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ABSTRACT

Fault Detection and Diagnosis have become important topics in the process industries.
The off-line diagnosis of past transient upsets can lead to important process or operation
modifications that can improve the future behavior of the process. The rapid on-line
diagnosis of faults is even more important since it can anticipate and minimize the impact

of otherwise costly effects.

The first part of this thesis addressed the problem of fault diagnosis in
multivariate, dynamic, continuous chemical processes. Two types of faults were
considered: deterministic (whose root cause is a randomly occurring deterministic event)
and stochastic (caused by an underlying stochastic process). A realistic simulation of a
chemical plant was used as a test bed for the proposed methods. Due to the lack of
accurate dynamic models for this type of process, a Pattern Recognition approach was
followed. Within this framework, several methods were designed for the on-line and off-
line diagnosis of both types of faults. All methods consisted of: I) a feature extraction
step, where magnitude invariant features are extracted from both the reference patterns
and the pattern of the new unknown fault, and II) a similarity assessment step where the
distance between the new pattern and each of the reference patterns is estimated using

Dynamic Time Warping.

Due to the use of magnitude invariant features and the ability of Dynamic Time
Warping to synchronize similar patterns with distorted temporal correlations, the results
were satisfactory in diagnosing deterministic faults. In the case of stochastic faults, the
results were inconclusive. The correlation pattern between the variables was used as the
feature for the diagnosis of stochastic faults. However, the slow dynamics and the effect
of the recycle in the simulated chemical plant meant that unrealistically long records of

data are required for an accurate estimate of this feature.
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The second part of the thesis investigated the problem of fault detection in batch
processes, and in particular the problem of batch trajectories of unequal duration and poor
synchronization. A new method, based on Dynamic Time Warping, was proposed for the
synchronization of batch trajectories of this type; the method is multivariate and requires
minimal process knowledge. It was also shown how to use Dynamic Time Warping to
synchronize a new batch trajectory with the reference trajectories so that batch monitoring
methods based on Multivariate Statistical Methods could be used. Finally, a new on-line
monitoring method was presented, based on the concept of instantaneous quadratic

distance, which does not require prediction of the future behavior of the batch trajectory.
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CHAPTER 1

INTRODUCTION

This chapter introduces the concepts of Fault Detection and Diagnosis and their necessity
in today’s petrochemical plants. The two main approaches are presented: the mechanistic
model-based and the empirical Pattern Recognition approach and their differences are
discussed. Justifications are given for the Pattern Recognition approach studied in this
thesis. Finally, the objectives, assumptions and research approach of this thesis are

defined, for both continuous and batch processes.

1.1 Why Fault Detection and Fault Diagnosis

The need for reducing production costs has pushed today’s petrochemical plants to
operate close to, or even at their maximum capacities, while at the same time producing
high quality and consistent products. Moreover, the incentive for optimal utilization of
energy and raw materials, the wide operating windows required to achieve economically
optimal operation, and the increasing environmental concerns, have resulted in highly

integrated petrochemical plants and sophisticated control systems.

Under these conditions of complexity, monitoring of the plant operation and
detection and diagnosis of faults are formidable tasks. In this thesis the term ‘fault’ is
used to indicate anything that causes the plant operation to deviate from a desired
operating point. Thus, the degradation of a sensor or an actuator, the failure of a pump,
the poisoning of a catalyst, the sudden change in the composition of a feed stream, are all

considered faults.



Obviously, many of the above faults are directly observable, in the sense that one
can check the faulty sensor or the failed pump, or measure the composition of the feed
stream. However, plants are usually understaffed and engineers cannot be committed to
checking every sensor and actuator when a deviation from the desired operating point is
detected. There exist also faults that are not directly observable (e.g., catalyst
deactivation) and have to be inferred from other variables. Thus, automated Fault
Detection and Fault Diagnosis schemes are of significant practical value in detecting a

fault and pointing to probable sources.

Of the two tasks, Fault Detection is the first and the easier of the two. At any
time, the plant operation is compared against a model which describes the normal
operation. The model can be either mechanistic or statistical or a set of rules drawn from
experience or a combination of the above. Significant deviations of the process
measurements from the model predictions indicate that the process does not operate the

way it should.

Knowing that plant operation is not normal is useful in its own right. However,
the real benefits come when the source of the fault is identified and corrective actions are
taken to eliminate it. This is true for any fault, but is even more important for faults that
continuing to ignore them may lead to major upsets, like plant shut down, cyclic behavior
that may take long to die out, or even dangerous equipment failures. Hence, Fault
Diagnosis is the second step and is more complicated than Fault Detection: for detection
requires a model of the normal plant operation, while diagnosis requires a model for each

expected fault, as it will be discussed in the next section.

Fault Detection and Diagnosis are tasks whose major benefits are obtained when
implemented on-line. However, their off-line implementation in analyzing historical data
is also useful. Historical data provide information to create models for the normal and the
faulty operations and they can also be used to test various proposed schemes before they

are implemented on-line.



1.2  The Mechanistic Approach for Fault Detection and Diagnosis

The importance of Fault Detection and Diagnosis has lead to a large number of various

approaches. Although not the only way, one could categorize them into two major

classes:

. methods that utilize a mechanistic plant model; and

. methods that do not utilize a mechanistic plant model but are based on Pattern
Recognition principles.

Mechanistic approaches are powerful; they utilize a process model constructed from first
principles (i.e., conservation laws of mass, energy, etc.). The model consist of a
deterministic and a stochastic component: the deterministic component is usually a set of
nonlinear differential equations, while the stochastic component appears in the form of
stochastic states, and process and measurement noise. The Kalman Filter (for linear
systems) and the Extended Kalman Filter (for nonlinear systems) are the main
expressions of the mechanistic approaches, where the combined model is used in
conjunction with process measurements to on-line reconstruct unmeasured states and
parameters. The Luenberger and the Extended Luenberger Observer are the deterministic
analogs of the Kalman and the Extended Kalman Filter in cases where the stochastic

component can be neglected.

Under this general class, several Fault Detection and Diagnosis schemes of
various degrees of complexity have been proposed. Mehra and Peschon (1971) proposed
simple statistical tests on the innovations (i.e., the difference between the actual system
outputs and the expected outputs based on the model) as a Fault Detection scheme.
Willsky and Jones (1976) and Willsky (1976) extended the concept of interrogating the
innovations to a Fault Diagnosis scheme, by incorporating models for each suspected

failure and applying a sequential likelihood test on the innovations.

The so called parity space approach is another major category in the class of

mechanistic Fault Detection and Diagnosis schemes. Under this approach, the



consistency (parity) of the mathematical equations is checked by using the measured
process outputs. The design parameter of the method is the generation of linear
equations, whose residuals should be zero, if the process measurements are taken from
normal plant operation. The onset of significant residuals indicates the existence of a
fault, while the direction of residuals indicates the origin of the fault (Chow and Willsky,
1984, Gertler 1988, Frank, 1990).

The Parameter Estimation (Isermann, 1984), and the Fault Detection Filter (Frank,
1990) approach are two other major mechanistic approaches. In the first approach, the
physical process parameters are related to model parameters. The latter are estimated on-
line and the key idea is that changes in the physical parameters will be reflected as

changes in the estimates of the model parameters (Isermann, 1984, 1993).

In the Fault Detection Filter approach (Frank, 1990), a bank of deterministic
observers is created, with each observer designed so that the residuals possess certain
directional properties, indicative of a particular fault. An extension of this approach is the
work of King and Gilles (1990). They consider nonlinear stochastic systems and thus
they propose a bank of Extended Kalman Filters (EKF), with each filter corresponding to
a specified fault. They also incorporate a Markov model technique, so that the a priori
probabilities of the various faults are recursively updated as functions of the state

variables.

Watanabe and Himmelblau (1984) used a two-step approach; in the first step, a
deterministic observer is used to reconstruct the unmeasured states; in the second step, an
EKF is used to reconstruct the values of stochastic model parameters, whose varying
values represent faults. However, their method is specifically designed for systems that
are linear in the state and input variables and nonlinear in the varying model parameters.
Robertson and Lee (1993) proposed a constrained receding horizon state estimator, where
the nonlinear state equations are transformed to algebraic equations via orthogonal
collocation; process parameters are modeled as stochastic states and only faults that

appear as changes in these parameters can be diagnosed.



The work of Fathi et al. (1993) is a combination of a mechanistic and a Pattern
Recognition approach. Specifically, they use an Expert System that captures the domain
knowledge and the problem solving strategy. A hierarchical structure defines a set of
subsystems and a set of rules are used to postulate possible faults. The Expert System is
complimented with a set of EKFs, each designed for a specified fault. Once a fault is
detected and postulated, the corresponding filter is activated and its validity is checked
via a Sequential Probability Ratio Test.

The above references describe just few variants of the mechanistic approach in
Fault Detection and Diagnosis. However, it is not difficult to see why in chemical
engineering applications, State Estimation and Fault Detection Filters via EKFs are the
most popular ones. Nonlinear systems, unknown parameters, model mismatch, process
and measurement noise, can only be handled in a stochastic framework, which renders
impractical the deterministic observer approach. But even when EKFs are used, their
success depends heavily on the quality of the mathematical model used to describe the
system (King and Gilles, 1991). And for that reason, these approaches have not become

widespread in chemical processes (Isermann, 1984, Frank 1990).

1.3  The Pattern Recognition Approach for Fault Detection and Diagnosis

If an accurate process model is imperative for a mechanistic approach in Fault Detection
and Diagnosis, it is not a requirement when one decides to use Pattern Recognition to
perform these tasks. For Pattern Recognition relies mainly on the measured information

from the system; data and not models, convey the most important information.

According to the Pattern Recognition approach, historical data (i.e., patterns) from
the normal operation and from past faults are collected. One can view the normal
operation and each fault as separate classes in which the patterns belong to. These
training data are then processed so that concise information is derived. This procedure is

called feature extraction and its objective is to extract features which distinctly identify



each class and distinguish it from the others. The next step is the design of a decision
scheme that will use the extracted features and will try to classify the patterns in their
classes in an optimal way (Tou and Gonzales, 1974). When a new unknown pattern
appears, the same features are extracted and the decision scheme determines the pattern

class which seems most probable to have generated the new pattern.

Supervised Pattern Recognition refers to the situation where the classes in which
the training patterns belong to are known beforehand. If this information is not available,
the system must find out the pattern classes present in the training data (Tou and
Gonzales, 1974). This is the Unsupervised Pattern Recognition approach and is clearly

more difficult than the Supervised approach.

Thus, information content of the historical data, types of features to be extracted,
and design of the decision scheme, are the three main parameters that affect the
performance of a Pattern Recognition approach in Fault Detection and Diagnosis, with
the first parameter being the most important. If a new fault is not present in the training
data set, then it is not possible to diagnose it correctly. The best that a Pattern
Recognition scheme can do in such a situation is to indicate that the new fault does not
resemble any of the faults existing in the database. These issues will be discussed in

more detail in the next chapter.

1.4  Thesis Objectives and Outline

This thesis will study a Supervised Pattern Recognition approach to Fault Detection and
Diagnosis in chemical processes. As mentioned in Section 1.2, chemical processes are
integrated multivariable dynamic processes, characterized by unknown parameters,
nonlinear behavior and noisy inputs. Creating reliable dynamic models and manipulating
them on-line is not an easy task. For these reasons, a mechanistic approach, although

powerful, will not be followed in this thesis.



On the other hand, the advent of computers has resulted in large amounts of data
collected routinely from processes. Recently, efficient statistical techniques, able to
utilize this wealth of information, have been implemented in monitoring of chemical
plants (Kourti and MacGregor, 1995). However, most of these techniques assume
conditions of steady state, and their extension is problematic when dynamic conditions
apply.

This thesis is an attempt to propose new techniques in addressing the dynamic
nature of Fault Diagnosis in two major classes of processes: continuous and batch
processes. Tools from the area of Speech Recognition are brought in to help dealing with
dynamic patterns of varying duration. Scaling procedures are proposed to remove the
problem of varying magnitude of patterns. Multivariate Statistical Methods are also used

to summarize process information and extract features.

In the next sections of this chapter, the objectives of the thesis are formally
defined and the research approach is presented. In Chapter 2, a review of the Pattern
Recognition approaches for Fault Detection and Diagnosis in chemical processes is given.
This will help us understand the nature of the problem and the limitations that many of
these methods face when confronted with dynamic, multivariate, magnitude and duration
dependent patterns. Chapter 3 presents the theory of Dynamic Time Warping, a
technique used in the recognition of isolated words. It is presented here since Dynamic
Time Warping, in various versions, will be included in all methods presented in the

following chapters.

Chapter 4 presents an off-line method to classify patterns of deterministic faults in
continuous processes. The diagnosis of stochastic fault is studied in Chapter 5; a method
suitable for both off-line and on-line implementation, is presented. The methods of both
chapters address a number of requirements that any Fault Diagnosis scheme must satisfy
if it is to be implemented in an industrial environment. Chapter 6 combines the methods
of the previous two chapters with Principal Component Analysis, to reduce the dimension

of the pattern space. The on-line implementation of the method shown in Chapter 4 is



presented in Chapter 7. In Chapter 8 the problem of monitoring batch processes with
unequal run lengths with be addressed, both for off-line and on-line implementation.
Finally, Chapter 9 summarizes this thesis and its contributions, and proposes directions

for future work.

1.8  Fault Diagnosis in Continuous Processes

Continuous and batch processes are both very important in the chemical industries. Both
types of processes are dynamic, multivariable processes, but each type is characterized by
special features, from a monitoring point of view, that have to be taken into
consideration. This section and the next discuss these features, the requirements,

assumptions and research approach for the two types of processes.

1.5.1 Requirements for a Fault Diagnosis Scheme

Let us assume that a Fault Detection scheme is in place and is signaling that the process
operation is not normal. Process data are now being collected and they constitute the
pattern of a fault. Let us also assume that there exist a database of patterns which
represent previous known faults. The objective is to somehow assess the similarity of the
new, unknown pattern with all the patterns in the database. The similarity will be
computed either using the raw data or, most probably, using extracted features from both
the database patterns and the new pattern. On the basis of maximum similarity, one
would then postulate that the new pattern is an expression of the fault, whose pattern is

most similar to the new pattern.

In order to do this assessment, the pattern classification scheme (feature extraction
and similarity assessment) has to satisfy a number of requirements. These are the
following:

. The classification scheme has to be independent of the magnitude of the patterns;
for example, a step-like fault (bias in a sensor, step change in the feed

composition) can occur with different sizes. The magnitude of the corresponding



patterns will be different, but the fault is the same. However, the information
content of the fault, as measured by the signal to noise ratio of the variables, does
affect the classification, A fault of large magnitude has a large signal to noise
ratio and therefore it will be detected with more certrainty than a fault of smaller
magnitude.

. The classification scheme has to be independent of the time duration of the
patterns and of the plant operating point. Continuous processes operate at various
points to meet demand and quality objectives. Different production levels result
in slower or faster process dynamics. A fault may occur in any of these operating
points, but it must be correctly classified as the same fault.

. The classification scheme should be independent of the direction of a fault. For
example, a feed composition may increase or decrease. If the new fault is a
negative step in the feed composition, the classification scheme should be able to
classify it as such, even if only the pattern of a positive step exists in the database.

. The onset of a fault may not be known exactly, but within a time window. The
classification scheme should be robust to this uncertainty, particularly in an on-
line implementation.

. The classification scheme should be able to handle a large number of noisy
variables. Patterns will be multivariate and the information for a specific fault

may not be in any single variable but in all of them.

These requirements have to be addressed by any Fault Diagnosis scheme if it is to be
implemented in an industrial environment. In the methods proposed in this thesis, some
requirements are addressed at the feature extraction step and the remaining ones at the

similarity assessment step.

1.5.2 Assumptions and Research Approach

For this thesis, it will be assumed that there is a Fault Detection scheme in place which

detects the onset of an abnormal plant operation. There is a considerable amount of work



in monitoring of continuous chemical processes at steady-state conditions and it has been
shown that Multivariate Statistical Methods are very effective in detecting deviations
from the normal operation (Kresta et al., 1991). For that reason, only the problem of
Fault Diagnosis will be investigated in this thesis. Thus, once a fault has been detected, it
will be assumed that a multivariate time series (i.e., the test pattern) is obtained that
constitutes the expression of the fault. It will also be assumed that there exists a database

of reference patterns, each corresponding to a known fault.

In this thesis, faults will be classified into two major categories: deterministic and
stochastic. The cause of a deterministic fault will be assumed to be a randomly occurring
deterministic event, such as a step change of a feed composition. For the class of
stochastic faults, it will be assumed that they are caused by an underlying stochastic
process (e.g., continuous stochastic variations in a feed composition); as such, different
realization of the same fault result in different pattemns in the process variables. In both
cases it will be assumed that the faults are not directly measured but they are observable
through the deviations that they cause in the measured process variables. Finally, for
deterministic faults, it will be assumed that the control system has enough degrees of
freedom to drive the controlled variables back to their setpoints. For the class of
stochastic faults it will be assumed that they have a persistent effect on the process; the
control system will try to bring back the variables to their set points, but this is impossible

unless the underlying stochastic process terminates.

Both the on-line and the off-line implementation of Fault Diagnosis will be
examined in this thesis. In the case of deterministic faults, there is a major difference
between the off-line and the on-line implementation. In the off-line case, there is
available information about both the transient behavior and the final steady-state
conditions. In the on-line case, only part of the transient behavior is available, until
steady-state conditions are achieved. Therefore, any features that depend on the steady-
state conditions after the fault, cannot be used for the on-line diagnosis of deterministic

faults. In the case of stochastic faults, there is no difference between the on-line and off-



line diagnosis since no steady-state conditions can be achieved after a stochastic fault

occurs (unless the stochastic process terminates).

In all cases (deterministic/stochastic, on-line/off-line), appropriate features are
extracted from the reference patterns and the test pattern; finally the similarity between
the features of the test pattern with the features of each reference pattern is assessed. It
will be assumed that the start and the end of the fault is given, but there will be some
uncertainty (i.e., a time window) within which the initial and final points may lay. For
the on-line classification problem, it will be assumed that only the start of a fault is given,

again with some uncertainty.

To design and test the diagnostic method, only simulated data will be used. The
Tennessee Eastman simulation will be used (Downs and Vogel, 1993) with the control
scheme of McAvoy and Ye (McAvoy and Ye, 1994). Figure I.1 in Appendix shows the
plant schematic and the control scheme. The problem was proposed as a test bed for
studies in process control and optimization and it is based on an actual industrial process.
Since its introduction (Downs and Vogel, 1993), it has attracted a number of studies in
control system design (McAvoy and Ye, 1994, Ricker and Lee, 1995a, Ricker, 1996),
modeling and state estimation (Ricker and Lee, 1995b) , optimization (Ricker, 1995) and
Fault Detection and Diagnosis (Ku et al., 1995).

The process has five major components: a gas-phase reactor, a product condenser,
a vapor-liquid separator, a recycle compressor and a product stripper (see Figure I.1 in
Appendix). Since most of the streams are in gas phase, small delays exist between the
different units. However, due to the recycle, the plant is characterized by long settling
times; it was suggested to simulate 24-48 hours of plant operation to fully see the effect

of various disturbances on the product quality as expressed by its composition.

To test the various control schemes, 20 different faults (or, equivalently,
disturbances) can be simulated. Some of them are deterministic (i.e., step changes in
plant inputs, faulty valves) and some are stochastic (i.e., random variations in plant

inputs). Some of them are minor disturbances and the cascade structure of McAvoy and



Ye (1994) handles them without any effect on the product quality. However, some faults
have a very strong effect on the plant (i.e., they cause large variations in both manipulated
and controlled variables) and these are the faults that will be examined in this thesis.

More details on the various case studies will be given on Chapters 4 and 5.

Another feature of the simulation is that it is possible to move the plant to various
operating points. Moreover, by appropriately modifying the computer code, it is possible
to introduce the same faults with varying magnitudes. Both features will be used to test
the proposed methods in correctly classifying the same fault, occurring at different

production levels with different magnitudes.

1.6  Fault Detection in Batch Processes

Batch processes constitute another significant class of chemical processes, particularly in
the production of high added value products, such as specialty polymers, pharmaceuticals
and biochemical materials. Monitoring the operation of these processes is very crucial in
manufacturing consistent, good quality product. Moreover, products from batch
processes are often processed in a series of steps; early detection of a fault at any of these
steps will result in saving energy and plant capacity that otherwise would be wasted. If
implemented on-line, there is also a chance of correcting the fault with an appropriate

control strategy.

1.6.1 Problem Formulation

Monitoring of batch processes faces a number of challenges like i) the lack of fast (if any)
accurate measurements of the product quality variables ii) the absence of steady state,
which renders most of the standard Statistical Process Control approaches inappropriate

and iii) the difficulty of developing accurate mechanistic models.

Recently, Nomikos and MacGregor (1994) have proposed a method for

monitoring batch processes based on Multivariate Statistical Methods. Their method



essentially builds a statistical model for the deviations from the average trajectory of
readily measured process variables, based on data from good quality batches. Then, it
compares the trajectory of a new batch with the average trajectory; any deviation that
cannon be statistically attributed to the common process variation indicates that the new
batch is different from the good quality batches. Their method can be implemented both
off-line and on-line; however, the on-line implementation requires a prediction of the

future behavior of the batch from the current time up to the expected end of the batch.

For the method of Nomikos and MacGregor (1994) to be used, all batches must
have the same time duration and be synchronized. However, when the various steps
along the batch are not automated but are left to the discretion of an operator, batches will
in general have varying duration and will not be exactly synchronized. In such a case
they proposed that the batches be synchronized not with respect to time, but with respect
to a process variable that is strictly monotonic, is not noisy and has the same starting and

ending values for all batches.

This solution assumes that such a variable exists and is easy to determine.
However, there may be several variables in a batch that are not noisy. Furthermore, there
may not be a single variable that is strictly monotonic throughout the whole batch
trajectory and one will have to switch between the selected variables at the appropriate
times. This manual synchronization is time consuming and requires a lot of ad hoc

decisions.

Thus, there two objectives in this part of the thesis. The first objective is to devise
an automated method that will synchronize the varying duration, good quality batches
without the assumptions of the Nomikos and MacGregor synchronization method. The
second objective is to propose a Fault Detection scheme for on-line implementation

which will not require to forecast the future behavior of the batch.

The methods will be based only on the available process measurements. Hence,
Fault Detection will be treated as a Pattern Recognition problem, where the new batch is

compared to the average good quality batch and its similarity to the latter is statistically



assessed. On the other hand, Fault Diagnosis is almost impossible in batch processes
without the use of a mechanistic model. The reason is that the same abnormality will be
expressed differently in the process measurements if it occurs at different stages along the
batch. To correctly classify a fault with a Pattern Recognition approach, it would require
a set of reference patterns corresponding to the same fault occurring at different times;
such a rich database of patterns may not be available. Thus, the studies on batch

processes will focus only on the detection of abnormal operation.

1.6.2 Research Approach

Data from an industrial emulsion polymerization batch process will be used to design the
Fault Detection scheme. Figure 1.4 in Appendix contains a plot of all 10 variables (scaled)
from 31 good quality batches. One can see from the plots that the batches are not

synchronized and do not have the same duration.

The first step will be to design a method that will synchronize them in such a way
that their timing differences are reconciled. Once this is done, one can build the
monitoring scheme of Nomikos and MacGregor (1994) using the synchronized
trajectories. Next, the problem of synchronizing a completed new batch with the
reference set trajectories will be addressed. One can then assess off-line the quality of the
new batch using their monitoring scheme. F inally, a new on-line Fault Detection scheme
will be proposed which uses only information up to the current time and does not require

any forecasting for the future behavior of the batch.



CHAPTER 2

REVIEW OF PATTERN RECOGNITION APPROACHES

FOR FAULT DETECTION AND DIAGNOSIS

This chapter presents an overview of the three major Pattern Recognition approaches:
Artificial Neural Networks, Expert Systems, and Multivariate Statistical Methods, used
for Fault Detection and Diagnosis in petrochemical processes. Their relative merits and
demerits are discussed in the context of the requirements for a robust scheme for Fault

Diagnosis presented in the previous chapter.

2.1 Fault Diagnosis Using Artificial Neural Networks

Artificial Neural Networks (ANNs) have gained high popularity in the recent years in
modeling multidimensional nonlinear input-output relations and in pattern classification
(Lippmann, 1987). Their black box configuration has made them an attractive tool for
many applications where limited knowledge exists about the underlying physical

mechanisms.

An ANN is serially composed of a input layer, a number of hidden layers and an
output layer. Each layer contains a number of nodes and the nodes of each layer are
corrected with the nodes of the preceding and the subsequent layer. When used for
modeling input-output relationships, the first layer of the ANN receives the values of the
input variables; the predictions of the outputs are obtained from the last layer. Thus, for
steady-state relationships, the number of nodes in the first and last layer is equal to the

dimension of the input and output space, respectively. If the relationship is dynamic, then



more nodes have to be added in the first layer to receive lagged versions of the input

variables.

When used for supervised pattern classification, the first layer of the ANN
receives the raw data and/or features extracted from the input patterns and contains the
appropriate number of nodes; the last layer contains as many nodes as the pattern classes
present in the data. A value from an output node close to one indicates that the given
pattern originated from the pattern class corresponding to that particular node (Leonard

and Kramer, 1991).

After the first layer, the input to each node is a weighted linear combination of the
outputs of the previous layer’s nodes. The output of a node is a non-linear function (the
activation function) of its input. Typical activation functions are the sigmoid function

and an unnormalized gaussian function, called the radial basis function.

Training the ANN is the process of adjusting the weights that connect each node
with the nodes of the previous layer. The weights are adjusted so that the net outputs are
as close as possible to the actual values. Depending on the activation function, this can
be a linear or a nonlinear least squares problem. The number of the hidden layers, as well
as the number of nodes in each hidden layer, is found experimentally depending on the
accuracy of the approximation, the computation time, and the trade-off between
approximation and generalization (since most probably the network will be used to

predict the effect or classify input patterns, different from the ones used to train it).

In the context of Fault Diagnosis in petrochemical processes, ANNs have been
used as supervised pattern classifiers. A common characteristic of most of the studies is
that ANNs were trained on simulated, steady-state process data with the aim of detecting

a specified number of suspected faults.

Venkatasubramanian and Chan (1989) used such an ANN and compared it against
the performance of an Expert System to diagnose faults in a fluid catalytic cracking unit.

The ANN was able to generalize its knowledge to diagnose combinations of static faults



that were not used to train it, as well as to give an indication of the possible faults when it
was fed with incomplete data. In a subsequent paper (Venkatasubramanian et al. 1990), a
more complicated example was studied and it showed the ability of the ANN to correctly

diagnose single or multiple static faults when fed with noisy data.

In another work, Watanabe et al. (1989) designed a Fault Diagnosis scheme for
static faults that consisted of 2 ANNs in series : the first network identifies the fault,
while the second identifies its severity level. Fan et al. (1993) approached the same
problem (diagnose a static fault and its severity in a simulated process): they expanded
the input space of an ANN by adding a number of functional units to the input layer.
Although their network can correctly classify the faults and their severity, their approach
is less intuitive than the 2-stage ANN.

In a more realistic application, Hoskins et al. (1991) designed an ANN to diagnose
faults in a simulation of a large chemical plant with 418 inputs and 20 outputs, and they
were able to correctly identify single and multiple faults using only static patterns. Along
these lines is the work of Sorsa et al. (1991) but their study goes further to investigate the
effect of feeding dynamic data to an ANN which was trained only on steady-state data.
Their examples show that some faults can be diagnosed from the initial part of their
response, while other faults can be detected correctly only after steady state is achieved.
Naidu et al. (1990) used ANNSs to detect sensor biases of different magnitude and onset
time in a single input-single output control system. They used as an input to the network

the cosine transform of the deviations of the model prediction from the process output.

In all the above applications, the sigmoid function was used as the activation
function of the hidden and output layers of the network. However, despite of the
preliminary encouraging results, it was soon realized that this activation function had
serious undesirable properties. Kramer and Leonard (1990) illustrate these problems: i)
the global character of the sigmoid function may result in incorrect classification, ii) the
many local minima in the determination of the optimal weights, iii) the placement of the

decision surfaces close to the edges of the classes, resulting in extrapolation errors.



In a subsequent work, Leonard and Kramer (1991) proposed that radial basis
function be used instead of the sigmoid. With this activation function a novel fault will
not be classified as one of the known ones. The decision surfaces are conservatively
placed, which results in fewer extrapolation errors. A k-means clustering algorithm and a
2-nearest neighbor heuristic was used to find the center and the support of the function for
each node; the weights are determined using linear least squares. These features were
verified by the works of Sorsa and Koivo (1993) and Guglielmi et al. (1995); in both
studies the radial basis function ANNs showed their advantages in diagnosing static
faulty patterns over the sigmoid function networks. Similarly, Kavuri and
Venkatasubramanian (1993) proposed an ellipsoidal function to be used as an activation
function, together with a fuzzy clustering algorithm and heuristic rules to locate the center

and axes lengths for each node.

The studies of Cooper et al. (1992) and Megan and Cooper (1995) considered
dynamic data. Their objective was to adapt the proportional and integral mode of a
controller (which were the outputs from the network) by examining univariate dynamic
input and error patterns of fixed length (i.e., network inputs). Networks designed
specifically for modeling dynamic input-output relationships are discussed in Hush and
Horme (1993).

Finally, Bakshi and Stephanopoulos ( 1993) designed a network whose activation
functions are drawn from a family of orthonormal wavelets. Although there are
advantages in doing so (i.e., they are localized functions, the network can learn in
increasing resolution and the weights are found by linear least squares), the

implementation of the network becomes too difficult for multidimensional static patterns.

The applications of ANNs described above indicate that Fault Diagnosis via
ANNS has dealt mainly with the diagnosis of static faults. On the other hand, industrial
processes are dynamic systems and sometimes they need considerable amount of time to
attain steady-state conditions after a fault. Incorporating dynamic information into an

ANN leads to large networks whose training requires rich databases. However, only few



realizations of faults usually exist and one may have to train the network using simulated

dynamic data, if a reliable dynamic process model exists (Leonard and Kramer, 1991).

To avoid erroneous classification, localized functions would be needed and for the
size of the required network, the determination of their center and extent would be very
tedious, if not impossible. Moreover, the ANN would learn the temporal correlations and
the correlations across variables of the faults used to train it; thus, it may not be robust in
correctly classifying realizations of the same fault with slightly different correlations (e.g.,

at a different operating point).

2.2 Fault Detection and Diagnosis Using Experts Systems

Another tool that has been used for Fault Detection and Diagnosis in the petrochemical
processes is the family of Expert Systems. It would be very advantageous to somehow
code the knowledge-based reasoning of a process expert, combine it with a mathematical
model of the system and afterwards use this device to supervise the plant operation.
Knowledge-Based Systems are Expert Systems in which the diagnosis procedure uses
heuristic rules drawn either from process knowledge or from simulations of a process
model. On the other hand, the knowledge base of Model-Based Expert Systems is
directly the process model; the pattern recognition is then applied on the residuals of the
model equations. From this point of view, Model-Based Expert Systems resemble the
parity space approach for Fault Diagnosis, discussed in Section 1.2. In this section, a
summary of Expert Systems approaches for Fault Diagnosis from both categories is

presented.

In one of the earlier works, Shum et al. (1988) designed a Knowledge-Based
System for Fault Diagnosis that constructs a malfunction hierarchy: each node in the
hierarchy contains qualitative knowledge of a process unit and is connected with
neighboring nodes in a way similar to the way that the process units are connected. The

last nodes in the hierarchy are root causes for various faults. Starting from a unit that



gives a fault symptom, the reasoning process consists of traveling down the tree using the
rules in each node and the symptoms, until a root cause node is reached. The Expert
System is designed for a paxﬁcular plant in mind, and if the plant configuration changes
the system has to be redesigned.

Along similar lines is the work of Rich and Venkatasubramanian ( 1987). In their
Knowledge-Based system, a library of process units in constructed and a set of rules,
drawn from a process model, is given to each unit. When a fault symptom in any of the
units appears, a possible fault is located based on the rules and the plant structure. Their
method can be applied only to plants that use the units that exist in the library, otherwise

a new set of rules must be written.

Kramer (1987) designed a Model-Based System where the knowledge base
consists of model equations and the assumptions under which the equations are satisfied.
The main idea is that if the plant measurements do not satisfy the model equations (i.e.,
the residuals are larger than some prespecified tolerances), then at least one of the
assumptions is no longer valid, thus a fault has occurred. The belief of an assumption
being violated was dependent on the magnitude of relevant residuals. With this approach,
faults are not only Boolean events, but also time-evolving phenomena; e.g., the gradual
deterioration of an equipment. However, it was not possible to distinguish between faults

that give similar symptoms since all assumptions were considered equally important.

These issues are discussed in the work of Petti et al. (1990). They used model
equations as their knowledge base and the model residuals to detect faults. Moreover, the
sensitivity of each equation to the relevant assumptions was taken into account in the
fault detection algorithm. In that way, they were able to distinguish between similar
faults; for the case of multiple faults, their method will find all possible fault
combinations that could yield a given pattern of symptoms. Chang et al. (1994) proposed
a similar Model-Based Expert System, where more refined measures are constructed to

distinguish between faults with similar symptoms.



All the above works consider only steady-state patterns. However, as emphasized
in Chapter 1, dynamic patterns are strong indications of specific malfunctions and if
examined, could provide faster and more reliable detection algorithms. Under this main
idea, Konstantinov and Yoshida (1991 and 1992) tried to build a Knowledge-Based
system that would consider the temporal shapes of variables. The rules do not only
include values of the process variables, but also the shape of their evolution in time. A
library is created with a set of primitive transient patterns whose shape is qualitatively
described by the signs of the first and second derivative. During on-line implementation,
the raw data are approximated with low degree polynomials, from which the signs of the
first and second derivatives are estimated; a similarity index with all the library patterns is
then estimated. With this approach, the Expert System was able to accurately detect in
time the transition between the various stages of a biological process and appropriately

modify the control strategy.

Vinson and Ungar (1995) tested two Knowledge-Based approaches for dynamic
Fault Detection and Diagnosis based on qualitative simulation. The first approach uses
qualitative models for each fault; plant data are examined and their behavior is
qualitatively compared with each expected faulty behavior. The second approach uses
qualitative and semi-quantitative reasoning (bounds on variables); the data are examined
and if they do not agree with the expected normal behavior, a search is done among
unit(s) in which the fault appears, to determine possible faults that result in the observed
behavior. The first approach requires good qualitative knowledge of the faults, the

second may be impractical in large plants due to a large number of possible faults.

Finally, the work of Cheung and Stephanopoulos (1990a and 1990b) and Bakshi
and Stephanopoulos (1994a and 1994b) on Fault Detection and Diagnosis for batch
processes should be mentioned. In a series of papers, the steps of an complete
methodology are presented. First, a database of known quality batches is required, which
shows the evolution of each measured variable. For all batches, each variable is

decomposed into a series of descriptions in various time scales using the wavelet



decomposition of signals. Moreover, all the descriptions are qualitatively represented by
a series of segments called episodes, during which the signs of the first and the second
derivative remain constant. Next, using the theory of inductive decision trees the method
finds the features in the variables that will give the best classification by examining
initially the qualitative and, if necessary, the quantitative representations. After this off-
line analysis is done, a set of rules are drawn which constitute the knowledge base of an
Expert System. This Knowledge-Based system is then used on-line to detect static or
dynamic patterns that may result in a poor quality batch.

In general, reliable Knowledge-Based Expert Systems require good knowledge of
the process behavior, both in normal operation and when different realizations of various
faults occur. Also, the more rules are written, the more difficult it becomes to examine all
the possible paths through a decision tree and to verify that all ‘if-then’ statements are
consistent, particularly for complex multivariable plants. On the other hand, reliable
Model-Based Expert Systems require accurate process models. These models may not be

available, particularly when the objective is Fault Diagnosis using dynamic data.

2.3 Fault Detection and Diagnosis Using Multivariate Statistical Methods

Recently Multivariate Statistical Methods have been used for Fault Detection and
Diagnosis in chemical processes (Kourti and MacGregor, 1995). Process computers now
collect masses of data from a multitude of plant sensors every few minutes or seconds.
Evaluating this mass of information using classical univariate methods (e.g., linear
regression, univariate statistical control charts) is often inadequate because it is not only
the evolution of each variable by itself that gives useful information about faults, but also
the evolution of each variable relative to the other variables. This correlation structure
among the variables is imposed by the physical mechanisms which govemn the process
operation. Multivariate Statistical Methods are designed to model this correlation

structure; furthermore, they can project the information in low dimensional spaces,



expressed in fictitious uncorrelated variables called principal components. The evolution

of the process can then be observed in the space of the principal components.

These methods can also handle noisy measurements and missing data, two very
real problems in plant operation. For all these reasons, Multivariate Statistical Methods
have been successfully used in monitoring of multivariable chemical processes. In this
section, some applications of the two most widely used methods: Principal Component
Analysis (PCA) and Partial Least Squares (PLS) will be reviewed. The objective is to
show that, although these method are very efficient in detecting plant abnormalities, they

are not appropriate for diagnosis and classification of dynamic patterns.

Singular Value Decomposition in numerical analysis, and Karhunen-Loeve
Expansion in Pattern Recognition (Tou and Gonzales, 1974, Wold et al., 1987) are two
other names for PCA. PCA summarizes the large number of correlated measurements
taken from a process at steady state, with a small number of fictitious, uncorrelated
variables called principal components. The first principal component is the direction
along which the measurements exhibit the greatest variability. Subsequent principal
components account for the remaining variability, while also being orthogonal to the
subspace defined by the previous principal components. The number of principal
components can be determined by a variety of techniques like cross-validation (Wold et
al., 1987), the broken stick rule (Jolliffe, 1986) and parallel analysis (Ku et al., 1995).

PLS is another widely used Multivariate Statistical Method (Geladi and Kowalski,
1986). PLS is applied when correlated quality variables are also measured together with
the process variables. The objective of PLS is to build a model to predict the quality
variables based on information from the process variables. PLS also finds fictitious
variables (called latent variables) in the process variables; however these latent variables
capture the directions in the process variables that are most predictive of the quality
variables. Again, cross-validation can be used to determine the number of required latent
variables (Geladi and Kowalski, 1986).



To use either PCA or PLS for process monitoring, data from normal operation are
first collected. Then, PCA/PLS models are constructed from these data (the principal
components and the descriptions of the data with respect to the principal components).
Also, under some distributional assumptions, confidence intervals are created for these
new descriptions and for various other statistics; e.g., the square of the error between the
raw data and their predictions from the PCA/PLS model. In a Pattern Recognition
framework, this is the feature extraction stage. When new operating data become
available, the developed PCA/PLS models are applied, the statistics are computed and are
compared to the corresponding confidence intervals. If the statistics are confined in their
confidence intervals, there is no evidence that the process operation is not normal and

vice versa.

Kresta et al. (1991), Slama (1992), Hodouin et al. (1 993), and Dayal et al. (1994)
presented applications of the above principles in monitoring various continuous
processes: fluidized bed reactor, extractive distillation column, a fluidized catalytic
cracking unit, grinding and flotation units in a mineral plant, a Kamyr digester. In all
these studies, process faults expressed themselves with deviations of the statistics from

their confidence intervals.

MacGregor et al. (1994) proposed the use of Multi-block PLS, a variant of the
normal PLS that can handle multiple blocks in the process and quality variables matrices,
in situations where the process can be naturally blocked into subsections. They proposed
the use of monitoring charts for each of the subsections, as well as for the entire unit, so
that faults could be located more easily. Moreover, they proposed diagnostic tools based
on the underlying PLS model to pinpoint the variables that do not follow the expected
correlation structure, and consequently, are at fault. With the exception of Slama (1992)
and Dayal et al. (1994) where lagged version of variables were used to formulate the PCA
and PLS models, all other applications mentioned above used only steady-state data to

detect normal from abnormal operation.



The work of Nomikos and MacGregor (1994, 1995a and 1995b) and Kourti et al.
(1995) was the first application of PCA/PLS where dynamic data were used to monitor
the operation of batch processes. Their method (described in Subsection 1.6.1) assumes
that all batches have the same duration; thus, time can be treated as an independent
variable for the purposes of model building and monitoring. Once a faulty batch is
detected, diagnostic tools are used to determine which variable at which time does not

follow the expected correlation structure.

Recently, there have been attempts to apply PCA in continuous processes using
dynamic data. Dunia et al. (1996) use PCA to diagnose faulty sensors. Each variable is
appropriately reconstructed and by examining the associated residuals one can distinguish
between a faulty sensor and an abnormal operating condition. To reduce the effect of
measurement noise and process dynamics, a moving window is used to filter the
residuals. However, no diagnostic tools are given for the case that a process abnormality

occurs.

Raich and Cinar (1994) and Ku et al. (1995) used PCA with dynamic data to
diagnose the various faults at the Tennessee-Eastman simulation. They both construct
PCA models for the normal operation and for each fault. Ku et al. (1995) used lagged
versions of the variables so that the PCA model accounts for dynamic relationships
among the variables. Both approaches were capable of detecting and diagnosing the
faults. However, faults of different magnitude/direction, occurring at different operating

points were not considered.

To summarize, PCA and PLS have been proved very useful in modeling the
correlation among many highly correlated variables and in detecting deviations from the
normal plant operation. To detect a fault, it is sufficient to see the process moving
outside of the normal operating region in the reduced space. However, to diagnose a
dynamic fault, one has to compare the patterns resulting from the process excursion out of
the normal operating region. This has to be a robust comparison, for almost no fault

realization will be exactly similar to known past faults. Altematively, one could use a



different PCA model for each fault. However, to diagnose all the possible variations of a
fault (e.g., occurring at a different operating point) a different model PCA has to be
created, which means an unrealistically rich database of past faults is required. Thus, the
conclusion from this discussion is that PCA/PLS are not appropriate for diagnosis of

dynamic faults.

24 Summary and Conclusions

This chapter summarized three popular Pattern Recognition approaches for Fault
Detection and Diagnosis: Artificial Neural Networks, Expert Systems and Multivariate
Statistical Methods. All of them were found inefficient when faced with the requirements
presented in Subsection 1.5.1 for a robust Fault Diagnosis scheme in multivariable
dynamic processes. The main disadvantage of all three approaches is that they require a
rich database, with every possible variation of a fault; such database is unlikely to exist.
Also, training of a large Neural Network or constructing a sufficient set of rules for a

complex process are both difficult tasks.

To classify a dynamic pattern in a magnitude independent way, magnitude
invariant features have to be extracted. Moreover, to classify dynamic patterns that are
not perfectly aligned and are characterized by similar, but possibly expanded or
contracted temporal correlations, a flexible pattern matching method is required. The
method should be able to appropriately translate, compress, and expand the patterns so
that the magnitude invariant, similar features are matched. The next chapter present
Dynamic Time Warping, a method used in the area of Speech Recognition, which is
capable of performing this kind of pattern matching.



CHAPTER 3

PATTERN MATCHING VIA DYNAMIC TIME WARPING

Dynamic Time Warping is a robust method for pattern matching that has been used
extensively in the area of Speech Recognition. The simplest version of Dynamic Time

Warping, namely its use in the recognition of isolated words, is discussed in this chapter.

3.1 Introduction

Consider two multivariate time series, R and T, each containing a realization of a fault.
Each multivariate time series will be considered to be a pattern. Pattern R will be
assumed to be a pattern from a database of existing reference patterns; each reference
pattern is the expression of a known fault. T is the new, or test, pattern. The objective is
to somehow find which reference pattern is most sin:ilar to the test pattern in some
distance sense and classify on the basis of minimum distance. This is a simple 1-nearest

neighbor classifier (Tou and Gonzales, 1974).

The vectors in each pattern may contain either the raw data as recorded by the
sensors or (most probably) some features extracted from the data. These features may
vary from simple filtered estimates of the raw data to spectral estimates or to parameters
of a specific time series model. The latter is the procedure applied in Speech
Recognition; the speech signal is discretized and normalized by adjusting the maximum
signal amplitude. Next, the signal is segmented to short overlapping segments, and from
each one of them acoustic parameters are extracted. These may be either spectral
estimates and/or coefficients of an autoregressive model of constant order. In any case,

either with raw data or with some set of features, patterns R and T are viewed as two time



series of respectively r and t N-dimensional vectors (frames, in the Speech Recognition
nomenclature, O’Shaughnessy, 1986, Silverman and Morgan, 1990). Both R and T are
stored in matrix form, where the columns represent features and/or variables and the rows
represent successive vectors in time. Thus, R and T are matrices of dimension r x N and

tx N, respectively.

Now, the objective is to somehow estimate the similarity between patterns R and
T in some distance sense. If the number of vectors in the two patterns were equal, i.e.
r =t, then a logical procedure would be to estimate the quadratic distance between each
vector in R and T (characterized by the same time index), and average these distances.
Thus, if R(i,:) and T(i,:) are the i vectors in the patterns R and T, the local distance,

d(i,i), between these two vectors is:
d@i,i) = (R(@,:)-TGE:)WRGE:) -TG3,:))T @B.1

and thus the average distance, D(t,r), between R and T would be given by':

¢

d(,i
D) = _§ t( ) (32)
When W is set equal to the identity matrix I, the Euclidean distance 1s obtained in
Eq (3.1), while the Mahalanobis distance is obtained when W is equal to the inverse of
the covariance matrix S of the features in the reference pattern vectors (O’Shaughnessy,
1986). The Mahalanobis distance has its origin in statistical decision theory, where each
vector of the reference pattern R can be viewed as the mean of an N-dimensional
multivariate normal distribution. Bayes’ rule will select that reference pattern whose

density was the most likely to have generated the test pattern (assuming all pattern classes

' D(t, T)is a special case of a general form of a normalized total distance to be formally described in
Section 3.3.



are equally probable). Thus, if the probability density function for a feature vector T(,:),
p(T@,)), is:

PTG = @) * 8 Fong) - (206 -RG0)87 (6 Re)'| 63

then, for the particular i vector, Bayes’ rule will select among the reference pattern
classes the one which maximizes p(T(,:)), assuming equally likely reference classes.
With the same argument, one can view the summation of distances in Eq (3.2) as the
logarithm of multiplication between probabilities, assuming independence among

successive vectors in both R and T patterns.

However, it is rarely the case that the two patterns have the same number of
feature vectors. This will impose a decision: which vector of the test pattern must be
compared against which vector of the reference pattern. There is also a more subtle
situation: even if the two patterns contain the same number of vectors, these may not be

necessarily aligned in time. Two examples will illustrate this point.

The first comes from Speech Recognition (O’Shaughnessy, 1986): consider two
different utterances of the word ‘sues’ with the same number of frames. Most probably
the difference between them will be in the duration of the sound /u/ rather than in the
sounds /s/ and /z/ in the start and end of the word. A linear, frame-to-frame comparison
according to Eq (3.2) will produce a large distance measure, which may result
erroneously in classifying the two words as being different. The second example
considers pattern classification in chemical processes. Consider two realizations of a
step-type disturbance, where the step change occurs at different times from the origin.
Also assume that one realization occurs at an operating point corresponding to a lower
production rate. When the process operates at this operating point, it will attenuate the
step change in a faster and more oscillatory way. Again, a linear, vector-to-vector
summation of distances between the vectors of the two patterns will result in a large

average distance and possibly in wrong classification.



Thus, what is required is a method to align similar characteristics in the two
patterns. Dynamic Time Warping (DTW) is such a method. DTW uses the principle of
Dynamic Programming to nonlinearly warp the two patterns in such a way that similar
events are aligned and a minimum distance between them is obtained. DTW will shift
some feature vectors in time, compress some and/or expand others so that a minimum

distance is achieved (Nadler and Smith, 1993).

Consider again the two patterns and let j and i denote the time index of the R and

T pattern, respectively. DTW will find a sequence of K pointsona txr grid:

F o= {c1),c),..., k), ..., ) } (3.4)
where ck) = (i), jk)) (3.5)
and max(r,t) S K<r+t (3.6)

For a symmetric DTW algorithm (to be explained in the following paragraphs), this
sequence can be viewed as defining a path on the t xr grid that optimally matches each
vector in both patterns so that a normalized total distance between them is minimized
(Sakoe and Chiba, 1978). Figure 3.1, (taken from O’Shaughnessy, 1986), illustrates the
main idea behind DTW for two univariate patterns, R and T. By proceeding vector by
vector through both patterns DTW finds the best vector in R against which to compare
each vector in T, and vise versa (O’Shaughnessy, 1986).

As will be explained in the paragraphs to follow, there are many variants of the

DTW algorithm. However, all of them can be classified either as symmetric or as
asymmetric.



R()

Figure 3.1: Example of nonlinear time alignment of a reference R and a test T pattern
using Dynamic Time Warping.



In the symmetric versions, the time index i of the test and the time index j of the reference
pattern are both mapped onto a common time index k, as Eqs (3.4) to (3.6) depict. The
two patterns are considered to be equally important. The optimal path will go through
each vector in both patterns. If the roles are reversed (i.e, R is considered as the test and
T as the reference pattern) and their placement in the grid is interchanged (i.e., R is
placed on the horizontal and T on the vertical axis), a symmetric DTW algorithm will
give the same optimal path and the same total distance.

On the other hand, an asymmetric DTW algorithm will perform one of the
following two tasks:
@) it will map the time index of the reference pattern on the time index of the test
pattern or vice versa, or,
(i) it will map both time indices in a common time index, but it will tend to expand

or compress one pattern relatively to the other.

For both tasks, the two patterns are not considered equivalent. Hence, if their role is
interchanged, a different optimal path and a different optimal normalized total distance
will be obtained. The most common asymmetric DTW algorithms map the time index of
the pattern placed on the horizontal axis (i.e., T, in this discussion) onto the time index of
the pattern placed on the vertical axis. In such a case, the common time index, k, is the
time index, i, of the horizontally placed pattern, T, and the optimal path contains exactly t

points, i.e.,
F o= {c),c@).... e, c0) } (3.7

where e = (,j@) (3.8)

The above description implies that the path will go through each vector in the T pattern,
but it may skip vectors in the R pattern.



Nonetheless, both symmetric and asymmetric DTW algorithms can be cast in the
same framework and a unique solution can be found using the method of Dynamic
Programming. This can be done by appropriately specifying the values of specific

parameters, as it will be explained in the following sections.

3.2 Local and Global Constraints

In order to find the best path through the grid of tx r points, several factors of the DTW
algorithm have to be specified. These include: constraints on the endpoints of the path,
local continuity constraints that define localized features of the path (i.e., slope), global
constraints that define the allowable space for the path, and, finally, distance measures

that will be used to define the optimization problem.

The most common, and simplest, endpoint constraints impose that the two
extreme points of both patterns are matched. That implies that the first, ¢(1), and the last,

¢(K), path points are as follows:

(1) = (1,1) (3.92)

and cK) = (t,1 (3.9b)

These constraints are useful when the initial and final points in both patterns are located
with certainty. However, when there is uncertainty about the location of the two extreme
points, various endpoint constraints are imposed (Rabiner et al., 1978) which specify an
allowable region where the first and last path point may be placed (see Figure 3.2). Their
implementation depends on whether a symmetric or an asymmetric DTW algorithm is

used and it will be explained in detail in Section 3.4.

The local continuity constraints reflect physical considerations (e.g., events should
be compared in their natural order in time) and they also guarantee that excessive

compression or expansion of the two time scales is avoided (Myers et al., 1980).
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Figure 3.2: Allowable regions for the end points of the optimal path.

The first requirement is satisfied by forcing the path to be monotonous of non-negative

slope. This can be expressed as:

ik+1) = i) (3.102)

jk+1) 2 jk) (3.10b)

The second requirement, (i.e., to avoid excessive compression or expansion of the
two time scales), is achieved by not allowing the local slope of the path to exceed a
specified range. This is accomplished by specifying a set of allowable predecessors for
each (i,j) point in the grid: if (i,j) is the k™ path point, then the previous (k-1)" path
point can only be chosen from a set of specified grid points. Figure 3.3 illustrates

common local continuity constraints and the corresponding slope range that they define.



In Figure 3.3(a) the Itakura local constraint is shown (Itakura, 1975). For each
(i,j) point in the grid, only three predecessors are allowed: (i-1,j), @i-1,j—1) and
(i-1,j=2). Or, in other words, the only way to reach the (i,j) point is either through
the (i-1,j) orthe (i~1,j—1) or the (i—1,j—2) point. The last local transition (i.e.,
going to the (i,j) point through the (i-1,j-2) point) is characterized by a slope of 2:
one horizontal and two vertical steps. Thus, a slope of 2 is the maximum slope allowed.
On the other hand, two consecutive horizontal transitions are not allowed, as Figure
3.3(a) shows. That is, the local transition from point (i,j) to point (i—1,j) will not be
considered at all, if the optimal way to go to point (i-1,j) is through the (1 -2, j) point.
This means that whenever a horizontal local optimal transition exists (i.e., with 0 slope),
it has to be followed by a transition that has slope of either one or two. This results in a
minimum allowable local slope of 1/2 for the path. Hence, the Itakura local continuity
constraint results in a slope range of [1/2, 2]. Moreover, it is an asymmetric constraint
since horizontal local transitions are treated differently from vertical transitions; in fact,

vertical transitions are not even considered.

Figures 3.3(b), 3.3(c) and 3.3(d) illustrate other types of local constraints, the so
called Sakoe-Chiba constraints (Sakoe and Chiba, 1978). All of them restrain the slope
of the optimal path by defining a set of allowable predecessors. The local constraint of
Figure 3.3(b) is an exception to the above statement for it does not impose any restriction
on the slope of the path; the path can follow horizontal or vertical local transitions with
no restriction on their length. On the other hand, the local constraint shown in F igures

3.3(c) and 3.3(d) restrict the slope of the path to [1/2,2] and [1/3,3], respectively.
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Figure 3.3: Typical local continuity constraints:

(a) Itakura local constraint, allowing slopes in [1/ 2,2]

(b) Sakoe-Chiba local constraint; no constraint on slope
(c) Sakoe-Chiba local constraint; allowing slopes in [1/2,2]

(d) Sakoe-Chiba local constraint; allowing slopes in [1/3,3].



The way to read these local constraints can be illustrated with the following
example. Consider the upper local transition of the Figure 3.3(c). It indicates that the
only way to reach the (i,j) from the (i-2,j-1) point is through the (i-1,j) point.
Moreover, all of them are symmetric since for each (i,j) point the possible predecessors

are located in symmetrical local transitions about the diagonal.

One can extend these local constraints so that the desired range of slope is
obtained. However, as it will be shown in the next section, this will substantially
complicate the Dynamic Programming-based implementation. An easier way to impose
constraints on the slope of the path is to use the local constraint shown in Figure 3.3(b),
combined with a check on consecutive horizontal or vertical optimal local transitions.
This modification will result in a symmetric constraint with the desired slope range.
Thus, if m is the maximum number of allowable consecutive horizontal or vertical local

transitions, the slope of path will be restricted between 1/ (m+1) and (m+1); ie., a

slope range of [1/(m+1), m+1].

If the local constraints define a set of predecessors for each (i,j) point, the global

constraints define a subset of the t x r grid as the actual search space. Most of them need
not be explicitly imposed in the optimization problem. This is due to the fact that the
implementation of most of the local continuity constraints automatically implies the
global constraints. For example, assume that any of the local constraints of F igures 3.3(a)
or 3.3(c) is used, in conjunction with the fixed-endpoint constraints of Eqs (3.9). Then the
actual search space will be the area included by the lines of slope 1/2 and 2, emanating
from the first (1,1) and the last (t,r) path point. This is illustrated in the Figure 3.4(a):

the search area is the shaded parallelogram (Itakura, 1975). In the case that the number of
frames in the test pattern is twice (or half) of those in the reference pattern, the allowed

search space is reduced to the diagonal line (Silverman and Morgan, 1990).

Figure 3.4(b) shows the band global constraint. This constraint does not allow the
path to deviate + M grid points from the linear path starting at the point (1,1) (Sakoe and



Chiba, 1978). For a feasible search space to exist, M has to be at least equal to or greater
than the absolute value of the difference between the number of feature vectors in the test
and in the reference pattern, i.e., M 2|t—r|. This global constraint is usually used in
conjunction with the local constraint of Figure 3.3(b), that is, when no restriction is
imposed on the slope of the path. The combination of the two constraints will prevent
large deviations from a linear path, although this may be a indication of the dissimilarity
between the two patterns. When the band constraint is present, this dissimilarity will

appear as an inflated total distance between the two patterns.

Moreover, it is possible to combine different local and global constraints. For
example, one can use the local constraint of Figure 3.3(c), together with the band global
constraint. In such a case, the search space will be the intersection of the two shaded

regions of Figures 3.4(a) and 3.4(b).

Finally, the local distance between two vectors defined in Eq (3.1) is not the only
measure of dissimilarity that can be used. The type of distance used is mainly dependent
on the type of features that each vector contains (O’Shaughnessy, 1986). If a quadratic
distance is selected, then any arbitrary positive definite matrix W can be used. The
Mahalanobis distance has its basis in statistical decision theory (Tou and Gonzales,
1974); however it may be difficult to obtain an accurate estimate of the covariance matrix
of the features, W, if highly correlated features are used. The identity matrix I can also
be used, if very little knowledge exists about the extracted features.

After introducing the main idea behind DTW, the various constraints that have to
be imposed, and the selection of the local distance measure, the solution algorithm will
now be presented.. In the next section, the optimization problem is defined and then its

solution by the method of Dynamic Programming.
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Figure 3.4: Typical global constraints:
(a) Itakura global constraint
(b) Sakoe-Chiba band constraint.



3.3 Solution Via Dynamic Programming

As mentioned above, the objective of DTW is to find the best path through a grid of t xr
vector-to-vector distances such that some total distance measure between the two pattems
is minimized. A general form for such a distance measure is (Sakoe and Chiba, 1978,
Myers et al., 1980) :

K
Y. d®), jK) wk)

D(t,r) = ! New) (3.11)

where:  D(t,r) is the normalized total distance between the patterns,
d(ik), j(k)) is the local distance between the T(i(k),:) vector of the test

pattern and the R(j(k),:) vector of the reference pattern,i.e.,

d(i(k), j(k)) = (T(i(k),:) - R((k),:)) T W (T(i(k),:) - R(i(K),:))

w(k) is a nonnegative weighting function for the d(ik), j(k)) local
distance, and,

N(w) is a normalization factor which is a function of the weighting
function w(k).

D(t,r) sums all the local distances d(i(k), j(k)) that lie along the path, weights them by

w(k), and divides the sum by the normalization factor N(w).

Thus, the optimal path F will result from the solution of the following

minimization problem:

D@, = min [ Dt,p) ] (3.12a)

and F= argmin] D(t, )] (3.12b)



where D(t,r)is the Minimum Normalized Total Distance between the two patterns.

The N(w) parameter is a scalar and serves as a normalization factor for the
distance estimation. Its value will depend on the type of the weighting function w(k) that
is used. Its purpose is to make the normalized total distance independent of the number
of path points K and the lengths of the two patterns, t and r, so that distances from
different R-T pairs can be compared. For example, consider the test pattern T and two

reference patterns Ry and R; with r; and r; feature vectors respectively; assume 1, >r,.

Since R; is a pattern of longer duration than R;, an unnormalized total distance between
R, and T will involve the summation of more local distances than between R, and T.
This can possibly lead to incorrect classification, even if T is actually more like R; than
Ra. Thus, the total distance should be normalized to take into account these possible

differences in the duration of the patterns.

The weighting function w(k) depends on the local continuity constraints and
serves two purposes. The first is to provide more flexibility in the DTW algorithm by
weighting the local distance d(i(k),j(k)), depending on the local transition by which the
(i(k), j(k)) path point can be reached from the (i(k - 1),j(k -1)) previous path point. As
Figures 3.3 show, for any (i,j) point in the grid, a set of allowable local transitions is
defined by which the (i,j) point can be reached; w(k) allows some local transitions to be
treated preferentially (i.e., assign small weights to them) over some others. The second
purpose of w(k) is to make the normalized total distance independent of the number of

the path points by imposing an appropriate value for the normalization factor N(w).

The importance of the last point can be seen in Egs (3.11) and (3.12). The
optimization problem of Eq (3.12a) uses a rational function as a criterion. In principle, it
is possible to solve such optimization problems. However, Dynamic Programming cannot
be used anymore, since in Dynamic Programming the global solution is obtained
recursively by a series of local solutions that do not consider the best global path at all.

Dynamic Programming retrieves the optimal path at the end, assuming that the optimal



total distance has been found. Thus, problems like the one of Eq (3.12a), where the
minimization depends simultaneously on both the total distance and the path, cannot be
solved by Dynamic Programming. On the other hand, if the normalization factor N(w) is
independent of the optimal path, the optimization problem reduces to:

K
by = ﬁw-ngn[ > d(i00,J) w(k)] (3.13)

and this problem lends itself to a Dynamic Programming-based solution (Myers et al.,

1980).

Many different weighting functions have been proposed in the literature of DTW
(Itakura, 1975, Sakoe and Chiba, 1978, Myers et al., 1980). The two most common ones

are:

symmetric: wk) = (il-ik-1)) + (jE®-jk=-1)) (3.14a)
with i0) = j©) = 0

asymmetric: wk) = (i) -ik-1)) withi(0) = 0 (3.14b)

The weighting function of Eq (3.14a) weights a local transition, from the k-
path point to the k™ path point, according to the number of horizontal and vertical steps
that need to be taken for that particular local transition. Both horizontal and vertical steps
are considered equivalent. Thus, it is a symmetric weighting function. On the other
hand, Eq (3.14b) considers only the number of the horizontal steps required for a local
transition and, for that reason it is an asymmetric weighting function. Figure 3.5
illustrates these weighting functions, when the local continuity constraint of Figure 3.3(b)
is applied. The coefficients for each local transition are the result of the weighting
functions of Eq (3.14a) and Eq (3.14b). Similar coefficients are obtained when different

local continuity constraints are applied.



As Figure 3.5(b) shows, if the weighting function of Eq (3.14b) is used, the
vertical local transitions are not weighted at all. As a result, the local distance
d(i(k), j(k)) will be omitted from the total distance, if the link to the previous path point
(i(k - 1),j(k —1)) is a vertical transition. To eliminate this nonphysical occurrence, the
nonzero weighting coefficients of the non-vertical arcs are averaged and equally
distributed to all arcs. This is illustrated in Figure 3.6, where the local continuity
constraint of Figure 3.3(c) is used. Figure 3.6(a) shows the coefficients if the symmetric
weighting function of Eq (3.14a) is used. Figures 3.6(b) and 3.6(c) show the coefficients
if the asymmetric weighting function of Eq (3.14b) is used, both before and after the

averaging of the weighting coefficients of the non-vertical arcs.

Now the normalization factor N(w) can be defined. The normalized total
distance, as defined in Eq (3.11), is an average distance between the two patterns along
the optimal path. As such, it is reasonable to make it equal to the number of the local
distances computed along the path (Sakoe and Chiba, 1978, Myers et al., 1980):

K

Nw) = D wk) (3.15)

k=1

Hence, if the weighting functions of Eqs (3.14a) and (3.14b) are used, the corresponding

normalization factors are:

Nw) = 2 [609-iGk-1)+(00- ik-1)] = G168
= i(K)-i(0) + j(K) - j(0) = t+r

il
-

K
NWw) ; lit-ia-1] = iK)-i©) (3.16b)

and they are both independent of the optimal path.
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Figure 3.5: Local continuity constraint with no constraint on slope and
(2) symmetric weighting function
(b) asymmetric weighting function.
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Figure 3.6: Local continuity constraint with [1/3,3] range slope and
(a) symmetric weighting function
(b) asymmetric weighting function
(¢) smoothed asymmetric weighting function.



It was mentioned in Section 3.1 that there are symmetric and asymmetric versions
of the DTW algorithm. A symmetric DTW algorithm will result if a symmetric local
continuity constraint is used together with a symmetric weighting function. Conversely,
if either an asymmetric local constraint is used (e.g., Itakura local constraint) and/or an
asymmetric weighting function, then the resulting DTW algorithm will be asymmetric.

The Dynamic Programming-based solution of the optimization problem shown in
Eq (3.13) will now be presented. The theoretical basis of Dynamic Programming is an
important property of multistage optimization problems, called the Principle of
Optimality, which states that “dn optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision” (Bellman and Dreyfus,
1962, Bertsekas, 1987).

For the DTW problem, the Principle of Optimality is translated into the following
two rules (Myers et al., 1980, Ney, 1984, Silverman and Morgan, 1990):

Rule (I): Let F be the optimal global path on the tx r grid. If F goes through an (i, j)
point, then the optimal path to the (i,j) point is part of F .

Rule (I): The optimal path to the (i,j) point depends only on previous grid points
i,j"sie,i>i', j>j'.

The above rules, used in any variant of DTW, define a recursive Dynamic Programming

relationship.  This recursive relationship depends on the type of local continuity

constraints and on the weighting function. The purpose of the following examples is to

show how each of these two decision parameters, in combination with the global

constraints and the endpoint constraints, affect the solution procedure. The presentation

will be done from the point of view of practical implementation. Also, the relevance of

each algorithm to Chemical Engineering applications will be illustrated.



3.3.1 DTW: Example 1

In this example, the simplest symmetric DTW algorithm (i.e,. without any constraint on
the slope of the optimal path) will be presented. This algorithm could be used for the off-
line comparison of patterns and assumes that the extreme points of the patterns are

exactly known.

Assume that the fixed-endpoint constraints of Egs (3.9) are used, together with the
symmetric local continuity constraint and the weighting function of Figure 3.5(a). Also,
assume that the band constraint of Figure 3.4(b) is used.

Let D, (i, ) be the minimum accumulated total distance from point (1,1) to point

@j),ie.,
o
DG = rr;in[; d(i(k), j(k)) W(k)] (G.17)

where F' is any path, F' is the optimal path and K are the number of path points. Thus,
Eq (3.13) becomes:

N 1
Dit,r) = EDA(t,r) (3.18)

(as mentioned, N(w) = t+r for this type of symmetric weighting function, Eq (3.16a)).

The assumed local continuity constraint implies that the (i,j) point can only be
reached by either the (i—1,j), orthe (i—1,j—1) or the (1,j—1) point. However, for any
of these three possible predecessor points, there is 2 minimum accumulated total distance.
Due to Rule (I), if the (i, j) point lies on the optimal path, then the transition from the
three possible predecessors has to be optimal. Also, due to Rule {I), this optimal

transition will not be affected by any subsequent decision. Thus, according to the Rules



(I) and (1), the chosen local continuity constraint and the symmetric weighting function,
D, (i, j) will be found by solving the following simple optimization problem:

D,(-1,j)+d(G.j)
D,(.j) = min\D,(-1,j-1)+24d(,j) (3.19)
D,G,j-1)+d(@, )

Now, because at this point it is not known whether the (i,j) point lies on the optimal
path, the decision on which of the three alternatives in Eq (3.19) was selected has to be
stored. This procedure (i.e., Eq (3.19) and storage of the optimal Iocal transition), has to
be done for all the (i, j) points that lie in the allowable search area; i.e., the shaded area of

Figure 3.4(b). Note however, that if the optimal path does not need to be reconstructed,

these optimal local transitions do not have to be stored.

Thus, one would start from the point (1,1) as*:
D,(1,1)=2d(1,1) (3.20)

and would proceed recursively via two iterations, one nested in the other, until the (t,r)

grid point is reached. This constitutes the forward phase of the Dynamic Programming
recursion. The outer iteration will progress on the time index, i, of the pattern placed on
the horizontal axis, whereas the inner iteration will progress on the allowable range of the
time index, j, of the pattern placed on the vertical axis. As Figure 3.4(b) shows, for any
value of the horizontal time index, there is an allowable range (shaded region) for the
vertical time index. Thus, the index of the outer loop, i, goes from 1 to t, while the range
of the inner loop index, j, depends of the value of the outer iteration index. This range

(for the particular global constraint of Figure 3.4(b)) is constructed as follows.

2 The weight of 2 is according to the assumed weigthing function of Eq (3.14).



Let 1 be the lower and u the upper limit for the index of the inner iterations. These

are both vectors of tx1 dimension. Vector 1 is constructed as follows (see Figure

3.4(b)):

IH)=1 , 1SisM+1 (3.21a)

IH=i-M+1) , M+2<ist (3.21b)
while vector u is constructed as follows:

u()=i+M ,  1<isr-M (3.22a)

u@)=r , r-M+1<i<t (3.22b)

M is a parameter that has to be chosen; it must be M > |t —1| so that the band of
width 2 M includes the (t,r) grid point and the two constraints (i.e., the band constraint

and the fixed-endpoint constraints) are compatible. In general, M should reflect the
uncertainty in locating the first and the last point of the patterns. Setting M too small may
result in a large distance between two similar patterns that are badly synchronized; setting
M too large helps much more the comparison between dissimilar patterns than between

similar patterns (Levinson et al., 1979).
The iterative procedure of Eq (3.19) finishes when the D A(t,r) distance is

computed and, subsequently, the minimum normalized total distance ﬁ(t, r) is computed

via Eq (3.18). To reconstruct the optimal path one has to proceed in a backward manner,

starting from the (t,r) point and using the stored information on the optimal decisions at
the allowable (i,j) grid points. Thus, first the predecessor of the (t,r) point is located,
then the predecessor of the latter is located and this is repeated until the (1,1) point is

reached. The following is an algorithmic summary of the solution:

Step 1:  Give value for M; construct I and u; D,(1,1)=24d(1,1)



Step2: Fori=1,...,t
For j=1(i),...,u(i)
D,(i-1,j)+d(,j)
D,(G,j) = min{D,({-1,j—1)+2d(,j)
D,(1,j-1)+d(,j)
Store the optimal predecessor for the (i, j) point.

End
End

A 1
Step 3: Minimum Normalized Total Distance: D(t,r) = P D,(t,n

Step4: Reconstruct the optimal path, F, starting from the (t,r) point and travel

backwards as the optimal predecessor indices dictate until point (1,1) is reached.

In terms of memory requirements, these are not large if only the minimum
distance is sought. In that case, only two vectors of accumulated total distances have to
stored. At any outer iteration, i, a vector that stores the distances
D,(-1j),j=1(i-1),..,ui~-1), is required and the D, (,j), j=1@),...,u(i), vector of
distances is computed via Eq (3.19). At the next iteration, i+1, the D,(i-1,j)

distances are not required anymore and their memory space can be used to store the

D,(i,j) distances. The memory space for the latter can be used to store the new

D,(i+1,j) distances and the whole storage-updating procedure is repeated.

Also, for some values of the outer and/or the inner iteration indices, the D, (i, j)
distances may not be defined. For example, when i=1 and j=2, applying Eq (3.19)
requires the D, (0,2), D,(0,1) and D, (1,1) distances, each associated with a possible
predecessor; however D, (0,2) is not defined since the (0,2) grid point does not exist.

In such a situation, this predecessor is not considered at all and Eq (3.19) is implemented

with the remaining two possible predecessors.



If the optimal path is also sought, then for any (i,j) point in the allowable search
area in the grid, an integer index (from a set of three indices, each associated with a
possible predecessor) has to be stored indicating the optimal predecessor. This is done
because any of the points in the allowable space can be a point of the optimal path®,
Thus, for this example, this information has to be stored for all points that lie in the
shaded region of Figure 3.4(b). '

3.3.2 DTW: Example 2

This example will illustrate the implementation of an asymmetric DTW algorithm that
also assumes that the extreme points are exactly known in both patterns. As in the
previous example, this algorithm could also be used for off-line comparison of patterns.
However it treats one pattern differently from the other and, as such, it requires a decision

to be made by the user.

Assume that the fixed-endpoint constraints, the Itakura local constraint of Figure
3.3(a), and the asymmetric weighting function of Eq (3.14b) are used. This is then an
asymmetric DTW algorithm that maps the horizontal time index, i, onto the vertical time
index, j. Also, as mentioned in Section 3.2, these local constraints impose the shaded

parallelogram of Figure 3.4(a) as the search space for the optimal path.

First, both the lower, 1, and the upper, b, limit vectors (of dimension t x 1) for the
index of the inner iterations are constructed. Vector 1 is constructed as follows: draw two
lines of slope 1/2 and 2, emanating from points (1,1) and (t,r), respectively; let A be the
point of intersection (see Figure 3.4(a)). The piecewise linear curve that starts at point
(1,1) with slope 1/2, changes slope at point A, and continues with slope 2 up to point

(t,1), is the lower limit, 1, for the inner iteration. Similarly, one can construct the upper

3 Remember that the optimal path is not known during the forward phase, but it is found at the end, once the
(t, 1) point is reached.



limit vector u. Once 1and u are constructed, the Dynamic Programming recursion starts.
The algorithm of the method is as follows:

Step 1: Constructland u; D, (1,1) = d(1,1)
Step2: For i=1,...,t
For j=I(i),...,u(i)
[D4G-1,)+4G, )] or [0 if condition (A)']
D,(,j)=miny D,(i-1,j-1) +d(,j) (3.23)
D,G-1,j-2)+d(,j)
‘Condition (A): predecessor of point (i-1,j) is the point @i-2,j).
Store the optimal predecessor for the (i, j) point.

End
End

A 1
Step 3: Minimum Normalized Total Distance: D(t,r) = T D, ()

Step4: Reconstruct the optimal path, F, starting from the (t,r) point and travel

backwards as the optimal predecessor indices dictate until point (1,1) is reached.

According to the Itakura constraint, two consecutive horizontal local transition are
not allowed, and this is what Condition (A) states. Therefore, for any outer iteration, i,
the optimal predecessors of the points in the previous iteration, i—1, have to be kept in
memory. This is a difference from the first example, where the implementation of the
local constraint did not require any information regarding the past optimal local

transitions.

Another difference is the memory requirements to implement the distance
computations. Although one can use two storage vectors for the optimal accumulated
distances as in the previous example, one storage vector is also sufficient. This can be

achieved if the computations in the inner iteration are performed ‘down the column’, i.e.,



for any outer iteration, the inner iteration index is decreasing instead of increasing:

Vi, j=u(i),...,I(i) instead of j=I(i),...,u(i) (Silverman and Morgan, 1990).

Finally, in order to reconstruct the optimal path, indices have to be stored that
indicate the optimal predecessor for all the (1,j) points that lie in the shaded

parallelogram of Figure 3.4(a).

3.3.3 DTW: Examples 3,4 and 5

These examples will illustrate the implementation of symmetric DTW algorithms with
constraints on the slope of the optimal path. Again the fixed-endpoint constraints are
used. The two patterns are considered equally important since the algorithms are
symmetric. These DTW algorithms could also be used for the off-line comparison of
patterns. However, the slope constraints prevent the excessive distortion of the time axes
of both patterns. This will be beneficial in situations where the duration of a pattern is an
important feature for its classification. In such a situation, constraining the slope of the
optimal path will prevent long patterns from being mapped onto very short patterns; this

will prevent wrong classifications.

Assume that the fixed-endpoint constraints, and the Sakoe-Chiba local
constraint/symmetric weighting function of Figure 3.6(a) are used. These local
constraints imply the same allowable search region as in the previous example; i.e., the
shaded parallelogram of Figure 3.4(a). After defining the lower and the upper limit

vectors for the index of the inner iterations, at any allowable point (i,j) the following

simple optimization has to be performed:

D,(-2,j-1)+2d(i-1,j)+d(,j)
D,(,j) = min{D,@{-1,j—-1)+2d(,j) (3.24)
D,(-1,j-2)+2d(,j-1)+d(,j)



To implement these distance computations, at any outer iteration, 3 distance vectors need
to be stored: D, (i,j), D,(i—1,j) and D,(i-2,]j), V allowable j- This local constraint

requires no information on past optimal predecessors.

Now assume that the local constraint of Figure 3.3(d) is used, together with the
symmetric weighting function of Eq (3.16a). The allowable search area will again be a
parallelogram, but a wider one this time, with 1/3 and 3 being the slopes of its sides. The

optimization problem that has to be solved at each allowable grid point is:

[D,(-3,j-1)+2d(i-2,j)+d(i-1,j) +d(,j)
D,(-2,j-1)+2d(i-1,j)+d(,j)
D,(G,j) = minyD,(G(-1,j-1)+2d(,j) r (3.25)
D,(i-1,j-2)+2d(,j-1)+d(,j)
(DAG~1,j-3)+2d(, j-2) +d(, j-1) +dG, j))

To implement these distance computations, at any outer iteration, 4 distance vectors need
to be stored: D,(i,j), D,(i-1,j), D,(i-2,j) and D, (i-3,j) for any allowable j.

Again, this local constraint requires no information on past optimal predecessors.

One could generalize these local constraints so that a desired range for the slope
of the optimal path is obtained. However, the selection scheme of possible predecessors
would be more complicated. A simpler way to do the same thing, at the burden of a

check at each point, would be the following symmetric local constraint:

[D.G-1,) +dG, )] or [0 if condition (B)]
D,(G,j))=min{ D, (i-1,j-1)+2d(,j) (3.26)
[D.G,j~1 +d(, j)] o [ if condition ©]
where:  Condition (B): predecessor of point (i—1,j) is the point (i—m-—1, j) through
m consecutive horizontal moves.
Condition (C): predecessor of point (i,j—1) is the point (i, j—m— 1) through

m consecutive vertical moves.



This local constraint imposes a range of [1/(m+1), m+1] for the slope of the optimal
path. Also, the search area it imposes is a parallelogram with 1/ (m+1) and m+1

slopes for its sides. To implement distance computations, at any outer iteration, only 2

distance vectors need to be stored: D, (i,j),and D al(i-1,j), Vallowable j. However, m
vectors that contain the optimal predecessors of the points: (i—1, 3)seees (i—-m,j) for any

allowable j, have to be stored.

Finally, for all the three cases discussed at this subsection, D A(L1)=24d@1,1)
A 1
and D(t,r) = P D, (t,r) since all of them use the symmetric weighting function of Eq

(3.14a).

3.4 Relaxation of the Fixed-Endpoint Constraints

In all the examples presented so far, the fixed-endpoint constraints were used to locate the
first and the last point of the optimal path. However, this may be a strong assumption,
particularly when there is uncertainty in locating the boundary points of the patterns. This
section describes how the fixed-endpoint constraints can be relaxed for the most common
local continuity constraints. The first example illustrates how this can be done when an
asymmetric DTW algorithm is used, while the second example treats the case of a
symmetric DTW algorithm.

3.4.1 DTW: Example 6 - Itakura Local Constraint

It was mentioned in Example 2 that for the Itakura local constraints, the normalization

factor N(w) is taken from Eq (3.16b) and is equal to t; i.e., the length of the pattern
placed on the horizontal axis. The reason was that D, (t,r) involved the summation of t

local distances, and this was independent of the optimal path.
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Figure 3.7: Relaxation of the fixed-endpoint constraints and modification of the search
area for optimal path when:
(a) the Itakura local constraints are used
(b) the Sakoe-Chiba local constraints of F igure 3.5(a) are used.



As Figure 3.7(a) illustrates, if one could locate the first path point in Area (A) and the last
point in Area (C), again t local distances would have to be summed; any two points in
the two areas are separated by t—1 horizontal transitions. One could then allow
o, points: (1,j), 1< j<&,, among which the first path point will lie and also &, points*:

(t,)), r-5, +1< j<r, among which the last path point will lie.

Thus, each of the &, points in Area (A) can be the start for the optimal path and
as such, it will not have a predecessor. Algorithmically, this is achieved by setting the
minimum accumulated total distance D, (1,j) at each of these points equal to the local
distance d(1,j), 1<j<35,. One the other side of the grid, instead of setting D(t,r) =
D, (t,r) and tracking backwards along the path from point (t,r), one could locate the
minimum among the distances in the points of Area (C), D (t,j), r-6, +1<j<r. This
would then be the minimum accumulated total distance between the two patterns; the
point at which this distance occurs will be the last point of the optimal path. The
procedure is a generalization of the standard implementation as described in Example 2.

One could also extend the range for the last point of the path by including &, +1
points in the Area (B) of Figure 3.7(a); i.e., the points (,r), t—6, <i<t. However, the
corresponding accumulated distances D, (i,r) involve the summation of a variable
number of local distances: each D, (i,r) is obtained by summing i local distances. Thus,

comparing these total distances is not consistent and some normalization has to be

performed; the following is a reasonable one (Rabiner et al., 1978):
t
D 4 Norm (1, 1) = D, @17, t-4 <ist (3.27)

The D,y (i,1) distances can then be considered, together with the D a(t,j) distances

mentioned above. The minimum of them is the final result and the corresponding point is

4 Areas (A) and (C) need not have the same number of points; here this is done for simplicity.



the last point of the optimal path. Note that this normalization is a heuristic; strictly
speaking, this is a problem where the number of the local distances summed depends on
the optimal path and, as such, cannot be solved by Dynamic Programming.

Finally, it is possible to disengage the check on two consecutive horizontal
transitions in the boundaries of the T pattern. The result in the allowable search area for

the optimal path is the shaded area of Figure 3.7(a), where a maximum number of o,

consecutive horizontal transitions® are allowed in the beginning and at the end of the T

pattern. In algorithmic form, the summary of the modifications discussed above is:

Step 1:  Give values for &,,4,; construct | and u
Step2: Set D, (1,j) =d(l,j), 1<i<é,
Step3: For i=1,...,t

For j=I(i),...,u(i)

[ D,G-1,7)+dG,j)
D,(.j)=mimD,(~Lj-D+dGj); if1<i<& +1,0r, t-6 +1<ist
D,(-1,-2+dG,j)

[DyG-1,7)+4G, ) or[oif condition (4)]
D,G,j) =min D,G~1,j—1)+dG,j) , otherwise
| D,G-1,j-2)+d(Lj)

‘Condition (A): predecessor of point (i-1,j) is the point @i-2,)).
Store the optimal predecessor for the (i, j) point.
End
End

Step4: Minimum Normalized Total Distance:
D,(t,j), r=5,+1<j<r

~ 1 .
D(t,r) = ;mm[ DA(i,r)%, =5 <ist (3.28)

5 Again, this number need not be equal to the width of the Area (B) of Figure 3.7(a); here this is done for
simplicity.



Step 5: Reconstruct the optimal path, F, starting from the point in which ﬁ(t, I) occurs
(last path point), travel backwards as the optimal predecessor indices dictate and
locate the first path point.

One could ask why it was not suggested to locate the first path point at a set of
points (i,1), 1<i<&,+1. Of course, one could treat these points as having no
predecessor by setting their accumulated distances equal to the local ones:
D, (i,1) =d(i,1) . However, the minimization problem in Eq (3.28) will not be consistent
because the accumulated distances will involve the summation of an unknown number of
local distances depending on the optimal path. As already mentioned, such a problem
cannot be solved by Dynamic Programming. Moreover, a heuristic similar to the one
above cannot be used; the normalization factor (i.e., number of local distances summed)
will be unknown since the first path point is found at the end of the backward step.

However, allowing &, consecutive horizontal transitions in the beginning partially

compensates for this prohibitive feature.

3.4.2 DTW: Example 7 - Sakoe-Chiba Local Constraints

Let the Sakoe-Chiba local constraints/symmetric weighting function of Figure 3.5(a) be
used, together with the band global constraint (see Figure 3.7(a)). If the fixed-endpoint
constraints are used, the D a(tr) distance will involve the summation of t+r local
distances (which is the normalization factor). On the other hand, if only the first path
point is fixed, then one could locate the last point, as one of the points in Areas (B) and
(C). The accumulated distances D, (i,j) at any of these points will involve the
summation of i+ j local distances; as such, a similar heuristic normalization has to be
performed so that their comparison is consistent. One the other hand, if the first path
point is not fixed but allowed to lie in some region close to the origin, the number of local
distances involved will not be known. Thus, the first path point has to be fixed at point
(1,1). For this example, the algorithm is as follows:



Step 1:  Give value for M; construct 1 and u; D,(1,1)=24d(1,1)
Step2: Fori=l1,...,t
For j=1(i),...,u(i)
D,(-1j)+d(,j)
D)) = min{D,(i-1,j-1)+2d(3,j)
D,(Gj-1)+d(@,j)
Store the optimal predecessor for the (i, j) point.
End
End
Step 3: Minimum Normalized Total Distance: (3.29)
) - DA(t,j)%, t-M<j<r
Dy = omin ' (3.29)
DA(l,r)m, r-M<igt
Step 4: Reconstruct the optimal path, F, starting from the point in which ﬁ(t, r) occurs

(last path point), and travel backwards as the optimal predecessor indices dictate

until point (1,1) is reached.

Of course, one could use any of the Sakoe-Chiba constraints of Figure 3.3, together with
the symmetric function. In all cases, the first path point will be fixed at (1,1), and the

ﬁ(t, r) minimum distance will be given by the Eq (3.29).

3.5 Suggestions

The performance of the various DTW algorithms in the recognition of isolated words was
the subject of several investigations (Sakoe and Chiba, 1978, Rabiner et al., 1978, Myers
et al., 1980). In all studies, several repetitions (either from the same or different speakers)

were used as reference patterns for each word. The measure of performance of each



algorithm was the classification error for each word. In most of the cases, symmetric
algorithms with constraints on the slope of the optimal path resulted in smaller

recognition errors.

In comparing pattern of faults from chemical processes one can use the
appropriate DTW algorithm to accommodate the features of a particular problem. For
example, in on-line Fault Diagnosis it is reasonable to assume that there will be
uncertainty in locating the time origin of a fault. Therefore, the DTW algorithm
presented in Subsection 3.4.1 would be the most appropriate one. A symmetric algorithm
that allows for consecutive horizontal or vertical transitions in the initial part of both
patterns, could also be used. On the other hand, in off-line Fault Diagnosis a symmetric
algorithm with a slope constraint is suggested, since both patterns are considered equally
important. The simplest algorithm of this type was described in Example 5 of Subsection
3.33.

In general, with the exception of the suggestions mentioned above, there are no
strict guidelines on which DTW algorithm to use in which situation. This will become
clear in the following chapters, where different DTW algorithms are used that take into

consideration the particular characteristics of the patterns to be compared.

3.6 Extensions

The algorithms presented in the previous sections have been used in Isolated Word
Recognition (IWR) (Myers et al., 1980). This is the easiest Speech Recognition task,

since the boundaries of each pattern are either exactly or approximately known.

This nice feature is not present in Connected Word Recognition (CWR) and
Continuous Speech Recognition (CSR) (Rabiner and Levinson, 1981, Ney, 1984,
Silverman and Morgan, 1990). In CWR, the input is a sequence of words from a
specified vocabulary and the recognition is performed by comparing the input signals

with reference patterns representing each word in the vocabulary. Even more difficult is



CSR, where the recognition is based on subword units like syllables, phonemes (abstract
linguistic units), etc. For both of these problems, extensions of DTW have been

constructed but they will not be discussed here.

Finally, stochastic modelling has also been applied in all three problems of Speech
Recognition: IWR, CWR and CSR. Hidden Markov Models are parametric stochastic
models (in contrast to DTW, which is a deterministic non-parametric method), used to
model either isolated words or subword units (Rabiner et al., 1983, Picone, 1990, Juang
and Rabiner, 1991). The models are trained on replicates of the reference patterns.
During recognition, the input signal is passed through each model; the recognized word is

the one whose model is most likely to have generated the input signal.

DTW as applied in IWR is sufficient to perform the classification task in dynamic
patterns obtained from chemical processes. There, each pattern corresponds to a fault and
it is highly unlikely that two faults will occur immediately one after the other. Moreover,
the small number of replicates for each fault (if any) will not allow reliable training of a

Hidden Markov Model. Thus, these extensions will not be further discussed.

3.7 Summary and Conclusions

In this chapter the theory of Dynamic Time Warping has been presented as a robust
pattern matching method. DTW is able to match similar but possibly unsynchronized
patterns, where a linear comparison would provide erroneous results. Different
algorithms of DTW have been discussed. The flexibility of the DTW to accommodate
various requirements and uncertainties has been emphasized. Also, useful
implementation details have been given. This chapter will provide the basis for all the

DTW variants used in the rest of the thesis.



CHAPTER 4

OFF-LINE DIAGNOSIS OF DETERMINISTIC FAULTS

IN CONTINUOUS DYNAMIC PROCESSES

In this chapter a method will be presented for the off-line diagnosis of deterministic faults
in multivariable, dynamic, continuous processes. The method consists of a feature
extraction step, where magnitude invariant features are extracted, and a similarity
assessment scheme using Dynamic Time Warping. The design parameters, advantages,
and limitations of the method are discussed. Case studies from the Tennessee-Eastman

plant are used to illustrate its application.

4.1 Introduction

As mentioned in Chapter 1, the term ‘deterministic faults’ is used in this thesis to
describe faults whose different realizations (i.e., either at the same operating point or at
different operating point and/or of different magnitude) will produce similar patterns.
The off-line diagnosis of this type of faults is the objective of this chapter. The off-line
diagnosis of transient upsets can lead to important process or operation modifications
which in turn can improve the future behavior of the process. Moreover, it will provide

useful insight on how to build the on-line diagnostic scheme (presented in Chapter 7).

The Tennessee-Eastman simulation, described in Subsection 1.5.2, will be used
throughout this chapter. The plant schematic, together with the control scheme of
McAvoy and Ye (McAvoy and Ye, 1994) is shown in Figure I.1 in Appendix. The

process is fed with reactants A, C, D and E; the inert B also enters the process with most



of the feed streams; the products are G and H. A set of 20 programmed faults can be
simulated; some of them cause major variations in the processes variables, while some
are minor disturbances and are easily dealt by the control system. The major faults are
either deterministic (e.g., step changes in the composition of a feed stream) or stochastic
(e.g., random variation in the kinetic parameters of a reaction). Additionally, these is a
set of 5 faults that are of unknown source, cause major variations in the process variables

and are of periodic nature.

Of the 20 different faults, 3 were selected as cases studies for this chapter. The
selected 3 faults are due to deterministic events and they all cause major variations in the
process variables as the control system tries to bring the controlled variables back to their
setpoints. All of them are introduced when the simulated plant is at steady state and they
require about 30 hours of simulated plant operation before a new steady state is reached.
The faults can be introduced with varying magnitude, direction (i.e., steps of positive and

negative directions) and at different operating points.

The two operating points used in all the case studies of the thesis are characterized
by different production levels and same composition for the final product. It is assumed
that the same fault occurring in these operating points will result in similar correlations
across variables, but with expanded or contracted temporal correlations. If operating
points for different products are considered (i.e., different final product compositions),
then this assumption may not be true. It will be assumed that the database contains one
realization at the nominal operating point for each of the three faults. The objective will
be to off-line classify realizations of the same faults, occurring at both operating points,

with different magnitude, direction, and duration.

Also, 2 stochastic faults with small effect on the plant operation (they can be
viewed as process noise) will be used in combination with the 3 major faults to test the
robustness of the proposed method to the noise level. Finally, one of the unknown
periodic upsets will be used to test the performance of the diagnosis scheme when a fault

appears which does not exist in the database. Table 4.1 shows the 3 major deterministic,



the 2 minor stochastic and the unknown periodic fault considered in this chapter; the

notation is the one used in the original paper (Downs and Vogel, 1993).

Table 4.1: Process faults considered in Chapter 4

Fault Process variable Type
IDV(1) | A/C feed ratio, B composition constant (stream 4) Step
IDV(2) | B composition, A/C ratio constant (stream 4) Step
IDV(7) | C header pressure loss-reduced availability (stream 4) Step
IDV(9) | D feed temperature (stream 2) Random variation
IDV(10) | C feed temperature (stream 4) Random variation
IDV(17) | Unknown Unknown

Figure 4.1 shows the behavior of 4 of the simulated process variables during the
IDV(1), IDV(2) and IDV(7) faults (the initial value of each variable and the scaling are
chosen to facilitate the plotting). Let the corresponding patterns be R,, R, and R,.
These will be the known reference patterns in the database; each pattern contains 26
variables and a different number of points. The reference patterns are from faults with a
magnitude of one occurring at the nominal operating point. The sampling interval, Ts, is
3 min. The faults are introduced after 3 hours of simulated plant operation (i.c., at the
61* point). A complete description of the reference patterns is given in Table 4.2,
Subsection 4.4.1. Table I.1 in Appendix gives the description of all the 26 variables
included in the patterns for this chapter. Figures 1.2 in Appendix shows 16 of the 26

variables for all three reference patterns.
Figure 4.2 shows the same 4 variables for three unknown test patterns, T,, T,

and Ty; they are all different realizations of the reference faults. T, and T, are

realizations of faults IDV(1) and IDV(7) respectively, both occurring at the nominal
operating point, with step sizes 70% and 80% respectively of the default size.
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On the other hand, T,; is the IDV(2) fault occurring at a reduced production operating
point, with a negative direction, and with 80% of the default step size. Table 4.3,
Subsection 4.4.1, gives the complete description of all the test patterns used in this
chapter.

The 4 variables shown in Figures 4.1 and 4.2 illustrate the various problems that
have been discussed in Chapter 1 regarding the problems of Fault Diagnosis in
continuous processes and the requirements of a realistic diagnostic scheme. Referring to
Figure 4.1: the variation of variable ‘4 feed® during R, is much greater than during R,;
on the other hand, the variation of variable ‘G in product’ for R, and R, is similar.
Thus, the absolute variation of variables is not an indication of a fault. This is obvious
when the faults occur with different magnitudes. Referring again to Figure 4.1: the shape
of variable ‘Reactor pressure’ is similar for R, and R;; on the other hand, the variable
‘G in product’, is similar for R, and R s- Thus, looking at individual variables makes it

difficult to diagnose the faults. Finally, referring to Figures 4.1 and 4.2: it is not difficult

to see that T, is most similar to R,, and T is most similar to R, by looking at the
evolution of the variables. However, it is not obvious that T,, is most similar to a
negative R,. A realistic Fault Diagnosis scheme has to be able to handle all these

features; namely: large number of variables (some with contradictory information), faults

with different magnitude and direction, faults occurring at any operating point.

4.2 The Problems of Scaling and Synchronization

As mentioned in the previous section, the diagnostic scheme should be able to classify the
patterns independently of their magnitude. Thus, the features that will be extracted from
the raw data should be stripped of magnitude information. If the similarity assessment
scheme is a distance measure (e.g., via Dynamic Time Warping), step-like signals of
different size will erroneously inflate the distance measure. In such a case, the raw data

must be scaled to remove the difference on step size.



In Principal Component Analysis, the scaling usually is done for each variable
separately by subtracting the average and dividing by the standard deviation. However, if
this procedure is applied blindly, it will scale up constant, noisy variables that contain no
information. Thus, it has been suggested that if the standard deviation of a variable over
the data set is smaller than about four times its measurement error, it should not be
included in the analysis (Wold et al., 1987). Another alternative is to scale each variable
relative to the others in terms of its relative importance, providing that this process
knowledge is available (Kresta et al., 1991).

However, when one deals with deterministic dynamic patterns, the
aforementioned scaling procedures cannot be applied. For example, the “average” or the
“standard deviation” of a step-type signal depends on how many data points are included
before and after the occurrence of the step. Subtracting the estimated “average value”
and/or dividing the raw data with the “standard deviation” will render the scaling
procedure dependent on the duration of the pattern. This is an undesirable side effect
since one of the requirements of the method is independence of the duration of the

pattern.

Thus, the nonstationarity in the mean value makes inadequate any scaling
procedure that involves only subtraction and division by constant factors. What is
required is an operation that will remove this nonstationarity, independent of the duration
of the signal. High-pass filtering is such an operation. A properly designed high-pass
filter can remove low frequency components like steps or ramps from a signal. Of
course, the output of the filter will exhibit a different pattern from the pattern that the raw
data exhibit. Consequently, the similarity assessment scheme will work with patterns that
are different from those present in the raw data. This is the major disadvantage of this
scaling procedure.

After high-pass filtering is applied, then each variable can be normalized to a

standard deviation of one. This will remove the effect of the magnitude of the remaining

frequency components. This will also remove the effect of the engineering units used to



record the variables. This estimation is of course dependent on the duration of the
pattern; if a large number of data points corresponding to the steady-state conditions
before and after the introduction of a fault are included in the pattern, they will scale
down the standard deviation of the variable. Thus, redundant data points should not be
included in the pattern. A further step is to apply low-pass filtering to remove high

frequency components, present due to measurement noise.

Hence, this scaling procedure (high-pass filtering, normalization to standard
deviation of one, low-pass filtering) exhibits some appealing features: it can remove the
nonstationary components and remove the magnitude information of the remaining
components. However, even after this scaling scheme, the patterns may have different
duration and/or may not be synchronized. Moreover, due to varying magnitude of faults
and different production levels, the same faults may exhibit different temporal
correlations. Dynamic Time Warping (DTW) is a robust pattern matching technique that
can effectively deal with all these problems, as it was described in Chapter 3. Thus, after
scaling, DTW can be used to assess the similarity between the unknown test pattern and
all the reference patterns and classify on the basis of the minimum distance. The next
section summarizes the complete procedure (scaling and similarity assessment), presents

its advantages and limitations, and discusses the design parameters and their selection.

4.3 A Complete Method

Let R,, i=1,...,I be a the set of reference patterns, each representing a known fault.
Each is a matrix of dimenion r; x N, where 1, is the number of observations, and N is the

number of measured variables. Also, let T be an unknown test pattern, a matrix of

dimension t x N ; the objective is to find which of the R, patterns is most similar to T.

The proposed method is as follows:

Feature Extraction Steps: for each variable, in each R, do the following:



Step 1: Subtract the initial level.

Step 2:  Filter with high-pass filter.

Step 3: Normalize to standard deviation of one.
Step 4:  Filter with low-pass filter.

Let R,sc be the reference patterns after the above scaling procedure.

When the test pattern T becomes available, apply Steps 1-4; let Ty be the resulting

scaled pattern.

Similarity Assessment Steps.

Step 5:  Apply Dynamic Time Warping between Risc and T..

Step 6: Apply Dynamic Time Warping between -Ric and T, (i.e., the mirror
images of the scaled reference patterns).

Step 7:  From the 2-I distances obtained in Steps 5 and 6, find the minimum. The fault

whose pattern results in the minimum distance is deemed to be the most likely

to have generated the test pattern.

Steps 2 and 3 work towards making the diagnosis independent of the magnitude
of the fault; they also handle the problem of different engineering units. Step 4
effectively downweights the noisy variables in the DTW step because their standard
deviation will be significantly less than one after low-pass filtering. Since DTW is
magnitude sensitive, it will concentrate on variables whose standard deviation is closest

to one; i.e., the less noisy variables.

Step 1 together with the ability of DTW to match unsynrconized patterns and
patterns with different temporal correlations work towards independence of the diagnosis
from the production level and independence of the uncertainty in locating the edge points
of the patterns. Step 6 tries to diagnose faults with a negative direction compared to the

faults in the reference set. If the process was linear, this would not create any concern.



However, almost all chemical processes are nonlinear and therefore this step is

questionable and its reliability depends on the degree of the process nonlinearity.

The method is multivariate in the sense that the optimal match between two
patterns (as found by DTW) is the same for all variables. The method applies without
any modification for any number of measured variables; the memory requirements on the
DTW step are not affected by their number. Moreover, one can weight differently
variables that are more important than others in the diagnosis of a fault by specifying an

appropriate weight matrix, W, for the local distance computations.

If several realizations of each fault were available, one could construct reference
distributions of the local and total distances and find appropriate confidence intervals.
However, in this study it is assumed that only one realization of each fault exist in the
database, and therefore the reference distribution approach is not possible. Furthermore,
no assumptions are made about statistical distributions of the process variables since for
the class of deterministic faults, the variables are nonstationary deterministic signals.
Therefore, the distances computed in Steps 5 and 6 have no absolute meaning; they are

only relative similarity measures.

The design parameters of the method are: the location of the edge points of the
patterns, the type of high-pass and low-pass filters and their cut-off frequencies, the local
distance, the weight matrix W, and finally the DTW algorithm. Locating the first and the
last point for each pattern is not a big problem in an off-line analysis. One can use the
Sakoe-Chiba local constraints of Figure 3.3(b) (i.e., with no constraint on the slope of the
optimal path) that allow consecutive horizontal or vertical transitions to partially
compensate for uncertainty in locating the two points. Even better, one can use the
modifications presented in Section 3.4 to relax the fixed-endpoint constraints in the DTW
algorithm. To avoid searching in unlikely regions for the optimal path and to reduce
computations, the band global constraint of Figure 3.4(b) can be used.



Regarding the local distance, the simplest choice is to use the Euclidean distance
(ie., W being the identity matrix), unless knowledge of the importance of certain

variables is available. Note that the same W has to be used for all R sc — T pairs in

DTW, otherwise the comparison of distances in Step 7 will not be consistent.

The type of DTW algorithm is not very crucial. An asymmetric DTW algorithm
will treat preferentially one pattern over the other; if this is not desirable, a symmetric
DTW algorithm has to be used. The relaxation of the fixed-endpoint constraints is also a
factor; as shown in Section 3.4, with a symmetric algorithm it is not possible to relax both
of them. The studies of Sakoe and Chiba (1978), Rabiner et al. (1978) and Myers et al.
(1980) showed small differences in the performance when different local constraints are

used.

The most important parameter of the method is the type of the high-pass filter.
High order filters are characterized by sharp frequency responses; however, they induce
oscillations in the signals and, in general, they heavily modify the patterns. On the other
hand, a simple first order high-pass filter does not have a sharp frequency response, but
produces smoother output signals. Since the objective is only to remove the very low
frequency components (e.g., steps, ramps) with the least distortion of the other
components, the first order filter is better suited. Selection of the low-pass filter is not
very crucial; any standard filter design can be used. The estimated power spectra of the

variables can provide guidelines for the cut-off frequency of the filters.

This concludes the presentation of an off-line Pattern Recognition scheme
proposed to diagnose deterministic faults in dynamic multivariable continuous processes.
It tries to address the requirements for a realistic scheme presented in Subsection 1.5.1,
Le., diagnose faults independently of their magnitude, plant operating point and direction.
The next section presents the case studies performed to test the proposed scheme using

the Tennessee-Eastman plant simulation.



4.4 Case Studies

4.4.1 Description of the Patterns in the Reference and Test Sets

As mentioned in Section 4.1, the reference set considered in this chapter had three

patterns, R,, R, and R; that correspond to three major deterministic upsets: IDV(1),
IDV(2) and IDV(7). Tables 4.2 and 4.3 describe the details of the reference and the test

set patterns.
Table 4.2: Patterns in the Reference Set
Pattern | Fault Operating Step size / Duration / Fault occurs
Point direction # of points after / at
R, IDV(1) Nominal +1.0 35hrs /701 pts | 3 hrs/ 61st pt
R, IDV(2) Nominal +1.0 32hrs/641pts | 3 hrs/61stpt
R, IDV(7) Nominal +1.0 30hrs/ 601 pts | 3 hrs/61stpt

The nominal operating point is the base case of “Operating Mode 1%, as described
in the paper by Downs and Vogel (1993). The “Reduced Production” operating point is
obtained from the nominal operating point by reducing the setpoint of the product flow
rate by 15% using the control scheme of McAvoy and Ye (1994); thus, the plant operates

at a production level which is 85% of the nominal production level.

The faults presented in Tables 4.2 and 4.3 are selected so that the proposed
method can be tested at conditions of varying difficulty. Some test patterns are almost
identical to one of the reference set patterns, while others are quite different (e.g., they
occur with smaller and/or negative magnitude, at the “Reduced Production” operating
point). Also, test cases T, and T, will investigate the role of increased noise level in the

Fault Diagnosis, while case T,, investigates the performance of the method when a fault

appears which is not included in the reference set.



Table 4.3: Test Set Patterns Evaluated

Pattern | Fault Operating Step size / Duration / Fault occurs
Point direction # of points after / at
T, IDV(1) Nominal +1.0 35hrs/701 pts | 2 hrs/ 41st pt
T, IDV(1) Nominal +0.7 32hrs/ 641 pts | 2hrs/41stpt
T, IDV(2) Nominal +0.8 32hrs/ 641 pts | 2 hrs/41stpt
T, IDV(2) Nominal -0.9 35hrs/701 pts | 2hrs/41stpt
T, IDV(7) Nominal +0.8 32hrs/ 641 pts | 2 hrs/41stpt
T, IDV(7) Nominal -0.7 30 hrs/601 pts | 2 hrs/41stpt
T, IDV(1) Nominal +0.9 35hrs/701 pts | 2 hrs/41stpt
IDV(9) +1.0 10 hrs / 201st pt
T IDV(2) Nominal +0.8 35hrs /701 pts | 2 hrs/41stpt
IDV(10) +1.0 10 hrs / 201st pt
T, IDV(1) | Reduc. Prod. +0.5 32hrs /641 pts | 2 hrs/41stpt
T, IDV(1) | Reduc. Prod. +0.9 35hrs /701 pts | 2 hrs/41stpt
T, IDV(2) | Reduc. Prod. +0.9 32hrs /641 pts | 2 hrs/41stpt
T,,; IDV(2) | Reduc. Prod. -0.8 30 hrs /601 pts | 2 hrs/41st pt
T,; IDV(7) | Reduc. Prod. +0.7 28 hrs /561 pts | 2 hrs/41stpt
Ty, IDV(1) Nominal -0.5 35hrs /701 pts | 2hrs/41stpt
Tis IDV(2) Nominal -0.5 32hrs/ 641 pts | 2hrs/61stpt
T, | IDV(17) Nominal +1.0 25hrs /501 pts | 2hrs/41stpt

4.4.2 Selection of Design Parameters

The duration of the patterns is between 28 and 32 hrs; this is the suggested duration to
fully see the effect of a fault in the plant (Downs and Vogel, 1993). The small differences




in the duration were selected on purpose to demonstrate the ability of the method to work
with patterns of unequal duration. Also, the faults in the patterns of the reference and of
the test set were introduced 3 hrs and 2 hrs, respectively, after time zero. This was done

to demonstrate that the method can work with unsyncronized patterns.

For the DTW algorithm, the Sakoe-Chiba symmetric local constraints with the
symmetric weighting function, both shown in Figure 3.5(a), were selected; they were used
in conjunction with the band global constraint of Figure 3.4(b). Also the fixed-endpoint
constraints were used. Thus, the DTW algorithm used for the off-line diagnosis of
deterministic faults was exactly the one described in Example 1, Section 3.3.1. The local
distance was the Euclidean distance, with W being the identity matrix, since it is assumed

that all 26 variables are equally important in the diagnosis.
The band parameter M (which defines the width of the band, 2-M) was selected

so that the band constraint would be consistent with the fixed-endpoint constraints, it has

tobe M > Iri - t, . Thus, for any R, — T pair, M was set as:

M=t —1]+50 4.1)

Simple first order high-pass and low-pass filters were used. Figure 4.3 shows the
power spectra of the same variables shown in Figures 4.1 and 4.2, for the reference
pattern R,. They were computed using the spectrum command in Matlab, Signal
Processing Toolbox (Matlab, 1988) using a window of 256 points, which implements the
“Welsh method” of power spectrum estimation (Oppenheim and Schafer, 1975).
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The normalized cut-off frequencies' with respect to half of the sampling frequency,
fy /2, for the high-pass and the low-pass filters, f‘m, and f'u, respectively, were selected

to be:

~

fip =0.018 (4.1a)

~

£, =0.150 (4.1b)

Thus, the unnormalized cut-off frequencies for the filters are:

— F fs = 1 -5
fip fm,-z—o.ms-z_lso_s.oo-lo Hz (4.2a)
. f 1
fip =1, -75=o.150.m=4.17-10-‘1{z (4.2b)

(£ is the sampling frequency, 1/180 Hz, since the sampling interval T is 180 sec).

The continuous transfer functions for the first order filters with these cut-off

frequencies are:

Gp(s) = m (4.3a)
1
Ge@)=—F—" (4.3b)
s+1
2-7-f},

! The cut-off frequency is defined as the frequency where the amplitude ratio gets the value of 1/ \/5 .



Discretizing the above transfer functions for the given sampling interval using the method
of prewarping (Franklin and Powell, 1980) and selecting the critical frequency for each
filter its cut-off frequency?, the discrete transfer functions of the filters are:

0.9725-0.9725z""
1-0.9450z"

H,,(z")= (4.4a)

0.1936—0.1936z"
1-0.6128z"!

H,@z")= (4.4b)

The effect of the scaling procedure (i.e., Steps 1-4) in the process variables is

illustrated in Figure 4.4, where the same 4 variables for all reference patterns, R,, R,
and R;, are shown after scaling (the real origin of all scaled variables is zero since the

initial value has been subtracted in Step 1; the origins shown in Figure 4.4 are selected to
facilitate plotting). Compare variable ‘4 feed’ in Figures 4.1 and 4.4: the step-like
pattern that the variable exhibits originally during R, has been filtered out by the high-

pass filter; R, and R,s. are now similar in that variable. This is the major

disadvantage of the scaling procedure: high-pass filtering removes a lot of steady-state

information. One the other hand, the same variable does not appear differently in R,

since no low frequency components are present. Moreover, the range of the variable now

is similar in all scaled patterns, due to normalization to standard deviation of one.

4.4.3 Results

The results of applying the Steps 5, 6 and 7 are presented in Table 4.4. For each test
pattern of Table 4.3, the scaling procedure is applied and then is matched via DTW with

2 According to the method of prewarping, the continuous and the discrete filters have the same frequency

response at the critical frequency (Franklin and Powell, 1980).
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all scaled reference patterns and their mirror images. Six minimum normalized total

distances are then obtained for each Tisc:
D(Tsc.R,5¢)s D(T50,R )
D(Tsc,R;50), D(Tisecs—Rysc)
D(T;sc,Ry)s D(Tyse,~Rysc)

The fault that corresponds to the reference pattern giving the minimum distance, ﬁ,‘ MIN 3
is selected as the most probable cause for the test pattern. Table 4.4 shows f),., sy » the

ratio of the other six distances over D, ,,, and the decision on the most probable cause

for each test pattern. The shaded cells indicate the correct diagnosis; hence, when the

ratio of one appears in a shaded cell then the diagnosis is correct. Good discrimination
among faults is obtained when the five of the six ratios are not close to one (i.e., ﬁ,' M 1S

much less than the other five distances). Figures 4.5 and 4.6 show the DTW results for
two test patterns, T, and T,,. The plots in both figures show the band constraint, the

optimal path and the minimum normalized total distance.

Comparing Tables 4.3 and 4.4, one can observe the following;:

A) With the exception of pattern Ty, all other diagnoses are correct; 15,.' v pointed to

the correct fault and direction in all cases.

B) The discrimination between the various faults is better when the test pattern is
identical to one of the reference patterns and worsens as the test pattern is a fault of
different magnitude and/or direction, occurring at the “Reduced Production”

operating point (see results for patterns T, Tsc> Tose and T,s). This is

expected since an identical realization of a fault will result in similar patterns and

magnitudes for the process variables.



Table 4.4: Results from Similarity Assessment via DTW; Distances from each DTW

match over Minimum Distance and Final Decision.

D (Tisc, b (Tiscs D (Tisc, 1)) (Tisc D (Tiscs b (Tisc,

pattern | Disan | TSV | Rusc) | Rasc) | Rasc)/ lts,sc)/ -Rs;sc)/ | Decision

A~ A A A

Di.MIN DI,MIN DI.MIN DI,MIN DI,MIN DI,MIN

Tsc | 1.77 . 18.10 | 11.08 | 9.99 8.18 8.80 IDV(1)
Tsc | 2.37 : 10.54 793 |12.15 6.32 7.20 IDV(1)
Tosc | 402 | 477 | 417 10N 10.79 | 527 | 537 IDV(2)
Tesc | 632 276 | 3.63 4.67 it 322 | 321 | -IDV(2)
Tssc | 093 1546 |17.57 |[24.81 [26.17 IO 20.64 IDV(7)
Tesc | 1.26 [12.77 |11.81 [16.72 1701 | 15.69 * -IDV(7)
T,sc | 1.94 [MSEO0ER 16.31 9.67 | 9.31 7.54 8.46 IDV(1)
Tosc | 7.51 | 2.71 |00 3.98 270 | 2.56 IDV(2)
Tosc | 10.25 |[S8150 2.48 2.20 2.77 1.80 223 IDV(1)
Tiosc | 10.08 3.61 219 | 227 1.77 | 213 IDV(1)
Tusc | 11.73 170 1.60 JOMNS  3.59 1.94 1.94 IDV(2)
Tasc | 1427 | 1.22 149 | 221 0C 1.80 1.74 | -IDV(2)
Tssc | 12.30 | 1.74 1.66 1.79 1.95 1.59 IDV(7)
Tusc | 497 | 6.39 0 279 | 417 3.54 | 313 | -IDV()
Tissc | 565 | 2.98 3.17 7.30 ¢ 3.51 3.63 | -IDV(2)
Tesc | 1826 | 1.00 1.15 1.15 1.00 1.13 1.17 | -IDV(2)
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C) The process operating point is the most important factor in the diagnosis. As the

results in Table 4.4 show, when the faults occur at the “Reduced Production™
operating points (T, to T,;) the discrimination among the correct fault and all the

others is more difficult than when the faults occur at the Nominal operating point.

D) The discrimination is more difficult when the patterns are noisy. R, pattern contains

E)

F)

more noisy signals than R, or R, as Figure 4.1 shows. As a result, diagnosing that

T;sc is most similar to R, s is a weaker statement than diagnosing that T, sc is most

similar to R, s orthat Ty is most similar to R 3sc*

As already mentioned in Chapter 1, the signal to noise ratio for a particular pattern is
a very important factor for the certainty of the classification. As expected, noisy
patterns or patterns of faults of small magnitude, are classified with less certainty than
patterns of faults of larger magnitude. For all the faults studied in this chapter, there
will be a range of magnitudes in which the variables’ variation is comparable to the
common process variation; even if these faults are detected, their diagnosis will be

poor.

Because a minimum will always exist among the six distances, a decision will be
taken on which is the most probable cause of a fault. This will lead to an incorect
diagnosis for a fault that does not exist in the reference set, as the T, pattern shows
(i.e., diagnosed as -IDV(2)). Thisis a disadvantage of the proposed method. One the
other hand, the remaining five ratios will be close to one, indicating that the other five
distances are not much larger than the minimum distance. This could be a warning on
the power of the diagnosis. In practice, once a check is carried out by the plant

personnel and the correct cause of the fault is identified, the T,, pattern will be

included in the reference set as a new pattern for future diagnoses.



4.6 Summary and Conclusions

In this chapter, a method has been proposed for the off-line diagnosis of faults in dynamic
continuous multivariable processes. A Pattern Recognition approach has been followed;
thus no process knowledge or process model is required. The proposed method has been
designed so that it can classify process faults independently of their magnitude, direction,
time origin of the fault and the production level. It consists of a feature extraction step,
where the magnitude information is removed from the patterns, followed by a similarity
assessment step, where Dynamic Time Warping is used for pattern comparison. The
method can handle multivariate patterns of any number of variables and no assumptions

about statistical distributions are required.

There are drawbacks to this procedure, however. All variables, noisy or not, are
considered equally important on the decision process (i.e., they are all weighted equally);
this issue will be addressed in Chapter 6. Also, the fact that the distance measures are
relative and not absolute, will produce an erroneous diagnosis when a new fault appears
that is not included in the database of past faults. Special precautions have to be

constructed for such cases.

The most important feature of the method it that it relies on patterns and
correlations that appear in the process variables. Faults that are fundamentally similar but
produce different patterns in time (e.g., a step-type and a ramp-type change in the feed
composition) will be treated as different faults. This can be viewed both as negative and
positive feature. If only a step-type fault is available in the database, then a ramp-type
fault will be considered as a different fault. However, a better diagnosis will result if both
descriptions are available in the database, particularly in cases where there is a different
physical cause behind each fault, e.g., a fast catalyst poisoning versus a slow catalyst
fouling process. Also, similar faults that produce different patterns depending on the
operating point will also be treated as different faults. In all cases, process knowledge
and detailed examination of the historical data are imperative for the successful

implementation of the method.



CHAPTER 5

DIAGNOSIS OF STOCHASTIC FAULTS

IN CONTINUOUS DYNAMIC PROCESSES

In this chapter a method will be presented for the off-line and on-line diagnosis of
stochastic faults in multivariable, dynamic, continuous processes. The method consists of
a feature extraction step where autocorrelation and crosscorrelation coefficients are the
extracted features, followed by a similarity assessment scheme via Dynamic Time
Warping.  The Tennessee-Eastman plant is used to illustrate the advantages,

disadvantages and the implementation details of the method.

5.1 Introduction

The term ‘stochastic faults’ is used in this thesis to indicate faults whose underlying
source is a stochastic process. As such, different realizations of the same fault will result
in different patterns in the process variables. Therefore, a pattern matching method based
on the similarity of scaled patterns of the process variables (as the method described in
the previous chapter) cannot be used. Features have to be extracted that remain constant
over different realizations of the same stochastic fault and a pattern matching procedure

can then be applied in this consistent feature space.

Again, the Tennessee-Eastman simulation with the control scheme of McAvoy
and Ye (McAvoy and Ye, 1994) will used in this chapter (see Figure I.1 in Appendix).
Two major stochastic faults can be introduced into this simulation; both of them cause

major variations in the process variables. The control system tries to bring the controlled



variables back to their setpoints, however no steady-state conditions can be achieved.
The faults are introduced when the plant is at steady state, either at the nominal operating
point or at the “Reduced Production” operating point (as they have been described in
Subsection 4.4.1).

It will be assumed that one realization for each of the two faults exists in the
database. The objective will be to off-line classify new realizations of the same faults. In
addition to the variability caused by the random nature of a stochastic fault, the new
realizations may have different magnitude and may occur at different production levels.
Since the faults are stochastic, the concept of ‘direction’ does not apply (in contrast to a
deterministic negative or positive step change in a process variable). Table 5.1 shows the
faults considered in this chapter; again, the notation is the one used in the original

Tennessee-Eastman paper (Downs and Vogel, 1993).

Table 5.1: Process faults considered in Chapter 5

Fault Process variable Type
IDV(8) | A,B, C feed composition (stream 4) Random variation
IDV(13) | Reaction kinetics Slow drift

Figure 5.1 shows the behavior of 4 process variables during the RS,, RS,, TS,
and TS, patterns. RS, and RS, will be the reference patterns, while TS, and TS, are

two of the test patterns (for a complete description and notation, see Tables 5.2 and 5.3,
Subsection 5.5.1). RS, and RS, are realizations of the IDV(8) and IDV(13) faults,

respectively, both occurring at the nominal operating point with the default magnitude of

one. TS, is also a realization of the IDV(8) fault, again occurring at the nominal
operating point with magnitude of one. TS,, is a realization of the IDV(13) fault,
occurring at the “Reduced Production” operating point with magnitude 80% of the default
magnitude.
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Comparing the patterns produced by RS, and TS,, one can see that the patterns

are not similar, although both are realizations of the same fault. The same argument
applies for RS, and TS,, patterns. Thus, the time evolution of the variables is not a

feature that can be used to classify these faults. One the other hand, patterns RS, and
TS, are more oscillatory and contain higher frequency components than the other

patterns.  This could be a feature that can partially discriminate the two faults.
Furthermore, the relative behavior between variables can be used as another
discriminatory feature; e.g., variables ‘A feed’ and ‘G in product’ exhibit a strong
positive correlation during RS, and negative correlation during RS,. Thus, a feature

that reflects this behavior will be useful in discriminating between the two faults.

5.2 Feature Extraction

As mentioned in the previous section, to correctly classify stochastic faults features have
to be extracted that: I) reflect the process dynamics and the relative behavior of the
variables; and II), remain constant with different realizations of the same fault. For
stochastic processes, the autocorrelation and crosscorrelation functions of the process
variables satisfy these requirements. Two different realizations of a stochastic fault
should be characterized by the same correlation pattern among the variables since the
physical and chemical mechanisms are the same in both cases. Thus, estimates of the
autocorrelation and crosscorrelation function of the process variables can be used to
represent a stochastic fault. One can then have a database of correlation patterns, each
representing a past known stochastic fault. When a new unknown fault appears, its
correlation pattern is estimated and compared with the database patterns. A distance-
based method (either linear or based on Dynamic Time Warping (DTW)) can then be
used to carry out the comparison. One can then diagnose the cause of the new fault on

the basis of minimum distance.



The advantage of the above method is that the auto- and crosscorrelation functions
are both scaling independent. This satisfies the requirement for independence of the Fault

Diagnosis procedure on the magnitude of the fault. On the other hand, if N is the number

. . . -DN
of measured process variables, one has to estimate N autocorrelations and (NT)

(N+IN
2

completeness. Thus, there is a large increase on the dimension of the space where the

crosscorrelations. This means that correlations should be considered for

subsequent pattern comparison will take place. Moreover, not all of the N variables carry
useful information; some of them may not be affected by the fault, yet their
autocorrelation and crosscorrelation estimates will be included in the correlation pattern.

This issue will be addressed at Chapter 6.

If the auto- and crosscorrelation function is estimated for the same number of lags
for all faults, then the correlation patterns will have the same number of data points and
the summation of Euclidean distances, along the linear path, is a possible distance
measure. However, depending on the production level, the process responds faster or
slower to disturbances and consequently the correlation pattern is affected. Thus, a
flexible pattern matching method like DTW is a better alternative. DTW can
appropriately expand, contract or translate the correlation patterns to take account of
faster or slower process dynamics. For that reason a modified DTW algorithm will be
used to assess the similarity between correlation patterns. The next section presents the

proposed method and its design parameters.

§.3 A Complete Method

S.3.1 The Correlation Pattern

Let RS be a rx N matrix which contains r data points of an N-variate stochastic time

series. The correlation pattern of RS is defined as another matrix that has the following



structure: its first N columns contain the estimates of the autocorrelation function; the

following N-1 columns contain the estimates of the crosscorrelation function between the

first variable and each subsequent variable; the following N-2 columns contain the

estimates of the crosscorrelation function between the second variable and each

subsequent variable, etc. For example, let N =3 and let [x,. Yi zi], i=1,.

...T be a

trivariate time series consisting of measurements of the random variables {x;},{»}, and

{z,;}. The matrix RS is then:

[ %,

X,

Yy, z
Y. z,
Y. Z,

5.1

The correlation pattern of RS, Corr[RS], is then the following (RP+1)x6

matrix (where P is the number of lags):

re(1)
Corr[RS] = 1

re(1)
1e(2)

l'xx(P)

[ (P

1y(P)

(1)
1
Iyy(1)
w(2)

1(P)

r=(P)

r=(1)
1

r=(1)

r=(2

1=(P)

Io(—P)

Toy(—1)
Iy(0)
(1)
Ixy(2)

ro(P)

re(~P)

(1)
r(0)
(1)
z(2)

I(P)

Iy(—P) ]
oP-1) P-1) raP-1) 1o(-P+1) rel(-P+1) r=P+1)

Iy(—1)
1v2(0)
12(1)
Iy(2)

1o(P) |

(5.2)



where Iy/(p) is the estimate of the correlation function between the time series {x;} and
{v} atlagp, p_@);ie.,

EIC: = EG))ny = B
" Bl - By’ 11°[ B, - Ee )™

P (P) (53)

(with E() being the expectation operator). The estimate, Ixy(P); of p_(p) is given by the

estimator:
r-p
2 =D, —7)
i=]
Toy(p) = B — , 0<p<P (5.4)
Z(xi _2)2 Z(Y. _y)z
i=] i=]
r r
Z X; Z Yi
where X = '='r and = '“'r (i.e., the estimate for the mean). For negative lags, using

the fact that o (p) = p,,( - p), the crosscorrelation estimate is:

l'xy(—p) = l'yx(p) , 0< p=< P (5.5)

Also, Eq (5.2) takes into consideration the facts that the autocorrelation function and its

estimate are symmetric about zero, i.e., Ix(-p) = rx(p) and that x(0) = 1.

The correlation pattern of Eq (5.2) assumes weak stationarity up to second order
for all variables (i.e., their mean, variance, autocorrelation and crosscorrelation functions
for any lag are independent of the absolute time). Moreover, the estimator corresponding
to Eq (5.4) is a biased but consistent estimator; i.e., its bias, variance and covariance tends

to zero as the number of observations tead to infinity (Jenkins and Watts, 1969).



5.3.2 The Algorithm and Design Parameters of the Method

Let RS,,i=1,...,] be a the set of reference patterns, each corresponding to a known
stochastic fault. Each is a matrix of r, x N, where r, is the number of observations, and

N is the number of measured variables. Also, let TS be the pattern of an unknown
stochastic fault, a matrix of dimension t x N ; the objective is to find which fault is most

likely to have produced the pattern TS. The proposed method is as follows:

Feature Extraction Steps: for each variable, in each RS;, do the following:
Step 1:  Subtract the initial level.

Step 2: Filter with high-pass filter.

Step 3: Normalize to standard deviation of one.

Step 4: Filter with low-pass filter.

Let RS, s be the patterns after the above scaling procedure.

Step 5: Compute the correlation pattern for each RS iscs Corr[RS, ¢ ]

When the pattern TS of an unknown stochastic fault is given, apply Steps 1-5; let

Corr[TSg] be the corresponding correlation pattern.

Similarity Assessment Steps.

Step 6: Apply Dynamic Time Warping between Corr[RS,;;c]and Corr[TS,.] Vi.

Step 7:  From the I distances obtained in Step 6, find the minimum; classify TS as a
realization of the fault whose correlation pattern resulted in the minimum

distance.

Steps 1 and 3 are not strictly necessary since the correlation pattern is magnitude
and level independent; they are included only for consistency reasons with the method
described in the previous chapter. Step 2 (high-pass filtering) removes low frequency
trends. This is a necessary step, dictated by the second order stationarity assumption for

all variables. If high-pass filtering is not applied, slow drifts tend to dominate the



correlation estimates. Step 4 (low-pass filtering) removes high frequency noise and is not
very crucial. Step 6 (DTW) applies a robust comparison between the unknown and the
reference correlation patterns. Different production levels result in faster or slower
process dynamics (and consecutively, contracted or expanded correlation patterns),

making DTW an appropriate solution.

Thus, the method tries to classify stochastic faults in a way that is independent of
the magnitude of the fault and of the plant production level (as mentioned before, the
concept of ‘direction’ does not apply in stochastic processes). However, just like in the
case of deterministic faults, the magnitude of the fault affects the variables’ signal to
noise ratio and is an important factor for the certainty of the classification. Faults with
small magnitude will be masked by the common process variation and will be poorly

diagnosed (if detected at all).

The method assumes that the correlation structure does not change for realizations
of the same fault at different operating points. This is a valid assumption when the
process operates at different production levels, but it may not be valid for different modes
of operation (e.g., different final products). In such a case, the same fault may exhibit
different correlation structures, and consecutively, a correlation-based diagnostic scheme
will fail to give the correct diagnosis. In such a case, realizations of the same fault at the
different operating modes have to be included in the database. Finally, the on-line and
off-line implementation of the method are exactly similar. The only extra consideration
in the on-line case is whether a large number of data points has been collected to provide

an accurate estimate of correlation pattern.

The main design parameter of the method is the type of the high-pass filter. As
mentioned in the previous chapter, high order filters are characterized by sharp frequency
responses; however, they induce oscillations in the signals. A simple first order high-pass
filter does nor have a sharp frequency response, but produces smoother output signals.
The local distance in the DTW algorithm can be the Euclidean distance (i.e., W being the

identity matrix), unless there is prior knowledge about the importance of some auto- or



crosscorrelation estimates. Again, because no assumptions are made about statistical
distributions and only one realization for each stochastic fault is assumed, the final
distance from DTW can only be used as a relative similarity measure. Finally, one has to
decide on the DTW algorithm. This is the subject of the next section.

5.4 A Modified Dynamic Time Warping Algorithm

As mentioned in Chapter 3, one of the parameters in a DTW algorithm is the endpoint
constraint, with the fixed-endpoint being the simplest constraint. However, fixing the
endpoints is not a reasonable constraint when comparing two correlation patterns where
one may be a contracted or expanded version of the other (due to faster or slower process
dynamics). For example, the autocorrelation coefficient at lag 10 of the expanded pattern
may be equivalent to the coefficient at a previous lag (e.g., 9 or 8) of the contracted
pattern. DTW can handle this problem both in the interior and at the edges of the search
area by allowing the end points of the path to lie in a region of the perimeter of the search
area. Section 3.4 and Figures 3.7(a) and 3.7(b) show how one can relax the fixed-

endpoint constraints for a symmetric and an asymmetric DTW algorithm.

Furthermore, the autocorrelation function at lag zero is by definition equal to one
for all variables. Thus, forcing the optimal path to exactly match the correlations at lag
zero for both patterns is a reasonable constraint. F igure 5.2 illustrates this idea; the figure
shows the optimal path resulting from the comparison of two correlation patterns with the
same number of lags. The star indicates the fixed-point constraint, while the open circles
indicate the first and the last optimal path points, as found by the DTW algorithm. The
DTW algorithm that implements such a pattern matching is as follows.

Let Corr[RS] and Corr[TS] be two correlation patterns with the structure shown
. . : . NN +1) .
in Eq (5.2), each a matrix of dimension (2P +1) x — 5 where P is the number of

lags and N is the number of the variables. Assume that the symmetric Sakoe-Chiba local
constraint with the symmetric weighting function (both shown in Figure 3.5(a)) are used,



together with a constraint for consecutive horizontal or vertical local transitions. Also,

the global band constraint is used.

P T 1] ] ] T
# Fixed-point
constraint
o Optimal end Boints P-M
(asfound by DTW)
M._ ..................................................

Lags of Corr[RS]

Pattern or

Lags of Corr[TS]
Pattern

Figure 5.2: Global and endpoint constraints used in the comparison between two
correlation patterns Corr[TS] and Corr[RS] via Dynamic Time Warping.

The algorithm consists of two stages: one for positive and one for negative lags.
In each stage, the DTW algorithm is very similar to the one described in Subsection 34.2;
the only difference is in the initialization step where it accounts for the fact that the

correlations at zero lag are included in both stages. The steps are the following:

Stage A: Comparison for positive lags.
Step 1: LetX = Corr[TS](P +1:2P +1,:)



Step 2:

Step 3:

Step 4:

Step 5:

LetY = Corr[RS](P +1:2P +1,:)

Give M, the parameter that defines the width (2M +1) of the band within which
the search for the optimal path will take place; this is the upper right shaded area
of Figure 5.2.

Give m, the maximum number of consecutive horizontal or vertical local

transitions.

Let d(i,j) = [X@,:) - YG,)] W [XG,:) - YG,: )" (i.e., the local distance).
Start the Dynamic Programming recursion for all allowable (i,j) points.
D,(1,1)=d(1,1)

[D,G-1,5)+dd, 1] or [0 if condition »)]
D,(i,j) =min{D, (i-1,j~1)+2d(, j) ,
[DAG,j-1)+dG, )] or [oo if condition (B))]

where: Condition (A): predecessor of point (i-1,j) is the point
(i-m-1,j) through m consecutive horizontal moves.
Condition (B): predecessor of point (i,j—1) is the point
(i, j— m—1) through m consecutive vertical moves.
Store the optimal predecessor for the (i, j) point.

Minimum Normalized Total Distance for positive lags:

2P +1

+1,))— +I-M<j<P+

1 [P T peioMsisea
T +

2P+l DA(i,P+1)2iiP1, P+1-M<i<P+]

Reconstruct the optimal path for positive lags, fﬁ , starting from the point in

which ﬁ+ occurs (last path point), and travel backwards as the optimal

predecessor indices dictate until point (1,1) is reached.

Stage B: Comparison for negative lags.

Step 6:

LetX = Corr[TS](P +1:-1:1,:)



Let Y = Corr[RS](P +1:-1:1,:)
Both X and Y contain at their first row the correlations at lag zero and at their

last row the correlations at lag — P .

Apply Steps 3 to 5. Find the Minimum Normalized Total Distance for negative lags, D_,

and reconstruct the optimal path for negative lags, F_.

Finally, combine the results from the two stages:

Minimum Normalized Total Distance: D= D, +D

. |F
Optimal Path: F= [ .*]

The algorithm is a symmetric one; both correlation patterns are considered to be
equivalent. The local constraint can be replaced by any of the other Sakoe-Chiba local
constraints (Figures 3.3(b), 3.3(c), 3.3(d)). However, the symmetric weighting function
has to be used in all cases. The normalization of distances at Step 4 is done on the basis
of number of local distances computed for each accumulated distance (as has been

described in detail in Subsection 3.4.2).

This completes the description of the method proposed to diagnose stochastic
faults. Its application is illustrated in the next section with case studies from the

Tennessee-Eastman plant simulation.



5.6 Case Studies

5.5.1 Description of the Patterns in the Reference and Test Sets

The reference set consisted of two patterns, RS, and RS, corresponding to the two
major stochastic upsets: IDV(8) and IDV(13). Tables 5.2 and 5.3 describe the details of

the reference and the test set patterns.

Table 5.2: Patterns in the Reference Set

Pattern | Fault Operating Step size / Duration / Fault occurs
Point direction # of points after / at
RS, IDV(8) Nominal +1.0 35hrs/ 701 pts | 3 hrs/61stpt
RS, | IDV(3) Nominal +1.0 30 hrs/ 601 pts | 3 hrs/ 61stpt

The test patterns are selected to illustrate different aspects of the classification
problem. Some are identical (with the exception of the seed for the random number
generator) to the reference set patterns, while others are quite different (i.e., realizations
of the same faults with different magnitudes at the “Reduced Production” operating
point). Another issue to be examined (which is crucial for the on-line implementation of
the method) is the effect of the time series length on the correlation estimates and

consecutively, on the classification.



Table 5.3: Patterns in the Test Set

Pattern | Fault Operating Step size Duration / Fault occurs
Point # of points after/ at
TS, IDV(8) Nominal 1.0 35hrs /701 pts [ 3 hrs/61stpt
TS, IDV(8) Nominal 0.5 35hrs/701pts | 3hrs/61stpt
TS, IDV(8) Nominal 0.8 35hrs/701pts | 3 hrs/61stpt
TS, IDV(8) Nominal 0.8 25hrs/ 501 pts | 3 hrs/61stpt
TS, IDV(8) Nominal 1.0 20hrs /401 pts [ 3 hrs/61st pt
TS, IDV(8) Nominal 0.7 30hrs/ 601 pts | 3hrs/61stpt
TS, IDV(8) | Reduc. Prod. 1.0 35hrs/ 701 pts | 3 hrs/61stpt
TS, IDV(8) | Reduc. Prod. 0.5 35hrs/701 pts | 3 hrs/61st pt
TS, IDV(8) | Reduc. Prod. 0.8 35hrs /701 pts | 3 hrs/61stpt
TS,, IDV(8) | Reduc. Prod. 0.8 25hrs /501 pts | 3 hrs/ 61stpt
TS,, [ IDV(13) Nominal 1.0 35hrs/ 701 pts | 3 hrs/61stpt
TS,, | IDV(13) Nominal 0.5 35hrs/ 701 pts | 3 hrs/61stpt
TS,; | IDV(13) Nominal 0.8 35hrs/ 701 pts | 3 hrs/61stpt
TS,, | IDV(13) Nominal 0.8 25hrs /501 pts | 3 hrs/ 61st pt
TS,; | IDV(13) Nominal 1.0 20hrs /401 pts | 3 hrs/ 61st pt
TS, | IDV(13) Nominal 0.7 30hrs /601 pts | 3 hrs/ 61stpt
TS,; | IDV(13) | Reduc. Prod. 1.0 35hrs /701 pts | 3 hrs/ 61st pt
TS;; | IDV(13) | Reduc. Prod. 0.5 35hrs /701 pts | 3 hrs/ 61st pt
TS,, | IDV(13) | Reduc. Prod. 0.8 35hrs /701 pts | 3 hrs/ 61stpt
TS,, | IDV(13) | Reduc. Prod. 0.8 25 hrs /501 pts | 3 hrs/ 61st pt




Not all of the 26 measured variables were included in the patterns; 26 variables
would result in 26 autocorrelations and 325 crosscorrelations. Although including all of
them does not create computational problems, it was decided to include 8 variables out of
the 26, on the basis that not all variables carry useful information. The next chapter
presents a modification where all 26 variables are initially included, but their number is
significantly reduced via Principal Component Analysis. The 8 variables used in the
patterns in this chapter are given in Table 1.2 of the Appendix; also, Figure 1.3 shows their

behavior during the reference patterns RS, and RS, .

5.5.2 Selection of Design Parameters

The duration of most patterns is between 30 and 35 hrs, which is the suggested duration
of the simulation in the original Tennessee-Eastman paper. Some patterns had a duration
of 20 and 25 hrs; this was selected to see the effect of shorter time series on the
correlation estimates. All faults were introduced after simulating 3 hrs of operation. The
60 measurements collected in these 3 hours prior to the fault were also used in the
estimation of the correlation pattern (since uncertainty in the time origin of a fault is
always present in practical situations). The time of introduction of the faults was not
varied because exact synchronization of the patterns is not a major issue for stochastic

faults when auto- and crosscorrelations are used as features.

The DTW algorithm is the one described in Section 5.4 with the parameters
shown in Table 5.4.

Table 5.4: Design parameters in the DTW algorithm

Number of lags, P 80
Maximum deviation from linear path, M 30
Maximum number of consecutive horizontal or 5

vertical moves, m

Weight matrix, W Identity matrix, dimension 36 x 36




It is not easy to give definitive guidelines on how to select values for these parameters.
The most important is the number of lags and this is something that can be determined
based on process knowledge or by observing the correlation estimates. The recycle in the
Tennessee-Eastman plant causes long dynamic behavior; thus, temporal correlations up to
4 hours (i.e., at lag 80 ) were included in the correlation patterns. Finally, the filters
described in the previous chapter were used for the cases studies of this chapter.

Figure 5.3 shows the same 4 variables (of Figure 5.1) for the patterns RS, ¢,

RS;sc; TS,sc and TS (i.e., after filtering and variance normalization has been

applied). Figures 5.4 and 5.5 show part of the correlation patterns for the scaled reference

patterns, Corr[RS, s.] and Corr[RS, .]. The correlation patterns express the fact that
fault IDV(13) contains lower frequencies than IDV(8); the patterns from Corr[RS, ]
do not die out as fast as the ones from Corr[RS,sc]. However, with the exception of

this difference, most of the crosscorrelation patterns look quite similar for both faults.
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5.5.3 Results

Table 5.5 shows the results from the pattern comparison via DTW. For each test pattern
of Table 5.3, the Fault Diagnosis method is applied as presented in Subsection 5.3.2.

Two minimum normalized total distances are obtained for each Corr[TS iscl:

f)(Corr[TSi,sc],Corr[RS, scD» ﬁ(Corr[TS,'SC 1,Corr[RS, 4. ])

The fault that corresponds to the reference pattern that gives the minimum of the two

distances, ﬁ, s » 18 selected as the most probable cause for the test pattern. Table 5.5

shows D, ,,, , the ratio of the two distances over D, ,,y and the decision on the most

probable cause for each test pattern. The shaded cells indicate the correct classification.
Good discrimination between the two faults is obtained when one of the ratios is not close
to one. Figures 5.6 and 5.7 show the results from applying DTW for the two correlation
patterns Corr[TS,c] and Corr[TS,s.]. Both figures show the band constraint, the

optimal path and the minimum normalized total distance.



Table 5.5: Results from Similarity Assessment via DTW; Distances from each DTW

match over Minimum Distance and Final Decision.

Test D(Core{TS 5], CorriRS, ) | IXCorr{TS,s.], CorriRS, o )

Pattern ﬁ L MIN over jji. MIN over ﬁ,' MIN Decision
TS, | 0.55 ; 23.75 IDV(8)
TS, | 1.98 7.12 IDV(8)
TS, | 0.99 13.11 IDV(8)
TS, | 1.37 9.14 IDV(8)
TS, | 1.02 0f 12.99 IDV(8)
TS, 1.17 12.43 IDV(8)
TS, | 4.52 : 3.31 IDV(8)
TS, | 3.21 4.46 IDV(8)
TS, | 2.66 6.10 IDV(8)
TS,, | 4.33 3.44 IDV(8)
TS,, | 3.47 3.47 ] IDV(13)
TS,, | 1.52 6.55 Ot IDV(13)
TS,, | 8.08 1.41 X IDV(13)
TS,, | 1.51 6.62 : IDV(13)
TS, | 5.25 1.89 : IDV(13)
TS,, | 0.96 12.72 i IDV(13)
TS,, | 7.24 1.88 IDV(13)
TS,; | 6.04 1.45 0 IDV(13)
TS, | 832 1.17 ' IDV(13)
TS,, 4.12 2.56 v IDV(13)
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Figure 5.6: Results for test pattern TS;; global constraints, endpoint constraints, optimal
path and Minimum Normalized Total Distance between Corr[TS, ;] and

Corr[RS, ] and between Corr[TS, 4] and Corr[RS,¢].
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Examining the results of Table 5.5, one can observe the following:

A) All test patterns are diagnosed correctly.

B)

0

For the IDV(8) fault, the results are as expected. For example, fault realizations with
magnitude of one (TS,) are classified with more certainty than realizations with

smaller fault magnitude (e.g., TS,, TS;). Similarly, faults of longer time series
(e.g., TS,) are classified with more certainty than ones with shorter time series (e.g.,
TS,). The operating point is again the most important factor, as the results for TS,-
TS, and TS, -TS,, indicate.

However, the results for the IDV(13) fault are not as expected. Comparing the results

for patterns TS, and TS,,, one can see that although RS, is more similar to TS,,
(default size of one) than TS,, (size of 0.5), the discrimination is better for TS 12 than
TS,,. Also, even though TS,, is a shorter time series, it is classified with more
certainty as IDV(13) than TS,,, which is a longer time series. The operating point is
again the most important factor for the classification of the IDV(13) fault (as the

results for TS, -TS,, and TS,,-TS,, indicate) but not to the same extent as is for

the IDV(8) fault.

D) The stochastic nature of the faults, coupled with the nonlinear process and the effect

of the recycle on the plant dynamic behavior, may explain the results of this chapter.
If the fault is an uninterrupted stochastic event (e.g., the composition of the feed is
randomly fluctuating), then a nonlinear plant may take a long time to express a
“consistent” stochastic behavior that can be detected by observing the auto- and
crosscorrelation coefficients. Even more so, when a recycle feeds back the output
fluctuations to the plant input. Therefore, simulated data of 35 hours duration may

not be enough for an accurate estimate of the correlation pattern.



§.6 Summary and Conclusions

In this chapter a method is proposed for the off-line and on-line diagnosis of stochastic
faults in dynamic continuous multivariable processes, based on Pattern Recognition
principles. No process model or other process knowledge is required. The method
requires a set of reference patterns, each describing a known past fault in the process
variables. After a scaling procedure, which essentially removes the low frequency trends
from the signals via high-pass filtering, the autocorrelation and crosscorrelation estimates
are extracted; these are the features used to classify the pattern of an unknown fault. The
decision scheme is a minimum distance classifier, where Dynamic Time Warping is used
for pattern matching to account for differences in the correlation patterns due to faster or

slower plant dynamics.

Because the correlations are independent of the magnitude of the variables, the
method can correctly diagnose faults independently of their magnitude. Also, the method
classifies faults independently of the production level via the robust pattern matching that
DTW offers. The method can deal with any number of variables and no assumptions on
statistical distributions are required. On the other hand, all variables and consecutively
their autocorrelation and crosscorrelations with other variables, are considered equally
important. Correlations result in a large increase of the dimension of the space where the
pattern comparison takes place and some of them may carry small amounts of

information. This issue will be addressed in the next chapter.

The most important assumptions of the method are that I) a fault, whose source is
a stochastic process, will result in a consistent correlation pattern in the process variables;
and II) different realizations of the same stochastic fault will result in similar correlation
patterns. The case studies from the Tennessee-Eastman simulation indicated that both
assumptions are questionable and their validity depends on the specific fault, particularly
when nonlinear processes with long dynamics are encountered. The Tennessee-Eastman
simulation is characterized by these features (i.e., nonlinear processes, long dynamics due

to recycle) and therefore poor diagnostic results were obtained.



CHAPTER 6
REDUCTION OF PROBLEM DIMENSION

VIA PRINCIPAL COMPONENT ANALYSIS

In this chapter the methods presented in the two previous chapters will be augmented
with the addition of Principal Component Analysis (PCA) which can significantly reduce
the dimension of the patterns for both deterministic and stochastic faults. In the case of
deterministic faults, the use of PCA significantly improved the discriminatory power of

the classifier, but inconclusive results were obtained for stochastic faults.

6.1  Introduction - Principal Component Analysis

The patterns of the deterministic faults in Chapter 4 contained 26 variables and all of
them were considered equally important in the Dynamic Time Warping-based similarity
assessment step. However, not all 26 variables carry useful information for Fault
Diagnosis purposes; some variables may not be affected by the fault and as a result they
may not exhibit any deterministic pattern. Including these noisy variables in the
similarity assessment will inflate the distance found by Dynamic Time Warping and
consequently reduce the discriminatory power of the classifier. Furthermore, the 26
variables are not independent but are highly correlated. Thus, one could use a smaller

number of variables and still retain most of the information,

For the stochastic faults of Chapter 5, 8 certain variables out of the 26 were
chosen to represent the pattern of a fault. Had all 26 variables been used to estimate the

correlation patterns of faults, one would have had to estimate 356 auto- and



crosscorrelations. Although this does not create any computational problems, it is a
tremendous increase in the dimension of the space where the similarity assessment
procedure takes place. This large number of auto- and crosscorrelations is not necessary,
since these 26 variables are not independent of each other. Moreover, some of these
correlations may not contain useful information, since some variables may not be affected
by the fault.

Thus, what is required in both cases is a method that will reduce the dimension of
the patterns in an “optimal” way. Principal Component Analysis (PCA) is such a method
(Jollife, 1986, Wold, 1987). Let X be a tx N matrix consisting of t observations on N
correlated variables. PCA finds new, fictitious, uncorrelated variables, called principal
components, that summarize the information in X. The first principal component is the
direction in the physical variables along which the data exhibit the greatest variability (as
expressed by their sum of squares). Subsequent principal components explain the
remaining variability, while being orthogonal to the previous principal components. One
can view PCA as a sequence of two steps: the first is a rotation of the space of the
physical variables to create orthogonal directions along which the variability of the
process lays; the second step is a projection of the original data onto the subspace defined
by the principal components. The whole procedure is beneficial in cases where the
original variables are highly correlated, because a much small number of principal

components is sufficient to capture most of the variability present in the original data.

In mathematical terms, matrix X is decomposed as follows:
X=TP"+E . 6.1

where P is an N x K matrix withK <N, and T a txK matrix. The columns of P,

called loading vectors, express the relation of the K principal components with the
original variables and by construction P*P =1I. The columns of T, called score vectors,

are the coordinates of the t N-variate data points of X in the subspace of the principal



components. Also, T* T is a diagonal matrix, whose entries are the sum of squares of
the original data along the directions defined by the principal components. Alternatively,
the diagonal elements of T™ T are the K largest eigenvalues of the XT X matrix, in

descending order, and P contains the K associated eigenvectors of X" X. E is the
residual matrix; it contains the variability that cannot be explained by the principal
components and in general represents process noise. From a different point of view,
TPT is the best rank-K approximation of a rank-N matrix X in the sense of the

Frobenious norm (Golub and Van Loan, 1989).

Because the objective of PCA is to describe the variability of X as measured by
the sum of squares, the scaling of variables is a defining factor. Scaling each variable so
that it has a zero average and a standard deviation one is the most common procedure and
gives equal weight to each variable. Another common scaling procedure is to weight the
variables by their relative importance, assuming that this process knowledge is available
(Kresta et al., 1991, Kourti and MacGregor, 1995). To decide on the number of principal
components, K, there is a number of criteria that one can use. Cross-validation is the
most popular one (Kourti and MacGregor, 1995), while other criteria include the broken
stick rule (Jollife, 1986) and the parallel analysis (Ku et al., 1995). According to the
latter, one plots the eigenvalues of X* X and the eigenvalues of YT Y; Y has the same

dimension as X and contains a generated data set in which all the elements are
independent random deviates. One then finds the point where the two curves cross and

that point defines the number of principal components to be retained.

One can also build confidence intervals for various statistics resulting from PCA,
based on assumptions for multivariate normal distributions and on approximations for
the distributions of quadratic forms. The most common ones are the Hotelling T? and

the Q statistics, which are defined by the following relationships:



T

-1
T’=T(i,:)[f_f] TG,:)T, i=1,..,t (6.2)

Q=[Xd,:) - TG,)P] [X(,:) ~TGHPT]', i=1,..,t (6.3)

Confidence intervals for these statistics can be found in Kourti and MacGregor (1995)
and in Nomikos and MacGregor (1995a). A large value for the T? statistic indicates an

abnormality which causes a larger variability than the common cause variability of the
normal operating data. A large Q value indicates an abnormality that changes the
correlation structure present in the normal operating data. Details on multivariate
monitoring of continuous processes at steady-state conditions using PCA can be found in
Kresta and MacGregor (1991). The next two sections describe the incorporation of PCA
into the Dynamic Time Warping methods of Chapter 4 and 5.

6.2 Diagnosis of Deterministic Faults

6.2.1 The Algorithm and Design Parameters of the Method

Let R, i=1,..,] be a the set of reference patterns, each representing a known
deterministic fault. Each is a matrix of r, x N, where r; is the number of measurements

and N is the number of measured variables. Also, let T; be the pattern of an unknown
deterministic fault, a matrix of dimension t i X N. The method presented in Chapter 4 is

modified as follows.

Feature Extraction Steps: for each variable, in each R, do the following:
Step 1: Subtract the initial level.

Step 2: Filter with high-pass filter.

Step 3: Normalize to standard deviation of one.

Step 4: Filter with low-pass filter.



Let R;sc be the patterns after the above scaling procedure.

[Rysc

Risc
Step 5: Create a matrix X with all the scaled patterns; i.e.,, X =

_R 15C |

Apply PCA on X (i.e., X = TP" +E); store the loading vectors in matrix P.
Also, let the corresponding points of the score vectors be the descriptions of the

scaled reference patterns in the space of principal components:

I-1 1
RigA =T(L:r,,:), RI% =T(r, +1:r, +1,,1), .., RIS = T([Zrk]H:Zrk,:)

k=1 k=1
When the pattern of the unknown fault, T; , becomes available, apply Steps 1-4; let T, sc
be the resulting scaled test pattern.

Step 6: project T,sc onto the subspace defined by the principal components:

T}gccA =TiscP.
Similarity Assessment Steps.
Step 7:  Apply Dynamic Time Warping between R and T/ fori=1,..,1.
Step 8: Apply Dynamic Time Warping between -RiZ and T/ fori=1,..,I.

Step 9: From the 2-1 distances obtained in Steps 7 and 8, find the minimum; the fault

whose pattern results in the minimum distance is deemed to be the most likely

to have generated the test pattern.

The method extends the feature extraction stage by including PCA. After Step 5,
the dimension of the scaled reference patterns will be significantly smaller than N if the
patterns contain correlated variables. The matrix P will contain linear combinations of

the scaled variables that contain most of the variation of the scaled reference patterns.



Linear combinations with small variation correspond to subsequent principal components

and they will not be included in the new descriptions, R{scé‘ . However, some of these

ignored principal components will still contain low variability deterministic patterns; this
information is ignored by this method.

Alternatively, one could apply the canonical analysis Box and Tiao (1977) to find
linear combinations of variables that are most predictable from their past history. With
the Box and Tiao method the ignored components contain more random patterns, but on
the other hand they may contain more variation than the ignored principal components
from PCA. The Box and Tiao method applies only for multivariate autoregressive
stochastic processes and it requires that the autocovariance matrix at lag zero is full rank.
Both are strict assumptions (particularly the latter) for patterns of faults from chemical
processes where the variables are highly correlated. For these reasons, the Box and Tiao

method was not implemented in the proposed method.

The design parameters of the method are the ones of Chapter 4 (see Section 4.3)
with the addition of the number of principal components to be retained. One can use any
of the aforementioned criteria (i.e., cross-validation, the broken stick rule, parallel
analysis) or their combination. Regarding the other design parameters (filter design,

DTW variant) the comments of Section 4.3 apply here as well.

6.2.2 Case Studies, Results and Conclusions

Case studies from the Tennessee-Eastman simulation were used to evaluate the
application of PCA in the Dynamic Time Warping-based method of Chapter 4. The case
studies of Chapter 4 are also used in this chapter. The reference set patterns are shown in
Table 4.2 and the test patterns are shown in Table 4.3. Also the same filters and the same
DTW variant used in Chapter 4 were used in these case studies. The simple Euclidean
distance (i.e., W being the identity matrix) was used as the local distance. All the 26

variables were included in the patterns.



To decide on the number of principal components the parallel analysis was used;
the results are shown in Figure 6.1. Matrix Y has the same dimension as X and contains
random numbers drawn independently from a normal distribution with mean zero and
variance one. Based on these results, 4 principal components were retained. Figure 6.2

shows the scaled reference patterns along the 4 principal components.

4

10
21 - - ' ' '
1.8 % |
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Figure 6.1: Eigenvalues of X" X and of Y" Y ; X contains the scaled reference patterns
and Y contains an independent random process.
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Table 6.1 shows the results from the similarity assessment step. Again, for each

test pattern 6 distances are obtained by comparing the test pattern to the three reference

patterns and to the negative of the three reference patterns. The table shows the minimum

distance, the ratio of all distances over the minimum distance and the final decision.

Good discrimination is achieved when five of the six ratios are significantly greater than

one. Again, the shaded cells indicate the correct diagnosis; hence, the diagnosis is correct

when the ratio of one appears in a shaded cell.

Comparing results of Table 6.1 with the results of Chapter 4 in Table 4.4, one can

see the following:

A) All the classifications, with the exception of pattern T,s, were correct. However, in

B)

all cases the S ratios are greater that the corresponding ratios of Table 4.4. This
indicates an increase in the discriminatory power of the classifier. For the pattern

T, all 5 ratios are close to one, indicating that all 6 distances are comparable; this
could be used as a warning to indicate that T, is actually different from all the

reference patterns.

The improved results can be attributed to the fact that PCA has retained only that
variation which is consistent among the physical variables. Inconsistent variation that
inflates the distance measure has been ignored. Moreover, one can view the
projection of a new pattern onto the principal component space as a very selective
“filtering” operation. If the new pattern is a realization of a fault whose description
exists in the database (and consequently was included in the construction of the PCA
model) its projection allows the consistent variation to pass through and to be used in
the DTW stage. This does not happen when the new pattern is a realization of a new
fault, since that fault was not considered in the construction of the PCA model.
Therefore, even before the similarity assessment step, a “filtering” takes place that

favors the correct classification of faults that exist in the reference set.



Table 6.1: Results from Similarity Assessment via DTW; Distances from each DTW

match over Minimum Distance and Final Decision.

Test | Minimum | with | with with | with with [ with | Decision
Pattern | Distance | R4 [ -RIS4| RI% | -RI Rise | -Rig
Tl{’scé‘ 0.50 50.08 |26.93 [23.35 [2037 |21.64 IDV(1)
T/ 0.74 I 2591 [17.35 [27.49 [13.85 | 1600 | IDVQ)
T 112 | 11.63 | 9.33 29.74 [1358 | 14.08 | IDVQ)
/2 2.42 475 | 635 | 8.68 ; 602 | 589 | -IDVQ)
Ts‘:’sf-'g 0.19 52.63 |59.07 | 85.57 |93.48 JUNN 69.76 IDV(7)
T6{’scg 0.32 33.74 | 3247 | 4828 |47.66 |41.25 i -IDV(7)
TS 0.58 00N 4248 [ 2133 |20.11 |17.53 | 19.82 | IDV(D)
T 1.81 6.80 | 692 08 11.07 | 721 | 6.90 | IDV(Q)
Tg"’scé‘ 2.38 20U 7.04 4.56 7.55 4.33 5.05 IDV(1)
Tlil;.CSAC 1.82 13.60 5.81 6.49 5.57 6.07 IDV(1)
/S 3.26 372 | 249 0| 788 | 417 | 407 | DVQ)
Tl’;,cs‘c 3.36 2.04 3.57 4.95 3 4.47 4.40 -IDV(2)
TS.%’E 5.03 2.46 2.19 2.50 3.18 ? 1.86 IDV(7)
TS 1.84 |13.81 OO0 434 | 747 | 664 | 558 | -IDV(D)
Tl};f:SAC 2.06 5.30 588 | 1524 )¢ 6.87 7.06 -IDV(2)
Txl;,%:: 11.23 1.18 1.37 1.22 1.00 1.39 1.38 -IDV(2)




C) The PCA model is constructed by considering only the instantaneous correlations
among the variables. Shifted-in-time versions of the variables were not used, although
it is typical in applications of PCA that use dynamic data. In such a case, the PCA
model also captures temporal correlations. However, the temporal correlations may
change at different production levels and this may result in wrong classifications. In
the proposed method, the score vectors are dynamic variables and their patterns are
matched via DTW. PCA is used only for feature extraction and not for classification.

Section 6.4 discusses this point in more detail.

6.3 Diagnosis of Stochastic Fauits

6.3.1 The Algorithm and Design Parameters of the Method

Let RS;,i=1,...,I be a the set of reference patterns, each representing a known
stochastic fault. Each pattern is a matrix of r; xN, where r, is the number of

observations and N is the number of measured variables. Also, let TS ; be the pattern of
an unknown stochastic fault, a matrix of dimension t i *N. The method presented in

Chapter 5 is modified as follows.

Feature Extraction Steps: for each variable, in each RS, , do the following:

Step 1: Subtract the initial level.
Step 2: Filter with high-pass filter.
Step 3: Normalize to standard deviation of one.

Step 4: Filter with low-pass filter.

Let RS, sc be the patterns after the above scaling procedure.



Step 5: Create a matrix X with all the scaled patterns; i.e.,, X =

RS LSC J

Apply PCA on X (i.e., X =TPT +E) and store the loading vectors in matrix P.
Also, let the corresponding points of the score vectors be the descriptions of the

scaled reference patterns in the space of principal components:

I-1 1
RS[S =T(1:1,,2), RS; 5 =T(r, +1:r, +1,,:),.... RS A =T([Zrk]+1:2rk,:)

k=| k=1

Step 6:  Compute the correlation pattern for each RS'%, Corr[RS el

When the pattern of the unknown fault, TS j» is obtained, apply Steps 1-4; let TS jsc be
the scaled pattern.

Step 7: project TS;. onto the subspace defined by the principal components:

TSjsc = TS, P; compute its correlation pattern, Corr[TS rsel.

Similarity Assessment Steps.

Step 8: Apply Dynamic Time Warping between Corr[RS/]and Corr[TS{¢:] for
i=1,...1.

Step 9: From the I distances obtained in Step 8, find the minimum; the fault whose

correlation pattern results in the minimum distance is deemed to be the most

likely to have generated the test pattern.

Again, PCA is used to reduce the dimension of the scaled patterns, and
consequently the dimension of the correlation patterns. The only additional design
parameter of the method is the number of principal components to be retained; any of the
criteria mentioned before or their combination can be used. All the other design

parameters are as discussed in Subsection 5.3.2.



6.3.2 Case Studies, Results and Conclusions

The case studies of Chapter 5 were used to evaluate the effect of using PCA for reduction
of pattern dimension to the DTW-based method presented in Chapter 5. The reference
set patterns are shown in Table 5.2 and the test patterns are shown in Table 5.3. However
for the case studies of this section all the 26 variables were included in the patterns and
not only the 8 variables used in Chapter 5. Also the same filters and the same DTW
variant used in Chapter 5 were used in these case studies. The simple Euclidean distance
(i-e., W being the identity matrix) was used as the local distance. Paralle] analysis, as
described in Subsection 6.2.2, was applied to decide on the number of principal
component; it was found again that 4 principal components are significant. Table 6.2

shows the results from the similarity assessment step.

Comparing the above results with the ones of Table 5.5, one can observe the

following:

A) All the classifications are correct. However, for some case studies there is large

improvement in the discriminatory power (e.g., TS,, ) with the application of PCA.
However, for some patterns the improvement is minimal (e.g., TS,), while for others

the discrimination is actually worse (e.g., TS )

B) The results of Chapter 5 indicated that the stochastic faults can produce inaccurate
correlation estimates given the amount of data points collected. If this is the case,
then the PCA model will also be very dependent on the amount of data collected and
will not be an accurate estimate of the “true” model. These two consecutive effects
(inaccurate PCA model and inaccurate correlation estimates) could be the reason for

the inconsistent results of this section.



Table 6.2: Results from Similarity Assessment via DTW; Distances from each DTW

match over Minimum Distance and Final Decision.

Test DXCon{TSZ1,CornfRS[SD | DXCorr{TS{SH], Corr{RS LD

Pattern jj L,MIN over ﬁ,' MIN over 13,_ MIN Decision
TS, 0.18 19.33 IDV(8)
TS, | 0.44 8.58 IDV(8)
TS, | 0.24 14.95 IDV(8)
TS, | 0.34 9.79 IDV(3)
TS, | 0.24 16.24 IDV(8)
TS, | 031 11.05 IDV(8)
TS, 0.86 3.73 IDV(8)
TS, 0.66 5.16 IDV(8)
TS, | 049 ' 8.02 IDV(8)
TS,, | 0.86 4.40 IDV(8)
TS,, | 044 9.93 IDV(13)
TS,, | 0.15 23.93 IDV(13)
TS,, | 1.06 4.16 IDV(13) |
TS,, | 0.41 8.50 IDV(13)
TS, 0.82 4.71 IDV(13)
TS,, | 0.24 18.83 IDV(13)
TS,, 0.25 14.25 IDV(13)
TS, | 1.79 1.24 IDV(13)
TS, | 0.75 3.48 IDV(13)
TS,, | 1.77 1.42 IDV(13)




C) However, the reduction in the dimension of the correlation patterns should be noted.
In Chapter 5, only 8 variables were included (out of the 26) in the patterns of the
stochastic faults, resulting in correlation patterns of dimension 36 (8 autocorrelations
and 28 crosscorrelations). In the case studies of this section, 26 variables were
reduced to 4 principal components, resulting in 4 autocorrelations and 6
crosscorrelations. Moreover, no arbitrary decision had to be made on which variables

to include in the patterns.

6.4 PCA as a Pattern Recognition Tool in Dynamic Signals

Recently, Ku et al. (1995) have proposed a Fault Diagnosis procedure for dynamic
processes based on PCA. According to their method, one creates a separate PCA model
for each reference fault. Because dynamic data exhibit temporal correlations, shifted-in-
time versions of variables are used to construct the PCA model. For example, if X is a
tx N matrix which contains t measurements on N variables scaled to an average of zero

and a standard deviation of one, then one would perform PCA on the following X, ¢

matrix:
Xiac =[X(+1:t:) X(It-1,0) ... X(1:t-1,2)] 6.4)

Parallel analysis and correlation analysis are used to decide on the amount of time shift
(i.e., parameter /), and on the number of principal components. For each model,
confidence intervals are constructed for the T2 and Q statistics. When the pattern of an
unknown fault appears it is projected onto the subspaces defined by each PCA model.
Next, the T? and Q statistics are obtained from each PCA model and are plotted against
their corresponding confidence intervals. The PCA model whose confidence intervals
include these statistics is selected as the one that best describes the new pattern. The fault
that corresponds to this model is deemed as the most likely to have generated the new

pattern.



Ku et al. (1995) tested their method on case studies from the Tennessee-Eastman
plant. Although they were able to implement it for all 20 programmed faults, their case
studies did not examine the effect of different magnitude, direction or operating point on
the performance of the method. However, one can see that by including lagged variables
in the PCA model a rigid model is constructed; if the same fault occurs with slightly
different temporal correlation it will not be diagnosed correctly. Furthermore, because of
the nonlinear nature of the plant, even a small difference in the magnitude of a fault can

result in different temporal correlation.

To illustrate the above argument, the method of Ku et al. (1995) was applied for
the deterministic faults studied in Chapter 4. The raw data of patterns R,, R,and R,

(see Table 4.2) were used after the initial level was subtracted from each variable. This
was done to account for different initial levels that the variables may start at different
production levels. Also, only 10 hours of data were considered, with the fault occurring 1
hour after the origin. This was done to be in agreement with the cases studies of Ku et al.
(1995). All the 26 variables were used in the patterns and the variables were shifted two
sampling intervals (i.e., / = 2) as also done by Ku et al. (1995).

After these preprocessing steps, three different PCA models and confidence
intervals for the T? and Q statistics were constructed. The method was tested using the
patterns T, and T, (see Table 4.3). The resuits from the analysis are shown in Figures
6.3 and 6.4, respectively. As Figure 6.3 shows, the T? statistic indicates that T, is most
similar to R;, then to R, and less to R, ; the Q statistic suggests (although not very
clearly) that T, is most similar to R, thanto R, or R ;> and this is the correct diagnosis.
Thus, the information from the two statistics is contradictory. In the case of pattern T,,
(which is a realization of the same fault as R,, with 90% magnitude at a reduced
production operating point) the T? statistic in Figure 6.4 suggests that T,, can be any of
the three reference faults. However, the Q statistic suggests that T,, does not resemble

any of the reference faults. Again, the two statistics give contradictory information.
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Figure 6.3: Projection of the T, pattern onto the PCA models of patterns R,, R,
andR;; the graphs show the T? and Q statistics (solid lines) and their 95%
confidence intervals (dashed lines).
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These results are not surprising. In the “Reduced Production” operating point, the
temporal correlations change. Any Fault Diagnosis scheme that is not flexible to account
for these changes will fail to provide the correct diagnosis. As discussed in Section 2.3,
to use PCA for diagnosis of dynamic patterns, a unrealistically rich database of past fault
realizations would be required. One then would have to either create separate models for
each realization of each fault or create one model for each fault from all realizations. On
the other hand, the methods proposed in Chapter 4 and in this chapter do not require such
arich database due to the flexible pattern matching capability of Dynamic Time Warping.

6.5 Summary and Conclusions

This chapter presented a modification to the similarity assessment scheme which utilizes
Principal Component Analysis. The modified methods were applied to the same case
studies of Chapter 4 and 5. PCA was used as an additional feature extraction step that
reduces greatly the dimensions of the patterns and extracts consistent information. In the
case of deterministic faults, 26 variables were reduced to 4 principal components and a
large improvement in the discriminatory power of the classifier was achieved. In the case
of stochastic faults, the classification results were not always improved; a possible reason
for that could be the lack of a sufficient amount of data to accurately estimate the auto-
and crosscorrelations. However, the reduction in the dimension of the pattern is a major
improvement due to the geometric increase of correlations with respect to the number of

variables.

It has to be emphasized that PCA was used in this chapter only as a feature
extraction tool and not as a diagnostic tool. There are two reasons for this: I) different
realizations of the same fault will result in similar correlations across the variables, and
IT) different production levels will result in different temporal correlations for the same
fault. For these reasons, PCA was performed by considering only the instantaneous
correlations across variables (i.e., at lag zero) so that any temporal correlation is ignored.

Thus, PCA will extract information which remain consistent over different realizations of



the same fault and Dynamic Time Warping will account for any distorted temporal
correlations. On the other hand, a PCA model which includes temporal correlations will
be dependent on the operating point and this is not a desired characteristic of a robust
Fault Diagnosis scheme. The results of Section 6.4 showed that a diagnostic scheme for a
dynamic process based on time-shifted PCA is likely to fail to give the correct answer
even for small variations of the training set faults.



CHAPTER 7

ON-LINE DIAGNOSIS OF DETERMINISTIC FAULTS

IN CONTINUOUS DYNAMIC PROCESSES

In this chapter, the method presented in Chapter 4 for the off-line diagnosis of
deterministic faults will be modified so that it can be applied to diagnose deterministic
faults in real time. The application of the method is illustrated with case studies from the

Tennessee-Eastman simulation.

71 Introduction

Chapter 4 presented a method to off-line diagnose deterministic faults; i.e., faults that
produce similar patterns in the process variables for different realizations of the fault.
The method was a sequence of two steps: the first was a feature extraction step, where
high-pass filtering and variance normalization removed the magnitude information from
the variables; the second step was a similarity assessment scheme using a symmetric
Dynamic Time Warping (DTW) algorithm. As mentioned in Chapter 4, the high-pass
filtering and variance normalization in the feature extraction step are critical because
deterministic events can occur with different magnitude and a robust Fault Diagnosis
scheme should classify them independently of their magnitude. DTW is used because it
is a flexible pattern matching method that can deal very effectively with similar but
unsynchronized patterns. However, DTW is a distance-based method and this means that
an intelligent scaling of the variables is critical for the successful operation of the

classifier.



Now, when one is faced with the problem of diagnosis of deterministic faults in a
real time situation there are some important differences from the off-line application that

have to be taken into consideration. These are the following:

I) When the test pattern of an unknown fault is evolving, one has only an initial part of
the pattern; the rest of the pattern is not yet available. Moreover, there may be an
uncertainty in locating the origin of the fault in the test pattern. Also, the time
required for the plant to achieve steady state is unknown.

II) Because the classification has to be independent of the magnitude of the fault, the
unknown test pattern has to be scaled using similar techniques to the off-line scaling.
High-pass filtering is independent of the number of points and therefore does not
create any concerns. However the normalization of each variable to a standard
deviation of one is a problem. Even after high-pass filtering is applied the variables
are not stationary, as Figure 4.4 shows. For example, by looking at Figure 4.4 one can
see that the standard deviation of each variable is greater when it is estimated from the
first half of the patterns that when all the data points are used. This is due to the fact
that the latter part of the patterns corresponds to steady-state conditions which have
small variance. Therefore, depending on how many data points are available at any
time, the normalization factors will be different for each variable, Suppose that i) one
uses all the data points to estimate the standard deviation and normalize the variables
in the reference patterns and then ii) uses these scaling factors to normalize the
variables in the evolving test pattern. If the reference and the test patterns are
realizations of the same fault occurring with the same magnitude, this is a consistent
scaling. If however the test pattern is a fault realization with different magnitude, the
scaling factors are inconsistent; on-line pattern matching using DTW will fail due to
incorrect scaling.

III) Assuming that a proper scaling has been applied, one now has to compare the test

pattern with each of the reference patterns and their mirror images. Since the test

pattern is still evolving, it is reasonable to compare it not with the complete reference



patterns but with their initial part. If indeed the test pattern is a realization of a
reference fault, then a DTW algorithm capable of locating the initial part of the

appropriate reference pattern should be used.

The next section presents a DTW algorithm that can deal with the problems (I)
and (1), namely the uncertainty in locating the time origin of the test pattern and the
requirement of locating the initial part of the appropriate reference pattern that most
resembles the test pattern. Problem (I) will be discussed in Section 7.3, where the

complete method for on-line diagnosis of deterministic faults will be presented.

7.2 A DTW Algorithm for On-line Application

Let T be the evolving test pattern up to the current time, a matrix of dimension t x N,
where t is the number of data points and N the number of measured variables. Let R be
any of the complete reference patterns, a matrix of dimension r x N, with r being the
number of data points. For both patterns it is assumed that an appropriate scaling

procedure has been applied (to be presented in the next section).

The objective is to compare T with R using DTW in a way that accounts for the

following timing discrepancies between the two pattemns:

I) The time origin of the fault that generates the T pattern may not be known exactly.
Therefore, it is possible that too many or too few data points (that correspond to the
steady-state conditions before the fault) are included in T than are included in R. The
DTW algorithm should locate the point in the initial part of R that best matches the
first point of T.

II) Assume that T is being generated by the same fault that generated R. Since R is the
complete description of the fault (i.e., until the new steady state is reached) and T is a
pattern that is still evolving, T will best match with an initial part of R. The DTW
algorithm should be able to find the part of R which mostly resembles pattern T at the

current time.



An asymmetric DTW algorithm similar to the one presented in Example 6 of
Subsection 3.4.1, can be used to account for the above timing considerations. Figure 7.1
illustrates the features of the proposed algorithm, namely the local and global constraints

and the relaxed endpoint constraints. Let d(i, j) be the local distance between the i® and
the j* point of T and R respectively; also assume the identity matrix is used as the

weight matrix; i.e.,
di,j) = (TG,:)-RG:N(TG:)-RG,:)T (7.1)

Also, let D, (i, j) be the minimum accumulated distance up to point (i,j). Then at every

allowable (i, j) point the following minimization problem is solved:

D,(i-1,j) +d(,j) or w ifcondition A)
D,G-1,j-1)+d(,j)

D,(-1,j-2)+d(,j) (7.2)
D,(-1,j-3)+dGj)

DA(i$j) = min

where: Condition (A): point (i1, j) is optimally reached from point (i-3,j)
via two consecutive horizontal moves.

This local constraint is an extension of the Itakura local constraint (Itakura, 1975)
presented in Example 2 of Subsection 3.3.2, and extends the range for the local slope of
the optimal path from [1/2,2] to [1/3,3].

Also, for the first &, +1 and last &, points of the pattern T, the check on three

consecutive horizontal transitions is disengaged, thus allowing for up to &, consecutive

horizontal local optimal transitions. This accounts for the possibility that too many points

from either before or after the fault are included in T. Thus, the local constraints become:
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D,G-Lj) +dG,j)
D, G-1,j-1)+dGj)
D,(G-1,j-2)+d(,j)
D, G-1,j-3)+d(G,j)

D, (i,j) = min if 1Si<4, +1,0r, t=6,+1<i<t  (7.3)

Similarly, the optimal path is allowed to start and finish at the first and last 6, points on
the vertical axis; Areas (A) and (B) respectively in Figure 7.1. This feature accounts for
the possibility that too few points from either before or after the fault may be in the T
pattern. It also accounts for the fact that the pattern T may be most similar to an interior

part of the pattern R.

The local constraints of Eqs (7.2) and (7.3) result in a search area for the optimal
path that is defined by lines of slope 1/3 and 3 emanating from the appropriate points in
the grid, as Figure 7.1 illustrates. To reduce even more the search area, an extended band
constraint can also be used as follows. One can draw two diagonal lines with a slope of

one, one line emanating from point (1,1) and the other from point (t,r) ; then the optimal
path is not allowed to deviate by more than + M points from the least restrictive of these

diagonal lines. This extended band constraint results in a band width of 2M + [t—r+1.

When t=r, then it is reduced to the simple band constraint used in all DTW algorithms
of Chapters 4, 5 and 6. The final search area is obtained as the intersection of the area
defined by the lines of slope 1/3 and 3 and the area defined by the extended band
constraint. The result is the shaded area of Figure 7.1.

The above DTW algorithm is an asymmetric algorithm and as such it may skip
points of pattern R. This is desirable in the beginning and in the end of R, since T may
be similar to an interior part of R. On the other hand, one could argue that omitting
points is not desirable if it happens in this interior part of R because the net result is that
some points in R are treated preferentially over others (i.e., the ones that the algorithm
skips). Thus, a symmetric DTW algorithm should be used instead of an asymmetric
algorithm. However, as discussed in Example 7 of Subection 3.4.2, a symmetric DTW



algorithm makes is impossible to relax the fixed initial-point constraint on the optimal
path. This is clearly a major disadvantage for an on-line application and for that reason

an asymmetric DTW algorithm was chosen instead of a symmetric one.

This completes the description of the DTW algorithm used in the on-line
application of the proposed Fault Diagnosis scheme. The complete scheme (feature

extraction and similarity assessment) is presented in the next section.

7.3  The Algorithm and Design Parameters of the Method

Let R;,i=1,...,I be a the set of reference patterns, each representing a known fault.
Each is a matrix of 1, xN, where 1, is the number of raw measurements, and N is the

number of measured variables. Also, let T be the raw measurements of an unknown test
pattern up to the current time, a matrix of dimension tx N ; the objective is to find the

R; pattern whose initial part is most similar to T. The proposed method is as follows:

Feature Extraction Steps: for each variable, in each R; do the following:

Step 1: Subtract the initial level.
Step 2:  Filter with high-pass filter.

Step 3: Select a set of times: ¢,, t,,...,¢ . same for all variables and for all reference
patterns. For each variable, in each R,, estimate a set of L standard deviations
by using only the data from time O up to each of the times ¢,, | S

When the current time is equal to any of the times 1)y ty50t, apply Steps 4 to 12 as

follows:

Step 4: Divide each variable in each R, by the its standard deviation as estimated using

data from time 0 up to current time.

Step 5: Filter with low-pass filter.

Let R;sc be the reference patterns after the above scaling procedure.



Let T be the test pattern from time 0 up to current time; for each variable in T apply the

following procedure:

Step 6: Subtract the initial level.

Step 7:  Filter with high-pass filter.

Step 8: Normalize to standard deviation of one using all data in T.

Step 9:

Filter with low-pass filter.

Let Tyc be the resulting scaled test pattern.

Similarity Assessment Steps.

Step 10: Apply Dynamic Time Warping (using the algorithm described in Section 7.2)

between R,sc and Ty.. To speed up the computations, instead of the complete
R;sc pattem, a part of it could be used to be compared with Tsc . For example,
at time ¢, the part of R,s. from time O up to time t, + At, could be used;

At, should be selected sufficient large to account for uncertainties in locating

the time origin of the fault in both patterns.

Step 11: Apply Dynamic Time Warping between —R,sc and T, (i.e., the mirror

images of the scaled reference patterns). The same argument used in Step 10

implies here to speed up the computations.

Step 12: From the 2 -I distances obtained in Steps 10 and 11, find the minimum; the

fault whose pattern results in the minimum distance is deemed to be the most

likely to have generated the test pattern.

The method is similar to the one described in Chapter 4 with only two differences:

the proposed DTW algorithm and the selection of a set of times where scaling and pattern
comparison takes place. The DTW algorithm used in this chapter offers the flexibility of

relaxing the endpoint constraints. The need to select a set of different times where

variance normalization and DTW is performed, arises from the requirement of



independence of the diagnosis to the magnitude of the fault and by the nonstationary

nature of the variables in the patterns.

The reference patterns describe fault realizations of a particular magnitude and
duration. However, new fault realizations can occur with different magnitudes;
moreover, in real time their duration is not constant but is increasing. The standard
deviation estimated from data up to time t, will be different from the one estimated using
data up to time ¢, because the variables are nonstationary, even after high-pass filtering.
The proposed segmentation and scaling tries to account for this nonstationary behavior of
the variables. It ensures that the estimation of the standard deviation of the variables will
be based on data that occupy approximately the same initial part of the patterns. This
would be exactly true if the patterns were synchronized, that is, the fault always occurs at
the same time after time zero. However this will not be true in general and the method

should be robust to this discrepancy.

The main design parameter of the method is the set of times t, ty,..,t, over

which scaling and pattern comparison take place. One could choose them based on the
dynamics of the process. Most of the variation induced by a fault occurs in the initial part
of the pattern rather than in the final part (i.e., when the plant approaches a new steady
state). For that reason, the difference between the two estimates of the standard deviation

will be larger if ¢, and ¢, are close to the time origin of the fault than if #, and ¢, are

close to the end of the pattern. Therefore it is suggested to space these times unevenly,

placing more of them in the initial part of the pattern and fewer towards the end.

The parameters in the DTW algorithm are essentially related to the uncertainty in
locating the time origin of the fault either in the reference patterns or in the test pattern.
The same implies for the At,,A¢,,...,At, parameters mentioned in Steps 10 and 11. The
weight matrix, W, for the local distance estimation can be set equal to the identity
matrix, unless there is some prior knowledge about the importance of a variable in the

fault diagnosis. The type of high-pass filters to be used is another major factor. Again,



first order high-pass filters are suggested since they do not induce oscillations in the

patterns (see also Section 4.3 for more details).

This completes the presentation of the method proposed for on-line diagnosis of
deterministic faults in continuous dynamic processes. In the next section, cases studies

from the Tennessee-Eastman plant are used to illustrate its implementation.

7.4 Case Studies

7.4.1 Description of the Patterns in the Reference and Test Sets

The case studies of Chapter 4 are also used in this chapter. However, in the on-line
application, the synchronization of the variables is crucial for the estimation of the
standard deviation of the variables. To see the effect of having unsynchronized patterns
in the on-line diagnosis, the time characteristics of the case studies of Chapter 4 were
slightly modified. Table 7.1 shows the reference set used in the case studies of this
chapter. The test patterns evaluated are shown in Table 7.2. From the two tables one can
see that timing differences up to 1.5 hrs were introduced in the patterns. Again, faults
with different magnitude and direction, occurring at different production levels are used
to test the on-line method against the requirements imposed in Chapter 1 for a Fault
Diagnosis scheme. More details on the faults, the operating points, and the simulation

can be found in Chapter 4, Sections 4.1 and 4.4.1.

Table 7.1: Patterns in the Reference Set

Pattern | Fault Operating | Step size/ Duration / Fault occurs after
Point direction # of points / at
R, IDV(1) Nominal +1.0 28.0hrs/561 pts| 1.0hrs/21%pt
R, IDV(2) Nominal +1.0 29.0hrs /581 pts| 2.0 hrs/41% pt
R, IDV(7) Nominal +1.0 285hrs /571 pts| 1.5hrs/31%pt




Table 7.2: Test Set Patterns Evaluated

Pattern | Fault Operating | Step size / Duration / Fault occurs after
Point direction # of points / at
T, IDV(1) Nominal +1.0 29.0hrs/ 581 pts | 2.0 hrs / 41% pt
T, IDV(1) Nominal +0.7 28.0hrs/ 561 pts| 1.0 hrs /21% pt
T, IDV(2) Nominal +0.8 275hrs/ 551 pts| 0.5hrs / 11% pt
T, |IDV(Q) Nominal -0.9 28.0hrs /561 pts | 1.0 hrs / 21% pt
T IDV(7) Nominal +0.8 29.0 hrs/ 581 pts | 2.0 hrs / 41% pt
T, |[IDV(?) Nominal -0.7 28.0 hrs /561 pts | 1.0 hrs /21 pt
T, IDV(1) Nominal +0.9 27.5hrs /551 pts| 0.5 hrs / 11% pt
IDV(9) +1.0 8.5hrs/171% pt
T, IDV(2) Nominal +0.8 28.0 hrs/ 561 pts | 1.0 hrs / 21% pt
IDV(10) +1.0 9.0 hrs / 181% pt
T, IDV(1) | Reduc. Prod. +0.5 28.0 hrs/ 561 pts| 1.0 hrs / 21% pt
T, |IDV(1) | Reduc. Prod. +0.9 285hrs/ 571 pts| 1.5hrs/ 31% pt
T,; |IDV(2) | Reduc. Prod. +0.9 28.0 hrs/ 561 pts| 1.0 hrs /21 pt
T,, |IDV(2) | Reduc. Prod. -0.8 28.5hrs /571 pts| 1.5 hrs/ 31 pt
T,; | IDV(7) | Reduc. Prod. +0.7 28.0 hrs / 561 pts | 2.0 hrs / 41% pt
T, |IDV(Q) Nominal -0.5 28.5hrs/ 571 pts| 1.5 hrs/ 31% pt
T,s |IDV(2) Nominal -0.5 28.0 hrs/ 561 pts | 1.0 hrs / 21% pt
T, |IDV(17) | Nominal +1.0 23.0 hrs /461 pts | 1.0 hrs / 21% pt

7.4.2 Selection of Design Parameters

The filters designed in Subsection 4.4.2 of Chapter 4 will also be used for the case studies
of this chapter. The simple Euclidean distance (i.e., W being the identity matrix) will be



used as the local distance. All the 26 variables shown in Table I.1 of the Appendix will

be included in the pattemns; they are recorded every 3 minutes.

The asymmetric DTW algorithm described in Section 7.2 will be used for the
similarity assessment step. The times (after time 0) where scaling and similarity

assessment are performed are selected to be: t,=25hrs, ¢, =5.0 hrs, t; =75 hrs,

ty =10hrs, t; =15 hrs, £, =22.5 hrs for each test pattern. At the end of the test pattern

(referred to as time t,), the whole test pattern is compared with the complete reference

patterns (as they are shown in Tables 7.1 and 7.2). For each of these times, values for the

parameters of the DTW algorithm are given in Table 7.3.

Table 7.3: Parameters of the DTW Algorithm at Each of the Selected Times

At,i=1,...,6 (hrs)/

&, (no.of pts) | &, (no. of pts) | M (no. of pts)
no. of pts

t, =25hr 1.5 hr
! > S 20 pts 20 pts 25 pts

(51 pts) 30 pts

t,=50hr 1.5 hr
2 S > 30 pts 30 pts 35 pts

(101 pts) 30 pts

t,=7.5hrs 1.5 hr
) > 40 pts 40 pts 45 pts

(151 pts) 30 pts

t, =10hr 1.5 hr.
4 > s 50 pts 50 pts 55 pts

(201 pts) 30 pts

t,=15hr 1.5hr
s > S 60 pts 60 pts 65 pts

(301 pts) 30 pts

t, =22.5hr 1.5hr
s 3 s 70 pts 70 pts 75 pts

(450 pts) 30 pts

t, is the end

time of each - 80 pts 80 pts 85 pts

test pattern




7.4.3 Results

The results of the method for the first two times (i.e., t, and ¢,) are presented in Tables
7.4 and 7.5, respectively. At each time and for each test pattern, six minimum normalized
total distances are obtained from the DTW step. The tables show the minimum of the six
distances and the ratio of the other five distances to the minimum. The fault that
corresponds to the reference pattern that gives the minimum distance (i.e., a ratio of one)
is selected as the most probable cause of the test pattern. Again, good discrimination
among faults is obtained when the five ratios are not close to one. This is done at each of
the seven selected times. The shaded cells indicate the correct fault; hence, the diagnosis

is correct when the ratio of one appears in a shaded cell.

Figures 7.2 and 7.3 show the DTW results for two test patterns, T> and T;;. Each
subplot shows the 7 optimal paths (for the 7 selected times). The dotted lines indicate the
upper and lower limits for the optimal path at the final time t,. The numbers in each

subplot show, for the first three of the selected times, the ratio of the 6 distances over the

minimum of the six.
Examining the results presented at the two tables one can observe the following:

A) At the first time, #, =2.5 hrs, the results of Table 7.4 indicate that six test patterns
were diagnosed incorrectly. This number includes pattern T,s which, as mentioned in
Chapter 4, represents a fault not present in the database of the reference patterns. The
other five test patterns that are misdiagnosed (i.e., T, T;, T}, T;; and T,,) are
realization of faults that exist in the database, however they are not synchronized with

the reference patterns.



Table 7.4: Results from Similarity Assessment via DTW at t, =25 hrs;

Minimum Distance, Distances from each DTW match over Minimum Distance,

and Final Decision.

Test | Minimum| with with with with with with | Decision
Pattern { Distance R, -R, R, -R, R, -R,
T, 19.32 1.39 1.91 1.50 1.51 1.00 | -IDV(@3)
T, 5.54 12.55 7.42 7.95 247 5.94 IDV(1)
T; 25.73 1.63 1.66 2.18 1.62 1.11 IDV(2)
T, 22.34 191 1.41 2.31 ' 1.06 1.53 | -IDV(2)
T, 15.95 3.01 1.05 2.46 1.73 - 1.00 | -IDV(7)
T, 291 13.86 755 | 1339 |1235 |11.33 -IDV(7)
T, 5.17 14.04 9.56 9.80 3.06 5.44 IDV(1)
T 20.93 2.36 , 242 1.28 1.27 IDV(2)
T, 14.19 448 2.42 3.49 1.25 2.54 IDV(1)
T 14.12 2.68 2.06 3.20 1.00 2.43 IDV(3)
T, |[2197 1.28 1.93 « 2.13 1.33 1.13 IDV(2)
T, [21.92 1.75 1.15 1.88 it 1.19 1.05 | -IDV(Q2)
Ty3 19.12 2.34 1.08 1.86 1.70 1.00 | -IDV(7)
T, 13.15 2.92 2.76 2.84 2.81 1.00 | -IDV(7)
Ts |1744 2.03 1.80 2.65 1.58 1.42 | -IDV(2)
T |22.03 1.30 1.51 1.01 1.54 1.24 1.00 | -IDV(7)




Table 7.5: Results from Similarity Assessment via DTW at t, =5hrs;

Minimum Distance, Distances from each DTW match over Minimum Distance,

and Final Decision.

Test | Minimum| with with with with with with | Decision
Pattern | Distance R, -R, R, -R, R, -R,
T, 1.87 ' 20.03 1253 |13.01 7.60 | 12.59 IDV(1)
T, 1.41 3284 |17.12 (2508 |12.71 | 16.95 IDV(1)
T, 7.36 4.03 4.36 5.78 3.77 4.22 IDV(2)
T, 6.62 5.07 3.13 5.61 * 3.98 3.59 | -IDV(Q2)
T 0.62 2720 {2554 |45.07 |39.16 31.88 IDV(7)
T, 0.77 2281 2540 |[36.11 |[3261 |26.00 -IDV(7)
T, 0.97 O0NM 52.11 |[25.19 |[47.50 | 18.76 |24.60 IDV(1)
T, 6.09 3.19 6.11 6.65 4.01 4.20 IDV(2)
T, 9.95 4.82 | 2.60 4.57 2.45 2.97 IDV(1)
Ty 8.15 5.43 3.23 4.86 2.66 3.24 IDV(1)
T, 8.95 243 3.31 3.97 2.61 2.84 IDV(2)
T, 10.34 2.99 2.13 3.49 ) 2.36 2.18 | -IDV(2)
T 13.70 1.62 1.91 2.58 2.12 2.02 IDV(7)
Ty, 2.90 13.28 10.00 8.30 7.89 5.38 | -IDV(1)
T,s 7.98 3.98 2.74 4.66 3.07 2.74 | -IDV(2)
Tie 16.66 1.70 1.10 1.80 1.00 1.51 1.27 | -IDV(Q2)
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Figure 7.2: Results from the on-line diagnosis for test pattern T, ; each subplot shows
the 7 optimal paths (for the 7 selected times); the dotted lines indicate the
upper and lower limits for the optimal path at the final time. The numbers
show, for each of the first 3 times, the ratio of the 6 distances over the
minimum of the six. At each time, the reference pattern that gives a ratio of
one is deemed as most similar to the test pattern.
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Figure 7.3: Results from the on-line diagnosis for test pattern T,, ; each subplot shows
the 7 optimal paths (for the 7 selected times); the dotted lines indicate the
upper and lower limits for the optimal path at the final time. The numbers
show, for each of the first 3 times, the ratio of the 6 distances over the
minimum of the six. At each time, the reference pattern that glves a ratio of
one is deemed as most similar to the test pattern.



B) By the second time (¢, =5 hrs), with the exception of pattern T,, (which has no
match in the reference set), all other patterns are diagnosed correctly. Also, the
minimum distances found by DTW are drastically decreased (see second column in
Tables 7.4 and 7.5). Similar results were obtained at all subsequent times, ¢; to t,.
As more data are collected, the time discrepancies in the synchronization of the
patterns have a diminishing affect on the scaling factors. After the correct scaling is
done, DTW can handle both unsynchronized patterns and differences in the temporal

correlations caused by different production levels.

C) To verify that the incorrect diagnoses at time t, =2.5hrs were due to the
discrepancies in the synchronization of the patterns, another simulation was
performed where in all reference and test patterns the faults were introduced one hour
after time zero. All the other parameters in the method were kept constant. The result
was that all diagnoses (again with the exception of pattern T,;) were correct at all

times, including the first time ¢, = 2.5 hrs.

D) To illustrate the importance of scaling, another set of case studies was performed
where a simpler scaling procedure was applied, similar to the off-line procedure of
Chapter 4. In these case studies, each variable in the reference patterns was
normalized using a standard deviation estimated from all the data points from time

zero to the end. This was the only scaling factor that was used at all selected times, 7,
to ¢,, for the reference patterns. All variables in the test patterns were then

normalized by the scaling factors estimated from the reference patterns. For example,
to compare T, with R, T, was scaled with the scaling factors of R, ; similarly, to
compare T, with R,, the scaling factors of R, were used, etc. The results were
good when the test pattern was a similar realization of a reference fault (i.e., same
magnitude and same production level). For test patterns in which any of these two
characteristics were different, the classifications were incorrect. In some cases, the

test patterns were misdiagnosed at all times.



E) Finally, the arguments made in Chapter 4 regarding the effect of production level and
the magnitude/direction of the fault on the classification apply in the results of this
chapter as well. As expected, the more similar a test pattern is to any of the reference
patterns, the more certain one can be that the diagnosis is correctly as more data

points become available.

7.5 Summary and Conclusions

In this chapter a method was proposed for the on-line diagnosis patterns of deterministic
faults in dynamic continuous multivariable processes. A Pattern Recognition approach
was followed, where a scaling step removes the magnitude information from the variables
and then a DTW step assesses the similarity between the evolving pattern of an unknown
fault and the reference patterns. The comments made in Section 4.6 regarding the
advantages and disadvantages of a Pattern Recognition method based on DTW apply in
this chapter as well. However, there are two main differences from the method presented

in Chapter 4 and both are related to the special characteristic of the on-line problem.

The first difference is that an asymmetric DTW algorithm is selected to assess the
similarities between the patterns (in contrast to the symmetric algorithm of Chapter 4).
The reason is the flexibility that an asymmetric DTW algorithm provides in relaxing the
endpoint constraints. This is important in an on-line application where there is always
uncertainty in locating the time origin of a fault. The second difference is the selection of
a set of times at which scaling and pattemn matching is performed. This is required
because the variables in deterministic faults are nonstationary even after high-pass

filtering.

The choice of the set of times at which scaling and pattern matching is performed
depends on the dynamics of the process, the importance of diagnosing a fault as soon as

possible, and the computational power available. In this study seven times were chosen



in a period of 28 hours on average (the average duration of the patterns). The set of times

is a parameter of the method that can be controlled by the user.

If the magnitude of a fault was always the same, one could scale the unknown test
pattern by the scaling factors of the reference patterns; these factors would be estimated
once from all data points. In this case, DTW could be used and a decision on the most
likely cause for the unknown test pattern could be made at each time interval. However,
it is very unlikely that faults will occur with exactly the same magnitude. The method
proposed in this chapter can deal with the problem of varying fault magnitude at the

expense of a deferred decision.



CHAPTER 8

MONITORING OF BATCH PROCESSES

USING SPEECH RECOGNITION METHODS

In this chapter the application of Dynamic Time Warping (DTW) to the monitoring of
batch processes is presented. First, it is shown how one can use DTW to synchronize a
set of good quality batches of unequal duration. Next, the combination of DTW with a
monitoring method based on Multiway PCA/PLS is discussed for both on-line and off-
line implementation. Finally, a new monitoring scheme based on local quadratic
distances is presented. An industrial data set is used to illustrate the application and the

performance of the proposed methods.

8.1 Introduction

As mentioned in Chapter 1, batch processes play an important role in the production of
high added value products, such as specialty polymers, pharmaceuticals and biochemical
materials. Monitoring the operation of these processes is crucial to the production of
consistent, good quality product. Moreover, products from batch processes are often
manufactured in a series of steps; early detection of a bad product at any of these steps
will save energy, raw material and plant capacity. Early detection will also make it easier
to assign a cause to the fault. If a monitoring scheme is implemented on-line, there may

be a chance of correcting the fault with an appropriate control strategy.

However, quality measurements in batch processes are obtained infrequently;

sometimes they are obtained after the product has been shipped to the customer or after it



has been forwarded to the next processing step. Fortunately, a multitude of process
measurements such as temperatures, pressures, flowrates, are readily available during the
progress of a batch. In view of this fact, Nomikos and MacGregor (1994, 1995a, 1995b)
have proposed a method for monitoring batch processes using these readily measured
process variables. Their method is based on Multiway Principal Component Analysis
(MPCA), which is an extension of PCA to handle three dimensional matrices. The
method essentially builds a statistical model for the deviations of the process variables
about their average trajectory using data only from good quality batches. Then, it
compares the variation in the variables of a new batch about the average trajectory with
the MPCA model; any deviation that cannot be statistically attributed to the common
process variation indicates that the new batch is different from the good quality batches.
When quality measurements are available, then one can use Multiway Partial Least
Squares (MPLS) to monitor the progress of the batch and predict its final quality
(Nomikos and MacGregor, 1995b).

An important feature of their method, either MPCA- or MPLS-based, is that it can
be implemented both off-line and on-line. However, the on-line implementation requires
the prediction of the future behavior of the batch from the current time up to the expected
end of the batch. Nomikos and MacGregor ( 1995a) discuss possible methods to carry out
these predictions. A strong assumption in their method is that all batches have equal
duration and are synchronized. However, the various steps comprising the batch process
are not all automated; some are left to the discretion of operators. As a result, batches
have different run lengths. Furthermore, even if some batches have the same duration,
they may not be synchronized. In either case, one has to synchronize the batches before

any analysis is performed.

To handle the problem of synchronization, Nomikos and MacGregor (1994)
propose the use of an indicator variable to synchronize the batches. According to their
proposal, the batches are plotted not with respect to time, but with respect to another

variable that must be strictly monotonic, has the same starting and ending values for all



batches and is not noisy. Then, a constant increment is selected and one progresses along
the indicator variable. Synchronization is performed by retaining the points in the batch

trajectories that are characterized by the same values of the indicator variable.

The indicator variable approach to synchronize batches assumes that that such a
variable exists and process knowledge can be used to determine it. However, there may
be several variables in a batch that are not noisy. It also relies on a single variable to
perform an important operation, and as result it is not robust to missing values (a
common problem in industry) of the indicator variable, Furthermore, there may not be a
single variable that is strictly monotonic throughout the whole batch trajectory and one
will have to switch between the selected variables at appropriate times. In summary,
using an indicator variable is time consuming, requires ad hoc decisions and may not be

feasible for many batch processes.

The previous chapters of this thesis have emphasized the capability of Dynamic
Time Warping (DTW) to handle unsynchronized patterns by nonlinearly warping their
time axes so that similar features within the patterns are matched. Thus, DTW can
provide a more flexible and automatic solution to the problem of synchronization of batch
trajectories. This is the subject of this last chapter of the thesis. First an iterative method
based on DTW will be presented for the synchronization of batch trajectories. The
method is multivariate in the sense that it does not rely on a single variable. Then, it is
shown how to combine DTW with the monitoring scheme of Nomikos and MacGregor
(1994) for both the off-line and the on-line implementation of batch monitoring. Finally,
a novel monitoring scheme is presented based on the concept of instantaneous distance of
a new batch from the average trajectory. The on-line implementation of this new
monitoring scheme uses only information up to the current time and does not require any
forecasting for the future behavior of the batch.
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Data from an industrial emulsion polymerization batch process will be used to
illustrate the above points. Figure 8.1 shows 4 variables (out of 10) for a set of 31 good
quality batches. Figure 1.4 in the Appendix contains a plot of all the 10 variables used in
this study. Both figures show the variables after they have been divided by their range;
the latter has been estimated by averaging the ranges from all 31 batches (for each

variable).

The variables shown in Figure 8.1 illustrate a number of issues relating to batch
process data. The most important is that the batches are not synchronized and do not
have the same duration. Variable No. 5, with the exception of the starting and ending
part, is smooth and strictly monotonic; thus, it could be used as an indicator variable to
synchronize the batches, as Nomikos and MacGregor (1994) proposed. However, it
could not be used to synchronize the batches in the beginning and in the end, since this
variable remains constant at these times. Variables No. 2 and 3 are piecewise constant
with occasional step changes in their level. As such, they do not contain enough
information to make them useful as indicator variables, but the times where their values
step from one level to the next could be used to test the quality of the synchronization.
Finally, Variable No. 7 is a noisy variable, and therefore one would not use it as an

indicator variable.

8.2 Synchronization of Good Quality Batches

8.2.1 Dynamic Time Warping Algorithm and Synchronization Procedure

Let Bsc,i=1,...,I, be a set of I trajectories of good quality batches. Each Bisc isa

matrix of b; x N, where N is the number of measured process variables and b, is the
number of data points, ordered from time zero (first row in the matrix) to the end of the
batch (last row). Also, assume that some appropriate scaling for the variables has been

applied. Finally, assume that a reference batch trajectory, Bpgerscs has been somehow



defined; this is a matrix of brer X N. The issues of scaling and definition of reference

trajectory will be presented in the following subsection. Now the objective is to

synchronize the scaled batch trajectories, B,sc.i=1,...,I, with the scaled reference

trajectory, Bggpsc-

As discussed previously in this thesis, DTW works with pairs of patterns. Thus,
one needs to separately synchronize each batch trajectory with the reference trajectory.
The main question is what kind of DTW algorithm should be used; more specifically,
whether it should be a symmetric or an asymmetric algorithm.

As emphasized in Chapter 3, when two patterns (e.g., Bisc and Bpg.q.) are

compared via a symmetric DTW algorithm, both of them are considered equivalent. The
optimal path will go through all points in both patterns. The result is the mapping of the
time axes of both patterns onto a common time axis. After DTW is performed, the
synchronized patterns have equal duration, which is greater than the duration of the

patterns before synchronization (i.e., greater than b; and by ). This common duration is

determined by the DTW algorithm and cannot be specified a priori. Furthermore, it is
different for each B, 4. that is synchronized with Brersc- Therefore, if a symmetric

DTW is used to synchronize each B,;. with B rersc» the result will be a set of expanded
patterns with unequal duration; each B, . will be individually synchronized with Bgersc

but not with each other. The final situation will be identical to the initial situation:

having a set of batch trajectories with unequal duration.

On the other hand, the most common asymmetric DTW algorithms treat one
pattern preferentially. The optimal path goes through all points in one of the patterns
(which can be viewed as the defining pattern) and can skip points of the other. The result
is the mapping of the time axis of the defining pattern onto the time axis of the other.
After DTW is performed, the synchronized patterns have equal duration, equal to the

duration of the defining pattern. For the current problem, one would use Bgersc as the



defining pattern and map its time axis onto the time axis of each B,sc- The end result

will be a set of synchronized patterns with equal duration, by, all of them synchronized

with By and synchronized with each other.

At first sight this appears to be a reasonable solution. Unfortunately, the
synchronized trajectories may not contain all the data points of the original B, sc because

the optimal path may have skipped selected points in them. This is an undesirable side

effect because features that appear in some B, and do not appear in Brersc (€8, a

spike) will be left out. In effect, a subtle filtering is performed that removes inconsistent
features. If a MPCA/MPLS model is constructed from the “filtered’ trajectories, it will be
biased towards false alarms since it will not consider inconsistent features that may be

present in a new batch trajectory.

In summary, symmetric DTW algorithms include all points in the original
trajectories but result in expanded trajectories of various lengths. ‘Asymmetric DTW
algorithms may eliminate points but will produce synchronized trajectories of equal
length. The following method (symmetric DTW algorithm combined with an asymmetric

synchronization procedure) purposes to achieve a compromise between the two extremes.

Step A: Symmetric DTW Algorithm
For each B, apply DTW between B;scand By using the following constraints:
i)  fixed-endpoint constraints (see Section 3.2)
ii) band global constraint (see Section 3.2)
iii) local constraint:
D, G-Lj) +dGj)
D, (,j)=min D, (-1,j~1) +d(,j) ;, D, (1,1) =d(1,1) (8.1)
D,G,j-1)  +d(,j)

At the end, reconstruct the optimal path.

Step B: Asymmetric Synchronization



When more than one points of B,sc are aligned with one point of B g, sc do as follows:
i)  take the average of these points of Bisc
ii)  align this average point with the particular point of Bgersc-

After synchronization, B s contains as many data points as Brerscsie., bpg.

The second step Asymmetric Synchronization can be best illustrated by means of an

example. Assume that B, . is placed on the horizontal and B rersc On the vertical axis.

This arrangement does not affect the DTW algorithm since it is symmetric. Also assume
that after DTW, the following three points are included in the optimal path: i-1,j,

(i,j) and (i+1,j). According to them, the (i—1)", i* and (i+1)" points of B, are
all aligned with the j* point of Brersc- The proposed synchronization takes the average

Bisc(i—1,:)+B,sc(i,:) + B sc(i+1,)
3

of the three: , and aligns this average with

BREF.SCGs:) .

The proposed DTW algorithm is a symmetric algorithm and as such the optimal
path passes though all the points in both patterns. On the other hand, the local constraint
favors diagonal over horizontal or vertical local transitions. The local constraint is a

modification of the one used in Subsection 3.3. 1, Example 1; i.e.,

D,G-1j) + d(.j)
D,(ij) = min{D,G(-1,j-1) +2d(,j) (8.2)
D G.j-1) + d(.j)

The local constraint in Eq (8.2) gives a weight of 2 to the local distance d(i,j) for a
diagonal local transition (i.e., from (i—1, j=1) to (i,j) point). This weight was the
result of a symmetric weighting function; its purpose was to provide independence of the
final distance to the number of points in the optimal path (as described in Section 3.3).



However in this problem only the optimal path is of interest and not in the final distance
found by DTW. If the smaller weight of 1 is used instead (ie., as in Eq (8.1)) , diagonal
local transitions are preferred over horizontal or vertical ones; and it is the horizontal and

vertical transitions that distort the time axes of B,sc and Bygpsc. Thus, the constraints
of Eq (8.1) result in smaller distortions of the time axes of both B,sc and Bygeo. and
consequently in less averaging in Step B.

Even if Eq (8.1) is used (i.e., favoring diagonal over horizontal or vertical local
transitions), the resulting DTW algorithm of Step A is still a symmetric algorithm. The
following Step B is an asymmetric operation that synchronizes all B isc in a way that all

have the same duration b.... However, all points of B, (even if some of them have

been averaged) are included in the synchronized trajectory. This is the difference
between the proposed method and any other asymmetric DTW algorithm. An asymmetric

algorithm will completely ignore points in B, sc » while the proposed method will average

selected points. One can use the synchronized trajectories from the proposed method to
build a MPCA/MPLS model; the model will be still biased towards false alarms (due to
averaging of inconsistent features). However, it will be less prone to false alarms than a

model which was based on synchronized batches from an asymmetric DTW algorithm.

This completes the description of a method that takes a set of scaled batch
trajectories of unequal duration and synchronizes them with a reference trajectory in such
a way that: I) all synchronized trajectories have the duration of the reference trajectory
and II) all data points in the original scaled trajectories are included although some will
be averaged. In this discussion, it has been assumed that the raw trajectories have been
scaled appropriately and that also a reference trajectory exist. The next subsection
presents these issues in detail, together with the complete method for synchronization of

batch trajectories.



8.2.2 An Iterative Method for Synchronization of Batch Trajectories

As described in the previous chapters, DTW is a distance-based method and as such is
sensitive to the scaling of variables. In the case of batch processes an intelligent scaling
should accomplish two objectives. The first is to remove the effect of the various
engineering units used to record the variables. This is easily achieved by dividing each
variable by its standard deviation or its range. The second and most important objective
is to give more weight to variables that are consistent from batch to batch. The
synchronization of batch trajectories should rely more on these variables (e.g., Variables
No. 2,3 and 5 in Figure 8.1) and less on noisy variables (e.g., Variable No. 7 in Figure
8.1). This relative importance of variables is expressed through the weight matrix, W

used in the local distance computation in DTW; i.e.,
- . - » . . T
d(i,j) = [B isc(b:) = Brepsc (J,Z)] W [B isc () = Brgsc (ls:)] (8.3)

One choice would be to arbitrarily assign a weight to each variable; however this would
require process knowledge and a number of ad hoc decisions. A more appealing choice
would be to devise a procedure that will automatically detect and increase the weight of
consistent variables and decrease the weight of the rest. For each variable, the sum of the
squared deviation from the average trajectory over all batches can be used as an indicator

of consistency over different realizations.

Regarding the reference trajectory, a reasonable choice would be to set it equal to
the average trajectory. However, at the start of the synchronization procedure is not
possible to 'average the batch trajectories since each one of them has a different duration.
Thus, one trajectory from the set could be used as the reference trajectory. One could
then synchronize all other trajectories to this particular one using the
DTW/synchronization method of the previous subsection. After synchronization all

trajectories will have the same duration and so an average trajectory can be defined. The



whole procedure can then be repeated and in the next iteration the average trajectory can

be used as the reference one.

These are essentially the main steps of the iterative procedure proposed for the
synchronization of unequal batch trajectories, which is now being presented in detail. Let

B,,i=1,...,I, be a reference set of trajectories which contain the raw measurements from
I good quality batches; each is a matrix of b; x N, where N the number of measured
process variables and b; is the number of data points. The steps of the method are as

follows:

Step A: Scaling

For each variable, find its average range (i.e., the difference between the maximum and
the minimum value) by averaging the range from each batch.

Store these values because they will be used in the off-line and on-line monitoring of a
new batch (see next section).

Divide each variable in all batches with its average range.

Let B,gc,i=1,...,I, be the resulting scaled batch trajectories.

Step B: Synchronization

Step 0:  Select one of the trajectories, B, sc- as the reference trajectory: Brersc = Bysc-
Consequently: bpg=b, .
Set W (the weight matrix in the DTW algorithm) equal to the identity matrix.

Execute the following steps for a specified maximum number of iterations.

Step 1:  Apply the DTW/synchronization method between Biscoi=1,...,I, and Bpgesc

as described in the previous subsection.

Let ﬁi,sc,i =1,...,I be the synchronized trajectories, with brgr Now being their

common duration.



1
2.Bisc

Step2: Compute the average trajectory, Bg.ie, Bg =

I
Step 3:  For each variable, compute the squared deviations from the average trajectory.
The inverse of this value will be the weight of the particular variable for the
next iteration; the (j, j) element of the diagonal matrix W will be:
1 bper -1
WG.j) = [Z kZ_][E,scac,ﬁ—ﬁsc(k,j)]’] :
Normalize W so that the sum of the weights is equal to the number of variables;

N
i.e., replace W with W ———.

2 WG, j)
=l
Step 4: For the first 3 iterations, keep the same reference trajectory: Bgepoe =B, .
For subsequent iterations, set the reference equal to the average trajectory:

BREF.SC = Bsc-

The scaling step assumes that each variable starts and ends at the same value in all
trajectories (up to some process noise). This is a reasonable assumption since the same
product is manufactured in all batches. As mentioned before, dividing each variable by
its average range removes the effect of the various engineering units used to record the
variables. Note that for each variable, the same scaling factor is used in all batches.
When the trajectories are plotted after scaling, their relative position (which indicates that
they are not synchronized) remains the same as before scaling. This would not be true, if
each variable in each batch had been divided by its range as estimated from that particular
batch.

The synchronization step assumes initially that all variables are equally important
in the synchronization by setting the weight matrix W equal to the identity matrix. After

the first iteration, the weight of each variable depends on the magnitude of its deviation



from its average trajectory. Variables that do not deviate much from their average
trajectory are weighted more in the DT W/synchronization process than others with larger
deviations. Also, note that one of the original scaled trajectories is used as the reference
trajectory for the first 3 iterations; the average trajectory is used only after the third
iteration. Initially all variables are weighted equally and it takes two or three iterations
for the weight matrix to start converging towards its final value. Since noisy variables are
also weighted equally to consistent ones, the synchronization of the trajectories is poor
and the average trajectory from these iterations can differ significantly from the one
obtained at subsequent iterations. For that reason, the same trajectory is kept as the
reference trajectory for the initial iterations and the average trajectory is used at

subsequent iterations.

Note that the length of the synchronized trajectories at the end of the iterative
procedure will be the length of the trajectory initially used as the reference trajectory.
Alternatively, one could estimate the average duration from the initial trajectories and the
trajectory whose duration is closest to the average duration could be used as the average
trajectory for the first three iterations. By doing that, the duration of the synchronized
trajectories at the end will be the average duration of the available realizations. The

choice of the initial reference trajectory is a matter of user preference.

Finally, the maximum number of iterations is another parameter of the method set
by the user. One could also monitor the change of the weight matrix W from one

iteration to the next and use it an indicator for convergence.

This concludes the description of the proposed method for the synchronization of
unequal batch trajectories. In the next subsection the method is illustrated through its

application on a set of industrial data.

8.2.3 Results and Discussion

Figure 8.1 shows 4 variables (out of 10) for 31 trajectories, B,, i=1,...,31, from an

industrial emulsion polymerization process. Their duration varies from 106 to 126 data



points and the average duration is 115. There exist three trajectories with that duration

and one of them, B,,, was chosen to be the average trajectory for the first three iterations.

For the DTW/synchronization procedure, the band global constraint was used with
maximum allowable deviation M =35 (from the linear path emanating from point

(1,1)). The iterative procedure was executed for 10 iterations. The band global
constraint was never active at any iteration and for any B;sc — Bygpsc pair; it just served

the purpose of speeding the computations.

The results after the final (10™) iteration are shown in Figures 8.2 and 8.3. Figure
8.2 shows the variables after the trajectories have been synchronized and Figure 8.3
shows how the weights of the 4 variables change with respect to the iterations. As Figure
8.2 illustrates, the variables are now synchronized. This is more apparent by looking at
the times of the step changes in Variables No. 2 and 3 and the spike in Variable No. 3.
Due to the averaging of selected points by the asymmetric synchronization procedure,
some of the spikes in Variable No. 2 (see Figure 8.1) have been filtered; however they are

not completely removed as Figure 8.2 shows.

It was mentioned in Section 8.1 that the Variable No. 5 is a smooth variable and it
could be used as an indicator variable to synchronize the trajectories as Nomikos and
MacGregor (1994) proposed. The proposed iterative procedure verified this argument (as
Figure 8.3 shows) since the weight of Variable No. 5 accounts for about 85% of the total
weight (the indicator variable solution essentially gives 100% of the total weight to this
variable). However, Variable No. 5 cannot be used as an indicator variable at the

beginning and at the end of the batches since it remains constant over these time intervals.
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The proposed method does not suffer from this limitation and it will synchronize the
trajectories, as long as there are some other variables that exhibit any variation over these
intervals. This can be seen from the fact that 15% of the total weight has been distributed
to the other variables. Finally, Variable No. 7 is a noisy variable (as Figure 8.1 shows)
and one would not base any synchronization on that variable. The iterative procedure
quickly responded to that and gave small weight to Variable No. 7 after the first iteration
(see Figure 8.3).

The iterative procedure could also be used to pinpoint the most appropriate
variable to be used as an indicator variable if one wants to use this simpler method for
synchronization without relying on expert process knowledge. There may be situations
where several variables are smooth and monotonic; thus they could all be candidates for
the role of the indicator variable. The proposed method could assist in choosing the most

appropriate one by selecting the variable that gets the largest weight in matrix W.

Due to the nonlinear warping of the trajectories imposed by DTW and the
asymmetric averaging operation, it was not possible to construct a proof for the
convergence of the proposed iterative procedure. Therefore, possible failure modes
should be investigated. One possible failure allows one variable to take almost all the
weight, even though its deviation from the average trajectory is only slightly smaller than
some other variable. This ‘positive feedback’ within the iterative procedure is clearly an
undesirable feature since the small differences in the deviations from the average
trajectory that determine the indicator variable could be just a feature of the particular
data set. In this case, the ‘positive feedback’ effect would mean that the indicator

variable may change from one data set to the other.

To investigate the ‘positive feedback’ failure mode the following case study was
performed. Variable No. 5 was spliced into two parts and two artificial variables were
created. The first contains the initial part of Variable No. 5 up to the point that reaches
the value of zero; then, it is padded with zeros up to the end of the trajectory.
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Similarly, the second artificial variable contains initially a number of zeros, followed by

the second part of Variable No. 5. The two variables are shown in Figure 8.4.

Thus, for this case study the batch trajectories contained 11 variables: 9 original
plus the two artificial ones. The original Variable No. 5 was not included in the data set.
Next, the synchronization method was applied with the same parameters described before
and the results are presented in Figures 8.5 and 8.6. As F igure 8.5 shows, the
synchronization of the variables is quite good and similar to the one obtained before (e.,
Figure 8.2). The variables’ weights are shown in Figure 8.6. Interestingly, about 85% of
the total weight is now distributed between the two artificial variables and not to just one
of them.

Although this case study does not constitute a proof, it shows that the danger of
‘positive feedback’ is not likely to exist in industrial data. For a variable to take all the
weight, the iterative procedure would have to remove all of that variable’s variation about
the reference trajectory. However, at each iteration it is the original scaled trajectories
that are synchronized with the reference trajectory and not the synchronized trajectories
from the previous iteration. Process noise and measurement noise are always present in
industrial data, and this random variation cannot be completely eliminated with any

warping of the time axes of the patterns.

8.3 Batch Monitoring using MPCA/MPLS

8.3.1 The Off-Line Implementation

Once timing differences have been removed by the synchronization procedure, the
synchronized batch trajectories can now be used to build a MPCA/MPLS model for
process monitoring as proposed by Nomikos and MacGregor (1994, 1995b). However,
one important feature has been removed from the raw data (i.e., the timing differences)
and it could be the case that this feature is indeed affecting the final product quality. To

account for this possibility, the amount of time distortion (which was exerted upon each



trajectory) should be included in the MPLS model. These time distortions can be treated
as an additional variable in the initial condition matrix of the MPLS model (see Kourti et
al., 1995).

Now, assume that the complete trajectory of a new batch, Byew > (@ matrix of
bygw xN) is available. The objective is to use the MPCA/MPLS-based monitoring

scheme to assess the product quality of the new batch. Most probably the duration of the
new batch, by, , will not be equal to the duration of the synchronized batches, bper » that

were used to construct the monitoring model. Even if bagw = bger, Some stages of the

new batch may not be synchronized with the corresponding stages of the reference
trajectory. In either case, the new trajectory has to be synchronized before the monitoring

scheme is applied. The following method purposes to accomplish this task.

Step A: Scaling
Divide each variable in the new batch with the average range estimated from the
trajectories of the reference set.

Let Bygw,sc be the resulting scaled new trajectory.
Step B: Synchronization
Step 1: Let Bgges. and W be the reference trajectory and the weight matrix used in the

last iteration of the synchronization procedure.
Step2: Apply the DTW/synchronization method presented in Subsection 8.2.1 to

synchronize the new batch trajectory with the reference set trajectories.

Let ﬁm:w,sc be the synchronized new batch.

The new trajectory ﬁNEw,sc is synchronized with the reference trajectories, its
duration is bgg, and the MPCA/MPLS-based batch monitoring scheme can now be
applied. Note that some points in ﬁNEw’se will be averages of selected points of Brew,sc

as a result of the asymmetric synchronization procedure (described in Subsection 8.2.1).



Since the averaging operation smoothes spurious features, ﬁm:w sc is biased towards the

null hypothesis, i.e., the new batch being of good quality. This is a compromise that one

has to accept if wants to use the same MPCA/MPLS model to monitor each new batch.

8.3.2 The On-Line Implementation

The on-line implementation of the MPCA/MPLS-based monitoring scheme is similar to
the off-line implementation with one important difference: in the on-line case, the
prediction of the future behavior of the batch trajectory up to its expected end is required.
Nomikos and MacGregor (1995a) discuss possible methods to carry out these predictions.
However, they assume that the new batch is synchronized with the reference set batches.
In real time, this assumption means that the progress of the new batch up to the current

time (i.e., Z¢;) is equivalent to the progress of the reference set batches up to time 7.,
Therefore, one has to predict the behavior of the batch from time t~yz and onward up to

its end; the end time for the new batch is assumed to be the common duration of the

reference set batches.

This assumption may not be always true in an industrial batch process since some
stages of the process may not be automated. Let Byew be the raw measurements of the
evolving new batch, a matrix of tx N, with t being the number of data points from time
zero up to the current time. To monitor on-line its progress, one would have to answer the
following question: which point r of the reference trajectory best represents the progress
of the new batch up to the current time? DTW can provide an answer to this question as

follows:

Step A: Scaling
Divide each variable in the new batch with the average range estimated from the
trajectories of the reference set.

Let Byew,sc be the resulting scaled new trajectory.



Step B: Synchronization

Step 1:

Step 2:

Step 3:

Step 4:

Let Bggpsc and W be the reference trajectory and the weight matrix used in the

last iteration of the synchronization procedure.

Apply the DTW symmetric algorithm presented in Subsection 8.2.1. However,
since only the first t data points of the new batch are available, one would have a
set of accumulated distances D, (t,j), j=I(t),...,u(t); I(t) and u(t) are the
lower and upper bound imposed by the band constraint on the index of the inner

iteration.
Let r be the point in the D, (t,j), j=1(t),...,u(t) vector where the minimum

occurs; i.e., r = arg mjin[DA ]

Synchronize the t points of the new batch to the first r points of the reference
trajectory using the asymmetric synchronization method presented in Subsection
8.2.1. After synchronization, the new trajectory, B new,sc» Will have r points.
Predict the progress of the new batch from point (r +1) up to the final point of
the reference trajectory bgg; . Now the MPCA/MPLS-based monitoring scheme
can be applied on-line as described by Nomikos and MacGregor (1994, 1995b).

The above method has to be repeated as soon as another measurement from the

new batch is available. Again, ﬁm:w,sc is biased towards the null hypothesis (i.e., the

new batch being of good quality) because of the averaging of selected points in Bnew,sc

Again, it is a necessary compromise that has to be made so that the monitoring model

constructed from the reference set batches is used at each time step.

8.4

On-Line Batch Monitoring Using a Distance-Based Method

Even when combined with DTW, the on-line monitoring scheme of Nomikos and

MacGregor (1994) still requires the prediction of a batch trajectory up to its end. A



monitoring scheme will be presented in this section that is based on the concept of the
instantaneous distance of a new batch trajectory from the average trajectory and, as such,
no predictions are required. On the other hand, it is essentially a univariate scheme,
because at each point in time it only considers the sum of the weighted squared deviation
of each variable from its average trajectory; any change in the correlation among the
variables is not penalized. The details are presented in the following subsections along

with selected results.

8.4.1 Selection of Distance and Construction of the Reference Distribution

After synchronization of the set of reference batches, one has a set of trajectories of equal
duration and from them the average trajectory can be calculated. At each time interval,
one can compute a distance between the average trajectory and any of the synchronized
trajectories. Because of process disturbances and measurement noise, this quadratic
distance is a random variable. If one could construct its probability distribution, then it
would be possible to construct confidence intervals and use them to monitor the progress
of a new batch. This is the main idea of the proposed monitoring scheme. Therefore, in
order to implement it one has to answer two questions that are closely related: i) what

quadratic distance to use and ii) how to construct its probability distribution.

The simplest option for the distance would be to use the same weighted quadratic
distance used in the local distance computations of DTW; i.e., Eq (8.3). Because this
type of distance uses a diagonal weight matrix, it penalizes only deviations of each
variable from its average trajectory; changes in the correlations among the variables
would not be considered. However, process faults are often revealed by the changes in
the correlations among variables; each process variable may be well within its individual
in-control limits, but still the process may be at fault. Therefore, a quadratic distance

with a diagonal weight matrix may perform poorly as a fault detector.

On the other hand, one could use Hotelling’s T? statistic (Kourti and MacGregor,
1995).



T =[Brawsc o) ~BocG)]S,” [Brewsc) - Bec (]| (8.)

where By, is the average trajectory, obtained from the synchronized trajectories and S j
is the estimated covariance matrix for the j™ data point of B, estimated from the I
observations of the synchronized trajectories; ie, B isc(>:),i =1,...,I. The problem with
this statistic is that the S joJ=1,...,bge: matrices are very ill-conditioned because of
highly correlated variables. By inverting these matrices, the very small eigenvalues of S ;
(that generally represent process noise) dominate the value of T2. In practice, small
variations due to process noise in Bew sc(i,:) will cause very large values of the T?
statistic.

To circumvent this problem one could use Principal Component Analysis (PCA).
After the synchronization, there are I realizations at each of the brer points in time:
B.scG.:).i=1,...,I. This would result in a set of brgr PCA models. At each point in

time, DTW could be used initially to synchronize the new batch against the average
trajectory. Next, PCA could be used to assess the similarity of the current measurement

of the new batch with the appropriate point (found by DTW) of the average trajectory.

Although the PCA solution seems the most promising of the three (diagonal
weight matrix, Hotelling’s T? statistic, PCA) the first alternative was chosen. The main
purpose was to expose how one would implement such a scheme and not to study the
effect of different distances on batch monitoring. Using the diagonal weight matrix is the
simplest choice and the closest one to DTW. Furthermore, if one wants to use PCA for
batch monitoring, the method of Nomikos and MacGregor (1994) combined with DTW

(as discussed in Subsection 8.3.2) would be an easier alternative than a set of b PCA

models.

Therefore, the simple diagonal weight matrix is chosen. However, there is still

another issue to be considered. As the synchronization results of the industrial example



in Subsection 8.2.3 showed, after 10 iterations the 85% of the total weight in matrix W
was allocated for Variable No. 5. Since this matrix W will be used to on-line synchronize
the new batch with the average batch, Variable No. 5 will again control the
synchronization. Most of the information that Variable No. 5 was carrying for purposes
of fault detection, is lost after the synchronization. For that reason, it was decided to
completely ignore Variable No. 5 in the fault detection step. The weight matrix to be
used for fault detection, Wy, is obtained from W by setting the W(5,5) element to zero

and normalizing the rest of the weights to 9 (since 9 is the number of the remaining

variables).

After the selection of the type of distance used for monitoring, the problem of

constructing the reference distribution must be addressed. If either Hotelling’s T?
statistic or PCA is used, one can construct approximate theoretical confidence intervals
assuming multivariate normal distributions (for the T?2 statistic) and invoking the Central
Limit Theorem (for PCA). Alternatively, if one does not want to make any assumptions
about statistical distributions, computer-based methods can be used like bootstrap or
jackknife. These methods require no theoretical calculations and can be used for statistics
of any degree of complexity (Efron and Tibshirani, 1993). The bootstrap is a
generalization of the jackknife and is more reliable for complex statistics. Thus, the
method of bootstrap was chosen to generate the reference distribution of the weighted

instantaneous distances.

According to the bootstrap method, one draws a number of random samples with
replacement, called bootstrap samples, from the original sample. In this case, the original
sample is the set of the I synchronized batches. One then would draw randomly and with
replacement from this original sample and create another sample of the same size (i.e., of
I batches). This new set of batches would be a bootstrap sample. Next, the average
trajectory is computed from the bootstrap sample and for each of its members, its
weighed Euclidean distance from the average trajectory is computed. Thus, for each

member batch of the bootstrap sample, a time series of bger instantaneous distances is



obtained. This procedure is repeated for a large number of bootstrap samples B; in this
case, it was chosen to use B =500. Note that for any bootstrap sample and for any point

in time, the same W, weight matrix is used in the distance computations.

Once all B bootstrap samples have been generated, then for each of the brer
points in time, one has a set of I-B (in this case 31.500= 15,000) instantaneous
weighted distances. The 5% of the largest distances (i.e,, 0.05-15,000 = 750 in this case)
are excluded and the largest distance of the remaining ones is used as the upper bound of
the 95% confidence interval for the instantaneous distance. The result of this final step is

a time series of by, distances, dpp g, , that represent the upper 95% confidence interval
for the weighted instantaneous distance of a scaled batch trajectory from the scaled

average trajectory. For this data set, the result is shown in Figure 8.7.

Upper bound for the one-sided 95% confidence interval
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Figure 8.7: Upper bound of the 95% one-sided confidence interval for the instantaneous
weighted distance; B = 500 bootstrap samples were used.



The two sharp peaks at approximately time 15 and time 95 result from the spikes
that some of the variables exhibit at these times (see Figure 8.2). Similarly, the
confidence intervals are wider at the beginning due to large variations of the reference set

trajectories (see Figures I.4(a) and 1.4(b) in the Appendix).

This completes the discussion on choosing an instantaneous distance to be used
for fault detection and on constructing its confidence interval. However, before fault
detection is applied, the new batch has to be synchronized on-line with the average
trajectory. This is a problem for which DTW can provide an answer. The next

subsection presents the DWT-based on-line batch monitoring scheme.

8.4.2 An On-line Batch Monitoring Method Using Dynamic Time Warping

The DTW variant chosen for on-line synchronization of the new batch against the average
trajectory is very similar to the one presented for the on-line diagnosis of deterministic
faults in Chapter 7. It is an asymmetric algorithm that maps the time axis of the new
scaled trajectory (up to the current time) to the time axis of the average scaled trajectory.
As such, the optimal path will pass through all the points of the new trajectory, but it may
skip points of the average trajectory. Also, the relaxed end-points constraints are used as

presented in Example 6 of Subsection 3.4.1.

To implement the algorithm, the time axis of the new trajectory is placed on the
horizontal axis and the time axis of the average trajectory is placed on the vertical axis.
The scaled average trajectory Bg. and the weight matrix W (to be used in the DTW local
distance computation) are obtained from the final iteration of the synchronization

procedure presented in Subsection 8.2.2.

Let Bygw (1,:) be the first measurement of the new trajectory; it is a row vector of

dimension 1xN with N being the number of measured variables. As a first step,

Byew (1,2) is scaled by dividing each variable by its range (which was estimated from the



reference set batches). Let Brew,sc(1,:) be the new scaled vector. Then, a set of local
weighted distances is evaluated between Byewsc(1,:) and the first &, points of B;

ie.,

4(1,5) = [Browsc (1)~ Bsc ()] W [Bugmsc 1) -Bec G i=1,8,  (8.5)

The minimum accumulated total distances D a(Lj)j=1,...,6, are set equal to these

local distances; i.e.,
DA(I:j)=d(l’j)sj=1,--"52 (8.6)

This allows the first point of the optimal path to be any of the points (1, j),j=1, esOy .

Now, let 1, be the point where the minimum value of the D a(1,]) values occurs:

r = argmjin[DA(l, N]si=1ensd, (8.7)

Therefore, the ;" point of the average trajectory, ﬁsc (r,,:), is deemed to be the most

similar to the first point of the scaled new batch, Brewsc(1,:). To assess if indeed
Byewsc(15:) is a measurement from a good quality batch, its weighted distance from

B, (1;,:) is computed using the W, weight matrix; i.e.,

dip(l,1) = [BNEW,SC(I’:) ~Bsc (1, ,:)]Wm [BNEW,SC(I’:) - By (1, ’:)]T (8.8)

and this value is compared with the r," point of the 95% confidence interval vector
dpposy, - If the value of di(1,1)) is less than dpp sy, (1) , then the first point of the new
batch is deemed as originating from a good quality batch. Conversely, if dep(l,1) is

larger than d ., (r,), it is suspected that the new batch is of poor quality.



This procedure is repeated at each subsequent measurement. Let B new,sc (5:) be

the current scaled measurement of the new batch. The total accurnulated distances
between the new batch and the average batch are updated by the following DTW

recursive relation:

D, (t-1,j) +d(t,j) or w if Cond. (A)
D, (t-1,j-1)+d(, )
D, (t-1,j-2)+d( )
D, (t-1,j~3)+d(, )
where: Condition (A):point (t—1,j) is optimally reached from point
(t-3,j) via two consecutive horizontal moves.

for t €[8, +2,6,}: D, (t,j) = mi L ji=1@),...,ut)  (8.92)

D,(t-1,j) +d(}j)

D,(t-1j-D+d(t})
D, (t-1,j-2)+d(j)
D, (t-1,j-3)+d(t})

and for t<4 +1 or t26,+L D, (tj)=mi ,i=I®),...,u®)  (8.9b)

where: d(t, j) = [BNEW.SC (t.:) - By (l:)] w [Bm:w,sc (t:)—Bgc G’:)]T .

As Eq (8.9b) indicates, the check on consecutive horizontal moves is disengaged

for the first(6, +1) points and after the &, point of the new batch. This is done to

account for the possibility that the new batch may contain more points from the initial and
final stages than the reference set batches. The converse possibility (i.e., the new batch to
contain less points from its initial and final stages than the reference set batches) is

accounted by the relaxed endpoint constraints.

Again, let r, be the point where the minimum value of the D A(t,J) values occurs:
r, =arg mjin[DA @], i=1®),...,u® (8.10)

Finally, the d,(t,1,) instantaneous weighted distance is evaluated:



dep(tr,) = [BNEW,SC(ta:) - l—3.s<: (r, a:)]wm [BNEW.SC t:)- ﬁsc(r: ’:)]T 8.11)

and it is compared with the r," point of the 95% confidence interval vector drpose -

When the final scaled measurement of the new batch becomes available,

Bnew,sc (Pnew »:) » the minimum value of the D , (byzy»j) distances is located:
Toygy = AG (D s By )] » 5= Bwew ) Ubrey) 8.12)

The point (bygy,T,,., ) is the final point of the optimal path. One can then travel
backwards through the bygy x beg grid of (i,j) points as the indices of the optimal

predecessors indicate and reconstruct the optimal path F. Therefore, constructing the
optimal path is essentially an off-line operation, since it requires the final point of the new

batch. Moreover, the set of points:
Fon-sime = { (L1 E) (68D e B P, ) ) 8.13)

can be viewed as the on-line approximation of the optimal path.

The two paths, although practically very similar (as the results of the next
subsection will illustrate), in principle they could be quite different. As a matter of fact,
the only point that is guaranteed to be the same in the two paths is the last one
(bygws Ty, ) since it is found by the same minimization; i.e., Eq (8.12). Any of the other
points in f‘ON_L,NE is found by a minimization scheme that does not necessarily obey the
DTW constraints; i.e., local continuity constraints and (even) monotonicity. For example,
if (t-1,r,,) and (t,r,) are two consecutive points of f‘ON_,_,NE , there is no guarantee that
0<r -1, <3. The point (t,r,) is found by a minimization scheme, (ie., Eq (8.10)),

which does not consider where the point (t- l,r,) lies on the grid. On the other hand,



any two consecutive points of the true optimal path F will obey these constraints, since
they are imposed by the local continuity constraints of Eqs (8.9a) and (8.9b).

Practically, however, the two paths are almost identical. In any well-behaved
batch process there exists variables that are smooth and they clearly indicate the evolution
of the process in time. These variables are heavily weighted in the computation of the
total accumulated distances D a(t3),i=1(),...,u(t) which capture the similarity of the
evolving new batch with the average trajectory. Making a decision about the optimal
path based on these distances, without the final point being known yet, is still a
reasonable decision. The same practical approximation is also used in digital
communication systems where the objective is to estimate the most probable state

sequence of a discrete-time finite-state Markov process (Forney, 1973).

As a final implementation detail, the vectors 1 and u (i.e., the lower and upper
limits for the index j of the interior iteration in the DTW algorithm) have to be specified.
In all DTW applications discussed in the previous chapters, these limits were constructed
in the beginning. However, this is not possible in the case of on-line batch monitoring
simply because the duration of the new batch is not known beforehand. Therefore, the
limits have to be created as the new batch evolves. As Eq (8.5) shows, for the first point

of the new batch these limits are:
u(l)=4,, (1) =1 (8.14)

For all subsequent points the limits are defined as follows: let I, be the point where the

minimum of the D, (t-1,j) distances occurs; ie.,
r, = argmjin{DA(t-l,j)] ,j=1t-1),...,u(t-1) (8.15)

Then, the upper and lower bounds for the next point of the new batch will be:

u(t) = min(r,_, +3,,bpg) , I(t) = max(r,_, - 6,,1) (8.16)



This completes the presentation of the DTW-based monitoring method. It requires
information only up to the current time without any predictions of the future behavior of
the batch. Furthermore, every point in the new trajectory is tested against the average
trajectory and no average of the points is used. On the negative side, only deviations
from the average trajectory are penalized; any change in the correlations among the
variables is not considered. This limitation can be removed by using a different PCA

model at each time interval.

Another important characteristic of the method is that the decision on whether the
new batch is good or bad is based only on the current measurement. Although all the
previous measurements are used to synchronize the new batch with the average trajectory
(through the total distances D, (i, j) ), the fault detection uses only the information from
the most current measurement. This is both a positive and a negative feature. It is
positive because it allows for fast detection of a fault, since the previous good quality
points do not affect the current decision. On the other hand, it does not utilize all the

accumulated information to assess the quality of the batch up to the current time.

8.4.3 Case Studies and Results

The monitoring scheme presented in the previous subsection was applied on the reference
set batches. However, since all 31 batches gave good quality product, a faulty batch was
not available to test the proposed method. Therefore an artificial batch was constructed
from Batch No. 19 by increasing the value of Variable No. 3 by 0.1 from time 50 to time
65. This was the only difference between this artificial new batch, Bnewsc, and Bgoc.

Figure 8.8 shows Variable No. 3 and three other variables for the new batch and the

average batch.
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The results from the monitoring method are shown in Figures 8.9 and 8.10, for

Batch No. 23, B,;5c and for the new batch Bew,sc» Tespectively. The duration of
Bssc> Brewsc and By was 118, 115 and 115 respectively. In all case studies the

parameters in the DTW algorithm were given the following values:
6,=30, 6,=20, 8,=70

The upper graph in Figure 8.9 shows the on-line approximation of the optimal
path (dotted curve), the true optimal path obtained at the end (solid curve) and the on-line
bounds for the inner iteration of the DTW algorithm (dashed curves). One can see that
the on-line approximation of the optimal path agrees quite well with the true optimal
path. The deviations between the two paths occur approximately between time 12 and 16
and between time 100 and 110. At any time in between these two points the two paths
coincide. This can be attributed to the fact that between time 15 and 100 Variable No. 5
(which control the synchronization) is evolving. The accumulated distances capture the
progress of this variable and as a result the on-line approximation of the optimal path is

exact.

However, before time 12 and after time 100, Variable No. 5 remains constant.
The synchronization of the new batch has to be done by considering other variables which
are weighted much less (since Variable No. 5 gets approximately 85% of the total
weight). Random noise in some of these variables results in small differences among
many D, (i,j) values that could all be candidates for points of the optimal path. These
random differences then affect which point will be selected as approximation of the

optimal path.



Optimal Path and Global Constraints for Batch No. 23
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Figure 8.9: Optimal path (obtained off-line), on-line approximation of the optimal path
and global constraints from monitoring Batch No. 23 (top graph). Also,
local distances and their 95% confidence intervals from on-line monitoring
for Batch No. 23 (bottom graph).



Optimal Path and Global Constraints for New Batch
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line approximation agrees exactly with the optimal path. Also, local
distances and their 95% confidence intervals from on-line monitoring for
the new batch (bottom graph).



The problem could have been avoided if the total weight was distributed more
evenly in more that one variable. It is for that reason that it is suggested to constrain the
percentage of the total weight that a single variable can take during the synchronization
procedure. In this particular case study, these two time periods correspond to idle
conditions which do not affect the product quality.

The bottom graph in Figure 8.9 shows the results from monitoring Batch No. 23
on-line. As the graph shows, some distances between time 65 and 80 are close to their
confidence intervals, but they never violate them. Based on this graph, the assessment
would be that the is no adequate evidence to doubt that the batch is of good quality. This

of course is the correct diagnosis, since Batch No. 23 was a good quality batch.

Figure 8.10 shows the results for the new batch. As the top graph in Figure 8.10,
the on-line approximation of the optimal path agrees with the true optimal path at all
times. The monitoring results are shown in the bottom graph. Between time 50 and 65,
all distances are marginally larger than their confidence intervals. This persistent feature
is an evidence that the new batch at these times exhibits a deviation from the average
trajectory that cannot be attributed to random events. Therefore, there is a consistent fault
that causes larger than normal variations in the new batch and one has some evidence to

doubt the hypothesis that the batch is operating in a normal manner.

8.5 Chapter Summary

This chapter presented the application of Dynamic Time Warping in monitoring of batch
processes. Batch processes have to go through a sequence of stages, not all of which are
automated. As a result, batches are not synchronized and have different durations.
However the synchronization of the trajectories to a common length is a necessary
condition for the application of any monitoring scheme. To solve the problem of batch
synchronization an iterative method was proposed based on DTW. The method is

multivariate since it does not rely on a single variable to perform the synchronization in



contrast to the indicator variable method. Moreover, the method pinpoints the most
consistent variable, i.e., the variable with the smallest deviation about its average
trajectory. This variable could be used as the indicator variable at subsequent studies if

one wants to use this simpler approach.

Once the batch trajectories are synchronized, one can then build the MPCA/MPLS
batch monitoring model. The second part of the chapter proposes an asymmetric
DTW/synchronization method that can be used in conjunction with a MPCA/MPLS
monitoring scheme.  Details are given for both the off-line and the on-line

implementation.

When used on-line, the MPCA/MPLS-based monitoring method requires the
prediction of the future behavior of the new batch up to its end. The last part of this
chapter presents a new method for on-line batch monitoring which does not require
predictions. The method is based on the concept of the instantaneous distance of a new
batch trajectory from the average trajectory. For the purposes of illustration, a simple
weighted quadratic distance is chosen that does not penalize changes in the correlation
among the variables. This is a major limitation of the method, since process faults often
express themselves more clearly as changes in the correlation structure. The method
essentially performs a hypothesis test at each time step by assessing the similarity of the
current measurement to one point of the average trajectory. Previous data points to do
not affect the assessment of whether or not the current measurement originates from a
good quality batch. Therefore, the response of the method to process faults is immediate.
Other features of the method include the use of bootstrap to construct the reference
distribution of distances and again the use of DTW to synchronize the new trajectory with

the average trajectory.



CHAPTER 9

SUMMARY, CONTRIBUTIONS AND EXTENSIONS

9.1 Thesis Summary

This thesis addressed several issues in the general area of Fault Detection and Diagnosis
in industrial chemical processes. In the first part of the thesis, the problem of Fault
Diagnosis in continuous petrochemical processes was investigated, while the second part
studied the problem of Fault Detection in batch processes. The simulation of the
Tennessee-Eastman plant with the control system of McAvoy and Ye (1994) (for
continuous processes) and data from an industrial emulsion polymerization process (for
batch processes) were used to illustrate each problem and evaluate the proposed

solutions.

In the study of continuous processes, two types of faults were investigated:
deterministic and stochastic. The cause of a deterministic fault was assumed to be a
randomly occurring deterministic event, such as a step change in a feed composition. The
underlying cause of a stochastic fault was assumed to be a random process (e.g.,
continuous random variations in a feed composition) and as such, different realizations of
the same fault result in different patterns in the process variables. In both cases it was
assumed that the faults are not directly measured but are observable through the

deviations of the process variables from their steady-state values.

In this work, the Fault Diagnosis problem was approached from the point of view
of Supervised Pattern Recognition. It was assumed that a reference set of past
realizations of known faults was available and that each of these realizations produced a

dynamic pattern in the process variables. Appropriate features were extracted from these



patterns; the objective was to extract information that would identify each fault and
distinguish it from the rest. In order to diagnose an unknown fault, these features were
extracted from the process variables and the similarity (in the sense of a distance
measure) was assessed against the features of each of the reference patterns. The known
fault whose reference pattern has the minimum distance was deemed to be the most likely

to have generated the dynamic pattern in the process variables.

Therefore, the investigation of the Fault Diagnosis problem in continuous
processes (which is presented in the first part of the thesis) is an attempt to answer the
following questions: I) what type of features have to be extracted from the raw
measurements and II) how to assess the similarity between the patterns using the
extracted features. These two questions had to be considered in conjunction with
important constraining factors imposed by the type of faults and by the nature of

continuous chemical processes.

The first of these factors is the differences between deterministic and stochastic
faults. As mentioned above, deterministic faults are caused by randomly occurring
deterministic events. As a result of this, different realizations of the same fault will
produce similar patterns in the process variables. Therefore, the actual patterns that the
process variables exhibit could be used to differentiate among several faults of this type.
On the other hand, stochastic faults are caused by underlying random processes;
consequently, the pattern of the process variables is different for each realization of the
same fault. Therefore, the process variables cannot be used directly to diagnose
stochastic faults; some other features are required. These features must be consistent over
different realization of the same fault, while at the same time, being a distinctive

signature of each fault.

Another important factor, for both deterministic and stochastic faults, is the
magnitude of the fault. Any reference pattern is an expression of a fault realization of a
certain magnitude. However, faults can occur with different magnitudes and a robust

diagnostic scheme should be able to classify them correctly. Finally, the direction of a



deterministic fault is another factor that has to be considered. A step up in a feed
composition has to be followed by a step down at a later time. In general, the reference
set may not contain the patterns of a fault occurring in both directions. The diagnostic
scheme should be able to diagnose a fault of one direction using the information from a

fault realization of the opposite direction.

In addition to all these fault characteristics that have to be addressed by a Fault
Diagnosis scheme, the nature of chemical processes imposes some additional constraints.
Chemical plants operate over a wide range of conditions in order to meet various
demands and quality specifications. A fault can occur at any operating point, yet it has to
be diagnosed correctly even if the reference set contains a fault realization at a different
operating point. This is a strong requirement for a diagnostic scheme based on Pattern
Recognition which does not use a mechanistic model of the process. For this thesis, a
simpler Fault Diagnosis problem is addressed by considering operating points that are
characterized only by different production levels and not by different product qualities.
This implies that the correlation structure among the variables remains roughly the same
for fault realizations at different operating points. However, the temporal correlations of
the variables do change; different flowrates result in different dead times and time
constants, thus affecting the speed of the dynamic response. The diagnostic scheme
should be flexible enough to correctly classify a fault even when it exhibits faster or

slower temporal correlations.

Besides Fault Diagnosis in continuous processes, similar problems are
encountered in Speech Recognition and particularly in Isolated Word Recognition. The
same word can be uttered with different duration and intensity, in different environments,
and by different speakers; yet the Speech Recognition system should be able to classify it
correctly independently of these variations. A major part of the Speech Recognition
research has concentrated on the type of features to be extracted from speech signals;
these are nonstationary high frequency signals and different from the outputs produced by

a chemical process. However, even when the correct features are extracted, the problem



of a flexible pattern matching scheme still remains. Dynamic Time Warping (DTW) is a
flexible pattern matching method which works with pairs of patterns and is able to
translate, compress, and expand the patterns so that similar features are matched.
Moreover, DTW is flexible enough to accommodate the special characteristics of a
particular pattern comparison. The most important of them is the uncertainty in locating
the time origin and the end of a speech signal (or for this thesis, the origin and end of a
fault).

Therefore, DTW appeared to be a promising solution to the similarity assessment
problem between faults since it can perform pattern matching that is robust to I) the
plant’s production level and II) possible uncertainties in locating the fault’s time origin.
However, the problem of feature extraction still remained: what features should be
extracted for each kind of fault so that the diagnosis is independent to the magnitude and
the direction of the fault ? This question is answered in Chapters 4, 6 and 7 for the class

of deterministic faults and in Chapters 5 and 6 for the class of stochastic faults,

Chapter 4 presents a complete method for the off-line diagnosis for deterministic
faults. In the feature extraction step, a scaling procedure is applied to the raw
measurements: their initial values are subtracted, they lare then filtered by a first order
high-pass filter, next they are normalized to standard deviation of one and finally they are
filtered with a first order low-pass filter. This is done for all the reference patterns and
for the new unknown pattern. The proposed scaling procedure tries to make the diagnosis
independent of the magnitude of the fault and of the plant production level by removing
the level and the magnitude information from the raw measurements. High-pass filtering
removes low frequency components (e.g., steps) since small differences in the magnitude
of these components result in large changes in the similarity metric. After scaling, the
similarity of the new scaled pattern with each of the reference scaled patterns and their
mirror images is evaluated using DTW. The fault whose scaled pattern results in the
minimum distance is deemed to be the most likely to have generated the new pattern.

The results from the case studies were promising; all diagnoses were correct, they were in



agreement with intuitive expectations and showed that the proposed method could be a

practical tool for the problem of deterministic Fault Diagnosis in continuous processes.

In Chapter 5 a method is proposed for the diagnosis of stochastic faults in
continuous processes. The method can be used for both off-line and on-line applications.
In the feature extraction step, a high-pass filtering operation is used to remove the low
frequency components and then autocorrelation and crosscorrelation coefficients are
estimated. These features reflect both the process dynamics and the relative behavior of
the variables. Most importantly, they remain constant over different realizations of the
same fault. Moreover, they are magnitude independent and this satisfies the important
requirement of a magnitude independent fault diagnosis. In the decision step, a DTW
variant is used to assess the similarity between two correlation patterns. The use of DTW
is dictated because changes in the plant production level change the temporal behavior of
the correlation patterns. Another advantage of the proposed method is that it can be used
in on-line applications without any modifications. On the other hand, the number of
correlation coefficients grows very fast with the number of variables and the result isa
much higher dimensional feature space. The results from the case studies were
inconclusive. Although all the diagnoses were correct, the results did not agree with
intuitive expectations. For example, faults with different magnitudes were classified with
more certainty than faults identical to the reference set faults. A possible cause for these
results could be the slow process dynamics (induced by the recycle streams). This meant
that more time was required for the process to exhibit a consistent correlation pattern than

what was considered to be reasonable for timely fault diagnosis.

Chapter 6 addresses the problem of large dimensionality in the feature space by
proposing the use of Principal Component Analysis (PCA) as a means for feature
extraction. In the case of deterministic patterns, one PCA model was constructed from all
reference patterns after they had been filtered and normalized. The principal components
for each pattern are now its description in a lower dimension feature space. The new

unknown pattern is similarly scaled, then passed through the PCA model and its lower



dimension description is obtained. Finally its principal components are compared using
DTW with the ones of the reference patterns and their mirror images. The improvement
over the results obtained in Chapter 4 was significant. This could be attributed to the fact

the PCA retains only variation that is consistent among the measurements.

In the case of stochastic patterns, a similar extension based on PCA was proposed.
Again, one PCA model was constructed from all the reference patterns, after they had
been filtered. For each stochastic pattern, the correlation pattern of the principal
components was obtained. When the pattern of a new unknown fault appears, it is
similarly scaled, then is passed through the PCA model and the correlation pattern of its
principal component is computed. Finally, DTW is used to assess the similarity between
correlation patterns. The results were similar to the ones obtained in Chapter 5 (i.e., they
contradicted intuitive expectations regarding the diagnosis of faults that are different
realizations of the reference set faults). Nonetheless, the reduction in the dimension of

the correlation patterns was significant.

The last part of Chapter 6 discusses the inadequacy of PCA when used for
classification of dynamic signals. In this thesis, PCA was only used as a means of feature
extraction, but not for pattern classification. The latter task was given to DTW which is a
flexible method for comparison of patterns. DTW can deal with unsynchronized patterns
and distorted temporal correlations caused by different production levels and changing
fault magnitudes. On the other hand, PCA is a rigid classifier for dynamic patterns and as
shown by the results, is very likely to fail when faced with different production levels and

fault magnitudes.

Chapter 7 studies the on-line diagnosis of deterministic faults in continuous
processes. The method is very similar to the off-line method of Chapter 4; ie,itisa
sequence of a filtering and a normalization step, followed by a similarity assessment step
using DTW. However, instead of making a decision at each time interval about the
diagnosis of a new pattern, a set of times is selected where similarity assessment via

DTW takes place. If a fault always occurred with the same magnitude, one could use the



scaling factors from the reference patterns to normalize the standard deviation of the
variables of a new fault. In such a case, a similarity assessment step based on DTW could
provide a diagnosis at each time interval. However, faults can occur with different
magnitudes and so the normalization of their patterns using the reference scaling factors
will result in erroneous values for the normalized patterns. DTW will fail since it is a
distance-based method and is therefore very sensitive to scaling. The method proposed in
Chapter 7 addresses this problem by applying DTW only after enough information has
been gathered to estimate the scaling factors of the new pattern. The results were

promising and agreed with intuition.

Chapter 8 studied the problem of fault detection in batch processes. Batch
processes play an important role in the production of high added value products, such as
specialty polymers, pharmaceuticals and biochemical materials. Therefore there exists a
large economic incentive to manufacture consistent, good quality product. Nomikos and
MacGregor (1994) have proposed a method based on Multiway Principal Component
Analysis (MPCA) for monitoring batch processes using the readily measured process
variables. One requirement for the successful implementation of their method is that the
batch trajectories have the same duration and are synchronized. However, batch
processes are often a sequence of separate stages and some of them may not be
automated, but left to discretion of operators. The result is a set of trajectories that have
unequal durations, are not synchronized, yet they represent batch runs that produced good

quality product.

Nomikos and MacGregor addressed this problem by finding an indicator variable
that can uniquely reflect the progress of the batch process and then synchronizing the
trajectories with respect to this variable. However this solution assumes the existence of
such a variable and the expert process knowledge to identify it among the many measured
process variables. The first part of Chapter 8 proposes a new method for trajectory
synchronization based on DTW. The method is multivariate since it does not rely on a

single variable for the synchronization. Moreover, through an iterative procedure the



method identifies the most consistent variables; i.e., variables with small squared
deviations about their average trajectory. The variable with the smallest deviation could
then be used as the indicator variable at subsequent studies, if one wants to use this
simpler approach. Once the trajectories are synchronized, the MPCA/MPLS-based model
for batch monitoring can be constructed. The method was implemented on an industrial
data set and the results illustrated its practical usefulness.

To assess the quality of a new batch while the batch run is still in progress, one
has to synchronize the new batch trajectory with the reference trajectories in real time.
This is discussed in the second part of Chapter 8, where it is shown how one can use

DTW to perform this on-line batch monitoring.

Finally, the last part of Chapter 8 presents a new method for on-line batch
monitoring which does not require any predictions for the future behavior of the batch.
The method is based on the concept of instantaneous weighted quadratic distance
between a new batch trajectory and the average trajectory. Because the method uses
instantaneous distances, it does not require any predictions and its response to process
fault is immediate. The bootstrap method is used to generate the reference distributions of
distances; therefore no assumption about the probability distributions is required. On the
other hand, the quadratic distance does not penalize changes in the correlation among the
variables. This is a major limitation of the method, since process faults often express
themselves as changes in the correlation structure. A possible solution to this problem

could be the use of different PCA models at each time interval.

9.2 Thesis Contributions

A new method was proposed for the off-line diagnosis of deterministic faults in
continuous, dynamic, multivariable chemical processes. The method is designed to
diagnose faults independently of their magnitude, direction, plant production level, and

uncertainty in the time origin of a fault. The method is based on Pattern Recognition



principles; it consists of a scaling procedure where magnitude invariant features are
extracted, followed by a similarity assessment step where Dynamic Time Warping is used
as a flexible pattern comparison scheme. Also, an on-line implementation of the method
was proposed which takes into consideration the difficulties associated with scaling the

evolving pattern of a fault in real time.

In addition to the diagnosis of deterministic faults, the problem of diagnosing
stochastic faults was also investigated. A new method was proposed for stochastic fault
diagnosis which can be implemented both on-line and off-line. It is also based on Pattern
Recognition principles and tries to diagnose faults independently of their magnitude and
of the plant production level. The method uses the correlation pattern of a stochastic fault
as the feature and then a specially designed Dynamic Time Warping algorithm is used to

assess the similarity between correlation patterns.

The methods for the off-line diagnosis of both deterministic and stochastic faults
were extended by including Principal Component Analysis as an additional step in the
feature extraction stage. In the case of deterministic faults, significant improvement was
observed in the discriminatory power of the classifier. The result were inconclusive for
stochastic faults; however, the large reduction in the dimension of the feature space was a
major benefit. The limitations that Principal Component Analysis faces when is used for

the classification of dynamic patterns were also illustrated.

In the study of batch processes, a new multivariate method was proposed to
equalize the duration and synchronize the events in batch trajectories. The method is an
iterative procedure where a Dynamic Time Warping algorithm and a scaling scheme are
used to produce a set of synchronized trajectories. These trajectories could then be used
to construct the batch monitoring scheme of Nomikos and MacGregor (1994). Also, it
was shown how to use Dynamic Time Warping to synchronize a new trajectory with the
reference trajectory for both off-line analysis and for real time applications. Finally, a

new fault detection method was proposed, based on the concept of the instantaneous



distance of a new trajectory from the average trajectory, which does not require any

predictions about the future behavior of the new batch.

9.3 Recommendations for Future Work

The results obtained from the diagnosis of stochastic faults in continuous processes were
inconclusive. Some further investigation could be carried out to determine the time
duration of data collection that is required for an accurate correlation pattern estimation
for processes with significant recycle flowrates. This also begs the question whether
there is any other feature that can be used to reliably classify stochastic patterns without

requiring an unrealistically large duration of the fault.

In all the methods presented in the thesis, the extracted features were common for
all patterns in their respective classes. For example, all patterns of deterministic faults
were similarly normalized and filtered; also in Chapter 6, the same Principal Component
Analysis model was used for all of the faults. A more powerful alternative would to
extract features from each pattern individually; e.g., construct a different PCA model for
each pattern. Next, a reference distribution of distances could be constructed for each
fault, assuming that a sufficient number of fault realizations existed. The pattern of an
unknown fault would then be compared with each fault in its respective feature space and
the final distance measure would be assessed against the respective reference distribution.
This would be a more powerful fault diagnosis scheme since each fault defines its own
features. However, a large number of fault realizations would be required, but this may

be possible given that continuous processes operate over long periods of time.

Finally, the method presented in this thesis would be best utilized within the
framework of an Expert System. In industrial processes, fault diagnosis is a more
complicated task than pattern classification. It requires the examination of a series of
important issues that have to be addressed before fault diagnosis is performed, e.g., sensor

validation, data reconciliation, fault detection, determination of whether a fault would be



treated as deterministic or stochastic. This thesis tried to solve only a part of this large
problem. The combination of effective solutions for each particular problem is required

and this can be best handled in an Expert System framework.

In the area of on-line monitoring of batch processes, instead on using the simple
weighted Euclidean distance for fault detection, one could use different PCA models at
each time step. This modification will allow for the detection of faults that express
themselves as changes in the correlation structure. However, such a method still does not
consider the time history of the batch since each PCA model is constructed from data
taken at a single time step. One could include the behavior of the batch over time by
including data from a small number of past time steps. At each time, Dynamic Time
Warping could be used to locate the points in time (of the reference trajectories) whose
data can be used to construct the PCA models. By doing this one takes advantage of: I)
the synchronization capability of DTW, II) the local time history of the batch, and III) the
capability of PCA to detect changes in the correlation structure and to locate which
variables are responsible for these changes. Also, this method would not require any
averaging of the points in the new batch. Of course, more computational power would be
required to implement such a method in real time; however, this tends to be less of an

issue with the development of faster and cheaper computers.
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normal symbols
bold small symbols

bold capital symbols
AG,j)
A(,J)

b=AMN:-1:1,j)

AT
A7 (A
Jal

R, RS

T, TS

NOTATION

scalars
row vectors or column vectors
matrices

the (i, ) element of matrix A
the j™ column of matrix A as a column vector

b is a column vector that contains the j™ column of matrix A in

reverse order; i.e., the first element of b is the last element of

A(:,]), the second element of b is the one-before-the-last element
of A(,j) etc.
the transpose of matrix A

the inverse and the determinant of a square matrix A

absolute value of scalar a

any reference pattern for deterministic and stochastic faults,

matrices of dimension r x N
number of features and/or variables for each pattern
length of R and RS patterns

any test pattern for deterministic and stochastic faults, matrices of

dimension t x N (in Chapter 5)

length of T and TS patterns



Ti.SC 4 TS i,SC

Corr[RS]

d@, j)

x>

c(k)

i™ reference pattern for deterministic and stochastic faults; matrices
of dimension r; x N

length of R; and RS; patterns

i" test pattern for deterministic and stochastic faults; matrices of
dimension t, x N

length of T; and TS; patterns

i" reference pattern for deterministic and stochastic faults after
scaling; matrices of dimension r, x N

i" test pattern for deterministic and stochastic faults after scaling;
matrices of dimension t; x N

the correlation patten of the RS pattern of a stochastic fault;

N 1
matrix of dimension (2P +1) x —(N;-—)

number of lags for correlation estimates

local distance (in any DTW algorithm) between the T(1,:) and
R(j,:) vectors of the T and R patterns respectively (T is placed on

the horizontal axis and R is placed on the vertical axis):
d(i, j)=(TG,:)-R(,:)) W(TG,:) -RG,:))"

weight matrix used in d(i, j)

optimal path; sequence of K points on a txr grid,
F={ (1), @), el ) }

number of points of the optimal path

the k™ point of the optimal path; c¢(k) = (i(k), j(k))



w(k)
N(w)

D(t,r)

D(t,r)

D,(.J)

X=TP"+E

T2,Q

maximum number of allowable consequtive horizontal or vertical
optimal transitions

maximum deviation from the linear path emanating from point

(L1

weighting function for the d(i(k), j(k)) local distance

K
normalization factor; N(w) = Z w(k)

k=1
normalized total distance between R and T:

K
g d(ik), j&))- wik)
Dt = o)

minimum normalized total distance: D(t,r) = mFm[D(t, r)]
minimum accumulated total distance between patterns R and T
from point (1,1) to point (i, j)

upper and lower limit for the index of the inner iteration in the
DTW algorthm; vectors of t x 1.

number of points (1,j), 1<j<&,, and tj)r-6,+1<j<r,

among which the first and last points of the optimal path will lie

maximum number of consequtive horizontal transitions allowed in

the begining and at the end of the T pattern
PCA decomposition for matrix X
T? and Q statistics used in PCA models

the i trajectory from a reference set of I trajectories of good

quality batches; matrix of dimension b, x N



=)

SC

B NEW
b NEW

B NEW,SC

~

B NEW,sC

dFD (ts rt )

number of measured process variables

number of observations for the i batch trajectory

the i scaled trajectory
the i scaled trajectory after synchronization
scaled reference batch trajectory; matrix of dimension brer XN

number of observations for the reference batch trajectory
local distance (used in DTW algorithm) between the i vector of

B,sc and the j" vector of Brerscsie.,

d(i, j) = [Bi,SC(i’:) - BREF,SCG’:)]W[Bi,SC () - Bm-:r.sc G::)]T

Bisc
1

I

1
1=

the average scaled trajectory; i.e., By =

the new batch trajectory; matrix of dimension bew XN

number of observations in the new batch trajectory

the new batch trajectory after scaling

the new batch trajectory after scaling and synchronization

the point where the minimum value of the D 4 (t,j) values occurs;

ie, 1, =arg mjin[DA &3], i=1),...,u(t)

the instantaneous weighted distance (used for fault detection)

between an observation vector in the new batch trajectory and an

observation vector in the reference batch trajectory, i.e.;



dpp (t1,) = [anw,sc(t»:) =B (r, ::)]wm [BNEW.SC(t’:) -Bgc (1, ::)]T

W the weight matrix of the quadratic diastance used for fault detection

depose the upper 95% confidence interval for the weighted instantaneous
distance of a scaled batch trajectory from the scaled average
trajectory

ﬁon-um; the on-line approximation of the optimal path; i.e.,

A

Fon-tune = { (10525 s (68 e By Ta, ) |



APPENDIX



Table L.1: the 26 variables used in the patterns of Chapter 4

Var. No. Variable Name Units Original Var. No."
1 A feed kscmh XMEAS(1)
2 D feed kg/h XMEAS(2)
3 E feed kg/h XMEAS(3)
4 A+C feed kscmh XMEAS(4)
5 Recycle flow kscmh XMEAS(5)
6 Reactor feed rate kscmh XMEAS(6)
7 Reactor pressure kPag XMEAS(7)
8 Reactor temperature °C XMEAS(9)
9 Purge rate kscmh XMEAS(10)
10 Product separator underflow m’/h XMEAS(14)

11 Stripper underflow m°/h XMEAS(17)
12 Stripper temperature °C XMEAS(18)
i3 Stripper steam flow kg/h XMEAS(19)
14 Compressor work kw XMEAS(20)
15 Separator cooling water outlet temperature °C XMEAS(22)
16 B in purge gas %mole XMEAS(30)
17 G in product %mole XMEAS(40)
18 H in product %mole XMEAS(41)
19 D feed flow % opening XMV(1)

20 E feed flow % opening XMV(2)

21 A feed flow % opening XMV(3)

22 A and C feed flow % opening XMV(®4)

23 Compressor recycle valve % opening XMV (5)

24 Stripper liquid product flow % opening XMV (8)

25 Reactor cooling water flow % opening XMV(10)
26 Condenser cooling water flow % opening XMV(11)




Table 1.2: the 8 variables used in the patterns of Chapter 5

Var. No. Variable Name Units Original Var. No.’
1 A feed kscmh XMEAS(1)
2 D feed kg/h XMEAS(2)
3 A+C feed kscmh XMEAS(4)
4 Reactor temperature °C XMEAS(9)
5 Purge rate kscmh XMEAS(10)
6 Stripper temperature °C XMEAS(18)
7 G in product %mole XMEAS(40)
8 H in product %mole XMEAS(41)

" This is the notation for the variables used in the original Tennessee-Eastman paper (Downs
and Vogel, 1993). XMEAS is the vector that stores the process variables and XMV is the
vector that stores valve positions for the manipulated variables.
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the initial value for each variable has been subtracted.

Figure 1.2a [PartI}: Behavior of 8 (out of 26) variables during the reference pattern R,;;
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Figure 1.2a [Part II]: Behavior of 8 (out of 26) variables during the reference pattern R, ;

the initial value for each variable has been subtracted.



0.06f
€ <
30.041 240 |
- = 20 , i
$0.02f 3 o |
L4
< 0 a ook
40 X . .
0 0 10 20 30
200 < T
3 5 0.2
o (7]
X < =
3 100 .
Q 0.1
w o Q
. . . < 9 . . .
0 10 20 30 0 10 20 30
=15
é’ % 0.1
- 10t g_
(7] |
£ 5 = 0
5 S
80 & -0.1
1] 1] .
e & .
0 0 10 20 30
£
0.4 ' ; ™ P
£ CTMee] Eoo2
30.3¢ 1 B
o € 0 ;
(]
% 0.2 ° |
— [ =
oy s -0.2
0.1 5
£ oL | _ ] g4 | . .
0 10 20 30 a0 10 20 30
time (hours) time (hours)

Figure 1.2b [Part I]: Behavior of 8 (out of 26) variables during the reference pattern R, ;
the initial value for each variable has been subtracted.



N -~ o
%low ‘abind u1 g

30

S N @
@ <
%Jow ‘jJonposd i H

-0.1¢

o - N

0o .aEQ_hmaq_mw

M N - O

%Iow ‘Jonpoud ul 5

30

20

10

e o
< S
% 'ONBA PaB) D+Y

© ¥ N o
% 'OA|EA pad} Y

30

20

0

30

20

30

20
time (hours)

10

1

o o

(o)

% ‘©A|eA JB)eMm ‘|00D ‘pPuod

30

20

time (hours)

10
10

0 " 4
w o w °
S S
% ‘DAEA JSJEM ‘|00 "JOBaY

Figure 1.2b [Part I]: Behavior of 8 (out of 26) variables during the reference pattern R,;

the initial value for each variable has been subtracted.



0 ud

200
-200}

& -400}

Q 600

4
o

u/6

N ey

vy
A

!

5

- © ~ o
S S 9
Ywosy ‘pasy y

30

20

10

30

20

10

20

o
(42
1O
Y
F "
S v v B © v o =
o -
0 ) o “dwsa] 10)0ed
ywosy ‘pasy 9+y ° L o
o
3 *
3
|e 1
N
lo |
) ﬂkv
Aw
coococooo ° o o o
(] OO 00 wn [T9]
~ Ny LR Bedy “sai hoo_mm
Wby ‘pas) 3 Ml 7S8ud Jopeey

30

10

- O ™ N O

30

20

10

o

y/gw ‘mopsapun hmma_bm

20

o o
S S
ywosy ‘ajel abing

30

10

0

time (hours)

time (hours)

33
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Figure I.3a: Behavior of the 8 variables during the reference pattem RS, ; the initial
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© o o
o o
o

Y/6% ‘pasy @

—

¥ N o
o o

Ywos ‘pesy v

o
<

30

20

10

30

20

10

0 o wn ©
o o

00 ‘ainjesadwa homommm

30

20

© < N O

00 ‘aimeladwsa | hmam_huw

30

20

- o 1 2
S S o
Ywos) 'pagy O+

ywosy ‘sjes abing

- O <

ajowlgy, .uozuo._m uH

- o o

ajowoy, ‘yonpoid _.__ [9)

20
time (hours)

30

10

o

time (hours)

Figure 1.3b: Behavior of the 8 variables during the reference pattern RS, ; the initial

value for each variable has been subtracted.



Variable No. 1

0.8}
S 0.6}
Q
'@ 04;
So0.2}

time

[T

i

time

0.5¢
o)
o
Z
2 O
o
8
S

-0.5

20 40 60 80 100 120
time

Variable No. 2
o
($)]

) ‘ “ ‘m
|
b . “‘\!x\‘l\l\\’

20 40 60 80 100 120
time

20 40 60 80 100 120
time

0.4

o
o N

Variable No. 6
& o
O XY

O
)

20 40 60 80 100 120
time

Figure I.4a: Behavior of the Variables No. 1 to 6 during the 31 good quality batches
before synchronization; the variables have been divided with their average

range.



2.
1.

N~ [¢ 0]
G 1P e
2 B ot 4
o i\ 2 0.5}
S of g
S S 0

-1

20 40 60 80 100 120 20 40 60 80 100 120
time time
1

o
()

Variable No. 9
o

-0.5

20 40 60 80 100 120 20 40 60 80 100 120
time time
Figure I.4b: Behavior of the Variables No. 7 to 10 during the 31 good quality batches

before synchronization; the variables have been divided with their average
range.



16

l

14

125

2.\ &%
EaEN //@/ FOICY

......

M
one: 716/4

......

crod
A . c
..______.______ g
ly |

150mm
6

|
o

2

g

APPLIED £ IMAGE. Inc






