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Of the shop

He wrapped them carefully, neatly
in costly green silk.

Roses of ruby. lilies of pearl
violets of amethyst. As he himself jUdged,

as he wanted them. they look beautiful to him; not as he saw,
or studied them in nature. He will leave them in the safe.

a sample of his daring and skillful craft.
When a buyer enters the shop

he takes from the cases other wares and sells -superb jewel~

bracelets. chains, necklaces and rings.

Constantine P. Cavaf}t (1913)

Tou J.laraClOV

Ta nJAl~€ lTpOO€lCTlKa, Jl€ Ta~Tl

cr€ lTpaCJlvo lTOAUTlJlO J.l€Ta~l.

AlTO povlllTLVla po8a, alTO J.lapraplTapla KpLVOl,
alTO aJ.l€9uO'TOUS Jl€V€et€B€s. Os aUTOS Ta KplV€l,

Ta 9€ATlcr€, Ta ~AElT€l wpaLa, 0Xl OlTWS crTT)V <!>VCJT)
Ta dB€v T1 Ta cruoV8aO'E;. M€S O'TO TaJ.lElOV aa T' a$T1O'El.

8drJla TT)S TOAllTlPtiS 80UA€las TOU Kal LKavtis.
LTO llaraCL crav IllTEL aropacrTtis Kavds

/3rciC'€L alT' T€S e~KES aAAQ Kal lTOUA€l -lT€pl$T)J.la O'ToXL8la
~paXLoALa, aAuC1lB€s, lT€pL8Epala. KaL 8aICTUX£8la.

KWVC1TaVTlVOS IT. Ka~a<!>TlS (1913)



A<j>LEpWVETaL OTT'lV OL!coyEv€Lci IJ.OU

APLO"TOIJ.E1IT}, Ma(PTJ Kat Iwciwa Kaoo(oa

Me oAT) lJ.0lJ TTJV aYQ1TTI KaL TO oej3aollo.



DOCTOR OF PHILOSOPHY (1997)

(Chemical Engineering)

McMASTER UNIVERSITY

Hamilton, Ontario

TITLE: Fault Detection and Diagnosis in Dynamic Multivariable Chemical

Processes Using Speech Recognition Methods

AUTHOR: Athanassios Kassidas, M. Eng., (McMaster University)

SUPERVISORS: Professor. J. F. MacGregor and Professor P.A. Taylor

NUMBER OF PAGES: xiv, 230

ii



ABSTRACT

Fault Detection and Diagnosis have become important topics in the process industries.

The off-line diagnosis of past transient upsets can lead to important process or operation

modifications that can improve the future behavior of the process. The rapid on-line

diagnosis of faults is even more important since it can anticipate and minimize the impact

ofotherwise costly effects.

The first part of this thesis addressed the problem of fault diagnosis in

multivariate, dynamic, continuous chemical processes. Two types of faults were

considered: deterministic (whose root cause is a randomly occurring detenninistic event)

and stochastic (caused by an underlying stochastic process). A realistic simulation of a

chemical plant was used as a test bed for the proposed methods. Due to the lack of

accurate dynamic models for this type of process, a Pattern Recognition approach was

followed. Within this framework, several methods were designed for the on-line and off

line diagnosis of both types of faults. All methods consisted of: 1) a feature extraction

step, where magnitude invariant features are extracted from both the reference patterns

and the pattern of the new unknown fault, and II) a similarity assessment step where the

distance between the new pattern and each of the reference patterns is estimated using

Dynamic Time Warping.

Due to the use of magnitude invariant features and the ability of Dynamic Time

Warping to synchronize similar patterns with distorted temporal correlations, the results

were satisfactory in diagnosing detenninistic faults. In the case of stochastic faults, the

results were inconclusive. The correlation pattern between the variables was used as the

feature for the diagnosis of stochastic faults. However, the slow dynamics and the effect

of the recycle in the simulated chemical plant meant that unrealistically long records of

data are required for an accurate estimate of this feature.
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The second part of the thesis investigated the problem of fault detection in batch

processes, and in particular the problem ofbatch trajectories of unequal duration and poor

synchronization. A new method, based on Dynamic Time Warping, was proposed for the

synchronization of batch trajectories of this type; the method is multivariate and requires

minimal process knowledge. It was also shown how to use Dynamic Time Warping to

synchronize a new batch trajectory with the reference trajectories so that batch monitoring

methods based on Multivariate Statistical Methods could be used. Finally, a new on-line

monitoring method was presented, based on the concept of instantaneous quadratic

distance, which does not require prediction ofthe future behavior ofthe batch trajectory.
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