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ABSTRACT

Loss of bone mass has long been recognized as a major factor
which makes bones brittle and susceptible to fracture. Currently
bone mass is measured using a dual energy photon transmission
technique, and a fracture risk is derived from comparison with
reference normal values. Although the risk of fracture increases as
bone mass decreases, variations in trabecular bone architecture can
also affect strength. Consequently, trabecular bone architecture is
often cited as a factor which might contribute significantly to
fracture risk. Currently, estimates of trabecular bone structure
are derived from biopsy studies. Such studies are invasive,
destructive, cannot be used routinely in patients or volunteers,
and certainly cannot be repeated at the same site to obtain
longitudinal measurements. If routine clinical assessments of
architecture are to be made, it is necessary to determine which
imaging modality best reveals structure in a non-invasive manner.
It is also necessary to determine how the competence of the
structure can best be expressed quantitatively.

This work has examined ways of assessing trabecular bone
structure at the distal radius in-vivo to better understand the
contribution of architecture to fracture risk. To this end, it
proceeded on four major fronts. First, images of sufficient
resolution were acquired using a commercial pQCT scanner and a
clinical MR imager. Second, the image processing software necessary
to segment the imaged trabecular structure was developed. Third,

.two indices were proposed to quantify the connectivity of the
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segmented structure. One index was derived from the application of
trabecular strut analysis to a skeletonized representation of the
bone network. The other quantified the marrow space by deriving a
mean hole area and maximum hole area of the bone structure as it
appears in two dimensions. The clinical value of these indices was
tested by conducting pilot studies which examined the ability of
the indices to discriminate a small group of Colles fracture
patients from the normal population and to reflect normal age
related changes in structure. The proposed structural parameters
better discriminated Colles’ fracture patients than did measures of
bone mineral density.

The fourth and last stage of this work examined the proportion
of the variance in compressive strength of a group of radius bones
that can be accounted for by bone mineral density and bone
architecture. In seeking the features that were the most reliable
indicators of bone strength, a combination of the mean hole area
and maximum hole area had the highest correlation with peak load at
fracture. This held true whether these two variables were derived
from pQCT or MR images. Therefore, these structural indices may
represent a potentially exciting and promising means of
discriminating fracture outcomes and monitoring changes in

trabecular bone structure.
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Chapter 1
INTRODUCTION

1.0 Introduction

Fractures associated with osteoporosis pose a substantial
threat to the health of elderly individuals. Hip fractures, for
example, are a significant cause of morbidity and disability in
older women(Jensen and Tondevald 1979) . The restriction of activity
which follows a fracture often leads to loss of self-confidence
which may further develop to psychologic stress (Thomas et al
1974). To improve the quality of 1life in these individuals
afflicted by osteoporosis, it is estimated that 7-10 billion
dollars a year are spent in North America on medical and nursing
care. It is generally felt that this enormous health care
expenditure would be significantly reduced if an early diagnosis of
osteoporosis could be made so that the appropriate preventative
therapeutic interventions could be instituted.

A reduction in bone mass is included in most definitions of
osteoporosis. Therefore, techniques which have the capacity to
measure bone mass with a high degree of accuracy and precision
should be able to discriminate between individuals with
osteoporosis and the normal population. This implies that
identification and assessment of persons with the disease can be
improved through technical innovations. This is not the case.
Considerable advances in measurement techniques have improved the
ability of clinicians to evaluate the bone mineral status of the

entire skeleton or at specific sites. Even with these significant
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improvements in accuracy and precision, the risk of fracture for a
given individual cannot be uniquely determined from bone mass
measurements. This inability of bone mass to predict future
fractures in an individual implies that there are other factors
which contribute to a fracture outcome.

One factor which is thought to contribute to fracture risk is
trabecular bone architecture. To better understand the contribution
of architecture to fracture risk, methods of quantifying
architectural changes are required. To this end, this work examines
ways to advance measurements of trabecular architecture into the
clinical arena by providing a means of quantifying trabecular bone

structure in-vivo.

1.1 Basic Physiology of Bone

Body motion results as the bones in the skeleton provide the
support and leverage necessary to transmit the various axial,
rotary, and transaxial forces generated by our muscles. The
skeletal system itself is comprised of compact cortical bone and
the less dense trabecular bone. Whether cortical or trabecular,
bone tissue can be further divided into two phases: an organic
collagen matrix and a mineral phase; mainly hydroxyapatite. These
two phases of bone undergo continuous turnover throughout 1life.
This turnover is necessary to permit repair of microdamage in bone
and provides a mechanism for the release of calcium into the
circulatory system to satisfy the body’s demands. The balance that

exists between the process of bone formation and the process of
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bone resorption determines the rate of change of bone mass. During
the years marked by childhood and adolescent growth the balance
between the formation and resorption process favours formation.
However, in the normal aging process of the adult female skeleton
the balance is shifted in favour of the resorption process such
that approximately 1% of the bone mineral mass is lost annually.
Most of this bone mineral loss occurs from the trabecular bone
compartment which has a turnover rate 3 to 8 times faster than that
in compact bone. With a greater rate of mineral loss from
trabecular bone, the most frequent fracture sites are those with
greater proportions of trabecular bone, namely the proximal femur,
vertebrae, and the distal end of the radius.

Osteoporosis is defined as a reduction of the amount of
mineral (hydoxyapatite) in bone such that the bone has an increased
risk of fracture. Biochemically, osteoporotic bone is not different
from normal bone (Wasserman and Burzel 1987). The differences and
subsequent risk of fracture between normal bone and osteoporotic
bone arise partly from the amount of bone mineral present and the
structural arrangement of the mineral. The extent to which this
difference in mineral mass can be used to discriminate osteoporotic
subjects from the normal population is examined in the next two

sections.

1.2 Bona Mass Measurements and PFracture Risk.

The physical strength of bone is directly related to its

mineral content (Chalmers and Weaver 1966, Arnold 1973). This



4
suggests that measurements of the bone mineral content at sites
most susceptible to fracture should be the most accurate method of
assessing the risk of future fracture. The technology for
noninvasive measurements of bone mass has improved considerably.
Two techniques most'commonly used to measure bone mass are Dual
Energy X-ray Absorptiometry(DXA), and Quantitative Computed
Tomography (QCT). DXA allows for precise assessments of bone
mineral content at peripheral and axial sites at a low startup and
operating cost (Gluer et al 1990, Orwall and Oviatt 1991). At the
vertebrae DXA measurements may be performed posterior-anteriorly or
laterally. The major limitation of DXA is that it cannot
distinguish between cortical bone and trabecular bone. An integral
bone mass or density is measured. This 1limitation is offset
somewhat at the lumbar spine by performing lateral measurements. A
lateral examination of the lumbar spine allows an almost exclusive
measurement of trabecular bone because only the vertebral body is
measured. Despite this inability to separate trabecular bone from
cortical bone, DXA reveals differences between mean values for a
population with established osteoporosis and the normal population
although ranges may overlap (Pouilles et al 1991, Nuti and Martin
1992, Overgaard et al 1992). At the spine these differences are
increased somewhat for lateral examinations in comparison to a
posterior-anterior examination (Guglielmi et al 1994, Mazess et al
1995) . Most importantly, DXA measurements have shown that fracture
.rates in some study populations may decrease in response to

therapies such as estrogen (Weiss et al 1980, Kiel et al 1987).
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QCT assesses changes in trabecular bone mass at the lumbar
spine (Cann et al 1985). Because the metabolic rate in vertebral
trabecular bone is substantially greater than the cortical bone
which surrounds it, the ability to measure solely trabecular bone
is a significant advantage over the integral density recorded by
DXA. Widespread application of QCT measurements has been limited by
the high cost and limited accessibility to clinical CT scanners.
Despite its limited use, a measurement of spinal trabecular bone
density has been shown to be diagnostically superior to DXA for
identifying persons at increased risk of vertebral fracture
(Reinbold et al 1986, Guglielmi et al 1994, Laval-Jeantet et al
1995). This improved fracture discrimination with QCT results
because the bone mass reduction detected is significantly higher
than that observed by DXA (Genant et al 1987, Guglielmi et al
1994).

Based on a measurement of bone mass or density, the
identification of patients at a high risk for osteoporotic fracture
involves the use of statistical methods. Clinically, the most
commonly used statistics are the Z-score and the T-score. The 3Z-
Score for a patient is defined as the magnitude of the deviation
from the mean result for a group of aged-matched controls divided
by the standard deviation associated with the mean calculated for
the age-matched control group. The T-score is defined in a similar
fashion except that the patient measurement is compared to a young
-adult reference population. A T score of -2.5 has evolved as the

clinically accepted indicator of osteoporosis with or without the
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presence of a fracture. This can be problematic, however. There can
exist those women with very low bone mass who are fracture free.
For example, it has been shown that for a 60 year old woman with a
bone mass that is greater than two standard deviations below the
mean, the annual risk of not fracturing a bone is approximately 93%

(Hui et al 1989).

1.3 Failure of Bone Mass to Predict Fractures

There is no doubt that the risk of a fracture increases as
bone mass and density decrease. However, there is a large overlap
between bone mass measurements in normal, nonfractured women and in
those who have or will develop fractures (Cann et al 1985, Riggs et
al 1990). To illustrate this, figure 1.1 shows a plot taken from
the work of Riggs. As noted, the points plotted represent 84 women
with one or more nontraumatic vertebral fracture. Over half of
these women fall within the 90% confidence limits indicating normal
bone density. Reviews of case-control studies which have used a
bone mass measurement as the sole determinant of increased fracture
risk have all concluded that differences in bone mass between
patients with fractures and controls are small and the ranges
usually overlap (Mazess 1981, Cummings 1985, Ott 1993). This
overlap between bone mass measurements in normal, non-fractured
individuals and in those who have fractures is an indication that
bone failure is a complex disorder that cannot be predicted by
.measuring bone mass alone.

The resistance of a bone to fracture is also dependent on
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Fiqure 1.1: Individual lumbar spine BMD values in 84 women with
one or more nontraumatic vertebral fractures. The shaded area

represents 90% confidence 1limits, and the line denotes age
regression for normal women.
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other factors. These factors are illustrated in figure 1.2 and can
be categorized as being either inherent to bone or as external
factors. As shown, bone geometry, bone quality, the presence of
microdamage, and the protective response, following loss of balance
can all influence whether or not a bone fractures. Measurements of
architectural parameters which are inherent to bone are often cited
as most likely to improve a prediction of fracture risk beyond that
offered by bone mineral content. This is not surprising because the
mechanical behaviour of trabecular bone is partly determined by its
degree of anisotropy and connectivity (Townsend et al 1975,
Goldstein 1987). Morphological parameters such as trabecular
thickness and number density may also indicate strength. For
example, by examining the role of trabecular thickness and density
in the pathogenesis of vertebral fracture, Kleerekoper et al (1985)
concluded that the biomechanical competence of cancellous bone is
not only dependent on the absolute amount of bone present but also
on the trabecular microstructure. Similarly, Jensen et al (1990)
have noted that a considerable change in the mechanical behaviour
of trabecular bone can occur when the bone mineral is slightly
redistributed so that trabecular bone volume and mass remain
unchanged. It appears then, that methods which accurately quantify
trabecular bone architecture will improve the identification of

those subjects with increased risk of bone fracture.

1.4 The Architecture of Normal and Osteoporotic Bone.

The normal structure of cancellous bone may differ in detail
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and amount at different body sites but consists of the following
components. Generally there are combinations of curved plates in
which there are holes of various sizes and a meshwork of rods of a
variety of 1lengths (Whitehouse 1977). This description of
cancellous bone is sketched in figure 1.3a. The average plate
thickness is approximately 0.13 mm while the average size of the
holes within each plate is 0.75 mm (Amstutz and Sissons 1969).
Similarly, the rods of trabeculae that interconnect the various
plates have an average width of 0.16 mm but can range between 0.05
mm to 0.2 mm depending on the body site (Whitehouse 1977).

Osteoporosis is a skeletal condition characterized by a
reduction in the mass of bone mineral that disrupts the trabecular
bone structure. It is now clear that the loss of cancellous bone
mass and accompanying disruption in structure with age occurs
principally by a process that removes entire trabeculae rather than
a generalized uniform thinning of the whole structure (Parfitt et
al 1983; Birkenhager-Frenkl et al 1988). This change is illustrated
in figure 1.3b. As shown, those trabeculae that remain are more
widely separated and thus less likely to withstand a compressive
force. However, there is perhaps a protective response initiated
by the cancellous bone structure to maintain mechanical integrity.
Vesterby et al (1989a) found that normal postmenopausal women
increase iliac crest trabecular thickness with age as a result of

the increased load that individual trabeculae have to bear.



11

(a)

. (b)

Fiqure 1.3: A comparison between the appearance of normal
trabecular bone (a) and osteoporotic bone (b).
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1.5 In-Vitro Parameters to Quantify Bone Structure
The biomechanical competence of bone can only partly be
derived from bone mass measurements. With the importance of
trabecular bone architecture being demonstrated, research questions
have now focused on a measure of bone mass in combination with an
assessment of architecture as an indicator of fracture risk. Non-
invasive measures of bone mass have become extremely accurate and
precise. This is not the -case, however, for measurements of
trabecular bone architecture. The challenge for bone researchers
over the last decade has been to develop indices that accurately
quantify the three dimensional structure of cancellous bone.
Solutions to this challenge have been derived in two ways. First,
in-vitro structural assessments can be made from two-dimensional
(2D) histologic sections prepared from biopsy. Such an approach has
one obvious limitation. The three dimensional structure of
trabecular bone cannot be fully understood from isolated 2D
sections. Second, the limitation of 2D analysis can be overcome by
the direct examination of three-dimensional (3D) bone structure in-
vitro with the use of high-resolution computed tomography. Larger
samples are required to fully represent the 3D structure and so
samples obtained from autopsy are often analyzed. Both approaches
to in-vitro structure assessment have yielded indices which reflect
changes in bone structure as a result of aging, disease, and
response to therapy. These indices are examined in the next two

.sections.
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1.5.1 Parameters derived from histological sections
A number of interesting parameters have been developed to
quantify trabecular bone structure from micro-sections. The first
and simplest was the direct measurement or calculation of
trabecular width, separation, and number density from a biopsy
sample (Parfitt et al 1983). The biopsy sample to be measured is
prepared, magnified and a calibration grid is superimposed. With
the aid of standard image analysis packages, the area (A,) and
perimeter (P,) of cancellous bone is determined. Given that the
analysis procedure is calibrated to an external bone standard and
that the total area of the overlying grid is delineated by A,, then

the following quantities of bone architecture can be derived:

(MTPT) =c(2b) 1.1a
Pb
(MTPS) =c( PP | 1.1b
Pb
A
(TBV) A 1.1c
Pb
(MTPD) =C(==2 1.1d
AC

where MTPT is the mean trabecular plate thickness, MTPS is the mean
-trabecular plate spacing, TBV is the trabecular bone volume, and

MTPD is the mean trabecular plate density. Each parameter is listed
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as being proportional to two primary measurements, area and
perimeter. Each can then be relayed as a three dimensional measure
by the insertion of appropriate constants into the equations
(Parfitt et al 1983).

To quantify the volume of trabecular bone and of marrow space,
the star volume technique has been applied (Vesterby et al 1989b).
Star volume is defined as the mean volume of all the parts of an
object which can be seen unobscured in all directions from a
particular point inside the object to the boundary of the object.
An illustration of the star volume technique is given in figure
1.4. It is applied to microsections of bone through the following
steps. First, a seed point is picked at random within the marrow
space and a selected number of rays are drawn outward and
isotropically until intersecting a bone boundary. If the average
length of all rays is 1, then the mean star volume V' is calculated

by the following equation.
V‘=% (1,2 1.2

A scaling constant (%m) is used to relate a two dimensional
measurement to a three dimensional index of bone. As illustrated by
figure 1.4, when the seed point is picked in marrow and the rays
"star" out from the seed point, the algorithm returns a measure of
marrow volume. When the seed point is picked inside a trabeculae
the algorithm returns a measure of trabecular volume.
-Consequently, with loss of trabecular bone the marrow star volume

increases and the trabecular star volume decreases.
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Marrow space

Fiqure 1.4: A star volume measurement of a marrow pore is

indicated. From a seed point rays are drawn - outward and
isotropically until intersecting a boundry.
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To assess the degree of connectivity between plates and rods,
strut analysis has been applied (Parisien et al 1992). In the case
of strut analysis the bone section to be examined is magnified and
is considered to consist of a number of l-dimensional struts. This
consideration of the bone section is illustrated in figure 1.5. The
junction between three struts is defined as a node. A strut that is
connected at one end to a node and is free at the other end is
labelled a free end. The number of node to node and node to free
end struts are counted to determine the connectedness of the bone
section. A well connected bone is characterized by a large number
of node-node struts and few node-free end ones. A change in
connectivity such as a break or removal of a strut results in the
number of node-node struts being decreased by one while the number
of node-free end struts must increase by two.

Connectivity has also been quantified by a trabecular bone
pattern factor (Hahn et al, 1992). The basis of the trabecular bone
pattern factor (TBPf) can be described by the relation of convex to
concave surfaces present in the bone lattice. With the aid of
figure 1.6 calculation of TBPf involves the following steps. First,
by means of an automatic image analysis system, the perimeter (P1)
and area (Al) of the bone section is calculated. Second the bone
image is dilated by adding a layer one pixel thick to the bone
contour. This transformation is illustrated in figure 1.6b. The
perimeter (P2) and area (A2) are remeasured. The TBPf is then

. calculated from the following equation.



Fiqure 1.5: In trabecular strut analysis the two-dimensional
representation of the bone structure is represented by a series

of one-dimensional struts shown here as broken lines. Nodes are
indicated by (@) and free ends by (x).

17
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dilation

B sore [[] Marrow Change in bone area

Figure 1.6: A calculation of the trabecular bone pattern factor
involves the determination of the bone perimeter before and after
dilation. The dilation step helps to differentiate a well
connected bone network from one with many breaks.
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_ (P1-P2)
TBPf=—ZT oot 1.3

The dilation results in a change of area and perimeter which
indicates the relation of convex to concave bone surfaces. For
example, after dilation the bone area always increases (A1<A2)
irrespective of the convex or concave nature of the bone. However,
the bone perimeter increases for a convex surface (P1<P2) but
decreases for a concave surface (P1>P2). Any breaks that occur in
the trabecular plate network will result in a decrease in the
number of concave surfaces and an increase in those that are
convex. Consequently, in the case »f a normal well connected bone
lattice, the TBPf is low and perhaps negative. For diseased bone

with lots of isolated trabeculae TBPf is high.

1.5.2 Parameters derived by diagnostic imaging methods

A direct examination of three-dimensional bone structure in-
vitro can be obtained from high-resolution computed tomography
images. In the literature this analysis is often referred to as
micro-computed tomography to distinguish it from high-resolution
computed tomography. The distinction is based on differences in
achievable resolution. Micro-CT systems can achieve resolutions
less than 100 um while high-resolution CT systems may reach 500 um.

The first measure of three-dimensional connectivity determined
by micro-computed tomography was obtained by Feldkamp et al(1989).
-In this application, a combination of a highly focused X-ray

source, an image intensifier, and rotation of the bone sample to
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obtain the required projections resulted in a resolution of 75 um.
At this resolution the number, orientation, and size of trabeculae
in all three dimensions were readily extracted from the images. A
number of other applications of micro-CT analysis to the study of
trabecular bone structure have since followed. For example, finite
element models have been derived from tine CT data set to predict
the material properties of trabecular bone (Muller and Ruegsegger
1996) . Also, attempts have been made to quantify 3D connectivity
using Euler characteristics (Odgaard and Gundersen 1993) and
fractals (Majumdar et al 1993).

Although the primary use of micro-CT has been to acquire a
fully three-dimensional representation of trabecular bone, it has
also been used for the non-destructive evaluation of two-
dimensional indices of architecture (Ruegsegger, Koller, and Muller
1996) . The thin image slices provided by these microtomographic
systems allows for a large number of sections of the sample to be
analyzed without the often time consuming steps of slicing and
mounting which are required during histologic preparations. As a
result of this efficiency, microtomographic analysis of trabecular
architecture has emerged as a nondestructive biopsy technique to

quantify in-vitro structure (Davis and Wong 1996).

1.6 In~vivo Assessment of Trabecular Bone Structure

The indices of cancellous structure previously discussed are
-all derived in-vitro from samples of bone obtained by biopsy. Such

procedures cannot be used routinely in patients or volunteers and
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certainly cannot be repeated at the same site to obtain
longitudinal measurements. An in-vivo assessment of trabecular bone
architecture has the immediate potential for serial measurements
and application in everyday clinical situations. The requirement
for an in-vivo assessment of trabecular bone architecture is the
acquisition of an image of sufficient resolution to allow
quantitation. There are two methods which may provide images of
sufficient resolution to allow an assessment of architecture in-
vivo. They are Quantitative Computed Tomography (QCT) and Magnetic
Resonance Imaging (MRI). These two modalities exploit different
physical principles to image trabecular bone structure. An in depth
examination of these principles is reserved for later chapters.
However, the application of each to an assessment of structure is
examined briefly in the following sections.

Ultrasound has also been applied to the study of trabecular
bone density and structure. Its basic principles as they apply to
the study of bone density and architecture are also discussed in
the following sections. However, because ultrasound cannot provide
an image of sufficient resolution which can be interrogated for
structure, it is not considered further beyond this introductory

chapter.

1.6.1 Quantitative Computed Tomography (QCT)

Quantitative Computed Tomography (QCT) was developed to
. determine bone mineral density predominantly at the spine (Cann and

Genant 1980). QCT uses the method of tomographic reconstruction of
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X-ray profiles to obtain the transaxial distribution of attenuation
coefficients in Hounsfield units. Using a thresholding algorithm
trabecular bone is isolated from cortical bone. A reference
standard containing well defined amounts of bone mineral equivalent
material is used to calibrate the Hounsfield units to an equivalent
bone mineral density.

The widespread use of QCT as a screening tool for osteoporosis
has been limited by access to the CT scanners. However, systems
dedicated to bone mineral measurements at peripheral body sites
such as the radius are now available commercially. Like their axial
counterparts these peripheral QCT (pQCT) systems have been shown to
be highly reproducible when applied in serial examinations of
trabecular and cortical bone density in a postmenopausal population
(Muller et al 1989).

A determination of bone density by QCT at the spine or radius
requires the performance of calculations on the image matrix. The
success of assessing structure by CT depends strongly on acquiring
images of sufficient resolution to visualize the trabecular
network. In healthy persons this network consists of trabeculae
ranging in thickness from 0.1 mm to 0.4 mm (Whitehouse 1977) . These
trabeculae inter-connect to produce an average marrow space of 0.75
mm but can range from 0.2 mm to 2 mm (Amstutz and Sissons 1969). In
osteoporotic patients trabeculae become thinner and larger marrow
spacings are found due to entire trabeculae being removed
. (Birkenhanger-Frenkel et al 1988, Vesterby et al 1989%a). The

spatial resolution achieved with current CT scanners may just be
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adequate to identify these physiological changes in trabecular
architecture in-vivo. A few studies have shown that by processing
the resulting CT image, information reflecting the state of
trabecular structure at the spine can be obtained and used to
improve the separation of healthy subjects from patients with bone
disease (Chevalier et al 1992, Mundinger et al 1993). In these
applications, the images of the vertebrae were first processed by
such techniques as filtering, edge and contrast enhancement, noise
exclusion, and thresholding. From the processed image, indices of
texture relating to the total number of trabeculae and
intertrabecular spaces were calculated. These indices proved
valuable in the identification of a subgroup of patients suffering
from fractures but with normal bone mass.

The limited access to conventional, all-purpose CT scanners
has prompted the development of dedicated peripheral QCT (pQCT)
instrumentation specifically for measurements of bone mass in
peripheral sites susceptible to fracture such as the radius
(Stebler and Ruegsegger 1983, Hangartner and Overton 1982, Hosie
and Smith 1986). Like their axial counterparts, the high resolution
PQCT image generated during the assessment of bone mass may be
useful for estimating structural parameters of trabecular
architecture. One study has already demonstrated the feasibility of
extracting structural information from these pQCT images (Durand
and Ruegsegger 1991) by using run-length analysis. A close
relationship between histomorphometric values and run-length

parameters was demonstrated from images of the distal radius and
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tibia. However, direct interpretation of the run-length parameters
as indicators of structure required simulating two and three-

dimensional models of the trabecular architecture.

1.6.2 Magnetic Resonance Imaging (MRI)

Two applications of magnetic resonance imaging have emerged as
potential tools for investigating cancellous bone structure. The
first method is based on the differences in magnetic permeability
that exist between bone mineral and bone marrow. This difference
produces significant inhomogeneity in the 1local magnetic field
surrounding the trabecular elements. As a result the lifetime of
the signal described by the T,” parameter from marrow is shortened
as the mass of trabecular bone increases. This effect was first
demonstrated in vitro by adding varying amounts of bone powder to
water (Davis et al 1986). In-vivo measures of the T, of marrow
showed an increase from an epiphyseal to a diaphyseal site which
was interpreted as arising from increases in the intertrabecular
space due to reductions in trabecular density (Ford and Wehrli
1991). T, measured at the lumbar spine in healthy persons is
significantly shorter than in patients with osteoporosis (Wehrli et
al 1995).

Along with the approach of relating the decay time of the MR
signal from marrow to bone density and structure, MR can be used to
acquire images of sufficient resolution to visualize the trabecular
-network directly. The necessary spatial resolution has been

achieved on current clinical systems by means of various technical
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approaches. For example, a pixel resolution of 117 pm x 117 um x
400 um was reported for images of the phalanges (Wong et al 1991).
Such resolution can be achieved for smaller object sizes and with
the aid of a local gradient coil and modified pulse sequences. A
pixel resolution of 156 um x 156 um x 700 pm was achieved for
cross-sectional images of the wrist using a specialized wrist coil,
modified scanning software, and standard imaging gradients (Foo et
al 1992, Majumdar et al 1994). Once imaged by MR, a number of
different approaches have been used to assess the structure of
trabecular bone. For example, gray scale morphometric
granulometries (Yidong et al 1993) and fractal analysis techniques
(Majumdar et al 1993) have been applied to images of the wrist.
More recently, the mean intercept length was used to assess
trabecular width as a function of angle and orientation at the
radius and calcaneus (Majumdar et al 1994, Majumdar and Genant
1995) . These different approaches that characterize structure are
dependent upon the quality of the original image from which they

are derived.

1.6.3 Ultrasound

Ultrasound measurements have been proposed as an alternative
to BMD for evaluating fracture risk. The smaller size, reduced
expense of equipment, and absence of ionizing radiation makes
ultrasound measurements more attractive than some forms of
. densitometry.

The basic physics that makes ultrasound appropriate for bone
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mineral assessments is as follows. The velocity of sound (v) within
a particular medium is dependent on the density (p) of that medium.

Quantitatively this relation is given by the following equation.

va L 1.4

VP
The ultrasound wave propagates through the medium by the separation
and compression of neighbouring molecules within the medium.
Therefore, it is not surprising that the compressibility is another
physical characteristic that affects the velocity of sound through
the medium. Compressibility (K) indicates the fractional decrease
in volume when pressure is applied to the medium. The velocity of
sound is also inversely proportional to the square root of the

compressibility of the medium. That is:

va L 1.5

vE
The elastic properties of the medium are related to its
compressibility. It is measured as the bulk modulus (B8) and is

inversely related to compressibility.
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Combining compressibility and density into one equation yields the

following relationship:

or
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v=L/E 1.7b
vP

The bulk modulus (f) is often referred to as a measure of the
"stiffness" of the medium in resisting an applied force. Therefore,
as given in equation 1.7b, a measure of the acoustic velocity
through a material is influenced by its density and intrinsic
stiffness. These two material properties are important in resisting
mechanical stress.

Two uses of ultrasound enable a measurement of bone mineral
density. The first is the velocity of the sound wave as it travels
through the bone. This is recorded as the speed of sound (SOS). The
second ultrasound measure is the frequency attenuation of the sound
wave as it traverses the bone. The attenuation is recorded for a
broad range of frequencies (0.1-1.0 MHz) and so this measure is
referred to as broadband ultrasound attenuation (BUA). A
measurement of BUA involves sending a broad band ultrasound pulse
through the bone and recording how much of a given frequency is
absorbed by the bone. This broad frequency spectrum allows
measurement of attenuation to occur over a range of frequencies.
Subtracting the inténsity values transmitted by the bone from a
spectrum obtained by transmission through a weakly attenuating
reference medium, such as water, provides the net attenuation at
each frequency. This net attenuation is calculated at discrete
frequencies and a regression line is derived to obtain the
'attenuation slope in dB/MHz. This slope is the BUA value.

The clinical utility of an ultrasound measurement has been
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demonstrated on two fronts. First, ultrasound detects osteoporosis
and increased fracture risk with a sensitivity and specificity
comparable to that of other bone mass measurement techniques
(Heaney et al 1989, McCloskey et al 1990, Argren et al 1991, Ross
et al 1995). Second, a number of studies have shown evidence that
ultrasound provides clinically relevant information about bone
quality in addition to and distinct from bone mass. For example,
BUA and SOS can be related to histomorphometric variables such as
trabecular plate separation (Hans et al 1993) and trabecular
orientation (Nicholson et al 1994). Most importantly, when
postmenopausal and osteoporotic subjects are matched for equal BMD
an SOS measure distinguishes the two groups (Brandenburger 1993).
This suggests that the value of ultrasound may not be in its
ability to predict BMD but rather in the assessment of fracture
risk and bone quality. Therefore, this low cost non-invasive

technique may have widespread utilization in the future.

1.7 Research overview

The work reported in this thesis examines ways of assessing
trabecular bone structure at the distal end of the radius in vivo
to better understand the contribution of architecture to fracture
risk. To this end, the focus is on four major areas. The first
examines ways by which the trabecular bone structure at the radius
can be imaged with MRI and pQCT. Secondly, the image processing
-tools necessary for segmenting the imaged bone structure are

discussed. Thirdly, indices to quantify the connectivity and
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orientation of the segmented structure are proposed. Finally, the
clinical value of the proposed indices are examined through
compressive testing of a small group of radii in vitro and by
discriminating a group of Colles fracture patients from the normal

population.
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Chapter 2

PRINCIPLES OF COMPUTED TOMOGRAPHY

2.0 Introduction

In standard radiographic imaging a three dimensional
structure is collapsed onto a two dimensional image. The signal
at each point on the film represents the summation or line
integral of the linear attenuation coefficients along the path
defined by the x-ray source to the point on the film. This
superposition restricts the diagnostic applications of the
detected image. For example the use of a plain film exam to
characterize trabecular structure is severely limited. Projection
blurs the bone structure in the final image. These limitations
could be overcome if it were possible to image just thin cross-
sections of the anatomy at a time. X-ray based Computed
Tomography (CT) represents an effective way to obtain images of
thin sections of the body. An overview of the CT process is given
in the following sections. It was derived from the review article
compiled by Brooks and Di Chiro (1976) and from the consideration

of image reconstruction from projections given by Herman (1980).

2.1 Basis of Computed Tomography

The basic principle behind CT is that the internal structure
of an object can be reconstructed from multiple one dimensional
projections of the object each obtained at a different angle
around the object. Each linear projection, p, consists of a set
of ordered numbers each representing the fractions of x-rays

transmitted along a line path normal to the direction of the
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projection. This line path is referred to as a ray, or ray sum,
and quantifies the degree to which the x-ray beam is attenuated
by the tissues along its path. This scheme is illustrated in
figure 2.1. One simple way by which each of the one dimensional
projections can be obtained is shown in figure 2.2. As shown an
X-ray source and detector are translated in tandem to obtain a
projection. The source and detector assembly are then rotated to
obtain another projection at a different angle around the object.

If the cross-sectional layer is divided into a matrix of
pixels with dimension ax then mathematically the fraction of x-

rays transmitted along a ray can be written as
I,
o

I, represents the intensity of the x-ray beam before it passes
into the cross-section and I gives the beam intensity as it exits
the body tissue. The u’s are the linear attenuation coefficients
of the successive voxels with thickness ax. If the beam were
monoenergetic each voxel would have a uniquely assigned
attenuation coefficient which is determined by the composition
of the tissue occupying it and depending on the energy of the
beam. In practice the x-ray beam is made up of photons of many
energies. Therefore, as it passes through the absorbing tissue,
the mean energy of the beam increases as the lower energy photons
are filtered out. As the beam is hardened, the attenuation at a
point within the cross-section will vary with the quality of the
beam passing through it. Therefore, for a spectrum made up of
many energies, the linear attenuation coefficient assigned to a

voxel will depend on tissue composition as well as on the mean
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Figure 2.1: A typical scanning pattern used to acquire a set of
one dimensional projections from which the internal structure of
an object can be reconstructed. The pattern consists of linear
translations at successive angular intervals around the object.
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Collimated detector

transilation

translation

Collimated X-ray source

Figure 2.2: By moving an x-ray source in tandem with a collimated
- »

detector, transmission measurements can be recorded along
selected line paths.
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energy of the x-ray beam at the particular location of the voxel
in the body cross-section. This beam hardening effect must be
corrected for to obtain useful images. Hence, the polychromatic
projection data is most often corrected to yield a monochromatic
projection data set by means of a second or third order
polynomial whose weighting coefficients are determined by the
energy profile of the x-ray spectrum and the type of material
being imaged (Herman 1980). The essence of CT is to use the
corrected transmission data to reconstruct the distribution of

the linear attenuation coefficients in the two-dimensional slice.

2.2 Mathematical Description of the Reconstruction Problem

The mathematical exercise is to reconstruct a function
f(x,y) which represents the linear attenuation coefficients in
the two-dimensional slice. The problem is best approached by
defining the co-ordinate systems shown in figure 2.3. Ray paths
are described by an (r,s) co-ordinate system which is rotated by
the same angle ¢ (with respect to the x-y frame of reference).
Therefore, each ray recorded can be specified by an angle ¢ and
a distance r from the origin. S gives the path along the ray. In
the (r,s) co-ordinate system the projection or ray sum of f(x,Y)
along a ray is defined by the following integral.

p(r,¢)=ff(x,y) ds 2.2
r.é

This projection p is proportional to the logarithm of the
detector signal. With f(x,y) representing u(x,y), then from
equation 2.1, p can also be expressed with the following equation

based on the detector signal:
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Figqure 2.3: A rotated coordinate system used to describe the
projection data. Ray sums (dashed line) are specified by their
angle ¢ and their distance r from the origin. Distances along the
ray sum are defined by s. Points within the object being imaged
are described by the fixed (x,Y) co-ordinate systen.
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=-1n(-L
jol ln(Io) 2.3

In theory, f(x,y) is a continuous two-dimensional function
and , in principle, can be recovered from an infinite number of
projections taken at an infinite number of angles. In practice,
p(r,¢) is measured at a number of discrete positions from which

an estimate of f(x,y) can be calculated.

2.3 alytic Reconstruction: the reconstruction solution

2.3.1 Two-dimensional Fourier reconstruction

The starting point for the analytic reconstruction is to
examine the two-dimensional Fourier transform of the density

function f(x,y). This is given by

F(ke k) =[ [£(x,y)exp[-2xi(kx+k,y) 1dxdy 2.4

The parameters k, and k, are the wave numbers (figure 2.4). The
angle of rotation can be defined from the wave numbers and is
derived from the following equation.

¢=tan'1(i;z) 2.5

X

It is also apparent that k, and k, can be defined as follows.
k.=k cos(¢) 2.6a
k,=k sin(¢) 2.6b

Now, from the (r,s) coordinate system defined in figure 2.3, it

is clear that
r=xcos(¢) +ysin(¢) 2.7

Combining equations 2.6 and 2.7 leads to the following relation
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4

Fiqure 2.4: Relationship between the orthogonal coordinate system

(k,,k,) and the rotated coordinate system defined by an angle ¢
relative to the y axis.
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kx+k,y=kr 2.8

Using this simple geometrical transformation, equation 2.4 can

be simplified to read

Flku k) =[ [£(x,y)ds e-iz*kedr 2.9

The inner integral represents the original projection data (see

equation 2.2) so equation 2.9 can be rewritten as

F(k,, k) =fp(r,¢) e imkrgr 2.10

If the transform of the projection data is represented by P(k,9)
then the one-dimensional Fourier transform of the projection data

can be expressed as follows.

P(k,¢)=fp(r,¢)e“'2"‘°’dr 2.11

Comparing equations 2.10 and 2.11, the right hand side of
equation 2.10 represents the Fourier transform of the projection
data which is defined in equation 2.11 as P(k,¢). This means that

equation 2.10 can be further simplified to

F(ky, k,) =P(k,$) 2.12

Equation 2.12 is of fundamental importance and corresponds to the
projection slice theorem. In words, equation 2.12 says that the
one-dimensional transform of the projection at an angle ¢
corresponds to a slice taken at the same angle ¢ through the two
-dimensional transform of the original distribution function
f(x,Y). This is an important theorem because it means that a good

estimate of f(x,y) can be obtained from the projection data using
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the following steps. First, a full set of projections is
acquired. Second, the one-dimensional transform of each
projection is obtained. Third, a two~-dimensional array of Fourier
coefficients is built from the one-dimensional transform of each
projection by interpolation. Finally, an inverse two-dimensional
transform is calculated to obtain the estimate of f(x,y).

The two-dimensional Fourier transform method of
reconstruction works well but has a number of disadvantages.
First, the reconstruction process cannot proceed until all the
projections have been obtained. Second, the computation of a two-
dimensional transform limits the speed of the reconstruction
process. Hence, more computationally efficient methods of

reconstruction such as backprojection are favoured.

2.3.2 FPiltered backprojection

Simple backprojection represents a form of reconstruction
that assigns a value to points in f(x,y) equal to the sum of ray
sums passing through that point. This scheme is illustrated in
figure 2.5. Mathematically, this guess at f(x,y), say f£;(x,y) is

given by

fng,y)ﬁ[p(xcos¢+ysin¢.¢)d¢ 2.13
o]

where a switch to the r,s co-ordinate system makes use of the
relation given in equation 2.7. The integration in equation 2.13
accounts for the summation of each of the ray sums that
contribute to a given point in the image. Although most of the
qualitative information of the original attenuation map f(x,y)

is preserved with simple backprojection, there are generally two
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PROJECTION

| N

BACK PROJECTION

Fiqure 2.5: Simple backprojection. In (A), a series of projection
profiles are shown graphically. In (B) these profiles are
backprojected onto the image plane and summed to produce an
approximation to the original object.
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differences between the reconstructed image and the original.
These differences are clearly evident in figure 2.5. First, many
artifacts are generated in the reconstructed image. For example,
star artifacts are common. Second, the relative intensities of
the structures in the imaged cross-section are blurred.
Mathematically, it can be shown that the simple back
projected image varies from the true image in that the
reconstructed image is low pass filtered (Brooks and Di Chiro
1976). With the knowledge of the projection slice theorem
expressed in equation 2.12, this low pass filtering effect can
be quantitated in the following manner. If F;(k,,K,) represents
the Fourier transform of the guess at f(x,y) obtained by simple
backprojection, then the effect of low pass filtering can be

expressed mathematically as

F(kx' ky) - P(k: ¢)
kT ik 214

Fi(ky k) =
In words, equation 2.14 says that the image created by simple
backprojection varies from the true image in that all frequency
components are divided by the magnitude of the frequency. This
suggests that backprojection can work if the projection profiles
are properly filtered before being backprojected. Therefore,
reconstruction by filtered backprojection requires the following
three steps. First, a full set of one-dimensional projections is
acquired. Second, each projection is filtered. Third, the
filtered projections are backprojected to reproduce the original
cross-sectional anatomy. There are a range of filtering functions

which can be applied to the projetion data. These are described

in the following section.
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2.3.3 The filtering function

In order to reconstruct the original object with
backprojection, theory (equation 2.14) requires that the
projection profiles first be filtered by a function whose
frequency spectrum is a linear ramp. This filter is sketched in
figure 2.6. As shown, the ramp filter is designed such that the
weight given to each frequency increases linearly as the
frequency itself increases. If the projection profiles are simply
backprojected as is, one would obtain a blurred representation
of the original anatomy. The weighting scheme imposed by the
application of the ramp filter compensates for this blurring by
giving more weight to the higher frequency components of the
image. The result is a sharper and truer representation of the
original anatomy.

‘Before filtering, the already blurred projection data are
also noisy due to the inherent Poisson statistical "noise". This
noise spectrum has an approximately constant amplitude at all
frequencies. The application of the ramp filter to the noisy
projection data amplifies the noise component dominant at higher
frequencies. The resulting reconstructed section is dominated by
noise and appears very grainy. In theory, to prevent this, it is
necessary to cut off the ramp filter near or at the point where
the signal in the projection data disappears into the noise. An
example of an appropriate choice of cut-off frequencies is shown
in figure 2.7. In practice, the appropriate cut-off frequency is
decided by the fact that the projection data is obtained at
discrete intervals imposed by the physical size of the detectors,

or collimators, and by the finite number of projections obtained
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Figure 2.6: The ramp filter used to multiply the projection data
before backprojection. The weight given to each frequency
increases linearly with frequency.
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POISSON NOISE (PROJECTION + NOISE)

AMPLITUDE

FREQUENCY
FREQUENCY

F,

F.

(Cut-off frequency)

Figure 2.7: The appropriate choice of cut-off frequencies for the
linear ramp filter. A range of frequency cut offs are indicated by
(===—- ). The choice is defined by detector size and by the finite
number of projections recorded around the object. If the detectors
were infinitely small, then the choice of a frequency cut-off would

.be defined by the point at which the projection signal disappears

into the noise. This is indicated by F, and F, which indicate the
cut-off frequency corresponding to noise 1levels 1 and 2,
respectively.
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around the object. So, a higher cut-off frequency beyond that
imposed by the finite detector size and the finite number of
projections is wasteful because the resolution is still limited
by the quality of the original projection data. The corollary of
this last statement is that, unless the detector size is
decreased and the number of projections increased, higher
frequency cut-offs will only amplify noise without increasing
resolution.

Frequency cut-off or windowing is achieved by multiplying
the ramp function with a rectangular window represented by

(k)= 1 -kn<k<k, 2.15
(] elsewhere

and sketched in figure 2.8. The sharp frequency cut-off at | 3
introduced by the rectangular window will give rise to
oscillations at high frequency points such as sharp boundaries
in the object. This effect is known as Gibbs phenomenon (Brooks
and Di Chiro 1976) and can be reduced by using other types of
frequency windows. Therefore, in practice, windows in which the
frequency cut-off is rolled off rather than cut sharply are used.
For example, the most commonly used window for filtered
backprojection reconstruction is the window introduced by Hamming
(1977).

II(k)= }|a=-[(1-a)cos(2nk)]! -k <k<k, 2.16
0 elsewhere

and 0<a<1
a is the degree of freedom that allows for the matching of the
filter to the noise and object detail. For example, setting a=1,
the window becomes the rectangular window and it has the effect

of maximizing resolution but with an appreciable increase in
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Figure 2.8: The windows indicated at the top of (A) and (B) are
multiplied by the ramp function to produce the frequency domain
filters sketched at the bottom of (A) and (B).
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noise. Setting a=0, the window becomes a cosine window, a low
pass window commonly utilized in signal processing to surpress
noise but at the expense of an appreciable loss of resolution.
The Hamming window with a=0.5 is also indicated in figure 2.8.
It has the effect of being less sensitive to noise in the data,
but will produce an appreciable loss of resolution.

The proper choice of the filter will depend on the noise
level in the projection data and on the nature of the object
being reconstructed. There is no universal filter. However,
appropriate filtering can produce an image in which the
recoverable object detail has been maximized, while the noise
component has been minimized. The filter will be the ramp
multiplied by a window appropriate to the object being
investigated and tailored to match the noise characteristics in

the projection data.

2.4 Limitations on resolution

The ability to resolve two adjacent features in a CT image
is influenced by the degree of blurring and the noise level. The
amount of blurring may be influenced by system geometric
resolution 1limits, ray sampling frequency, pixel size, and
properties of the convolution kernel applied before
backprojection. Yester and Barnes (1977) have described the

geometric limits of resolution as:

Am=T1!\/a5+ (M-1)%s2  2.17

where A, is the effective resolution in the image plane, a and

s are the detector width and x-ray focal spot size, and M is the
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geometric magnification at the centre of rotation. In most
practical CT systems, the geometric magnification is constant.
Then, it is apparent from equation 2.17 that resolution can be
improved by reducing the detector width and focal spot size.

Spatial resolution is also influenced by the rate at which
the projection data is sampled. The sampling theorem states that
when one samples a continuous function such as a projection,
spatial frequencies only up to a cut-off point are captured. This
cut-off point is known as the Nyquist frequency and is defined
as one half the spatial distance between samples. In other words,
spatial frequencies whose period of repetition is less that two
pixels cannot be visualized. To illustrate the sampling theorem,
figure 2.9 shows the process of sampling a continuous projection
profile at discrete points. Since the object is sampled at
intervals equal to the distance between adjacent points in a
projection, dx mm, the highest recoverable spatial frequency (k,)
is

ky=—i_ mm? 2.18
? 2dx

The spatial resolution required to quantitate the structure
of trabecular bone will be determined by the dimensions of the
trabecular lattice. The column and strut model of trabecular bone
assumes a column diameter of 0.2 mm and trabecular spaces of
cross-sectional area of about 0.75 mm by 1 mm. Figure 2.10 gives
this generalized treatment of the trabecular lattice and reveals
that a spatial frequency of 1.05 cycles per mm is present in the
trabecular lattice. Suppose one acquires images with a 10 cm

field of view onto a 256 by 256 matrix. The sampling interval
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Nriginal
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(continuous)
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Sampled A )
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Figure 2.9: An analog projection profile is sémpled. This
sampling process is accomplished by multiplying the original
projection with the sampling function. After multiplication, the

shape of the sampled version is the same but is defined only at
discrete points.
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spatial frequency=1.05 mm’'
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marrow space=0.75 mm

Figure 2.10: A representation of the spatial frequencies present
in an average trabecular bone network.
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across a horizontal line profile of pixels within the image would
be 0.39 mm per pixel or simply 0.39 mm. Then, from equation 2.18,
setting dx equal to 0.39 mm, the highest meaningful spatial
frequency captured in the image matrix is 1.28 mm! . This is
sufficient to reveal the idealized trabecular structure depicted
in figure 2.10.

Noise levels also limit the ability to resolve two adjacent
structures. The noise level in an image is influenced by pixel
size (W) and the x-ray fluence (N). This relation can be

expressed as:

Noise a 1 2.19
W-N2

To improve spatial resolution the pixel size and the width of
the x-ray beam can be reduced. This restriction in beam width and
pixel size increases image noise. For example, if the pixel size
is halved then the number of photons must be increased by a
factor of four in order to maintain the same level of noise in
the image. Also, if the width of the x-ray beam is halved, the
x-ray fluence must be increased by a factor of two to maintain
the same noise level.

Often the slice thickness in the 2z direction is several
times greater than the pixel size in the x-y plane. This means
that the resolution in the z direction is much worse than in the
X-y plane. Partial volume effects will decrease the in-plane
spatial resolution. In conventional CT, thick slices are
necessary to keep statistical fluctuations small. For high-
resolution applications the slice thickness should be reduced to

minimize partial volume effects. The trade-off, however is
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increased image noise. If the slice thickness is halved then
twice as many photons are needed to prevent increasing the noise
level. However, this requires that the scanning time be doubled

and the subject receives twice the dose.
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Chapter 3
PRINCIPLES OF MAGNETIC RESONANCE IMAGING

3.0 Introduction

Magnetic Resonance Imaging (MRI) is a method of obtaining
cross-sectional images of the body by utilizing the magnetic
properties of atomic nuclei. The manner by which an MR image is
formed is different from that of standard x-ray imaging and
Computed Tomography. What follows is an examination of the image
formation aspects of MRI. First, the nuclear conditions which are
necessary to produce an MR signal are examined. Second, the
generation and measurement of the resonance signal will be
discussed. Third, the means by which the emitted signal can be
manipulated and arranged to form an image with varying degrees of
contrast will be presented. Finally, the applicability of MRI to

the study of in-vivo trabecular bone structure will be discussed.

3.1 Basic nuclear physics concepts

All atoms are made up of a central, massive, positively
charged, nucleus around which orbit a number of negatively charged
electrons. The nucleus itself is composed of nucleons: protons and
neutrons. Since both protons and neutrons spin around their own
axes, they possess spin angular momentum (S). Nucleons possess the
same spin angular momentum as the electron (s=1/2 {spin up} or S=-
. 1/2 {spin down}). One of the fundamental premises of

electromagnetic theory is that any body that possesses both charge
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and spin angular momentum will behave like a magnetic dipole. The
strength and orientation of the magnetic dipole is quantitated by
its magnetic moment. Which direction will be decided by the spin.

Nucleons occupy specific energy levels within the nucleus. In
each energy level protons of opposite spin are paired and neutrons
of opposite spin are also paired. However, protons with like spins,
neutrons with like spins and protons-neutrons are not allowed to be
paired. The up-down pairing results in a cancellation of the spin
angular momentum. It is the spin angular momentum of the nucleus as
a whole that determines magnetic resonance properties. If there is
no net nuclear spin, there is no magnetic moment and hence no
magnetic resonance properties. Since it is the number of unpaired
nucleons that produce a net nuclear spin, the following rule
defines which nuclei have magnetic resonance properties. Oonly those
nuclei which contain an odd number of protons and (or) an odd
number of neutrons will possess a net spin and be detectable by
magnetic resonance. Some examples of elements that are measurable
by magnetic resonance and are of clinical interest are H,, “C,,
Fy, and *P.

It can be observed that protons have a magnetic moment by
pPlacing them in a static magnetic field. They attempt to align
their magnetic moment along the lines of the static field- like a
compass needle. Unlike a compass needle, because the proton is
spinning, its magnetic moment will not align with the external
- field but will precess around it with an angular frequency (w,).

This alignment and precession of individual protons about the



55

static magnetic field is illustrated in figure 3.1. The frequency
of precession is related to the static field strength (B,) by the

Larmor equation.
w,=YB, 3.1

The proportionality constant y is called the gyromagnetic ratio and
is characteristic of the nuclei. For protons, y is equal to 42.1
MHz /Tesla. Hence, if hydrogen nuclei('H) are exposed to a 1 Tesla
static magnetic field, they will precess at a frequency of 42.1
MHz. If the field strength were doubled to 2 Tesla, then the
precession frequency of the protons will also be doubled to 84.2
MHz.

Before the application of an external magnetic field, the
magnetic moments of the protons in the body are randomly oriented.
As shown in figure 3.2a their individual magnetic moment vectors
point in all directions and their vector sum is equal to zero so
that no net magnetic moment is produced. However, as shown in
figure 3.2b, when a strong, static magnetic field is switched on,
the orientations of the individual magnetic moments are no longer
random. They will align with, or against the applied field. This
alignment is discreté and can be viewed as two allowed states at
slightly different energies. The ratio of the number of protons

occupying each of the two states is defined by Boltzman'’s equation.

a(l) 4P 5,

n(l)
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Flggre 3.1: The spin up and spin down alignment assumed by nuclei
in an external magnetic field. Each magnetic moment precesses at
the Larmor frequency (W,) about the external field. Although not
drawn, nuclei in the spin down state precess in the opposite
direction to those in the spin up state.
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fﬂ/" (a}
!0 Y (b}

Figure 3.2: The ordering of the individual magnetic moments in
response to the application of an external field B,. As shown in
(a), in the absence of an external field, the individual magnetic
moments are randomly oriented and tend to cancel each othe;: out. As
shown in (b), following the application of an external field, the
magnetic moments align themselves with or against the static field.

. Note that the magnetic moments precess about B, and more are aligned
with B, than against it.
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n(t) and n(!) represent the number of protons whose magnetic moment
are aligned with and against the static magnetic field,
respectively. AE represents the energy difference between the two
energy states, T the tissue temperature, and k is Boltzman’s
constant. It is clear from equation 3.2 that more protons will
align along the applied field that against it. This is illustrated
in figure 3.2b which shows 9 nuclei in the low energy state and 3
nuclei at the higher energy configuration. Although only 12 nuclei
are drawn here, in general for hydrogen based images of soft
tissue, for every 10° nuclei in the down state there are (10%+7) in
the up energy state for the average body tissue (Schild 1990).
Since each magnetic moment can be treated as a vector possessing
both magnitude and direction, then the extra 7 moments per million
will produce a net magnetization. More specifically, for the case
sketched in figure 3.2b, the extra 6 moments in the up energy state
will produce a net magnetization vector (M) along the Z direction,
the direction of the static magnetic field. This result is drawn in
figure 3.3a. The magnitude of this net magnetization vector is
proportional to the number of protons in tissue. Because the phases
of the precessing protons are random, the net magnetization vector
does not have a component in the xy plane. This effect is
illustrated by figure 3.3b. As shown, the "extra" magnetic moments
precess randomly out of phase with respect to one another and so
their components in the xy plane tend to cancel each other out.
This leaves only the component of the net magnetization vector M in

the Z direction.
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Figure 3.3: The establishment of a net magnetization vector M along
z, the direction of the static field B,(a). M only has a =z
component because, as shown in (b), the Xy components of the

individual magnetic moments tend to cancel each other out because
the protons precess out of phase.
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3.2 Sample excitation and signal generation

The measurable signal in magnetic resonance is an electrical
current induced in a coil placed around the body part under study.
This induction process is governed by Faraday’s law as illustrated
in figure 3.4 which shows a simple electrical generator consisting
of a coil rotating with angular frequency w, in a fixed magnetic
field (B,). As the coil rotates through the magnetic field the
number of magnetic field lines crossing the coil’s area at a given
point in time changes. Faraday found that a changing magnetic flux
induces an electromotive force (EMF) in the coil (Kane and
Sternheim 1983). In the case of this simple generator, the induced
voltage signal is sinusoidal with frequency w,.

For signal acquisition in magnetic resonance the situation is
reversed. The coil is fixed and the magnetic field is fluctuated.
If a second magnetic field (B,) is applied at right angles to the
main field, two important effects occur. These two effects are
depicted in figure 3.5. First, the magnetic moments of the
individual protons are forced in phase, so that a component of M is
created in the xy (transverse) plane. Second, the net magnetization
vector will align itself along this new field, thereby being tipped
into the transverse plane. The second magnetic field, B,, is
normally supplied by irradiating the tissues with RF radiation at
the resonant frequency. Quantum mechanically this means that
protons in the lower level (parallel to B,) absorb energy, and are
-promoted to their excited state (antiparallel to B,) . The angle(#4)

at which M is tipped from the z axis depends on the length of time



. w\/ \/ E = Eo Sin[We t]
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Fiqure 3.4: An illustration of Faraday’s law of induction for a
simple electrical generator.
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b)

Figure 3.5: The perturbation of the net magnetization vector
following an RF excitation pulse. First, the individual magnetic
moments precess in phase to establish an xy component of M. Second,
M tries to align itself along the new field B, generated by the RF
pulse. In doing so M is tipped from the 2z axis through an angle o.
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(T;) that the resonant RF pulse is on. This flip angle is calculated
from equation 3.3.

G=k°Tp 3.3

k is a constant related to the field strength. By changing T,
various flip angles can be achieved. Most commonly, M is flipped
through 90° or 180°. In the case of a 90° pulse, the RF pulse is left
on long enough that the difference in the number of nuclei at the
two energy states equals zero and so the net magnetization vector
will now exclusively precess in the xy plane. Following a 180°
excitation pulse more nuclei reside in the high energy state than
the low energy, hence M is flipped upside down.

When the RF pulse is switched off (B, is removed), the net
magnetization vector will start re-aligning itself along B,. In
doing so, it will precess along B, and represent a time varying
magnetic field. An electric current will be induced in a nearby
coil because of Faraday’s law of induction. This induced current is
the MR signal and is commonly referred to as a Free Induction Decay
(FID). A typical FID is sketched in figure 3.6.

The rate at which the net magnetization changes with time can
be defined by resolving M into its components along the x, Y. and
z directions. For example, the change in the net magnetization with
time t after the 90° RF excitation pulse is switched off is given

by the Bloch equation.



signal in
receiver
coil r -

Figure 3.6: A typical Free Induction Decay signal recorded in the
receiver coil following the application of a 90° RF pulse.
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e

-t -
M(t)=M, (1-e T)+Me 3.4

M, and M,, represent the vector components of the net magnetization
vector along the static magnetic field (z) and transverse to it
(xy), respectively. The decay constants Tl and T2 are the
relaxation times and are unique for different tissues. The
definition and role of Tl and T2 in MR imaging are explored in the

next section.

3.3 Definition of Ti1, T2, anda T2°

As defined by equation 3.4, there are two processes which
contribute to M(t). The first is the return of excited nuclei to
their low energy state. As more nuclei return to equilibrium with
their environment, the difference in the number at the two enerqgy
levels approaches the equilibrium value predicted from Boltzman’s
equation (see equation 3.2). The result is the re-establishment of
the z component of the net magnetization vector at an average rate
of 1/T1. As nuclei return to their equilibrium state they give back
their excess energy to the lattice surroundings as thermal energy.
Therefore, T1 is commonly called spin-lattice relaxation time
because it characterizes the time for the excited nuclei to realign
themselves with the existing lattice structure of the material. T1
is also referred to as the longitudinal relaxation time because it
is the time constant that describes the growth of the z component
-of the magnetization vector. A typical T1 relaxation curve is shown

in figure 3.7. As indicated, T1 is not defined as the time required
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Figure 3.7: Growth of the z component of
vector following a 90° pulse. This growth
governed by the equation given. Note that

time required for the magnetization vector
equilibrium value M.

the net magnetization
is exponential and is
Tl corresponds to the
to recover 63% of its
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for longitudinal relaxation to occur completely but is the time
taken for the longitudinal magnetization to recover 63% of its
original value. This result can be derived by setting t equal to T1
in the equation given.

The decay of the transverse component of the magnetization
vector is due to inhomogenities in the magnetic field experienced
by the nuclei. These inhomogenities arise from macroscopic and
microscopic effects. The microscopic contribution to signal decay
arises from field inhomogenities generated by molecular
interactions and will dephase the nuclei with some protons rotating
a bit faster than the resonant frequency, and others a bit slower.
As the nuclei dephase, the xy component of the net magnetization
tends to zero as the individual magnetic moments in the xy plane
cancel each other. The rate governing this process is described by
the T2 relaxation time. T2 is therefore referred to as the
transverse relaxation time. A typical T2 decay profile is drawn in
figure 3.8. The decay equation is also given. As indicated, T2 is
defined as the time taken for the transverse component of the net
magnetization vector to decay to 37% of its maximum (or decreases
by 63%) value. This fraction can be verified by setting t equal to
T2 in the equation given.

The macroscopic contribution to signal decay arises from
inhomogenities in the applied magnetic field which will also
dephase the nuclei. When combined with the microscopic
-contributions, this macroscopic contribution to signal decay is

characterized by T2" to distinguish it from T2 which only accounts
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Fiqure 3.8: Decay of the transverse component of the net
magnetization vector following a 90° pulse. T2 (==--- ) and T2® decay
(=== ) are shown. Decay is exponential and is governed by the
equations given. Note that T2 corresponds to the time required for
the magnetization vector to lose 63% of its initial value due to
local field inhomogenities generated by the molecular environment.
T2" corresponds to the time required for the magnetization vector
to lose 63% of its initial value due to both 1local field

. inhomogenities generated by the molecular environment and by
inhomogenities in the static field.
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for the microscopic field inhomogenities. T2® decay is also sketched
in figure 3.8. As shown, T2® will always be less than T2 because it
accounts for all magnetic field inhomogentites. Because T2 effects
are due solely to molecular interactions alone, T2 will depend more

on the type of tissue being examined than T2=*.

3.3.1 T1 and T2 for muscle, fat, and bone

For all biological tissue probed by magnetic resonance, T1 is
greater than T2 and T2 'is far shorter than T2. Typical relaxation
times for muscle, fat, and bone are presented in table 3.1. The
values listed are representative for the three tissues when imaged
at 1.5 Tesla and can be used as a guide to understanding image
contrast in MR. For example, image contrast can be optimized using
Tl relaxation. Following a 90° excitation pulse, the weakest MR
signal will be derived from tissues having the longest T1. This
tissue will therefore appear dark in the image. It is guite clear
from the T1 values given in table 3.1 that bone will always appear
darkest in an MR image. Image contrast can also be optimized using
T2 relaxation. The tissue with a longer T2 will produce a stronger
signal and will therefore be brightest in the image. From the T2
values given in the table, fatty tissue will always appear
brightest in an MR image and bone the darkest.

The extreme Tl and T2 values for bone are due to the strong
influence that the molecular environment and temperature have on
-relaxation times. Tl and T2 are greatly dependent on the frequency

of thermal motions among the molecules being imaged. This dependency
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Table 3.1: Typical values for Tl and T2 for various body tissues.

Tissue Type Tl (msec) T2 (msec)
Water* 2700 2700
Muscle* 600 30
Fat® 250 50
Bone* 60000 0.1

Note: a- (Fullerton 1982)

b- (Dooms et al 1986)
c- (Ackerman et al 1992)
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Figure 3.9: The dependence of T1 and T2 on the frequency of

molecular motion and molecular sSize. The molecular environment

corresponding to bone mineral will have a very short T2 and a long
T1.
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is sketched in figure 3.9. It is clear from these curves that a
static and rigid structure such as bone does not provide the
"mobile"™ protons necessary for MR imaging. Alternatively, tissues
with a high water content such as muscle, will produce a strong MR

signal.

3.4 The spin_ echo and adient echo pulse s ence

Following the application of a 90° pulse the FID signal quickly
disappears as the protons dephase due to magnetic field
inhomogenities (T2* effects). The application of a 180° pulse has
the effect of reversing the magnetic moments of the protons which
reverses the dephasing, thereby "refocusing"™ the protons and
producing an echo (a measurable signal). To illustrate this
dephasing and subsequent echo, consider the following numerical
example. Suppose that there is a nucleus precessing with a
frequency of 10 MHz. Due to local inhomogeneities, one of its
neighbouring nuclei is in a field which is 1% stronger. This means
that the neighbouring nucleus precesses at 10.1 MHz. In S
microseconds, the nucleus precessing at 10 MHz turns 50 times while
the other rotating at 10.1 MHz has turned 50.5 times. So in S
microseconds, the two nuclei are exactly 180° out of phase,
cancelling their magnetic moments in the xy plane. Now, if a 180°
pulse is applied, the spins of the protons will be reversed. This
means that the proton precessing at 10.1 MHz will return "in phase"
-with the proton precessing at 10 MHz approximately 5 microseconds

after the application of the 180° pulse. Generalizing from this
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example, the application of a 180° pulse a time r after the 90°
pulse produces an echo following a time 27 after the 90° pulse. This
is the spin echo pulse sequence and is sketched in figure 3.10. The
timely application of the 90° and 180° pulses can be repeated with
a time TR. The echo time (TE) indicates the time between the 90°
pulse and the peak of the signal echo. TR is always much longer
than TE, although it does not appear to be so in this figure.

The production of an MR image using the conventional spin echo
pulse sequence can be a fairly slow process. To decrease imaging
time fast imaging techniques which use short repetition times and
excitation RF pulses less than 90° can be used. One such fast
scanning technique is the gradient echo pulse sequence. A basic
gradient echo pulse sequence is sketched in figure 3.11. This
sequence differs from the spin echo sequence of figure 3.10 in that
the 180° echo pulse is missing, the 90° pulse has been replaced by
an a pulse, and two x-gradient pulses, each opposite in sign, have
been added. a indicates the angle through which the magnetization
vector is tipped away from the z axis and is the same angle
calculated by equation 3.3. After an excitation pulse of a (less
than 90°), a positive longitudinal magnetization (M,) is still
present. If a 180° pulse is then applied it would invert M,, thereby
moving it far from equilibrium and nullifying the advantage of the
short TR achieved by using a small flip angle. Therefore, it is
inappropriate to combine the very short TR and small flip angle
‘with a 180° pulse sequence to produce an echo. Instead, an echo is

‘obtained by means of a gradient reversal. Immediately after the
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Figure 3.10: A basic spin echo pulse sequence. In this diagram, 3
cycles of the pulse sequence are shown. In general the pulse
sequence is repeated several times for improved signal to noise.
The timing of the sequence is defined by TR and TE.
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-—,_ xX-gradient

echo signals

Figure 3.11: A basic gradlent echo pulse sequence. An RF pulse of

angle a, less than 90°, is used to excite the protons. The echo is
generated solely by the x-gradient.
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excitation pulse, a negative x-gradient is applied. During this
gradient, the protons precess with a different frequency that
depends on their location along the x-coordinate. Hence, the effect
of this negative gradient is a dephasing of the protons. The x-
gradient is then reversed, thus switching the direction of
increasing magnetic field strength along the x-coordinate. The
protons that had the fastest precession during the negative
gradient now have the slowest precession, and vice versa. The
effect of this positive gradient is a rephasing of the protons.
This rephasing results in a gradient echo. The absence of the 180°
pulse means that dephasing due to magnetic field inhomogenities is
not cancelled out at the time of the gradient echo. This reduces
the size of the echo because the signal is strongly influenced by

T2® effects rather than T2 effects.

3.5 Image Formation

Image formation requires the spatial localization of the MR
signal. This localization is a three step process which is shown in
figure 3.12. First, a slice selection gradient is switched on
during the application of the RF excitation pulse. This gradient,
G,, is applied along the direction of the external magnetic field
B,. Therefore, only those protons within a given slice az will be

excited by the RF pulse with frequency
w=Y (B,+G,) 3.5

The location and thickness of a slice can be varied by selecting
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Figure 3.12: Image formation using a basic spin echo pulse

~sequence. In this diagram, 3 cycles of the pulse sequence are

shown. They are all identical except that the phase encoding y-
gradient is increased step-wise for each pulse sequence. The 90° RF

pulse, the 180° RF pulse, and the MR signal appear together on the
top line.
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the frequency and bandwidth of the RF pulse. To generate spatial
information within a selected slice, magnetic field gradients are
applied in the x and y direction. When the RF pulse and slice
selection gradient G, are switched off, a y gradient is turned on
for a brief time. This G, produces a phase shift in the angle of the
precessing protons and magnetization in each voxel. This phase
shift varies with the y position of the voxel. Consequently,
immediately after G, is turned off there will be a 1linear
relationship between the phase angle, produced by G,, and the y-
coordinate of the voxel. The y direction is often referred to as
the phase encoding direction. After G, is switched off, the 180°
rephasing pulse is applied. After the 180° pulse, the x gradient is
turned on for the entire duration of the echo signal. Thus, during
the echo signal, the precessional frequency of the magnetization in
each voxel is determined by the x~coordinate of the voxel. Since G,
is on while the echo is being detected or "read", it is also called
the readout gradient and the x direction is referred to as the
frequency encoding or readout direction.

To generate a single MR image with a 256 x 128 matrix, 128
echo signals must be obtained, each from a separate pulse sequence
having a different y-gradient strength. Each of the 128 different
signals produced must be sampled at 256 equally spaced times (along
the frequency direction). In figure 3.12, 3 cycles of the pulse
Sequence are shown. They are identical except for the change in the
- strength of the phase encoding gradient (Gy) . For a 256 x 128 image

matrix G, is increased step-wise for each of the 128 pulse
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sequences. As each echo is "read out" it is sampled at 256 points
in time. If a 1-dimensional Fourier transform is performed on the
256 data points from the echo, the result will be 256 amplitudes
and phases, each representing a sine wave of a different frequency.
Each of these sine waves is the sum of the MR signals from all
voxels having the same x-coordinate because a point along the x-
coordinate can be identified by a unique frequency. If all of the
128 signal echoes are considered then the result is a matrix
containing 32,768 data points. Again, if a 2-dimensional Fourier
transform is taken of this data set, the result is the image matrix
of 256 x 128 pixels. The signal intensity of each pixel in this
image matrix is proportional to the MR signal that originated from

within the voxel of tissue associated with the image pixel.

3.5.1 Scan timing

A given pulse sequence needs to be repeated many times in MR
imaging to produce an image matrix of a selected size. The number
of repetitions depends on the number of pixels in the phase
encoding direction (y-direction). If 256 pixels are wanted in the
y-direction, 256 repetitions of the pulse sequence and step-wise
increases of the y gradient must be performed. If 128 pixels are
wanted along y then 128 repetitions of the pulse sequence are
needed. Since it takes a given time to complete the cycle of a
given pulse sequence, it is clear that it will take twice as long
- to produce an image with 256 points along the y direction than 128.

To increase signal to noise, each pulse sequence can be
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repeated one or more times before changing the y-gradient. The
number of pulse sequences applied with the same y-gradient strength
is referred to as the number of excitations (Nex). If an image with
128 points along the y direction is acquired at 2 Nex then the
pulse sequence will need to be repeated 256 times. If 4 Nex is
needed to obtain the desired signal to noise ratio the y-gradient
is increased one step with every fourth pulse sequence. In this
case the total imaging time will be increased by a factor of four
with respect to an image acquired at 1 Nex.

It is obvious that due to the large number of repetitions, the
acquisition of an MR image can be a lengthy procedure. The total
acquisition time is equal to the product of the repetition time
(TR), the number of excitations (Nex), and the number of phase
encoding steps (number of pixels in the y-direction). The
mathematical computation of the 2-dimensional Fourier transform

needed to reconstruct the image takes only a few seconds.

3.6 Evaluation of trabecular bone quality

The main challenge in the quest to assess trabecular bone
structure in-vivo is the achievement of MR images with sufficient
signal to noise (SNR). Signal to noise in MR is affected by three
critical parameters. They are sample size, spatial resolution, and
magnetic field strength. Because SNR is inversely related to sample
size, obtaining images of sufficient resolution is only possible
- for selected anatomical sites such as the wrist, phalanges, and

calcaneus. These peripheral sites permit the use of small, tightly
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coupled RF surface coils which can be placed close to the anatomy
of interest. For example, the SNR achievable in the wrist (imaged
at 6 cm field of view) is about a factor of 15 worse than that
achievable at the phalanges (imaged at 2 cm field of view) (Wehrli
et al 1993). It is evident that for larger fields of view such as
the spine and the hip, poor SNR will preclude measurements of
structure. To obtain images of sufficient resolution and SNR one
has to aim for small anatomical sites and to balance the
requirements for increased SNR and spatial resolution.

One of the most critical requirements to be met for in-vivo
images of trabecular structure is an imaging slice thickness
comparable to the mean thickness of structures to be
differentiated. For trabecular bone the mean thickness of
individual trabeculae is approximately 200 um. The slice thickness
achieved on current whole body clinical systems is almost a factor
of three greater. For relatively isotropic trabeculae the imaging
slice thickness is critical. However, thicker slices may be
allowable if image processing steps can extract structural
information from these volume averaged images.

MR provides a high degree of contrast between mineralized
bone, which has background intensity, and the protons in the fat
occupying the intertrabecular space from which the MR signal is
derived. As such, an MR image of trabecular bone structure is
uniquely suited for digital image processing. MR also permits the
- examination of structure in any of the three orthogonal scan

Planes. Unlike CT, MR provides these images without the use of
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ionizing radiations. Coupled with the ability to interrogate
structure in each of the three scan planes, the absence of ionizing

radiation makes MR an attractive tool for assessing trabecular bone

structure in-vivo.
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Chapter 4

DESCRIPTION AND CHARACTERIZATION OF THE XCT 960

4.0 Introductjon

The STRATEC pQCT scanner series originates from the University
of Wurzburg in Germany where it was developed in close cooperation
with Stratec Medizintechnik (Germany). The XCT-960 is one such
scanner which is marketed in North America by Norland Corporation
(Fort Atkinson, Wisconsin USA 53538). In its standard clinical
version, the XCT 960 obtains a CT image with a 1282 matrix and a
minimum pixel size of 0.59 mm. There is 1little structural
information which can be extracted from this standard image and so
a non standard version of the scanning software has been developed
by STRATEC. This updated software enables the acquisition of the CT
image with improved resolution onto a larger image matrix size. The
improvement was achieved by doubling the number of projections
obtained at the expense of increasing the scanning time. This non-
standard version of the software has been distributed to a limited
number of centres for use.

In this chapter the technical specifications of the pQCT
scanner are examined. The improved scanning software is described.
Finally, the suitability of the images for assessing trabecular
bone structure is considered on the basis of image noise, image

- contrast and spatial frequency linmits.




84

4.1. Description of Scanner
The XCT 960 is a second generation scanner which implements
the fan beam translate-rotate principle to acquire transaxial
images of the distal end of the radius. A schematic of the scanner
is sketched in figure 4.1. As shown, it employs 5 CdTe detectors to
acquire the necessary projections over 180°. The sixth detector is
used to acquire the scout view scan. The slot size in the detector
collimator screen is (0.3x3.5) mm. Collimation of the x-ray tube
output produces a 2.5 mm slice thickness at the centre of rotation.
The tube is operated at 45 kVp but 5 mm of aluminum filtration
produces an x-ray beam with a mean energy of 40 keV and a full
width half maximum of 8 keV. This energy is optimal for evaluating
small changes (1%) in trabecular bone density of the peripheral
skeleton for a low patient skin dose (0.2 mSv) (Muller et al 1985).
During rotation the projection data set is obtained through 29
angular steps (each 6.25°) of the detector array around the object.
During translation each of the five detectors records a
projection. As a result, 145 projections are obtained at 1.25°
angular steps around the object. Each projection is sampled at 0.33
mm intervals and 254 samples are taken per projection. Images are
reconstructed wusing filtered backprojection employing the
convolution kernel described by Shepp and Logan (Shepp and Logan
1974) . The image is bandlimited during reconstruction. This allows
for the image to be reconstructed onto an array with a pixel size
. equal to the sampling interval of 0.33 mm and makes the assumption

that the imaged structure does not contain spatial frequencies
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Figure 4.1 A cross-sectional C
the XCT 960 pQCT scanner. Aall distances are 1labelled in
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greater than 0.5 mm'. As sketched in figure 4.2, this is a valid
assumption. The final image is displayed as a matrix of linear
attenuation coefficients which are scaled by 1000. The voxel values
are linear attenuation coefficients and are not defined as
Hounsfield numbers.which relate the measured linear attenuation
coefficient to that of water. Therefore, throughout discussions of
the pQCT image, the voxel values will be referred to as linear

attenuation coefficients (LAC).

4.2. Image Acquisition and Quantjtation.

The gantry of the XCT-960 can move in discrete 1 mm steps
along the object to be scanned. With this in mind, a typical pQCT
examination follows three basic steps. First, a coronal computed
radiograph (scout view) of a 30 mm section encompassing the distal
end of the radius is obtained as the gantry moves through 30
discrete steps. The appearance of the scout view is sketched in
figure 4.3. Second, as indicated, the head of the radius is marked
with a reference line and the scanner gantry moves a fixed distance
proximal and along the subject’s arm from the marked position.
Third, the high-resolution CT scan is recorded at this proximal
site. To ensure direct comparison between subjects, the distance
moved from the head of the radius by the gantry is fixed at 4% of
the subject’s arm length (ulna length). The total scanning time
required to acquire both the scout view and cross-sectional image
is 10 minutes. A typical pQCT image obtained after reconstruction

is shown in figure 4.4. This is a scan of the left arm of a normal
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Figure 4.2 Schematic of the spatial frequencies present in the
average trabecular bone network with an average trabecular width
of 0.2 mm and an average marrow space of 0.75 mm.
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Fiqure 4.3 Scout view representation of the anatomy at the distal
end of the radius.
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23 year old female volunteer. The bone which appears largest on
cross-section is the radius and is the focus of analysis because it
represents a common site for osteoporotic fractures. The other bone
is the ulna. From this image it is clear that the 0.33 mm pixel
size is just sufficient for the trabecular structure to be visible.
Also the level of contrast is such that the cortical shell is quite
distinct from the inner trabecular bone.

The analysis software provided by STRATEC to calculate
density, separates trabecular bone from cortical and subcortical
bone in the radius. This partition is achieved by an iterative
contour detection starting at the inner cortical bone edge. All
Pixels within the contour are counted as trabecular bone while
those outside the contour are assigned to the bone cortex. A
factory installed calibration line is used to relate the measured
linear attenuation coefficients comprising the image matrix to
units of bone mineral density given in mg cm?. The formulation of

this calibration line is as follows:

(2.) =982.723 (LAC) ~224.0 4.1
cm

It is the grams of mineral which is obtained from the calibration.
A volumetric density is obtained by dividing the grams of mineral
by the product of the cross-sectional area and slice thickness.

In a given pQCT scan of the distal end of the radius four
tissue components are present. They are fat, muscle, trabecular
- bone and cortical bone. The LAC of these four components at 40 kev

are listed in table 4.1. The corresponding density derived from



Figure 4.4 A pQCT scan of the distal end of the left radius of a

normal 23 year old female.
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Table 4.1: Characteristics of tissues imaged by PQCT. The Linear
attenuation coefficients (LAC) are determined at 40 keV
and the pQCT density is determined from calibration.

LAC pPQCT

Tissue (cmt) (mg cm?)

Fat 0.23 0

Muscle 0.30 60

Trabecular

bone 0.50 260

Cortical

bone 1.50 1200



92
calibration is also given. The zero density from fat results from
the intercept term and ensures that the marrow fat integrated
within the trabecular bone network does not contribute to the
measured density of trabecular bone.

Figure 4.5 shows a typical report summary generated by the
XCT~960X. This report corresponds to the pQCT image shown in figure
4.4. As noted, the result for trabecular bone is reported
separately from cortical and subcortical bone. A true volumetric
density of each bone component is obtained by dividing the grams of
mineral by the product of the cross-sectional area and slice

thickness.

4.3 Image Quality for Structural Assessment

The reconstructed pQCT image is essentially a map of energy
weighted x-ray attenuation values in the scanned tissue slice. Its
accuracy is constrained by intrinsic limitations of the system
design. Dose constraints, and limits on x-ray tube output and
detector efficiency, cause statistical uncertainties in the
measured LAC’s. Finite sampling of the image space imposes limits
on the object spatial frequencies reproduced in the image. These
discrepancies can affect how faithfully the trabecular bone network
can be represented in the final reconstructed image. In the
following sections, the effects of image noise and spatial
frequency limits will be discussed with respect to the limitations
-each places on an assessment of trabecular bone structure at the

distal end of the radius. The results of tests designed to quantify
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STRATEC XCT-960X PQCT™

Ct.Nr.: 0 Geschl.: W
Geb.: 13.02.71 Scandatum: 20.12.94 Alter: 23

Gesamt Spongiosa Kort.(Sub)
Dichte: 407.6 215.9 564.7
(mg/ccm] £5:.0 +3.0 +9.0
#Voxels: 3271 1473 1798
=[mm2] : '~ 356.5 160.5 195.9

Figure 4.5 A summary report of the densities calculated from a
23 year old female (see figure 4.4). The total density is
indicated by "Gesamt", the trabecular density by "Spongiosa", and
the cortical and subcortical density by "Kort.". All density
values are reported in mg/ccm.
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the magnitude of image noise, subject contrast, and spatial

frequency limits will be given.

4.3. Noise and spatial uniformijt

Noise limits the perceptibility of low contrast detail in an
image. From the image shown in figure 4.4, it is clear that much of
the relevant detail of the trabecular structure is low contrast in
nature. The ease with which this structural detail can be segmented
and quantified is dependent on the difference in the average LAC’s
between two adjacent regions of the image. If a homogeneous medium
is scanned, the variation in the 1linear attenuation about an
average value is the noise of the imaging system. If all voxel
values were the same, system noise would be zero. To assess the
noise in a pQCT image a 5 cm diameter cylindrical water phantom was
scanned. The noise level was defined as the standard deviation of
a large group of voxels obtained from the image of the water
phantom. A mean value of 293 cm’! with a standard deviation (Sd) of
39 cm! was calculated from a circular region of interest (ROI).
This Sd translates into a percent noise level of 13.3%. This level
of noise was unchanged when evaluated five times over a three month
period.

A measure of spatial uniformity is directly related to system
noise. It is a measure of how constant the linear attenuation
coefficient is in the centre and at the periphery of the
. reconstructed image of a homogeneous phantom. Testing of spatial

uniformity was done again by scanning a 5 cm diameter cylindrical
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water phantom. Five ROI’s were defined in the reconstructed image,
one at the centre and four on the periphery of the image. The mean
and standard deviation of the LAC’s in each of the five ROI’s was
calculated and compared. All means were within 1 Sd of each other.
This agreement indicates that the pQCT imaging system exhibited
acceptable spatial uniformity. Again, this degree of spatial
uniformity was unchanged when evaluated five times over a three
month period.

It is important to rationalize the measured noise level in the
context of the limitations it may pose on extracting structural
information from the pQCT image. This is done in the following
examination of the subject contrast present at the distal end of

the radius.

4.3.2 Subject contrast

On cross-section, the anatomy at the distal end of the radius
is comprised of a soft tissue layer, a dense and heavily
attenuating ring of compact bone, and a less dense network of
trabecular bone and bone marrow. The ease with which the structural
detail of the trabecular network can be segmented and quantified is
dependent on the difference in the average LAC between two adjacent
regions in the image. This difference is measured as the subject
contrast (SC).

When testing the performance of CT scanners SC is defined

.relative to water and is expressed as:
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k

se= B, (E)

(B, (E) -, (B)] 4.2

The terms u,(E), u,(E), u,(E) are the energy dependent linear
attenuation coefficients of voxels containing water, material 1,
and material 2, respectively. k is the CT number scaling constant
(1000) . Recalling that STRATEC has chosen to report voxel
intensities as the linear attenuation coefficient scaled by 1000,

then the definition of SC can be augmented to:

SC=1000 [p, (E) -, (E) ] 4.3

For segmentation, the magnitude of SC is most important for 1, (E)
corresponding to trabecular bone and 4,(E) representing bone marrow.
Therefore, values of SC were calculated to determine the level of
contrast between trabecular bone and fat and between cortical bone
and fat. The LAC for fat, cortical bone, healthy trabecular bone
and osteoporotic trabecular bone are listed in table 4.2. They are
tabulated at 5 keV intervals and span an enerqgy range of 25 to 60
keV. The LAC for fat and cortical bone were derived from the fourth
order polynomials suggested by Webber (1987). Attenuation
coefficients for trabecular bone were calculated using equation 4.4
and assuming that trabecular bone has the same composition as

cortical bone.

p P,
= — +(1-—) 4-4
Be pcl"c P Ba

-In this equation p, and p, represent the volumetric densities of

trabecular bone and cortical bone and 4, b, and u, represent the
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Table 4.2: The 1linear attenuation coeffients (LAC) for fat,
cortical bone, healthy trabecular bone and osteoporotic
trabecular bone.

=-—_.----_-—-----‘'W-————~——-—--——-—--__________________________

< LAC (cm?) -—>

Energy (Trabecular bone)
(keV) Fat Cortical Healthy Osteoporotic

25 0.3040 3.6751 0.9783 0.4726

30 0.2705 2.1515 0.6467 0.3645

35 0.2467 1.4717 0.4917 0.3080

40 0.2291 1.1135 0.4060 0.2733

45 0.2155 0.9011 0.3526 0.2498

50 0.2048 0.7632 0.3164 0.2327

55 0.1961 0.6669 0.2903 0.2196

60 0.1890 0.5952 0.2702 0.2093

M
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LAC for trabecular bone, cortical bone, and marrow fat,
respectively. The ratio of the volumetric densities (p,/p.) was
taken to be 0.2 for healthy trabecular bone. This fraction was
reduced to 0.05 for osteoporotic trabecular bone. It is expected
that the attenuation coefficients of most subjects will fall
between these two extremes. The magnitude of SC for cortical bone
and trabecular bone relative to fat were derived from the LAC
tabulated in 4.2. The results are plotted in figures 4.6 and 4.7.
In both plots it is not surprising that the magnitude of SC
increases with decreasing energy. At 40 keV the contrast difference
between fat and cortical bone is approximately five times that of
the contrast difference between fat and healthy trabecular bone.
Most importantly, two points are worth highlighting with respect to
the contrast differences for the two states of trabecular bone.
First, at 40 keV both healthy and osteoporotic trabecular bone are
segmentable from fatty marrow. This point is illustrated by the
fact that the values of SC are greater than zero. Second, the
contrast difference for severely osteoporotic trabecular bone is
44. With the 13% image noise level derived in section 4.3.1, the
voxel intensities for fat are expected to vary with a standard
deviation of approximately 29. The magnitude of SC for osteoporotic
trabecular bone at 40 keV is 44 and is approximately 1.5 standard
deviations above the expected image noise level. Therefore, even at
this extreme diseased state, the trabecular bone in a pPQCT image

. can be segmented from marrow.
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Figqure 4.6 A comparison between the subject contrast (relative
to fat) for normal cortical bone and trabecular bone for energies
between 25 to 60 keV. At 40 kev there is almost an order of
magnitude difference between the contrast levels of the two bone
types.
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Piqure 4.7 A comparison between the subject contrast (relative
to fat) for normal trabecular bone and one that is representative
of osteoporosis. At 40 kev there is a factor of four difference
between the contrast levels of the two bone states. The contrast
level of the diseased bone is greater than zero which suggests
it can be differentiated from a soft tissue background.



101

4.3.3 Line spread function

As previously stated the x-ray beam has a mean energy of 40
keV. The finite size of the x-ray beam leads to degradation of the
projection data. These degradations blur the edges of structures in
the final reconstrﬁcted image (Verly and Bracewell 1979). To
estimate the magnitude of this blurring the line spread function
(LSF) of the scanner was evaluated by imaging a thin strip of
aluminum foil in air. The foil strip was placed at the centre of
the scanner with its long axis perpendicular to the image plane and
scanned five times. To reduce the effects of statistical
fluctuations, the LSF was determined from the average of these five
scans. Figure 4.8 shows a line profile recorded across the averaged
image of the strip of aluminum foil. The data points plotted
represent the linear attenuation coefficients along the profile
drawn normalized to the maximum value in the image. The data points
are fitted to an analytical equation representing the weighted sum
of an exponential and gaussian function as described by Boone and
Siebert (1994). This fitted profile represents the line spread
function. A full-width half-maximum (FWHM) of 0.49 mm was
determined from the fit coefficients. This measured FWHM is
significantly larger than the average size of a trabeculae (0.2 mm)
but significantly smaller than the average size of a marrow pore
(0.75 mm). This suggests that at the 0.33 mm voxel size, the
spatial extent of the marrow space within the trabecular network
~will be reproduced well. However, this will be somewhat offset by

the blurring of individual trabeculae.



Relative Intensity

102

150 r
1.35
1.20
1.05
090
Q.75 -
0.60 -
045 -
030 r
0.18
Q.00

Distance from centre (mm)

Pigqure 4.8 The linear attenuation profile across a thin strip of
aluminum foil used to assess the LSF of the pQCT scanner. Data
points (o) were normalized to the maximum linear attenuation
coefficient present in the image.
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4.3.4 Linearity

As previously stated, it is the linear attenuation coefficient
that identifies the type of tissue in the image and provides a
level of contrast between different tissues. Therefore, an
important check of scanner performance is the ability to reliably
determine the linear attenuation coefficients of a set of materials
of known density and x-ray absorption properties. As a check of the
XCT 960’s performance, a set of cylindrical rods of different
material with known physical and X-ray absorption properties were
imaged. The different materials along with their physical
properties are shown in table 4.3. Following a scan of each
material, the mean and standard deviation of the linear attenuation
coefficient was determined from a ROI set within each image. The
measured attenuation values were compared against the theoretical
values listed in table 4.3. The results of this comparison are
plotted in figure 4.9. The straight line represents a weighted
least squares fit to the data. The slope, intercept, and
correlation coefficient are indicated on the plot. The high
correlation coefficient indicates that the scanner behaves
linearly. The fact that the slope and intercept are not
significantly different from one and zero respectively, indicates
that the scanner correctly measures the 1linear attenuation

coefficients of the materials of interest at 40 keV.

-4.3.5 Beam hardening

The transmission equations used to derive the attenuation
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Table 4.3: Characteristics of the materials used to check scanner
linearity. The 1linear attenuation coefficients are
determined at 40 kev.

-—————-————-—_-—-——-——-’——————________-———————_‘.“ ——— ————
Linear
Density attenuation coefficient
Material (g cm?) (cm™)

Polypropylene C;H, 0.85 0.198

Polyethylene CH, 0.94 0.210

Water H0 1.00 0.282

Lucite C;H;0, 1.19 0.290

Lexan CcH,0 1.20 0.272
Hydroxyapatite Ca;0H(PO,) 3 0.38 0.494

phantom

e e



Measured LAC (cm-1)

105

0.60
0.50 T
J, hydroxyapatite
0.40
0.30

0.20

J"Lpolyethylene

0.10

O.oo i 1 1 | L J
0.00 0.10 0.20 0.30 0.40 0.50 0.60

Predicted LAC (cm-1)

Figure 4.9 A check of scanner linearity. The points plotted
represent the mean LAC values derived from a region of interest
set within the image of each material scanned. The error bars
represent the standard deviation associated with the mean. The
fitted line represents a weighted least squares fit to the data
points. The fitted slope and intercept are ( 0.93*%0.08) and
(0.04+0.05), respectively. The correlation coefficient is 0.997.
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coefficients in a pQCT image assume that the radiation used to scan
the object or subject is monoenergetic. However, the x-ray beam
used is polyenergetic. More specifically, in the XCT 960 scanner
the x-ray tube operates at 45 kVp and produces a beam with an
effective energy of 40 keV. The full width at half maximum of the
beam after 5 mm of aluminum filtration is 8 keV. So, as this
heterogeneous beam passes through the object being scanned the
lower energy photons are removed preferentially and the beam
becomes harder with depth. For a given x-ray spectrum, the degree
of beam hardening depends on the composition and diameter of the
object being scanned. The distal end of the radius is comprised of
a soft tissue layer surrounding a heavily attenuating ring of
compact bone which encompasses a less dense mixture of trabecular
bone and marrow. If not corrected for the soft tissue layer, the
cortical shell will be characterized by lower energy photons than
the centre of the bone. This results in voxels near the centre of
the radius being assigned lower atteruation coefficients than
voxels near the periphery. The linear attenuation coefficients
throughout the image are directly related to density. Therefore,
correct LAC must be determined if the correct bone density
distribution is to be recorded. To ensure this accuracy, the
transmission data acquired during a scan are corrected for beam
hardening using a fourth order polynomial.

The severity of the beam hardening effect can be characterized
- by plotting the values of the LAC across the diameter of the object

scanned. The degree to which the resulting profile is concave at
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the centre of the object indicates the severity of beam hardening.
As a check, the attenuation coefficient profile along the diameter
of the manufacturer’s bone mineral equivalent phantom was
determined. A cross-sectional image of this phantom, along with the
profile along its diameter, is plotted in figure 4.10. The phantom
is comprised of a cylindrical ring of soft tissue equivalent
material with an outer diameter of 5.5 cm, a ring of bone
equivalent material to simulate compact bone and a less dense
mixture at the centre to simulate trabecular bone. Clearly, there
is no visible cupping effect present at the centre of the bone
mineral phantom. This confirms that beam hardening effects are
negligible and do not affect a determination of density nor does it

bias an assessment of structure.
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Figure 4.10 The linear attenuation coefficient profile across the
diameter of the calibration phantom. The image of the phantom has
been enlarged to reveal a soft tissue equivalent layer, a compact
bone shell, and a trabecular bone equivalent centre. Note that
these three tissue components are clearly present in the profile.
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Chapter 5
PQCT AND MR IMAGE SEGMENTATION

$.0 Introduction

Previous work to characterize trabecular structure at the
distal radius applied image analysis techniques to plain film
radiographs (Rockoff et al 1971, Geraets et al 1990). In
radiographic imaging the three dimensional structure within the
imaged bone is summed and represented by a two dimensional image.
These effects of volume averaging blur the bone structures in the
final image limiting the degree to which the architecture of the
bone can be characterized. These limitations can be overcome by
acquiring cross-sectional images of sufficient resolution and
slice thickness. Two studies have demonstrated the feasibility
of extracting structural information from pQCT images. First, by
using run-length analysis, a close relationship between
histomorphometric values and run~-length parameters was
demonstrated from images of the distal radius and tibia (Durand
and Ruegsegger 1991). However, direct interpretation of the run-
length parameters as indicators of structure required simulating
two and three-dimensional models of the trabecular architecture.
In the second study a two-dimensional representation of the
topology of the trabecular bone at the ultra-distal radius was
formed by stacking a series of contigquous slices. Analysis of the
Structural pattern in the resulting topology revealed differences
between a post menopausal and a normal population (Takagi et al
1995) . No differences were detected between the two groups with
a measure of trabecular or cortical bone density.

More direct and computationally efficient methods can be
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applied to assess bone quality from high resolution pQCT and MR
images. With this in mind, this chapter presents the details of
an algorithm to segment the trabecular network at the distal end
of the radius based primarily on a region grow and
skeletonization step. The implementation of the postprocessing
algorithm is described and various indexes of structure are

suggested all of which can be derived from the processed image.

S.1 pPOCT Image Seqmentation

After evaluating trabecular and cortical bone density, the
PQCT images are transferred from the XCT 960 to a Sun workstation
(Sun Microsystems, California) running the MUMC DISPLAY package
developed in the Department of Radiology at the McMaster
University Medical Centre. The images are converted from the pPQCT
data file format into a form readable by MUMC DISPLAY. The C code
for this conversion program is given in appendix B. The pQCT
images are then processed using an algorithm written and
implemented to derive structural information. The C code for this
postprocessing algorithm is given in Appendix C. Our objective
in postprocessing the pQCT image is to segment the trabecular
bone from the original cross-sectional image and represent its
structure by a simplified image from which various indices
expressing its mechanical competence can be extracted. The only
intervention required by the user during this analysis is the
placement of a rectangular area of interest around the radius.
Figure 5.1 shows the placement of a typical area of interest set
around the radius of a 23 year 0ld female volunteer. Once this

area of interest is selected the algorithm proceeds automatically
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Figure 5.1: A typical region of interest set around the radius of
a 23 year old female volunteer.
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through the following steps.

S.1.1 Region growing
Applying a global threshold to segment bone from the

surrounding soft tissue and the fatty marrow within the
intertrabecular spaces, produces an incorrect representation of
the bone structure. In the soft tissue region of the image, the
spatial uniformity is such that a global threshold identifies
several pixels outside the cortical shell as trabecular bone.
Although these pixels may be removed by applying a median filter
or a 3-point smoothing function before thresholding, this has the
unwanted effect of blurring the structures in the trabecular
network. Consequently, we chose to apply a region grow technique
(Gonzalez and Woods 1992). As implied by the name, region growing
groups pixels of similar properties into a larger connected
region. The procedure requires selecting a "seed" pixel within
the area of interest and applying a set of rules to govern which
pixels are added to the seed to form the region. In our case the
seed is taken as the pixel corresponding to the maximum linear
attenuation coefficient in the rectangular area set around the
radius. This maximum value occurs in cortical bone. Pixels are
then grown from this seed using two rules. First, a candidate
pixel is considered for addition to the region if it is 8-
connected to at least one pixel already in the region. The scheme
for 8-connectivity used by the region grow algorithm is outlined

below.

g n n
n, P n
ng Nn; ng
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As shown, if pixel P is the original seed pixel, then candidate
pixels which are 8-connected are given by n;, through n,.
Alternatively, if P is part of the region already grown, at least
one of n;, to n; would already be in the region.

The second rule for pixel addition to the region is that the
grey value of the candidate pixel should exceed a defined
threshold. The selection of this threshold is critical because
it has a direct bearing on the size and grey level composition
of the region grown. To illustrate what features are considered
in making this threshold selection, a histogram for the area set
around the radius illustrated in figure 5.1, is shown in figure
5.2. The appearance of this histogram is typical of those
encountered in most subjects scanned. It is, to a first
approximation, a trimodal gaussian distribution. The most
prominent peak on the left corresponds to the soft tissue
background. The two other peaks, as labelled, correspond to
trabecular bone and cortical bone. Due to the presence of
subcortical bone and partial volume effects there is not a clear
distinction between the two bone peaks. Given the consistency in
the shape of the histogram determined from different subjects,
a fixed threshold value was implemented to separate soft tissue
and marrow from bone. This value was determined as follows. An
area of interest containing only soft tissue was defined in ten
subjects. The linear attenuation coefficient corresponding to two
standard deviations above the mean linear attenuation coefficient
in the soft tissue region defined was obtained from each of the
ten subjects. These ten values were then averaged and considered

to be the fixed threshold for all images. The coefficient of
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coefficients(x10?) present in an area of interest defined around

the radius.
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variation of this average threshold was 2.3%.

The region grow algorithm terminates when the current size
of the region grown remains unchanged. Upon termination all
pPixels within the region represent a connected bone area. All
pixels in this bone area are labelled with their original grey
value while those in marrow and outside bone are labelled as
background. An example of the effectiveness of the region grow
technique is shown in figure 5.3b. The few bone pixels grown
beyond the cortical shell are removed by defining the outer
contour of the bone using a line by line scanning algorithm. All
pixels within the contour are kept and considered as being part
of the bone structure to be processed further. We also identify
those pixels, within the contour, excluded by region grow because
they fail the test for connectivity but have a pixel value above
the threshold for trabecular bone. The identification of such
pixels ensures that "islands of bone"™ which appear isolated on
cross-section are included in the analysis because they may be
connected in the third dimension along the long axis of the bone.
These isolated fragments of bone also appear in two-dimensional
axial sections prepared for biopsy studies of trabecular

structure (Mosekilde 1988).

5.1.2 Binary represaentation of bone structure

The grey level image which results from region grow is
converted into a binary image using three standard image
processing steps. First, to better visualize the trabecular
structure at the radius, the image is subjected to a histogram

equalization technique. This increases the dynamic range of the
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pixels present in the image allowing better delineation of
trabecular, subcortical and cortical bone pixels. Second, the
histogram equalized image is sharpened by applying a high pass
spatial filter based on the 3x3 Laplacian mask. This mask is

given below.

-1 -1 -1
-1 8 -1
-1 -1 -1

The principle objective of sharpening the image is to highlight
the fine details in the structure of the trabecular network that
have been blurred during the image acquisition process. Third,
the final binary representation of the bone distribution is
created by applying a global threshold to the sharpened image.
The selection of the threshold is simple after the application
of the sharpening mask because the histogram of the resulting
image has a clear bimodal distribution (Gonzalez and Woods 1992)
which can be seen in figure 5.4 which shows the histogram of the
sharpened image. A typical binary representation of the
distribution of bone at the radius is shown in figure 5.3c. As
shown, the bone distribution in the original image is accurately
reproduced. Also, the trabecular network appears uniform and its

shape real.

5.1.3 Skeletonigation

An important approach to representing the structural shape
of an object recorded in an image is to reduce it to a graphical
representation (Gonzalez and Woods 1992). This graphical
representation may be produced by obtaining the skeleton of the

object via a thinning algorithm. Skeletonization or thinning



Figure 8.3 The postprocessing steps used to assess trabecular bone structure
at the distal radiug. The original cross-sectional image (AY: is af a 23
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and thinned to produce a representation of trabecular bone from which
connectivity can be assessed ¢ 0 1B

ey,




118

750 r
600
450

300

Frequency

150

O 10 20 30 40 50 cO
Bin number

Figure 5.4: Resulting histogram after edge enhancement with a
sharpening filter. Note the clear bimodal distribution with the
first peak at bin 0 and the second peak at bin 40.
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routines erode a binary image until a centre line of 1 pixel
thickness remains. We chose to implement the parallel thinning
algorithm developed by Zhang and Suen (1984) which produces
accurate and connected representations of a range of binary
shapes. The algorilthm reaches a final skeleton by repeatedly
peeling off the border of the object in a sequence of passes
through the image. The connectivity of the final skeleton is
ensured by defining the peeling conditions so that no pixel is
removed that breaks local connectivity. Before thinning the
binary image, the inner contour of the cortical shell is defined
using an automatic contour detection algorithm which makes use
of compass gradient masks (Robinson 1977). All pixels beyond the
contour are removed and the remaining trabecular network is
thinned. The results of applying the algorithm are shown in
figure 5.3d. This skeleton is a visually pleasing representation
of the trabecular network present in the original image. The
inner contour of the cortical shell remains to ensure
connectivity. From this skeleton various indices of trabecular

connectivity can be extracted.

$.2 Indices of Structure

The following sections describe a proposed set of indices
which can be derived from the processed pQCT image. These indices
quantify the trabecular architecture at the distal radius by
measuring network connectivity and inter-trabecular spacing. From
this information, the mechanical competence of the bone

architecture can be inferred.
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5.2.1 Network connectivity

Strut analysis was applied to quantify the degree of
connectivity of the bone architecture represented in the skeleton
image (Compston et al 1993). In strut analysis the network
examined is considered to consist of a number of one-dimensional
struts. This treatment of the trabecular bone network is sketched
in figure 5.5. As sketched, the junction between three or more
struts is defined as a node (Nd). A strut that is connected at
one end and is free at the other end is labelled a free end (Fe).
Those struts representing trabeculae which run perpendicular to
the image plane appear as a point in the skeleton image. These
are counted as isolated points (Ip). The total length of the
trabecular network is quantified as a network length (N1). A
well connected bone is characterized by a large number of nodes
and few free ends.

A number of interesting uses have been made of these strut
analysis parameters either in combination or as single indicators
of connectivity. For example, to assess connectivity in iliac
crest biopsy samples acquired from patients suffering from
primary hyperparathyroidism, the strut parameters were normalized
to the total bone area and compared (Parisien et al 1992).
Alternatively, others have defined a trabecular fragmentation
index from in-vivo CT images of vertebrae based on the the number
of discontinuities per unit length (Chevalier et al 1992).
Discontinuities were scored as isolated points and free ends.
However, because of how these vertebral images were processed,
the point at which individual trabeculae attach to the cortical

shell are also scored, perhaps incorrectly, as free ends.
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Figure S.5 Trabecular strut analysis of the two-dimensional
trabecular bone structure. The bone network is represented by a
series of one-dimensional struts shown here as broken lines.
Junctions in the network are indicated by nodes (Nd) and
discontinuties by free ends (Fe) and isolated points (Ip).
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We chose to implement a variation on the trabecular
fragmentation factor suggested by Chevalier and others (1992).
We combine Nd, Fe, Ip, and Nl into a single "connectivity index"
(CI) to maximize the information used to quantify structural

integrity. We define CI as follows:

_ (Nd - Fe - ID)
T= *10 .
C. NI 100 5.1

With this formula we weight the mechanical importance of each
index in the numerator equally. That is, the positive effect of
one node on mechanical stability will be cancelled out by one
free end or isolated point. More importantly, we also make use
of the fact that a change in connectivity such as a break along
a strut will increase the number of free ends by two. Therefore,
as defined, a 1large CI value reflects a high degree of
connectivity while a low (perhaps negative) value reflects a weak
and highly disrupted network. Division by the network length is
intended to account for bone size. Conceptually the division by
network length is required because if two structures had the same
number of nodes, free ends, and isolated points but differed in
network length, then the structure with the longer network length

would be weaker and should have a lower CI.

5.2.2 Marrow pore size

An examination of the binary representation of the bone
cross-section (figure 5.3c) reveals holes of various sizes. As
shown histologically, the total number and area of holes in the
trabecular network can give a clue about the structural

competence of the bone network (Vesterby et al 1989b). To locate
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the holes, the background in the binary image was considered to
be a connected region which could therefore be marked using
region grow. With this in mind holes are scored as follows. From
a background seed the algorithm "grows" a hole by marking each
background pixel that is 8-connected. The assignment of pixels
to a hole is stopped when all possible paths of "growth" of that
hole are obscured by bone. Another background seed pixel is
selected and the procedure is repeated. The algorithm stops when
all background pixels have been assigned to a hole. Upon
termination the following indexes are determined. The number of
regions grown represent the number of holes in the bone cross-
section. The area of each hole grown is recorded allowing for the

computation of a mean hole size H, and a maximum hole size H,,.

S.3. MR Image Segmentation

All images were transferred from the 1.5 Tesla General
Electric Signa clinical imager to a Sun Workstation(Sun
Microsystems, Mountain View cCalifornia) for processing. The
objective in postprocessing the high resolution MR images was to
segment the trabecular bone from the bone marrow and soft tissue
background, and to represent its structure by a simplified image
from which various indices expressing its mechanical competence
could be extracted. The C code for the postprocessing algorithm
is given in appendix D. Again, during the segmentation process
the only intervention required by the operator was the placement
of a rectangular area of interest around the radius. Once
selected, the trabecular bone network was extracted in two

stages. First, the boundary between cortical bone and trabecular
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bone was defined using an automatic contour detection algorithm
which makes use of compass gradient masks (Robinson 1977). Those
pixels beyond the contour (cortical bone, muscle, fat) are
excluded from further analysis. All remaining pixels within the
contour correspond to trabecular bone and marrow. Figure 5.6b
shows the effectiveness of the contour algorithm. In the second
stage of segmentation, trabecular bone was separated from marrow.
This is a critical step because the reliability of the various
indices of structure depend on how accurately trabecular bone is
separated from bone marrow. There are a number of thresholding
techniques which may be applied to segment grey level images
(Sahoo et al 1988). The selection of a given thresholding method
is often governed by the level of noise and the degree of
contrast present in the image. In an MR image of the trabecular
structure at the distal end of the radius, the bone appears as
a low intensity signal while the fat within the inter-trabecular
space appears as a high intensity signal. An adaptive threshold
was chosen to classify trabecular bone from fat. This
thresholding scheme 1looks for variations in intensity to
distinguish bone from fat. It does so by comparing the original
image against a low pass version of itself (Gonzalez and Woods
1992). However, the adaptive threshold is sensitive enough to
identify small intensity variations in marrow as trabecular bone.
Therefore a second threshold was applied to eliminate those
pixels with a signal intensity consistent with marrow but
identified as part of the trabecular bone network. This threshold
was set at 50% of the maximum value in the region of interest

defined. Because there is very little overlying tissue covering
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the distal end of the radius, this maximum value varied less than
10% as the depth of the image slice increased from the receiver
coil. Also, although rare in occurrence, care was taken to
exclude the very high intensity signals from vascular structures
which may appear in the region. After thresholding, a binary
representation of the trabecular structure at the radius is
obtained. Figure 5.6c shows an example of this binary
representation. As shown, the trabecular bone distribution in the
original image is reproduced well.

A final representation of the structural shape of the
trabecular network was obtained by applying a thinning algorithm
to the binary image. As was done for the pQCT images, we chose
to implement the parallel thinning algorithm developed by Zhang
and Suen (1984) which produces connected representations of a
range of binary images. The results of applying the algorithm are

shown in figure 5.6d.

5.4 Indices of Structure

Connectivity was again assessed by the connectivity index
(CI) defined in equation 5.1 and marrow space distributions were
assessed in terms of mean, median, and maximum hole area. Unlike
PQCT, MR allows for the examination of structure in each of the
three orthogonal planes. A means of quantifying trabecular bone

orientation is introduced to make use of this added information.

S.4.1 Marrow hole areas and connectivity

To obtain the indices of hole size, the postprocessing

algorithm records the number and area of each hole present in the



Figure 5.6 The postprocessing steps used to assess trabecular bone structure

at the distal radius are shown. The original image (A) is of a heal thy 29

year old male. The image is displayed as a negative

image so trabecul ae
appear uwhite while the normally high signal from fat appears dark. The

bone structure is segmented by defining the boundry between cortical

trabecular bone (B). The trabecular network

and
is reduced to a binary image
(C) which is thinned to produce a representation from which connectivity
can be assesséd ¢D:
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binary representation of the trabecular structure. Therefore,
this allows for the distribution of hole sizes to be examined.
To illustrate this, figure 5.7 shows the appearance of the
trabecular structure at the distal end of the radius of a 48 year
old male when imaged in the coronal(a) and axial planes(b). A
total of 321 holes were detected in the coronal image. The mean
hole area was 1.29 mm? while the median value was 0.19 mm’. A
total of 179 holes were detected in the axial image. The mean
hole area was 0.51 mm’ and the median value was 0.27 mm?. The
distribution of the hole sizes derived from these two images is
plotted in figure 5.8. Two points are worth highlighting from
this plot. First, the shape of the distribution is consistent
with past histological findings. The areas of most holes are less
than 0.5 mm’ but there is a wide variation. Second, a mean hole
size rather than a median value may best characterize the
mechanical competence of the imaged bone. Although the majority
of holes are only a few pixels in area the presence of a few
large holes resulting from breaks in the network skews the
average value. This estimate of the marrow space (H,) is similar
to the star volume parameter which has been derived from biopsy
samples (Vesterby et al 1989a). However, in contrast to the star
volume index, quantitation of the marrow space by H, and H, is
derived in-vivo and requires little operator intervention.

Figure 5.9 shows the thinned binary representations of the
trabecular bone network at the distal end of the radius of a 34
year old female and a 61 year old female. The thinned network of
the older female clearly reveals areas of complete trabecular

bone loss. As noted, the connectivity indices of the 34 year old



Filigure §.%: The orthogonal trabecular bone structure at the distal end

of the radius of a healthy 48 year old male subject. The structure
is viewed coronally (A) and cross-sectionally (B). The images are
again displayed in inverse grey scale so that bone appears bright

and fat dark.
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and 61 year old subject are 7.44 and 1.12, respectively.
Differences in the integrity of the trabecular structure are also
apparent when the mean hole area (H,) is compared in these two
subjects. For the 34 year old subject H, is 1.15 mm?. The value
increases to 1.82 mm’ for the 61 year old subject. To further
illustrate the differences between these two subjects, figure
5.10 shows the distribution of nodes and free ends in the thinned
binary representations which are displayed in figure 5.9. Since
nodes and free ends are shown in Yellow and red, respectively,
the presence of more red points in the image of the older subject

is a clear indication of a highly disrupted network.

S5.4.2 Orientation

Trabecular orientation was assessed by evaluating the
gradient at each point within the contoured bone area (figure
5.6b) using the scheme suggested by Caldwell (1995) . This
involved convolving the image with an edge detection mask. We
chose to apply the Sobel mask (Gonzalez and Woods 1995). As the
edge detection mask is convolved through the image the magnitude
and direction of the gradient at each point in the image is
calculated. This calculation involves the following steps. The
point in the image at which the gradient is calculated can be
denoted by F(i,j) and its eight nearest neighbours are numbered

with the following scheme:

B A, A
B, F(i,3) A
As As A

The gradient (G) at each point F(i,j) in the image is then given

as:
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Figure S5.9: The skeleton representation of the trabecular bone
network at the distal end of the radius of a 34 year old female (A)
and a 61 year old female (B). A CI value of 7.44 was determined for
the 34 year old and 1.12 for the 61 year old subject.
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Fiqure 5.10: The distribution of nodes (yellow) and free ends (red)

in the trabecular bone network at the distal end of the radius of
a 34 year old female (A) and a 61 year old female (B).
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G(ilj)=v (x +y ) 5.2

where

X= (A, +2R5+A,) = (Ag+2A,+A)
Y= (Bg+2A,+A;) - (A +2As+A,)

The direction (©) associated with the gradient G at each point

in the image is given by:
0=tan(X) 5.3
y

where © can range from 0° to 180°.

A trabecular bone network with trabeculae oriented at one
of three angles (45°, 90°, 135°) is sketched in figure 5.11. In
the orientation we have chosen to image the radius, structures
with a gradient angle of 90° run parallel to the long axis of the
bone while those at 0° or 180° run orthogonal to the long axis of
the bone. Note that this co-ordinate system is also displayed
with the bone network sketched in 5.11. If this structure were
analyzed for orientation using gradient analysis then the
analysis would proceed through the following steps which are also
indicated in figure 5.11. G and © are calculated at each pixel
in the image. If the magnitude of the gradient at a given pixel
exceeds a defined threshold, the appropriate bin is incremented
by unity. The angular bins are normally 5° wide. The histogram
that results displays the frequency with which the trabecular
elements are oriented along a given direction. The gradient
frequencies are normalized to the sum of all frequencies detected
over all directions to express orientation as a percentage. If
the gradient frequency at a given angle © is denoted Hg then

mathematically this normalization can be expressed as:
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Figure 5.11: An illustration of the application of gradient
analysis to a theoretical bone network. Note that 9 trabeculae are
oriented at 90°, 5 at 45° and 5 at 135°. This corresponds to peaks

of magnitude 47%, 26%, and 26% respectively in the normalized
gradient histogram (G,).
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Gy~ (<o) 100 5.4
He

where the normalized gradient frequency is given the acronym Gy
and the summation is performed from 0° to 180°.

To allow comparison among subjects a new parameter G; is
introduced. It is defined from the distribution of Gy. G, is
defined as the area under the curve given by G, integrated from

75° to 105°. Mathematically this integration can be expressed as:

Gy=Y, G () 5.5
where the summation is performed from 75° to 105°. To illustrate
the use of this new index of orientation (G;,), the result of
applying gradient analysis to the images in figure 5.7 is plotted
in figure 5.12. Three points are worth highlighting from these
plots. First, the area under each curve is 100%. Second, the
magnitude and location of a peak in the histogram plot indicates
the degree of anisotropy present in the trabecular structure
imaged. Therefore, the presence of a peak at 90° in the plot
derived from the coronal image indicates that individual
trabeculae are preferentially oriented along the long axis of the
radius. The absence of a peak in the gradient histogram derived
from the axial image indicates that there is no preferential
orientation of the trabeculae that run orthogonal to the 1long
axis of the bone. Third, this structural preference is reflected
in the G, values derived from each curve. For the coronal image
G, is 42%. It decreases to 19% for the cross-sectional image.
This structural pattern is consistent with the nature of the

forces acting on the wrist. In general, when the wrist is
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Figure S5.12: The frequency of occurrence of gradient magnitudes as
a function of angle for the two images shown in figure 5.7. The
solid line joining (a) is derived from the coronal image while the
dashed line joining (@) is derived from the cross-sectional image.
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subjected to a mechanical load the force will act along the
radius rather than across it. Therefore it is not surprising that
any architectural anisotropy disappears when the bone is viewed
on cross-section. This response of trabecular bone to applied
forces can be summarized by Wolff’s law which states that the
orientation, structure, and strength of bone at a given anatomic
location is a direct response to the mechanical stresses
resulting from normal joint function.

Others have illustrated the value of analyzing trabecular
orientation by gradient analysis. For example, using digitized
plane film X-rays, Rockoff (1971) showed that at the distal end
of the radius the orientation of the trabeculae in normal bone
is more longitudinal than that in diseased bone. More recently
Caldwell (1995) showed that an index of trabecular orientation
derived from gradient analysis distinguishes the compressive
strength of strong from weak vertebrae in-vitro better than bone

density.

S.5 Summary

The structural parameters derived by the algorithm are not
strictly dependent on trabecular size but on the connectivity of
the bone structure. This is appropriate since bone mass is lost
by removal of entire trabeculae rather than by a generalized
uniform thinning of the whole trabecular bone network. The
resulting space left by lost trabeculae is filled by fatty marrow
and remaining trabeculae are more widely separated, less
connected, and therefore less likely to withstand a compressive

force. Such patterns of bone loss may best be highlighted by
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examining the size of the marrow spaces and the connectivity of
the bone network. The postprocessing algorithm is able to record
indices of trabecular spacing (H,) and trabecular connectivity
(CI). These two indices may change in a manner consistent with
bone loss through aging and be sensitive to differences in the
mechanical integrity of trabecular bone. This sensitivity is

explored in the remaining chapters.
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Chapter 6

IN~VIVO ASSESSMENT OF TRABECULAR BONE
STRUCTURE FROM pQCT IMAGES

6.0 Introduction

This chapter presents and discusses the results of applying
the indices of structure proposed in chapter 5 to a group of normal
volunteers with and without low bone mass and a small group of
patients who have suffered a Colles (wrist) fracture. The
discussion begins with a description of the two study groups. This
description is followed by an examination of the intra-subject
variability associated with an assessment of structure, and is
followed by an evaluation of the structural variations along the
radius. The chapter ends by comparing the specificity and
sensitivity with which the Colles fracture patients can be

discriminated from normal on the basis of density and structure.

6.1 Results of Pilot Study
A total of 31 female and 13 male subjects underwent a pQCT

evaluation in this study. They were referred for a PQCT scan from
the Fracture Clinic operated at st Joseph’s Hospital in Hamilton.
They were classified as either normal (23 subjects) or having
suffered a fracture of the radius (21 subjects) as determined by a
Plane film x~ray. The normal subjects ranged in age from 21 to 77
- Years. Their trabecular bone density (TBD) at the radius ranged

from 136.6 to 336.8 mg cm®. Their cortical bone density (CBD)
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ranged from 481.8 mg cm? to 952 mg cm’. The fracture subjects were
aged 40 to 82 with a TBD range of 86.8 to 235.2 mg cm® and a CBD
range of 449.1 mg cm® to 970.5 mg cm’. Trabecular bone density,
cortical bone density, and structure was assessed in the non-

fractured arm in those patients identified with a fractured wrist.

6.1.1 Reproducibility

For all practical purposes, the value of the indices derived
from a given image were not dependent on the size of the
rectangular ROI placed around the radius by an operator. For
example, as examined by defining ROI’s of various size for a given
image, a 20% change in ROI area caused less than a 1% change in
both CI and H,.

A second issue of reproducibility concerned repeat
measurements with repositioning. This intra-subject variability
was assessed by performing three scans on two subjects over a 3-
month period. Mean coefficients of variation of S.1% and 5.5% were
found for CI and H,. These levels of reproducibility for CI and H,
are higher than that reported for the determination of bone
mineral density in the appendicular skeleton (~1%) (Muller et al
1989) . Instead of a direct comparison with bone density it would be
more useful to compare these levels of intrasubject variability in
CI and H, with similar indices of structure assessed from biopsy.
Such a comparison, however, is not possible because a second sample

- cannot be taken from a site already biopsied.
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6.1.2 Structural variations along the radius

Differences in trabecular architecture could be identified
from the cross-sectional slices acquired at different points along
the radius. The dependence of connectivity and marrow pore size
upon the location of the pQCT image slice along the radius is shown
in table 6.1. These results were recorded for a young male subject
and indicate the importance of positioning. As the image location
proceeds proximal from the head of the radius, the connectivity
index decreases while the mean hole area and the maximum hole area
increase. For the image slice recorded at 70 mm from the head of
the radius the mean hole area corresponds to the area enclosed by
the inner contour of the cortical bone shell. The negative CI value
recorded at this slice position is an indication of the
irregularity of the inner surface of the cortex. These
irregularities project into the marrow cavity, thereby being
recorded as free ends. This data is consistent with past
histological studies. It has been demonstrated that proceeding
proximal from the distal end of the radius, the fraction of
trabecular bone increases over approximately the first 2
centimetres and then decreases rapidly to zero over the next 5
centimetres (Schlenker and VonSeggen 1976) . This pattern is due to
a corresponding change in the total number of trabeculae present
which results in a decrease followed by an increase in the size of
the intertrabecular spaces. This is exactly the trend identified by

. HAO
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Table 6.1. The variations in connectivity (CI) and marrow hole
area along the radius of a normal male volunteer.

Distance from

Connectivity Mean hole

head of radius index (CI) area (H,)

(mm) (mm?*)

12.4 29.67 0.53

17.4 26.69 0.57

22.4 25.22 0.69

27 .4 22.56 0.73

70.0 -6.59 18.9

——
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6.1.3 Correlations

Pearson correlations between the indexes of bone structure and
trabecular density and age are listed in table 6.2. The indexes
were also highly intercorrelated. For example, CI showed a strong
(-0.8 < r < =0.9) but negative correlation with H, and H,. The
network length (NL) was strongly correlated with both the total
bone area (r=0.77,p=0.0003) and trabecular bone area
(r=0.64,p=0.006). This confirms that in our original definition of
CI, division by NL accounts for different bone sizes. These
positive and negative correlations between trabecular density and
our indices of structure reflect known patterns of bone loss
established from biopsy studies. For example, in the normal aging
process of the adult skeleton, bone mass is lost from trabecular
bone. This is due to entire trabeculae being removed rather than a
generalized uniform thinning of the whole trabecular structure. The
resulting space left by the lost trabeculae is filled with fatty
marrow and those trabeculae that remain are more widely separated,
less connected, and therefore 1less likely to withstand a
compressive force (Parfitt et al 1983). Consequently, indices
related to the marrow space change inversely with density while
those relating trabecular connectivity will vary directly with

density.

6.1.4 Discrimination of the two groups

The range of trabecular bone density and cortical bone density

in the non-fractured and fractured groups are indicated in figure
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Table 6.2. Correlations between indices of structure and bone
density and age. Correlations with age were not
significant while those with density were highly
significant (p<0.001).

CI H, Hy
Age -0.315 0.187 0.182
Trabecular 0.855 -0.735 -0.831

density.
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6.1 and figure 6.2, respectively. Figure 6.2 shows that cortical
bone density has no merit in distinguishing fractured patients from
non-fractured subjects. For this small study population the
threshold of low bone density is defined as the mean TBD value
minus 2 SD in our 23 non-fractured subjects. The mean (220 mg cm?)
and low bone density threshold (138 mg cm?®) are also indicated in
figure 6.1. This trabecular density threshold separates the
fractured from the non-fractured subjects with a sensitivity of
38% and a specificity of 100%. Figure 6.3 shows that the difference
between the two groups is enhanced by the connectivity index.
Figure 6.4 shows the same for the mean hole area. A CI threshold
(mean CI minus 2 SD) of -7.6 achieves a sensitivity of 48% and a
specificity of 96%. A threshold (mean plus 2SD) of 4.4 mm’ for H,
achieves a sensitivity of 67% and a specificity of 96%. These
findings suggest that there is diagnostic value in the proposed
indices in predicting radial fractures in a small group of
subjects. Both CI and H, accurately identify subjects with wrist
fractures in this mixed study population with a greater sensitivity
than trabecular bone mineral density and cortical bone density. The
poorer performance of bone density in identifying those who have
fractured verifies that bone failure is a complex disorder that
cannot be predicted by measuring bone mass alone. Moreover, our
results emphasize that assessing bone architecture can clarify a
significant portion of this complexity.

Figure 6.5 shows the thinned binary representation of the bone

structure at the distal radius typical of a normal middle aged
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Figure 6.1: Comparison of the range of trabecular bone densities
recorded in the non-fractured (+) and fractured (0) groups. The
mean density and 2 sd below the mean density in the non-fractured
group is indicated.
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" are indicated.
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female and an elderly female who suffered a wrist fracture. Keeping
in mind that the non-fractured wrist was measured in the elderly
subject, for a 15% difference in trabecular bone density there is
a 36 fold difference in the connectivity index. Large differences
are also apparent when the mean hole area (H,) is compared in these
two subjects. For the middle aged subject H, is 1.07 mm?. The value

increased to 4.17 mm’ in the elderly subject.

6.2 Summary

A dedicated computed tomography system was used to acquire
transaxial images of the distal radius to assess trabecular bone
structure in-vivo. Trabecular bone was segmented from the marrow
and soft tissue background by postprocessing the image with a
region grow and skeletonization step. From the processed image the
integrity of the bone was assessed by examining the continuity of
its trabecular network and by determining the area of the holes
comprising its marrow space. The continuity of the bone imaged was
assessed by a proposed connectivity index (CI) and the size of the
marrow spaces was assessed by calculating a mean hole area (H,) in
the bone cross-section. Repeat measurements revealed that the
intra-subject variability in CI and H, was small (CV<6%). Both CI
and H, were sensitive enough to reflect differences in structure at
the head of the radius and at several sites along its shaft.

The diagnostic value of assessing bone structure at the distal
- end of the radius was tested by measuring trabecular bone density,

cortical bone density, CI and H, in a mixed group of 44 subjects,



Figqure 6.5 This figure shows the thinned binary representation of

the connectivity in the trabecular bone network at the distal
radius of a normal 48 year old female with a trabecular density of
183.8 mg cm® (A) and a 69 year old female with trabecular density
155.7 mg cm® who experienced a wrist fracture(B). A CI values of

14.7 was determined for the 48 year old and 0.41 for the 69 year
old.
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21 of whom had suffered a wrist fracture. A measure of cortical
bone density revealed no difference between the two groups.
However, a trabecular bone density threshold of 138 mg cm?3,
corresponding to 2 standard deviations below the mean density in
the 23 non-fractured subjects separated fractured from non-
fractured subjects with a sensitivity of 38% and a specificity of
100%. A CI threshold of -7.6 increased the sensitivity (48%) and
almost maintained the 100% specificity. An H, threshold of 4.4 mm’
achieved a sensitivity of 67% and a specificity of 96%. This
increased sensitivity achieved by the indices of structure suggests
that an in-vivo assessment of trabecular bone structure can
contribute significantly to the identification of persons at risk

of fracture.
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Chapter 7

IN-VIVO ASSESSMENT OF TRABECULAR BONE STRUCTURE FROM
HIGH-RESOLUTION MAGNETIC RESONANCE IMAGES

7.0 Introduction

To be useful clinically, structure must be imaged in-vivo with
thin slices (< 1 mm), multiple slices, small pixel sizes (<0.5mm),
and conveniently short scan duration (< 20 minutes). Two factors
inhibit accurate evaluations of standard histomorphometric
parameters of trabecular bone structure from MR images. First, the
minimum slice thickness allowed by the gradient fields on current
whole body imagers is 2 to 3 times thicker than the average
trabecular width. Therefore, projections blur the bone structure in
the final image. Thinner slices can be achieved in high-field small
bore systems. For example at 9.4 T, slice thicknesses of 100 um are
readily achieved. However, sample volumes are limited to 1 cm?,
imaging times of 1-2 hours are required, and only biopsy samples
can be imaged (Wehrli et al 1991). Second, at the interface between
trabecular bone and marrow, non-linear magnetic field gradients are
established which reduce the apparent spin-spin (T,) relaxation rate
of fat protons near the bone. The T, reduction makes these protons
invisible and results in an increase in the apparent width of the
bone (Sebag and Moore 1990, Wehrli et al 1991, Jara et al 1993).
This effect is depicted in figure 7.1. An error in trabecular width
may be present in both spin echo and gradient echo images. Even

with these imaging constraints, high-resolution MR, coupled with



magnetic field gradient

homogeneous field

154

Pigqure 7.1: Effect of magnetic susceptibility on the appearance of
individual trabeculae in gradient echo images. The presence of
magnetic field gradients which are established at the boundary
between bone and marrow reduces the signal from marrow protons. The
result is an increase in the apparent width of trabecular bone.
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image processing methods can be used to assess bone structure at
peripheral sites such as the wrist. However, poor SNR must be
overcome before the trabecular architecture can be revealed by MR.
This chapter, first of all, examines the scanning parameters
which can be manipulated to improve image quality by maximizing the
signal to noise ratio and minimizing the likelihood of blurring due
to subject motion. Once acquired, the high-resolution MR images are
segmented using the post-processing steps described in chapter S.
The chapter ends by deriving indices of trabecular connectivity and
orientation at the distal end of the radius for a mixed population

of normal volunteers.

7.1 Choice of Scan Parameters

All images were acquired on a 1.5 Tesla General Electric Signa
clinical imager running version 5.43 software. A three dimensional
(3D) gradient echo scan prescription is the most suitable pulse
sequence to image the structure at the wrist. The reasons for this
are as follows. Three dimensional pulse sequences excite a slab of
tissue and the slab can be divided into a series of contiguous
slices by appropriately switching the three gradient fields. The
manner in which the data is acquired allows for the tissue volume
to be divided into very thin slices (< 1mm) which cannot be
achieved with two dimensional acquisitions. The GE Signa software
can divide a 3D volume into 12 to 60 contiguous slices each with a
. minimum slice thickness of 700 pm. These very thin slices are

essential for in vivo structure assessments. Both gradient echo and
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spin echo sequences can be used to image trabecular bone. However,
3D spin echo scan prescriptions are not available as a pulse
sequence option because the deposition of radio frequency power
limits the minimum slice thicknesses which can be achieved in vivo.
This limitation does not arise for gradient echo sequences because
spin rephasing is achieved by switching magnetic field gradients
rather than by the delivery of a 180° rephasing radio frequency
pulse. Hence, for in vivo clinical applications, a 3D gradient echo
Pulse sequence must be used to obtain high resolution images of
trabecular bone structure at peripheral sites.

Without the aid of specialized 1local gradient coils or
modified pulse sequences, a number of factors can be adjusted to
improve the visualization of trabecular bone structure at the
wrist. For example, the SNR depends on many factors of operation
such as type of receive coil, echo times, matrix size, slice
thickness, field of view, number of signal averages, and receiver
band width (Wood et al, 1993). The manner in which some of these

factors relate to SNR can be described by equation 7.1:

FOVy,,.'FOV,,,..-SL'/Nex
VVezoq Nonase' BW

SNR=k

where FOV,, is the field of view in the frequency encoding
direction, FOV,, the field of view in the phase encoding direction,
SL the slice thickness, Nex the number of signals averaged, Ny the

number of pixels across the FOVgeos Ny the number of phase encoding
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steps, and BW the receive band width. The constant k is included as
a scaling factor. As shown in equation 7.1, one factor which can be
changed to improve SNR is the receive band width. The receive
bandwidth refers to the range of frequencies within which the
system will respond; The Signa software offers selections from 2
kHz to 32 kHz. The system default is *16 kHz for a 256 frequency
matrix and 32 kHz for a 512 frequency matrix. This means, for
example, that the system will detect signal from protons resonating
at frequencies anywhere in the range of +16 kHz from the centre
frequency for a 256 frequency matrix. When the band width is
narrowed, the system looks at a smaller range of frequencies. This
has the benefit of excluding much of the random electronic noise
inherent in an MR system. The result is improved SNR. For example
if the BW is halved SNR improves by a factor of 1.4. Because
frequency differences are used to encode position, it is not
surprising that narrowing the BW also restricts the minimum field
of view (FOV). This link between BW and minimum FOV for the GE
Signa system is shown in table 7.1. Although selecting the minimum
BW (*2 kHz) would result in the greatest SNR improvement, the
tradeoff is a substantial increase in imaging time. This is
indicated by the minimum TR’s allowed by the system. A 5 cm FOV was
selected to reveal the bone structure at the distal end of the
radius. Therefore, as indicated in table 7.1, a minimum BW of 9.20
kHz is linked with this FOV. To minimize scanning time a 256 square
- matrix rather than a 512 matrix was prescribed over the S5 cm FOV.

Along with a factor of 2 improvement in SNR, this produces an in-
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Table 7.1: The minimum values of BW, FOV and TR which are allowed
by the GE Signa Advantage software when a 3D gradient
echo scan sequence is prescribed. The values listed are
for a 256 frequency matrix.

S======—=—======————————-—____ . _

Minimum BW Minimum FOV Minimum TR
(+ kHz) (cms) (msec)
2.0 4 54
4.0 4 40
6.4 4 26
7.2 4 26
9.2 S 26
10.7 6 26
12.8 7 26
16.0 8 26
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plane resolution of 197 um which is sufficient to resolve
individual trabeculae.

To overcome the poor SNR resulting from imaging at a 5 cm
field of view a 3 inch receive only surface coil was used to detect
the MR signal. Surface coils produce much higher SNR in small field
thin slice studies because the coil can be placed close to the
anatomy of interest. Also, depending on the size of the coil, it
may reduce noise from outside the FOV. The work of Schenck (1984)
illustrated the degree of SNR improvement with surface coils in
comparison to body and head coils. A SNR comparison taken from this
work is given in figure 7.2. It is clear from this plot that, up to
a depth of 6 cms, surface coils produce better SNR than the others.
Consequently, a 3 inch surface coil taped to the wrist was deemed
the most appropriate for an examination of the bone structure at
the wrist.

Ultimately it is the total imaging time available that
controls the degree to which noise effects can be limited. For
example, one of the simplest ways of reducing the level of noise in
an image is to increase the number of signals averaged (Nex) to
produce an image. Equation 7.1 reveals that, doubling the number of
signals averaged increases the SNR by a factor of 1.4 but doubles
the total imaging time. Shorter scanning times have the benefit of
minimizing the likelihood of blurring due to subject motion. To
reduce the likelihood of blurring, the high-resolution image set
- must be acquired in under 15 minutes. To offset these constraints

of imaging time and SNR, the GE scanning software offers some
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Fiqure 7.2: Comparison of surface coil SNR to that of body and head
coils. Note that up to a 5 cm depth, surface coils will provide the

best SNR (Schenck et al 1984).
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flexibility in the choice of TE, TR, and Nex used to acquire the 3D
data set. To aid in selecting the appropriate values a phantom was
used. The phantom consisted of a 4 centimetre diameter cylindfical
polyethylene container filled with corn oil to simulate fatty
marrow. Three scan prescriptions were tested for their ability to
maintain a high SNR if applied to in-vivo studies of trabecular
structure at the wrist. Common to each of the three was that each
was acquired with a fast gradient echo pulse sequence, a 60° flip
angle, and an in-plane resolution of 195 um x 195 um x 800 um (5 cm
field of view). Each of the three scan sequences were obtained for
2 to 5 signal averages. The differences between the three sequences
were as follows. The first was acquired at a BW of 9.20 kHz and a
full echo was sampled during readout. A minimum TE of 17.5 msec was
selected. For the second scan prescription the BW was kept at 9.20
kHz but a partial echo was sampled during the readout phase. The
minimum TE allowed by the software was selected and was 11.8 msec.
To sample a partial echo the system collects just part of the data
that would normally be acquired to build an image. Interpolation
schemes are used to fill in the missing data not sampled. With this
approach, the TE is reduced but the effect of background noise is
increased. For the third scan prescription a partial echo was
sampled during readout but with a receiver BW of 4 kHz. The minimum
TE for this prescription was 13.6 msec. The appropriateness of each
of these three scan prescriptions for in-vivo studies was assessed
- by comparing the SNR derived from a common region of interest

defined in images of the phantom. The mean and standard deviation
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in the signal strength was calculated from the region of interest.
The SNR was then expressed as the mean divided by its associated
standard deviation. This dependence of SNR upon image acquisition
time and TE for the gradient echo sequence used is plotted in
figure 7.3. The increase in acquisition time corresponds to an
increase in the number of signal averages prescribed during the
pulse sequence. The SNR level for two through five signal averages
is plotted on each curve. Images acquired at a TE of 17.5 msec
showed a 15-20% improvement in SNR compared to those acquired at
shorter echo times. However, the time required to acquire these
images at a given number of excitations is doubled. Lowering the
receiver bandwidth by a factor of two recovers some of the signal
loss which results from sampling a partial echo but also increases
the time required to obtain an image set by 25%. From figure 7.3,
it is clear that the best SNR achieved in under 15 minutes was for
a TE of 17.5 msec and at 3 Nex (a total imaging time of 12.5
minutes). These values were then used for the 3D gradient echo
scanning protocol. This protocol is summarized in the following

section.

7.1.1 Protocol for subject scans

The distal end of the radius was scanned in all subjects using
a standard three inch circular surface coil. Subjects were placed
in a supine position with their hands at their side and a series of
. axial and coronal spin echo sequences were used to locate the

distal end of the radius. Once localized, a set of high resolution
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Fiqure 7.3: The signal to noise ratio (SNR) derived from the region
of interest signal mean and standard deviation. SNR response to
increased measurement time, echo times and band width for the
gradient echo sequence used to assess bone structure are shown.
Profiles joining (®) and (a) were recorded at a band width of 9.20
kHz while that joining (+) was recorded at a BW of 4 kHz.
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images of the trabecular structure was obtained using a fast
spoiled gradient echo pulse sequence (3D, TE=17.1 msec, TR=60 msec,
©=60°, BW=9.20 kHz). To improve the signal to noise ratio, three
signal averages were prescribed. An axial localizer showing a
region through which the high resolution image set was acquired is
shown in figure 7.4. The region of interest defining the imaged
volume was manually set around the centre of the radius as judged
by the operator. The volume examined consisted of 12 contiguous
slices. Each slice was acquired in the coronal plane with slice
thickness of 0.8 mm, a 5 cm field of view, and a 256 square image
matrix. This yielded an in-plane resolution of 195 pm x 195 um x
800 um. By acquiring 12 slices each with a thickness of 800 um we
examined approximately a 10 mm thick section of trabecular bone.
The total scanning time required to acquire both the localizer
scans and the high resolution image set was 20 minutes. A

representative set of images is shown in figure 7.5.

7.2 Results of Pilot Study

A total of 8 female and 7 male volunteers underwent an MR
examination to assess trabecular structure at the distal end of the
radius. All were normal and without any diagnosed metabolic bone

disease. Subject ages ranged from 24 to 72 years.

7-2.1 Intra-slice variability

To ensure that the same anatomic location was evaluated in all

subjects, all indices of structure were calculated from 6 of the 12







Figure D The trabecular bone structure at the distal radius of a 20

year old female volunteer (A) and 48 year old male volunteer (B).
The images are displayed on an inverse grey scale so that the low

bone signal appears white and the high 5igna| from fat appears black.
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slices obtained from the volume prescription. Using figure 7.4 as
a guide these six slices were selected from the centre of the
volume. That is, slices 1 to 3 and slices 10-12 were not examined.
It is sensible to drop these slices from an assessment of structure
because they may exhibit lower signal to noise and their location
may be at a level of a transition between cortical and trabecular
bone (subcortical bone). An average CI, H,, and H, was then
calculated from the six estimates obtained. The variability in CI,
H,, and H, among these six contiguous slices was assessed by
deriving a coefficient of variation from the mean and standard
deviation in CI, H,, and H,. This inter-slice variability was
examined in four subjects. The results are summarized in table 7.2.
These inter-slice variabilites suggest two observations about the
bone structure in the radius. First, the structure changes little
when examined as contiquous coronal images. Second, it is
appropriate to quantitate the connectivity of the structure with a
mean CI, H, and H,.

Another factor which contributes to the variability in the
values of the indices derived from a given subject was the choice
of the threshold used to correct the adaptive threshold step during
segmentation. For example, when this threshold was varied from 40%
to 60% of the maximum signal from fat, both CI and H, varied with
a coefficient of variation (CV) of less than 5%. The CV was equally

as small for Hy, and the integral gradient frequency (G).

7.2.1 Changes in connectjvity with age
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Table 7.2: The coefficient of variation (CV) for CI, H, and H,

calculated from the six slices in each of four
subjects examined.

M——

Index Mean CV (%) Range of CV (%)
CI 7.8 5.1-11.4
H, 8.8 5.7-10.7
H, 9.1 5.9-12.3
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Figure 7.6: Relationship between age and the connectivity index
(CI) derived from the distal end of the radius in 8 female (0) and
7 male (@) subjects. CI decreases at a rate of 0.14 per year (r=-
0.65, p<0.01).
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Figure 7.6 shows the age related change in the connectivity
index derived from the 15 volunteers. Figures 7.7 and 7.8 show the
same for the variables quantifying hole area. The data points
plotted represent the mean calculated from the six most central
slices in the volume imaged. The line plotted represents a least
squares fit to the data points. As shown H, and H,, increase at a
rate of 0.014 mm’year' and 0.46 mm’year!, respectively while CI
decreases at a rate of 0.14 year!. With the limited number of
subjects no conclusions could be drawn regarding gender
differences. These indices change in a manner consistent with bone
loss through aging. As previously noted, bone mass is lost by
removal of entire trabeculae rather than by a generalized uniform
thinning of the whole trabecular bone network. The resulting space
left by 1lost trabeculae is filled by fatty marrow and remaining
trabeculae are more widely separated and less connected. It is

therefore not surprising that H, and H,, increased with age while CI

decreased.

7.2.3 Changes in orientation with age

Figure 7.9 shows the age related change in trabecular
orientation from the 15 volunteers. Orientation is quantified by
the integral gradient frequency G,. Each point plotted represents
the mean value calculated from the six slices analyzed. Clearly,
there is no change in orientation with age (slope=-0.014, r=-0.17,
- P=0.55). This suggests that although the connectivity of the

structure changes with age, the degree of anisotropy in the
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Fiqure 7.7: Relationship between age and th.e mean hole area (H,)
derived from the distal end of the radius in 8 femalez(O) and 7
male (@) subjects. H, increases at a rate of 0.014 mm per year

- (r=0.59, p<0.02).
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Figure 7.8: Relationship between age and the maximum hole area (Hy)
derived from the distal end of the radius in 8 femalez(O) and 7
male (@) subjects. Hy increases at a rate of 0.46 mm? per year

. (r=0.75, p<0.001).
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Fiqgure 7.9: Relationship between age and trabecular orientation (G))
derived from the distal end of the radius in 8 female (0) and 7
male (@) subjects. G, does not change significantly with age (r=-
.0.17, p<0.55).



174

arrangement of the trabecular network remains unchanged.

7.3 Summary

In this study we used a standard clinical MR scanner to image
trabecular bone at the distal end of the radius and developed an
algorithm to segment the trabecular bone structure. From the
segmented representation we were able to extract several indices
from which the mechanical competence of the bone structure can be
inferred. The significant rates of change in H,, H, and CI suggest
that clinical magnetic resonance scanners may be sensitive enough
to image small changes in trabecular bone architecture. One would
expect that MR will be sensitive enough to discriminate the
disrupted bone structure of persons with bone disease from those
without. If so, MR can be used to study the response of the
trabecular structure in such individuals to various therapeutic
regimes.

Signal to noise considerations limit the acquisition of high
resolution images of trabecular structure to peripheral sites such
as the wrist. However, fractures of the distal radius have been
shown to be a forecaster of subsequent hip fractures in the same
individual (Mallmin et al., 1993). Therefore steps to improve the
accuracy of imaging and segmentation of the trabecular architecture

at the radius should be pursued.
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Chapter 8

IN-VITRO ASSESSMENT OF TRABECULAR STRUCTURE:
CORRELATION WITH STRESS TESTING

8.0 Introduction

The resistance of a bone to fracture can depend on bone
mass, bone structure, bone geometry, and the presence of micro-
damage. As demonstrated in the previous chapters, the structure
of trabecular bone can be imaged in-vivo by MRI and CT and
indices of structure derived from these images. The mechanical
integrity of the imaged bone is then inferred from the derived
indices. In this chapter, this inference is tested by quantifying
the trabecular structure of isolated radii and relating it to

predictions of bone strength derived from compressive testing.

8.1 Materials and Methods
8.1.1 Specimen description and preparation

Nine human cadaver radii were obtained from a commercial
supplier (Osta International, White Rock, BC). All nine bones
were intact but were defatted and therefore shipped in a dry
state. The history, such as age, gender, and disease status of
the individuals from which the specimens were obtained was
unknown. However, S5 of the 9 specimens displayed various degrees

of osteopenia, as judged qualitatively by radiographs.

8.1.2 Assessment of density

Each radius was scanned on an Hologic QDR 4500 (Hologic,
Waltham, MA) using the forearm scanning software (version

8.1la:3). For scanning, each bone was placed on a tissue-
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equivalent polyethylene plate approximately 1.5 cm thick. Each
scan wvas analyzed for density utilizing the manufacturer
suggested protocol. A typical analysis printout is given in
figure 8.1. As shown, the automated evaluation software defines
a global region of interest (total) and individual 1/3 distal
(1/3), mid-distal (Mid), and ultra-distal (UD) regions of
interest. The total bone density (BMD), bone mineral content
(BMC) , and projected area are reported for each of these regions
of interest.

PQCT measurements were made on each of the nine bones.
First, a coronal scout view of the radius was performed. Second,
the axial slice of 2.5 mm thickness was performed at a region
defined to be 5 mm proximal to the reference site indicated in
figure 8.2. The pQCT image was automatically evaluated for
trabecular bone density (TBD) and cortical bone density (CBD)
with the system software. It is important to note that the
location of the pQCT slice is within the UD region of interest
defined by DXA. This UD region covers an area of 15 mm length

over the distal radius along the long axis of the bone.

8.1.3 Assessment of structure
Each radius specimen was immersed in corn oil to simulate

the yellow marrow normally present at the distal end of the
radius. The oil was first heated and the immersed bones were
evacuated to eliminate the air bubbles which may become trapped
within the inter-trabecular spaces. High resolution MR images of
each bone specimen were obtained in the axial plane using the in-

vivo scanning protocol described in chapter 7. With this imaging
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Chedoke-McMaster Hospitals

UB311961F Mon Mar 11 18:43 1996

Nane: RADIUS TWO
Conment : chris gordon
I.D.: Sex: F
S.S.#: - - Ethnic:
ZIPCode: Height: 21.68 cn
Operator: Weight: kg
BirthDate: / 7/ Age:
Physician:

Forearn Length: 22.2 cn
Image not for diagnostic use

TOTAL BMD CVU IS LESS THAN 1.8
C.F. 1.827 1.810 1.808

RADIUS Area BMC BMD
(cm2) (grams) (gms/cm2)
uDp 3.55 8.98 8.276
MID 4.92 1.74 8.355
1/3 2.24 1.82 8.456
TOTAL 16.706 3.74 8.358
Mar 11 18:46 199 [188 x 841
Hologic QDR-4588A (S/N 45848)
Left Forearm U8.11a:3 %':
HOLOGIC

Figure 8.1; A typical bone mineral density summary report from DXA
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reference line

~ and 1’** cut plane

PQCT scan site

2’" cut plane

Figure 8.2: The basic geometry of an isolated radius. The site

of the pQCT scan is indicated and the volume imaged by MR is
given by the shaded area.
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protocol, 12 contiqguous images are obtained at a field of view
of 5 cm, at 256 phase-encode and frequency-encode steps and with
a slice thickness of 800 um. This field of view and image matrix
size yields an in-plane resolution of 195 um. To improve the
signal to noise ratio, 6 excitations were averaged. Therefore,
the total imaging time for each specimen was approximately 30
minutes.

Both the MR and pQCT images were analyzed for structure
using the postprocessing steps implemented for in-vivo
assessments of structure. A typical MR image and pQCT image
obtained at the same site is shown in figure 8.3. The MR image
has been displayed in reverse grey scale to make its appearance
compatible with the pQCT image. Trabecular bone was separated
from the marrow background using thresholding, region growth, and
skeletonization steps. From the processed image, marrow hole area
and trabecular connectivity are quantified. Connectivity was
assessed by the proposed connectivity index (CI) and the marrow
space was quantified by a mean hole area (H,) and a maximum hole

area (Hy).

8.1.4 Mechanical testing

The maximum compressive strength of each radius specimen was
determined using a Lloyd’s material testing unit (Lloyd’s
Instruments, Fareham, UK). The specimens were first prepared for
crushing by cutting two plano-parallel ends which were 4 cm
apart. The site of each cut is indicated in figure 8.2.
After preparation, each sample was placed in the press and

compressed at a strain rate of 3.0 cm per minute. This strain



Eigure 8,3:; Comparison of an MR image (RA) and a pQCT image (B) recorded

at the distal end of the radius. Notice that the cortical shell at

this scan site is very thin.
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rate is consistent with that imparted to the radius following a
fall from a standing height (Sparado et al 1994). A diagram of
the setup for the compressive test is given in figure 8.4. The
load data is acquired directly by a personal computer interfaced
to a load cell. The displacement data is saved into a spreadsheet
and manipulated to yield a typical displacement curve as shown
in figure 8.5 for one of the 9 specimens. Two points are worth
highlighting from this plot. First, in this specimen the maximum
compressive strength was 3484 N. Second, after the bone

fractures, the load drops dramatically and the test was halted.

8.1.5 Data analysis

All statistical analyses were performed with Statistix
(version 4.0). Linear correlation analyses were used to assess
the strength of the relationships between indices of density,
trabecular bone structure, and the peak load at fracture. The
significance of each correlation was estimated with the use of
the t-test. The additional or incremental contribution of
trabecular bone structure parameters (in addition to trabecular
bone density) to the prediction of the peak load was examined

using a linear multiple regression model.

8.2 Results

Peak fracture load, along with the indices of density and
cross-sectional area derived by pQCT and DXA in the 9 specimans
are summarized in table 8.1. Although this study was conducted

on isolated radii the peak fracture loads listed fall within the
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APPLIED LOAD
(3 cm/min)

SUPPORT BASE

Figure 8.4: Diagram of the setup for compressive fracture testing.
Loading is increased and data on load deformation is recorded via
a personal computer (PC) interfaced to the load cell.
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Figure 8.5: A typical displacement curve produced by the
compressive test.
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Table 8.1: The peak load at fracture and densitometric

measures recorded in the 9 radius specimens
tested.

WW—MMW_—M

Bone Load CBA  CBD TBA TBD UD MID
(#) (N) (am’) (mg cm?) (mm?’) (mg cm?) (g cm?) (g cm?)
1 2756.0 96.4 545.9 243.7 220.3 0.384 0.556
2 1119.0 104.1 313.0 256.1 141.0 0.276 0.355
3  3484.0 98.4 408.4 335.1 168.8 0.343 0.338
4 1270.0 82.6 414.6 179.8 130.5 0.285 0.322
5 922.4 99.8 493.8 262.7 159.1 0.385 0.440
6 4726.0 96.9 611.4 242.4 197.0 0.437 0.521
7 1511.0 130.6 313.6 353.0 139.6 0.325 0.399
8 645.4 115.0 268.5 309.0 93.4 0.258 0.376
9 1202.0 87.7 339.9 204.3 153.1 0.277 0.335

M

Load= peak load at fracture

CBA= cortical bone area from pQCT

CBD= cortical bone density from pQCT
TBA= trabecular bone area from pQCT
TBD= trabecular bone density from pQCT
UD= ultra-distal bone density from DXA
MID= mid-distal bone density from DXA
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range of values reported by others who tested intact cadaver
specimens. For example, Myers et al (1991) reported that a mean
value of 3390 N produced radius fractures in the specimens
tested. Another investigation of peak fracture loads reported
lower values (1640AN) (Sparado et al 1994).

The trabecular structure parameters derived from MR and PQCT
images and peak fracture loads characterizing each specimen are
shown in table 8.2. The correlation coefficients relating
fracture load with densitometric, cross-sectional area, and
structural parameters determined from both pQCT and MRI are given
in table 8.3. As indicated, measures of density were moderately
good indicators of strength. The best correlation with fracture
load was for UD (r’=0.57) which reflects the combined density of
cortical and trabecular components. Surprisingly, measures of
bone size such as CBA and TBA were very poor (r’<0.1) indicators
of bone strength. In contrast to the significant coefficients of
determination associated with density measures, correlations
between structural parameters and fracture load were weaker. Oonly
the connectivity index derived from pQCT images correlated
significantly with peak load (r’=0.49, n=9, p<0.04).

The linear correlations relating trabecular bone density and
structural parameters derived from pQCT are given in table 8.4.
The inter-correlations between structure assessed by MR and PQCT
are also listed in this table. Despite differences in slice
thickness and in-plane resolution, indices of structure estimated
from pQCT showed moderate to good correlation with those derived
from MR (r’>0.6). This suggests that information relating to

trabecular structure can be extracted from images which are
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Table 8.2: The peak 1load at fracture and structural
parameters recorded by MR and pQCT in the 9
radius specimens tested.

Bone Load CI_CT H, CT Hy CT CIMR  H, MR Hy MR
(#) (N) (mm?) (mm®) (mm?) (mm?)
1 2756.0 22.56 0.58 37.13  13.02 0.65 4.49
2 1119.0 19.19 0.61 12.85 9.24 0.96 7.07
3  3484.0 19.60 0.74 40.40 11.81 0.79 6.31
4 1270.0 16.22 0.67 19.60  9.33  1.04 15.02
5 922.4 17.56 0.65 19.06 8.08 1.23 30.08
6 4726.0 23.58 0.53 36.26 10.30 0.79 15.86
7 1511.0 18.03 0.83 41.60  8.45 1.17 15.51
8 645.4  8.19 1.69 81.89 3.11 2.61 138.56
9 1202.0 19.00 0.61 15.25 5.17 1.41 29.81

M

Load= peak load at fracture.

CI_CT= connectivity index from pQCT.
H, CT= mean hole area from pQCT.
Hy_CT= maximum hole area from pQCT.
CI_MR= connectivity index from MR.
H, MR= mean hole area from MR.

Hy MR= maximum hole area from MR.
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Table 8.3: Correlation with load for the densitometric and
structural parameters used to characterize the bone
specimens. Statistical significance at the p<0.05 hd
is indicated by (*).

Variable p~-value
CBA 0.034 0.636
CBD 0.520 0.028
TBA 0.005 0.858
TBD 0.538 0.024
UD 0.569 0.019
MID 0.280 0.143
CI_CT 0.491 0.036
H, CT 0.173 0.265
Hy CT 0.002 0.918
CI_MR 0.435 0.053
H, MR 0.362 0.086
Hy MR 0.188 0.241

m_—-_—m_*-_—_—__—____—“—_———_——m
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Table 8.4: Correlation of structural parameters assessed by MRI
and pQCT. The correlation of trabecular density and the
structural parameters derived from PQCT are also given. R?
values are listed and statistica

1 significance at the p<0.05
level is indicated by (¥).
=———_—WM
TBD CI_MR H, MR Hy MR
CI_CT 0.810° 0.606° N/A N/A
H, CT -0.518° N/A 0.831° N/A
Hy CT -0.109 N/A N/A 0.594

M
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limited by the effects of volume averaging. The correlations
listed in table 8.4 also indicate that both CI and H, are
moderate indicators of trabecular bone density.

To determine whether a combination of structural parameters
added significant information to the prediction of fracture load,
multiple linear regression models were fitted with peak load as
the outcome variable. The coefficients of determination, r?, are
given in table 8.5 for models based on structural parameters
alone. Results are also given for models in which trabecular bone
density and a combination of one or more structural parameters
were the independent variables. Note that trabecular bone density
was combined only with structural parameters derived from pPQCT.
The inclusion of a single structural parameter with TBD did not
significantly increase the prediction of bone strength beyond
that offered by TBD alone. The r? for TBD and load is included in
this table for comparison.

A combination of structural parameters Clearly improved the
prediction of peak load at fracture. When combined, variables
relating to trabecular spacing (namely H, and Hy) made a
significant contribution to the prediction of load. This was the
case whether H, and H, were estimated by pQCT (r*=o0.82,
(r?) 4=0.76) or by MRI (r*=o0.7, (r?) 4~0.60). Although the
combination of TBD, H, CT, and H, CT produced the largest
correlation with load, this multivariate fit to the data must be
considered with caution given the limited sample size. However,
this result illustrates the potential of these structural
variables to add significant information to bone mineral density

in the prediction of peak fracture loads.
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Table 8.5: Predictors of ©peak load at fracture when

densitometric and structural parameters are
examined using multiple linear regression
analysis. Statistical significance at the

p<0.05 level is indicated by (*).

Variables r? (r’); Pp-value
TBD 0.538 ki kk 0.024 *
(TBD,CI_CT) 0.547 0.396 0.093
(TBD,H, CT) 0.564 0.419 0.083
(TBD,H, CT) 0.628 0.504 0.051
(CI_CT,HA_CT) 0.744 0.658 0.017 =*
(CI_CT,HLCT) 0.805 0.740 0.007 *
(HA_CT,H"_CT) 0.821 0.761 0.006 *
(TBD,H, CT,H, CT) 0.834 0.734 0.021 *
(CI_MR,HA_HR) 0.435 0.246 0.181
(CI_MR,H,  MR) 0.461 0.281 0.157

(H,_MR,Hy, MR) 0.697 0.595 0.028 *
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It is recognized that in this study only a small number of

radius specimens were tested. However, the results corresponding

to the hole size variables H, and H, are extremely encouraging.

The results of the multiple linear regression combining H, and

Hy derived from pQCT and MRI images are given below in equations
8.1 and 8.2, respectively.

Load=3825-7048 (H, CT)+105 (H,_CT) 8.1
(r’=0.82, (r?),=0.76, n=9, F=13.75, p=0.006)

Load=7565-6569 (H,_MR) +74 (H,  MR) 8.2

(r’=0.70, (r?),=0.60, n=9, F=6.89, p=0.03)
Comparing these two equations, it is interesting that the
weighting coefficients are not significantly different. This is
an important observation because it says that, although examined
with two distinctly different imaging modalities, a similar
conclusion can be drawn about trabecular bone structure in the
nine bones tested. Simply put, a combination of the variables
relating the size of the marrow space may be the best predictor
of peak fracture loads. To emphasize this point, the regression
equation given by equation 8.1 is plotted in figure 8.6. An
increase in marrow space requires less load to fracture. This is
not surprising given what is known about bone loss through aging.
Normal loss of trabecular bone is mainly due to entire trabeculae
being removed. The remaining trabecular network is less
connected, contains larger marrow spaces and is less likely to

withstand a compressive force.

8.3 Summary
Although limited by sample size, this study yielded some
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Figure 8.6: The regression of load against the combination of hole
. size variables.
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encouraging results. It appears that indices of trabecular
structure are important determinants of fracture load along with
bone mineral density. In seeking the features that were the most
reliable indicators of bone strength at the distal end of the
radius, a combination of the mean hole area and maximum hole area
had the highest correlation with load. This held true whether

these two variables were derived from pQCT or MR images.
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Chapter 9

CONCLUSION

Normal bone mass may not be sufficient to prevent fracture but
low bone mass is not inevitably associated with fracture.
Variations in trabecular bone architecture are thought to be a
major factor which might contribute significantly to fracture risk.
This work has examined ways of assessing trabecular bone structure
at the distal end of the radius in-vivo to better understand the
contribution of architecture to fracture risk. To this end, it
proceeded on four major fronts. First, images of sufficient
resolution were acquired using a commercial PQCT scanner and a
clinical MR imager. Second, the image processing software necessary
to segment the imaged trabecular structure was developed. This
software was implemented in C for a UNIX platform. Third, two
indices were proposed to quantify the connectivity of the segmented
structure. One index was derived from the application of trabecular
strut analysis to a skeletonized representation of the bone
network. The other quantified the marrow space by deriving a mean
hole area and maximum hole area of the bone structure as it appears
in two dimensions. The clinical value of these indices was tested
by conducting pilot studies which examined the ability of the
indices to discriminate a small group of Colles fracture patients
from the normal population and to reflect normal age related

changes in structure. The fourth and last stage of this work
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examined the proportion of the variance in compressive strength of
a group of radius bones that can be accounted for by bone mineral
density and bone architecture. A summary of the results derived
from each stage of this work follows. A full listing of the peer
reviewed publications and abstracts generated from this work is

given in appendix A.

9.1 In-vivo assessment of trabecular structure with pQcT

A dedicated computed tomography system was used to acquire
transaxial images of the distal radius to assess trabecular bone
structure in-vivo. The CT images were acquired with a Stratec XCT
960 scanner (Norland Corporation, Wisconsin). This is a special
purpose, second generation, peripheral Quantitative Computed
Tomography (pQCT) scanner used to acquire transaxial images of the
distal radius. Images were recorded with a slice thickness of 2.5
mm and reconstructed onto a 256 square matrix with a pixel size of
0.33 mm. This pixel size was just sufficient to allow trabecular
structure to be visualized. Trabecular bone was segmented from the
marrow and soft tissue background by postprocessing the image with
a region grow and skeletonization step. From the processed image
the integrity of the bone was assessed by examining the continuity
of its trabecular network and by determining the area of the holes
comprising its marrow space. The continuity of the bone imaged was
assessed by a proposed connectivity index (CI) and the size of the
- MArrow spaces was assessed by calculating a mean hole area (H,) in

the bone cross-section. Repeat measurements revealed that the
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intra-subject variability in cI and H, was small (CV<6%). Both CI
and H, were sensitive enough to reflect differences in structure at
the head of the radius and at several sites along its shaft.

The diagnostic value of assessing bone structure at the distal
end of the radius was tested by measuring trabecular bone density,
CI and H, in a mixed group of 44 subjects, 21 of whom had suffered
a wrist fracture. It was found that a trabecular bone density
threshold of 138 mg/cm?’, corresponding to 2 standard deviations
below the mean density in the 23 non-fractured subjects separated
fractured from non-fractured subjects with a sensitivity of 38% and
a specificity of 100%. A CI threshold of -7.6 increased the
sensitivity (48%) and maintained the high degree of specificity
(96%). An H, threshold of 4.4 mm®> achieved a sensitivity of 67% and
a specificity of 96%. This increased sensitivity achieved by the
proposed indices suggests that an in-vivo assessment of trabecular
bone structure can contribute significantly to the identification

of persons at risk of fracture.

9.2 In-vivo assessment of trabecular structure with MRY

In this work a protocol for assessing trabecular bone
structure at the distal end of the radius from high-resolution
magnetic resonance images was established. MR images were acquired
on a 1.5T General Electric Signa clinical imager. A three
dimensional gradient echo pulse sequence used in conjunction with
'~ a surface coil yields high resolution images in each of the three

orthogonal planes and at a voxel size of 192 X 192 X 800 pym,
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Trabecular bone was again segmented from the marrow and soft tissue
background using thresholding, region growth, and a skeletonization
step. From the segmented image the connectivity and orientation of
the trabecular bone network was measured. Connectivity was assessed
by the proposed connectivity index and marrow space was quantitated
by a mean hole area and a maximum hole area (Hy) . Significant age-
related changes in CI and H, were observed in a mixed group of
normal volunteers. CI decreased at a rate of 0.14 year! (r=0.6s5,
n=15, p<0.01) and H, and H, increased at rates of 0.014 mm’year!
(r=0.59, n=15, p<0.02) and 0.46 mm’year' (r=0.75, n=15, p<0.001),
respectively. Gradient analysis was used to examine trabecular
orientation, and revealed that the individual trabeculae at the
distal end of the radius are organized anisotropically along the
bone. These findings suggest that clinical magnetic resonance

scanners can be used to assess trabecular bone structure in-vivo.

9.3 In-vitro structure: correlation with stress testing

The mechanical integrity of the imaged bone was inferred from
the structural indices derived. This work concluded by testing this
inference by quantifying structure in a set of isolated radii and
relating it to predictions of bone strength based on mechanical
testing. To this end, trabecular structure at the distal end of 9
cadaveric radii was imaged by CT and MRI. Trabecular bone was
segmented from fat and the indices relating to network connectivity
- and the size of the marrow space were derived. Bone density of each

radius was also assessed by dual energy X-ray absorptiometry. Each
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bone was subjected to a mechanical load consistent with a fall from
a standing height and density, €I, H, and H, were compared to the
compressive strength.

The results obtained indicated that, along with density, an
increase in CI and a decrease in H, and H, better maintain the
mechanical integrity of trabecular bone at the distal end of the
radius. To determine whether the structural parameters added
significant information to the prediction of peak fracture load,
multiple linear regression models were fitted with peak load as the
outcome variable. The coefficient of determination, r?, was less
than 0.6 when bone mineral density alone was included in the model.
The combination of H, and H, made a significant contribution to the
prediction of peak load. This was true whether H, and Hy were

derived from pQCT ((r?),=0.76) or MRI ((r?) 4=0.60) images.

9.4 Conclusion and future work

There are several clinical implications which may be drawn
from this work. First, it must be noted that Colles’ fracture (a
fracture of the distal 3 cm of the radius) is the most common
fracture in women less that 75 years old in the United States (Owen
et al 1982) and Northern Europe (Alffram et al 1962, Solgaard and
Petersen 1985), and particularly past the age of 40 years there is
a sharp increase in the prevalence of fractures of the distal
radius. This suggests that, with advancing age and bone loss, less
- force is required to cause a fracture during a fall. When compared

with age-matched control subjects, studies of patients with a
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Colles fracture have found relatively small reductions in bone
mineral density at the distal radius which restricts the degree to
which these subjects can be discriminated from the normal
population. (Harma and Karjalainen 1986, Eastell et al 1989,
Gardsell et al 1989).

In contrast, the structural parameters proposed in this work
better discriminated Colles fracture patients than did measures of
bone mineral density (Gordon et al 1996) . Furthermore, these
parameters were sufficiently sensitive to detect age related
changes in trabecular architecture (Gordon et al 1997). Therefore,
these structural indices may represent a potentially exciting and
promising means of discriminating fracture outcomes and monitoring
normal changes in trabecular bone structure. This potential should
be explored at other clinically relevant sites such as the lumbar
spine and the hip.

To further the assessment of trabecular architecture the
possibility of obtaining three dimensional architectural
information from contiguous images should be explored. Exploring
such avenues will advance the possibility of routine in-vivo

assessments of trabecular architecture into the clinical arena.
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APPENDIX B

C CODE FOR pQCT TO MUMC DISPLAY FILE CONVERSION

This routine converts the raw pQCT image data file which can
be downloaded from the scanner onto a diskette. The data file is
then copied onto a Sun workstation which runs this conversion
program "wrist2". Wrist2 converts the raw pQCT data file into a

data format which is readable by MUMC display.



#include <stdio.h>
#$include <fentl.h>
finclude <malloc.h>
main (argc, argv)
int argc;

char *argv([];

{

if

/*

/*

/*

int i, j;

short int *buf;

int £dl1, fd2;

short int image[256](256];

short int image2([256](256];

short int image3[256]([256];
unsigned char *ps, *pt;

if (argc<2) { printf("TYPE: rdimg <filel> \n \n"); exit (0);

printf ("\n");

fdl=open(argv[1l], 0);
(fdl==-1) { printf("\n error \n"); exit (0); }

fd2=open(argv(2],0_RDWR|O_CREAT, 0000644) ;

for (i=0; i<254;i++)
{
read (£d1, ( char*) image[i], 508);

}
Swap bytes for DOS to UNIX transfer */
ps=image [0];
pt=image2 (0] ;
swab (ps,pt, 2*65536) ;

Threshold to get rid of negative CT values */
for (i=0;i<256; i++)
for (j=0; j<256; j++)

}

{ if (((int) image2[i])[j] > 2500 )| ({int) image2(i] [j] <0))

image2(i] [j]=0;}

Swap rows and columns */
for (i=0;1i<256;i++)
for(3=0; j<256; j++)
{image3([j]l[i] =image2[i][j];}

printf ("Writing to MUMC DISPLAY ....\n");

for (i=255; i>=0;i--)
{ write(fd2, (char*)image3([i],512);}

close (£dl);
close (£d2);
exit (0);
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APPENDIX C
C CODE FOR pQCT IMAGE SEGMENTATION

The segmentation algorithm is named "stratec3". The user is

prompted with a menu of segmentation options during analysis.



#include <stdio.h>
#include <fcntl.h>
#include <math.h>
#include <sys/stat.h>
#include <sys/types.h>
tinclude <sys/uio.h>

unsigned char Struct_element [2] [2]={

i
main(argc, argv)
int argc;
char *argv(];
{ int i, j;
FILE *results;
char *buf2, fpoint2;
char out_file[25],in_file[25];
char subject_namel[25],subject_nam92[25],output_file[ZS];
char comment1(75], comment2([75], comment3[75];
short int *buf;
int fdi1, f£d2;
short int image[256][256],out_image[256][256],out_image2[256][256];
short in image[256] [256]; .
short int temp_image[256][256],in_image2[256][256], image_temp [256] [256];
int msk[9],mm[5][5],holes[500],hole_number,k,ends;
short corners(10], x1,x2,y1,y2;
short int x c,y_c;
short display_size,total_area,size=256,c,nd,std_ct;
int mean_soft,soft,sum_soft_t,soft_t,cortical_t,out_of_plane;

int bone_contour=0,trab_area=0,cort_area=0,outer_contour=0,cortical_try=0,contournflag;

int contour_breaks,y_l,y_2,x_1,x_2;
short sum_std, cortical;
char *in, *out;
double trab t;

float mean,std,trabecular_area,cortical_area,total_bone_area,bone_pixels,TBV,PERI_C,ENDO_

float CRT_THK, R_out, R_in,PERI_CIRC,ENDO_CIRC, I_CIRC;
char reply;
int x=1,y=1;
if (argc<2) { printf("TYPE: stratec2 <filel> \n \n"); exit (0); }
printf("\n");

fdl=open (argv{l], 0);
if (fdl==-1) { printf("\n error \n"); exit(0); }

fd2=open(argv (2], 1);

for (i=0; i<256;i++){(
read (fd1, ( char*)image(i], 512);
}

for (i=0;i<size;i++)
for (j=0; j<size; j++) {
in_image(i] [jl=image[i] [j];
/* printf("sd", image([i] [j)); */
}

/* open output file results.dat */
printf ("Enter name of output file to write results:> "y
scanf ("%24s", output_file);

printf ("Name of subject being analyzed: \n");
scanf ("%s %s",subject_namel,subject_nameZ); getchar();
printf ("Input additional comments (3 lines expected) : \n");

gets (commentl) ;
gets (comment2) ;



gets (comment3) ;

if ((results=fopen(output_file,"W")) == (FILE *) NULL) (
printf ("File Error");
exit (1);

}
fprintf(results,"RESULTs For: %s %s\n",subject_namel,subject_nameZ);

fprintf(results," File: %s\n",output_file);
printf(results," \n");
fprintf (results, " COMMENTS \n");

fputs(commentl,results);
fprintf(results,"\n");
fputs(commentz,results);
fprintf(results,"\n");
fputs(comment3,results);
fprintf(results,"\n");

fprintf(results, "————— -—=\n");

do {

printf("\n <———- BONE STRUCTURE ANALYSIS -——-> \n");

printf("\n ( MAIN MENU ) \n\n");

printf (" a. - Define ROI sub-image ....... (#10) \n");

printf(" b. - Region Grow ................ (#11) \n");

printf(" €. — Contour Bone ............... (#12) \n");

printf (" d. - Calculate Trabecular area .. (#13)\n");

printf (" €. - Moments of Inertia ......... (#14)\n") ;

printf (v f. - Adaptive threshold ......... (#15) \n");

printf (" g. - Count holes in network \n");

printf (" h. - Skeleton by ZHANG-SUEN ..... (#17) \n") ;

printf (" i. - Indices of structure ....... (#20) \n") ;

printf (" q. - Quit\n");

printf ("\n What is your selection ? ¥);
reply=getchar();
printf("\n");

switch(reply) {

case ‘a’:
region_of_interest(image,out_image,corners);
Xl=corners(0]; yl=corners(1];
X2=corners [2]; y2=corners([3];
out="/MUMC/remotel/SSS_lO.img“;
write_image(out,out_image,256);
break;

case "b’:
x=(x1+x2) /2; y=(yl+y2)/2;
printf("\n Growing region...."3;
maximum(out_image,size,corners);
x=corners|[0); y=corners{1];
cortical t=corners(2];
cortical_t=0.45*cortical_t;
soft_t-l.25*15*histogram(out_image,256,15);
Soft_t=0.5*cortical_t;
soft_t=400; /* soft tissue threshold */
total_areaagrow_region(out_image,226,256,x,y,soft_t);

/* Make sure that a big enough area is grown */

c=1;

while (total_area <500) {
in="/MUMC/remote1/555_10.img";
read_image(in,out_image,ZSG);
total_area=grow_region(out_image,256,256,y+c,x+c,so
C++;

}

for (i=yl;i<=y2;i++)

for (J=x1; j<=x2; j++) {
if(out_image[i][j]==3000)
else |
out_image([i][j]=0;



Sum_soft_t=sum_soft_t+in_image[i] [j];
}

mean _soft=(sum_soft_t/soft);
out="/MUMC/remote1/555_11.img";
write_image (out, out_image, 256) ;
break;

case ‘¢’ :

/* calculate cortical threshold

/* remove isolated bits of bone

in="/MUMC/remote1/555_10.img";
read_image (in, out_image, 256) ;
clean_image (out_image, 256) ;
*/
maximum(out_image,size,corners);
x=corners([0]; y=corners(1}];
cortical_t=corners(2];
cortical_t=0.4*cortical_t;
/*cortical_t=600;*/
cortical_t=cortical_t—(cortical_try*ZO);
printf(" Cortical Threshold=%d\n",cortical_t);
for (i=1; i<=9; i++)
msk([i)=1;

convolve_mask(out_image,msk,9,xl,x2,y1,y2);
for (i=0;i<size;i++)

for (j=0;j<size; j++) {

temp_image[i][j]=out_image[i][j];
out_image([i] (j]=0;
}

/*printf(" Input cortical and subcortical T\n");
scanf("%d",&cortical_t);*/
get_cortex(temp_image,out_image,size,xl,xz,yl,yz,cortical_t
clean_image(temp_image,256);

grow_region(temp_image,256,256,x,y,100);
for (i=yl;i<=y2;i++)
for (j=x1;j<=x2;j++) {
if (temp_image[i] [j]==3000)
else {
temp_image([i] [j]=0;

|4
out-"/MUMC/remotel/SSS_lz.img";
write_image(out.temp_image,zssg;
printf£(™ \n");

printf(" ******t*********Q*t****t**t**t******i**"t
printf (" * OPEN DISPLAY AND VERIFY THAT CONTOUR IS
printf (" * IN IMAGE #12

printf(" ***ifii************tf****tt*i**********ii

printf(" \n");
Printf("Is contour broken 2 (1=YES 0=NO)\n");
scanf ("%d", scontour_flag);
if (contour_flag==1) {
printf("How many sets of breaks to close ?\n");
scanf ("%d", &contour_breaks) ;
for (k=1; k<= contour _breaks; k++) {
printf("Input co-ordinates of end #1\n"};
scanf ("%d %d",sy_1,8x_1); /* ordinates ar.
printf("Input co-ordinates of end #2\n");
scanf ("%d %d",ey_2,8x_2);
printf("Closing ...... break # %d\n",k);
close_contour(temp_image,size,x_l,x_z,y_l,y

}
out="/MUMC/remotel/SSS_lZ.img";



write_image (out, temp_image, 256);
/* remove isolated bits of bone */
grow_region(temp_image,256,256,x,y,100);
for (i=y1; i<=y2;i++)
for (J=x1; j<=x2; j++) {
if (temp_image[i] [§]1==3000)
else {
temp_image([i] (j]1=0;
}
}
out="/MUMC/remotel/555 12.img";
write_image(out,temp_image,256);
/* outline inner and outer contour */
in="/MUMC/remote1/555_12.img";
read_image (in, out_image, 256) ;
for (i=0;i<size;i++)
for (3=0; j<size; j++) {
if (out_image[i] [j]==255) {
/* count cortical area */ COrt_area++;
}
temp_image(i] [§]=0;

distance_transform(out_image,256);
for (i=0;i<size;i++)
for (3=0; j<size; j++) {
if(out_image[i][j]==2) {
temp_image([i] [j1=255;
bone_contour++;
}
}
out="/MUMC/remotel/555_14.img";
write_image (out,temp_image, 256) ;
/* define outer contour */
in="/MUMC/remote1/555_12.img“;
read_image (in, temp_image, 256) ;
for (i=0;i<size;i++)

for (3j=0;j<size; j++) |

out_image([i] [j]=0;

}
contour(temp_image.out_image,size,xl,xz,yl,yz,cortical_t);.
out-"/MUMC/remotel/SSS_zz.img";
write_image(out,out_image,zss);
for (i=0;i<size;i++)

for (3=0; j<size; j++) { -
if(out_image(i] [j]==255) [
outer_contour++;
}

}

/*printf("Cortical and subcortical bone area= $d\n", cort_ar
break;
case ’'d’: -

in="/MUMC/remote1/555_12.img";
read_image(in,out_image.zss);
x=(x1+x2)/2; y=(yl+y2)/2;
/* printf("\nEntering x=%d y=%d", y,x); */
total_area=fill_contour(out_image,256,256,y,x,254);
/*printf("totalcross-sectional area= %d\n", total_area);*/
in="/MUMC/remote1/555_11.img";
read_image (in, in_image2, 256) ;
in="/MUMC/remotel/555_10.img";
read_image (in, image, 256) ;
for (i=0;i<size;i++)

for(j=0; j<size; j++) {

if (out_image{i][j]==3000) {



/* locate all bone pixels that a

/* remove inner contour from tra

image_temp (i} [jl=image(i] [j];
if (in_image2{i][j] >0){(
trab_area++;

else |
out_image(i] [j]=0;
image_temp(i][j}=0;
}
re not 8-connected */
if((out_image[i][j]==0)&&(image_temp[i][j]> soft_t)
out_image2[i] [j]1=255;
out_of plane=out_of plane+l;
}
else |{
out_image2(i] [(j]=0;
}

}

printf("Out-plane pixels= ¥d\n",out_of plane);

fprintf (results, "Number of Out-plane pixels= td\n",out_of
bone_pixels=((float) trab_area+(float)out_of_plane)*0.33*0.
total area=total_area; /* total cross-sectional area */
becular area count */
trabecular_area=(float)total_area—((float)bone_cont0ur—(flc
cortical_area=0.33*0.33*(float)cort_area;
trabecular_area=trabecular_area*o.33*0.33;
total_pone_area=cortical_area+trabecular_area;

/* Calculate circular ring parameters */

case ‘e

R_out=sqrt(total_bone_area/3.14159);

R_in=sqrt(trabecular_area/3.14159);

CRT_THK=R_out-R_in;

PERI_CIRC=2*3.14159*R_0ut;

ENDO_CIRC=2*3.14159*R_in;

I_CIRC-0.785398*((R_out*R_out*R_out*R_out)—(R_in*R_in*R_in*
Printf("Total bone area= %.2f mm2\n", total bone_ar
pPrintf("Cortical (subcort) area= %¥.2f mm2\n", cortic
printf("Trabecular area= %.2f mm2\n", trabecular_ar
fprintf (results, "Total bone area= %.2f mm2\n", tota
fprintf(tesults,“Cortical(subcort) area= %.2f mm2\n
fprintf (results, "\nTrabecular area= %.2f mm2\n", tr

TBV=(bone_pixels/trabecular_area)*100.0; .
Printf("Trabecular Bone Volume (TBV)= %.2f $%\n", T
fprintf (results, "Trabecular Bone Volume (TBV)= %.2f
fprintf (results, "\n") =

PERI_C-O.33*(float)outer_contour;

ENDO_C-0.33*((float)bone_contour-(float)outer_contour);
printf ("Periostal circumference= %.2f mm\n", PERI_C)
printf("Endostal circumference= %.2f mm\n", ENDO_C) ;

fprintf(results," GEOMETRICAL PARAMETERS————

fprintf(results, "\n");

fprintf (results," 1. CIRCULAR RING MODEL \n");

fprintf(results, " Cortical Thickness= %.2f mm\n", CRT_
fprintf(results, " Periostal Circumference= %.2f mm\n"
fprintf(results, " Endostal Circumference= %.2f rmm\n",
fprintf (results, " Axial Moment of Inertia= %.3f mm4\n

fprintf(results,“\n");

fprintf (results," 2. REAL SHAPE \n");

fprintf (results, " Periostal Circumference= %.2f mm\n"
fprintf(results, " Endostal Circumference= %.2f mm\n",
out="/MUMC/remote1/555_13.img";

write_ image (out,out_image, 256) ;
out="/MUMC/remotel/555_16.img";
write_image(out,out_image2,256);

break;

’ .



in:u/MUMC/remotel/Sss_lz.img"; /* read in cortical and sub.
read_image(in,in_image2,256);
in="/MUMC/remote1/555_10.img"; /* get original ct values =«
read_image (in, in_image, 256) ;

for (i=0;i<size;i++)
for (j=0; j<size;j++) {
out_image(i] [j]=0;
if (in_image2[i) [§]==255) (
out_image[i][j]=in_image[i][j];
}
}
x=(x1+x2) /2; y=(yl+y2)/2;
total_area=fill_contour(in_image2,256,256,y,x,254);
for (i=0;i<size;i++)
for (j=0; j<size; j++) {
if(in_image2([i] [j]==3000) {
}
}
out="/MUMC/remotel/555 21.img";
write_image(out,out_image,256);
moment_of_inertia(out_image,out_image,size,xl,x2,y1,y2,mm,c
/*x_c=mm[1] (0] /mm([0] [0]; y_c=mm([0] [1]/mm({0] (0];
printf("Centroid of cortical shell = %d ¥d\n", x_c,y_c);*/
break;

case ’'f’:

/* read in filled contour image */
in=”/MUMC/remote1/555_13.img";
read_image (in, in_image2, 256) ;
in="/MUMC/remotel/555 13.img";
read_image (in, out_image, 256) ;
optimize_contrast(out_image,256,x1,x2,y1,y2,corners[2]);

msk(1}=0; msk{2)=-1; msk[3}=0;

msk(4]=-1; msk[5]=5; msk[6]=-1;

msk([7]=0; msk(8]=-1; msk([9]=0;
convolve_mask(out_image,msk,1,x1,x2,y1,y2);
thresholding(out_image,in_imagez,256,cortical_t);
out-'/HUHC/remotel/SSS_lS.img";
write_image(out,out_image,ZSG);

/* Define only inner contour */
in="/MUMC/remotel/555_22.img";
read_image (in, in_image2, 256) ;
in-"/MUMC/remote1/555_14.img"h
read_image(in,out_image,256);
subtract_;mages(out_image,in_imagez,size);
out="/MUMC/remotel/555_8.img";
write_image(out,out_image,256);
/* add inner contour to trabecular bone */

in="/MUMC/remote1/555_15.img";
read_image (in, in_image2, 256) ;
in-"/MUMC/remotel/SSS_B.img";
read_image (in, out_image, 256) ;
add_images(out_image,in_imagez,size);
outt"/MUMC/remotel/555_15.img";
write_image(out,out_image,256);
break;

case ’'g’:
in=“/MUMC/remote1/555_15.img";
read_image(in,out_image,256);
in="/MUMC/remote1/555_16.img";
read_image(in,temp_image,256);
add_images(temp_image,out_image,256);
out="/MUMC/remote1/555_l9.img“;
write_image(out,temp_image,ZSG);



in="/MUMC/remotel/555_19.img";
read_image(in,out_image,256);
/* label border of image with value=200 */
for (i=yl;i<=y2;i++)
for (j=x1;j<=x2; j++) {
temp_image[i][j]=out_image[i][j];
temp_image [yl] [(j}=200;
temp_image [(y2] [j}1=200;
temp_image (i] [x1}=200;
temp_image [i] [x2]=200;
}
fprintf (results, " INDICES OF STRUCTURE -\n");
hole_number=hole_counter(holes,temp_image,xl,x2,y1,y2)—1;
printf(" holes detected= $d\n", hole_number) ;
fprintf (results, "Number of holes detected= $d\n", hole_number) ;
mean_std(holes,mean,std,hole_number,results);
sort (holes,hole_number, results);
break;
case "h’:
/* skeleton in plane-connected bone structure by Zhang-Suen algorithm */
in="/MUMC/remotel/555_15.img";
read_image(in,out_image,256);

thinzs (out_image, 255) ;
out="/MUMC/remotel/555_17.img";
write_image (out, out_image, 256) ;

/* skeleton out of plane bone structure by Zhang-Suen algorithm */
in="/MUMC/remote1/555_16.img";
read_image(in,temp_image,256);

thinzs (temp_image, 255) ;
out="/MUMC/remotel/SSS_lS.img";
write_image(out,temp_image,256);

/* add two skeletons together */
add_images(out_image,temp_image,size);
out="/MUMC/remote1/555_17.img"; /* overwrite image */
write_image(out,out_image,256);
break;

case "i’:
/* Calculate indices for in-plane structure */
in="/MUMC/remotel/555 17.img" =
read_image(in,out_image,ZSG);
for (i=0;i<size;i++)

for (j=0;j<size;j++) {
temp_image(i] [j)=out_image(i] [j];
out_image (i) [j]}=0;
}
printf(" *** IN PLANE STRUCTURE ***\n");
indices(temp_image,out_image,256,2§6,255,300,275,results);
out="/MUMC/remote1/555_20.img";
write_image (out,out_image, 256) ;

/* Calculate indices for out of plane structure

in="/MUMC/remote1/555_18.img";

read_image(in,out_image,256);

for (i=0;i<size;i++)

for (J=0; j<size; j++)
(temp_image[i][j]=out_image[i][j];
out_image[i][j]=0;}

printf(" *** OUT OF PLANE STRUCTURE *w*wv) .

indices(temp_image,out_image,256,256,255,300,275);'/

break;

}



} while (reply 1= 7q’);

/* Write to MUMC display file */
for (i=0; i<256;i++)

{
write(fdz, (char*)out_image(i],512);
}

close (fdl);
close (£d2);
exit (0);

}

/*¥xxxexxw4t pPunction to read a MUMC display image *****+sxxsssx/

int read_image(in_file,values,m_size)

char *in file;

short m_size.values([256] [256];

{

short int fp,i;

fp=open (in_file, 0);

for (i=0; i<m_size;i++)
{
read (fp, (char*)values[i],uLﬁize*Z);
}

close (fp);
}

[***ext*eve Punction to write image to MUMC display il bbb i

int write_image(out_file,values,m_size)

char *out_file;

short values[256][256],m_size;

( .

int fp,i;

fp-open(out_file,l);

for (i=0; i<m_size; i++)
{
write(fp, (char*)values[i],m_size*Z);
}

close(fp)} -

/****t***t*t**t* Function to Close bone Contour . tt**tfi*****t****/
int close_contour(values,m_size,rxl,rxz,ryl,ry2)

short int values[256][256],uL§ize,rxl,rxz,ryl,ryz;

{

int i, j,n=1,f;
int delta,run_length,threshold,x[3],y[3];
double slope, f_dec;

X[1l]=rxl1; xX[2)=rx2;
Y[1ll=ryl; y(2]=ry2;

/* define line between the end points */
slope= ((double) (y[2]‘y[1]))/((double)(x[2]—X[l]));
printf ("slope = ¥f\n", slope);
/* draw line between ends */
for (i=x[1); i<=x[21; i++) [
for (f=0; £<10; f++) |
f_dec=0.1+*f;
J=slope* (i+f_dec-x[1])+y([1];



values{i] [j1=255;

/* make this missing bit of contour 3 pixel widths thick */
values(i] [j~1]1=255;
values[i] [j+1]=255;
values[i~-1]([j]=255;
values[i+1] [j]=255;

}

/X**exxsx%t% Punction to perform a five point smooth bkl
int smooth_S(values,m,sf,rxl,rxz,ryl,ryz)

short int values[256][256],rxl,rx2,ry1,ry2,sf;

int m(9];

{ int i,3,k;

short int in_values([256] [256];
short int values_x[256] [256];
int x=1,h=1,y=1;
int ml,m2,m3, m4, m5, mé, m7, m8, m9;
int suml, sum2, sum3, sum4, sum$, sumé, sum7;
double sum _mask;

for (i=ryl;i<= ry2;i++)
for(j=rxl; j<= rx2;j++) |
in_values([i] [j]=values([i] []];
}

X=ryl+l;

do {

y=rxl+l;

do {
suml=(m[1l] *values [x—l][y—l])+(m[2]*values[x—1][y])+(m[3]*values[x—l][y+1]); sum2=(m[4]*
sum3=(m[7]*values[x+1][y-l])+(m[8]*values[x+1][y])+(m[9]*values[x+1][Y+1]);

sum4-values[x+2][y—2]+va1ues[x+2][y—l]+values[x+2][y]+values[x+2][y+1]+value5[x+2][y+2];
sum5=values[x—2][y—2]+values[x—2][y-1]+values[x—2][y]+values[x—2][y+1]+values[x-2][y+2];

sum6-values[x+1][y-2]+values[x][y-2]+values[x-1][Y-2];
sum7-va1ues[x+1][y+2]+values[x][y+2]+va1ues[x-1][y+2];
values_x[x][y]=(suml+sum2+sum3+sum4+sum5+sum6+sum7)/25;
if (values_x(x][y] > 32000 )
values_x[x]) [y]=0;
if (values_x[x])[y] < 0) {
values_x(x] [y]=0;

}

y=y+1;

}

while (y <=(rx2-1));
X=x+1;

} -
while (x<=(ry2-1));

for (i=ryl; i<=ry2; i++)
for (j=rxl; j<=rx2; j++) |
values(i][j]l=values_x([i][j};
if (values(il][j] <O0)
values([i] [j]=0;
}

/*rxxxexxts Punction to coenvolve image with a mask **++¢t*rsrreence,
int convolve_mask(values,m,sf,rxl,rx2,ry1,ry2)



short int values[256][256],rx1,rx2,ryl,ryz,sf;
int m([(9];
{ int i,3,k;

short int in_values(256] [256];
short int values_x[256][256];
int x=1,h=1,y=1;
int ml,m2,m3,m4,m5,m6,m7,m8,m9;
int suml, sum2, sum3;
double sum mask;

for (i=ryl;i<= Ly2; i++)
for (j=rx1; j<= rx2; j++)
{
in_values(i][j]l=values[i] [j];
}

X=ryl+l;
do

{
y=rxl+l;
do

{
suml=(m[1] *values [x—1][y—l])+(m[2]*values[x—1][y])+(m[3]*values[x—1][y+1]); sum2=(m[4]*

sum3=(m[7]*values[x+1][y-1])+(m[8]*values[x+1][y])+(m[9]*values[X+1][y+1]);
values_x[x][y]=(suml+sum2+sum3)/sf;
if (values_x([x][y] > 32000 )
values_x(x] (y}=0;
if (values_x(x](y] < 0)
{

}

y=y+1;

}

while (y <=(rx2-1));
x=x+1;

}

while (x<=(ry2-1));

values_x[x] [y]=0;

for (i=ryl; i<=ry2; i++)
for (j=rxl; j<=rx2; j++)
{
values[i] [j)=values_x[i] [j];
if (values([i] [j] <0) -
values[i][j]=0;
}

/*****xxxxx+ Punction to apply median filter to image bbb LA AL S 2 LY
int median_filter(values,in_yalues,m_size)
short int values[256][256],m_size,in_values[256]I256]; -
{ int i, j,k;
short int out_values([256][256],m[9];
int x=1,h=1,y=1,1p, size;
int row, column, num_median;
int temp;

row=m _size;
column=m_size;
/* *** Apply median filter +*%+ */
xX=2;
do
{
y=2;
do



m{O0}j=values (x-1}(y-1};
m[1]=values[x—1][y];
m[2]=values[x—1][y+1];
m{3]=values(x] [y-1];
m(4]=values([x] (y];
m(S]=values[x] (y+1];
m[6]=values[x+l][y—1];
m[7]=values[x+1][y];
m{8])=values [x+1] (y+1];
for (i=0; i < 8; ++i)
{
for (j=i+l; j < 9; ++3)
{
if (mli] > m([j)])
{
temp=m{i];
m{i]l=m(j];
m(jl=temp;

}

}
out_values([x] [yl=m(5];
y=y+1;
}
while (y <=(column-1));
x=x+1;
}

while (x<=(row-1));

for (i=0;i<m_size;i++)
for (j=0; j<m_size; j++)

values[i][j]=out_values{i][j];
}

}

int add_images (values,values2,m_size)
short int values[256][256],va1ue32[256][256],m_size;
{

int max_value, i, j;

max_value=0;

for (i=0; i< m_size; i++)

for (3=0; i< m_size; j++)

{

values[i][j]-values[i][j]+value82[i][j];
if (values[i])[j] > 255)
{values[i) [j)1=255;}

}

int subtract_images (values,values2, m_size)
short int values[256][256],value52[256][256],m_size;
{

int max_value, i, j;

max_value=0;

for (i=0; i< m_size; i++)

for (3=0;3j< m_size; j++)

values[i][j]=values[i][j]—valuesZ[i][j];
if (values[i] [§] < 0)
{values(i] [j]1=0;}



/***eexwexr Punction to determine c¢

int region_of_interest (temp_in, temp out, ct)

{

Sshort ct[lOO],temp_in[ZSG][256],temp_out[256][256];

short *buf2;

short *fpoint;

int handle, bytes, i, j;

short scale;

short display size;

char roi_file[50];
buf2=(short *) calloc(300,1);

pfintf("Enter name of roi file:> ");
scanf ("$24s", roi_file);

if ((handle=open(roi_file,O_RDONLY ))==-1) {
printf ("Error opening file.\n");
exit(1);

}
if((bytes=read(handle,buf2,200))==—1) {
printf("Read failed");

exit (1);
}
else {

printf("Read: %d bytes read.\n", bytes) ;

}

/* ** Get information from MUMC ROI file *+ */

fpoint=buf2;

for (i=0; i< 9; i++)
{fpoint++;}

display_size=*fpoint;

fpoint++;

for (i=0; i< 30; i++)({
ct(i}= *fpoint;
fpoint++;

close (handle);
scale=display_size/256;
ct[0)=ct[0]/scale;
ct[l]-(SlZ-ct[l])/scale;
ct[2])=ct[2]/scale;
ct[3]-(512-ct[3])/scale;

/* Set outside roi to 0 */

}

[rr*xtuewsvxec* Punction to find histogram of image matrix

for(i=ct([1l}; i<=ct([3]; i++)
for(j=ct[0}; j<=ct[2}; J++) {
temp_out (i) [j)=temp_in[i)[j];

int histogram(values,m_size,bin_size)
short int values[256][256],m_size,bin_size;

{

int i, j,bin,max_ct;
short int histo[256],h[256],slope[256],max[201,ct=0;

for (i=0;i<m_size;i++)
for (j=0; j<m_size; j++)

if(values[i)[j] !'=0)
{bin=values(i] [j]/bin_size;
histo[bin]=histo[bin]+l; }

orners of rectangular roi *****+*xex,

*f**t***t?t*t**/



}
/* Apply a 5-point smooth to histogram +*/
for(j=0;j<m_size;j++)

h[j]=(histo[j]+2*histo[j+1]+3*histo[j+2]+2*histo[j+3]+histo[j+4])/9;
}

for(i=4; i<m_size; i++)
{slopeli]=h(i+1]1-h(i];}
for(i=4; i<256; i++)
{
if(slope[i]>0 &s& slope[i+1]<0)
{max[ct]=i+2;
ct++;}
}
max_ct=max[0];
return(max_ct);
/*printf ("max= $d\n",max[0]); */
}

/E*¥xatxtrxrr Punction to find the maximum value of an array ****s*vewses/

int maximum (values,m_size,values2)
short int values[256][256],m_size,value52[5];
{
int max_value, i, j;
max_value=0;
for (i=0; i< m_size; i++)
for (j=0;3j< m_size; J++) {
if (values{i][j] > max_value) {
max value=values[i] [j];
values2(0])=i; values2(1]=j;
values2(2]=max_value;
}
}
/*return(max_value, xm, ym) ; */
}

/****** Punction to optimize contrast using histogram equalization fadadodad V4
int optimizeécontrast(values,m;size,rxl,rx2,ry1,ry2,max_pixel)
short int values[256][256],m;size,rxl,rxz,ryl,ryz,max_pixel;
{
short int hist([12500);
int npix, i, j;
for (i=0;i< 12500;i++)
hist [i]=0;

for (i=ryl;i<=ry2;i++)
for (j=rxl; j<=rx2; j++)
{

}

/*npix = m_size*(m_size-1) — hist[0];*/ -
npix= ((rx2-rx1)*(ry2—ry1))—hist[O];

hist [0] = 0;

hist[values[i][j]]++;

/* max_pixel=maximum(values,m_size);*/
Printf("\n Maximum ct#=%d\n", max_pixel);
printf("\n npix= $d\n", npix) ;
for (i = 1; i < max_pixel; i++)
hist(i] += hist[i-1];

for (i=0;i<m_size;i++)
for(3j=0; j<m_size; j++)

{

values[i] [j) = (hist[values[i][j]] * max_pixel/npix);



}
/r*xreeexsess Pynction to find the mean value of an array ***+*++vservay

‘Ant mean (values,m_size)
short int values([256] [256],m_size;
{
int mean_value, sum, mean_counter, i, j;
sum=0;
mean_counter=0;
for (i=0; i< m_size; i++)
for (3=0; i< m_size; j++)

if (values{i][j] !=0)
{ sum=values[i][j]+sum;
mean_counter++; }
}
mean_value=sum/mean_counter;
return(mean_value);
}

/*****************i* Function to threshold an mage **********'****/
/* Values above threshold remain the same, below T set to 0 */

int thresholding (values,values2,m size, T)
short int values[256][256],value32[256][256],nL§ize,T;
{

int i, j,counter;

for (i=0; i< m_size; i++)

for (j=0;3j< m_size; j++)

if ((values2([il[j] > T) | (values[i] {j] > 100 ))
{values[i] [j]1=255;
counter++; }

else
{values (i) [j]=0;}

[****xwxtkass Punction to determine the moments of image *****rtrwtiwwxy

int moment_pf_inertia(values,temp_image,m_size,rxl,rxz,ryl,ryz,mom,max_pixel,res)

FILE *res;

short int values[256][256],temp_image[256][256],m_size,rx1,rxz.ryl,ryz,max_pixel;
int mom([S5)([5);

int mean_value, total_sum, x,y;
int i,j,f,b_;erm,x_mean,y_mean,n_pixels;
float sumOO,sumOl,sumlo,sumll,sumzo,sumOZ,sum_x,sunLy,x_m,y_m,sum_weight;
float sum;mask,tan_;hetal,tan_thetaz,f_dec,weight;
float IX CRT_A, IY CRT_A, IXY CRT_A;
float IX_TOT W, IY_TOT W, IXY TOT W;
float IX TOT, IY_TOT, IXY_TOT;
sum00=0;
suml0=0; sum01=0;
for (x=0; x< 6; x++)
for (y=0; y< 6; y++)
{mom(x] (y)=0; }

sum_x=0.0; sum_y=0.0; n_pixels=0.0;
for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++){
if ((values[x) (y] '=0) && (values{x] [y] >=900) ) {
n_pixels++;
sum_x= (float)x+sum_x;
Sum_y=(float)y+sum_y;



}
}
x_m=sum_x/(float)n_pixels; y_m=sum_y/(float)n_pixels;
printf("centre of mass for cortical shell (non-weighted) %.2f ¥.2f\n", x_m,y m);

/* Calculate moments around X, Y, and XY axis for CORTICAL BONE*/
IX_CRT_A=0.0;
IY CRT_A=0.0;
IXY CRT_A=0.0;
for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++){
if ((values([x][y] '=0) && (values(x] [y] >=300)) { /* DEFINE PURE CORT
IX_CRT_A=IX_CRT_A+(O.1089)'(y_m—(float)y)'(y_m—(float)y)*(0
IY_CRT_A=IY_CRT_A+(O.1089)*(x_m—(float)x)*(x_m—(float)x)'(0
IXY_CRT_A=IXY_CRT_A+(O.1089)*(x_m—(float)x)'(y_mm(float)y)'
}
}

fprintf(res, " Moment of Inertia .... CORTICAL SHELL\n");
fprintf(res, " About X-axis: %.3f mm4\n", IX CRT A);
fprintf(res, " About Y-axis: %.3f mm4\n", IY CRT A);
fprintf(res, " About XY-axis: %.3f mm4\n", IXY CRT_A);

fprintf(res, "\n");
fprintf (res, "\n");

/* Calculate moments around X, Y, and XY axis for TOTAL BONE CROSS~SECTION (UNWEIGHTED)*/

/*printf ("Attenuation values will be weighted by ¥d\n", max_pixel);*/
Sum_x=0.0; sum_y=0.0; n_pixels=0;
for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++){
if ((values([x][y] !=0) && (values[x] [y] >=400))
weight=1.0;
n_pixels++;
sum_x=weight*(float)x+sum_x;
sum;y=weight*(float)y+sum;y;
}
}
x_m=sum_x/(float)n_pixels; y_m=sum_y/(float)n_pixels;
printf("centre of mass of total bone cross—section (unweighted) %.2f $.2f\n", x m,y_:
IX_TOT=0.0; IY_TOT=0.0; IXY_TOT=0.0;
for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++){
if ((values(x] (y] !=0) &6 (values([x] (y] >=400)){ /* DEFINE TOTAL BON
weight=1.0; =
Ix_TOT=Ix_TOT+weight*(0.1089)*(y_m—(float)y)'(y_m—(float)y)
IY_IOTcIY_TOT+weight*(0.1089)*(x_m—(float)x)'(x_mr(float)x)
IXY_?OTtIXY_TOT+weight*(0.1089)*(x_m—(float)x)*(y_mr(float)j

}
}
fprintf(res, " Moment of Inertia .... WHOLE BONE AREA (non—-weighted)\n") ;
fprintf (res, About X-axis: %.3f mm4\n", IX TOT);
fprintf(res, " About Y-axis: %.3f mm4\n", IY TOT); -
fprintf (res, " About XY-axis: %.3f mm4\n", IXY TOT); )

fprintf(res, "\n");
fprintf (res, "\n");

/* Calculate moments around X, Y, and XY axis for TOTAL BONE CROSS-~SECTION (WEIGHTED) */
max_pixel=1200;
Sum_x=0.0; sum _y=0.0; n_pixels=0; sum weight=0.0;
for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++) |

if ((values([x] [y] !=0)&&(values[x][y] >=400)) {
weight=(float) values([x] [y]/(£float) max_pixel;
n_pixels++;

sum_weight=weight+sum_weight;
sum_x=weight'(float)x+sum_x;



sum_y=weight'(float)y+sum_y;
}
}
X_m=sum_x/sum_weight; y_m=sum_y/sum_weight;
printf("centre of mass of total bone cross—section(weighted) §%.2f %.Zf\n",x_m,y m)
IX TOT_W=0.0; IY_TOT W=0.0; IXY TOT_W=0.0; -
for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++){
if ((values([x]{y] !=0)s&& (values [x] [y] >=400)){ /* SELECT TOTAL BON
weight=(float) values[x][y]/(float)max_pixel;
IX_TOT_W=IX_TOT_W+weight*(0.1089)'(y_m—(float)y)'(y m—(floa
IY_TOT_W=IY_TOT_W+weight'(0.1089)*(x_m—(float)x)*(x—m—(floa
IXY_TOT_W=IXY_TOT_W+weight*(0.1089)'(x_m—(float)x)*?y_m—(fl

}

fprintf(res, " Moment of Inertia .... WHOLE BONE AREA (weighted) \n");
fprintf(res," About X-axis: %.3f mm4\n", IX TOT W);
fprintf(res," About Y-axis: %.3f mm4\n", IY TOT W);
fprintf(res," About XY-axis: %.3f mm4\n", IXY TOT_W);

fprintf(res, "\n");
fprintf(res, "\n");

}

[****txter* Pynction to remove isolated points ***trrrexrw/
int clean_image (values,m_size)
short int values([256] [256],m_size;
{
int i,3j,m(9];
for (i=2; i< m_size-1; i++)
for (j=2; i< m size-1; j++)

m[0]=values[i—1][j—1];
m{l]=values[i-1][j];
m(2}=values[i-1][j+1];
m{3}=values([i] {§-1];
m{4])=values(i] [j];
m(S)=values([i] [j+1];
m{6]=values[i+1][j-1];
m[7]-values[i+1][j];
m{8]=values[i+l] [§+1];
if((m[4]-1)&&(m[O]-cl)&&(m[l]-=1)&&(m[Z]-l)&&(m[3]-=0)&&(m[iﬂ==0)&&(m[6]==0)&&(m[7l==0)&6
{values[i] [j]=0;} ,
if((m{4)==1)s& (m[0])==0) g& (m(1}==0) && (M{2)==0) &6 (m[3]==0) &5 (m{5)==0) &6 (m[6)==0) && (m[7]==0) &&
{values(i] [j]=0;}
if((m[4]-0)&&(m[0]-=1)&&(m[1]-=1)&&(m[2]-=1)&&(m[3]==1)&&(m[5]==1)&&(m[6]-=1)&&(m[7]==1)&&
{values([i] [j]=1;}

}

[rEXEEewAA kT kwe®s Punction to grow region given a seed pixel **txxtrrevxeen
int stack=0;
short int *pstack;

int grow_region (pimage,im;rows,im;columns,xc,yc,t)
short *pimage;
int im rows, im_columns;
int xc,yc;
short t;
{
int i, 3j,x,y;
short *pbuf;



pstack

= (short int *) malloc(32000);

if (pstack==NULL)

{ printf("\nGrow region: Not enough memory\n");

px_push(xc, yc);
*(pimage+(xc*im_columns)+yc)=3000;

while (stack)

{

pPx_pop (&x, &y) ;
i=(x-1) *im_columns; j=y;
if (*(pimage+i+3j)==3000) i=i;
else if (*(pimage+i+j)>=t) {
else *(pimage+i+j)=0;

i=(x+1) *im columns; j=y;
if (*(pimage+i+3j)==3000) i=i;

* (pimage+i+3j)=3000;
px_push(x-1,y);

else if (* (pimage+i+j) >=t) {* (pimage+i+3j)=3000;

else *(pimage+i+3j)=0;
i=x*im columns; j=y-1;
if (* (pimage+i+3j)==3000) i=ji;
else if (*(pimage+i+j)>=t) {
else *(pimage+i+3j)=0;
i=x*im columns; j=y+1;
if (*(pimage+i+3j)==3000) i=i;
else if (* (pimage+i+j)>=t) {

else *(pimage+i+j)=0;

/* continue for 8-connectivity */

0;

i=(x+1)*im columns; i=y-1;
if (*(pimage+i+j)==3000) i=i;
else if (*(pimage+i+3j)>=t) |

else *(pimage+i+3j)=0;
i=(x+1)*im columns; J=y+1;
if (*(pimage+i+j)==3000) i=ji;
else if (*(pimage+i+j)>=t) {
else *(pimage+i+j)=0;
i=(x-1)*im_columns; j=y-1;
if (*(pimage+i+3j)==3000) i=i;
else if (*(pimage+i+j)>=t) |
else *(pimage+i+3j)=0;
i=(x~1) *im columns; j=y+1;
if (*(pimage+i+j)==3000) i=i;

else if (* (pimage+i+j)>=t) {

else *(pimage+i+j)=0;

px_push (x+1,y);

*(pimage+i+3j)=3000;
px_push(x,y-1);

* (pimage+i+3j)=3000;
pPx_push(x, y+1);

* (pimage+i+3j)=3000;
Px_push (x+1,y-1);

*(pimage+i+3j) =3000;
px_push (x+1,y+1);

*(pimage+i+3j)=3000;
px_push(x-1,y-1);

*(pimage+i+j)=3000;
px_push(x-1,y+1);

return(-1);

}

t




for (i=0;i<im_rows'im_columns;i++)
{ if (*(pimage+i) !=3000) *(pimage+i)=0;
else x++; }
free (pstack);
return(x);
}

int px_push(x,y)
int x;
int y;
{
*pstack= (short int)x;
pstack++;
*pstack= (short int)y;
pstack++;
stack++;
/* printf("\n %d (¥d, %d) ", stack, X,¥);*/
}

int px_pop (px, py)
int *px;

int *py;

{

short int i;
pstack—;

i=*pstack;
*Py=(int)i; pstack——;
i=*pstack;
*pPx=(int)i;

stack—;

Jr¥xrretacwreers Punction to extract cortical bone il bbb S A

int get_cortéx(values,contour,mLsize,rxl,rxz,ryl,ryZ,T)
short int values[256][256],contour[256][256],m_size,rx1,rx2,ry1,ry2,T;
{

int i,j,pl,p2,p3,p4,start_pixelco;

int delta,run_length,threshold;

int temp([256] [256];

/* clear temp */
for (i=0; i< m_size; i+4) {
for (j=0;j< m_size; j++){
temp(i] {j] =0;

}
printf("Extracting cortex ..... \n");

for (i=ryl; i<=ry2; i++){

for (j=rxl; j<=rx2; j++) {
pl=values[i][j];
p2=values(i] [j+1];
pP3=values([i-1][j+1];
pd4=values (i} [j~1];
if ((PI>T)&&(p2 > T || P3>T || pd>T)){

temp[i} [j])=255;

}

}
/* save cortical shell *x/

for (i=0; i< m_size; i++)



for (3=0;j< m_size; j++) |
values{i][jl=temp[i][j];
}

/t*t*****i*****it***** Functlol’l to define bone Contour t*t*ttt*t*****ttt/
int contour(values,contour,m_size,rxl,rx2,ry1,ry2,T)
short int values[256][256],contour[256][256],m_size,rxl,rx2,ry1,ry2,T;
{
int i,j,pl,p2,p3,p4,start_pixel=0;
int delta, run_length, threshold;
int temp(256](256]);

/* clear contour */
for (i=0; i< m_size; i++){
for (j=0;j< m _size; j++) {
contour(i] [j] =0;
temp[i][j]=values[i][j];

}
printf("Extracting outer contour ..... \n");

/* define contour one pPixel thick
Scan along a row */
threshold=99;
i=ryl+2;
do {
for (j=rx1+2; j<rx2-2; j++) |
run_length=0.5*(rxl+rx2);
if (j>run_length)
{goto next_i;}

delta=temp[i][j]—temp[i][j—l];
if ((abs(delta)> threshold)) {
/*contour (i} [§-1)=255; */
contour([i] [§]=255;
goto next_i;
}
}
next_i:
i++;
}
while (i<ry2-2);

/* Scan down a column */

J=rxl+2;

do {
for (i=ryl+2;i<ry2-2;i++) {
run_length=0.5*(ry1+ry2); -
if (i>run_length)
{goto next_j;}

delta=temp[i][j]—temp[i—l][j];
if ((abs(delta)> threshold)) {
/* contour(i-1][j]=255;*/
contour[i] [j]=255;
goto next_j;}
}
next_j:
J++;
}
while(j<rx2-2);



/* Scan back along a row */
i=ryl+2;
do {
for(j=rx2-2; j>rxl+2; j--)
{
run_length=0.5*(rxl+rx2);
if (j<run_length)
{goto next_x;}
delta=temp[i][j]—temp[i][j—l];
if ((abs(delta)> threshold)) {
/* contour[i] [j]=255;*/
contour(i] [j—1]=255;
goto next x;}
}
next_x:
i++;
}
while (i<ry2-2);

/*Scan back along a column */

J=rxl+2;
do {

for(i=ry2-2; i>ryl+2; i—){
run_length=0.5*(ryl+ry2);
if (i<run_length)
{goto next _y;}
delta=temp[i][j]-temp[i—l][j];
if ((abs(delta)> threshold)) {
/*contour[i][j]=255;*/
contour([i~1](j}=255;
goto next_y;}
}
next_y:
J++;
}
while(j<rx2-2);
printf (“*end of contour\n");

/***t*t*****t**t Function to define bone cont°ur *i*tt*t*****ti**t/
int contourZ(values,contour,m;size,rxl,rxz,ryl,ryz,T)
short int values[256][256],contour[256][256],m;size,rxl,rxz,ryl,ryz,T;
{

int i,j,pl,p2,p3,p4,start_pixel=0;

int delta,run_length,threshold,l_contour-o;

int temp({256] (256];

/* clear contour */
for (i=0; i< m size; i++) |
for (3j=0;j< m_size; j++)({
contour (i} {j] =0;
values[i][j]=temp[i][j];

}
printf ("Extracting outer contour ..... \n");

/* define contour one pixel thick



Scan along a row */

threshold=99;
i=ryl+2;
do |

for (j=rx1+2; j<rx2-2; j++) {
run_length=0.5* (rxl+rx2);

if (j>run_length)

{goto next_i;}

delta=temp[i] [jl-temp(i] [j-1];
if ((abs(delta)> threshold)) {

/*contour(i] [j-1]1=255;*/
contour({i] [j]=255;
1_contour++;
goto next_i;
}

}

next_i:
i++;

}

while (i<ry2-2);

/* Scan down a column */
j=rxl1+2;
do {

for(i=ryl+2;i<ry2-2;i++) {
run_length=0.5* (ryl+ry2);
if (i>run_length)

{goto next_j;}

delta=temp(i] (jl-temp([i-1]{j};
if ((abs(delta)> threshold)) {
/* contour(i-1)[j]=255;*/
contour([i] [j]=255;
1_contour++;
goto next_j;}
}

next_j:
J++;

}

while (j<rx2-2);

/* Scan back along a row */
i=ryl+2;
do {

for (j=rx2-2; 3j>rxi1+2; j——)

{

run_length=0.5* (rxl+rx2);

if (j<run_length)
{goto next_x;}

delta=temp (i) (jl-temp([i] [j-1];

if ((abs(delta)> threshold)) {
/* contour([i] [j])=255;*/
contour (i) [j—-1]1=255;
1_contour++;
goto next_x;}

}

next_ x:
i++;

}

while(i<ry2-2);

/*Scan back along a column */

j=rxl+2;
do {



for(i=ry2-2; i>ryl+2; i~--){
run_length=0.5*(ryl+ry2);
if (i<run_length)
{goto next_y;}
delta=temp[i][j]—temp[i—l][j];
if ((abs(delta)> threshold)) {
/*contour[i][j]=255;*/
contour([i-1][j]=255;
1_contour++;
goto next y;}
}
next_y:
J++;
}
while (j<rx2-2);
printf ("end of contour");
return(l_contour);
}

[rrrxxxrrxavss Punction to Fill in contour given a seed pixel ERERA A AR A A ww
int stack2=0;
short int *pstack2;

int fill_contour(pimagez,inL;ows,im_columns,xc,yc,t)
short *pimage2;
int im_rows, im_columns;
int xc,yc;
short ¢t;
{

int i, 3j,x,y;

short *pbuf;
pstack2 = (short int ¥) malloc(32000);
if (pstack2==NULL)
{ printf("\nGrow region: Not enough memory\n"); return(-1); }

px_push2 (xc, yc) ;
*(pimage2+(xc*imL¢olumns)+yc)-3000;

while (stack2)

{ px_pop2 (&x, &y); i=(x-1) *im_columns; J=y;
if (*(pimage2+i+j)==3000) i=i;
else if (*(pimage2+i+j) <t) { * (pimage2+i+3)=3000;
pPx_push2 (x~1,y); }
else *(pimage2+i+j)=t;

i=(x+1) *im_columns; j=y;
if (*(pimage2+i+3j)==3000) i=ji;
else if (* (pimage2+i+j) <t) {*(pimage2+i+3)=3000;
PXx_push2 (x+1,vy); }
else *(pimage2+i+j)=t;

i=x*im columns; j=y-1;
if (* (pimage2+i+3j)==3000) i=i;
else if (*(pimagez+i+j) <t) { *(pimage2+i+7j)=3000;
px_push2 (x,y-1); }
else *(pimage2+i+j)=t;

i=x*im_columns; j=y+1;
if (* (pimage2+i+j)==3000) i=ji;
else if (*(pimage2+i+j) <t) { *(pimage2+i+3j)=3000;
Px_push2 (x, y+1); }
else *(pimage2+i+j)=t;



/* continue for 8-connectivity */

i=(x+1) *im_columns; j=y-1;
if (* (pimage2+i+j)==3000) i=ji;
else if (*(pimage2+i+j)<t) { *{pimage2+i+7j)=3000;
px_push2 (x+1,y-1); }
else *(pimage2+i+j)=t;

i=(x+1) *im_columns; j=y+1;
if (*(pimage2+i+3j)==3000) i=ji;
else if (*(pimage2+i+j)<t) { *(pimage2+i+7j)=3000;
px_push2 (x+1,y+1); }
else *(pimage2+i+j)=t;

i=(x~1) *im_columns; j=y-1;
if (*(pimage2+i+j)==3000) i=ji;
else if (*(pimage2+i+j)<t) { *(pimage2+i+3j)=3000;
px_push2 (x-1,y~-1); }
else *(pimage2+i+j)=t;

i=(x-1) *im_columns; j=y+1;
if (*(pimage2+i+j)==3000) i=i;
else if (*(pimage2+i+3j)<t) { *(pimage2+i+j)=3000;
pPx_push2(x-1,y+1); }
else *(pimage2+i+j)=t;

x=0;
for (1=0;i<im_rows*im columns; i++)
{ if (*(pimage2+i) !=3000 & *(pimage2+i) !=t) *(pimage2+i)=0;
else x++; }
free (pstack2);
return (x);

}
int px_push2(x,y)
int x;
int y;
{
*pstack2= (short int)x;
pstack2++;
*pstack2= (short int)y;
pstack2++;
stacka2++;
/* printf("\n %d (¥d, %d) "', stack2, x,y);*/
}

int px_pop2 (px, py)
int *px;

int *py; -
{

short int i;
pstack2--;

i=*pstack2;
*py=(int)i; pstack2--;
i=*pstack2;
*px=(int)i;

stack2--;

/***it**ttt*tf*fit E‘unction to apply an adaptive threshold tttt*t***ittft*it'/



int adaptive_t(in_values,values,m_size)

short values[256][256],in_values[256][256],m_size;
{

int i,j,k,x,y,mask=4,sf=9;

int suml, sum2, sum3;

short values_x[256])[256];

for (k=1; k<=mask; k++)
{

x=2;

do

{

y=2;

do

{
sum1=(values[x—1][y—l])+(value5[x—1][y])+(values[x—1][y+1]);
sum3=(values[x+l][y—1])+(values[x+l][Y])+(Values[x+11[Y+1])i
values_x[x][y]=(5um1+sum2+sum3)/sf;
if (values x([x][y] > 32000 )

values_x[x] (y]=0;
if (values_xI[x][y] < 0)
{
values_x[x][y]=0;

}

y=y+1;

}

while (y <=(m_size-1));

=x+1;

}

while (x<=(m_size-1));

for (i=0; i<m_size; i++)

for (j=0; j<m_size; j++)
{
values[i][j]=values_x[i][j];

}

/* apply an adaptive threshold to create a binary image */
for (i=0;i<m_size;i++)
for (j=0; j<m_size; j++)

if ( in_values[i](j] > values_x(i}(j])
values([i] [j]=1;

else -
values[i] [j]=0;

}
/**** Function to implement the Euclidean distance transform *#*+*/

int distance transform(values,m_size)

short int values[256][256],m_size;
{

int el,e2,e3,e4,e5,min_pixel=0;
int i, j;

/*** Apply Euclidean (2-3)distance transform krxy/
/** Forward raster scan **y/

i=2;

do {
i=2;
do {

el=2+values(i] [j~-1];
min_pixel=el;
e2=3+values[i—l][j—ll;



}

if (e2 < min_pixel) |
min _pixel=e2;

}

e3=2+values[i-1}[]];

if (e3 < min_pixel) {
min_pixel=e3;

}

ed4=3+values[i-1] [j+1];

if (e4 < min_pixel) |{
min_pixel=e4;

}

e5=values (i) [j];

if (eSS == 0) {
min_pixel=0;

}

values([i] [jl=min_pixel;

j=j+1;

while (j <= m_size-1);

i=i+l;

}

while (i <= m_size-1);

/*** Reverse raster scan rkxy

i=m_size-1;

do {

j=m_size-1;

do

}

{

el=2+values([i] [j+1];
min_pixel=el;
e2=3+values(i+1] [j+1];
if (e2 < min_pixel) {
min_pixel=e2;
}
e3=2+values(i+1][j];
if (e3 < min_pixel) {
min_pixel=e3;
}
e4=3+values[i+l)([j-1];
if (e4 < min_pixel) {
min_pixel=e4;
}
eS5=values (i) [j];
if (e5 < min_pixel) {
min _pixel=e5;
}
values[i][j]=min_pixel;
J=3-1;

while (j >= 2);

i=i-1;

}

while (i >= 2);

}

/* Routine to determine the number of regions connected by (i, j)

int crossing_index(values, ii, jj)
short int values([256] [256]);

int ii, ji;

int i, j,count;
short int k;

*/



count=0;
/* start at position 8 */
i=ii-1; j=jj-1; k=values([i][j];

/* move clockwise around (i1, 33), counting level changes */

j++; /* move to (i-1, 3) =*/

if (k !=values(i][j] ) {k=values [i] [j]; count++;}
j++; /* move to (i~-1, §+1) =/

if (k !=values[i] [j] ) {k=values([i] [j]; count++;}
i++; /* move to (1, j+1) =/

if (k !=values([i]([j] ) {k=values[i] [j]; count++;}
i++; /* move to (i+1, j+1) =/

if (k !=values{i][j] ) {k=values[i] [j]; count++;}
j—:; /* move to (i+1, §) =/

if (k !=values(i][j] ) {k=values[i] [j]; count++;}
j==; /* move to (i+1, §=1) =/

if (k !=values[i] [j] ) {k=values[i] [j]; count++; }
i-—; /* move to (i, 3=1) =/

if (k !=values([i][j] ) {k=values[i] [j]; count++;}
i—; /* move to (i-1, j=1) =/

if (k !=values[i] (]} ) {k=values[i) [j]; count++;}
return count/2;

/* Routine to determine the number of 8-nearest neigbbours to (i, j) */

int nay8(values, i, j, val)
short int values{[256] [256];
int i, j,val;

{

int k;

k=0 ;

if(i <1 |} i >=255) return 0;
if(j <1 || j >=255) return 0;

if(values({i])[j]!= val) return Q;
if(values[i-l][j]-val) k++;

if(values[i—l][j+1]=-val) k++;

if(values(i) [j+1)==val) k++;

if(values(i+l] [j+1]==val) k++; -
if(values[i+1][j]-val) k++;

if(values[i+1][j—l]-val) k++;

if(values[i][j-l]-val) k++;

if(values[i-l][j—1]-val) k++;

return k;

<

/* Zhang-Suen type of thinning procedure. Thin region labelled VAL */

int thinzs(values, val)
short int values([256] [256];
int val;
{
int i,j,n,again,bg;
short int value52[256][256];

bg=0;

/* clear second image space to 0 */
for(i=0; i<256; i++)



for (j=0; j<256; j++)
{values2([i] [j]=0;}
. }

/* copy original image to second image space */

for (i=0; i<256; i++)
{
for(j=0; 3j<256; j++)
{valuesZ[i][j]=values[i][j]i}

do{

/* first pass through image */
again=0;
for (i=0; i<256; i++){
for(j=0; j<256; j++) |
if(valuesZ[i][j]!=val) continue;
n=nay8(value52,i,j,val);
if( (n >=2 ) g& (n <=6)) {
if(crossing_index(valuesz,i,j)==1) {
if((valuesZ[i—l][j]==bg)ll
(values2(i] [j+1]==bqg) ||
(values2([i+l1] [jl==bg)) {
if((valuesZ[i][j+1]==bg)lI
(values2([i+1] [j]==bqg) ||
(values2([i]) [j-1)==bg)) {
values[i][j]=bg;
again=1;

}
/* copy original image to second image space */
for(i=0; i<256; i++)

for(j=0; 3j<256; j++)
{values2[i][j]-values[i][j];}

/* second pass through image */

for(i=0; i<256; i++){(
for(j=0; 3j<256; j++) {
if(values[i)[j]!=val) continue;
n=nay8 (values, i, j,val);
if( (n >=2 ) g& (n <=6)) |
if(crossing_index(values,i,j)==1) {
if((values[i—l][j]==bg)II
(values([i] [j+1]}==bgqg) ||
(values([i] [j-1]==bqg)) {
if((values[i-1][j)==bq) ||
(values[i+1][j]==bg)ll
(values[i][j—l]==bg)) {
values2(i] [j]=bg;
again=1;
}



/* copy second image to original image space */

for(i=0; i<256; i++)
{
for(j=0; j<256; j++)
{values[i][j]=value52[i][j];}
}
} while (again);

}

[*rr*xrrrswewr Punction to check for node points ***rerrrraves,

int indices(in_values,values,rows,columns,val,nd_label,fe_label,res_file)
short values[256][256],in_values[256][256];

int rows, columns, nd_label, fe_label, val;

FILE *res_file;

{

int X,y,node_sum, node=0, free_ends=0;

int i,j,isolated_points=0,network_length=0,m[9];

int k, count;

float Ci1;

for(i=0; i<=9; i++)
m{i}=0; /* clear m to 0 */

for (i=0; i<rows;i++)
for (j=0; j<columns; j++) {
values([i}{j)=0; /* clear values to 0 */
if (in_values[i][j)==val){
values([i]) [j]=100;
network length++;

}

for (x=2; x<=(rows-1); x++)
for (y=2; y <= (columns-1); y++) {
/* first make sure that two adjacent points are not both identifies as nodes */
if (values([x](y]==0) continue; s
if (values [x-1]) {y-1)==nd_label) continue;
if (values([x-1]([y]==nd_label) continue;
if(values[x-l][y+1]-nd_label) continue;
if (values [x] ([y-1)==nd_label) continue;
if (values(x] [y+1]==nd_label) continue;
if (values[x+1] [y-1)}==nd_label) continue;
if (values[x+1]) [y)==nd_label) continue;
if (values([x+1] [y+1]==nd_label) continue; -

/* start at position 8 */
count=0; i=x-1; j=y-1; k=values(i]{j];
/* move clockwise around (ii,3jj), counting level changes */

j++; /* move to (i-1,3) =7/

if (k !=values{i][j] ) {k=values{i] [j]; count++;}
j++; /* move to (i-1, j+1) =/

if (k !=values[i] {j] ) (k=values([i] [j]; count++;}
i++; /* move to (i, 3+1) =/

if (k !=values(i][j] ) {k=values[i} [j]; count++;}
i++; /* move to (i+1, j+1) =/
if (k !=values(i][j) ) {k=values[i][j]; count++;}

J—=i /* move to (i+l, 3y */



if (k !'=valuesij[jj] ){k=values[i][j]; counc+=+;
j=—:7 /* move to (i+1,3-1) =/

if (k '=values{i][j] ){k=values[i][3i]; count+=;}
i-—-; /* move to (i,3-1) =/

if (k !=values{ij[j] ) {k=values{i] {j}; count++;}
i-——; /* move to (i-1,j-1) =/

if (k !=values[i][j] ){k=values[i][j]; count++;

if (count >=6) {
values(x] (y)=nd_label; /* label nodes "/
node++;

}

/* Score for free ends and isolated points */
node_sum=0;
for (x=2; x<=(rows-1); x++)
for (y=2; y <= (columns-1); y++) {
m{0]=in_values (x-1][y~1};
m(1l]=in_values([x-1][y];
m(2]=in_values[x-1] [y+1];
m{3]=in_values(x] [y-1];
m[4]=in_values(x] [y];
m{5]=in_values[x] [y+1];
m(6]=in_values[x+1] [y-1];
m(7)}=in_values[x+1] [y];
m(8]=in_values(x+1] [y+1];
node_sumzm[O]+m[1]+m[2]+m[3]+m[5]+m[6]+m[7]+m[8];
i£((m{4]>0) && (node_sum==val)) {
values(x] [yl=fe_label; /* label free ends */
free_ends++;
}
if((m[4]>0) && (node sum==0)) |
isolated_points++;
b
if((m[4]>0)&&(m[5]==val)&&(m[7]==val)&&(m[8]==val)) {
values(x](y]=nd_label; /* label nodes */
node++;

}
CI=(((float)node—(float)free_ends-(float)isolated_points)/(float)network_length)*100.0;

printf ("Network length= td\n",network_length); H

printf("Nodes= %d\n", node);

printf("Free ends= $d\n", free_ends);

printf("Isolated points=%¥d\n", isolated points);

printf("Connectivity Index= %.2f\n", CI);

fprintf(res_file," \n");

fprintf(res_file, "Network length= td\n", network_length) ;

fprintf(res_file, "Nodes= %d\n", node) ;

fprintf(res_file, "Free ends= td\n", free_ends) ; -

fprintf(res_file, "Isolated points=%¥d\n", isolated_points);

fprintf(res_file,"Connectivity Index= %.2f\n", CI);
return(node} ;

}

/*retxeevseess Function to check that contour is closed *e*rerrscecereesy
int contour_check(in_values,values,rows,columns,val,fe_label)

short values[256l[256],in_values[256][2561;

int rows,columns, fe label,val;

{

int X,Y¥.,node_sum, node=0, free_ends=0;

int i,j.isolated_points=0,network_length=0,m[9];

int k, count;



for(i=0; i<=9; i++)
m[i}=0; /* clear m to 0 */

/* Score for free ends */
node_sum=0;
for (x=2; x<=(rows—-1); x++)
for (y=2; y <= (columns-1) ; y++) |
values([x] [y]=0;
}

for (x=2; x<=(rows-1); X++)
for (y=2; y <= (columns-1); y++) |
m(0]=in_values (x-1]([y-1];
m[1]=in_values[x—1][y];
m[2]=in_va1ues[x-1][y+1];
m{3]=in_values[x] (y-1];
m[4]=in_values[x][y];
m[5]=in_values[x][y+1];
m[6]=in_values[x+1][y-l];
m[7]=in_values[x+1][y];
m(8]=in_values(x+1] [y+1];
node_sum:m[0]+m[1]+m[2]+m[3]+m[5]+m[6]+m[7]+m[8];
1f((m{4])>0) && (node_sum==val)) {
values(x] [y]=fe_label; /* label free ends
free_ends++;

}
return(free_ends);

}

/*** Routine to count holes in binary image ***/

int hole_counter(h,values,rxl,rx2,ryl,ryZ)
short int values[256][256],rx1,rx2,ty1,ry2;
int h(500];

{

int i, j, count=0,valel;

for(i=0; i<500; i++)
hii]=0; /* clear h to 0 */

for (i=ryl+2; i<ry2;i++) -
for (j=rx1+2 ; J<rx2; j++) {(
if (values(i][j] !=0) continue;

/* printf("x and y= %d %d\n", i,j); */ .
hlcount]=£ill hole (values, 256,256,1, j,0,val);
/* printf ("counts= ¥d\n", count);
printf("area of hole= td\n", h{count]);
printf ("seeds were %d sd\n", i, j); */

count++;
val +=1;
}
return count;
}

/t****** Function fill hole by region grow given a seed pixel **++*stevr,

int stack3=0;
short int *pstack3;

int fill hole (pimage, im

LOWS, im columns, XC,yc,t,val)
— —_ b 4
short 'pimage;

*/



int im_rows, im_columns;
int xc, yc;
short t,val;
.‘{
int i, jr X, yY;
short *pbuf;

pstack3 = (short int *) malloc(32000);
if (pstack3==NULL)
{ printf ("\nGrow region: Not enough memory\n"); return(-1); }

pPx_push3(xc, yc);
*(pimage+(xc*im_columns)+yc)=val;

while(stack3)
{
Px_pop3(&x, &y) ;

i=(x~1)*im_columns; i=y;
if (* (pimage+i+j)==val) i=i;
else if (* (pimage+i+j) <=t) { *(pimage+i+j)=val;
pPx_push3(x-1,y); }
else *(pimage+i+j)=*(pimage+i+J);

i=(x+1) *im columns; i=y;
if (*(pimage+i+j)==val) i=i;
else if (* (pimage+i+j) <=t) {*(pimage+i+j)=val;
pPx_push3(x+1,y); }
else *(pimage+i+j)=*(pimage+i+j);

i=x*im columns; J=y-1;
if (* (pimage+i+j) ==val) i=i;
else if (*(pimage+i+j)<=t) { *(pimage+i+j)=val;
px_push3(x,y-1); }
else *(pimage+i+j)=*(pimage+i+j);

i=x*im columns; j=y+1;
if (* (pimage+i+j)==val) i=i;
else if (* (pimage+i+j) <=t) { *(pimage+i+j)=val;
Px_push3(x,y+1); }
else *(pimage+i+j)-*(pimage+i+j);

x=0;
for (1=0;i<im_rows*im_columns; i++)
{ if (*(pimage+i) !'=val) *(pimage+i)=*(pimage+i);
else x++; }

free(pstack3);
return (x) ;
}

int px_push3(x,y)
int x;
int y;
{
*pstack3= (short int)x;
pstack3++;
*pstack3= (short int)y;
pstack3++;
stack3++;
/*printf("\n %d (%d, %d) ", stack3, X,Y)i*/
}

int px_pop3(px, py)
int *px;



int *py;

{
short int i;
pstack3-—;
i=*pstack3;
*Py=(int)i; pstack3——;
i=*pstack3;
*Px=(int)i;
stack3—-;

/****** Punction to calculate mean and standard deviation of an array **x*x/

int mean_std(values,m,std,count,res_file)

int values([500], count;

float m, std;

FILE *res_file;

{

int i, sum=0;

double sum_std=0.0;

for (i=1; i<= count; i++) /* calculate mean */
{sum +=values[i];}

m=(sum/((float)count))*0.33*0.33;

printf("\n MEAN =%.2f mm2\n", m);

fprintf(res_file, "\nMean hole Size=%.2f mm2\n", m);

for (i=1;i<=count;i++) { /* calculate standard deviation */
sum_std=sum_std+((values[i]—m)*(values[i]—m));}
sum_std=sum_std/ (count-1);
std=sqrt(sum_std);
/*printf ("STD =%f\n", std); */

/****** Punction to sort an array of integers in ascending order ****x*x/
int sort(a,n,res_file)
int a({500],n;
FILE *res_file;
{
int i, j, temp;
float min,max,median;
for (i=0; i<=(n-1); ++i)

for (j=i+l; j<=n; ++j) | s
if (alil)>a[j]) {
temp=a([i];
alil=afj];
afj]l=temp;

}

}
min=(float) a([0]*0.33*0.33;
max=(float) a(n-1]*0.33*0.33;
median=(float) a[n/2]1*0.33%0.33;
printf ("Minimum= %.2f mm2\n", min);
printf ("Maximum= %.2f mm2\n", max);
printf("Median= %.2f mm2\n", median) ;
fprintf(res_file, "Median= %.2f mm2\n", median);
fprintf(res_file, "Minimum= %.2f mm2\n", min);
fprintf(res_file, "Maximum= %.2f mm2\n", max);

/* morphological operations */



int dilation(pimage, n_bytes, im_rows, im columns, pelem, elem rows,elem columns)
int n_bytes, im rows, im_columns, elem_rows, elem_columns;
unsigned char *pimage, *pelem;

{

/*

/*

int i,3j,x,y, h_rows, h_col, sum, itemp, total, el temp, im temp, value;
short int ival, *pbi, *pimage2, *pi;
unsigned char cval, *pbuf, *pcimage2, *pci, ctemp;

if (n_bytes==1) pbuf = pimage;
else if (n_bytes==2) pbi = (short int *) pimage;
else return(-2);

total=im;rows*im;columns; ival=0; cval=0; 3j=0;
do { if (n_bytes==2) ival=*pbi++;

else cval=*pbuf++; j++; } while(!ival && !cval && j<total);
printf("\n first no-zero value at ¥d (%d sd)", 7, im_rows,im_columns); */
if (!ival && !cval) return(-3);

total=im_rows*im_columns*n_bytes;
pcimage2=(unsigned char ¥) malloc(total); /* get memory for new image */
if (pcimage2==NULL) return(-1);

pimage2=(short int *) pcimage2;

pbuf=pcimage2; for(i=0;i<total;i++) *pbuf++=0;
h_rows=elem_rows/2; h_col=elem columns/2;

pbi = (short int ¥*) pimage;
x=h_rows;
do { y=h_col;
do { sum=0;
pbuf=pelem;
for (i=0;i<elem_rows;i++)
for (3=0; j<elem_columns; j++)
{ el_temp=(int) (*pbuf); pbuf++;
if (n_bytes==2)
im temp=(int) (* (pbi+(x~h_rows+i) *im columns
+y-h_col+j) );
else im temp=(int) (* (pimage+ (x—h_rows+i) *im_columns
+y-h_col+j) );
itemp = el temp*im_temp;
sum += jitemp; }

if (sum) { if (n_bytes==2)

*(pimage2+x*im_columns+y) = igal;
else
*(pcimagez+x*im_columns+y) = cval;
}
yt+;
} while (y < im_columns—h_col);
X++;
} while (x < im_rows-h_rows) ;

pbuf=pimage; pci=pcimage2; j=0;
pbi=(short int *) pimage; pi=pimage2;
total=im;rows*im_columns*n_bytes;
for(i=0;i<total;i++) *pbuf++ = *pci++;

{ if (n_bytes==2)
{ if (*pi &s !j)

{ printf(" \n first no zero at %d (%d) ", (int)*pci, i); j=1; 1}
*Pbi++=*pi++; }
else
{ if (*pci && !'3)
{ printf(" \n first no zero at %d (%d) ", (int)*pci, i); j=1; 1}

*pbuf++ = *pci++; |}



*/
value=ival + (int)cval;
free (pcimage2) ;
return(value) ;

int erosion(pimage, n_bytes, im_rows, im_columns, pelem,elem;rows,elem_columns
int n_bytes, im rows, im_columns, elem rows, elem columns;
unsigned char *pimage, *pelem;
{ int i,j,x,y, h_rows, h_col, sum, itemp, total, el_temp, im temp, value;
int el _sum;
short int ival, *pbi, *pimage2;
unsigned char cval, *pbuf, *pcimage2, *pci, ctemp;

if (n_bytes==1) pbuf = pimage;
else if (n_bytes==2) pbi = (short int *) pimage;
else return(-2);

i=im rows*im columns; ival=0; cval=0;
do { if (n_bytes==2) ival=*pbi++;
else cval=*pbuf++; i——; } while(!ival &§ !cval &t 1i);
if (!ival && !cval) return(-3);
value=ival + (int)cval;

total=im_rows*im_columns*n_bytes;
pcimage2=(unsigned char *) malloc(total); /* get memory for new image
if (pcimage2==NULL) return(-1);

pimage2=(short int *) Pcimage2;

pbuf=pcimage2; for (i=0;i<total;i++) *pbuf++=0;
pbuf=pelem; el sum=0;
for(i=0;i<elem_rows*elem_columns;i++)
{ 3=(int) (*pbuf); el_sum += j; pbuf++; }
el_sum = el_sum * value;
/* printf("\n ival=%d cval=%d value=%d el_sum=%d\n", ival, (int)cval,
value, el_sum);
*/
h_rows=elem rows/2; h_col=elem columns/2;
pbi = (short int +) pimage;
x=h_rows;
do { y=h_col; -
do { sum=0;
pbuf=pelem;
for (i=0;i<elem_rows; i++)
for (j=0;j<elem_columns;j++)
{ el_temp=(int) (*pbuf); pbuf++;
if (n_bytes==2)
im_temp=(int) (*(pbi+(x—h_rows+i)*im_columns
ty-h_col+j) ); -
else im temp=(int) (*(pimage+(x—h_rows+i)*im_columns
+y-h_col+j) );
itemp = el _temp*im temp;
sum += itemp; |}
/* if (sum) printf("\n %4 ¥d %d ", X,y,sum); */

if (sum == el sum)
{ if (n_bytes==2)
*(pimage2+x*im columns+y)=ival;
else
*(pcimage2+x*im_columns+y)=cval;
}
yt+;

} while (y < im_columns-h_col);
X++;

)

*/



} while (x < im_rows-h_rows);

pbuf=pimage; pci=pcimage2;
. for(i=0;i<total;i++) *pbuf++ = *pci++;
7+ { if (*pci) printf(" %d (%d) ", (int)*peci, 1i);
*pbuf++ = *pci++; |}
*/
free (pcimage?2) ;
return(value);

int morph_open (pimage, n_bytes, im rows,im col, pelem, elem_rows,elem col)
int n_bytes, im_rows, im_col, elem_rows, elem col;

unsigned char *pimage, *pelem;

{ int i;

i=erosion (pimage, n_bytes, im_rows,
im col, pelem,elem_ rows,elem col);
if (i>0)
i=dilation (pimage, n_bytes, im_rows,
im col, pelem, elem_ rows,elem col);
return(i);

int morph_close(pimage, n_bytes, im_rows, im_col, pelem, elem_rows,elem_col)

int n_bytes, im_rows, im col, elem_rows, elem_col;

unsigned char *pimage, *pelem;
{ int i;

i=dilation (pimage, n_bytes, im_rows, im_col,
pelem,elem_rows,elem col);
if (i>0)
i=erosion(pimage, n_bytes, im_rows, im_col,
pelem, elem_rows,elem col);
return(i);
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APPENDIX D

C CODE FOR MR IMAGE SEGMENTATION

The segmentation algorithm is named "mri2". The user is

prompted with a menu of segmentation options during analysis.



tinclude <stdio.h>
tinclude <fcntl.h>
finclude <math.h>
‘#include <sys/stat.h>
#include <sys/types.h>
tinclude <sys/uio.h>
finclude <malloc.h>

main(argc, argv)
int argc;
char *argv(];
{ int i, Ji
FILE *results;
char subject_pamel[ZS],subject_namez[25],output_file[ZS];
char *in file name,roi_ file[30];
short int *buf;
int fd1, fd2;
short int image[256][256],out_image[256][256],out_image2[256][256];
short in_image[256][256],total_area;
short int temp_image[256][256],in_image2[256][256], image_temp[256] (256];
int msk[9],mm[5][5],holes[1000],hole_number,k;
short corners[lO],xl,xZ,yl,yZ;
short int X_c,y_C,max_gray;
short display_size,size=256,c,nd,std_ct;
int mean_soft,soft,sum_soft_t,soft_t,cortical_t,out_of_plane,n_smooth,ends,contour_flag
int contour_breaks,x_l,y_l,x_2,y_2,trabecular_bone;
short sum_std, cortical;
char *in, *out;
double trab_t;
float mean, std, trab_area, TBV;
char reply;
int x=1,y=1;
if (argc<2) { printf("TYPE: rdimg <filel> \n \n"); exit (0); }
printf("\n");

fdl=open(argv(1], 0);
if (fdl==-1) ( printf("\n error \n"); exit(0); }

fd2=open(argv(2], 1);
for (i=0; 1i<256;i++)

{
read (fdil, ( char*)image[i],SlZ);

}
for (i=0; i<size;i++)
for (j=0; j<size; j++)

in_image(i) [j)=image[i] [§];

in_file_ name=argv(1}; -
/* extract filename and treat as ROI file */
for (i=0; i<strlen(argv(l]); i++) {
roi_file[i]=*(in_file_name+i);

if (in_file_name[i]=='_’) {
break;

}
}
roi_file(i+l}=’.’;
roi_filel[i+2]="r’;
roi_filel[i+3}='0’;
roi_file[i+4)="4i’;
roi_file[i+5]="\0";



do

/* open output file results.dat +*/
printf ("Enter name of output file to write results:> ");
scanf ("%24s", out

put_file);

printf ("Name of subject being analyzed: \n");
scanf ("%s %s",subject_namel,subject_nameZ)'
if ((results=fopen(output_file,"w")) == (FILE *) NULL) {
printf("File Error");
exit (1);
}
fprintf (results, " RESULTS FOR: %s %s\n",subject_namel,subject_nameZ);
printf ("\n <-—--- BONE STRUCTURE ANALYSIS -———> \n");
printf("\n { MAIN MENU ) \n\n");
printf (" a. — Define ROI sub-image ... (% 10)\n");
printf(" b. - Inverse video .......... (# 11)\n");
printf (" €. - Contour Bone ........... (# 12,19)\n");
printf(" d. - Find trabecular area ... (# 13)\n");
printf(" €. — Define principle axis .. ($ 14)\n");
printf(" f. - Adaptive threshold ..... (# 15) \n");
printf (" g. — Perimeter analysis\n");
printf(" h. - Skeleton by ZHANG-SUEN . (4 17)\n");
printf (" i. - Indices of structure ... (# 20)\n");
/*printf (" j. — Contour by distance transform\n") ; */
printf(" k. - Count holes in bone \n");
printf(" l. -~ Count holes in bone with area > 1 pixel\n");
printf (" m. - Strut orientation\n");
printf(" q. — Quit\n");
Printf("\n What is your selection ? )i
/* reply=getchar(); */ scanf ("%c", &reply);
printf ("\n");
switch(reply) {
case ’'a’:
region_of_interest(image,out_image,corners,roi_file);
Xxl=corners([0]; yl=corners(1];
x2=corners[2]; y2=corners[3];
out-"/MUMC/remotel/GSG_lo.img";
write_image (out,out_image, 256);
close (out);
break;
case 'b’:
Printf("maximum gray value= %qgn",maximum(out_image,size));
cortical_t=maximum(out_image, size);
for (i=yl;i<=y2;i++){
for (j=x1;j<=x2;j++){(
}
cortical_t=0.2*maximum(out_image,size);
if (cortical_t>250) { -
cortical_t=250; -
}
out="/MUMC/remotel/666_11.img";
write_image (out, out_image, 256) ;
close (out);
break;
case ‘¢’ :

in="/MUMC/remote1/666_10.img";
read_image(in,out_image,256);
cortical_ t=maximum(out_image, size);
optimize_contrast(out_image,256,x1,x2,y1,y2);
for (i=1; i<=9; i++)

msk[i]=1;
printf(" How many times to smooth image ?\n");



/* why this ?27? */

scanf ("%d", &n_smooth) ;
printf("Smoothing ..... 10X\n") ;
/* n_smooth=5; */
for (i=1; i<=n_smooth; i++) |
convolve_mask(out_image,msk,9,x1,x2,y1,y2,256);

}
msk([1]=0; msk([2]=-1; msk[3]=0;

msk(4]=-1; msk(5]=8; msk[6]=-1;

msk[7]=0; msk(8]=-1; msk([9]=0;
convolve_mask(out_image,msk,8,x1,x2,y1,y2);
/*optimize_contrast(out_image,256,x1,x2,y1,y2,corners[2]);'
for (i=0;i<size; i++)

for (j=0;j<size; j++) |
temp_image[i][j]=out_image[i][j];
out_image(i] [(j]=0;
}

out="/MUMC/remotel/666_19.img";
write_image (out, temp_image, 256) ;
printf("Input Cortical and subcortical= ¥d\n", cortical t);
scanf ("%d", gcortical _t);

contour(temp_image,out_image,size,xl,xZ,yl,yZ,cortical_t);

for (i=yl;i<=y2;i++)
for (j=x1;j<=x2;j++) [ :
temp_image(yl] [j]=255; temp_image(y2][j)=25
temp_ image(i] [x1]=100; temp image[i] [x2]=10

}
out="/MUMC/remotel/666_19.img";
write_image(out,temp_image,256);
close (out);

y=(yl+y2)/2;
for (x=x1; x<=x2; x++) {
if(temp_image(y] [x])==255)
break;
}
total_area-grow_region(temp_image,256,256,y,x,250);
/*printf("\n area=td\n", total_area);*/
out-"/MUMC/remote1/666_12.img";
write_image (out, temp_image, 256) ;
close(out);
c=1;
while (total_area <500){ /* check that area grown is big e
in="/MUMC/remotel/666_12.img";
read_image (in, temp_image, 256) ;
total_area=grow_region(temp_image,256,256,y,x+c,250
C++;
}
for (i=yl;i<=y2;i++)
for (j=x1;j<=x2; j++) {
if(temp_image([i) [j]==3000)
} -
out="/MUMC/remotel/666_12.img";
write_ image (out,temp_image, 256) ;
close(out);
printf(" \n");

print £ (" bR R R L T T L U
printf (" * OPEN DISPLAY AND VERIFY THAT CONTOUR IS
printf (" WA AR R R R R T OO

printf(" \n");

printf("Is contour broken ? (l=YES ¢=NO) \n") ;

scanf ("%d", &contour_flagq);

if (contour_flag==0) continue; {
printf ("How many sets of breaks to close 2\n"});
scanf ("%d", scontour_breaks) ;



for (k=1; k<= contour breaks; k++) |
printf("Input co-ordinates of end #1\n");
scanf ("$d %d",&y_l,&x_l); /* ordinates a;:
printf("Input co-ordinates of end $#2\n");
scanf ("%d ¥d", sy _2,8x_2);
printf("Closing ...... break ¢ $d\n", k) ;
close_contour(temp_image,size,x~l,x_2,y_1,3
}
}
for (i=0;i<size;i++)
for (j=0; j<size; j++) {
out_image[i][j]=temp_image[i][j];
}
distance_transform(out_image,256); /* highlight border to s
for (i=0;i<size; i++)
for (j=0; j<size; j++) |
if (out_image([i} [j]==2) {
temp_image[i] [j]=100;
}
}

/* label border of image with value 100 */
for (i=yl;i<=y2; i++)
for (j=x1;j<=x2; j++) {
temp_image (y1l] [j]=100; temp_image[y2][jl=10
temp_image (i) [x1]1=100; temp_ image (i) [x2]=10
}
out="/MUMC/remotel/666_12.img";
write_image(out,temp_image,256);
close (out);
break;

case 'd’:
in="/MUMC/remote1/666_12.img“;
read_image (in, out_image, 256) ;
x=(x1+x2) /2; y=(yl+y2)/2;
printf(" \n");
trab_area=(float) fill_contour(out_image,256,256,y,x,100)*(
Printf("\n Trabecular Area=%.2f mm2\n", trab_area);
fprintf(results, "Trabecular Bone Area=%.2f mm2\n", trab_are
in-"/MUMC/remotel/GGS_ll.img";
tead_image(in,in_image2,256);
for (i=0;i<size;i++)

for (j=0; j<size; j++) { -
if(out_image[i][j]==3000){
image_temp(i] [§]=255;
}
else ({
out_image[i] [j)=0;
image_temp[i] []=0;

} >
out="/MUMC/remotel/666_13.img";
write_image (out, out_image, 256) ;
close (out) ;
distance_transform(image_temp,256); /* define inner contour
for (i=0;i<size;i++)
for (J=0; j<size; j++) {
temp_image({il {j])=0;
if (image_temp[i] [j]==2) {
temp_image (i} [§]=255;
}
}
out="/MUMC/remote1/666_19.img";
write_image(out,temp_image,256);



close (out);
break;

case ‘e’ :
for (i=0;i<size;i++)
for (3=0; j<size; j++) {
out_image([i] [j]=0;
}
in="/MUMC/remotel/666_19.img"; /* read in contour image */
read_image(in,in_image2,256);

moment_of_inertia(in_imagez,out_image,size,xl,x2,y1,y2,mm);
x_c=mm([1] [0]/mm{0] [0]; y_c=mm{0] {1} /mm[0] [0];
printf("centroid = %d %d\n",x_c,y_c);
out="/MUMC/remotel/666_14.img";
write_image(out,out_image,256);

close (out);

break;

case ‘f’:
in="/MUMC/remote1/666_13.img"; /* read in filled contour im
read_image(in,in_imagez,256);
in="/MUMC/remote1/666_13.img";
read_image (in, out_image, 256) ;
optimize_contrast(in_imageZ,256,x1,x2,y1,y2);
optimize_contrast(out_image,256,x1,x2,y1,y2); .
trabecular_bone=adaptive_t(in_imagez,out_image,256,4); /* 4
TBV=(((float)trabecular_bone*o.195*0.195)/trab_area)*100.0;
printf("\n Trabecular Bone Volume (TBV)=%.2f %% \n", TBV);
fprintf(results, "Trabecular Bone Volume (TBV)=%.2f $£¥\n", T
in="/MUMC/remote1/666_19.img";

- read_image (in, in_image2, 256) ;
add_images(out_image,in_imagez,size); /* add contour to bin
/* for (i=yl;i<=y2;i++)
for (j=x1;j<=x2;j++) {
1f((i<yl+4) | (i>y2-4)){
out_image([i] [j]=0;
}
} o*/
out="/MUMC/remotel/666_15.img";
write_image (out,out_image, 256) ;
close(out) ;
break;

case ‘g’ : -

/* Perimeter analysis */
in-“/MUMC/remotel/GGG_lS.img";
read_image(in,out_image,ZSG);
distance_;tansform(out_image,256); /* define inner contour
for (i=0;i<size;i++)

for (j=0;j<size; j++) {

if (out_image[i] [§]==2) {
temp_imagefi] {j]=255;

}

else (
temp_image(i] [j]=0;

}

}

out="/MUMC/remote1/666_18.img";
write_image(out,temp_image,256);

close(out);

/* skeleton out of plane—connected bone structure
in="/MUMC/remote1/666_l6.img";
read_image(in,out_imagez,256);



for (i=0;i<size; i++)
for (j=0; j<size; j++) |{
temp_image[i][j]=out_image2[i][j];
out_image2 (i} (j]=0;
b
out="/MUMC/remote1/666_18.img";
write_image (out,out_image2, 256);
close (out);
in="/MUMC/remotel/666_17.img";
read_image(in,in_image2,256);
in="/MUMC/remote1/666_18.img";
read_image (in,out_image, 256);
add_images (out_image, in_image2, size) ;
out="/MUMC/remote1/666_19.img";
write image (out,out_image, 256); */
break;

case 'h’:
/* skeleton in plane-connected bone structure by Zhang-Sue
in="/MUMC/remotel/666_15.img";
read_image (in,out_image, 256) ;

thinzs (out_image, 255) ;
out-”/MUMC/remotel/666_17.img";
write_image(out,out_image,zss);

close(out);

/* skeleton out of plane bone structure by Zhang-Suen algo
in="/MUMC/remotel/666_16.img";

read_image(in,out_image,256);

thinzs (out_image, 255) ;
out-"/MUMC/remotel/GGG_le.img";
write_image(out,out_image,ZSG);
close(out);
break;
case ‘i’:
/* Calculate indices for in-plane structure */
in="/MUMC/remotel/666_17.img";
read_image(in,out_image,256);
for (i=0;i<size;i++)
for (j=0; j<size;j++)
temp_image([i] [j]=out_image(i] [j];
out_image(i] [j]=0;

}
printf(" *** IN PLANE STRUCTURE ***\n");
indices(temp_image,out_image,256,256,255,500,1000,results);
out="/MUMC/remotel/666_20.img";
write_image(out,out_image,ZSG);
close (out);
break;

case ’j’:
in="/MUMC/remotel/666‘12.img";
read_image (in, out_image, 256) ;
distance_transform(out_image,256);
/* local_maximum(out_image,temp_image); */
for (i=0;i<size;i++)
for (3=0; j<size; j++) {
temp image(i) (j]=0;

}
for (i=0;i<size;i++)
for (j=0; j<size; j++) {
if (out_image[i][j]==2) {
temp_image[i] [j)=255;}



}
out="/MUMC/remotel/666 14.img";
write_image(out, temp image, 256);

in="/MUMC/remotel/666_l4.img";
read_image(in, in_image2, 256) ;
in="/MUMC/remotel/666_15.img";
read_image(in,out_image,256);
add_images(out_image,in_imagez,size);
out="/MUMC/remotel/666_15.img";
write_ image(out, out_image, 256) ;
close (out);
break;

case 'k’:
in="/MUMC/remotel /666 15.img";
read_image (in, out_image, 256);

/* label border of image with value=200 */
for (i=yl;i<=y2;i++)

for (j=x1;j<=x2;3j++) {
out_image[i][j]l=out_image[i] [§] *4;
temp_image[i][j]=out_image[i][j];
temp_image(yl)] {j]1=2000; temp_image([y2)[j]=2
temp_image[i] [x1]=2000; temp image(i] [x2]=2
} .
hole_number=hole_counter(holes,temp_image,xl,xz,yl,y2)—1;
printf (" holes detected= %d\n",hole_number);

/* £ill in all holes with area equal to 1 pixel */

\in=“/MUMC/remotel/666_15.img";

read_image (in, out_image, 256);

for (k=0; k<=hole_number; k++) {

if (holes([k]l==1) {
for (i=yl;i<= y2;i++) {
for (j=x1;j<= x2;j++) {
if (temp_image([i] (j]== k+1)

temp_image(i] [j]=25
out_image[i] [j]=255

} -

hole_distribution(holes,hole_number;2); /* determine hole
mean_std(holes,mean,std,hole_number,0.195,results); /* pixe
sort (holes, hole_number, 0.195, results);
out="/MUMC/remotel/666_16.img";

write_image (out,out_image, 256);

close(out);

break; -

case ‘1’:
for (i=0; i<1000; i++) /+ clear holes */
holes[i]=0;

in="/MUMC/remotel/666_16.img";

read_image (in, out _image, 256) ;

/* label border of image with value=200 */

for (1=yl;i<=y2;i++)

for (j=x1;j<=x2;j++) |

out_image[i][j]=out_image[i][j]*4;
temp_image[i][j]=out_image[i][j];
temp_image(y1l][j]=2000; temp_image(y2][j]=2



temp _image[i] [x1)=2000; temp_image([i] (x2]=
}

hole_number=hole_counter(holes,temp_image,xl,x2,y1,y2)—1;
printf(" holes with area > 1 pixel detected- td\n", hole_nu
fprintf(results, " \n");
fprintf (results, " -
fprintf (results," Hole size analysis for holes > 1 pixel :
fprintf (results, "
/*hole_distribution(holes,hole_number,Z); */
mean_std(holes,mean,std,hole_number,0.195,results);
sort (holes, hole_number, 0.195, results);
break;

case 'm’:
in="/MUMC/remotel/666 13.img";
read_image (in,out_image, 256) ;
orientation(out_image,temp_image,size,xl,x2,y1,y2,results);
break;

}
} while (reply != ’q’);

/* Write to MUMC display file */
for (i=0; 1i<256;i++) {
write(fd2, (char*)out_image(i], 512);
}

close(fdl);
close(£fd2);
exit (0);

}

[*¥**xxkex+ Punction to read a MUMC display image *****wxstexsxnx/

int read_image(in_file,values,m_size)

char *in_file;

short m_size, values[256] [256);

{

short int fp,i;

fp=open(in_file, 0);

for (i=0; i<m_size;i++)
{
read(fp, (char*)values (i), m_size*2);
}

close (fp);
}

/***xxxkxx% Function to write image to MUMC display *****w*swwsew,

int write_image(out_file,values,m;size)
char *out_file;
short values(256]([256],m size; -
{
fp=open (out_file,1);
for (i=0; i<m_size;i++)
{
write (fp, (char*)values[i],m_size*2);
}

close (fp);

/**exexxstv Punction to convolve image with a mask **eexwsrssvsecs,



int convolve_mask(values,m,sf,rxl,rx2,ry1,ry2,m_size)
short int values[256][256],rx1,rx2,ryl,ryz,sf,m_size;

int m{9];
A int i, 5,k;

short int in_values([256] [256];
short int values_x([256] [256];
int x=1,h=1,y=1;

int ml,m2,m3,m4,m5,m6,m7,m8,m9;

int suml, sum2, sum3;
double sum _mask;

if((ryl-10) < 0)
ryl=1;

if((ry2+10)>m_size)
ry2=m size-1;

for (i=ryl;i<= ry2;i++)
for (j=rx1; j<= rx2; j++) {

in_values[i] [j]=values[i][j];

}

x=ryl;
do {
y=rxl;
do{
suml=(m[1l)]) *values (x-1][y-1]1)+(m([2]

*values[x—l][y])+(m[3]*values[x-1][y+1]);

sum3=(m[7]*values[x+1][y-l])+(m[8]*values[x+1][y])+(m[9]*values[x+1][y+1]);
values_x[x][y]=(suml+sum2+sum3)/sf;

if (values_x(x])[y] > 32000 )
values_x([x] [y]=0;
if (values_x[x][y] < 0){
values_x([x] [y]=0;
}
y=y+1;
}
while (y <=(rx2-1));
x=x+1;
}
while (x<=(ry2-1));

for (i=ryl; i<=ry2; i++)
for (j=rxl; j<=rx2; J++) o

values(i] [j)=values_x[i][j];

if (values[i][j] <0)
values([i] [j]1=0;

}

[***x*sttxx Punction to apply median filter to image ****¥wwkxiwwwwwnn)
int median_filter(values,in_values,m_size) -

short int values[256][256],m_size,in_yalues[256][256];

{ int i, j,k;

short int out_values[256] [256),m[9];

int x=1,h=1,y=1, 1p, size;
int row, column,
int temp;

row=m_size;
column=m_size;

/* *** Apply median filter
X=2;
do
{
y=2;

LA & 2 */

num_median;

sum2=(m(4]*



do
{
m[0]=values [x-1}(y~-1];
m[1]=values[x—1][y];
m(2]=values[x-1] [y+1];
m(3]=values(x][y-1];
m[4]=values[x][y];
m[5]=values(x] [y+1];
m(6]=values([x+1)[y-1];
m[7]=values[x+l][y];
m[8]=values[x+1][y+1];
for (i=0; i < 8; ++1i)
{
for(j=i+l; j < 9; ++j)
{
if (m[i] > m([j])
{
temp=m[i];
miil=m([j];
m{jl=temp;

}

}
out_values[x] [y]=m(5];
y=y+1;
}
while (y <=(column-1));
X=x+1;
}
while (x<=(row-1));

for (i=0;i<m_size;i++)
for(j=0;j<m_size;j++)

values[i][j]=out_yalues[i][j];
}

}

int add_images (values,valuesz,m;size)
short int values[256][256],values2[256][256],m_size;
{

int max_value, i, j;

max_value=Q;

for (i=0; i< m_size; i++)

for (j=0; i< m_size; j++)

values[i][j]cvalues[i][j]+value52[i][j];
if (values[i] [j) > 255)
{values[i} [j)=255;}

}

int subtract_images (values,values2,m_size)
short int values[256][256],value52[256][256],m_size;
{

int max_value, i, j;

max_value=0;

for (i=0; i< m_size; i++)

for (j=0; j< m size; j++)

values[i][j]=values[i][j]—valuesZ[i][j];
if (values (i) [j] < O)
{values{i] [(j1=0;}



/**E*exvwre pynction to determine corners of rectangular roi ***crrrrexy
int region_of_ interest (temp_in,temp_out,ct,roi_f)
short ct[lOO],temp_in[ZSG][256],temp_out[256][256];
char roi_f[30];
{

short *buf2;

short *fpoint;

int handle, bytes, i, j;

short scale;

short display size;

buf2=(short *) calloc(300,1);

printf ("Reading ROI file ..... ")

if ((handle=open (roi_£,0 RDONLY ))==-1) {
pPrintf("Error opening file.\n");
exit (1);

}

if((bytes=read(handle,buf2,200))==—1){
printf("Read failed");
exit (1);

}

else {
printf("Read: %d bytes read.",bytes);

}

/* ** Get information from MUMC ROI file ** *x/

fpoint=buf2;

for (i=0; i< 9; i++)
{fpoint++;}

display_size=*fpoint;

fpoint++;

for (i=0; i< 30; i++){(
ct([i]= *fpoint;
fpoint++;

}

close (handle);

scale=display_size/256;

ct[0]=ct{0]/scale;

ct[1}=(512-ct[1]) /scale;

ct[2]=ct(2]/scale;

ct[31=(512-ct[3]) /scale;

/* Set outside roi to 0 */
for(i=ct[1); i<=ct[3]; i++)
for(j=ct[0]); j<=ct([2]; Jj++) {
temp out(i](jl=temp _in(i)[j];
}
free(buf2);
} -

/**xxxxttwwsx Punction to find histogram of image matrix ******tswsssxss/

int histogram(values,nLﬁize,bin_size)
short int values[256][256],m_size,bin_size;
{
int i, j,bin,max_ct;
short int histo[256],h[256],slope[256],max[20],ct=0;

for (i=0;i<m_size;i++)
for(j=0;j<m_size;j++)

if(values([il(j] !=0)
{bin=values{i] [j]/bin_size;



histo[bin]=histo[bin]+l; }
}
/* Apply a S-point smooth to histogram +/
for(j=0;j<m_size;j++)

{
h[j]=(histo[j]+2*histo[j+1]+3*histo[j+2]+2*histo[j+3]+histo[j+4])/9;
}
for(i=4; i<m size; i++)
{slope(il=h([i+1]-h[i];}
for(i=4; i<256; i++)
{
if(slope(il]>0 &s& slope[i+1]<0)
{max{cti=i+2;
Ct++; }
}
max_ct=max([0];
return(max_ct);
/*printf ("max= $d\n", max[0]); */
}

/**¥xuxwxxvxs Punction to find the maximum value of an array hiialalohde bbb i ¥4

int maximum (values,m_size)
short int values([256] [256],m_size;
{
int max_value, i, j;
max_value=0;
for (i=0; i< m_size; i++)
for (j=0; j< m_size; j++)

if (values([i][j] > max value)
{ max_value=values(i] [J];}
}
return(max_value);
}

/****** Punction to optimize contrast using histogram equalization el
int optimize_contrast(values,m_size,rxl,rxz,ryl,ryZ)
short int values[256][256],m_size,rxl,rxz,ryl,ryz;
{
int hist[12500];
int npix,max_pixel, i, j;
for (i=0;i< 12500; i++)
hist [i]=0;

for (i=ryl;i<=ry2;i++)
for (j=rx1; j<=rx2; j++)
{

hist[values[i][j]]++;
}
/*npix = m _size*(m_size-1) - hist(0];+*/
npix= ((rx2—rx1)*(ry2-ry1))—hist[O];
hist[0]) = 0;

(2]

max_pixel=maximum(values,m_size);
printf("\n Maximum ct#=%d\n", max_pixel);
printf ("\n npix= %d\n", npix);
for (i = 1; i < max _pixel; i++)
hist[i] += hist[i-1];

for (i=0;i<m_size;i++)
for(j=0;j<m_size;j++)
{
values|[i] (j] = (hist[values[i][j]] * max_pixel/npix);
}



/rr**sxedwres punction to find the mean value of an ALray ****r*vrwswtws/

int mean (values,m_size)
‘short int values(256][256],m_size;
{
int mean_value,sum,mean_counter,i,j;
sum=0;
mean_counter=0;
for (i=0; i< m_size; i++)
for (j=0;4< m_size; j++)
{
if (values(i] [j] !=0)
{ sum=values[i] [j]+sum;
mean_counter++; }
}
mean_value=sum/mean_counter;
return(mean_ value);
}

/**t***t*it****t**** Function to threshold an lmage *tttt**t*t****t/
/* Values above threshold remain the same, below T set to 0 */

int thresholding (values, values2,m_size, T)
short int values[256][256],value52[256][256],m_size,T;
{

int i, j,counter;

for (i=0; i< m_size; i++)

for (3=0;3< m_size; j++)

if ((values2({i]({3j] > 1300) || (values([i] [§] > T ))
{values[i] [j]=255;
counter++; }

else ({
values([i] [j]=0;}

/***trusxkxer Punction to determine the moments of image ****exsvswwww/
int moment_of_inertia (values,temp_image,m_size,rxl,rxz,ryl,ryz,mom)
short int values[256][256],temp_image[256][256],m;size,rxl,rxz,ryl,ryz;
int mom{5]{S];
{ s

int mean_value, total_sum, x, y;

int i,j,f,x_m,y_m,b_term,x_mean,y_mean;

int sum00, sum01, sumio, sumll, sum20, sum02;

double sum_mask,tan_thetal,tan_thetaz,f_dec;

sum00=0;

suml0=0; sum01=0;

for (x=0; x< 6; x++)

for (y=0; y< 6; y++) -
{mom(x] [y]=0;}

for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++){
if (values[x][y] >0)
{sum00=values[x] [y] +sum00;
sum01=y*values[x][y]+sum01;
SumlO=x*values([x) [y]+suml0;
}
}
mom (0] [0])=sum00;
mom([O] {1]=sum01;
mom([1l] {0]=suml0;
x_m=mom[1][0]/mom[0][0]; y_m=mom{0] [1]) /mom[0] [0];



/* Determine principle axis... least moment of inertia */

sumll=0;
sum20=0; sum02=0;
for (x=0; x< m_size; x++)
for (y=0; y< m_size; y++) {
if (values(x]([y] >0){
sum11=(x—x_m)*(y—y_m)*values[x][y]+sum11;
sum20=(x—x_m)*(x—x_m)*values[x][y]+sum20;
sum02=(y—y_m)*(y—y_m)*values[x][y]+sum02;
}
}
mom(1l] [1]=sumll;
mom(2] {0]=sum20;
mom({0] [2]=sum02;

X_mean=mom[1] [0]/mom(0] {0];

y_mean=mom[0] [1]/mom(0] [0];

printf ("Central moments (x,y)=%d ¥d\n", x_mean,y mean) ;

b_term=(mom(2] [0]-mom([0] [2]) /mom[1] [1];

sum_mask=(b_term*b_term)+4;

tan_theta1=0.5*(—1*b_term+sqrt(sum;mask));

tan_theta2=0.5*(—l*b_term-sqrt(sum_mask));

printf("tan_thetal= tf\n",tan_thetal);

printf("tan_theta2= $f\n", tan_theta2 );
temp_image (x_mean] [y_mean]=2500;

/* Define principle axis */
for(i=ryl; i<=ry2; i++)
for (£f=0; £<10; f++)
{
f_dec=0.1*f;
j=tan_theta1*((i+f_dec)-x_mean)+y_mean;
if((j>=rxl—10)6&(j<=rx2+10))
{temp_image [i] [§]=2500;}
j=tan_theta2*((i+f_dec)—x_mean)+y_mean;
if((j>-rx1—10)&&(j<-rx2+10))
{temp_image([i] [§]1=2500;}
}
}

/***xtxxavxex Punction to check trabecular orientation ***ttwxswsxsws/
int orientation (values,temp_image,m;size,rxl,rxz,ryl,ry2,res4file)
short int values[256][256],temp_image[256][256],m_size,rxl,er,ryl,ryZ;
FILE *res_file;
{

int i, j,bin, sum;

short int a(9],g_x,g_y,histo[40];

double sum_mask,theta,G,tan_;heta,temp_theta;

char *buf2, *fpoint2;

char out_file[25];

FILE *out;

/* clear histogram */
for (i=0; i <=40; i++)
histo[i]=0;

/* Define gradient from Sobel mask */
for (i=ryl; i<=ry2; i++)
for (j=rxl; j<=rx2; j++){
if(values[i)[j] >0) {
a[0]=values[i—1][j—1];
all]=values[i-1][j);
al2)=values([i-1][j+1};



a[3l=values([i] [j+1];
a(d4]=values[i+1] (j+1];
afS5l=values[i+1]{j];
af(6]l=values{i+l]}[j-1];
al[7)=values(i] [j-1];
g_x=(a[2]+2'a[3]+a[4])-(a[0]+2'a[7]+a[6]);
g_y=(a[0]+2*a[l]+a(2]))-(a[6]+2*a[5]+a(4]);
sum_mask=(g_x*g_x)+(g_y*g_y);
if (sum_mask==0) continue;
G=sqrt (sum_mask) ;
if (G<1500) continue;
/* temp image (i) [j)1=G; */
tan_theta=(double)g_x/(double)g_y;
theta=(atan(tan_theta) /3.14159) *180;
if(theta <0 ) {

theta=180+theta;
}
bin=theta/5;
histo[bin]=histo[bin]+1;

}

/* *** write to file in ascii format *+*+* */
buf2=(char*) malloc(5000);
printf ("Enter output file for trabecular orientation:> ");
scanf ("$24s",out_file);
if ((out=fopen(out_file, "w+t")) == (FILE *) NULL) {
printf ("File Error");
exit(1);
}
fprintf(res_file, "Orientation File= ¥s\n",out_file);
for (i=0; i<=35; i++){
sum +=histo[i];
}

fpoint2=(char*) buf2;

fprintf (out, " \n");
fprintf (out," Degrees Orientation Factor \n");
for(i=0; i<=35; ++i){
sprintf (fpoint2, "$5d $.3f\n", (i*5)+5, ((float)histo[i]/sum)

fputs (fpoint2, out);
}
free (buf2);
} :

[****xxexx+ Punction to remove isolated points **¥xxrxxwxxy
int clean_image (values,m_size,p)
short int values[256] [256],m_size,p;
{
int i, er[Q];
for (i=2; i< m_size~1; i++)
for (3j=2; i< m_size-1; j++) -

m[0]=values([i-1][j-1];
m[1]=values[i—1][j];
m(2])=values{i-1][j+1];
m(3]=values[i] [§~11];
m[4]}=values([i] [j];
m[5]=values(i] [j+1];
m(é]=values[i+1])[j-1];
m[7]=values[i+1][j];
m(8]=values[i+1][j+1];
if((m[4]==p)&&(m[0]==p)&&(m[l]==p)&&(m[2]==p)&&(m[3]==0)&&(m[5]==0)&&(m[6]==0)&&(m[7]==0)&&
{values([i] [j]=0;}
if((m[4]==p)&&(m[0]==0)&&(m[1]==0)&&(m[2]==0)&&(m[3]==0)&&(m[5]==0)&&(m[6]==0)&&(m[7]==0)&&
{values[i] [§]=0;}



1E(m{4]==0) 66 (m{0]==p) && (M[1]==p) && (m[2] ==p) & (m[3] ==p) £& (m[5] ==p) &5 (m61==p) && (m(7]==p)s,
{values([i] [jl=p;}

.‘}

/***t******fi*t*t* FunCtlon to groW reglon glven a seed plxel ttt**'*t'ttttt/
int stack=0;
short int *pstack;

int grow_region(pimage,im_rows,im_columns,xc,yc,t)
short *pimage;
int im_rows, im_columns;
int XC, yC;
short ¢t;
{
int i,3j,x,y;
short *pbuf;

pstack = (short int ¥) malloc(32000);
if (pstack==NULL)
{ printf ("\nGrow region: Not enough memory\n"); return(-1); }

Px_push(xc,yc);
*(pimage+(xc*im_columns)+yc)=3000;

while(stack)
{
PX_pop (&x, &y) ;

i=(x-1) *im_columns; j=y;
if (*(pimage+i+3j)==3000) i=i;
else if (*(pimage+i+j)>=t) { * (pimage+i+3j)=3000;
Px_push(x-1,y); }
else *(pimage+i+j)=0;

i=(x+1) *im_columns; j=y:
if (*(pimage+i+3j)==3000) i=i;
else if (* (pimage+i+3j) >=t) {*(pimage+i+3) =3000;

Px_push (x+1,y); }
else *(pimage+i+j)=0; :
i=x*im_ columns; j=y-i;
if (*(pimage+i+j)==3000) i=ji; s
else if (*(pimage+i+j)>=t) { *(pimage+i+j)=3000;
px_push(x,y-1); }

else *(pimage+i+j)=0;

i=x*im columns; j=y+1;
if (*(pimage+i+3j)==3000) i=i;
else if (*(pimage+i+j)>=t) { *(pimage+i+3)=3000;

Px_push (x, y+1); |
else *(pimage+i+j)=0; =
}
x=0;
for (i=0;i<im_rows*im_columns; i++)
{ if (*(pimage+i) !=3000) *(pimage+i)=0;

else x++; }
free (pstack);
return(x) ;
}

int px_push(x,y)
int x;



int y;
{
*pstack= (short int)x;
pstack++;
*pstack= (short int)y;
pstack++;
stack++;
/* printf("\n %d (¥d, %d) ", stack, x,y);*/
}

int px pop (px, py)
int *px;
int *py;

short int i;
pstack——;
i=*pstack;
*py=(int)i; pstack-—;
i=*pstack;
*px=(int) i;
stack—;

}

/**t*t*****t**** Function to close bone contour tit**tt*tt**t*tt*/
int close_contour(values,m_size,rxl,rxz,ryl,ry2)
short int values[256][256],m;size,rx1,rx2,ryl,ryZ;
{
int i, j,n=1, £;
int delta,run_length,threshold,x[3],y[3];
double slope, f_dec;

x[1l]=rx1; x[2]=rx2;
y(ll=ryl; y(2]=ry2;

/* define line between the end points */
slope= ((double) (y[2]-y[1]))/((double)(x[2]—x[1]));
printf("slope = $£\n", slope);
/* draw line between ends */
for (i=x[1]; i<=x(21; i++) {
for (f=0; £<10; f++) {
f_dec=0.1*f;
J=slope* (i+f_dec-x[1])+y[1];
values(i] [j]=255;
/* make this missing bit of contour 3 Pixel widths thick */
values (i) [j—-1]=255;
values[i] [j+1)=255;
values[i-1][j)=255;
values[i+1][j]=255;

LA s 222 E Function to define extract cortical bone ******';*********/
int get_cortex(values, temp,m_size, T)

short int values[256][256],temp[256][256],m_size,T;

{

int i,j,pl,pz,p3,p4;

/* clear temp */
for (i=0; i« m_size; i++)
for (j=0;3< m_size; j++)
{
temp (i} [j] =0;
}



for (j=2; j<=m_size-1; j++)
{

pl=values{i] [j];
p2=values([i][j+1];
p3=values(i-1](j+1];
pé4=values(i] [j~1];

if ((p1> T)&&(p2 > T || P3>T || p4>T))
{

temp([i] (j]=1;
}

i++;

}
while(i<=m_size-1);
}

/*t*ttit*t****tt Function to deflne bone Contour tt*t*ttttttt**fit/
int contour(values,contour,m_size,rxl,rxz,ryl,ryZ,T)
short int values[256][256],contour[256][256],m;size,rxl,er,ryl,ryZ,T;
{

int i,j,pl,p2,p3,p4,start_pixel=0;

int delta.run_length,threshold;

int temp(256] [256];

/* clear temp */
fob (i=0; i< m_size; i++){
for (3=0; j< m_size; j++){
temp[i][j] =0;
}

} .
printf("Getting start point for contour\n");
printf("Extracting cortex ..... \n");

/*for (j=rxl; j<=rx2; j++){
values(ryl] [j}=500;
values[ry2] (j]1=500;

}*/

for (i=ryl; i<=ry2; i++) {

for(j=rx1; J<=rx2; J++){
Pl=values{i] (j];
P2=values(i] [j+1];
pP3=values([i-1) [j+1];
p4=values(i] [§~1];
if ((pl<T)&&(pZ< T || p3<T || P4<T) ) {

temp[i] [j]=255;

}

/* save cortical shell **/
for (i=0; i< m_size; i++)
for (j=0; i< m_size; j++)

values[i][j]=temp[i][j];
}

goto Jjump;



/* define contour one pixel thick
Scan along a row */

threshold=99;

A=ryl+2;

‘do

{

for(j=rx1+2; j<rx2-2; j++)
{

run_length=0.5* (rxl+rx2) ;
if (j>run_length)

{goto next _ij;}

delta=temp[i][j]—temp[i][j—ll;
if ((abs(delta)> threshold) )
{
contour (i) [j-1]=255;
goto next_i;
}
}
next_i:
i++;
}
while (i<ry2-2);

/* Scan down a column */

j=rxl+2;

do

{
for(izry1+2;i<ry2—2;i++)
{
run_length=0.5*(ry1+ry2);
if (i>run_length)
{goto next_j;}

delta=temp[i][j]—temp[i—l][j];
if ((abs(delta)> threshold))
{
contour{i-1] [j}=255;
goto next_j;}
}
next_3j:
J++;
}
while (j<rx2-2);

/* Scan back along a row */
i=ryl+2;

do

{

for(j=rx2-2; j>rx1+2; j-—-)
{
run_length=0.5*(rx1+rx2);
if (j<run_length)

{goto next_x;)
delta=temp[i][j]-temp[i][j-ll;
if ((abs(delta)> threshold))

{
contour([i] [j}=255;
goto next_x;}

next_x:



i++;
}
while(i<ry2-2);

/*Scan back along a column */
j=rx1+2;
do
{
for(i=ry2-2; i>ryl+2; i--)
{
run_length=0.5*(ry1+ry2);
if (i<run_length)
{goto next_y;}
delta=temp[i][j]—temp[i—l][j];
if ((abs(delta)> threshold))
{
contour([i] [j]=255;
goto next_y;}
}
next_y:
J++;
}
while (j<rx2-2);
jump:
printf ("end of contour");

}

[rrxkxkaewrerx Punction to check that contour is closed bbb b b s4 5 5
int contour_check(in_yalues,values,rows,columns,val,fe_label)

short values[256][256],in_values[256][256];

int rows,columns, fe_label, val;

{

int x,y,node_sum,node=0,free_ends=0;

int i,j,isolated_points=0,network_length=o,m[9];

int k, count;

for(i=0; i<=9; i++)
m{i]=0; /* clear m to 0 */

/* Score for free ends */
node_sum=0;
for (x=2; X<=(rows-1); x++)
for (y=2; y <= (columns-1); y++) {
values (x] [y])=0;

}

for (x=2; x<=(rows-1); x++)
for (y=2; y <= (columns-1); y++) {

m[0]=in_values (x-1] [y-1);

m[1]=in_yalues[x—1][y];

m[2]=in_values[x—1][y+1];

m{3]=in_values(x][y-1];

m[4]=in_values[x][y];

m[5]=in_values[x][y+1];

m[6]=in_values[x+1][y—l];

m[7]=in_values[x+1][y];

m[8]=in_values[x+1] (y+1];

node_sum=m[0]+m[1]+m[2]+m[3]+m[5]+m[6]+m[7]+m[8];

if((m[4]>0)&&(node_sum==val)){

values[x][y]=fe_label; /* label free ends
free_ends++;

}
return(free_ends);

*/



JXrrwkxsarvvxx Punction to fill in contour given a seed pixel FEXERX LXK AN
‘int stack2=0;
short int *pstack2;

int fill_contour(pimagez,im_rows,im_columns,xc,yc,t)
short *pimage2;
int im_rows, im_columns;
int xc,yc;
short t;
{

int i,3,x,y;

short *pbuf;
pstack2 = (short int *) malloc(32000);
if (pstack2==NULL)
{ printf("\nGrow region: Not enough memory\n"); return(-1); }

pPx_push2 (xc, yc);
*(pimage2+(xc*im_columns)+yc)=3000;

while(stack2)
{ px_pop2 (&x, sy) ; i=(x-1) *im columns; i=y;

if (*(pimage2+i+j)==3000) i=i;
else if (*(pimage2+i+j) <t) { *(pimage2+i+j)=3000;
px_push2(x-1,y); }
else *(pimage2+i+j)=t;
/* printf("\n %d (%d, %d) %d", stack2, x-1, 7, (int) * (pimage2+i+j)); */
i=(x+1) *im columns; j=y;:
if (* (pimage2+i+3)==3000) i=i;
else if (*(pimage2+i+j) <t) {* (pimage2+i+j)=3000;
pPx_push2 (x+1,y); }
else *(pimage2+i+j) =t;

i=x*im columns; J=y-1;
if (*(pimage2+i+3j)==3000) i=i;
else if (*(pimage2+i+j) <t) { *(pimage2+i+3j)=3000;
px_push2(x,y-1); }
else *(pimage2+i+j) =t;

i=x*im_columns; je=y+1; =
if (*(pimage2+i+3j)==3000) jej;
else if (*(pimage2+i+j) <t) { *(pimage2+i+j)=3000;
pPx_push2(x,y+1); }
else *(pimage2+i+j)=t;

x=0;
for (i=0;i<im;rows*im_columns;i++) -
{ if (*(pimage2+i) !=3000 &s& *(pimage2+i) !=t) *(pimage2+i) =0;
else x++; }
free (pstack2);
return(x);

}

int px_push2(x,y)

int x;

int y;

{
*pstack2= (short int)x;
pstack2++;
*pstack2= (short int)y;
pstack2++;



stack2++;
/* printf("\n %d (%d, ¥d) ", stack2, X,y);*/
}

int px_pop2 (px, py)
int *px;
int *py;

short int i;
pstack2-—;

i=*pstack2;
*pPy=(int)i; pstack2--;
i=*pstack2;
*px=(int)i;

stack2——;

/i***t*****i****** Function to apply an adaptive threshold **************t***/
int adaptive_t(in_values,values,m_size,mask)

short values[256][256],in_yalues[256][256],m;size,mask;

{

int i, j,k,x,y,sf=9;

int suml,sumz,sum3,max_val,t_bone=0;

short values_x[256] [256];

max_val=maximum(in_yalues,m_size);
pPrintf("maximum value= $¥d\n", max_val);

for (k=1; k<=mask; k++) {
x=2;
do {
y=2;
do {
sumle(values[x—ll[y—l])+(values[x—1][y])+(values[x—1][y+1]);
sum2=(values[x]IY—11)+(values[x][Y])+(values[x][y+1]);
sum3=(values[x+1][y-l])+(va1ues[x+1][y])+(values[x+1][y+1]);
values_x[x][y]=(sum1+sum2+sum3)/sf;
if (values_x([x][y] > 32000 )
values_x(x] [y]=0;
if (values_x[x]([y] < 0) {
values_x(x] [y]=0;
}
)}(fy+1; -
while (y <=(m_size-1));
X=x+1;
}
while (x<=(m_size-1));

for (i=0; i<m_size; i++)
for (j=0; j<m_size; j++){
values[i][j]nvalues_x[i][j];
}
}
max_val=max val-0.55*max_val;
/*if (0.45*max_val) > 250) {
thresh_bone=max_;
}
else {
max_val=0.75*max_val;
b*/
/* apply an adaptive threshold to create a binary image */

for (i=0;i<m_size;i++)
for(j=0;j<m_size;j++) {



if (( in_values([i][j] > values_x[i]([j])&&(in_values(i] [j]>max_val)){
values([i] (j]=255;
t_bone++; }
else
. values(i] [j]=0;
}
return(t_bone);
}

[****xkwxwxxtr Punction to check for node points ****#xxsssrewx/
int nodes(in_values,values,m_size,mom)

short values[256][256],in_values[256][256],m_size;

int mom(5] [5];

{

int x,y,node_sum,node=1,free_ends=0,x_m,y_m,x_dist,y_dist;

int i,j,isolated_points=0,network_area=0,m[9],e_dist;

double vector=0,vectors[5000],x_yect[5000],y_vect[5000];

double vector_sum,vector_suml,vector_sumz,mean_vector,std_vector;
double std_x,std_y,sum_x=0,sum_y=0,x_mean,y_mean;

x_m=mom[1][0]/mom{0){0]; y_m=mom[O0] [1]/mom[0]}[0];
for(i=0; i<=5000; i++)
vectors([i]=0;

for (i=0; i<m_size;i++)
for (j=0; j<m_size;j++)
{
if (in_values[i] (j}==1)
{network_area++;}

y=2;
do
{
m[0])=in_values [x-1][y-1];
m[l]zin_yalues[x—l][y];
m(2]=in_values(x-1] [y+1];
m(3)=in_values(x] (y-1];
m{4])=in_values(x] (y];
m[5]=in_values{x] [y+1];
m[6]=in_values[x+1][y-l];
m(7}=in_values[x+1] [y];
m[8]=in_yalues[x+1][y+1];
node_sum:m[0]+m[1]+m[2]+m[3]+m[5]+m[6]+m[7]+m[8];
if ((m[4]==1)&& (node_sum>=3))
{
values[x]{y]=1000;
/* calculate vector */
e_dist=((x—x_m) * (x-x_m) ) +( (y-y_m)*(y-y _m));
x_vect [node]=(x-x_m) ; y_vect [node]=(y-y m);
Sum_x=sum_x+x_vect [node] ; Sum_y=sum_y+y_vect [node];
vector=e_dist;
vectors (node}=sqrt (vector) ;
node++;

if((m[4]==1)&s& (node_sum==1) )
{
free_ends++; }
if((m[4]==1)¢&& (node_sum==0) )
{
isolated_points++; }
y=y+1;
}



while (y <=(m_size-1));
X=x+1;

}

while (x<=(m_size-1));

vector sum=0;
for (i=1; i<node; i++)
vector_sum=vector_sum+vectors[i];

mean_vector=vector_sum/node;
X_mean=sum_x/node; Y_mean=sum_vy/node;

for (i=1; i<node; i++)
{
vector_sum=vector_sum+((vectors[i]—mean_vector)*(vectors[i]—mean_vector));
vector_sum1=vector_suml+((x_vect[i]—x_mean)*(x_vect[i]—x_mean));
vector_sum2=vector_sum2+((y_vect[i]—y_mean)*(y_vect[i]—y_mean));
}
std_vector=sqrt(vector_sum/node);
std_x=sqrt (vector_suml/node);
std_y=sqrt (vector_sum2/node) ;

Printf("means= %f ¥f\n", x_mean,y_mean);

printf(" STD x= $f\n",std_x);

printf(" STD_Y= $f\n",std_y);

pPrintf (" Mean vector= t£\n", mean_vector);

printf(" STD vector= $f\n", std_vector);

printf ("Network area= ¥d\n", network_area);

printf ("Nodes= %¥d\n", node) ;

printf ("Free ends= $d\n", free_ends) ;

printf ("Isolated points=%d\n",isolated_points);
return(node) ;

}

/**** Function to implement the Euclidean distance transform **++*/

int distance_transform(values,m_size)
short int values[256] [256],m_size;
{

int el,e2,e3,e4,e5,min_pixel-0;

int i, j;
/*** Apply Euclidean (2-3)distance transform *xxy -
/** Forward raster scan **/
i=2;
do {
j=2;
do {
el=2+values(i] [j-1];
min_pixel=el; -

e2=3+values[i-1][j-1];

if (e2 < min_pixel) {
min_pixel=e2;

}

e3=2+values[i—1][j];

if (e3 < min_pixel) {
min_pixel=e3;

}

e4=3+values[i—1][j+1];

if (e4 < min_pixel) {
min_pixel=eq;

}

eS>=values[i][j];

if (e5 == 0) ¢{



min_pixel=0;
}
values[i] [jl=min_pixel;
j=3+1;

while (j <= m_size-1);
i=i+1;
}

while (i <= m_size-1);

/*** Reverse raster scan ***/

i=m size-1;
do {
j=m_size-1;
do {
el=2+values([i] [j+1};
min pixel=el;
eZ2=3+values[i+1][j+1];
if (e2 < min_pixel) {
min_pixel=e2;
}
e3=2+values[i+1] [j];
if (e3 < min_pixel) {
min_pixel=e3;
}
e4=3+values(i+l] [j-1];
if (e4 < min_pixel) {
min_pixel=e4;
}
eS=values[i] [j];
if (e5 < min_pixel) ({
min_pixel=e5;
}
values(i] [j)=min_pixel;
i=3-1;
}
while (j >= 2);
i=i-1;
}
while (i >= 2);

} ' -
/* Routine to determine the number of regions connected by (i, 3)

int crossing_index(values, ii, j3j)
short int values(256)[256];
int ii, j3;

int i, j,count;
short int k;

count=0;
/* start at position 8 */
i=iji-1; j=33-1; k=values([i][j];

/* move clockwise around (ii, j3j), counting level changes */

j++; /* move to (i-1,3) */

if (k !=values([i][j] ) {k=values[i] [§]; count++;}
J++; /* move to (i-1, j+1) */

if (k !=values({il][j] ) {k=values{i] [j]; count++;}
i++; /* move to (i, j+1) */

if (k !=values(i][j] ) {k=values(i] [j]; count++;}

*/

+



i++; /* move to (1+1, j+1) =+

if (k !=values([i][j] ) {k=values(i] [j]; count++; }
j——:; /* move to (i+1,3) */

if (k !=values(i] [j] ){k=values[i][j]; count++; }
j——:; /* move to (i+1, j~1) =+,

if (k !=values(i][j] ) (k=values([i] [j]; count++;}
i--; /* move to (1, 3-1) =+,

if (k !=values([i] [j] ) {k=values[i] [j]; count++; }
i-~; /* move to (i-1, j~1) =/

if (k !=values[i][]j] ) {k=values[i] [j]; count++;}

return count/2;

/* Routine to determine the number of 8-nearest neigbbours to (i, j) */

int nay8(values, i, j, val)
short int values [256] [256];
int i, j,val;

{

int k;

k=0;

if(i <1 [| i >=255) return 0;
if(j <1 |t j >=255) return 0;

if (values([i][j]!= val) return 0;
if (values[i-1] [j]==val) k++;

if (values[i-1] [j+1]==val) k++;
if (values[i][j+1l]l==val) k++;
if(values(i+1] [j+1]==val) k++;
if(values[i+1][j]==val) k++;
if(values[i+l]}[j-1]==val) k++;
if (values([i] [j-1]l==val) k++;
if(values([i-1] [j—1]==val) k++;

return k;

/* Zhang-Suen type of thinning procedure. Thin region labelled VAL */

int thinzs(values, val)
short int values(256] [256]; -
int val;
{
int i, j,n,again, bg;
short int values2(256] [256];

bg=0;

/* clear second image space to 0 */ -
for (i=0; i<256; i++)
{
for(j=0; j<256; j++)
{values2[i] [§]=0;}
}

/* copy original image to second image space */

for(i=0; i<256; i++)
{
for(j=0; 3j<256; j++)
{valuesZ[i][j]=values[i][j];}



do{

/* first pass through image */
again=0;
for(i=0; i<256; i++) {
for(j=0; 3j<256; j++) {
if(values2(i}[j]'!=val) continue;
n=nay8(values2, i, j, val);
if( (n >=2 ) g& (n <=6)) {
if(crossing_index(values2, i, j)==1) {
if((values2([i-1] [j]==bg) | |
(values2[i] {j+1]==bq) | |
(values2[i+1] [j]==bg)) ({
if((values2 (i} [j+1)==bq) | |
(values2({i+l] [j)}==bgqg) | |
(values2(i] [j-1]==bg)) {
values([i] [j]=bg;
again=1;

}
/* copy original image to second image space */

for(i=0; i<256; i++)
for (j=0; j<256; j++)
{valuesZ[i][j]=values[i][j];}

/* second pass through image */

for(i=0; i<256; i++){
for(j=0; 3j<256; j++) {
if(values(i] [j] {=val) continue;
n=nay8(values, i, j,val);
if( (n >=2 ) g& (n <=6)) {
if (crossing_index(values, i, j) ==1) {
if((values([i-1) [j]==bq) ||
(values([i] {j+1]==bq) | |
(values[i] [j-1)==bq)) J
if ((values[i-1] [j]==bgq) || -
(values [i+1][j]==bq) | |
(values(i] (j-1]1==bg)) {
values2(i] [j]=bg;
again=1;

/* copy second image to original image space */

for(i=0; 1i<256; i++)
{
for(j=0; 3j<256; j++)
{values[i]{j]=value52[i][j];}
}
} while (again);



/** Function to find local maximum and saddle points from distance transform *r/

int local_maximum(values,cut_values)
short int values[256][256],out_values[256][256];
{
short int local_max[256][256],saddle[256][256];
int el,e2,e3,e4,e5,e6,e7,e8,e9,min_pixel,max_pixel;
int x,y,1 max, sadl;

/* 1initalize values matrix to 0 */

for (x=1; x<255; x++)
for (y=1; y<255; y++) |
local max[x]([y}=0;
saddle [x] [y]=0;
out_values|(x][y]=0;

/*** FPind local maxima rExy
1 _max=0;

for (x=1; x<255; x++)
for (y=1; y<255; y++) {

if (values[x](y] == 0) continue;

el=values([x][y-1];

max_pixel=el;

e2=values([x-1] [y-1];

if (e2 > max_pixel) {
max_pixel=e2;

}

e3=values[x-1]{y];

if (e3 > max_pixel) {
max pixel=e3;

}

e4-values[x-1][y+1];

if (e4 > max_pixel) {
max pixel=e4;

} o

e5=values[x] [y+1];

if (e5 > max_pixel) {
max pixel=e5;

}

e6=values[x+1][y+l];

if (e6 > max_pixel) {
max_pixel=e6;

} =

e7=values[x+1][y];

if (e7 > max_pixel) {
max_pixel=e7;

}

e8=values[x+1][y—1];

if (e8 > max_pixel) {
max_pixel=e8;

}

e9=values(x] (y];

if ( e9 >= max_pixel) {
local_max({x] [y]=100;
1 _max++;



printf("local max found= $d\n", 1 _max);

/** check for saddle pcints *+/
-sadl=0;
for (x=1; x<255; x++)
for (y=1; y<255; y++) |
e9=values(x] [y];
if (e9==0) continue;
if (local _max{x][y] ==100) continue;
el=valuesx] [y-1];
e2=values([x-1}(y-1];
e3=values([x-1](yj;
ed4=values{x-1] [y+1];
eS=values(x] [y+1];
e6=values[x+1][y+1];
e7=values(x+1] [y];
eB=values|[x+1) [y-1];
if ((99==e1)Il(e9==e2)II(e9==e3)ll(99==e4)) continue;
if((e1==e5)ll(e2==e6)ll(e3==e7)|I(e4==e8)){
local max([x][y])=100;
saddle(x] [y]=200;
sadl++;

}

printf ("saddles found= %¥d\n", sadl);

for (x=1; x<255; x++)
for (y=1; y<255; y++) {
out_values(x] [y]l=local _max([x] [y];
}

}

/Qt'tttttttttt Function to check foz node points ttttttttttt't/
int indices(in_yalues,values,rows,columns,val,nd_label,fe_label,res_file)
short values[256][256],in_yalues[256][256];
int rows, columns, nd_label, fe_label,val;
FILE *res_file;
{
int X,y¥,node_sum, node=0, free_ends=0;
int i,j,isolated_points=0,network_length=0,m[9];
int k,count;
double CI;
for(i=0; i<=9; i++)
m(i}=0; /* clear m to 0 */

for (i=0; i<rows;i++)
for (j=0; j<columns; j++) { -
values([i] [j]1=0; /* clear values to 0 */
if (in_values[i}[j]==val){
values([i] [j]=100;
network length++;

}

for (x=2; x<=(rows-1); x++)
for (y=2; y <= (columns-1); y++) {
/* first make sure that two adjacent points are not both identifies as nodes
if (values(x][yl==0) continue;
if (values [x-1] [y-1]==nd_label) continue;
if (values[x-1) (y)==nd_label) continue;
if(values{x~1][y+1]==nd_label) continue;



if (values[x][y—ll==nd_label) continue;
if(values[x][y+1]==nd_label) continue;

if (values[x+1][y-1]==nd_label) continue;
if (values[x+1][y]==nd_label) continue;

if (values[x+1][y+1]==nd_label) cont

/* start at position 8 */
count=0;

/* move clockwise around

i=x-1; j=y-1; k=values({i] (]

j++; /* move to (i-1,3) */

if (k !=values([i] [j] ) {k=values[i] [j]

j++; /* move to (i~1, j+1) =/

if (k !=values(i] [j] ) {k=values (i) [j]

i++; /* move to (1, j+1) =/

if (k !=values[i][j] ) {k=values[i] [j]

i++; /* move to (1+1, j+1) =/

if (k !=values[i][j] ) {k=values([i] [j]

j==:; /* move to (i+1,5) */

if (k !=values(i] {j] ) {(k=values[i] [j]
*/

J=—; /* move to (i+1, 5-1)
if (k !=values([i][j] ) {(k=values[i] {j]
i—; /* move to (i, 3-1) =/

if (k !=values[i] [j) ){k=values[i][j]
i—; /* move to (i-1, §-1) =/
if (k !=values[i][j] ) {(k=values(i] []]

if(count >=6) |

values[x][y]=nd_label; /* label nodes

node++;
} .

/* Score for free ends an
node_sum=0;
for (x=2; X<=(rows-1); x++)
for (y=2; y <= (columns-1); y++) |
m(0)}=in_values [x~-1] [y-1];
m[l]-in_values[x—l][y];
m(2)=in_values(x~1] [y+1];
m[3]-in_values[x][y-1];
m[4]-in_values[x][y];
m(S]=in_values(x] [y+1];
m(6]=in_values(x+1]([y-1];
m[7]-in_values[x+1][y];
m[B]-in_values[x+1][y+1];
node_sum-m[O]+m[1]+m[2]+m[3]+m[5]+m[
if ((m([4]1>0)&& (node Sum==val) )

d isolated points */

values[x][;]-fe_label;

free_ends++;
}
if((m[4]>0)&&(node_sum==0)) {
isolated_points++;
}
if((m[4]>0)&&(m[5]==val)&&(m[

values[x][y]=nd_label; /

node++;

}
CI=(((double) node-(double) free_ends-(double) isolat
printf ("Network length= %d\n",network_length);
printf ("Nodes= ¥d\n", node) ;
printf ("Free ends= t¥d\n", free_ends);
printf("Isolated points=%d\n"

»isolated_points);
printf("Connectivity Index=%.2f\n", CI);

inue;

;

(ii, jj), counting level changes */

7 count++;}

count++; }

.
’

count++; }

’

count++; }

-
’

count++; }

.
r

count++; }

‘

count++; }

7

count++; }

-
’

*/

6]+m(7}1+m(8];
{

/* label free ends */

7]==val)&&(m[8]==val))
* label nodes */

{

ed_points)/((double) network length))*



fprintf(res_file, "Network length= ¥d\n", network_length);
fprintf(res_file, "Nodes= %d\n", node) ;
fprintf(res_file, "Free ends= td\n", free_ends) ;
gprintf(res file, "Isolated points=%d\n",isolated_points);
fprintf(res_file,"Connectivity Index=%.2f\n",CI);
/*return(node) ; */

}

/*** Routine to count holes in binary image *+*=*/

int hole_counter(h,values,rxl,rx2,ry1,ry2)
short int values[256][256],rx1,rx2,ry1,ry2;
int h([1000];

{

int i, j,count=0,val=1;

for(i=0; i<1000; i++)
h[i]=0; /* clear h to 0 */

for (i=ryl+2; i<ry2;i++)
for (j=rxi1+2 ; J<rx2; j++) {
if (values[i][j] !=0) continue;
h[count]=fill_hole (values,256,256,i,j,O,val);
printf("# of holes= %d ¥d\n", count,h[count]);
count++;
val +=1;
}
return count;

}

/******* Function fill hole by region grow given a seed pixel ******#wss/

int stack3=0;
short int *pstack3;

int fill hole (pimage,im_rows,im_columns,xc,yc,t,val)
short *pimage;

int im_rows, im_columns;

int xc,yc;

short t,val;

{

int i,3,x,y;
short *pbuf;

pstack3 = (short int ¥*) malloc(32000);
if (pstack3==NULL)
{ printf("\nGrow region: Not enough memory\n"); return(-1); }

px_push3 (xc, yc);
*(pimage+(xc*im;columns)+yc)=val;

while (stack3)
{
px_pop3 (&x, &y);

i=(x—1)*im_columns; i=y;
if (*(pimage+i+j) ==val) i=i;
else if (*(pimage+i+j)<=t) | *(pimage+i+j)=val;
px_push3(x-1,y); }
else '(pimage+i+j)=*(pimage+i+j);

i=(x+1) *im_columns; i=y;




if (* (pimage+i+j) ==va]l) i=ji;
else if (* (Pimage+i+j)<=t) {*(pimage+i+j)=val;
Px_push3(x+1,y); }
else *(pimage+i+j)=*(pimage+i+j);

i=x*im_columns; j=y-1;
if (*(pimage+i+j)==val) i=i;
else if (*(pimage+i+j)<=t) { *(pimage+i+j)=val;
pPx_push3(x,y~-1); }
else *(pimage+i+j)=*(pimage+i+j);

i=x*im_columns; j=y+1;
if (* (pimage+i+j)==val) i=i;
else if (* (pimage+i+j)<=t) { *(pimage+i+j)=val;
px_push3 (x, y+1); }
else *(pimage+i+j)=*(pimage+i+3) ;

x=0;
for (i=0;i<im_rows*im_columns;i++)
{ if (*(pimage+i) I=val) *(pimage+i)=*(pimage+i);
else x++; }
free (pstack3);
return(x);
}

int px_push3(x,y)
int x;
int y;
{
*pstack3= (short int) x;
pstack3++;
*pstack3= (short int)y;
pstack3++;
stack3++;
/*printf("\n %d (%d, %d) ", stack3, X, ¥);*/
}

int px_pop3(px, py)
int *px;
int *py;
{
short int i; -
pstack3—;
i=*pstack3;
*py=(int)i; pstack3-——;
i=*pstack3;
*pPx=(int)i;
stack3—;

/****** Punction to calculate mean and standard deviation of an array *x*xx/

int mean_std(values,m,std,count,pixel_size,res_file)

int values[1000], count;

float m, std,pixel_size;

FILE *res_file;

{

int i, sum=0;

double sum_std=0.0;

for (i=1; i<= count; i++) /* calculate mean */
{sum +=values[i];}

m=(sum/((float)count))*(pixel_size)*(pixel_size);

printf("\n MEAN =%.2f mm2\n", m);



fprintf(res_file, "Number of holes detected= %d\n",count);
fprintf(res_file, "Mean hole area=%.2f mm2\n", m);

for (i=1;i<=count;i++) { /* calculate mean for holes with area >1 pixel */
sum_std=sum_std+((values[i]—m)*(values[i]—m));}
sum_std=sum_std/ (count-1);
std=sqrt(sum_std)*(pixel_size)*(pixel_size);
/*printf ("STD =%.2f mm2\n", std);*/

/*****+ Punction to sort an array of integers in ascending order ****+wwx/,
int sort (a,n,pixel_size,res_file)
int a[1000},n;
float pixel_size;
FILE *res_file;
{
int i, J,temp, sum=0, suml=0;
float min,max,med,maxl,maxz,max3,m;
for (i=0; i<=(n-1); ++i)
for (j=i+1; j<=n; ++3j) {
if (ali]>alj]) {
temp=a[i];
ali]=a(j);
aljl=temp;
}
}
for (i=0; i<=n ; i++) /* calculate mean */
{sum +=a(i};}
m=(sum/((float)n))*(pixel_size)*(pixel_size);
/* printf("\n MEAN1 =%.2f mm2\n", m);*/

for (i=0; i<=n-1 ; i++) /* calculate mean */
{suml +=af(i];}
m=(sum1/((float)n—l))*(pixel_size)*(pixel_size);
/* printf("\n MEAN2 =%.2f mm2\n", m);*/

min-(float)(a[O])*(pixel_size)*(pixel_size);
max-(float)(a[n—l])*(pixel_size)*(pixel_size);
med-(float)(a[n/Z])*(pixel_size)*(pixel_size);
max1=(float)(a[n—2])*(pixel_size)*(pixel_size);
max2=(float)(a[n—3])*(pixel_size)*(pixel_size);
max3-(float)(a[n—4])*(pixel_size)*(pixel_size);

printf("Median= %.2f mm2\n", med) ;
printf("Minimum= %.2f mm2\n", min) ;
printf("Maximum = §.2f mm2\n", max);
printf ("Maximum-1= %.2f mm2\n", maxl);
printf("Maximum-2= %.2f m2\n", max2);
printf("Maximum-3= %.2f mm2\n", max3);

fprintf(res_file, "Median= %.2f mm2\n", med);
fprintf(res_file, "Minimum= %.2f mm2\n", min);
fprintf(res_file, "Maximum = %.2f mm2\n", max);
fprintf(res_file, "Maximum-1= %.2f mm2\n", maxl);
fprintf(res_file, "Maximum-2= %.2f mm2\n", max2);
fprintf(res_file, "Maximum-3= % _2f mm2\n", max3);

}

/****** Function to find hole size distribution ***+w*xsy
int hole_distribution(a,n,bin)
int a({1000],bin,n;
{
int i, j,temp;



int h([750];

char *buf2, *fpoint2;
char out_file(25];
FILE *out;

/* clear histogram */
for (i=0; i<=(n-1); ++i){
h[i}=0;
}
for (i=0; i<=(n-1); ++1i) {
h[a[i]/bin]=h[a[i]/bin]+1;
}

/* *** write to file in ascii format *** */

buf2=(char*) malloc(5000);

printf("Enter output file:> ");

scanf ("$24s",out_file);

if ((out=fopen(out_file,"w+t")) == (FILE *) NULL) {
printf("File Error");
exit (1) ;

}

fpoint2=(char*) buf2;

for(i=0; i<=200; ++i){
sprintf (fpoint2, "sd %d\n",i,h[i]);
fputs (fpoint2, out);

free(buf2);
}

int dilation(pimage, n_bytes, im_rows, im columns, pelem,elem_rows,elem_columns)

int n_bytes, im_rows, im_columns, elem_
unsigned char *pimage, *pelem;
{ int i,j,x,y, h_rows, h_col, sum, itemp, total, el_temp, im temp, value;
short int ival, *pbi, *pimage2, *pi;
unsigned char cval, *pbuf, *pcimage2, *pci, ctemp;

rows, elem columns;

if (n_bytes==1) pbuf = pimage;
else if (n_bytes==2) pbi = (short int ¥*) pimage;
else return(-2);

total=im rows*im_columns; ival=0; cval=0; j=0;
do { if (n_bytes==2) ival=*pbi++;
else cval=*pbuf++; J++; } while(!ival && ‘cval &g j<total);

/* printf("\n first no—-zero value at $%d (%d )", j, im_rowsw im_columns); */

if (!ival g& !cval) return(-3);

total=im_rows*im_columns*n_bytes;
pcimage2=(unsigned char *) malloc(total); /* get memory for new image
if (pcimage2==NULL) return(-~1);

pimage2=(short int *) pcimage2;

pbuf=pcimage2; for(i=0;i<total; i++) *pbuf++=0;
h_rows=elem rows/2; h_col=elem columns/2;

pbi = (short int =) pimage;
x=h_rows;
do { y=h_col;
do { sum=0;
pbuf=pelen;
for (i=0;i<elem_rows; i++)
for (j=0;j<elem_columns;j++)
{ el _temp=(int) (*pbuf); pbuf++;
if (n_bytes==2)
im_temp=(int) ('(pbi+(x—h_rows+i)*im_columns
+y-h_col+3) ) ;



/*

*/

else im_temp=(int) (*(pimage+ (x—~h_rows+i) *im columns

+y-h_col+j) );
itemp = el _temp*im temp;
sum += itemp; }

if (sum) ( if (n_bytes==2)

*(pimage2+x*im_columns+y) = ival;
else
*(pcimage2+x*im_columns+y) = cval;
}
y++;
} while (y < im_columns-h_col);
X++;

} while (x < im_rows~h_rows);

pbuf=pimage; pci=pcimage2; j=0;
pbi=(short int *) pimage; pi=pimage2;
total=im;rows*im_columns*n_bytes;
for (i=0;i<total;i++) *pbuf++ = *pci++;

{ if (n_bytes==2)
{ if (*pi && !j)

{ printf(" \n first no zero at %d (%d) ", (int)*pci, i); j=1;

*pbi++=*pi++; }
else
{ if (*pci && !'9)

{ printf(" \n first no zero at %d (%d) ", (int)*pci, 1i); j=1;

*pbuf++ = *pci++; }
}

value=ival + (int)cval;
free (pcimage?2) ;
return(value);

int erosion(pimage, n_bytes, im_rows,im;columns,»pelem,elem_rows,elem_columns)
int n_bytes, im_rows, im_columns, elem_rows, elem_columns;
unsigned char *pimage, *pelem;

{

int i,3j,x,y, h_rows, h_col, sum, itemp, total, el _temp, im temp, value;
int el_sum;

short int ival, *pbi, *pimage?2; -

unsigned char cval, *pbuf, *pcimage2, *pci, ctemp;

if (n_bytes==1) pbuf = pimage;
else if (n_bytes==2) pbi = (short int *) pimage;
else return(-2);

i=im rows*im columns; ival=0; cval=0;

do { if (n_bytes==2) ival=*pbi++; -
else cval=*pbuf++; i-—; } while(!ival && !'cval && 1i);

if (!ival && !cval) return(-3);

value=ival + (int)cval;

total=im_rows*im_columns*n_bytes;
pcimage2=(unsigned char *) malloc(total); /* get memory for new image
if (pcimage2==NULL) return(-1);

pimage2=(short int ) pcimage2;

pbuf=pcimage2; for(i=0;i<total;i++) *pbuf++=0;
pbuf=pelem; el_sum=0;
for(i=0;i<elem_rows*elem_columns;i++)

{ j=(int) (*pbuf); el sum += j; pbuf++; }
el_sum = el_sum * value;

*/



/* printf("\n ival=%d cval=%d value=%d el sum=%d\n", ival, (int)cval,
value, el _sum);
*/
h_rows=elem rows/2; h_col=elem_columns/2;
pbi = (short int +) pimage;
x=h_rows;
do { y=h_col;
do { sum=0;
pPbuf=pelem;
for (i=0;i<elem_rows; i++)
for (j=0;j<elem_columns;j++)
{ el_temp=(int) (*pbuf); pbuf++;
if (n_bytes==2)
im_temp=(int) (* (pbi+(x—~h_rows+i) *im_columns
+y-h_col+j) });
else im_temp=(int) (*(pimage+(x—h_rows+i)*im_columns
+y-h_col+j) );
itemp = el_temp*im temp;
sum += itemp; }
/* if (sum) printf("\n %d %d %d ", X,y,sum); */
if (sum == el sum)
{ if (n_bytes==2)
*(pimage2+x*im_columns+y)=ival;
else
*(pcimagez+x*im_columns+y)=cval;
}
y++;
} while (y < im_columns-h_col);
X++;
} while (x < im_rows-h_rows) ;

pbuf=pimage; pci=pcimage2;
for (i=0;i<total; i++) *pbuf++ = *pci++;
/* { if (*pci) printf(" %d (%d) ", (int) *pci, 1i);
*pbuf++ = *pci++; |}
*/
free(pcimage2);
return(value);

int morph_open (pimage, n_bytes, im_rows,imLcol, pelem, elem

rows,elem_col)

int n_bytes, im_rows, im _col, elem_rows, elem col; -
unsigned char *Pimage, *pelem;
{ int i;.

i=erosion (pimage, n_bytes, im_rows,
im_col, pelem, elem_rows,elem col);
if (i>0)
i=dilation (pimage, n_bytes, im_ rows,
im_col, pelem, elem_rows, elem col);
return(i);

int morph_close (pimage, n_bytes, im_rows, im_col, pelem,elem_rows,elem_col)
int n_bytes, im_rows, im_col, elem_rows, elem col;

unsigned char *pimage, *pelem;

{ int i;

i=dilation (pimage, n_bytes, im_rows, im_col,
pelem,elem_rOWS,elem_col);
if (i>0)
i=erosion(pimage, n_bytes, im;rows,im_col,



return(i);

pelem, elem_rows,elem col);





