L+1)7
Z b*(n) cos i cos i

n=0



3.2. ORTHONORMALITY 35

middle

Figure 3.1: Expression of portions in one block

- -1‘17(::"1 + T+ Ts), (3.6)
where
S 23‘2(") [cos (r -t)(2;zM— Llr _  (r+t+ 1)5\;— L+ 1)1r] | 3.
o = g [cos (r— t)(2;A; Ltlr _  (r+t+ 1)3; - L+ 1)1r] , 3.8)
L = M‘*f:“ C2n— M) [cos (r— t)(2;z};{- Lylr _  (r+t+ 1)3‘;- L+ 1)1r] .

n=M
(3.9)

Here, we have written out the bell functions for the appropriate ranges of the summation.

It is easy to see that T3 can be rewritten by substituting n with »’ = n — M

L-1 ' '
_ 2, ! (r—t)(2n +2M—L+1)7r_ (r+t+1)@2n +2M - L+ )
Ts E Ci(n) [cos 5T - cos i

n'=0

L-1 ’
- 2 {°°S[<r-t>«+ A

n’'=0

—cos[(r+t+ )7+

(r+t+1)2n - L+ 1)7r}
2M )

(3.10)

Using this expression for T3, we consider < ¢,,¢; > in the cases where r and ¢ differ

by an even integer or by an odd integer.
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e CASEL: forr ~t =2k,k=0,1,---,pand p = M/2if M is even; p = (M ~ 1)/2
if M is odd. In this case, T3 reduces to

L-1
k(2n— L+ D~ 2k+2t+1)(2n—-L+1)x
T3 = CZ(n) [cos —————tcos . (3.11)
,;; M 2M
Substituting (3.11) into (3.6) and using S?(n) + C2(n) = 1, we have
M-1
1 k(2n — L+ D)x
< ¢, > = H{nz:% o8 ————pr———
L—-1
2k+2t+1)(2n—-L+
~ 3 152(n) = C2m)] cos JGn-L+])
n=0
N @k+u+1)@n-L+ 1)1r}
- 2 cos
2M
n=L
1
= H(PI — Prp - Prrp), (3.12)
where
M-1
P = n; cos k(ﬂi%tl)—” (3.13)
L-1
_ 2k+2t+1)(2n—-L+1)x
P = Qﬁ(n) ~ C¥(n)] cos S , (3.14)
M-1
B (2k+2t+ 1)(2n - L+ 1)
Py = ,,z=;, cos oM . (3.15)

Through trigonometric property, Py, Prr and Prjy have the following results (refer
to (A.4), (A.6) and (A.8) of Appendix A):

0, k#0

P = # (3.16)
M, k=0

Prp = 0, forallk, (8.17)

Pur = 0, forallk. (3.18)

Combining (3.16), (3.17) and (3.18), we have for r — t = 2k

1 —-t=2k=0;
< @p Py >= r (3.19)
0 r—t=2k#0.

e CASEIL: for r —t = 2k + 1,k = 0,1,---,pand p = M/2 -1 if M is even;
p=(M-3)/2if M is odd (M > 3). In this case, T3 is equal to

- LZ-I e {_ s kT V@R -Ltr (k+t+1)2n-L+ 1)”} . (3.20)

2M M

n=0
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Substituting (3.20) into (3.6), we have

1 [ M (k+t+1)@n-L+1
<o b > = ﬁ{"zm(+ + )(Mn +1)r

n=0

L-
+ Z::[Sf(n) — C¥(n)] cos ZEF 1)(2711”_ Lt Dr

M-1

£ 3 cos (2k+1)(§r;l—L+1)1r}. 3.21)

n=L

Similar to CASE I, for r — t = 2k + 1, we have
<P, >=0, k=0,1,---,p. (3.22)

Therefore, combining (3.19) and (3.22), we have the following orthonormality

property
1 r =1

L, >= 3.23
<¢r¢t> {0 r#t, ( )

(3.23) indicates that the discrete local sine transform satisfies the orthonormality prop-
erty. In the same way, we can develop the orthonormal property for the discrete local
cosine transform. Using the orthogonal property, we obtain, for the transform matrix in
(3.3)

&Td = &'¢ = Iy,

where ! represents the pseudo-inverse of a matrix, and the column vectors of & correspond
to the basis functions. Ips is an M x M identity matrix. Since the columns of & are

orthonormal to one another, & is an orthogonal matrix: i.e., #7 = &t

3.3 Lapped Orthogonality

Consider two basis functions ¢{®) and ¢$1), where the superscripts (0) and (1) represent
two adjacent blocks (0) and (1), as shown in Figure 3.2. Their inner product over the
lapped region is described as

M+L-1

2
<¢oV> = = 2 {Geln=M)Sc(n - M)
. 2r+1)2n-L+l)r . (2t+1)2n—-L—-2M+ )7
sin M sin M .

(3.24)



38 CHAPTER 3. DLS AND DLC TRANSFORMS: PROPERTIES AND PERFORMANCE ANALYSIS

block(0) block(1)

Figure 3.2: Two adjacent blocks (0) and (1)

Letting n’ = n —M, substituting (2.47) and (2.48) into the above formula, and using
trigonometric identities, we have
L-1 ’ ’
0) (1) — _1_ . nmw _l. 2n'w
< ¢ P > MZ{sm(——L_l g Sl T—

n/=0

/. 1 _
cos @2r+1)2n" ~L+1)r sin 2t+1)(2n' - L+ I)w} .

M M

(3.25)

Now, let us examine each factor inside the summation. It is easily seen that over the
range [0, L — 1], the second factor is symmetric with respect to n/ = % , While the third

factor is anti-symmetric. For the first factor, let

. nr 1. 2nr
f(n) = sin (E— T~ EsmL_—l) .

It can be easily proven that

. nr 1. 2nr
f(L—1—11.)—sm(L—_—1-—§-smL_1

) =f(n) forallne[0,L—1]. (3.26)

Hence the first factor inside the summation of (3.25) is symmetric. Therefore, (3.25) is

. . . . 4 —
a summation over anti-symmetric terms with respect ton = % Thus

<, 6 5=0 forall r and ¢. (3.27)
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(3.27) shows that the DLS basis functions in block (0) and (1) have lapped orthogonality
property. This lapped orthogonality property can easily be extended to any two adjacent
blocks (i) and (i+1). In such cases, n in (3.24) is shifted by iM. By replacing the variable
n with n’+iM, exactly the same result as (3.25) can be obtained. Therefore, we conclude
that the DLS transform also satisfies the lapped orthogonality property. Concerning the
DLC transform, it is known that the only difference between the DLC and DLS is to
change the sine function into the cosine function in (3.24). The bell function which is
formed by C,(n— M) and S.(n— M) remains unchanged. Therefore, their inner products
over the lapped region have the same form as (3.25) except with a different sign. In a
similar way, we can derive lapped orthogonality for the DLC transform. Because of the
lapped orthogonality, the cross terms between the adjacent blocks will not introduce an

error when we reconstruct the original data from their transforms.

3.4 Unitarity

It is easy to see that the basis functions of lapped transforms do not form a square
matrix. Therefore, the lapped transform matrix cannot be unitary. However, portions
of the matrix may contain a property related to unitarity. This property may be useful
in actual transforms; we examine this property here. Let & be the DLS matrix, in which
each column corresponds to a basis function. Now let 4, represent the n-th row vector

in @ such that its r-th component is expressed as
_[2 . (2r+1)2n-L+ 1)
Yu(r) = \/ﬁb(n) sin 57 . (3.28)
The inner product of the two row vectors 4,, and ,, is given by,

= Z b(n)b(m) sin (2r + 1)(247;{-— L+ 1)r sin (2r+ 1)(241;{— L+ 1)

r=0

<Yu¥m >

_ (2r+1)( - m) (2 +1)(n + L+1)
= ——b(n)b(m) Z [co il L) LI r z 2; ”]

r=0

= —-b(n)b(m){ReZ [W._,M '(""">']

r=0
M-1

—Re Z [W;MM# W;h(!n+m-L+1)r] } ’

r=0

(3.29)
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where Wops =e~7%. The value of this inner product depends on the relative values of
m and n. Details are contained in Appendix B.

Using the results in Appendix B, we can obtain the matrix form of the inner product,
&&7. The results in Appendix B indicate that #7 is a block diagonal matrix, consisting
of three blocks. The first block R; and the last block R; are respectively called the tail
block and the head block, which correspond to the regions [0,L — 1] and [M, M + L - 1]
in the bell function. The second block is an (M = L) x (M —~ L) identity matrix. Thus

R; 0 O
' =|0 10 |. (3.30)
0 0 R;

Elements ri and r3 of R, and R; are defined respectively by

(—-;—sin(t’%'f—%sinfl‘_ll), form+n=L-1and n #m,

il =4 %[l—cos(f_ll-—%sin%’_f_—’;)], form+n#L-1and n=m, (3.31)

o0, otherwise.
.

Because n € [0, L — 1], by shifting the time index n by M in (B.7) and (B.8), we have

,

—%sin(i‘—ff—%sin%ﬁ—’;), form+n=L-1and n #m,
=9 d[t+cos(f% - tsinfon)], form+ngL-landn=m, (332)
0, otherwise.

It is obvious that both R; and R; are L x L symmetric matrices, with non-zero diagonal
and cross-diagonal elements. (3.30) indicates that when M > L, & is close to being a
unitary matrix. Even though there is no exact unitarity property for the DLS transform,
we can still reconstruct the original signal from its transform; perfect reconstruction
condition is still possible. In the same way, we may examine the unitarity for DLC
transforms. Next, we will discuss the perfect reconstruction property for both the DLS
and DLC transforms. Before discussing this issue, let us define a new matrix & of
dimension (M + L) X 3M based on ¥, and the head and tail blocks &(*) and &(t)
defined in (3.3). With this &, we have the following theorem.

Theorem 3.1 Let
8=[a™ & 3], (3.33)
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where

) T

Js(h) — :
| OM |

a® = [, ¢, - o],
" Ony

d;(t) - :
&(t)

60 = (90,80, 8l

S = (b9, B1rr Srril- (3.34)

Opr is a zero matriz with dimension M X M. oM, o) and ¢, are column vectors

defined at the beginning of this chapter, and are rewritten here as

oM = [$(M), (M + 1)+, 0.(M + L - 1)]T,
& = [:(0),8:(1),- -+, b-(L - 1)T, (3.35)
¢r = [¢r(0)1 d’r(l)’ R} ¢’r(M + L- 1)]T'

With the above definitions, we have

= =T

PP = ImiL, (3.36)
where Ipryp is an (M + L) X (M + L) identity matriz.
Proof: According to (3.3), we have

&t
b = Q(m)
&(h)

Similarly, @ can also be divided into three blocks; i.e.,

4,

L1

I
b
©
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where A, and Aj are L X 3M matrices defined by
A =[sh 80 o],
Az=[0 &M &0 ].
O is an L x M zero matrix. A; is the middle part of & with dimension (M — L) x 3M
when both the head part and the tail part are cut,
A=[0 ¢ o0].
Here O is also a zero matrix with dimension (M — L) x M. According to (3.30), we have
a; AT = ¢™[e(™"NT = [,
and
A; AT = sW[a™T = oy,
A, AT = a9[W)T = oy,
a4, AT = sm[aWT = 0,

where I is an (M — L) x (M —L) identity matrix , Oy is an L x L zero matrix, and O is
an (M — L) x L zero matrix. In addition, based on (3.31) and (3.32), it is easily found
that

A, A7 =4; A =R, + R, = I,

where R; and R; are defined in (3.30). (3.36) easily follows. w
The unitarity property in the above theorem leads to the perfect reconstruction
condition of DLS and DLC transforms. This condition will be discussed in detail in the

next section.

3.5 Sufficient and Necessary Conditions for Perfect Re-
construction
Definition 3.1 A perfect reconstruction is defined as
= =T
DD = Ipmir),

where D is defined by (3.83) and Inryr is an (M + L) x (M + L) identity matriz.
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Lemma 3.1 For M x M square matrices A and B, if

AAT + BBT = I (3.37)
ABT = 0y (3.38)

where Ing is an M x M identity matriz and O is a zero matriz of the same size, we

have
ATB =Ou;
ATA+BTB = Iu;
A B]
Proof: Let R = B 4l Then, we have from (3.37) and (3.38),

RRT  AAT+BBT ABT+BAT | |
= = I2M.
| BAT + ABT AAT + BBT

Now since R is square matrix, its inverse is unique and is given by R™! = RT from

above. Thus, R"'R = RTR = I from which we conclude
ATA+BTB=1Iy. (3.39)
Pre-multiplying by AT and post-multiplying by A on both sides of (3.37), we obtain
AT(AAT + BBT)A = ATA.
From the above formula, we have
ATBBTA = ATA- ATAATA = ATA(Iy - ATA).

Substituting (3.39) into the above formula, we have

ATBBTA = ATABTB. (3.40)

Using (3.38), (3.40) becomes
ATBBTA =0y. (3.41)
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Letting

G = ATB,
(3.41) becomes GGT = Ops. According to Graybill [56], we have G = ATB = Oy,.
Combining the above results and (3.39), the lemma is proven. 0

The necessary and sufficient conditions for perfect reconstruction using lapped trans-

forms are the result of the following two theorems.

Theorem 3.2 Consider a lapped transform matriz & which is defined in (3.8) and let
M = L. Let & be defined by (3.83). Then, we have

337 = Iy (3.42)

if and only if 7D = Iy and BTWS = Opy. Iy and Oyg represent M x M identity
and zero matrices. W is an (M + L) X (M + L) shift matriz defined in (2.41).

Proof: The sufficient condition is the direct result of Theorem 3.1. Now we will prove
the necessary condition. Since M = L, the block A, in the proof of Theorem 3.1 vanishes

and @ can be written as

[ o) 1) 0Oy ] (3.43)

Oy o &)

where (") and &) are M x M square matrices. From 361‘ = Iap1, we can easily derive
that

{ SM (SN 4 SO[SUIT = Iy (3.44)
M [T = g(O)[SBNT = 0y
According to Lemma 3.1, we have
{ [BW)TS*) 4 [$O]TSO) = Iy, . (3.45)
[BP)T®) = (S THH) = 0y

The first equation of (3.45) indicates the orthogonality property of lapped transform
&, and the second equation corresponds to lapped orthogonality. Now, the theorem is
proven. a

For M > L, we may use a similar idea to get sufficient and necessary conditions for
perfect reconstruction. The result is presented in Theorem 3.3. This is based on Lemma

3.2 and Lemma 3.3 which we now introduce.
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Lemma 3.2 Consider two L x M matrices A and B and an (M — L) X M matriz Q.

If the following equations are satisfied

AAT+BBT =1, (3.46)
QQT = Iy (3.47)
ABT =0, (3.48)
BQT = AQ" = Orxm-1) (3.49)
QBT = QAT = Opy_yx1, (3.50)
we have
ATA+BTB+QTQ=1Ixm (3.51)
ATB+ BTA=0u. (3.52)

Proof: The proof can be found in Appendix C.

Lemma 3.3 Consider two L x M matrices A and B. If ATB + BTA = Oy and
ABT = BAT = O, then ATB = BTA =0y

Proof: The proof can be found in Appendix D.
With Lemmas 3.2 and 3.3, we are ready to prove the following theorem as a general

case of Theorem 3.2.

Theorem 3.3 Consider the general case of Theorem 8.2, M > L. Given a lapped
transform matriz @ with M > L and letting & be defined by (3.33), we have

d3” = Inyr, ' (3.53)

if and only if TP = Iy and BTW S = Opy.

Proof: The proof can be found in Appendix E.

Theorem 3.3 indicates that although the DLS and DLC basis functions do not form
a square matrix, if the matrix satisfies orthogonality and lapped orthogonality property,
a perfect reconstruction can still be obtained. This property can also be applied to any

lapped orthogonal transform.
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3.6 Scaling-in-Time

For any basis functions used in signal processing, time and frequency resolutions are
important characteristics. This is the context to be discussed in this section. Let the
frequency resolution of a DLS transform with M basis functions be A f and its sampling
interval be At. From the definition of the DLS transform, it is known that they are
related to the bandwidth (B) of the basis functions as

Af=§,
At = 5.
Then we have
AtAf = ﬁ

When At increases by a factor a; i.e., At = aAt, Af will decrease by the same factor:
ie.,
Af

Af ==

while the product of frequency resolution and the sampling interval remains a constant.
This result indicates that for the DLS transform, scaling-in-time leads to scaling-in-
frequency. This property is the same as the one in DCT [66], and it can be well applied
in multiresoultion signal analysis, where we may increase the frequency resolution by

increasing the sampling interval of the basis functions.

3.7 Shift-in-Time

In data processing, we often deal with sets of data with different time shifts or delays. It
is better to have a transform which has a time shift invariant property. In this section,
we will examine the lapped orthogonal transform for a set of data which is shifted in
time. The property discussed in this section will also be used later for the derivation of
the property: difference-in-time.

Let the input data sequence be {z(n)}, where n = 0,1,:--,M + L — 1. We shift
the input data sequence by 1 sample interval: i.e. let the shifted sequence be {z,(n)},
where z4(n) =z(n+1),n =0,1,.--,M + L — 1. The corresponding lapped transformed
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coefficients are given by
{ X(r) = THE bo(n)z(n),
X4(r) = T ¢e(n)z 4 (),

where qgr(n) is the n-th element of the r-th column vector in matrix @, as defined in

(3.33). In matrix form of the above equations are

=T
X=9¢
{ 7 (3.54)
X+ =¢ T4,
where T is the transpose operation, and
= ,z(1), - zs(M+ L - 1T
z = [2(0), 2(1), -+, (M + L = 1) (359
T+ = [1(1)73(2): . '1z(M +L- 1),Z(M + L)]Ts
and
{ X = [X(0), X(1), -, X(3M — )
X, = [X+(0)s X+(1)7 MR X+(3M - 1)]T'
Pre-multiplying & on both sides of (3.54) and using Theorem 3.1, we have
=d X,
=T (3.56)
Ty = L ] X+.
Now, from (3.55) we may write
ey = (T )T, (M + L), (3.57)
where T is an (M + L — 1) x (M + L) shift matrix defined by
T=[0 Iniz | (3.58)

and O is a zero column vector with length M + L ~ 1. Substituting the first equation
in (3.56) into (3.57) and then substituting the result into the second equation of (3.54),

we have
X+ = éT ﬂ!+
= (T & X)T,z(M+ L)T
= & {[(T & X)7,0 +[0,---,0,2(M + L)}, (3.59)
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from which no simplifications can be made. It is clear that lapped transform does not
have the time shift invariant property as does Fourier transform [41]. However, the
property discussed in this section indicates that the transformed coefficients may be

updated from the coefficients in the adjacent block immediately in front.

3.8 Uniqueness

For any transform, it is important to know whether the data and its transform are

uniquely related or not. The uniqueness property of lapped transform is stated as follows.

Theorem 3.4 Consider a column vector x. Its lapped transform is given by

X =%z, (3.60)
where & is defined in (8.83); i.e.,
s =T
DD =Ip,L. (3.61)
Then we have
1.
c=bd z, forall z; (3.62)
2. a).
X=9¢'d X; not for all X, but only for X = éTc; (3.63)
b). when M — oo
X=X , for almost all X. (3.64)
Proof: 1. We prove (3.62) as follows. Let & = & 'z Using (3.61), we have & = -
$d z= Ipirx = . Therefore, for all z ¢ = & éTm, which proves (3.62).

2. a). We prove (3.63) as follows. Let
=0 X. (3.65)
Then substituting (3.65) into (3.60), we have

X=3FX. (3.66)
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Since @ is not a matrix of full column rank, we have, in general o # I. The above
equation implies that in general X # X,and X =X only if X = éT:c. b) We prove
(3.64) as follows. By definition we know that when M — o0 ,éré — I, ie., &
approaches a unitary matrix. In such a case, we have X = d X — X. g

The above proof indicates that given &, X is uniquely determined while the reverse is
not true. This result means that different ’s may have the same transform X. However,

we have shown that z and X are asymptotically one-to-one as M — oo.

3.9 Difference-in-Time

In signal processing, we often need to calculate the differences between successive sam-
ples. In DPCM (Differential Pulse Code Modulation), these differences are coded and
then transmitted. In this section, we discuss the corresponding relation in the transform

domain.

Consider the input data sequence {z(n)},n = 0,1,---,M + L — 1. A difference

sequence between two adjacent samples may be defined by
d(n)=z(n+1)—2z(n), n=0,1,---, M+L-1

In matrix form, we have
d=z4 -z,

where @ and x, are defined in (3.55). Here, we may use shift-in-time property to describe

the difference in the transform domain: i.e.,”
D=X,-X,

where D is the lapped transform of d and X ; is lapped transform of &, which is given
by (3.59). It is noted have that X, can be updated from X as shown by (3.59). Thus,
the computation for D, although not as simple as in the case of Fourier transform, does

not require evaluating X and X independently.
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3.10 Convolution

Convolution is an important operation in signal processing and filtering. The Fourier
transform has the property that a convolution in the time domain corresponds to mul-
tiplication in the transform domain. In this section, we discuss the relation between the
circular convolution and the multiplication for lapped transforms. Consider two data
sequences {z(n)} and {y(n)},n =0,1,---, M + L — 1. The circular convolution of z(n)

and y(n) and its lapped transform are given respectively by

(3.67)

{ a(i) = z(n) +y(n) = SMEL 2(n)yli — nlmodareL)s
A(r) = TMEL a(3) (3),

where * is the convolution operation. Let & = [2(0),z(1),---,z(M + L -1)}T, y =
[y(o)a y(1)7 Tt y(M'FL—l)]Tv a= [a(o)'l a(l)’ B a(M)]Ts and A = [A(0)1 A(l)’ Tty A(M)]T
The matrix form of (3.67) is then

e
where x is defined as
[ 4(0) YM+L-1) - y(1) |
y(1) y(0)
X=1.
| (M +L-1) -+ y(0) |

Substituting the first equation of (3.68) into the second one, A can be expressed as

A = sﬁTx:c

=T
= & (x1 + Xx2)2,

where x; and X, are the lower triangular and upper triangular components of x defined
by
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[ w0 0 - 0]
y(1) y(0)

XI= . ]

| (M +L-1) -+ y(0) |
[0 y(M+L-1) --- y(1) -

: 0 3(2)
X2 =

. y(M+L-1)
K 0 |

Applying the shift-in-time property to each column of x; and x,, we obtain the

transform of circular convolution as

A=d [EQs Y EVSY,. .., EM VP Y)d X, (3.69)

. (0 I;
where Y is transform of y and E(®) = .
Inyr-i O

When two signals are circularly convoluted in time domain, (3.69) gives the corre-
sponding relation in the transform domain. It can be observed that there does not exist
a simple relation in the transform domain. However, (3.69) is still useful for the descrip-
tion of a circular convolution. From this relation, we understand how the transform is
changed with a circular convolution. Linear convolution, a very common computation
in signal processing, is related to the circular convolution through some manipulations
41].

3.11 Performance Analysis

In this section, we compare the performance of different transforms: DLS, DLC, MLT,
LOT, and DCT. Some common criteria for evaluating a transform, such as variance dis-
tribution, energy packing efficiency (EPE) and coding gain, are used in the comparisons.
Corresponding to these criteria, since DLC has same performance as DLS, we are not

going to show the results using DLC.
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3.11.1 Variance Distribution

Consider a lapped transform & which is an (M + L) X M matrix. According to (2.36),

the transform of a discretized signal @ is given by
X =¢Tc, (3.70)

where z is a column vector with length (M + L). From (3.70), and the definition for the

auto-correlation matrix, R, the transform domain correlation Rx x is
Rxx =®TR.. &. (3.71)

The traces of Rxx and R are equal and represent the signal energy. It is known that
in data compression [16], we would like to have the signal energy concentrated in a few
diagonal elements, so that the original signal can be approximately recovered with only a
few transform coefficients. The diagonal elements of Rx x represent the variances of the
transform coefficients. A transform is judged to be efficient if significant variances occur
in only a few coefficients. Figures 3.3 and 3.4 show the variance as a function of the
index of the transform coefficient based on (3.71) for DCT, LOT, MLT, DLS transforms.
Here, we choose a signal to be a first-order Markov signal with a correlation coefficient
of p = 0.9 and the number of bases to be M = 8 and M = 16 respectively. For DLS
transform, we use L = 8 and L = 16 respectively. The reason that we choose L = M is
that this choice gives the smoothest decay of the basis function so that the block effect
is minimized. Also choosing L = M makes DLS comparable with LOT and MLT which
both have the length L = M.

From Figure 3.3, it can be observed that DLS has better performance than either
DCT or LOT. DLS transform has its energy concentrated on the first three transform
coefficients, and other transform coefficients have a very small energy. The variances for
LOT do not decay in an uniform way. Sometimes they decrease very fast and sometimes
the energy is almost unchanged between the adjacent coefficients. In general, the first
few coefficients of the DLS contains more energy than those of the DCT, LOT and MLT.
Similar results can be observed in Figure 3.4 where M = 16. In this case, the DLS has

most of its energy concentrated in the first five to six transform coefficients.
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3.11.2 Energy Packing Efficiency (EPE)

Energy packing efficiency, which describes the portion of energy contained in the first K
coefficients of a total of M transform coefficients, is defined by [38]

K-
EPE(K Zp=0 % 3.72
(K)=Z55—= et (3.72)

2p=0 9
where af, is the p-th diagonal element in Rxx. Figures 3.5 and 3.6 show EPE in cases
of M = 8 and M = 16 respectively. The signal is again first-order Markov with p = 0.9;
all the parameters are the same as in Figures 3.3 and 3.4. It can be observed that when
the ratio % is in the range from 0.1 to 0.5, there are obvious differences among different
transforms. The DLS transform is consistently better (having higher EPE value for the
same —1{{7) than both the DCT and LOT when -AI% > .2 for M = 8 and when 5— > .15
for M = 16. Both figures show that the DLS transform has higher EPE values after
the first transform coefficients because the first coefficients of the DLS transform has
smaller energy than either of the DCT and LOT as shown in Figures 3.3 and 3.4. MLT
is almost same as DLS. After the first coefficients, the DLS transform has higher energy
concentration in fewer coefficients than either of the DCT and LOT. Also, after the
first two coefficients, DLS and DLC transforms have almost same energy concentration,

comparing with MLT.

3.11.3 Coding Gain

The transform coding gain Grc¢ [16) is defined as

M-1
1 Ep_o 62

it o2y

Grc = (3.73)

which is used in the analysis of the performance for various transforms in data compres-
sion. The numerator indicates the average energy in X, and the denominator represents
the geometric mean of transform coefficient variances {a,?}. It can be seen that maxi-
mizing Grc is equivalent to minimizing the denominator. Minimizing the denominator
implies that only a few coefficients hold the most energy of a signal. This is the optimal
criterion used in KLT. Table 3.1 shows the coding gains of different transforms for the
same Markov-I signal as in Figures 3.3 to 3.6. Again, we choose M = 8 and M = 16



54 CHAPTER 3. DLS AND DLC TRANSFORMS: PROPERTIES AND PERFORMANCE ANALYSIS

Table 3.1: Coding gain for M = 16 and p = 0.9

| transform coding gain ||
DCT (M=8) 4.2424
LOT (M=8, L=8) 4.2587
MLT (M=8, L=8) | 4.7091
DLS (M=8, L=8) 4.3229
DLC (M=8, L=8) | 4.3220

DCT (M=16) 4.7058
LOT (M=16, L=16) | 4.6896
MLT (M=16, L=16) | 5.0826
DLS (M=16, L=16) | 4.9772
DLC (M=16, L=16) | 4.9772

respectively for each transform in comparison. It can be observed that for a given size,
DLS and DLC transforms have higher coding gains than either of DCT and LOT for the
same M. The reason is similar to those for the variance distribution and energy packing
efficiency: both the DLS and DLC transforms have higher energy concentration in fewer

coefficients. However, MLT has the highest coding gain among all of these transforms.
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Chapter 4

Fast Algorithms for Computing
DLS and DLC Transforms

4.1 Introduction

In this chapter, we derive the fast algorithms for computing the DLS and DLC trans-
forms. Given a vector ¢ with length M + L, the transformed vector is X = Tz, It
is easy to see that such direct matrix computation is laborious and time consuming.
However, by recognizing a particular structure of the matrix &, one may be able to
significantly reduce the amount of computation required in the transformation. This
computation reduction can be realized by decomposing &7 into a set of sparse matrices.
In this chapter we will describe this sparse matrix factorization. First &7 is partitioned
into 'Y, r® and r'®. which are the transposes of $(*), #(™) and #(* in (3.3), re-
spectively. By examining these matrix structures, &7 can be factorized into a set of
Given’s rotations and operations involving the discrete sine and cosine transform of type
IV [66] (DST-IV and DCT-IV). Sparse factorizations of DST-IV and DCT-IV are also
developed. The whole algorithm allows us to decompose an M order DLS/DLC trans-
forms with length M + L into a set of sparse matrices in Given’s rotations and butterfly
operations. Finally, the fast algorithm can be implemented based on these sparse matrix
decompositions. Because of the similarity between the DLS and DLC transforms, we
will describe only the fast algorithm for the DLS transform; a similar algorithm can be
obtained for the DLC transform.

57
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4.2 Partitioned Matrices

A DLS basis function is defined in (2.45): i.e.,

I3 _(2r+1)@n—L+1D)r . _
ér(n) = Hb(n) sin A ; ne(0LM+L-1],re[0,M-1],
(4.1)

Assume that L is an integer power of 2. Consider the matrix form & which can be
partitioned into three sub-matrices &) &(™) and &), Let P, @ and r® be,

respectively, the transposes of #(*), #(™) and &), T is then written as
&7 = [ rv p@ pe ], (4.2)

where T represents transpose. We call '), I'?) and I'® partitioned matrices. Accord-
ing to (2.45) to (2.48), we have

[F(l)]rn = aszb)[s]rn; TE [0, M- 1]; ne [O,L - 1],
(M) = [Slrtnery; TEOM-1];ne(0,L-1],

[F(s)]fﬂ. = bslb)[‘s]r(n-i-M)’ reE [OaM - I]v n e [03 L- 1],

where S is a matrix of sinusoids given by

i 2r+1)(2n-L+1)m

[S]Tﬂv =s 4M

and, a) = Se(n) and b = C.(n — M) are the elements of the column vectors a(®) and
b®) representing the bell functions of the tail region and of the head region, respectively.

All these notations will be used in the remaining part of this chapter.

4.3 Sparse Factorization of Partitioned Matrices

Consider an input sequence {z(n)},n =0,1,---,M + L —1. The transform coefficients
are given by

M+L-1

X(r) = Z or(n)z(n).

n=0
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Substituting (4.1) into the above formula, we have

1. 2 . 2r+1)2n-L+1
X(r) = Z\/——sul[2(L_l) ZsmLTrl]sln( )(4M )”z:(n)

n=0
\/— (2r+1)(2n—L+1)1r 2(n)
n—L

M+L-1
n—-M)x 1. (n—-M)x} . 2r+1)2n—-L+1)r
+ ..;f \/—A;cos —2(L—1) iy ]sm i z(n).

(4.3)

Define the first term in the above formula to be T3, the second to be 7; and the third
to be T5. These corresponds to the elements in the respective matrices of I'"), I'?) and

I'®), We examine the characteristics of each term as follows.

(1). T} can be rewritten as

'5-1
_ 1. 2ne] . @Qr+D)@n—-L+1Dr
T = \/ sin [2(L—1) 4smL__l] sin i z(n)

n=0

[2 . nw 1. 2nr] . Qr+1)2n—-L+1)x
+Z:L stn[——2(L_1)—4smL_l]sm M z(n)
=7

L—
= ’El _2_sin nr 1 sin 2n7 ] sin (2r+1)@n-L+ l)w:r(n)
- Vi 2(L-1) 4 L-1 4M

n=0

3 (L=1—n)r 1. 2(L-1-n)r
+E\/—s"‘ e

. (2r+1)(L-1-2n)r
sin i

k-1
= "2:% \/—%[sin(ﬂ,,)z(n) — cos(fn)z(L — 1 — n)]sin (2r + 1)(3111”— L+ 1)1r,

z(L-1-n)

(4.4)
where 0, = grfZyy — g sin $25. (4.4) indicates that ') can be partitioned as
r = [ p® : EM ] (4.5)

We call this factorization the first step or the first layer of decomposition, indicated by
the subscript 1. The elements of Dgl) and Egl) are given by

@rav)Cn-L+lr o0l gy repo,m-1

(1) o .
[D1 ]m = sin(f,) sin i ; > .
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[0, , .., = = contOn)sin Gt LT e, f-1) refo, M1l

By examining the structures of D{" and Egl) , it is found that I'®) can be further
partitioned by using an L x L sparse matrix F';, which is structured as Given’s rotations
and described as

-

Ccos 00 sin 00

cosfr_, sinfr_,
2 2

—~sinfr_, cosfr_,
2 2
| - sin 6g cos by ]
Post-multiplying by FT in (4.5), we have
ro.pr - [ p® : EY ] , 4.7)
where Dgl) is an M x L zero matrix, and
[EY] , =[Sl reO,M-1 nef0,5-1. (48)
ny—1l-n 2
By changing the index n in (4.8), the rn-th element of Egl) can be rewritten as
(1) _ (21‘ +1)(2n + 1)1r £ _
[ES ]m = i7 i nelo,3 -1 (4.9)
(2). According to (4 3), T3 can be written as
L - / (2r+1)(2n—L+1)7r #(n)
n_L
_ M- L 1 /- (2r+1)(2n+L+1)1|’ 2(n+ L)
n—O
- Z / (2r + 1)(2n +L+ 1) 2(n + L)
n—O
-L-
/ (2r +1)2n+ L+ )7
+ ZM: . ¥i z(n+ L)
n==y—

"ll

1

s

n=0

/ 2 (2r +1)(2n+L+ 1)
T Y i z(n+ L)
M-L

MoLg
, (2r+1)(2n+L+1)1r
+ 1 M—-L—-n). 4.10
T g i aM-L-n).  (410)
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According to (4.10), we can partition I'® into two sub-matrices D?) and E?’:

ré = [ Dp{® : E{® ] (4.11)
where
[Dgz)] _ap Gr et L [O’M -L JreM-1] (412)
rn 4M 2
(2) 1y (2r+1)(2n+ L+ )7 M-L 3
[El ]T(ﬂﬁ——[‘—l—n) = (=1)" cos AM i mE [0, 2 1] TE [O,M 1].

(4.13)
We are not going to do further decomposition for I'® right away. Instead, we leave the

results here and continue to check T5.
(3). Through (4.3), T5 can be rewritten as

ML 2 (hn=M)r 1 . (n=M)r] . (2r+1)@n—L+r
Iz = n;{ \/;cos[m—zsm A ]sm Y7i z(n).

(4.14)

Using the same partition method as before, 73 can be divided as

£-1
_ L (2 )% nw 1. nr 2r+1)(2n—-L+ )7
T3 = (-1) H{nzocos[m—zsan_l] cos M z(n+ M)

"-1
. nr 1. nr @r+1)2n—-L+1)m
- L—-1- .
+ "E=o sin [2(L — sin ] cos z(M + 1-n)

4 L-1 4M
(4.15)
Similarly, (4.15) shows that I'® can also be partitioned into
3) _ .
re - [ p® : E® ] , (4.16)

where
2r+1)2n—-L+1)r
AM '

(2r+1)2n—L+ 1)m
4M '

Post-multiplying by matrix FT in (4.16), we have

[Dgii)]rﬂ = (—1)" cos 8, cos n € [0, é -1} ref0,M - 1],

(3 e 1\ o L _
[E1 ]r(%_l_n) = (—1)"sin 6, cos n € [0, 5 1] r €0, M —1].

ré. pr = [ p® i E® ] (4.17)
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where
L
[Dgs)]rn = (—l)rcrn; n € [015' - 1] TE [O’M - 1]’ (4'18)
__(@r+1)2n-L+D)r
Crn = cOs A )

and Ega) isan L x % zero matrix. Combining all the partitions of I‘(l), @ and I‘(s),
it is observed that &7 can be partitioned by using the matrix G

Fifxy © Owxm-ry : Ot
G=| Om-pLyxr : Im-L : OM-pyxL |°
O D Opxm-ry © [Fille

which is seen to have a specific form based on Given’s rotations, identity matrix, and

null matrices. The total factorization can be described by the following relation
TG = [ Onrns : Egn : D(12) : E(lz) : D(za) : Opxi ] . (4.19)

As we will show, the inner part of the new matrix #7G is an M x M matrix with
symmetry properties of sine and cosine functions and can be identified as a DST-IV
transform matrix. In addition, it is easy to show that G is unitary. The elements of
EY, D{®, E® and D&‘*’ in (4.9), (4.12), (4.13) and (4.18) are, for all r € [0, M — 1]

[Eg1>] R Lk 115;" +OT. e, é —1] ro,M 1), (4.20)
(2) _ @+ + L+ 1) M-L
[D1 ]m = sin 7 i n€lo, 3 1],
_ o @r+1)(2n + ) ¢+ L M . ,
= sin M ;i n € [2, 3 1];where n’ =n+ L/2, (4.21)
(2) 1y e @r+ 1) (M —2n )7 M-L
[El ]m = (-1) cos i ; né€lo, 3 1],
4 ’
= sin (2r+ll(1‘24n +1)1r; n e[—lg,M—-g—l];where n =n+ M/2, (4.22)
(3) (1 2r+1)2n—L+ 1)x L
[D2 ]m = (~1)" cos i ; 116[0,2 1},
4 [
= sin (2r+1)@2n +1)7r; n G[M—E-,M—l];where n=n+M-L/2
aM 2
(4.23)

According to the definition of DST- IV [66], one sees that this new structure is just the

M-point DST-IV. Denoting the inner non-zero portions in (4.19) as @, we have

: : : M
@:[ E® i p® i E® : DQ""]‘:\/?SM’ (4.24)
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where Sps is an M x M DST-IV matrix. Since G is unitary, we can write &7 in factored

form as

T _ : . T
& = [ Opryk ,/lgisM D Opyk ]G (4.25)
where GT is sparse and Sy can be made sparse. The sparse factorization of DST-IV is
related to that of the DCT-IV matrix Cps through

Sy = ACuI, (4.26)
where _ .
1 00 .- 0
0 -1 0 - 0
A=4 L . (4.27)
(0 0 0 .- (-DM ]
(2r+1)(2n + 1)7

(4.28)

[CM]rn = cos i ,

and T is the reverse (or anti-diagonal) identity matrix. It remains to consider the sparse

factorization for DCT-IV.

4.4 Sparse Factorization for DCT-IV

In this section, we examine in detail the factorization for Cps. The structure of Cyy is
such that after applying Given’s rotations and butterfly operations, many zero elements
can be introduced in C)s, and the required sparse matrix factors for Cps can be obtained.

We will describe the factorization of Cps in the following stages.
o Stagel:

According to (4.28), we have

_@r+1)@n+ r

7 , Tne0,M-1]. (4.29)

[CM]rn = co

Note that

[CM]r(M-n-l) = Ccos (2r + 1)[2(1‘{1;11 -n)+1)r
= (-1)"sin (2r + 1‘)15‘24"' + 1)71’.
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[CM]rn and [CM]r(rM—n-1) are cosine and sine functions of the same angle up to a sign.
A proper Given’s rotation operation will reduce most of these elements to zeros.

Let F'; be a matrix of Given’s rotations defined by

r .
cos ag sin ag

Fg:Gﬂ,: cosap_; sSinapg_; ’ (4.30)
—sinam!,g__1 cosap _,

| —sinag cosag |

where ap, = Zlr, n € [0,% — 1], and the superscript I refers to the first kind of
Given'’s rotation matrix. We will use similar notations for other Given'’s rotations and

butterfly matrices in the rest of this chapter. It can be easily verified that
F;' = FI.

Therefore, we have
Cu = (CuFEF,.

We can partition the columns of the product Cps - F7 into two blocks of equal size so

that
cuFf = [D{:EY)]
where
(2r+1)(2n + )7 e, Cr+D2r+Dr
D)y = cos - cos ap + (—1)" sin -sinay
M 4M
cos &W for even r (4.31)
- cos C¥VERADT  for odd r .
and
[Egl)]r(é,'--nq) = —cos (2r + 1‘)15‘2; + L -sinan +(—1)"sin (2r+ 1‘)15‘2; + Ur - coS ap

{ sin gzr)anH!* for even r, (4.32)

—sin CrA2@BHDT  for odd r.
From (4.31) and (4.32), we have for integer i’s
—1) cos 2r)(2n+)x £ =2.,
(-1)c L—)-LM—-)-“ or r=2¢ (4.33)

) _
[D3 ]r(-",’-—l-”) { (-1).+1 cos 2r+24 2n+1)x for r= 2i+ 1,
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[Egl)]rn = {

(—1)i+sin (&]%ﬁh
(—1)**sin L)-(—l—z"“‘;'z" L forr=2i+1.

for r = 2i,
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(4.34)

Based on (4.31), (4.32), (4.33) and (4.34), it is easily seen that :

1) D8l = 11D, (42— gy
)- B enl = 1B, (a2 -y

These two equalities indicate that proper butterfly operations will reduce most of these

elements to zeros.

o Stage?2:
Let
B!
o
O B y
I . . . M jM
where By is a butterfly matrix, given by | . ¢ ¥
’ ¥ Ty

] and I and I are k x k

identity and reverse identity matrices respectively. Because F3 1= %Fg, we have

[

Let

1 . .
5 [ b : EM ] F§ = [ p{ : D@

. 1
Egl) ] = [ D(sl) : Egl) ] . -2-Fg.F3

EY 1 EP ] (4.35)

where Df‘l), D‘(f) , Egl) and E‘(f) are M x M matrices. It can be shown that

cos gzr !g423+1!r
[Dgl)]rn =

g2r!g 2n+l)x
cos ry i

2r4+2)(2n4+1)x
4M

cos
0

sin !2r!§2n+1!r

2
[D(4 )]r(%’-—n—l) =

and

(B ]en =

for r = 43,

osgwl-sgf"—ﬂz forr =4:+3,

otherwise;

for r = 4i + 2,

for r=4i+1,

otherwise;

for r = 4142,

wz%mz forr=4i+1,

(4.36)

otherwise;
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—gip 30)(2n+l)x 42;',“ Z  for r = 4i,

(B (s onory={ sin GHBRREDT g p — giy 3, (4.37)
0 otherwise.

Furthermore we have

' (—1)sin GE2¥DT  for p =454 2,

[D.(;z)]m =4 (—1)’sin KM)‘_%’ZQL for r=4i+1, (4.38)
| 0 otherwise;
' (—1)'sin @—')-%*'—IE for r = 4i,

[Een = (=1)isin Qrt@ntle g5 oo gt 3, (4.39)
| 0 otherwise.

Based on the results in (4.36) and (4.38), the inner matrices [fo’ EES‘I)] can be factorized
again. Therefore, we can reduce more elements into zeros by using a butterfly matrix
defined as :

I o ~I o
o Inm o I
B{,g',_= AR (4.40)
Iae o I (0]
o : Iy i 0 Iy

Our next problem is to decompose D?) and Eﬁz) . According to results in (4.37) and
(4.39), [Eff”]m and [E.(,z)]r(¥_n_1) have the same values up to a sign : i.e.,

B enl = 1B, 3ty -

We also observe that
(D ral = 11D, st oy -

These structures of Dgl) and E,(‘z) imply that a butterfly matrix of dimension % will

produce more zeros. The above results lead to the third stage of the decomposition.

e Stage 3:
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Let
[ B! o o-
By
Fs=| o : BY : o
F]
o ' o0 ! B,
L T 4

be the third factor extracted in Cps. Because F;' = 1F7, we have

[ugn : D 1 EQ Eg”_

: : : 11
= [Dﬁ” : DY 1 EY i EQ |- gFiF.

Let us define:

1 . . .
’Q'[Dﬂl) : D.(f) : Egl) : Eﬁ”]'FZ

= [Dgn : p@® : p® : p® i EP I EQ : EP

The elements of the above matrix can be described as

cos 2 42"“ LA for r = 8i,

[Dgl)]rn - cos '4!1'+2‘1 2nt1)x  por o — 8§ +7,
0 otherwise;
cos 3)Qn+1)x for r = 87 + 4,
[D?’],(%_,,_l) = cos BriNEDT  for r = 8i 4 3,
0 otherwise;
—sing"—')-(%'—l)—'- for r = 8i + 6,
[Dga)]rn —_ sin 2r+24 2n4l)x for r = 8i + 1’
0 otherwise;
sin&%yf—ii)i for r =8i 42,
[D{]n = { —sin GHAEFINT g5 1= 8i 45,
0 otherwise;
and
sin&%"—lﬂ forr =8+ 2,
[Egl)]m ={ ~—sin 2""24 20+DT  for r = 8i + 5,

0 otherwise;
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(4.41)

Eg‘i) ] .

(4.42)
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—sin GCAELHUT  for = 846,

[Ben = { sin Crr20nt e g gy,

0 otherwise;

—sin&l%ﬁ for r = 8i + 4,

[Ega)]m =4 sin &"'—2%%"—'“)1 for r = 8i 4 3, (4.43)
0 otherwise;
sin Q’%‘*’—IE for r = 81,
[Eg4)]r(.ﬂ.'_-n_1) = —sin CHDOUHIT  for » = 8i 4 7, (4.44)
0 otherwise.

Simplifying (4.42) and (4.44), it is obtained that

(~1)*sin ‘2—'1%‘7"'—12 for r = 8i+4,

[DPen = { (—1)F sin QrdD@ntDr  for g4 3 (4.45)
0 otherwise;
(—1)**!sin LX-M—)—"" 2O for r = 84,
[E(54)]rn - (_1)i+1 sin 2r+24 2n+1)r for r=8i+7,
0 otherwise.

Let us examine the characteristics of D{, p?, p® DY , Egl),Egz), EY, and EV.
First comparing (4.43) and (4.45), it is seen that the absolute values of the elements in
matrix D?’ are equal to those of the corresponding elements in matrix E?’. Thus we
can consider these two matrices (i.e., D{*) and E{®) together and use B{.{_ to factorize
them. To obtain the properties of other sub-matrices, we need to look at their respective
structures. We find that Dgl) and E?) have characteristics similar to D,(‘l) and E?).
Thus, for these two sub-matrices, we can use B}, as the decomposition factor. The

8
similarity between other sub-matrices can be summarized as follows (see Figure 4.1):

1). DV ent = 1[D{V), gy

2)- ESD ]l = 1B, (4 1y

3). arcos|[Dg4)],-,,| = arcsinl[Egl)],.(g‘g_n_l)l;

(4). arcsin|(D{”)ea] = arcos| (B, s n_y)l;

(5)- D )en| = B )enl; (4.46)

Figure 4.1 shows the grouping of the matrices diagrammatically based on the above



¢.4. SPARSE FACTORIZATION FOR DCT-IV 69

(D pP: p®: DV EW EPD ED): EM)
) . @ B @)
Y

(5)
Figure 4.1: Layer notations

properties. We note that among these groups, (1), (2) and (5) require butterfly matrices
for further factorization, and (3) and (4) require Given’s rotations. The above results

lead to the fourth stage.
o Stage 4:

In this stage, we use Bﬂ..,_ ,B’é_ and G'%,’_ to decompose

[ng) r p® t p® : p® : EY 1 EP 1 EQ Eg)], (4.47)
i.e., X i
B, : o' o : O : o
)
o Iy o —74 o
Fs=| o o G4 o o (4.48)
o Iy o T% o
. . N . I
0O i 0 : 0 I O ! Bl

Note that the placement of the individual blocks in F's reflects the grouping of the

partitions in Figure 4.1 with
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We note that the matrix blocks I M and —T u around the matrix G4 make up the
8 2
butterfly. We refer to this butterfly as an “inlay” block in the factor matrix F's; i.e.,

Iy : -'1'4
Bﬂf_: :

Iy S 9
In general, the “inlay” block is defined as follows:

Definition 4.1 If a block matriz H can be partitioned as
H,, H
H= 1 1z |
H; Ha

where H11, H12, H2;, and H,2 all are matrices, the “inlay” block H is then defined as

H,, O H,,
O D O 3
H; O Hy

with D being an arbitrary matriz.

It can be noticed that B is different from B{,;é in (4.40): i.e., a minus sign is
4
exchanged in the second column of BIMI : Later, we will explain when this minus sign
[
will be exchanged. Let G{é be defined as

GY =
¥
cos arg sin ag
cosop_; sinaym_;°
cosaac_; —sina%g_l
“scosag —sinag
)
sinag cosag
sina%g_l : cosap_
—sinay_,; cosarm_y
—sinag rcosayg
(3.49)
4(M-1-2n)r . .
where a, = —(J—W—L. Now the factor matrix F's can be considered to be made up of

three layers. The outermost layer is made up of the two B{,._,_ , the middle layer is made
[]
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up of the butterfly blocks around G5 (equivalent in form to B%}) and the innermost
2 4

layer represents the Given’s rotations. The result of extracting the factor F's from the

matrix (4.47) (i.e., post-multiplying the matrix in (4.47) by F5) can be described in

layers as follows:

1. The outermost layer: after multiplying [B%,]T, this layer is divided into two sub-
8
layers. These newly generated sub-layers can be further factorized by B[Ag. and
1
BYl ie. BY, and B}, . Note: the new layers are similar to the previous layers
T 2 T
(D DP): .. E® :EW). (4.50)
N, p—

middlelayer

- ”

outermostiayer

2. The middle layer: when using [B%]7, this layer (corresponding to [D{?): ... E()))
4

will be factorized into the structure similarto [ p® : p{®» : g : E® ] with
the number of columns being reduced by half. Thus, the middle layer can be further

factorized by Gfé. It can be seen that for subsequent steps, the two outermost

4
layers can be factorized by Bi §Ys (form > 1) and Bi .[.;M_ (for m > 2), respectively,
where m indicates the stage of factorizations.
I L (—1)”‘_17’ M
BII — .
T
: (-1)'"?’",‘.,_

3. The innermost block:
: [ p® : p® : E{MN i EP ] -
Let :
. . . IIT _ . . .
[ p® : p® : gV : EP® ] ‘Gyl” = [ p{" : p® : E{Y : Y ],

where

cos 2'“4 20+DT  for r = 8i + 6,
[Dgl)]rn - cos 2r-24 2n41)r for r = 8i + 1,

0 otherwise;
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(_1)i+1 sin 2r—-4)(2n+1)x for r = 8i + 2’

[DP]n = (~1)sin GH8CHDT g5 p =g 4 5,
0 otherwise;

(—1)‘ cos (2r-4)(2n+1)x for r = 8i + 2’

M

[Egl)]r(ﬂf-—n-n =4 (-1)+!cos ‘M%%E forr =8i+35, (4.51)
0 otherwise;
sin (__%%?_LZrH 2nt+l)x for r = 8i 4+ 6,
(BP] (g ono1y = —sin G=D@otDr g5 n = gi 1], (4.52)
0 otherwise.

Simplifying [Egl)],,, and [Eg”],,. in (4.51) and (4.52), we have

cos ;)-(—-—)-2"44:!"“ X forr=8i+2,
[Egl)]rn = cos 2r4+6)(2n41)x for r=8i+5,

0 otherwise;

(—1)**!sin 2'“4 20t for r = 8i+6,

(B = { (—1)Fsin Gr=2@ntln o p =g 41,

0 otherwise.

Similarly to the previous decomposition, by comparing the structures in [Dg)]m and
1
(D& (88 -1y [DP)en and (D], (ae__sy; [BS]n and [EL), s __y), 2nd [EP,n and

[Egz)],( M_,_1) We can use B{Ai,_ to do further decomposition: i.e., let

(D9 bP i p® i DO i B BO O :E ]

where

Bﬁf: U S S I (4.53)
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e Stage 5:

Now we get into the fifth stage Fg:

Bf& o o o o o o
o Iy o o o Ty o
o o H, o H{g o o
Fe=| o | o : o :B¥ : o : o : o0 }: (4.54)
2
o) o HY o H, o o
T T
o Iy () o o —Ty o
Y o o o o o Bl |
where
[ cosag 0 0 0 0 0 |
0 0 0 0 0
HL - 0 0 cosam_, 0 0 0
¥ 0 0 0 cosap_, 0 0
0 0 0 0 0
|0 0 0 0 0 cosag |
0 0 0 0 0 sinag |
0 0 0 0 00
HI = 0 0 0 sinagr ;0 0
v 0 0 —sinapm_, 0 0 0
0 0 0 0 0
sinag 0 0 0 0 0
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Let

—-Hfé_fOfH’M

L. T d

denote the centre block in Fg with 7 = BI_Af.I . Now we may summarize the general
steps of factorization by noting how a pa.rticulzax factor chosen at one stage determines
the form or forms of the factors in the next stages. Figure 4.2 illustrates the general
principles involved. In this diagram, we note that the procedure is recursive and the
recursive structures occur in “layers”. Based on the above results and observations, we

develop a general procedure of stage-by-stage factorization as follows:

Procedure of Stage-by-stage factorization:

(a). If a rotation matrix Gl is a block or an “inlay” block in the current factor
matrix Fp, ( the “inlay” block is defined in Definition (4.1)), then in the next factor
matrix Fy,4, two Bl blocks will appear at the diagonal elements of the new matrix,

2

and be located at the same location as wa is located in Fy,: ie.,

the m-th stage the (m 4+ 1)-th stage
By : O
Gl —
O @ By

(b). If in F,, two diagonal blocks are located as
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(1)

(2)

(3)

(4)

the m-th stage

BY =
2

s o™

o)

~
i

b~
~z

~
~|z

~
-z

Figure 4.2: Recursive structures in layers

YR

or

o)

SR

~
R

|
|
‘|:

|
~|
olg

]
a]{

L
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the (m + 1)-th stage

Bl
2
o
By ! o
4
O : Ium
4
O : Iu
3
o: O
B!, o
8
o : BY
8
o o
o: o0

o
B,
=z
o o
Ty o
4
~Tum o
4
o : B
4 J
II
M
2
o o
o o
B o
8
o : B4
8 <
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with ¢ represents the dimension of the square matrix B!, then this matrix can be

factorized as

B o o o
o I I o
¥ 3 (4.55)
o I, @ -1, o
e o o B} |
in Frnyy. Here, I tisa % x £ identity matrix, and _I-% is defined as
-I. : O
4
I, =
F]
o I %
More generally, the block matrix
By :0: o
o . ' O . (4.56)
o O : B
can be decomposed into the following matrix in the subsequent stage
[ BI . o : o : o : o A
5. . . . .
(o) I M o I y o
o o T o o (4.57)
o I M o I 4 o
I
| o o o o Bl |

where 7; represents a t x t inner layer matrix. This process continues until we reach
Bi. The placement of the negative sign for the I and T matrices in (4.55) and (4.57)

depends on the stage of the factorization, or B’MF. We may denote the matrix B{_wk_ as
2
I

2
B! for even number k, and B!! for odd number k. Then the partitions of B M are
2
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shown as follows:

- -
Bl'={ 0! o]},
L I —T.
and
ST
B=| o o
- I T.

(c). Both of the blocks B2! and Bl whether “inlay” or not, will lead to the block or

“inlay” block involving the matrices H I and H' in the next factor matrix: i.e.,

the m-th stage the (m + 1)-th stage
[ - b Y
I : O I
Bl-10:T ' o
I o o § i
< _: > — o T : o
I 0 -1 H:g gt
) H

or Bl=lo :7 ' o

1:0: T|]

The matrix made up of block of Hf and H’! as shown above is defined as G, either

as a block or as “inlay” block.

(d). If G’ﬁ is present in Fy, as a block or “inlay” block, then F,,4; contains four

Blﬁ in its diagonal elements: i.e.,
4
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the m-th stage the (m+ 1)-th stage
-Bg‘, o : o0 o : o-
H'% (o] H’é o Bﬂ‘t ‘o o' O
o T o — o o : T o : o
-HY o ng_ o o : 0 : 3’4 o
o : o : 0 o Bq-

(e). Now the factor matrix can be presented in layers, starting from the outermost
layer. Steps (b), (c) and (d) are repeated until the size of the smallest blocks B! and
B! is 1 x 1 and that of corresponding G is 4 x 4.

4.5 Factorization of DLS when M =4 and L =2

In this section, we show an example of factorization when M = 4,L = 2. We use the

approach presented in the previous section to factorize DLS stage-by-stage.

For the case of M = 4 and L = 2, & is written as

[ 0.0000 0.1379 0.3928 0.5879  0.6935 0.0000
0.0000 0.3928 0.6935 0.1379 -0.5879 0.0000
0.0000 0.5879 0.1379 -0.6935 0.3928 0.0000
| 0.0000 0.6935 -0.5879  0.3928 -0.1379 0.0000

The first layer sparse matrix F; consists of Given’s rotations and an identity matrix. By
observing the Given’s rotation in Fj, we note that Fj is a 6 x 6 identity matrix which
can be ignored. The 4 X 4 non-zero matrix inside @ is a DST-IV matrix. Let this matrix
be denoted as S, which can be transferred into DCT-IV matrix (denoted as C4) by the

following relation:

C, = AS,I,

where A is defined by (4.27) and I is 4 x 4 reverse identity matrix. Then, the solution
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of C4 is written by

C4=

0.6935
0.5879
0.3928
0.1379

0.5879 0.3928  0.1379
—0.1379 -0.6935 —0.3928
-0.6935 0.1379  0.5879
—-0.3928 0.5879 -0.6935
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The sparse matrix F, for the second layer factorization consists of Given'’s rotations,

given by

F; =

0.9808
0.0000
0.0000
-0.1951

If we extract the factor F3 from C4, we have

C4FT=

[ 0.7071
0.5000
0.5000

| 0.0000

0.7071

0.0000 0.0000 0.1951

0.8315 0.5556 0.0000
—0.5556 0.8315 0.0000

0.0000 0.0000 0.9808 |

0.0000 0.0000

-0.5000 -0.5000 -0.5000

—0.5000
0.0000

0.5000 0.5000
0.7071 -0.7071

Now, it is more clearly seen that the above matrix can be factorized by two butterfly

matrices, given by

1 10
1 -1 0
0 01
LO 01

Therefore, extracting F3 , there remains

C.FIFT =

[ 1.4142 0.0000
0.0000 1.0000
0.0000 1.0000
| 0.0000 0.0000

0.0000 0.0000
—1.0000 0.0000
1.0000 0.0000
0.0000 1.4142
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Now, we have one more stage to factorization by a sparse matrix F4, which is given by

(V30 0 0
01 -1 0
Fy= .
01 1 0
00 0 V2

Therefore, extracting Fy , we have the final result

[ 1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
%CJ;’F;”FT =
0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 1.0000

Then, we have
C4 = 2F4F3F2.

In the above example, we first transfer the inner non-zero matrix of @ into a DCT-IV
matrix, and then extract a sequence of sparse matrix factors from this DCT-IV matrix

until the remainder is diagonal. This procedure gives us the sparse factorization.

4.6 Determination of Parameters

In the last two sections, we discussed the relation between DLS transform and DST-
IV/DCT-IV, and presented a way to decompose the DLS transform for general M and
L. In this section, we will discuss some relevant parameters in this matrix factorization.
These parameters include the coefficients of the Given’s rotations, the number of stages

in the factorization, and the computational complexity.

4.6.1 Coefficients of Given Rotation

(1). Gi
In (4.30), we have given the angles in Gy as :
_(@n+)r
O =TUM

(2). G/
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In general Gi' is a t x t matrix. According to the rules of the previous section, we
have t = 2% where k = 1,2,---,(log; M — 1) and M > 2°. The general G!T can be

represented as:

I __
G = i
cos ag _sinag
cosas_; sinayg_;
cosa%_.l . .—Slna%_1
‘cosag —sinag
°q
sin g COS g
sinag_y Tcosag_,
~sinag_; cosay_,
4 ‘ .
i —sinag’ *cos ag
1 ;t>4 28430 _(2n 41
whereq:{\/_ ' anda,.:—-[—.,&?"—*'—ul;nzo,l,---,i—_l; £=log, 4.
2 ;t=14

4.6.2 Number of Stages

The algorithm described in the previous section has a regular pattern of repetition after
the first two layer factorizations (i.e., F'; and F3). The repetition occurs every time
when a matrix of the type G/ appears. G¥! occurs two stages after each pair of two BE
(where, n > 4) is generated. The first two layer factorizations are fixed for M > 4. After
that, we start to count the number of stages of factorization when a matrix B! first
appears in sparse matrices. Let [BL]; represents the first appearance of B! matrix. For
example, when M = 4, [B!], occurs at n = 2, and [Bj]; can only be further factorized
into one more stage. It is known that before [Bf];, we have 2 stages, which is fixed for any
M and L. Thus for M = 4, we have a total of 4 stages in sparse factorization. For M = 8,
B! first appears at n = 4, and [Bi]; can be further factorized by two more stages. We
then obtain the first matrix of the form G denoted as [G1!];. Because [G4]; reaches
minimum dimension for such a type of Given’s rotations, the factorization is finished.
Therefore, combining all stages, we have a total of 5 stages for M = 8. Similarly, when
M = 16, we have [Bl];, [G]1, and [Bi];. From [Bf}, to [G{’]:, we have 3 stages;
from [G{]]; to [Bf]z, 1 stage. Also, [B})2 can be further factorized as in the case of
n = 2 (M = 4). Thus, the total number of stages for M = 16 is 7. Based on the above
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observations, we can generalize the number of stages as follows.
Let i be the number of repetition from B to GLI. The total number of stages P, is
then described as

pe 2+ (3i+2), for M=2% and ¥y =1
3+ (3i+2), for M=2%+'and My =2

where j is an integer. Simplifying, we have

P =

3log, M+1, M =2%,
{ z 08 W+ (4.58)

Slog, M +3, M =24+,

(4.58) shows the number of stages in sparse factorization of DLS matrix for a general
case. We can use this result to design a flowgraph of DLS factorization. The number of
stages will also help us to evaluate the computational complexity of DLS.

4.6.3 Computational Complexity

We have mentioned that @ can be factorized into a series of sparse matrices, which
include mainly two parts: Given’s rotations for the lapped portion, and DST-IV for
the remaining portion. We also demonstrate the relation between DST-IV and DCT-
IV, and the factorization of DCT-IV. We can easily test that DST-IV has structures
similar to DCT-IV. The only difference requires rotating the Given’s rotation matrices
and exchanging sine and cosine functions. Therefore, the sparse matrices for DCT-IV
can also be used for computing DST-IV. The computational complexity for DCT-IV is
thus the same as that for DST-IV. In order to obtain the number of computations, we
can calculate the number of computations for [Cas] first, and add them to the number
of computations of the first layer factorization.

Now we are ready to count the number of computations. The Given’s rotations in
the first layer gives 3(L — 2) multiplications and 3(L — 2) additions. Now let us look
at the computational complexity of Cs. It is observed that the butterfly matrices B!,
BT and B! have only addition operations; the Given’s rotations have both addition
operations and multiplication operations. To have identity matrix after extracting a
set of sparse matrix from Cs, we need the multiplication of the square roots on some

diagonal elements. The square root operation adds one more multiplication. Report
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[46] develops a sparse matrix factorization for DCT-II matrix. Section 2.2 in [46] is for
the factorization of DCT-II which is similar to DCT-IV with sign differences for odd r,
where r represents the r-th basis function in Cjps. Sign difference does not affect the
number of stages and computational complexity. Thus we can use the results developed
in Section 4.3 of [46]. Considering the repetition of B, GI! and B!}, and combining
the square root operation, we have that for Cs:

(1). The number of Multiplication (Zar) is:

- M
iy = - (logs M + 2); (4.59)

(2). The number of Addition (Apy) is:

Ay = -g—Mlog2 M. (4.60)

Combining the above computation requirements with that in the first layer factorization,
we have that

(1). The total number of multiplication (uar) is:
- M
pm = pim+3(L-2)= ?(logg M +2)+3(L-2); (4.61)
The multiplication of ELT is given by {49],
M
UM = ?(21( + log, M + 3), (4.62)

where M is number of basis functions and K is overlapped factor.

(2). The total number of addition (Apz) is:

3

A=A +3(L-2) = 5 Mlogy M +3(L - 2). (4.63)
The addition of ELT is given by [49],
M

A= T(2K+ 3log, M +1). (4.64)

The direct computation of DLS transform requires the computation which is on the order
of M? for both multiplications and additions. Using the sparse matrix factorization,

many more computations have been saved, and a fast and efficient algorithm is achieved.
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4.7 Several Practical Flowgraphs

In the last two sections, we discussed how to compute the DLS and DLC transform in a
fast and efficient way. In this section, we will show two examples for the implementation
of DLS when M =4, L =2, and M =8, L = 4. Figures 4.3 and 4.4 give the flowgraphs
of M =4, L =2,and M = 8, L = 4 respectively. Some symbols in these figures are

explained as follows:

(1).

02

where, Oy =11 + I,
O,=1, - I.

This block implies a butterfly operation which involves two additions.

(2)-

It e— —e O

I2 @ —@ O:2

where, Oy =1 -q-sinf + I -q-cos {f7,

02=—Il-q-cosfﬁ+12-q-sinf1"'7.

Parameters q and n are determined in part (2) of Section 4.6.1. This block represents

Given’s rotation operation which contains three multiplications and three additions [47)].

(3).
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Table 4.1: Numbers of computation

M L}jug A
2 2 3 3
4 4 14 18
4 2 8 12
8 8 38 54
8 4| 26 42
16 16| 90 138
16 8 66 114
16 4 | 54 102
32 32202 330
32 16| 154 282
32 8 | 130 258
32 4 | 118 246
| R — —® O
\ACID;
I2 @ —® O-:2

where, 0, =1I-cos(8;)+ I -sin(6;),
Oy = —-1I; -sin (01') + I - cos (0]').

Parameter 8; is determined in (4.4) of Section 4.3. This block also represents Given'’s
rotations and it contains three multiplications and three additions.

(4).
It o O— ® O:

where,0; = V2I; and O3 = —/21,.

This block contains one multiplication.
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Figure 4.3: M=4, L=2 DLS transform
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4.8 Conclusion

In this chapter, we introduce a fast algorithm for computing discrete local sine/cosine
transforms. Table 4.1 shows the number of multiplications and additions for different M
and L. Because of the partially recursive nature of the structure, we have a very regular

architecture which may be implemented in a parallel processor.



Chapter 5

Lapped Transforms for
Cancellation of Acoustic Echoes

The conventional adaptive filter is a tool used to cancel the acoustic echoes in a telephone
network. It models the echo path to produce a replica of the echo and then subtracts
it from the total incoming signal. Since teleconferencing and hands-free telephone sys-
tems are increasingly being used in modern communication systems, the traditional echo
canceller may not perform well. The reason is that if we use the conventional method,
adaptive filters with at least 1000 taps are required to achieve a significant reduction
of the echo level [31]. Thus, this method results in very heavy computational burden
and slow convergence rate with existing technologies. In teleconferencing/hands-free sys-
tems, the movement of the speaker modifies the echo path impulse response. Therefore,
it is required that the algorithm used for the acoustic echo canceller must converge fast
enough to track these changes [8].

To solve these problems, i.e., to reduce the computation load, several methods, based
on multirate filter bank systems with the subsampled signals, have been proposed [13]
[11]. It is well known that block transforms have many benefits in digital signal processing
and can be used to replace the filter banks [74] . In this chapter, we use block transforms
to implement the subband acoustic echo canceller. However, due to the frequency aliasing
problem in the filter bank system [36], the direct application of block transform in an
echo canceller may not work very well. To solve this problem, we propose an improved
method — by changing the subsampling rate in the block transforms, the canceller can

track the signal well. The simulation results indicate that transform systems achieve

89
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significant reductions of the echo level with less computation requirements.

In this chapter, we will first overview the use and formulation of filter banks in
a subband echo cancellation system. Then we show how to use block transforms to
replace filter banks and implement the subband echo canceller. In Section 5.2, the use of
different block transforms is studied. In Section 5.3, the problem of directly using block
transforms in echo cancellation is discussed. A new optimum lapped transform, based on
the criterion of maximum energy concentration, is developed. Using the newly designed
lapped transform, we can improve the echo suppression significantly. Simulation results,

shown in Section 5.5, are followed by discussions.

5.1 Subband Echo Canceller Using Filter Banks

In multirate digital signal processing, the two key operations are subsampling and up-

sampling; they are described as

e Subsampling — decimation by an integer factor M; i.e., reducing the sampling
rate of z(n) by an integer factor M. To avoid aliasing at this lower sampling rate,

it is necessary to filter the signal z(n) with a digital lowpass filter.

e Upsampling — interpolation by an integer factor M. As opposed to subsampling,
upsampling by M consists of inserting M —1 zeros between two consecutive samples

in the input signal.

In multirate systems, a set of filter operations must be involved before the subsampling
and after the upsampling processes. This set of filters is called the filter bank. Usually
filter banks consist of two parts: one is the analysis bank; the other, the synthesis bank.
When a signal goes through the analysis bank, it will first be filtered to create a set
of sub-signals, each of which contains the information in a certain frequency bandwidth
[71] and is called a subband signal. Each subband signal has a small bandwidth and a
reduced sample sequence in comparison with the original signal. Similarly, reconstruction
is achieved by upsampling and filtering. It is known [37] that when filter banks are used in
an echo cancellation system, the computation load of the echo canceller can be reduced.

Figure 5.1 shows the basic structure of a subband acoustic echo canceller(13]. In that
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Figure 5.1: Acoustic echo canceller using filter banks

figure, FB(A) and FB(S) are the analysis and synthesis filter banks respectively, and
AFB is the adaptive filter bank. Before discussing the principle of the subband echo
canceller, we first define some variables which will be used in the rest of the chapter.
Let T = [@o, @1, - -,TUm|T be an M x K matrix containing the reference signal after
being processed by the analysis filter bank FB(A). Each element U, in the matrix s
the output of filter bank FB(A) at the r-th subband, and it is a K X 1 column vector
with elements {%,(5)},j = 1,2,---, K. Vis an M x K matrix containing the echo after
being decomposed by the same analysis filter bank FB(A). The echo is produced by the
coupling between the loudspeaker and microphone. & is an M x K matrix, denoted
as the near-end speech signal after being decomposed by FB(A). The near end speech
is the desired signal to be sent out. The reference signal T and the error signal £ are
sent into AFB to adjust the weights in the estimated echo path and to create the echo
replica. In AFB, one adaptive filter is applied for each subband with a lower sampling
rate. By adjusting the weights of the adaptive filter in each subband, we can create an

echo replica and then subtract it from the microphone input signal X =85+V. The
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residual output £ is the echo suppressed signal which is sent out after having been passed
through the synthesis filter bank FB(S).
Let the jr-th element of % be

To(4) = s:(4) + v (4),

and let gg)( J) be the j-th weight of AFB in the r-th subband at time . If the order of
the adaptive filters at each subband is P, the output of the adaptive filter at subband r
is
P-1
w(f) =Y g9 —i+1).
=0

Thus, the residual error e.(j) (the jr-th element of £) is

e-(5) = Z.(3) - »(4)-

To minimize the mean square error e.(j), the weights can be adaptively adjusted by

steepest-descent algorithm[28], in which the weights are updated as
g¥*t(i) = g9)(i) + pe, () ( — i + 1),

where u is the step-size parameter or weighting constant satisfying 0 < u < 1 for the
proper convergence of the adaptive algorithm. The above adaptive algorithm is also
called Least Mean Square(LMS) algorithm. It is a simple and well known adaptive
algorithm and we will not discuss it in detail here. The interested reader is referred to
[28].

It is known that lapped transform can be used to replace the filter banks. In this
chapter, we are mainly concentrating on the implementation of the subband echo can-

celler using block transforms.

5.2 Echo Canceller with Lapped Transforms

As discussed in Chapter 2, lapped transforms can be represented by a bank of M filters
with length N, and the transform coefficients are obtained by downsampling the filtered
signal by M. Therefore, lapped transforms can be cast into the filter bank structure. The

frequency characteristics of block transforms show that both block transforms and filter
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banks have a common feature: i.e., each subband signal is equivalent to each transformed
signal obtained by the inner product between the signal and the corresponding basis
function in the block transform. The advantages of using block transform instead of

filter banks are

1. Block transforms are usually invertible and easy to compute. Thus, the synthesis
stage in the filter banks can easily be implemented by the inverse of the block
transforms. On the contrary, the general M-band perfect reconstructible filter

banks are not easy to design;

2. Most block transforms have a short filter length which means that less delay will

be introduced in the reconstructed signal.

3. Most block transforms have fast and parallel implementations. Thus fewer com-

putations are involved in both signal decompositions and reconstructions.

The subband echo canceller using block transform can be implemented as shown in
Figure 5.2. We use notations similar to those in Section 5.1. Let z(k) be a mixture of
near-end signal and echo with a sampling period of T'. v.(j) is the transformed echo
signal with a sampling period M T, where r refers the r-th basis function. s.(j) is the
transformed near-end signal with a sampling period MT, and &,(j) is the mixture of
sr(7) and v.(5). Let u(k) be the reference signal with the sampling period T. .(j) is
the transformed reference signal with the sampling period MT, and y,(7) is the replica
of v.(j) by passing i,(j) through an adaptive filter. In a practical telephone system, a
double detector must be present whose function is to detect the existence of the near-end
speech signal. Because of the strong correlation between the speech signals, an adaptive
filter cannot function very well when both the near-end signal and the echo signal are
present — a situation referred to as double talk. When the double detector detects the
existence of near-end speech, the adaptive filter weights are forced to either freeze or be
completely inactive. The adaptive algorithm works when input contains only the echo
signal; i.e., Z,(j) = v,(j). Thus we have

P-1

¥ (J) = Z gf('j)(i)ﬁf(j -i+1),

1=0
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Figure 5.2: Acoustic echo canceller using lapped transform.

where g,(-j)(i) is the impulse response of adaptive filter in the r-th subband at time j.
The error e,(7) is
er(3) = Z:(j§) - y-(4),

and the weights can be updated in the same way as the subband filter banks: i.e.,

gt (i) = gl)(i) + pe,5 (7 — i + 1),

Figure 5.3 shows the simulation results for the echo canceller using two lapped trans-
forms: the DLS and LOT. 8 basis functions are used in both transforms. Comparing

with the original echoes shown in (a) of Figure 5.3, the echo residuals at (b) and (c) in
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Figure 5.3: Performance comparison for the echo canceller using LOT and DLS transform
codings : (8 basis functions and subsampling rate 8): (al). reference signal u(k); ().
Original echo v(k); (b). Residual echo #(k) using DLS (c). Residual echo (k) using

LOT.
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Figure 5.3 are still considerably large for both DLS and LOT transforms. The reasons
are the same as described in [37] for wavelet transform and we describe this briefly later
in the context of lapped transforms.

Usually, an echo can be considered as a combination of multi-delays of the reference
signal. If the delay is just an integer times the downsampling rate and there are no other
distortions, then such an echo can be removed perfectly by the multirate filter bank
canceller; the results of such a canceller is shown in Figure 5.4, in which the reference
signal is the same as the one used in Figure 5.3(al). The echo path is a simple delay
line with delay being equal to 8 sampling intervals and this number is the same as
the downsampling rate M. For the general echo path, the echo cannot be completely
cancelled in the reconstructed signal. The reason for the problem has been described in
detail in [36] [37]. We discuss this for the lapped transforms in the following section, and
then try to solve this problem by designing a suitable lapped transform.

5.3 Signal Distortion in Lapped Transform

The descriptions in [37] indicate that the subband system creates a time-variant echo
path after using the downsampling operation. Consider the reference signal {u(k)},
where k represents the sampling point before the downsampling operation. Assume that
the sampling period of the sequence {u(k)} is T. The reference signal is transformed
by a lapped transform with M basis functions. Let %.(j) be the transform coefficient of
{u(k)} with the r-th basis function. The new sampling period of the sequence {(j)} is
then MT. In general, u(k— N, ) results in u(j— N,) at output. For an integer N, N, may
or may not be an integer. Now, let us consider an example when the echo v(k) (before
transformation) is a copy of the reference signal with a delay N,; i.e., v(k) = u(k — N-).

Let v.(j) be the transform of v(k); i.e., u(k — N,) with the r-th basis function. We

then have
[o o]

v (j) = E u(k = N7)h-(j M - k),

k=-co0
where A, (j) = ¢-(N — 1 - j). v.(j) can be further written as

o0

vn(j) = 2 'U(k)h,-(]M -k- N'r)

k=—o00
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) . N,
DRCEUCEE SR
= ur(] - % ’ (5'1)

(5.1) indicates that if N, = k- M with k being an integer, v,(j) = %(j — k). In
this case, we can apply the adaptive filter, and the echo can be cancelled properly. This
result has been demonstrated in Figure 5.4. However, in a general situation when N is
not equal to k - M, we have v.(j) # @.(j — k) for any integer k. Thus, if we apply the
adaptive filters directly, the echo cannot be cancelled very well.

Now, let us consider a general echo path which consists of linear combinations of
various delay lines. To simplify the discussion, we consider a two-band ( M = 2) system.
Referring to Figure 5.2, the transform coefficients of u(k) (the reference signal) are given
by

{ ii0(j) = LR -o0 ho(2] — k)u(k);
() = Lh—co h1(25 — K)u(k);
where k. (j) = ¢r(N — 1 — j). The transform coefficients of v(k) are given by

{ v(j) = 2o ho(2 = K)u(k);
v1(f) = LkZ—oo h1(27 — K)v(k)-
Taking Fourier transforms for both v, and i, (r = 0 or 1), we obtain

w+21r w+27r

Uow) = WEIEE) +UEET AT,
hw) = WG )+U(“’+2")H1(“’””)1,
Vo(w) = -[V( oy )+v<"’+2”)Ho(“’+2”>1,
Viw) = VG )+V(“’+2")H1(“’+2”)1,

where H,(w), U,(w) and V;(w) are the Fourier transforms of h.(j), 4-(j) and v-(j)
respectively. Letting h.(k) be the impulse response of the echo path, we have

v(k) = h(k) * u(k);

and

V(w) = H(w)U(w);
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where * represents the convolution operation, and H.(w) is the Fourjer transform of
he(k). To cancel the echo {v.(j)}, the optimum linear filters { F;(w)} have to satisfy the

following formulas

Fo(w) = lu’ao%
_ HLHUHH(S) + H(H5)U(#5=) Ho(44P)
U(3)Ho(%) + U325 Ho(#42E) ’

- M@

A= Fw

H($U(HH(S) + H(52)U (442 ) Hy (2527)

U(2)H1(%) + U(242) Hy («52x) '
The above equations indicate that both Fy(w) and Fj(w) are signal-dependent. There-
fore, the echo cannot be cancelled completely[37]. To remove such signal dependence, we
could choose Ho(w) and Hy(w) as the ideal low and high pass filters respectively (36, 37];
ie.,
Ho(w)=0 [|w|>7F;
Hw)=0 |w[< 3.

Then we have
Fo(w) = He(%);

Fi(w) = H(*5%).
Summarizing the above results, we see that downsampling introduces distortion in echo
cancellation. Such problems may be completely solved if either of the following two

conditions is satisfied:
o delay is an integer-multiple of the downsampling rate;
e the filters are ideal bandpass filters.

Because of practical requirements, both of the above conditions are difficult to satisfy.
Generally, the problem is caused by the frequency aliasing after the downsampling proce-
dure when the filter banks are not exactly bandpass filters [37]. The well known sampling
theorem states that the frequency aliasing problem is more serious when the sampling
rate is lower. To reduce aliasing, we could either increase the sampling rate or add a set

of filters before the subsampling operations. Figure 5.5 shows the simulation results with
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a reduced sampling rate. In Figures 5.5 (al) and (a), we show both the reference signal
and the original echo signal. All the simulation set-ups are the same as in Figure 5.3.
However, this time we choose the downsampling rate to be M = 4 instead of M = 8. It
can be observed that the residual echoes are greatly suppressed in comparison with those
in Figure 5.3. However, reducing the downsampling rate may create other problems. The
main problem would be that the computation complexity would increase. Next, we will
introduce an optimum lapped transform for echo cancellation while keeping the same

downsampling rate.

5.4 Optimum Lapped Transform for Echo Canceller

In the previous section, we discussed the acoustic echo canceller with lapped transform.
We demonstrated that frequency aliasing in the filter banks will cause incomplete echo
suppression in the canceller. To reduce the aliasing in filter banks, two strategies are
proposed. One is to reduce the downsampling rate, and the other is to develop a set of
optimal filters which are close to ideal bandpass filters. In this section, we use the opti-
mal criterion to design such an optimum transform. The optimum transform designing
algorithm is described as follows. Let AM be an arbitrary M-dimensional linear space
spanned by the basis {ho(n)}, {h1(n)}, -+, {hm-1(n)}, for n € [0,M + L — 1]. Any
(M + L -1) x 1] vector € € M can be expressed uniquely as

M-1
T = Z a;h;, (5.2)
=0
where the scalar {a;} refers to transform coefficients and k; = [h;(0), hi(1),- -, hi(M +
L-1T.
The corresponding discrete Fourier transform H,.(w) of the r-th basis function h, is
given by
M+L-1 .
H (w) = Z he(n)e”™; re[0,M-1]. (5.3)
n=0

The energy of H,(w) in the r-th subband with the bandwidth B, can be written as
E. = / |H, (w)|? dw
Br

" ho(n) 3 ho(m) /B e=iln=mlog,, (5.4)
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Figure 5.4: Performance comparison for the echo canceller using two transform codings:
(delay 8, 8 basis functions and subsampling rate 8): (a). Original echo, in which the delay
is just an integer times of the downsampling rate, and there are no other distortions.
(b). Residual echo #(k) using DLS (c). Residual echo (k) using LOT.
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It is known that for a set of complete basis functions, they occupy the whole frequency
bandwidth [—x,r]. The bandwidth B, of the r-th basis function is choosen to be

r(r+1) =r wr m(r+1)
e B A )}

B = {-
Now let us calculate [ e~i(m=m)v di, by substituting B, into the integral and we have

o for the caseof n=m

/ e~in—mlud,, = %r; (5.5)
27 .
Er=37 >_ hi(n); (5.6)
o for the case of n # m
il 4 . (n-m)r (n-m)r(r+13)
j(n—m)w - 2
/ e dw = oy, Sin 53— cos i . (5.7)

r

Substituting (5.7) into (5.4), we have

Er =3 he(n) 3 he(m)= f —sin (n ;A’l")” cos " ml);(’" t3) (5.8)

In matrix form, we have

E.=hTA.h,, (5.9)

where h'" = [h"‘(o),hr(l), ot ',hr(M + L—- 1)]T and

4_ gin (=T g (7o Jr(r+} ), forn m;
(A,] n-m 2M M
rinm -
2z. forn = m.

Thus, the optimum criterion based on maximizing the energy of H,(w) in the bandwidth

B, is described as

max h?Arhr;
: HTH =1
subject to: ; (5.10)
HTWH =0

where H is a transform matrix with each column corresponding to a basis function. W
is a shift matrix defined in (2.41). The first constraint in (5.10) is for the orthogonality
of the lapped transform, and the second is for the lapped orthogonality.
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(5.10) indicates that A, is dependent on r. This is a very complex optimization
problem, and there is no simple method to derive the optimum solution for all . We can
solve this optimum problem only through a numerical algorithm. An efficient numerical
algorithm is presented as follows:

Numerical Algorithm:
step 1: set r = 0 and find the optimal vector for the first basis function hg (r = 0) by

solving the following problem

maximize hg Agho with respect to hg
subject to hg ho=1

and hIWho =0
step 2: set r = r + 1 and find the optimal vector for the r-th basis function: i.e.,

maximize hT A, h, with respect to k.,
subject to hz'h,. =1
hIh, =0; k=0,1,---,7—1
and hIWh,=0; k=0,1,---,r

step 3: if r < M — 1, go to step 2. Otherwise, stop and store all h,.

step 4: end.

In the above algorithm, instead of solving all optimal h, simultaneously, we try to
find the optimal vectors one by one. In this way, the optimization procedure is simplified,
but the results we obtain are sub-optimal solutions.

Figure 5.6 shows the frequency response of the optimum basis obtained from the
above algorithm for M = 8. Table 5.1 shows the corresponding normalized energy
distribution in different subbands. The normalized energy is defined as the ratio of
the energy in the choosen bandwidth of each basis function to its total energy. The
normalized energy distributions of DLS and LOT are also shown in Table 5.1. It can
be seen that the optimal bases have much higher energy concentration in the designated
bandwidth. This means that by using the optimal lapped transform, less aliasing will
occur in the downsampling procedure. In the next section, we will show the simulation

results when the new optimal lapped transform is used in the subband echo cancellation.
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Figure 5.6: Frequency response of optimum lapped bases based on numerical
algorithm(M = 8 and L = 8). From left to right, the r-th main lobe corresponds
to the r-th subband.

Table 5.1: Normalized energy distribution of main lobe (E,)

LOT DLS | optimal lapped trans.
subband 1 || 0.8326 | 0.7874 0.8782
subband 2 || 0.1431 | 0.5990 0.7814
subband 3 || 0.1567 | 0.5953 0.7817
subband 4 || 0.4228 | 0.5953 0.7816
subband 5 || 0.6980 | 0.5953 0.7830
subband 6 || 0.1531 | 0.5953 0.7842
subband 7 || 0.1482 | 0.5990 0.7877
subband 8 || 0.6780 | 0.7874 0.8725
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Figure 5.7: Type 3 channel

5.5 Simulation Results

In this section, we show some simulation results and compare subband echo cancellers
with different transforms such as the DCT, the LOT, the MLT, the DLS, the Daubechies
wavelet and the optimal wavelet designed for echo cancellation [37]. The reason for using
the wavelet transforms here is that it was proved in [37] that an optimal wavelet can be
designed such that the maximum echo suppression can be reached. In our simulations,
we use three types of channels to generate echoes. The first type of channel is a single
delay line with the delay being equal to 4 ( the worst case [37]). The second is a linear
combination of a few delays. The third channel (shown in Figure 5.7) is an impulse
response collected in a room environment by a short clap. All transforms contain eight
basis functions or subbands. Each basis function contains 16 elements for the DLS, the
LOT, the MLT and the optimal lapped transform. However, the basis functions for
both the Daubechies wavelet and the optimal wavelet contain 20 elements for each level
of decomposition. Figures 5.8(a) and (b) show a reference signal and the echo signal

obtained by Type 1 channel. Figures 5.8(c), (d) and 5.9 display the residual echoes
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by using the LOT, the MLT, the DLS, the optimum lapped transform, the Daubechies
wavelet and the optimum wavelet. Figures 5.10 to 5.13 show the same simulations as
Figures 5.8 and 5.9 with channels Type 2 and Type 3 respectively. The corresponding
echo suppressions, which are defined as the ratio of the original echo energy to the
residual echo energy, are shown in Table 5.2. In this table, we find that the DLS has
a slightly higher echo suppression than the LOT for all channel types. However, the
optimal lapped transform yields much higher echo suppression than either the LOT, the
MLT or the DLS, when considering 0.5dB pace. The MLT is not stable for all types
of channels. Comparing with the LOT and DLS, the MLT is only better than them
when we use the third channel, but much worse than them while using the first and
second channel. Therefore, the MLT may not work well for echo cancellation because its
transfer functions does not have linear phase. Comparing with the wavelet transforms,
the optimal lapped transform is slightly better than the Daubechies wavelet with a filter
length 20 and slightly worse than the optimum wavelet proposed in [37].

In wavelet transform, in order to generate 8 basis functions, we need to decompose
both the reference signal and the echo signal into three levels with a set of quadrature
mirror filter banks. The length of equivalent 8 band filter banks is 140 [68] which is
much longer than lapped transforms. With longer filter length in the filter banks, we
can design a better bandpass filter which results in less aliasing in the downsampling
procedure. Therefore, much higher echo suppression can be expected. The optimum
lapped transform keeps a small equivalent filter length (which is 16). With a shorter
filter length, the lapped transform involves less computations, introduces fewer numerical
errors, and has a smaller processing delay. Also, its echo suppression performance is close
to the optimal wavelet with a filter length of 20. Another advantage of using lapped
transform is that its sampling rate can be flexibly adjusted to achieve a desired echo
suppression (as demonstrated in Section 5.3). The wavelet transform does not offer this
kind of flexibility because it uses downsampling by two in each level of decomposition.

This is the minimum downsampling rate and cannot be further reduced.
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Table 5.2: Echo suppression (dB) of echo cancellation

channel || LOT | MLT | DLS | optimal lapped trans. | wavelet (Daub.) | optimum wavelet
type 1 2.96 | 2.10 | 2.98 3.32 2.72 3.50
type 2 8.34 | 6.25 | 8.36 10.98 10.34 11.73
type 3 4.79 | 5.78 | 4.95 8.95 8.00 9.12
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Figure 5.12: (a). Reference signal; (b). Echo with Type 3 channel; (c). Residual echo
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5.6 Complexity of Computation and Discussion

While applying the conventional adaptive algorithm without subband decomposition,
for example, we can achieve 26.4dB echo suppression. The performance is better than
the echo canceller based on the subband decomposition. This is bacause the aliasing
introduced in the subband decomposition. However, using the subband echo canceller,
the computation cost can be greatly reduced, which makes the echo canceller easier to

be implemented for the long echo path [37].

Now, we will discuss why the computation load can be solved by using subband
decomposition. For a traditional adaptive filter, if the length of filter is N, N multipli-
cations are needed to compute the residual error in the cancellation system, and another
2N multiplications are required for updating the weights of adaptive filter. In total, we
need to implement 3N multiplications in a single sampling period. Using subband echo
cancellation with M filter bands, due to the downsampling operation, the length of the
adaptive filter at each subband is reduced to % Therefore in each subband, only %
multiplications are required for computing residual errors and updating weights. Consid-
ering the total M subbands, the total multiplications are %- -M = 3N which is the same
as the conventional adaptive filter without subband decomposition. However, those 3N
multiplications can be implemented in M sampling periods due to the reduced sampling
rate. As a result, the computation rate in terms of multiplications per second is greatly
reduced in the subband echo cancellation system. Also, because a speech signal does
not occupy the entire frequency bandwidth, some of the subbands contains very little
energy. By discarding the bands with negligible signal energy, computation complexity

can be further reduced. Detailed discussions can be found in [37].

The echo cancellers using lapped transforms and wavelets all belong to the same group
— the subband echo canceller. The only difference between them is in the choice of filters
for the filter banks. In Chapter 4, a fast algorithm for DLS/DLC is proposed, which has
%’-(logz M + 2) + 3(L — 2) multiplications in decomposition operations when the length
of basis functions is M + L. For the optimal lapped transform, no fast algorithm has
yet been developed and M(M + L) multiplications are needed for signal decomposition.

As for the wavelet packet decomposition, if the length of wavelet basis functions is N,
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the number of multiplications required for signal decomposition (convolution operation)
is 2(2m*! — 2)N, where m is the level of the wavelet decomposition [68]. If we also
consider M subbands, the number of multiplications for wavelet packet decomposition
turns out to be 2(2M —1)N. In general we have N > M, and the lapped transforms
involve much less computation than the wavelet packet decompositions even without fast
implementations.

Also, when the tap length is very long, the convergence of conventional adaptive
filter with LMS implementation will be very slow. The numerical error will cause the
algorithm not to converge. By breaking the signal into the subbands, the number of
adaptive taps in each subband will be reduced by M times and the numerical error can
be greatly reduced. As a result, the adaptive algorithm will be easy to converge for the
long echo length.

In this chapter, we describe how to use block transforms to implement subband echo
cancellation so that the computation load can be reduced while at the same time, the
echo can be suppressed. Because most of the block transforms have fast algorithms, we
can expect further computation load reduction by using lapped transform. We also show
that by either choosing a suitable downsampling rate or designing an optimal transform,
the aliasing distortion in the downsampling procedure can be reduced, and higher echo
suppression can be achieved. Compared with echo canceller using filter banks, block

transform systems are more flexible, easier to design, and requires less computations.



Chapter 6

Image Compression Using
Lapped Transforms

Image compression [65], a tool for efficiently encoding a picture, reduces the number
of bits required to represent an image. As a result, the required channel bandwidth for
image transmission can be reduced. To realize image compression, many coding methods
have been developed. Linear transform is one scheme used in image compression. Block
transform is a sub-class of linear transforms which offer useful properties for applications.
In this approach, the image is subjected to an invertible block transform with an aim to
decorrelate the original signal. This decorrelation generally results in the signal energy
being redistributed among a small number of transform coefficients. Other coefficients
containing little energy are discarded. Block transforms can be divided into two groups:
cutoff block transforms and lapped block transforms. Some typical examples of the
cutoff block transforms are discrete Fourier transform, discrete cosine transform [66] and
Karhunen-Loéve transform. As mentioned in Chapters 1 and 2, there exists a problem in
the cutoff block transform. This problem is known as the blocking effect, which leads to
discontinuities (nonsmoothness) between two adjacent blocks in the reconstructed signal.
In image compression, the blocking effects results in a reconstructed image that seems
to be built up of small tiles. In many cases, the blocking effect is very pronounced when
high image compression rates are used.

Lapped orthogonal transform [49], which was recently proposed, can be used to
reduce the blocking effect in image compression. In this chapter, we use a smooth over-

lapped block transform, the DLS transform, for image compression. Compared with
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lapped transform, an important characteristic of the DLS transform is that it involves
an arbitrarily smooth cutoff through a bell function. In Chapters 3 and 4, we discuss the
properties of the DLS transform and its fast implementations. By using a smooth bell
function, a group of new orthogonal bases can be established. The transforms with the
bell function not only reduce the blocking effect, but also improve the subband local-
ization. In this chapter, we will first describe the block transform coding system; then
we will discuss the optimal lapped transform with the maximum coding gain. A spe-
cial optimal lapped transform with the highest decorrelation on AR-model is proposed.

Finally, some simulation results are presented.

6.1 Block Transform Coding System for Image Compres-

sion

A general transform coding scheme involves dividing a K x K image into M x M blocks
and performing a unitary transform on each sub-image. A unitary transform is an
invertible linear transform whose kernel contains a set of complete, orthonormal discrete
basis functions. A transform is referred to as one-dimensional (1-D) when it is performed
along a single dimension of the image; i.e., along one row or one column of the image. A
1-D transform performed on M pixels along a single row or column is termed an M-point
transform (a pixel is defined as a single discrete data point in the image). A transform is
two-dimensional (2-D) when it is performed on a 2-D block of the image which contains
several rows and columns of image pixels. All the 2-D transforms considered in this
chapter are separable: the transform kernel can be decomposed into two 1-D kernels
which are operated separately on the row pixels and the column pixels of the image.
Thus, a separable transform on an M x M block of image pixels can be performed in
two steps. First, a 1-D M-point transform is performed along each row of the block and
then another 1-D M-point transform is performed along each column of the resulting

output.

Consider a K x K image. For an M x M sub-block of pixels, z(m,n) (m,n =

0,---,M — 1), the forward 2-D block transform (concerning non-lapped transform) in
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Figure 6.1: Decomposition representation of an image using block transforms

each block is described as [65]

M-1M-1
X(u,v) = Z Z z(m, n)Pu(m)d,(n). (6.1)
n=0 m=0
In matrix form, we have
X = &7zd, (6.2)

where @ is defined as in (2.23). This process, described in Figure 6.1, shows that the
image is a 4 x 4 block matrix. Each block contains four (a, b, ¢ and d) transform

coefficients. The inverse 2-D block transform is described as
M-1M-1

z(n,m)= Y D X(u,v)¢u(m)dy(n), (6.3)
v=0 u=0
and in matrix form, we have
z=BXD. (6.4)

It is known that because image pixels are highly correlated, and the energy of an image
signal mainly concentrates on a few transform coefficients; i.e., only a few transform

coefficients have large variances, and most coefficients have negligible variances. For a
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Markov signal, it is proved [66] that DCT has a very good energy concentration in its
transform coefficients. This is because the DCT is asymptotically equivalent to KLT
[66]. In the cutoff block transforms, when some transform coefficients are abandoned,
the blocking effect will appear on the reconstructed image. This block effect can be seen
clearly in Figures 6.2 and 6.3. These two figures show the comparisons of the original and
the reconstructed compressed images at compression rates of 0.4 bits per pixel (bpp),
0.24 bits per pixel, and 0.16 bits per pixel, when using 16-point DCT. The compression
rate, expressed as z bpp, is defined as the average number of bits used to represent one
image pixel. The higher the compression rate, the smaller is the bits per pixel value. In
Figures 6.2 and 6.3, the original images are represented by 8bpp. It can be observed that
the higher the compression rate, the more obvious the blocking effects are. It is easily
seen that when the compression rate reaches 0.16bpp, the tiles appear around face, hat
and shoulder. If we do not compress the transform coefficients, the reconstructed image
is perfect because block transforms are invertible.

The LOT [49], proposed by Malvar, is a new approach for improving the blocking
effect in image compression. The LOT extends the cutoff blocks into overlapped blocks
such that the boundaries between blocks are blurred, and the blocking effects can be
reduced. The LOT satisfies the orthogonality and lapped orthogonality property: by
manipulating the blocks, perfect reconstruction can be maintained even at high com-
pression rates. Because of its smooth cutoff property, the DLS transform, another form
of lapped block transform system, may also be helpful in reducing the block effect in
image compression. The forward 2-D DLS transform formula has a form similar to (6.1),
in which the range of summation is set at [0, M + L — 1] instead of at [0, M — 1]. Ac-
cording to the unitary property we derive in Chapter 3, the perfect reconstruction of the
DLS transform is guara.nteeci. The matrix form of the forward 2-D DLS transform in

one block is described as
X = 8"z, (6.5)

where & is defined by (3.33). The inverse transform is defined as
< =T
z=0XD . (6.6)

In this chapter, we will compare the image compression results using the DCT, the LOT



6.2. OPTIMAL LAPPED ORTHOGONAL TRANSFORMS 119

and the DLS.

It is known that KLT is an optimal transform in the group of cutoff block transforms
because it completely decorrelates a signal covariance matrix[66]. In the next section, we
will introduce the corresponding optimal lapped transform with maximum coding gain

which is equivalent to getting the maximum decorrelation of a signal covariance matrix.

6.2 Optimal Lapped Orthogonal Transforms

Our purpose in this section is to find a transform which allows the energy to be more con-
centrated in a few transform coefficients. To get such an optimal lapped block transform,
one can maximize the transform coding gain Grc¢ defined in (3.73) [49]. The problem is
formulated to,

maximize the main diagonal elements (variances) of: I''R..T,
subject to condition 1: r’r = Iy,

and condition 2: I''WT = Oy, (6.7)

where I is the transform matrix in which each column -, represents a basis function. R
is auto-correlation matrix defined as R.; = E[zzT] and E represents the expectation
operation. W is the shift matrix defined in (2.41). I and O are the identity matrix and
the zero matrix, respectively. In [49], without any proof and based on maximum coding
gain, a so-called quasi-optimal LOT algorithm is designed. In this section, we are first
going to develop a general algorithm for the design of an optimal lapped transform and
then prove the optimality of this algorithm.

It is well known [55] that the optimization of (6.7) without the condition 2 can be
solved by using the eigendecomposition algorithm. To solve the maximization problem
under condition 2, we can apply the Lagrangian multipliers on each diagonal element;
ie.,

maxyf Reey; = Mi(r{7: = 1) = dai Wiy (6.8)
subject to y7v; =1 and vfW~; =0,

where, A1; and Ag; denote the Lagrangian multipliers. Differentiating (6.8) with respect
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Figure 6.2: Comparisons of original and reconstructed signals with 0.4bpp; 0.24bpp and
0.16bpp using DCT. (a). original image, (b) 0.4bpp; (c). 0.24bpp; (d). 0.16bpp
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Figure 6.3: Comparisons of original and reconstructed signals with 0.4bpp; 0.24bpp and
0.16bpp using DCT. (a). original image, (b) 0.4bpp; (c). 0.24bpp; (d). 0.16bpp
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to v; and equating the result to zero, we have
2Rz — 2A157Y; — 2XiWy; = 0.
Thus, «; must satisfy the following equation
Rzzvi = Mivi + AWy (6.9)

Considering all 4; in a matrix form, we have

where ) ;
A
Ay = 12
| 0 AN
and ) .
A2 0
A, = A2z
| 0 Aen ]

Pre-multiplying (6.10) by I'", we obtain
I'"R..I' =I'"Ir'A, + ITWra,. (6.11)
Applying the constraint of (6.7), we obtain
TRz T = Ay (6.12)

Now the optimal lapped transform can be computed through (6.12) under the two con-

ditions of (6.7). To solve for the optimal solution, we have the following theorem:

Theorem 6.1 Let @ be an arbitrary lapped orthogonal transform matriz in one block
(called pre-transform). There ezists a matriz V such that the optimal lapped orthogonal

basis functions (the solution of 6.7) can be ezpressed as

=&V, (6.13)
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where & = (P10, by, T = [T1¥2 - Yum) V = [v1v2---vu], and v; is the i-th
eigenfunction of TR, . &.

Proof: Substituting (6.13) into (6.12), we have
VISTR, &V = A;.
Let R,z = #T R, ¥, so that
VIR,V = A;.

To maximize the diagonal elements of I'" R . I' is equivalent to maximizing those of
VTR, V[55]. It is known that the solution of such optimization is the eigendecompo-
sition of R;z. The remaining problem is to prove that the optimum transform matrix
I’ = &V satisfies the two conditions described in (6.7) and hence is a lapped transform
matrix.

Let {v;} be the eigenvector of R corresponding to the i-th eigenvalue. From the

property of eigendecomposition, we have
vl v ;= bij.

Because @ is a lapped orthogonal transform matrix which satisfies &Td = I and
STW® = Oy, and T is related to V as in (6.13), we have

r’"r=vTeTov=vIiv =1y

r'"'wr =vIieTwé v = 0y

Now, we have proved that I' satisfies both lapped orthogonal conditions in (6.7) and is
optimal. 0O

From the proof of the above theorems, we make the following observations:
1. (6.13) provides a set of optimal lapped bases with a given @, the pre-transform;

2. the space spanned by I’ = [v;9,---Ypm] is the same as that spanned by & =
(102 - PMl;

3. v; are the eigenvectors of transformed matrix 'R, . b,
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4. using the optimal lapped transform I', the coding gain can be maximized.

Theorem 6.1 also gives us a simple algorithm to obtain the optimal local sine/cosine
transforms using (3.1) and (3.2). Similar to KLT, this optimal lapped transform is image
dependent. In practical applications, an image dependent basis is not convenient to use,
and it involves large amounts of computations. However, there is convicing evidence [66]
that most images are close to an AR model. Therefore, if we can find an optimal lapped
transform which can best decorrelate an AR-model signal, this transform which is signal

independent can be easily applied to the compression of most images.

6.3 Sub-Optimal Lapped Transform based on AR-model
Signal

In practical system design, we often compromise between performance and computa-
tions. The optimal lapped transform proposed in the last section may not be useful in
applications because large amounts of computations are required to obtain a set of signal
dependent bases. It is known that most signals, especially images, can be considered as
AR-model-like signals. If we can find a transform which is optimal for an AR-model
signal, it will be generally good for any image signals. Extending Theorem 6.1, we have
the following corollary for the design of an optimal lapped transform with the highest

decorrelation of AR-model .

Corollary 6.1 Let & be an arbitrary lapped orthogonal transform matriz in one block
(called pre-transform), for any AR-model signal, there ezists a matriz V such that the
optimal lapped transform, which can highly decorrelate this AR-model signal, can be
ezpressed as

=9ev, (6.14)

where & = [P0, dp], T = [1172:-Yum], V = [viva - -vu] and v; is the eigen-
vector of R4 corresponding to the i-th largest eigenvalue of Rs. R4 is the covariance

matriz of the A R-model signal.

Proof: This Corollary is the simple extension of Theorem 6.1 with the signal being an
AR-model signal. a
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Now (6.14) provides a set of optimal lapped bases in the sense of complete decor-
relation of AR-model image, and this set of transform bases is image independent. We
call this set of bases as “sub-optimal bases” because it is optimal only for the AR-model
signal. In the next section, we will show some simulation results of applying this “sub-

optimal” bases to image compression.

6.4 Simulation Results

In image processing using transforms, the transformed data can be considered as the
original image being filtered to create a set of signals, each of which contains the in-
formation of the original image in certain frequency bandwidths. Because most image
signals do not occupy the whole frequency bandwidth, many coefficients can be discarded
after quantization prior to encoding, resulting in image compression.

In simulation, we use the following image compression algorithm. Once an image
is transformed and the energy in each band is computed, transform coefficients are
quantized. Many coefficients which are less than a threshold are then discarded and
only those holding larger energies are transferred through a channel. After that, the
compressed coefficients are reconstructed by inverse transform. Here we use the simple
quantization. The threshold is calculated by energies and compression rate given in the
beginning.

Figures 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9 show the comparisons of the original image
and compressed images when using various transforms with M = 16. The original
image is represented with 8 bits per pixel, and the compressed images are represented
with 0.4 bits per pixel, 0.24 bits per pixel, and 0.16 bits per pixel, respectively. In
our simulations, we use the standard Lena image of dimensions 256 x 256. Table 6.1
indicates the comparison of signal-to-noise ratio in dB for different transforms, in which
OLT denotes the optimal lapped transform based on the first order AR-model signal with
p = 0.95 [66]; i.e., the sub-optimal bases for image compression. For lapped transforms,
the borders of each image is processed by padding zeros. The signal-to-noise ratio is
defined as the ratio between the energy of the original image and that of the residual

image which is the difference between the original image and reconstructed compressed



126 CHAPTER 6. IMAGE COMPRESSION USING LAPPED TRANSFORMS

Table 6.1: Comparison of signal-to-noise ratio (dB) (lena)

DLS | LOT | MLT | DCT | Sub-OLT based on AR-model.
0.4bpp 16.3 | 15.8 | 16.5 | 13.9 | 16.8
0.24bpp || 13.8 | 13.6 | 14.3 | 12.2 | 14.5
0.16bpp || 12.2 | 12.2 | 12.7 |11.2 | 13.0

image. It can be observed that under different compression rates, the optimal lapped
transform based on the AR-model signal always achieves the highest signal-to-noise ratio
when it is compared with DCT, and with LOT, and with MLT, and finally with DLS.
The signal-to-noise ratio using the DLS is higher than that using LOT. The MLT is even
better than the DLS. When comparing the reconstructed images in Figures 6.4, 6.5, 6.6,
6.7, 6.8 and 6.9, it is found that there are obvious tiles at face, shoulder and hat in the
compressed image with LOT, but for the DLS, the MLT and the OLT the tiles cannot be
perceived. This phenomenon can be observed more clearly when using high resolution
screens. Compared with the non-smooth cutoff system, the LOT improves the blocking
effect only slightly. The local sine transform and the MLT, as a smooth block transform,
achieves improvement on the blocking effect. Much more improvement can be realized
with the “sub-optimal” lapped transform.

Figures 6.10, 6.11, 6.12, 6.13 6.14 and 6.15 show another example of comparing the
compressed image with the original image when using various transforms with M = 16.
Once again the compressed images are represented with 0.4 bits per pixel, 0.24 bits per
pixel, and 0.16 bits per pixel, respectively. Comparing the compressed images with the
original image, we may get the same conclusion as before. That is, there are obvious
tiles on the face and shoulder with the LOT; with the DLS, with the MLT and the OLT
the tiles are not so pronounced. Also the sub-optimal lapped transform based on the
AR-model achieves significant improvement in reducing the blocking effect. Table 6.2
shows the comparison of signal-to-noise ratios in dB using DLS, DCT, LOT, MLT and
the optimal lapped transform based on AR-model. All our simulation results indicate
that the sub-optimal lapped transform consistently performs well for different images,
and the signal-to-noise ratios using MLT are higher than those using LOT and DLS for
this image.

In this chapter, block transform coding systems are described. One phenomenon
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Figure 6.4: Comparisons of original and reconstructed signals with M = 16 and 0.4 bits
per pixel. (a). original image, (b). DLS. (c). LOT (d). Sub-optimal lapped transform
based on AR-model.

Table 6.2: Comparison of signal-to-noise ratio (dB) (face)

DLS | LOT | MLT | DCT | Sub-OLT based on AR-model.
0.4bpp 16.8 | 16.2 | 17.0 {149 | 17.2
0.24bpp || 14.7 | 14.1 | 15.1 [ 13.3 | 154
0.16bpp || 13.3 | 13.2 | 13.7 | 12.4 | 14.0
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50 100 150 200 250

Figure 6.5: Continue ... Comparisons of original and reconstructed signals with M = 16
and 0.4 bits per pixel. (e). MLT

shows that DLS, as a smooth block system, may work well under a high compression
system, when comparing with DCT and LOT. However, the MLT may achieve even
better compression results. Also, because of the flexibility of length in the overlapped
region in the smooth block transform, the performance can be improved further. The
optimal lapped transform reaches the maximum coding gain, but leaves an open question
for computing such data-dependent transforms. In Section 6.3, we introduce a sub-
optimal lapped transform based on the AR-model. The simulation results shows that

such a sub-optimal transform provides improved results for reducing the blocking effects.
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Figure 6.6: Comparisons of original and reconstructed signals with M = 16 and 0.24 bits
per pixel. (a). original image, (b). DLS. (¢). LOT (d). Sub-optimal lapped transform
based on AR-model.
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Figure 6.7: Continue ... Comparisons of original and reconstructed signals with M = 16
and 0.24 bits per pixel. (¢). MLT
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Figure 6.8: Comparisons of original and reconstructed signals with M = 16 and 0.16
bits/pixel. (a). original image, (b). DLS. (c). LOT (d). Sub-optimal lapped transform
based on AR-model.
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Figure 6.9: Continue ... Comparisons of original and reconstructed signals with M = 16
and 0.16 bits/pixel. (e). MLT
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Figure 6.10: Comparisons of original and reconstructed signals with M = 16 and 0.4 bits
per pixel. (a). original image, (b). DLS. (c). LOT (d). Sub-optimal lapped transform
based on AR-model.
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Figure 6.11: Continue ... Comparisons of original and reconstructed signals with M = 16
and 0.4 bits per pixel. (e). MLT
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Figure 6.12: Comparisons of original and reconstructed signals with M = 16 and 0.24
bits per pixel. (a). original image, (b). DLS. (¢). LOT (d). Sub-optimal lapped
transform based on AR-model.
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Figure 6.13: Continue ... Comparisons of original and reconstructed signals with M = 16
and 0.24 bits per pixel. (e). MLT
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Figure 6.14: Comparisons of original and reconstructed signals with M = 16 and 0.16
bits per pixel. (a). original image, (b). DLS. (¢). LOT (d). Sub-optimal lapped
transform based on AR-model.
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Figure 6.15: Continue ... Comparisons of original and reconstructed signals with M = 16
and 0.16 bits per pixel. (e). MLT



Chapter 7

Summary and Suggestions for
Future Research

In this thesis, we examine the theory and properties of the lapped transforms based on
the continuous DLS and DLC basis functions, and apply them to acoustic echo cancel-
lation and image compression. Because of the smooth cutoff operation, DLS and DLC
transforms have the potential to significantly reduce the blocking effect. Also, the perfor-
mance analysis of DLS and DLC, such as variance distribution, coding gain and energy
packing efficiency, are closer to ones of MLT, than ones of LOT. Even though MLT is
slightly better than DLS in image compression, it does not perform better than DLS in

echo cancellation. In this thesis, we have made the following contributions:

1. Operational Properties of DLS and DLC transforms

A set of DLS and DLC transforms based on continuous local sine and cosine basis
functions [17] is developed in Chapter 2. We examine the operational properties of
the lapped transforms based on DLS and DLC basis functions in Chapter 3. DLS
and DLC transforms which involve arbitrarily smooth cutoffs are shown to have
an orthogonality property. We prove that the DLS and DLC belong to the family
of lapped orthogonal transforms which satisfy the lapped orthogonality property.
Despite the lack of unitarity for the transform matrix, the necessary and suffi-
cient conditions for perfect reconstruction are derived. These properties allow for
the design of the optimal lapped transforms in image and speech coding. Other

properties, such as scale-in-time and shift-in-time properties, uniqueness property,
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difference-in-time, and convolution properties are also examined. The performance

analysis indicates that both the DLC and the DLS perform similarly.

. Fast algorithm for computing DLS and DLC transforms

By recognizing the particular structure of the transform matrix, we are able to
significantly reduce the computational complexity required in the transformation.
The computation reduction can be done by partitioning the transpose of the matrix
into a set of sparse matrices. It is seen in Chapter 4 that the transform matrix can
be represented by a cascade structure consisting of a set of Given’s rotations and
DST-IV matrix. The DST-IV matrix can also be factorized into a set of sparse
matrices. The whole process allows us to partition the DLS transform matrix
and implement it with a set of sparse matrices consisting of Given’s rotations and
butterfly operations. Such a fast algorithm for a general case of DLS transform
yields A—,",f-(log2 M +2) +3(L — 2) multiplications, and it is partially recursive. Also,
this algorithm can easily be applied to computing the DLC transform. The number
of computations required in DLC is the same as the number required in DLS. These

algorithms make DLS and DLC suitable for parallel processing.

Lapped transforms in acoustic echo cancellation

Based on the properties examined in Chapter 3 and the fast algorithms developed
in Chapter 4, we apply the lapped transforms in the application of acoustic echo
cancellation. Such a canceller can reduce the computation load with a subsampled
signal. Compared to conventional methods, this scheme converges faster for track-
ing the changed echo path. Because of frequency aliasing, direct applications of
the lapped transform in an echo canceller may not work well. To reduce frequency
aliasing in the subsampling procedure, we propose an improved method by chang-
ing the subsampling rate in the block transforms. As a result, the echo residuals
can be reduced significantly. Furthermore, we develop an optimal lapped transform
that uses a criterion of maximum energy concentration in a given bandwidth. By
this optimal lapped transform, an obvious improvement in the echo suppression
is achieved in computer simulations. In comparison, the optimal lapped trans-

form performs slightly worse than the optimal wavelet transform. However, it



141

is demonstrated in Chapter 5 that the optimal lapped transform involves much
fewer computations and provides a much shorter processing delay than the opti-
mal wavelet. Another advantage of using the lapped transform is that the sampling
rate can be flexibly adjusted to achieve a desirable echo suppression, whereas the

wavelet decomposition does not offer this kind of flexibility.

4. Lapped transforms in image compression

For image compression, we use DLS, a smooth block transform. An important char-
acteristic of such a transform is that it involves an arbitrarily smooth cutoff through
a bell function. An optimal lapped transform which possesses the maximum coding
gain is discussed. To satisfy the practical requirement — low computation load —
we propose a special optimal lapped transform with the highest decorrelation of
AR-model signal. Such an optimal transform is independent of the signal, and is
sub-optimal for general image compression. In the simulation, the optimal lapped
transform based on the AR-model is the most effective transform. It is shown in
Chapter 6 that the DLS has a higher signal-to-noise ratio in image compression
than either DCT or LOT. However, the results also shows that MLT is slightly
better than DLS in image compression. The sub-optimal transform achieves the

highest signal-to-noise ratio when compared with with DCT, LOT, MLT and DLS.

It is seen that our work in the lapped transforms based on DLS and DLC basis
functions represents only a beginning; much work needs to be done. The following

suggestions are for future research.

o Comparison with wavelet

Both wavelet and lapped transform can be cast into a type of filter banks. Studying
their relations can help us gain an insight into the design of an optimal discrete

orthogonal transform for a particular application.

e Study of the fractional lapped transform

In Chapter 5, it is shown that one advantage of lapped transform in echo cancella-

tion is the flexibility of sampling rate variation. The echo suppression can be higher
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when the sampling rate in lapped transform is reduced. An interesting question is
how to develop a fractional lapped transform with arbitrary variation of the sam-
pling rate so that, by considering both the echo suppression and computations, we

may obtain an optimal sampling rate in the acoustic echo cancellation.

¢ Development of broad potential applications

It is useful to find more applications of the lapped transforms based on the DLS

and the DLC basis functions, particularly in the radar and microwave areas.

Investigations and development in the above areas should lead the lapped transforms
— based on DLS and DLC — onto a new page. The lapped transforms will be widely
applied in the areas which include signal processing, data compression and communica-

tions.



Appendix A

Solution of Py, P;y and Pyjy

Rewrite (3.13), (3.14) and (3.15) as follows by letting 2k = — ¢

M-1 _
P = Z cos(r —t)ﬁ-(n— L2 1

n=0

)

= 2 2 T L-1
P = Z[Ss(n) — CZ(n)] cos{(r +t + 1)_11_4—(” — __2_)]
n=0
M-1 _
P = ,;:ZL cos[(r +t + 1){4—(7; - %_1_)]
We will work on Py, Prr and Py separately.

(1). Pr: (A.1) can be written as

M1 L-1

Ly
Pro= Y cosl(r—t)o(n— Z=)]
2 "
M—l r— _L_-l
= re |3 w1
n=0

where Waps = e~/ %. Then, we have

o) E=L = (r=t)M
Pr = Re [Wz(M L T WM.'.’@-:) }
1-Won

For r — t = 2k, k=0,1,---,-’;i, we have

I =

0 k#0,ie.r#t
M k=0,ie.r=t.

which proves (3.16).
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(2). Prr : Rewriting (A.2), we have

L1 T L-1
Pr = Y [53(n) = CHm)cos{(r + ¢t + 1)-(n — Z5)].
n=0

From the properties of S.(n) and C.(n), it is not hard to see that [S2(n) — C2(n)] is

anti-symmetric at £ — 1in [0, L - 1]. Letting
fral®) = cosl(r + £+ 1)ar(n — 2=
we have, when (r — t) is an even number
(L =1=n) = cosl(r+t+ 1) (L —1-n—221)]
wt(L — n) = cos[(r+ i 3

= cos[(r+t+ 1)-;7(n - £'—;—1)] = fri(n). (A.5)

It indicates that f; (n) is symmetric at %— lin [0, L — 1} when (r —t) is an even number.
Therefore, the inner product of Py is anti-symmetric at % —1in [0,L — 1] when (r ~t)

is even, and the summation is equal to zero; i.e.,
Prr=0, when (r —t)is even, (A.6)

which proves (3.17).
(3). Prrr: (A.3) can be written as

P = Af:l cos[(r+t + 1)l( - E)]
e n=L M " 2
M-L-1
= Z_:O cos[(r +t + 1)%(7&1 + L - %)], (let n' =n — L)
M-L-1 i
_ T L+1
= ngo cos[(r +t + 1)-—A—l-(n + T)] (A7)

Let
L+1

grt(n) = cos[(r +t+ 1)—;2(71 + ——2——)]

Then we have

L+1
grt(M —L—-1-—n)=cos[(r+t+ L)r—(r+t+ 1)%(1; + _;'-)]
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Since r —t = 2k, we have r + t + 1 = 2k + 2t + 1 and thus

grt(M -1-L—n)=- cos[(r +t+ I)IZ-(n + £%-—1-)] = —gri(n).

Therefore, gr¢(n) is anti-symmetric at the centre of the interval [0, M — L — 1] when

(r —t) is an even number and it satisfies
Prip=0  when (r —t)is even, (A.8)

which proves (3.18).
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Appendix B

Discussion of < ¢, vm >

Considering (3.29), let

Tr= Re SIS Waae” Wod ™™, B1)
Tyr=ReSMG Wy 7 Wapg i, '
It is obvious that the above equations are reduced to
T=M, forn=m,
! : (B.2)
Ty =M, forn+m=2k+L-1,k=00rk=M.

Form#n,and n+m#2k+L—1,(B.l)is

_n-m l_W—(n—m)M
T[ = Re [W2M 2 1w )
M (B 3)
_ntm;Lil l—W;A&"+m—L+l)M .
T = Re |Wyyy —w-(rEm=-L¥1) | *
2M

By examining the numerators in (B.3), we find that the numerator in the expression of
T is equal to zero if (n—m) is even, and is equal to two if (n— m) is odd. The numerator

in Ty is equal to zeros if (n + m — L + 1) is even and is equal to two if(n+m—-L+1)

n—m

is odd. For nonzero numerators, we manipulate T and T7; by multiplying Wy ? and
_n4m-—L+1
Wore 2 in the denominators, respectively. Then we have
T = Re—ieyr =0, for (n — m) odd,
sin 37 . ( ) (B 4)

TU:RC;;F_T_"%'{FEE=O’ for (n + m — L + 1) odd,
2

where j is the imaginary unit. Thus, considering all above results, we have,

T, = {M m=m (B.5)

0 otherwise
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M n+m=2k+L-1, k=0ork=M
T = { (B.6)

0 otherwise.

Combining (B.5) and (B.6), we have the following results.

1. Whenn#mand n+m# L'—1and n+m #2M + L — 1, we have

Tr =0,
TII = 01
which results in
< 1/’n’ ¢m >=0.

2. When n # m and n + m = L'— 1, we have

Tr=0,
TII = M1

resulting in
<P, P, >= —=b(n)b(m) = —b(n)b(L — 1—n).
3. Whenn # m and n+ m =2M + L — 1, we have,

T = 0,
T =M,

resulting in

<, b, >= —b(n)b(m) = —b(n)b(2M + L —1—n).

4. Whenn=mandn+m=L—-lorn=mand n+m=2M+ L — 1, we have

Tr=M,
T =M,

resulting in

< PP, >=0.




149

5. Whenn=mand n+m#L—1and n+m#2M + L — 1, we have

Tr=M,
T =0,

resulting in

< Ppy P >= b%(n).
Our next problem is to determine the product of b(n) and b(m) for the cases 2, 3 and 5.

e For case 2, we have n # m and n+m = L-1. This equation implies 0 <m < L-1
and 0 < n < L — 1. Thus, we only need to consider the tail portion in Figure 3.1.
We have

. [(L=1=n)r 1 . 2L-1—-n)m| _ nw 1. 2nm
b(L—l—n)_sm[ ST =1 iy e —cos[———2(L_1) 4sm——L_l],

and

b(r)b(L—1—n) = %sin (L—"_’r—l - %sin Lz’i’rl) :

e For case 3, we have n # m and n+m = 2M + L —1, which indicates that M < n,m
because in the DLS transform n,m < M + L — 1. Thus, the bell function is in

the region of head portion in Figure 3.1. Therefore, according to the third term in
(2.46), we have

M+ L—1—n) = cos[(M+L-1—")7r 1. 2(M+L—1—n)1r]

W -1 4" I-1
— sin [(n—M)w_l . 2(n—M)1r]
- -1 4T L-1 |

Therefore,

br)b(2M + L — 1 —n) = %Sin (Ml’i 1, 2n— M)w) _

L—-1 2 L-1 (B.7)

o For case 5, we consider three situations. The first situation is n = m < L—-1and
n = m# (L - 1)/2. This means that n and m are both in the region of [0, L — 1].
Then similar to case 2, the bell function is chosen in the range of the tail part,
which corresponds to the sine function defined in the first term of (2.46). We have,

b?(n) = sin? [___mr -—lsin——mm =1 1—cos L —lsin 2n7
- 20L-1) 4 L-1]"2 L-1 2 L-1/}°




150

APPENDIX B. DISCUSSION OF < yp,¥pr >

The second situationisfor M < n=m< M+ L-landn=m#2M + L - 1.
Now, both n and m are in the region of [M, M + L'-1]. b(n) corresponds to cosine
function which is defined in the third term of (2.46), and we have

(n—-M)r lsin 2(n - M)Tf] ! [1 +cos ((nL M)m %sin 2(n - M)w)] .

2(L-1) 4 L-1 -1 L-1

b%(n) = cos? [
(B.8)

For the third situation when L'—1 <n=m < M,wehave2(L-1) < n+m < 2M
and b%(n) = 1.
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Proof of Lemma 3.2

We prove Lemma 3.2 as follows.

Proof: Consider the 2M x 2M matrix,

» 0 b ©
WO » O

where O is an (M — L) x M zero matrix. Then from the conditions (3.46) to (3.50), we

have

2 0]
RrT - | B A [QT BT oT AT}
o Q oT AT QT BT
..A B-
[ Q@ QBT oML QAT |
_ BQT AAT+BBT AQT BAT +ABT I
T low. Q@A Q@7  @BT | W
| AQT ABT 4+ BAT BQT AAT+BBT |

Because R is a square matrix, we have RT = R™! and RRT = RTR = I;pm. Now, let
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us check the results of RT R.

0 0]
[ QT BT oT AT]||B 4
R = | @
I OT AT QT BT o Q
A B |
[ Q7Q+B™B+ATA  BTA+ATB
= T T T T r, | =T
B A+ A'B Q'Q+B°'B+A'A
It is straightforward that
ATA+BTB+QTQ = Iy (C.1)

ATB+BTA (C.2)

I
Q
S

Now the lemma is proven. a



Appendix D

Proof of Lemma 3.3

We prove Lemma 3.3 as follows.

Proof: From the first condition, we have
ATB+BTA=0y.
Pre-multiplying B at both sides of above formula, we obtain
BATB + BBTA=0rxu.

According to the second assumption, it is known that the first term of the above equation

is a zero matrix. Thus we have,
BBTA=0rxy.

Pre-multiplying AT in the above equation, the above equation becomes

ATBBTA = 0y, (D.1)

from which, we can prove that
ATB=BTA=0yu. (D.2)
|

153



154 APPENDIX D. PROOF OF LEMMA 3.3



Appendix E

Proof of Theorem 3.3

Now with Lemmas 3.2 and 3.3, we are ready to prove Theorem 3.3.
Proof: Similar as Theorem 3.2, the necessary condition is the direct result of Theorem
3.1. To prove the sufficient condition, we may use the same procedures as in Theorem

3.2, Lemma 3.2, and Lemma 3.3. Rewrite & as follows,

&(h) &) OruMm

&= O(M-L)xM () OM-LyxM
OLim &(h) &(t)

From & = I M+L, We can obtain the conditions which are exactly the same as (3.46)

to (3.50) in Lemma 3.2. Applying the results in Lemma 3.2, we obtain

[T 4 [@™))Tp(m) 4 [$PTHH) = I (E.1)
[BOTTSH) 4 (SWTEO) = 0. (E.2)

Furthermore, we may apply Lemma 3.3 into (E.1) and obtain
[45(t)]T45(h) = [@(h)]TQ(t) = Oy (E.3)

(E.1) indicates the orthogonality property: i.e., &Td = I and (E.3) shows the lapped
orthogonality, i.e., STW S = Ops. Therefore, we have

$3" = ImeL
if and only if #T® = Iy and STW P = Oy )
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