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ABSTRACT

A study was conducted to investigate the dam-reservoir interaction effect on the
linear and nonlinear seismic response of concrete gravity dams. A mathematical approach
was developed for the solution of the coupled dam-reservoir interaction problem which can
be implemented in the nonlinear seismic analysis of concrete gravity dams. Two methods
of staggered solution procedures are proposed for the dam-reservoir interaction. Using
Routh-Hurwitz criteria, both methods are shown to be unconditionally stable when the two
differential equations of the fluid and structure include damping terms. The staggered
pressure method was modified for use when the equation of motion includes a lumped
(diagonal) mass matrix. |

A finite element program was developed to include the staggered solution schemes
for seismic analysis of concrete gravity dams. The program considers the dam-reservoir
interaction. The reservoir can be considered as infinite in which an appropriate boundary
condition can be applied at the desired distance from the upstream face of the dam. The finite
reservoir condition is also an option that can be included in the analysis. The effect of the
travelling wave where nonuniform earthquake ground motion is applied to the boundary of
the reservoir can be evaluated. The nonlinear analysis of the concrete gravity dam was
considered based on nonlinear fracture mechanics crack propagation criterion.

Seismic response of a concrete gravity dam subjected to travelling seismic excitation



is investigated. The analysis is applied to the case of a gravity dam with infinite and finite
reservoirs of different lengths to evaluate the effect of the travelling seismic wave on the dam
crest displacement. Various wave speeds representing the speed of wave travel in the
reservoir foundation, are used in the analysis. Earthquake waves are considered to travel in
the upstream or the downstream directions.

The nonlinear seismic fracture response of the Pine Flat dam is investigated under
the effect of reservoir interaction. Smeared crack analysis model based on a nonlinear
fracture mechanics crack propagation criterion was used to study the cracking behaviour of
a concrete gravity dam. The staggered method is used to solve the dam-reservoir interaction
problem and results of the analysis were compared with the case when the added mass was
used to represent the interaction effects.

An experimental program was conducted on small scale models of the concrete dam.
A loading mechanism with two actuators was designed to apply four concentrated loads on
the upstream face of the dam model. Dynamic load was applied cyclically by an actuator to
represent the effects of the earthquake loadings. The static load which represent the
hydrostatic pressure was kept constant. The material properties of the model was maintained
the same as the prototype. In the proposed approach, the stress distribution at the top part of
the dam model and prototype of the same material properties are found to be in close

agreement.
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CHAPTER ONE

INTRODUCTION

1.1  OVERVIEW

Earthquake analysis of concrete dams has received much attention from researchers
during the past decade because of concern for dam safety during earthquakes. Before the
development of dynamic analysis procedures, the traditional design of dams used equivalent
horizontal static load to represent the earthquake effects (Chopra, 1987). The design criteria
allowed no tensile stresses in the dam with a safety factor against overturning moment and
a safety factor for shear resistance to sliding.

The development of the finite element technique and its application to the seismic
analysis of concrete dams generated extensive research in this area. The problem of seismic
analysis of dams is fairly complex due to the dam-reservoir-foundation interaction and the
nature of the boundary effects. The complexity of the subject has made it both attractive and
challenging for researchers.

The early modelling of dams approximated the dam-water interaction using
Westergaard's added mass representation (W estergaard, 1933). This procedure is applicable

to the case of concrete dams of vertical upstream face with infinite reservoir length. A closed



2
form solution was developed for the reservoir for the case of gravity dams with infinite
reservoir length (Hall and Chopra, 1982; Fenves and Chopra, 1984b). In this case, the
equation of the reservoir can be solved to obtain the pressure at the upstream face of the dam.
Then, the calculated pressure is included as an applied force in the finite element model of
the dam structure.

The finite element modelling of the reservoir involves the truncation of the of the
infinite Teservoir. The truncation effect in the finite element model of the reservoir was
investigated by several researchers (Hall and Chopra, 1979; Sharan, 1986 and 1987; Tsai and
Lee 1990). The idea was to find a proper transmitting boundary condition that can absorb the
outgoing wave at the truncated far end of the reservoir. Based on the method of analysis
which could be in the time or the frequency domains, the boundary conditions may differ.
Implementation of the transmitting boundary in the finite element model of the reservoir
simplified the model and made the three dimensional analysis of dams possible. Most of the
seismic analysis modelling of concrete gravity dams has been two dimensional and applied
to a single monolith. This assumption is realistic for the case of concrete gravity dams with
straight or grouted contraction joints. The assumption is also valid for keyed contraction joint
in case of severe ground motion. The case of arch dams requires a rigorous 3-D analysis of
the structure.

In seismic analysis of concrete dams, the input earthquake ground motion is assumed
uniform. This assumption may not be realistic given the large size of the dam-reservoir
system. Due to the limited speed of the seismic wave travel, the dam-reservoir system will

be subjected to different ground motions. Ground motion is also affected by coherency and



3
local site conditions. Spatial variation of the earthquake ground motion mainly affects the
hydrodynamic pressure on the upstream face of the dam. Few researchers studied the effect
of finite velocity of the wave propagation on the hydrodynamic pressure on dams (Flores
Victoria et al., 1969). The analytical method implemented to obtain the hydrodynamic
pressure is capable of considering vertical earthquake excitations. Using the finite element
method for the reservoir fluid with proper analysis for dam-reservoir system, it is possible
to consider different wave velocities for the horizontal and vertical components of the
earthquake. The flexibility of dams may be an important parameter in their response when
subjected to travelling earthquake waves. The reservoir length affects the dam response for
the case of finite reservoir length. The effect of travelling wave has not been studied in the
case of finite reservoir iength. |

Recently most of the research in the seismic analysis of dams has been directed
towards the nonlinear response of concrete gravity dams. The concept of fracture mechanics
is used in nonlinear analysis of the dams by either smeared crack approach or discrete crack
approach. Different constitutive models were used to monitor the crack propagation in dams
when subjected to earthquake loading (Bhattacharjee and Leger, 1992). In nonlinear seismic
response analysis of concrete gravity dams, several parameters are normally used. The values
of these parameters remain to be measured. There is a shortage of data on the nonlinear
seismic behaviour of the dam concrete material. The nonlinear analysis of arch dams is
mainly concerned with modelling the opening and closing of the joints (Kuo, 1982; Fenves
et al., 1992). There is a need for a nonlinear constitutive model which can properly represent

3.D behaviour of concrete. In most of the nonlinear analysis approaches, an added mass is
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used to represent the reservoir interaction effects on the dam. Nonlinear analysis of concrete
gravity dams indicates that dam-reservoir interaction is an important effect that must be
included in the analysis. A major concern of researchers is that the developed sophisticated
nonlinear analysis tools have not been subjected to verification by actual response data. This
is due to the lack of data measurements of the actual performance of dams during
ecarthquakes and the difficulty by which simple small scale tests are conducted.
Representative modelling of concrete dams in small scale experimental study is extremely
difficult. Nevertheless, portrait of some aspects of the model behaviour may represent a

specific case of performance of the actual dam.

1.2 SEISMIC ANALYSIS OF CONCRETE DAMS

The dam-reservoir-foundation interaction is a phenomenon which requires complex
mathematical modelling in the seismic analysis of concrete gravity dams. The dam-reservoir
system can be categorized as a coupled field system in which two physical systems of fluid
and structure interact only at the domains’ interface. In such a problem, the presence of
interaction implies that the time response of both subsystems must be evaluated
simultaneously. Different approaches to the solution of coupled field problem exist (Felippa
and Park., 1980). Field elimination, simultaneous solution and partitioned solution are the
three classes of solutions of the coupled field system.

An analytical procedure for the seismic analysis of concrete gravity dams based on

the substructure method was presented by (Fenves and Chopra, 1984b). The substructure
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system equations for dam, impounded water and foundation rock were combined to obtain
the frequency domain equation for the complete system. The dynamic response of the dam
to earthquake ground motion was obtained by solving the frequency domain equation for
the complex-valued frequency response functions of the generalized coordinates. The
response history of the generalized coordinates was determined using fourier synthesis
techniques. Their analysis used the assumption of vertical upstream face for the dam. The
hydrodynamic pressure in the impounded reservoir of infinite length which is governed
by the wave equation is due to the horizontal and the vertical accelerations of the upstream
face of the dam as well as the vertical acceleration of the reservoir bottom. Motion of thes e
two boundaries (upstream face of the dam and reservoir bottom) is related to the
hydrodynamic pressure through the boundary conditions. After solving the wave equation,
the frequency response functions of the hydrodynamic terms are given as vectors of nodal
forces. The response functions are statically equivalent to the pressure functions at the
upstream face of the dam and at the reservoir bottom. The frequency domain equation for
the complete system derived from combination of the governing equations in each
substructure system, consists of hydrodynamic terms. The main limitation of the frequency
domain analysis is that it is not applicable in the case of nonlinear analysis.

For dams with vertical upstream face which are characterized by a rectangular fluid
domain of infinite length, the wave equation subjected to the boundary conditions can be
solved using standard solution methods for the boundary value problem. However, for dams
with inclined upstream face or a reservoir of finite length, numerical methods are required

to solve the wave equation. In this case, it is necessary to implement the finite element



6
technique to model both reservoir and dam structure. The main concern is the effect of
truncation of the infinite reservoir that causes reflection of the outgoing waves into the finite
element model of the resrvoir. The case of finite reservoir does not require truncation of the
TeServoir.

In seismic analysis of concrete dams, it is necessary to develop a model to include
nonuniform earthquake excitation. In most of the available research, the solution of the wave
equation in the reservoir to determine the pressure is based on the assumption of uniform
earthquake ground motion. A closed form solution of the wave equation can not be obtained
if a nonuniform earthquake excitation is taken as an input ground motion. This also applies
for the case of infinite rectangular reservoir. Inclusioq of nonuniform excitation in the
dynamic analysis is possible if both of the reservoir and the structure are modelled using the
finite element technique. A method of analysis is needed to take into account the nonuniform
input earthquake excitation for the dynamic analysis of concrete gravity dams.

The available analyses for the nonlinear response of concrete gravity dams represent
the dam-reservoir interaction by using the added mass approach. Different techniques have
been proposed for simultaneous solution of dam-reservoir interaction using the finite element
method. Tn all of the techniques, displacement was chosen as the response variable for the
structure while the pressure can be chosen as a response variable for the fluid. In this case,
the equation of motion for the coupled dam-reservoir system is unsymmetric. Another
approach is to model the fluid in terms of a potential function of velocity or displacement.
This will again result in unsymmetric equation of motion for the coupled dam-reservoir

system. The fluid can also be modelled by displacement formulation. In this case, the
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equation of motion of the coupled dam-reservoir system is symmetric. The difficulties
encountered in applying this method are in the number of variables for the fluid and the
effect of spurious vibration mode because of the reduced integration technique. Others mixed
approaches have been introduced to model the dam-reservoir interaction.

Fenves and Vargas-Loli (1988) proposed a method for dam-reservoir interaction
which is capable of producing a symmetric matrix for the equation of equilibrium of the
system. Leger and Bhattacharjee (1992) presented a methodology which can partly represent
the dam-reservoir-foundation interaction. The method was proposed for use in nonlinear
analysis of concrete gravity dams. The effect of the reservoir is modelled using added mass,
damping and spring stiffness matrices. These matrices were chosen based on a comparison
with the frequency doﬁﬁn analysis to minimize the difference in structural response. The
method is very crude and was found to be time consuming in nonlinear analysis. Modelling
of the coupled dam-reservoir problem is quite complex when the nonlinearity of the concrete
dam or reservoir are included.

In seismic analysis of concrete gravity dams, a mathematical model that includes the
dam-reservoir interaction needs to be developed. The model should overcome the difficulties
encountered with available models and be feasible to implement into the nonlinear analysis

of concrete dams.



1.3 NONLINEAR ANALYSIS OF CONCRETE DAMS

Nonlinear seismic analysis of concrete dams has been the subject of extensive
research during the past decade because of concern over the limitations of the linear analysis.
Results of the previous research have shown that most of the concrete gravity dams
experience cracking even when subjected to a moderate earthquake ground motion.
Therefore, the assumption of linear behaviour may not be appropriate in the analysis of such
systems.

Concrete gravity dams can be distinguished from other structure because of their size
and their strong interactions with the reservoir and the foundation. The dam-reservoir and
dam-foundation interactions are the important aspects of the behaviour that need to be
properly modelled in noﬁlinear analysis of concrete dams. It is a difficult task to develop a
comprehensive model to include both nonlinearities and interaction effect in the analysis.
These are the major challenges that most ongoing research is facing.

Two classes of solution can be found in the nonlinear study of concrete gravity dams.
Discrete crack approach is the first class of the solution which is based on the variable mesh
approach. Two methods of linear fracture mechanics and nonlinear fracture mechanics can
be used in this approach. The other class of solution is the continuum model in which a fixed
finite element mesh is used. Smeared crack model and damage mechanics are the two
methods of solution in this class. In the investigation of the nonlinear behaviour of concrete
dams, different approaches with different material modelling were attempted.

To understand the nonlinear behaviour of concrete dams, mechanical modelling of

the damage is pursued. Bazant and Oh (1983) proposed a fracture mechanics theory of the
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smeared crack band. The strain-softening of the material was considered based on the
fracture parameters, fracture energy, uniaxial tensile strength and crack band width. Fracture
energy could be determined from the stress-strain curve. Formulas were derived to give the
fracture parameters. Borst and Nauta (1985) presented a nonlinear method with rotating
crack instead of fixed-crack model. Inclusion of shrinkage and plasticity in the nonlinear
analysis was made due to decomposition of strain increment into crack strain and concrete
strain increments. They found that the reduced integration technique is not suitable in
fracture analysis. Bhattacharjee and Leger (1992) presented a state-of-the-art article on
constitutive models of concrete gravity dams.

Ghrib and Tinawi (1995b) proposed a continuum model of damage mechanics for
predicting the nonlinear response of concrete gravity 4dams under static loading. The
approach to damage mechanics is based on a factor which represent the state of each element.
The evolution of the crack is based on the basic properties of the concrete such as
compressive strength, tensile strength, and fracture energy. The continuum model uses a
fixed mesh which has the advantage of remeshing in discrete crack model. The model can
be used for large structures using a reasonable mesh size. Ghrib and Tinawi (1995a)
presented anisotropic damage mechanics model for use in the nonlinear seismic analysis of
concrete gravity dams. The model represents opening and closing of cracks using the element
properties such as compressive strength, tensile strength, and fracture energy. The numerical
difficulties due to closing and opening of cracks which introduces a shock wave was

overcome by using a-method.
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In most of the nonlinear fracture mechanics solutions for the seismic response of a
concrete gravity dam, the dam-reservoir interaction is excluded. The dam-reservoir
interaction effects are normally approximated by means of added mass approach. Thus a
model is needed for including the dam-reservoir interaction in the nonlinear fracture

mechanics analysis to study the cracking behaviour of concrete dams.

1.4 EXPERIMENTAL STUDIES ON CONCRETE DAMS

The dynamic response of dams is a complex problem because of dam-reservoir-
foundation interaction effect. Most of the research conducted in the area of dam engineering
has been theoretical in nature. Although substantial progress has been achieved in
mathematical modelling, many assumptions in the analysis remain to be verified. Due to the
complex nature of the problem, the large size of the structure and difficulties in physical
modelling, little experimental work has been pursued.

There is a definite need to develop new experimental approaches using small scale
model testing of concrete gravity dams to investigate the dynamic response of dams. In such
a model, it is important that both material scaling criteria and load representation criteria are
met. The results from experimental work would be valuable in verifying the assumptions

used in theoretical solutions as well as in calibrating the modelling parameters.
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The difficulties in physical modelling of concrete dams are mostly in material
modelling and the availability of equipment for testing. Research was conducted to find
proper combination of the material in the mixture that can meet the criterias for modelling
(Raphael, 1963 ; Yoshida and Baba, 1965). Some of the materials need to construct is
hazardous and prone to shrinkage cracking in the process of drying (Donlon and Hall, 1991).
Limited testing of small scale dam models using the centrifuge equipment was described by
Plizzari et al. (1994), Renzi et al. (1994) and Valente et al. (1994). In the testing procedure,
the hydrostatic water pressure on the dam model was simulated. The pressure was increased
1o cause failure of the dam. This represents the case of a dam subjected to overflow loads due
to flooding. The main interest in the test was to shnulatg the crack propagation in the dam
model. Due to difficulties in physical modelling, a new approach to dam experimental
research is needed to properly model even some limited aspects of the behaviour of the

concrete gravity dam prototype.
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OBJECTIVES OF THE RESEARCH

The objectives of this research program are to:

Develop a mathematical approach for the solution of the coupled dam-reservoir
interaction problem which can be implemented in the nonlinear analysis of the
dynamic response of concrete gravity dams. The developed approach may be applied
to evaluate the effect of the travelling seismic wave on the response of concrete

gravity dam.
Develop a small scale experimental approach to model some aspects of the behaviour

of the concrete dam-reservoir system.

ORGANIZATION OF THE THESIS

Organization of the thesis is shown in flow chart format in figure 1.1. In Chapter 2,

two methods of staggered solution procedure for the dam-reservoir interaction are proposed.

The first method, staggered displacement method, is based on the approximation of the

displacement from the structure equation of motion. The second method, is based on the

approximation of pressure from the fluid equation of motion. Using Routh-Hurwitz criteria,

both methods are shown to be unconditionally stable when the two differential equations of

the fluid and structure include damping terms. The staggered pressure method was modified

for use when the equation of motion includes a lumped (diagonal) mass matrix. Two
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different configurations of concrete gravity dams are used to investigate the accuracy and the
stability of the staggered displacement method and the modified staggered pressure method.

The seismic response of a concrete gravity dam subjected to travelling seismic
excitation is evaluated in Chapter 3. The method of staggered displacement analysis for the
coupled dam-reservoir system is used in the analysis. The proposed method of analysis is
simple and easy to apply. The analysis is applied to the case of a gravity dam with infinite
and finite reservoirs of different lengths to evaluate the effect of the travelling seismic wave
on the dam crest displacement. Various wave speeds representing the speed of wave travel
in the reservoir foundation, are used in the analysis. Earthquake ground motions are
considered to travel in the upstream or the downstream directions. In the case of the
horizontal ground motion, the results are compared with the benchmark case of infinite
reservoir length in which the far end of the reservoir is truncated at length equal to 15 times
the dam height. In the analysis, a uniform earthquake is considered at the dam foundation
while 2 nonuniform ground motion is considered at the reservoir boundaries.

The nonlinear seismic fracture response of the Pine Flat dam under the effect of
reservoir interaction is included in Chapter 4. Smeared crack analysis model based on a
nonlinear fracture mechanics crack propagation criterion is used to study the cracking
behaviour of the dam. The staggered method of numerical analysis was used to solve the
dam-reservoir interaction problem. Results of the analysis are compared with the case when
the added mass approach was used to represent the interaction. The foundation is assumed
rigid and no absorption is considered at the reservoir bottom.

Small scale experimental investigation of the concrete dam including specimen
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design, test set-up, concrete properties and instrumentation are presented in Chapter 5. A

Joading mechanism with two actuators designed to apply four concentrated loads at the

upstream face of the dam model is described. Reversed cycling loading was applied by an

actuator to represent the dynamic effects of the earthquake. A constant static load which

represents the hydrostatic pressure was also applied to the specimens. The material properties
of the model was the same as the prototype.

Experimental data measurements and analysis of the results are presented in Chapter

6. Finally the conclusions and recommendations for future research are presented in Chapter

7.
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CHAPTER TWO

STAGGERED SOLUTION SCHEMES FOR DAM-RESERVOIR INTERACTION

2.1 INTRODUCTION

The dam-reservoir system can be categorized as a coupled field system in which two
physical domains of fluid and structure interact only at their interface. In such a problem, the
presence of interaction implies that the time response of both subsystems must be evaluated
simultaneously (Felippa and Park,1980). Different approaches to the solution of the coupled
field problem exist. Field elimination, simultaneous solution and partitioned solution are the
three classes of solutions for the coupled field system. The advantages and disadvantages of
cach method were addressed by Felippa and Park (1980). The field elimination approach is
not feasible in the case of nonlinear problems. The reduced system of equations has high
order derivatives which cause some difficulties in applying the initial conditions. The
simultaneous solution is time consuming and involves many operations, especially when a
large number of elements is used. This method contains matrices with a large bandwidth and
consequently requires a large amount of memory especially for the cases when the existing
matrices are not symmetric. In addition, the main disadvantage of the first two classes of

solution arises from the difficulties encountered in using available software while the

16



17
partitioned solution has the capability of using existing software for each subsystem.
Staggered solution was described by Felippa and Park (1980) as a partitioned solution
procedure that can be organized in terms of sequential execution of single-field analyser.

Most of the physical systems are made of subsystems which interact with each other.
These physical systems which are referred to as coupled systems, have been investigated by
several researchers. Methods of solution vary depending on the governing differential
equations of the subystems and may lead to different degrees of accuracy and stability of the
solution (Park, 1980; Park and Felippa, 1980). Coupled problems and their numerical
solutions were addressed by Felippa and Park (1980); Park and Felippa (1980, 1984);
Zienkiewicz and Taylor (1989); Zienkiewicz (1984); and Zienkiewicz and Chan (1989).
Zienkiewicz and Chan (1989) proposed an unconditionally stable method for staggered
solution of soil-pore fluid interaction problem. Huang (1995) proposed two unconditionally
stable methods for the analysis of soil-pore fluid problem. The methods were named pressure
correction method and displacement correction method. Zienkiewicz and Chan (1989)
presented an unconditionally stable method for staggered solution procedure for the fluid-
structure interaction problem. Their method was proved to be unconditionally stable when
no damping term was included in the equations of the fluid and the structure. However, when
the damping term is included in the equation of the subsystems the proposed method may
not be unconditionally stable. The problem of solutions instability when the damping term
is included in the differential equation, was recognized by Wood (1990). Most of the
staggered solution applications in the field of fluid-structure interaction were conducted

using a method which is not unconditionally stable (Zienkiewicz and Newton, 1969; Paul
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et al. 1981).

In this study, two methods of staggered solution procedure are applied to the dam-
reservoir interaction problem. Both methods are shown to be unconditionally stable when
the two differential equations of the fluid and structure include damping terms. The accuracy
of the solution using both of the proposed methods, is investigated. Two different
configurations of concrete gravity dams are analysed to illustrate the application of the

proposed procedure and to compare the solution with available finite element solutions.

22 THE COUPLED DAM-RESERVOIR PROBLEM
The dam-reservoir interaction is a classic coupled problem which contains two
differential equations of the second order. The equations of the dam structure and the

reservoir can be written in the following form:

i T + [c1 O} + (K] U} = ¥} -1 {tjg} + [0] (P}

2.1)
= {Fl} + [0} P}

(6] B} + ¢ B + k1t = - p o) (O + U}
(2.2)
={F} - p Q" {T}

where [M], [C] and [K] are mass, damping and stiffness matrices of the structure and [G],
[C'] and [K'] are matrices representing mass, damping and stiffness of the reservoir,

respectively. Detailed definitions of the [G], [C'] and [K'] matrices and vector {F}, are
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presented in the following sections. [Q] is the coupling matrix; {f;} is the vector of body
force and hydrostatic force; and {P} and {U} are the vectors of hydrodynamic pressures and
displacements. {ﬂg} is the ground acceleration and p is the density of the fluid. The dot

represents the time derivative.

2.3  FINITE ELEMENT MODELLING OF THE RESERVOIR

The hydrodynamic pressure distribution in the reservoir is governed by the pressure
wave equation. Assuming that water is linearly compressible and neglecting its viscosity, the
small amplitude irrotational motion of water is governed by the two-dimensional wave

equation:

1
V2 P(x,y,1) = P(xy.t) (2.3)

where P(x,y,t) is the hydrodynamic pressure in excess of hydrostatic pressure, V is the
velocity of pressure wave in water and x and y are the coordinate axes.

The hydrodynamic pressure in the impounded water governed by equation (2.3), is due
to the horizontal and the vertical accelerations of the upstream face of the dam, the reservoir
bottom as well as the far end of the reservoir in the case of finite reservoir length. The motion
of these boundaries is related to the hydrodynamic pressure by the boundary conditions.

For earthquake excitation, the condition at the boundaries of the dam-reservoir,

reservoir-foundation and the reservoir-far-end are governed by the equation:
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OP(x,y,t)

= -p a,(xy) (2.4)
On

where p is density of water and a,(x,y,t) is the component of acceleration on the boundary
along the direction of the inward normal n. No wave absorption is considered at the
boundaries of the reservoir.

Neglecting the free surface wave, the boundary condition at the free surface is written

P(ehp) = 0 2.5)

where h is the height of the reservoir.
Using finite element discretization of the fluid domain and the discretized
formulation of equation (2.3), the wave equation can be written in the following matrix

form:

(61 B} + (7 Pt = {F} (2.6)

where G‘J = ZGijc, H‘J =2Hijc and F=2Fie.
The coefficient G;°, H;® and F¢ for an individual element are determined using the following

expressions:
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e 1
G} = = LN W, Q.7
B = ON,ON, 0N, oN, 2.8)
£ = + .
v 4. ¢ Ox Ox dy Oy
Fe=f N L s 2.9)
. on

where N, is the element shape function, A, is the element area and s, is the prescribed length
along the boundary of the elements. In the above formulation, matrices [H] and [G] are
constant during the analysis while the force vector {F} and the pressure vector {P} and its

derivatives are the variable quantities in equation (2.6).
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24 TRUNCATED BOUNDARY AT THE FAR END OF THE RESERVOIR
In order to determine the hydrodynamic pressure on the dam due to horizontal ground
motion under the assumption of infinite reservoir, the reservoir must be truncated at a
reasonable distance. Sommerfeld boundary condition is the most commonly used approach
which is based on the assumption that at a far distance from the dam face, the outgoing wave
can be considered as plane wave. Hanna and Humar (1982), Humar and Roufaiel (1983) and
Sharan (1985a,b; 1986; 1987) used a radiation condition which adequately models the loss
of the outgoing wave over a wide range of excitation frequencies. In the present analysis, the
Sharan (1986) radiation boundary condition was used. This boundary condition is the most
suitable one for the time domain analysis. Other transmitting boundary conditions (Yang et
al. 1993) are more accurate than Sharan's, however, the simplicity of the selected boundary
condition is a major advantage.

The Sharan boundary condition at the far-end truncated boundary can be written as:

QI_’.=—E_P—

1 =
- p )
on 2h 4 210

Implementation of the truncated boundary condition in the finite element model, can

be done by separating the force vector {F} in equation (2.6) into two components:

{F} = FF} + {FF)} (2.11)

where {FF,} is the component of the force due to acceleration at the boundaries of the dam-
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reservoir and reservoir-foundation while {FF,} is due to truncation at the far boundary and

can be written as:

T 1 N
= - - = {p}
{FrF,} ” (D] {P} [D] (2.12)

where D,_‘=EDUc and Dijc is deﬁned as:

D; = Jg N, N, dl; (2.13)

In equation (2.13), 4° is the side of the element on the truncated boundary. Substituting

equations (2.11) and (2.12) into equation (2.6) results in:

1 B+ — (D) B} + (1H] + - 0]) (P = (FF) 2.14)

Putting equation (2.14) in the format of equation (2.2) the following relationships are

obtained:

ch=+m
[]VH

XK1
{F)} - p [QV O} = (FF)

() + - D) @15)
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2.5 COUPLING MATRIX OF THE DAM-RESERVOIR
The coupling matrix relates the pressure of the reservoir and the forces on the dam-

reservoir interface as following:

[e1ipt=1{rt (2.16)

where {f} is the force vector acting on the structure due to the hydrodynamic pressure.
Figure 2.1 shows a line element on the interaction boundary of the dam-reservoir.
The work done by the hydrodynamic pressure on the interaction surface of the structure must
be equal to the work of the equivalent nodal forces on the interface boundary of an element.
Thus, for unit thickness elements as shown in figure 2.1, the following expression can be

written:

[P U as 18 = U By fo By (2.17)

where P and U, are the values of the hydrodynamic pressure and normal displacement along
the element interface, respectively. {8} and {f}* are the displacement and force vector of an
interface element. u; and v; (fx ; and fy ;) are the displacements (forces) at node 1 of the
interface element along the global X and Y coordinates, respectively. The integration is
performed along each element on the dam-reservoir interface. The superscript and subscript

‘¢’ refer to the element on the dam-reservoir interface. Writing u and v, displacements along
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the global X and Y coordinates of the interface element, in terms of structure shape

functions, then:

u =u N +u, N, v=v, N +v, N, (2.18)

where N, is the structure shape function at node i of the interface element. For the normal

displacement along the element surface, U,, we have:

U=u"+v"='qu1Nl+nu2N2+ﬁv1N1+ﬁv2N2 (2.19)

n

In equation (2.19), 7} and B are the absolute values of the normal vector on the boundary in
the global directions of X and Y, respectively. Equation (2.19) can be written in the

following form:

Un={‘r]N1 BN, TN, BNZ}{5}={N:}T{6} (2.20)

The hydrodynamic pressure can be expressed as shape function of the fluid in the form:

Pp={N'}{PY={N N} Pk 2.21)

where Ny is the fluid shape function at node i of the interface element. Combining equations

(2.17), (2.20) and (2.21), there is obtained:

{f}e=J':‘{N,,’}{Nf}Tds {PpF =10o1rf{Pk (2.22)

where [Q]° and {P}°are the coupling matrix and hydrodynamic pressure vector of an element
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on the dam-reservoir interface. The total coupling matrix [Q] is obtained by assembling all

element coupling matrices. From equation (2.22), [Q] is written as:

[or = J, W, Wi s (2.23)

For an interface element as shown in figure 2.1, then:

nw, N/ v, N/

gy, N/ BN, N/
or =11 | ‘f : ’f ds 2.24)
W, N{ TN, N;

f /
I BN, N{ BN, N, ]
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2.6 TIME-STEPPING SCHEME OF THE COUPLED EQUATIONS
Direct integration scheme is used to find the displacement and hydrodynamic
pressure at the end of the time increment i+1 given the displacement and hydrodynamic
pressure at time i. The Newmark-B method is used for discretization of both equations
(implicit-implicit method). In this method {Ulans Ui {P},,, and {P},,, can be written as

follows:

@, = (OF,+ yA O,
. . (2.25)
ok, = U}, + 0-nAr {0},
v, = Uk, + A (T},
(2.26)
{wp,, =Wl + A (U}, + (0.5-B) Ar* T},
), = PP, +v A Y,
. . 227)
., =1} + (1-y) Ar B},
{p},, = PP, + BA? (B}
(2.28)

{pp.,, = (P, + Ar {B}, + (0.5-B) Ar* (P},

where y and P are the integration parameters.
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The governing field equations at time i+1 can be written as follows:

O}, +[c1 ok, + K, = 7, + 101 %P, (2.29)

(61 B, +1c1 P, + k1P, =F, -plal W, (2-30)

27

The coupled field equations (2.29) and (2.30) can be solved using the staggered
solution scheme. The procedure can be started by guessing {P};,, in equation (2.29) to solve
for {U},,, and its derivatives. Then equation (2.30) can be solved to find {P} ;,,. This method
can not guarantee the unconditional stability of the solution. Similarly, guessing {U};,, at
first to calculate {P}.,, from equation (2.30) and then calculating {U};,, from equation (2.29)
can not provide unconditionally stable procedure.

In the following sections, two methods of staggered solution are proposed which are

shown to be unconditionally stable.
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2.7 STAGGERED DISPLACEMENT METHOD

In this method, equation (2.29) can be approximated as following:

w O, = F)., + 0] PP, -[Cl1P,, - K0P, (2.31)

Combining equations (2.31) and (2.29) gives:

[ @Y, =i OF,, + A 1] B,
(2.32)

- yAr [C]1 (T}, - BAf? [K] 1),

Taking advantage of the lumped mass which results in a diagonal mass matrix,

equation (2.32) can be modified as:
(] (T, = [M] {08, + BAL® [Q] 1., (2.33)

Substituting equation (2.33) into equation (2.30), then:

([G] + pBAL2 [QF M7 [Q1) B, +[c B, + KNP, =
(2.39)

F ), - plol" O,

In equation (2.34), the right hand side terms are known, thus, {P};,; can be obtained.
In order to correct the approximation made in equation (2.33), {P};,, can be substituted in

equation (2.29) to calculate {U};,, and its derivatives.
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Therefore, the procedure of the staggered displacement method can be summarized
by the following steps:
1. Solving equation (2.31) to calculate {U} ;..
2. Substituting {U}";, in equation (2.34) to calculate {P},,, .

3. Substituting {P}, in equation (2.29) to calculate {U} ;.,and its derivatives.

2.8 STABILITY OF THE STAGGERED DISPLACEMENT METHOD

In an unconditionally stable solution method, instability can be attributed to that of
structure. While in a conditionally stable method, the stability may be due to numerical or
structural instability. To show that the described method of staggered displacement is
unconditionally stable, consider a modally decomposed system with scalar values. In such

a system, displacement and the pressure must not grow. Thus for |p!<1 we have:
{U}m =p {U} {(}}M = {L}}i ; {tj}m =n {('J"},. (2.35)

P, =u Pk ; {P‘}“l = p {Is}i ; B, = n (P, (2.36)

Using z-transformation of p=(1+z)/(1-z), the condition for stability requires that the
real part of z is negative ( Re(z)<0 ) and that the Routh-Hurwitz criterion (Wood, 1990;
Zienkiewicz and Taylor, 1989) apply. For f=0.25 and y=0.5, equations (2.25), (2.26), 2.27)

and (2.28) become:
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o, = o, 5 0, = 220,
At? t
(2.37)
wr. = 2Z 2, ; P, =1 -2 ok
B, =2 B, = 220
! Atz 1 H At 1
(2.38)
B =22 p) o e, = (1 -22) B
At
Rewriting equation (2.29) without the force term, then:
] 0, + [c1 (o), + k1 {0, - 121 {Ph, =0 (2.39)

Combining equations (2.32) and (2.34) and substituting them into equation (2.30)

without the force term, gives:

[¢1 8, +1ch B, + ki, +
) (2.40)
p [0 1™ ([M] + yAr [C] + BAS® [K]) (T}, =0



32

The modally decomposed system is represented by a single degree of freedom
equation. The single degree of freedom equivalent of equations (2.39) and (2.40) will be
obtained by substituting the mass, damping and stiffness values m, and k instead of [M],
[C] and [K] in equation (2.39) and g, ¢’ and k' instead of [G], [C'] and [K'] in equation
(2.40). The coupling matrix [Q] would be represented by scalar quantity q. The characteristic
equation of the coupled field can be written by substituting equations (2.37) and (2.38) into

equations (2.39) and (2.40) as follows:

4 z? 2z
m +C +k -q
At? At
=0 (2.41)
2 2 2
———pq(m+£c+Atk)4z g4z +C/2—E+k/
m 2 4 At? At? t
or
4 3 2 =
ay,z* +a z> va,z" +a;z +a, =0 (2.42)

where:
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/
_1l6mg . a _8mc +8gc
Ar?

! Ar3 Ae3

! / 2 2 2
_4mk+4cc+4gk+4pq+2pq c+qu (2.43)

2 As? Ar? As? Ar? m At m
/ /
a3=2c k+2ck : a4=kk/
At At
The Routh-Hurwitz conditions for stability are:
a, a, 0
2, 3,
ao>0;a1,a2,a3,a420; >0 ; a, a8, a, |>0 (2.44)
3, 3,
0 2, a

For the structural system of dam and reservoir; m, ¢, k, g, ¢' and k' are positive

quantities. Therefore, a5, a,, 2,,a; anda, are always positive. The values of the two

determinants in equation (2.44) are given as:

a,8, a3 4, =
———32 mzc/k/+—32mc/2c+32pmc/q2+—16pclq2c
At® Ar® Ar? Art
(2.45)
+—spc/q2k+——32 gczc/+——32 glck
Ar3 Ar® Ar®
+2_pgcqz+l—6_£gc2qz+8_2.gcq2k

Ar® Ar? At
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a, 4, a3—a12 a4-a32 a, =
—64—(mk/\/cc/—gk cc’) + me'? k+—6—4—m 12 o2 !
t6 A Ar®
L840 L2 2k+64pmc’q2ck’+32pc’2q2ck
Ar® ArS Ar®
L 32p c/qzczk/+15pc/2 242 . 160 (1 o2 oy (2.46)
At Ar? Ar?
+_§igczc/2k+_6i_gc3 /k/+6pgcq20/k
Ar® Ar® t
+64fg2q2k/+ fgczqzclk+ chsqzk/
t At At
+16pgcq2k2c/+ chzqzkk/
Ar? t

All the terms in equation (2.45) and (2.46) are positive. Recalling the condition of stability

(2.44), then the method of staggered displacement is unconditionally stable.
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29 STAGGERED PRESSURE METHOD

In this method, the pressure can be approximated using equation (2.30) as following:
(61 B, = F},, - c1PP, - KTPP, (2.47)

Substituting equation (2.47) into equation (2.30), there is obtained:

[G] B}, = (61 (BY,,- p [OT (T},
(2.48)

- yAr [c B, - BA? [K P,
or:

( [G]+ BAt? (K] + yAr [c) B, = (61 BY, - p [V (U, (2.49)

Substituting equation (2.49) into equation (2.29) with [H]=[G]+BACK']+YAL[C'],

gives:

( [M1+pBAS [0] (AN Q) ) (D), + [c] 1Ok, + (K1 {0}, =
(2.50)

F). o+ 0] (P, + A [H]T [G] B ,)

Using equation (2.50), the variable {U};,, can be calculated. Substituting {U},., into

equation (2.29) gives {P};,, and its derivatives.
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Therefore, the procedure of staggered pressure method can be summarized by the

following steps:
1. Solving equation (2.47) to calculate {P}";,; .
2. Substituting {P}"., in equation (2.50) to calculate {U};., .

3. Substituting {U},., in equation (2.49) to calculate {P} ;, and its derivatives.

2.10 STABILITY OF THE STAGGERED PRESSURE METHOD
For stability check, similar procedure as that used in the displacement method can

be applied. Rewriting equations (2.29) and (2.30) without the force terms, then:

M G, + [C) {h,, + (K10}, -[@1P),, =0 (2.51)

[¢1 B, +1cq B, + k1B, +plQ T, =0 (2.52)

The characteristic equation of the coupled field for a modally decomposed system

with scalar values, can be written by substituting equations (2.37) and (2.38) into equations

(2.51) and (2.52):
2
m 4z +e 2z + K - q
At? At
= 0 (2.53)
2 2
pq42 g4Z +c,22+k/
At? At? At
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or
aoz4+alz3+a2z2+a32+a4=0 (2.54)
where:
/
a0=16mg : al=8mc +8gc
Ar? Ar? At?
/ / 2
a2=4mk +4cc +4gk+4pq (2.55)
At? Ar? At? At?

/ /
a3=2ck+2ck ;a4=kk/
At At

The coefficients of the polynomial are all positive. The determinants in the Routh-

Hurwitz conditions (equation 2.44), give:

me (2.56)

32 2,0 . 32 2 2P,
5 AS
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54 (mk'Jec' - gk ce’) +—§im 3 ek +—me'Petk!s
AtS At® At
(2.57)
64 Y m c/2 Zk + 64 p m c/q2 Ck/ + ___gc3 C/k/ +
Ar® ArS t®
—6—4—ch ’2k+64pgc2q2k’+ chqzck
At® t t

These terms are all positive. Therefore, given the stability condition of equation

(2.44), the method of staggered pressure is unconditionally stable.
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2.i1 MODIFIED STAGGERED PRESSURE METHOD
Most of the available nonlinear solutions assume a diagonal mass matrix for the
purpose of analysis. The staggered displacement method is the most suitable coupled field
problem solution procedure for the case of nonlinear analysis. In the case of the staggered
pressure method some difficulties may arise due to added mass effect in equation (2.50)
which changes the mass matrix from diagonal to a full matrix. For this reason the staggered
pressure method was modified to apply to nonlinear analysis.
The staggered pressure method is modified by rewriting equation (2.50) in the
following approximate form:
] {0, + (€] U+ K] (U}, =
(2.58)
(Fl., + 101 ( P2, + BAZ (] (IG] Y, - p [T (W)
Therefore, the procedure of the modified staggered pressure method can be
summarized by the following steps:
1. Solving equation (2.47) to calculate {P}";,, .
2. Substituting {P}";., in equation (2.58) to calculate {U};,, .
3. Substituting {U};., in equation (2.49) to calculate {P} ;,,and its derivatives.
The modified staggered pressure method does not guarantee unconditional stability
of the solution. In the Following analysis, the modified staggered pressure method is used
instead of the staggered pressure method and the results are compared with those obtained

using the staggered displacement analysis procedure.
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2.12 ACCURACY OF THE SOLUTION SCHEME

The accuracy of the staggered solution scheme can be improved by increasing the
number of iterations and/or by decreasing the time step. Increasing the number of iterations
of the staggering scheme is a time consuming process. The accuracy of the proposed methods
is based on the selection of the appropriate time step. In all of the following analyses no
iterations have been made for the purpose of improving accuracy. The staggered
displacement method and the modified staggered pressure method are compared with the
finite element solution of example problems for the purpose of evaluating the accuracy of

the analysis.

2.13 NUMERICAL RESULTS

Two cases of concrete gravity dams with different reservoir levels were analysed to
demonstrate the applicability and accuracy of the proposed methods. The modulus of
elasticity, unit weight and Poisson's ratio of concrete were taken as 3,430 MPa, 2400 kg/m?
and 0.2, respectively. The selected dam-reservoir system for the two cases of numerical
examples are shown in figures 2.2 and 2.3. In the first example, a full reservoir is considered
and the structure has a fundamental frequency of 6.837 rad/sec. The second example has a
typical configuration of a concrete gravity dam of fundamental frequency of 7.57 rad/sec
with partially filled reservoir.

Figure 2.4 shows ten seconds of the horizontal SOOE component of the May 18, 1940

Imperial Valley earthquake, El Centro site record, which is selected for the purpose of the
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dynamic analysis. The ground motion has peak acceleration of 0.348g. The values of the
integration parameters in the Newmark-f method were taken as $=0.25 and y=0.5. The
velocity of pressure wave in water was taken as 1438.66 m/sec.

Results of the analysis using the staggered displacement and modified pressure
methods were compared with the dynamic analysis using EAGD-84 (Fenves and Chopra,
1984a) program which assumes infinite reservoir length. In order to determine the
hydrodynamic pressure on the dam due to horizontal ground motion under the assumption
of infinite reservoir, the reservoir must be truncated at a reasonable distance. The truncated
boundary at the far-end should absorb the outgoing waves. In finite element formulation of
the reservoir, Sharan boundary condition (Sharan, 1986) which truncates the reservoir, was
applied at a distance L=10H from the dam.

The EAGD-84 is a computer code in the frequency domain which gives the steady
state response of the system. The presented results from the staggered methods are obtained
from the time domain analysis which include the steady state and transient responses of the
system. In the case of a typical concrete gravity dam, the transient response is negligible.

Four node isoparametric elements were used to represent the finite elements of the
structure and the fluid domains. Stiffness proportional damping (Rayleigh damping) is used.
To minimize the effect of the round-off errors on the accuracy of the solution, double
precision arithmetic is used.

Figure 2.5 shows the results of the analysis for the dam crest displacement of the two
dam examples. For a time step dt= 0.001 sec, excellent agreement is found between the

response obtained from two proposed methods and the EAGD-84 solution.
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The hydrodynamic pressure time histories on the upstream face near the bottom of
the dams in the two examples are shown in figure 2.6. Results of the staggered displacement
method and the staggered pressure method coincide.

Figures 2.7 and 2.8 show the results of the analysis obtained using different time
steps. The figures show that the staggered displacement method is accurate even for the large
time step of dt=0.02 sec. In the case of the modified staggered pressure method using time
step smaller than 0.004 sec, good results are obtained. Using time steps larger than 0.004

sec in the modified pressure method leads to instability of the solution.
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2.14 CONCLUSIONS
Two methods of staggered solution procedure for the dam-reservoir coupled system
are introduced. The staggered displacement method, is based on the approximation of the
displacement from the structure equation of the motion. The staggered pressure method is
based on the approximation of the pressure from the fluid equation of motion. Using Routh-
Hurwitz criteria, both methods are proved to be unconditionally stable when the two
differential equations of the fluid and structure include damping terms. The method of
displacement which is feasible for nonlinear analysis is used in the solution of numerical
examples. The staggered pressure method was modified for use when the equation of the
motion includes a lumped (diagonal) mass matrix. The modified staggered pressure method
is also used to solve the same examples for comparison. Two cases of concrete gravity dams
are analysed to investigate the accuracy and stability of the staggered displacement method.
The method is found to be accurate when compared with the finite element solution. No
instability is observed in the analysis in the case of displacement method. However, in case
of modified staggered pressure, numerical instability is observed for large time steps. It is
concluded that the displacement method gives stable solution with accurate results even for
a large time step. The method is found to be less time consuming than the finite element
analysis. The staggered pressure method is applicable where in problems with full mass

matrix.



Figure 2.1

Interface element on the dam-reservoir interaction boundary
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CHAPTER THREE

TRAVELLING WAVE EFFECT ON THE RESPONSE OF CONCRETE

GRAVITY DAMS

3.1 INTRODUCTION

Since Westergaard's (1933) classic work on the prediction of the water pressure on
dams during an earthquake, much research has been undertaken on the hydrodynamic forces
on concrete gravity dams. A closed form solution for the hydrodynamic pressure was
presented by Chopra (1967) for the case of a rigid dam with vertical up-stream face under
horizontal and vertical ground motions. Analytical solutions of the wave equation for the
dam-reservoir interaction were developed and extensive work was conducted on the finite
element analysis of the dam-reservoir system.

The truncated boundary for the finite element and boundary element modelling of the
infinite reservoir were studied by several researchers (Zienkiewicz and Newton 1969; Hall
and Chopra 1979; Hanna and Humar 1982; Humar and Roufaiel 1983; Sharan 1985a and b;
Sharan 1986; Sharan 1987; Yang et al. 1991). Yang et al. (1993) investigated the
hydrodynamic pressure on a dam with suitable transmitting boundary condition at the far

field of the fluid domain. A state-of-the-art article on the subject of hydrodynamic pressure
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on dams was presented by Tsai and Lee (1990).

The horizontal and vertical earthquake ground motions are expected to vary from one
end of the reservoir to the other. The assumption of nonuniform ground motion is a more
realistic representation of the earthquake input than the uniform motion assumption. Spatial
variation of the earthquake ground motion is expected to have an important effect on the
response of large dams. In most of the available research, uniform earthquake ground
motion was considered to act on the dam, along the reservoir bottom length and at the far end
for the case of finite reservoir. The effect of nonuniform excitation of the dam-foundation-
reservoir system on the hydrodynamic pressure is an important aspect of the evaluation of
design forces on dams that needs to be investigated. Flores Victoria et al. (1969) studied the
effect of finite velocity of propagation of the earthquake on the hydrodynamic pressure on
the dam. The vertical component of the earthquake was taken into consideration. Velocity
of the earthquake wave was assumed to be greater than the velocity of the pressure wave in
water. The reservoir was taken to be of infinite length.

Aviles and Sanchez-Sesma (1989) studied the hydrodynamic pressure on rigid gravity
dams with a finite reservoir and incompressible water under horizontal excitation. It was
assumed that under harmonic ground motion, the far end of the reservoir can be subjected
to out-of-phase motion. Baumber and Ghobarah (1995) studied dam monolith response under
horizontal excitation with a phase difference between the dam and far end boundary. Nowak
and Hall (1990) investigated the effect of non-uniform earthquake excitation on the response
of an arch dam. The earthquake was considered as plane body wave normally incident to the

axis of the canyon which was assumed to be of uniform cross section. Kojic and Trifunac
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(1991 a and b) presented the analysis of arch dams to nonuniform motion of the canyon
walls. Hydrodynamic effect of the reservoir was included as an added mass. Ramadan and
Novak (1992) studied dam response to spatially variable seismic ground motion. They
considered a joint coherency model which presents spatially incoherent ground motions in
both time and frequency domains. They applied the spatially variable ground motion to the
dam base in the upstream-downstream direction of the dam. A uniform earthquake ground
motion was used to obtain the hydrodynamic pressure on the upstream face of the dam. They
found that the effect of the spatially variable ground motion on the response is negligible.
In this Chapter, the effect of nonuniform earthquake ground motion on the response
of concrete gravity dams is discussed. The objective is to follow a rational approach to
investigate the effect of fhe travelling earthquake wave on the hydrodynamic forces and dam
crest displacement response. Different cases of infinite and finite reservoir lengths assuming
compressible water, were studied. For the case of flexible dams, the method of staggered
displacement is used for the purpose of the dynamic analysis. The method is simple and

suitable for this type of analysis.

32 APPROACH TO TRAVELLING WAVE EXCITATION

Concrete gravity dams are large structures with dimension in the hundreds of meters.
The reservoir system may measure several kilometers long. Due to limited speed of the
travelling seismic wave, it is necessary to evaluate the contribution of the travelling

earthquake ground motion to the dynamic analysis of the system. Nonuniform earthquake
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ground motion will be applied to the dam and to the reservoir bottom and boundaries.

It has been shown that variation of the earthquake along the upstream-downstream
direction of the dam, applied at its base does not influence the dam response significantly
(Ramadan and Novak, 1992). Therefore, it may be reasonable to assume a uniform
earthquake at the dam base and nonuniform earthquake at the reservoir boundaries.

In the following sections, two series of analyses are carried out to investigate the
travelling wave effect on the response of the dam-reservoir system. In the first series, the
effect of travelling wave on the hydrodynamic pressure on the dam is studied. For simplicity,
arigid concrete gravity dam are assumed. In the second analysis, the travelling wave effect
on a flexible dam response is studied.

A finite element program was developed to analyse the coupled dam-reservoir
system. Four node isoparametric elements were used to represent the finite elements of the
fluid domain and the structure. The analysis may be conducted for the case of infinite
reservoir or finite reservoir with the proper boundary definition. The earthquake ground
motion record is applied as input to the analysis and the ground motion at different locations
of the boundary are determined based on the wave velocity. For simplicity, no wave
absorption is included in the analysis. A uniform earthquake is considered at the dam
foundation while nonuniform motion is considered at the reservoir boundary. To minimize
the effect of the round-off errors on the accuracy of the solution, double precision arithmetic
is used.

Ten seconds of the horizontal SOOE and vertical components of the May 18, 1940

Imperial Valley earthquake, El Centro site record, are selected for the purpose of the analysis
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(figure 3.1). Only phase difference between the waves at two locations is considered. Spatial
coherency of the ground motion is not included. Three seismic wave velocities of 500, 1000
and 1500 m/s are used. These velocities represent a reasonable range of soft and firm soil
conditions. The seismic waves are considered to travel in both the upstream and downstream
directions of the stream flow. For the purpose of demonstration of the results, the wave
speed is considered to be positive when the wave travels towards the upstream side of the
reservoir. The practical range for the reservoir length to reservoir height ratios may start from
L/h=5 to infinite reservoirs. In this investigation, three different cases of reservoir length to

height ratios (L/h=5, 10 and 15) are chosen.

3.3 HYDRODYNAMIC FORCES ON RIGID DAMS

To investigate the effect of travelling wave on hydrodynamic pressure on the
upstream face of concrete gravity dams, arigid gravity dam is considered. In the case of rigid
dams, there is no dam-reservoir interaction. Thus, the wave equation of the reservoir
(equation (2.2) with {U} =0.0 ) is solved when subjected to the appropriate boundary
conditions.

Direct integration scheme is used to solve for the hydrodynamic pressure in the time
domain. The o-method (Hughes, 1987; Hilber et al., 1977) is used for discretization of
equation (2.2). Using the a-method of integration, the reservoir fluid equation at time i+1 can

be written as follows:

61 B +[c1 ) + ) (KT, -kl =1F) (3.1

i+l
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Introducing equations (2.27) and (2.28) into equation (3.1) for implicit integration scheme,

the pressure vector at time i+1 is obtained in the form:

([G] + v Ar[c + a+a) B A (k) P, =
[G] ( (P} + A¢ (P}, + Ar? (0.5-B) (L) +
(3.2)
[C] (y At (PY + As? (y-B) P, + Ar® (0.57-P) By +

K71(aPB APy + BA?{F),

In selecting the time integration parameters o, B and v, the following conditions for stability

must be satisfied (Hilber and Hughes, 1978):

"-l— < o <0
3
1_2
B = ‘4“’ (3.3)
‘Y: _l_—a
2

The stability and accuracy of the solution depend on the selected values for the ¢, B and y
parameters, time step At and size of the finite element. When the parameters of the
integration are selected as a=0, $=0.25 and y=0.5, the a¢-method reduces to the average
acceleration method. Here, the values of the integration parameters were taken as 0=-0.2,

B=0.36 and y=0.7.

A rigid vertical dam with a rectangular reservoir of height of h=150 m was analysed.
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The selected dam-reservoir system is shown in figure 3.2. The velocity of pressure wave in
water was taken as 1438.66 m/sec. The lateral hydrodynamic force at the upstream face of
the dam was found by integration of the pressure distribution on the face of the dam. The
hydrodynamic force is normalized to the hydrostatic force on the upstream face of the dam.
The results of the analysis for different ground motion wave velocities and L/h ratios were
compared. Two parameters are of interest. These are the maximum absolute hydrodynamic
force in addition to a force response parameter I, defined to represent the number of response

peaks and their values as follows:

1 T Fdz
I= —2 a4 4
0027 °° (F) | (3.4)

Where F, and F; are the hydrodynamic and hydrostatic forces, respectively. T is the total

time of the hydrodynamic force time history.

3.3.1 Horizontal Earthquake Ground Motion

Analysis of the dam-reservoir system for a dam of height h=150 m was conducted
when the system was subjected to travelling horizontal earthquake ground motion. Results
of the analysis of finite reservoirs were compared with the case of an infinite reservoir
length. In the case of an infinite reservoir, only the upstream face of the dam was subjected
to the earthquake ground motion. The reservoir was truncated at L=15h and the Sharan
boundary condition (Sharan, 1986) was applied at the truncated surface.

In the case of finite reservoir, two ground motions were applied at the rigid dam and
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the far end of the reservoir. The time lag between the two records of the earthquake depends
on the length of the reservoir and the assumed wave velocity. If the ground motion wave is
assumed to travel toward the upstream of the reservoir, the actual earthquake is applied to
the dam while the phased ground motion was applied at the far-end of the reservoir. Ground
motion variations other than the phase difference were ignored.

Results of the analysis for the hydrodynamic lateral force on a dam-reservoir system
of L/h=5, 10 and 15 are shown in figures 3.3, 3.4 and 3.5, respectively. In the figures, the
negative wave travel velocity represents a wave travelling towards the downstream direction
of the dam. The peak of the lateral force time history was found to be near the peak of the
earthquake ground motion in the case of infinite reservoir (figures 3.3a, 3.4a and 3.5a). In
the case of finite reservoir, the reflection of the out-going wave is superimposed on the wave
moving toward the far-end and results in high values of the response parameters (figures
3.3e, 3.4e and 3.5¢).

The case of finite-reservoir normally gives higher lateral force on the dam when
compared with the case of infinite reservoir. The response parameters for the case of uniform
ground motion applied to finite reservoir increase as the reservoir length decreases.
Applying uniform ground motion does not result in maximum response in most cases
(figures 3.3b to 3.3d and 3.3fto 3.3h).

The hydrodynamic pressure on rigid dams is influenced by the velocity of the
travelling horizontal earthquake excitation, direction of the wave propagation, height of the
dam and length of the reservoir. The wave velocity and direction of the wave propagation

can significantly change the response parameters depending on the reservoir length, as
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illustrated by the lateral force response plots in figures 3.3 to 3.5. The direction of the
earthquake wave was found to have a significant effect on the hydrodynamic pressure acting
on the dam. For the purpose of comparison, twWo wave velocities of £1500 m/s in the
reservoir system of L/h=10 are considered and the lateral force time history is shown in
figure 3.6. From the figure, the negative velocity which represents a wave travelling from
the far end boundary to the dam can give higher lateral force response than the wave
travelling in the opposite direction.

The behaviour of the force response parameter I, is similar to the variation of the
maximum absolute lateral forces on the dam as shown in figure 3.7. An important difference
is that the force parameter takes into account the number of peaks as well as their magnitude.
This comparison suggests that the I parameter represents a quantitative measure of the forces
on the dam. Figure 3.7, indicates that the infinite reservoir solution does not provide

conservative design forces.

3.3.2 Vertical Earthquake Ground Motion

The selected dam-Teservoir example was analysed when the system was subjected to
a travelling vertical earthquake ground motion. The earthquake motion was assumed to vary
along the reservoir bottom. Ground acceleration was taken constant over the element length
on the bottom boundary.

The variation of the lateral force response with the travel velocity of the wave for the
cases of reservoir L/h=5, 10 and 15 are plotted in figures 3.8, 3.9 and 3.10, respectively.

From figures 3.8a, 3.92 and 3.10a, it was found that the reservoir length had no effect on the
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response of rigid dams for the case of uniform ground motion. For different values of
reservoir length, the same response of the pressure was obtained.

For an earthquake wave travel velocity of 500 m/s, results of the response parameters
were lower when compared with the case of uniform earthquake excitation. As the wave
velocity increases the lateral force response increases (figures 3.8 to 3.10). The observation
can also be made that in the case of a negative wave travel velocity (from the far boundary
towards the dam direction), the lateral force response may be higher than for the case of
wave travelling towards the upstream direction of the reservoir. However, as shown in figure
3.11, the hydrodynamic pressure is less sensitive to the direction of the wave travel when
compared to the case of horizontal earthquake excitation.

The force response parameter I, plotted in figure 3.12, correlates well with the
variation of the maximum absolute lateral force. In the case of the vertical ground motion
component, the lateral force response on the dam is less sensitive to the variation of the

reservoir length than in the case of horizontal ground motion.

34 TRAVELLING WAVE EFFECT ON THE DAM RESPONSE

The seismic response of a flexible concrete gravity dam subjected to travelling
seismic excitation is investigated. The method of staggered displacement is used to solve the
coupled dam-reservoir problem. Stiffness proportional damping (Rayleigh damping) is used
for the structure, to obtain the time domain response. The values of the integration

parameters in the Newmark-f method were taken as B=0.25 and y=0.5. These values
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correspond to the a-method with ¢=0.0. The velocity of pressure wave in water was taken
as 1438.66 m/sec.

A concrete gravity dam with a rectangular reservoir was analysed. The modulus of
elasticity, unit weight and Poisson's ratio of concrete were taken as 27,580 MPa, 2400 kg/m*
and 0.2, respectively. The selected dam-reservoir system is shown in figure 3.13. The dam-
reservoir system has the same configuration as dam-reservoir system in figure2.3. Itisa
typical configuration of a concrete gravity dam with partially filled reservoir.

The results of the analysis for the case of infinite reservoir (uniform ground motion),
using the staggered displacement method were compared with the dynamic analysis using
EAGD-84 (Fenves and Chopra, 1984a) program which is a frequency domain solution that
assumes infinite reservoir length. The water depth h is taken as 116.88 m in this example.
In order to determine the dam response due to horizontal ground motion under the
assumption of infinite reservoir, the reservoir is truncated at a distance L=1 5h from the dam
where Sharan boundary condition (Sharan. 1986) is applied.

The horizontal dam crest displacement at the upstream face of the dam was found to
be a suitable parameter for the purpose of demonstration. Figures 3.14 shows results of the
analysis for the dam crest displacement of the example of the concrete gravity dam. For a
time step dt= 0.002 seconds, excellent agreement is found between the response obtained
from the staggered displacement method and the EAGD-84 solution. In the following
sections the results of the analysis of different horizontal and vertical ground motion wave

velocities and L/h ratios were compared.
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3.4.1 Horizontal Earthquake Ground Motion

The analysis of the dam-reservoir system was conducted when the system was
subjected to travelling horizontal earthquake ground motion. Results of the analysis were
compared with the case of infinite reservoir length. The dam crest displacement with the
dam-reservoir system of L/h=5, 10 and 15 are shown in figures 3.15, 3.16 and 3.17,
respectively. The peak of the dam crest displacement time history is not near the peak of
earthquake ground motion in the case of infinite reservoir (figures 3.15a). This may be due
to dam-reservoir interaction which shifts the peak of the response away from the peak of the
earthquake ground motion. In the case of finite reservoir, the reflection of the out-going wave
is superimposed on the wave moving toward the far-end and results in higher values of the
dam crest displacement (figures 3.15, 3.16 and 3.17).

The case of finite-reservoir normally gives higher response when compared with the
case of infinite reservoir. The effect of travelling wave is more pronounced when the
reservoir length is shorter. As the reservoir length increases, the response due to uniform
ground motion increases when compared with nonuniform ground motion. The exception
to the trend is the case of L/h=15 (figure 3.17f) where the maximum response is not much
higher than the case of uniform earthquake (figure 3.18).

The dam crest displacement is influenced by the velocity of the travelling horizontal
earthquake excitation, direction of the wave propagation, height of the dam and length of the
reservoir. The wave velocity and direction of the wave propagation can significantly change
the response depending on the reservoir length, as illustrated by the dam crest displacement

plots in figures 3.15 to 3.17. The direction of the earthquake wave was found to have a
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significant effect on the dam crest response of the dam. The maximum absolute dam crest

displacement is shown in figure 3.18.

3.4.2 Vertical Earthquake Ground Motion

The selected dam-reservoir example was analysed when the system was subj ected to
a travelling vertical earthquake ground motion. The earthquake motion was assumed to vary
along the reservoir bottom. Ground acceleration was taken constant over the element length
on the bottom boundary.

The variation of the dam crest response with the travel velocity for the cases of
reservoir L/h=5, 10 and 15 are plotted in figures 3.19, 3.20 and 3.21, respectively. From the
figures, it was found that, unlike the rigid dam, the reservoir length had an effect on the
response of the dam for the case of uniform ground motion. It can be seen that the case of
uniform earthquake results in higher response when compared with the case of the
nonuniform earthquake.

As shown in figure 3.22, when the wave velocity increases the maximum crest
displacement increases. The dam crest displacement is less sensitive to the direction of the

wave travel when compared to the case of horizontal earthquake excitation.
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35 HYDRODYNAMIC FORCES ON FLEXIBLE AND RIGID DAMS

The analysis of the dam-reservoir system shown in figure 3.13, was conducted under
the horizontal earthquake ground motion. The results of the hydrodynamic forces on a
flexible dam are compared with the case when the dam is assumed to be rigid. Figures 3.23,
3.24 and 3.25 show hydrodynamic forces on the flexible and rigid dams. In the case of
infinite reservoir and flexible dam, higher hydrodynamic force were obtained in comparison
with the forces on a rigid dam (figure 3.23a). The peak of hydrodynamic force on the flexible
dam shifted away from the time of peak ground acceleration which coincides with the peak
response in the case of rigid dam.

In the case of finite reservoir of L/h=5, for uniform and nonuniform earthquake
ground motion, the peak of the hydrodynamic force response is higher on the rigid dam as
compared with the flexible dam (figures 3.23b and ¢). As the reservoir length increases, the
peak of hydrodynamic force response decreases in rigid dams (figures 3.24 and 3.25). The
decrease of hydrodynamic forces is more pronounced in nonuniform earthquake excitation
(figures 3.24c and 3.25¢).

The lateral force comparisons shown in figures 3.23, 3.24 and 3.25 indicate that the

flexible dam assumption is necessary.
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3.6 CONCLUSIONS

3.6.1 Effect of Travelling Wave on the Hydrodynamic Pressure Response

The effect of travelling earthquake excitation on the hydrodynamic lateral force of
the dam-reservoir system was studied. Based on the results of the analysis of a specific dam-
reservoir system, it was found that the hydrodynamic pressure on rigid dams is influenced
by the direction of wave travel, velocity of the travelling earthquake excitation, and reservoir
length to dam height ratio.

Nonuniform horizontal earthquake ground motion results in higher hydrodynamic
forces on the dam in comparison with uniform ground motion. In the case of the vertical
ground motion component, uniform excitation gives higher hydrodynamic pressure response
than nonuniform motion. The earthquake wave velocity is an important factor that affects
the response parameters significantly. The inclusion of nonuniform earthquake excitations
is necessary in the calculation of the hydrodynamic pressure distribution on dams.

The influence of reservoir length on the hydrodynamic load is significant for the case
of horizontal earthquake ground motion. However, in the case of vertical motion the lateral
force response on the rigid dam is not sensitive to reservoir length to dam height ratio.

The direction of the earthquake wave propagation in the horizontal direction has a
noticeable effect on the hydrodynamic force response on rigid dams. However, the response
parameters due to the vertical earthquake excitation are not sensitive to the direction of the
wave propagation.

A force response parameter is proposed for quantifying the magnitude as well as the
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number of peaks of the hydrodynamic forces on the dam. The parameter takes into

consideration a measure of the ground motion duration.

3.6.2 Effect of Travelling Wave on the Dam Crest Response

The effect of travelling earthquake excitation on crest response of a flexible concrete
gravity dam was studied. Based on the results of the analysis of a specific dam-reservoir
system, it was found that the dam crest response is influenced by the direction of wave travel,
velocity of the travelling earthquake excitation, and reservoir length to dam height ratio.

Nonuniform horizontal earthquake ground motion results in higher crest displacement
in comparison with uniform ground motion. In the case of the vertical ground motion
component, uniform excitation gives higher dam crest displacement response than
nonuniform motion. The earthquake wave velocity is an important factor that may affect the
dam crest displacement response significantly. The inclusion of nonuniform earthquake
excitations is necessary in the calculation of the dam crest displacement pressure distribution
on dams.

The influence of reservoir length on the dam response is significant for the case of
horizontal earthquake ground motion. However, in the case of nonuniform vertical ground
motion the dam crest response is not sensitive to reservoir length to dam height ratio.

The direction of the earthquake wave propagation in the horizontal direction has a
noticeable effect on the dam response. However, the dam response to the vertical earthquake

excitations is not sensitive to the direction of the wave propagation.
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Figure 3.18 Maximum dam crest displacement response under the horizontal earthquake
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CHAPTER FOUR

NONLINEAR SEISMIC RESPONSE OF CONCRETE GRAVITY DAMS WITH

DAM-RESERVOIR INTERACTION

41 INTRODUCTION

The seismic behaviour of concrete dams has been the subject of extensive research
during the past decade because few dams suffered severe cracking during earthquakes.
Rescher (1990) indicated that most concrete gravity dams will experience cracking even
under operational loading conditions and moderate earthquake ground motions. Therefore,
the assumption of linear behaviour may not be appropriate in the analysis of the seismic
response of concrete gravity dams.

Concrete dams are distinguished from other structures because of their size and their
interactions with the reservoir and foundation. The results obtained from the nonlinear
analysis of concrete dams are strongly dependent on the approach to modelling of these
interactions. It is a difficult task to develop a comprehensive analytical model to include both
nonlinearity and interaction effects. The size effect can also influence the properties of the
dam concrete. The fracture properties of normal concrete can be determined using laboratory

tests. However, the dam concrete differs from the normal weight concrete because of
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aggregate size and its poor strength. Little information is available on the fracture properties
of the dam concrete. The fracture surface of the dam concrete specimens is characterized by
mainly aggregate failure. Saouma et al. (1991) attempted to measure fracture toughness of
a concrete specimen in the laboratory which was considered to be similar to dam concrete.
They concluded that a definitive decision cannot be made concerning the results and their
accuracy. Bruhwiler and Wittmann (1990) carried out a dynamic test to determine the
material properties of the dam concrete under high rate of loading and an initially applied
compression load. They found that the fracture energy of dam concrete is 2 to 3 times higher
than that of ordinary concrete. The reason is related to the tensile strength characteristic of
dam concrete. The tensile behaviour of concrete can be divided into two stages. In the first
stage, the behaviour is linear until the tensile strength is reached. In the second stage, strain
softening behaviour is observed. Fracture energy is sensitive to the tensile stress. In addition,
increasing the preloading decreases the fracture energy.

To understand the nonlinear behaviour of concrete dams, modelling of the cracking
and damage process is needed. Bazant and Oh (1983) proposed a fracture mechanics
approach as a blunt smeard crack band. The proposed approach represented a significant
advance in comparison to the linear fracture theory. The strain softening of the material was
considered based on the fracture parameters, fracture energy, uniaxial tensile strength and
crack band width. Fracture energy can be determined from the complete stress-strain curve.
Formulas were derived to give the fracture parameters.

Two classes of solutions can be found in the nonlinear study of concrete gravity

dams. Discrete crack approach is the first class of solutions which is based on the variable
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mesh approach. Two methods of linear elastic fracture mechanics LEFM, and nonlinear
fracture mechanics NLFM, can be used in this approach. The second class of solutions is the
continuum model in which a fixed finite element mesh is used. Smeared crack model and
damage mechanics are the two methods of solution in this class.

Bhattacharjee and Léger (1994) applied NLFM to predict the response of concrete
gravity dams. The experimental work done on a model of a concrete gravity dam and a small
beam specimen confirmed the applicability of the proposed NLFM approach. The coaxial
rotation crack model gives a better response than the fixed crack model. Léger and Leclerc
(1996) studied the nonlinear response of concrete gravity dams subjected to different
earthquake ground motions. They found that the response is sensitive to time variation of the
input motion. Most of the time, cracking response showed that the crack starts from the
downstream side and moves toward the upstream side. This form of cracking does not
promote dam instability. The cracks are either horizontal or they sloped downward. They
found that the vertical ground motion acceleration component is not critical in seismic
cracking response of dams.

The nonlinear response of a concrete gravity dam with an initial distribution of
temperature gradient when subjected to the earthquake was studied by Léger and
Bhattacharjee (1995). They used frequency-independent added mass matrix as a
representative of dam-reservoir-foundation interaction. The reservoir and foundation were
modelled as a series of dampers and springs such that the same response can be obtained for
the linear response of the crest when compared with the case of actual interaction. Under

earthquake excitation, when a rigid foundation is assumed with no reservoir bottom
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absorption, no crack was observed at the top part of the dam. A crack was formed at the
foundation level.

Bhattacharjee and Léger (1993); Léger and Bhattacharjee (1994) studied the energy
response of concrete gravity dams. They used a stiffness proportional damping with c-
method of integration. Newton-Raphson iteration technique was used to remove the
unbalanced load. An energy balance error approach is used as a measure of damage. The
seismic analysis of Koyna dam under both horizontal and vertical components of the
earthquake was conducted. Without introducing the numerical damping, the analysis stopped
after the first few seconds because of energy balance error due to spurious deformation of
some elements. No discrepancies were found in the results of the analysis before the
occurrence of instability, when compared with the case of a=-0.2 in which the analysis was
successfully completed. Dissipated fracture energy is negligible in comparison to other
sources of energy dissipation. The reservoir effect was represented by added mass technique.

The effect of hydrodynamic pressure inside the crack in the seismic analysis of
concrete gravity dams was investigated by Tinawi and Guizani (1994). The pressure inside
the crack does not change the response of the dam significantly. It was found that under high
frequency content earthquakes, the hydrodynamic pressure inside the crack may increase
when higher modes are significant. At the base of the dam, the hydrodynamic pressure may
be 50% higher than the hydrostatic pressure.

The nonlinear response of the Pine Flat dam was studied using the discrete approach
(Wepf et al. 1993). A fictitious crack approach was used to model the crack tip. Reservoir

interaction was modelled using a boundary element. Linear response of the dam was
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compared with EAGD-84 code analysis and good agreement was found. The nonlinear
response of the dam including reservoir interaction was strongly affected in comparison with
the added mass approach. The slope of the reservoir bottom strongly influenced the nonlinear
response. The aggregate interlock effect was found to be important in the final cracking
configuration of the dam.

The cracking response of a concrete gravity dam when subjected to earthquake
loading can be different if nonuniform damping or uniform damping including the damping
due to cracking is considered (Barrett et al., 1991). In the analysis, the dam was represented
by a small number of elements. When the bottom few elements were cracked, a noticeable
change in the response was observed.

Using different computer codes, Singhal (1991) found that the Westergaard’s added
mass approach yields higher values for crest displacement and stress than that obtained using
other approaches. The reservoir bottom absorbtion and water compressibility did not change
the response significantly.

Pekau et al. (1991, 1995) and Pekau and Batta (1991) presented a method to study
the cracking of concrete gravity dams using the principle of Linear Elastic Fracture
Mechanics (LEFM) and boundary element mode superposition analysis. The model was
checked by a shake table test of cantilever beam made of gypsum. The impact of cracking
surface was modeled as a load pulse.

Ayari and Saouma (1990) proposed a model for simulation of discrete crack closure.
The model was applied in the dynamic analysis of the Koyna dam (India) under both

horizontal and vertical components of the earthquake. The results were obtained for 5
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seconds only of the earthquake in which the numerical damping was less than 10%.
Nonlinear seismic response of concrete gravity dams was studied by Skrikerud and
Bachmann (1986). Fracture mechanics analysis using discrete crack approach was applied.
The model was capable of initiation, opening, closing and reopening of discrete cracks.
Special treatment was used to model aggregate interlock effect. The model was applied to
a dam of rigid foundation with empty reservoir. The crack pattern was found to be very
sensitive to the parameters chosen for the analysis. The first four seconds of an artificially
generated time history was used for the purpose of analysis. The analysis stopped due to
excessive damage. Nonlinear response of concrete gravity dams was also studied by Feltrin
et al. (1990). A rigid foundation was assumed for Pine Flat dam and the reservoir interaction
was included. The nonlinearity in concrete behaviour included the strain softening and
aggregate interlock. Response of the linear model with and without the reservoir interaction
was determined. Nonlinear response of the empty reservoir was studied by scaling the
ground motion until cracking occurred. The cracks started at the top part from down stream
face of the dam near the slope discontinuity and moved horizontally. A different response
was observed under the effect of reservoir interaction. The first crack started at the
foundation level and then it followed by a crack at the top part of the dam at the same
location of the crack of empty reservoir case. The crest displacement was found to be higher
than that of the empty reservoir. They concluded that the effect of dam-reservoir interaction
must be included in the nonlinear analysis.
El-Aidi and Hall (1989 a,b) investigated the nonlinear response of concrete gravity

dams. The water cavitation in addition to cracking of concrete was considered. Despite the
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difficulties involved, the nonlinear model was applied for the case of preformed base crack,
top crack and homogeneous dam without any cracks. In the case of homogeneous dam, the
top crack initiated at t= 1.965 sec. Soon after initiation of the top crack, it went through the
dam body and almost separated the top part from the rest of the dam. During the rest of the
analysis, no other cracks were observed and only rocking and opening and closing of the
crack were observed.

Fenves and Vargas-Loli (1988) proposed a method for dam-reservoir interaction
which resulted in a symmetric matrix representation of the total equation of the system. The
nonlinearity of the reservoir was introduced into the proposed method to investigate the
reservoir interaction effect. They found that the effect of cavitation is not significant in the
response of the structuré.

Mlakar (1987) studied the nonlinear dynamic behaviour of concrete gravity dams
using the ADINA code. It was found that the crack first started at the base. Then cracking
initiated at the top part near slope discontinuity. The cracks near the slope discontinuity
propagated instantaneously and passed through the cross section.

In this chapter the nonlinear fracture response of concrete gravity dams due to seismic
loading is investigated. The dam-reservoir interaction is included in the time domain analysis
using the method of staggered displacement. Smeard crack approach based on a nonlinear
fracture mechanics crack propagation criterion is used to study the cracking and response

of concrete gravity dams.
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42 DISCRETIZATION OF THE COUPLED DAM-RESERVOIR

EQUATIONS USING THE «-METHOD

The nonlinear seismic analysis of concrete gravity dams includes opening and closing
of the cracks due to the cyclic nature of the earthquake. When the cracks are closed, cracked
elements recover their strength and therefore the structure gains stiffness. As the cracks open,
the stiffness of the structure reduces. The effect of opening and closing of cracks introduce
high frequency shock waves into the structure. The numerical difficulties due to opening and
closing of cracks can be overcome by using the a-method (Hilber et al., 1977; Hilber and
Hughes, 1978).

The o-method of time integration algorithms introduces numerical damping to the
system. It is an efﬁcient'method that is accurate in lower modes and dissipate energy in the
higher modes when compared with other time integration techniques. Thus, using the a-
method ensures that the response of higher modes is damped out.

Direct integration is used to determine the displacement and hydrodynamic pressure
at the time increment i+1. The o-method is used for discretization of both equations of the
coupled field problem (implicit-implicit method).

The governing field equations, equations (2.1) and (2.2), attime i+1 can be written

as follows:

i G, + (€] h, + +e) K] w,, = F},

(4.1)
+ (0] {p} + o [K] (U},
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(61 B, +ch P, + a+0) K], = F})

270+l

(4.2)
- p [OY (O}, + « (K] (P},
where « is the integration parameter which is introduced in the coupled field equations. The
coupled field equations (4.1) and (4.2) can be solved using the staggered displacement
solution scheme. In this method, equations (4.1) can be approximated as:

na ©OF,., = FL, + 101 PP, - [C] TP,

o 4.3)
- (1+0) [K] UK., + a [K] U},

where {P}Pi+,,{fJ}Pi+, and {U}?,, are given by equations (2.25), (2.26) and (2.28). Combining

equations (4.3) and (4.1) using equations (2.25), (2.26) and (2.28) gives:

(Y, = 01, + AP (0] P,
4.4)
- yAr [C] (T}, - (1+a) PAL? [K] (T,

The lumped mass results in a diagonal mass matrix, this property is utilized in modifying

equation (4.4) such that:

 {G),, = b O, + A [0] B 4.5)

Substituting equation (4.5) into equation (4.2) then:
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([G] + pBA2 [ M1 [@]) B, +1c Bl + (1+o) (K] (P}, =
(4.6)
F)

i = P LI OF,, + @ (KT P,
In equation (4.6), the right hand side terms are known, thus, {P}, can be obtained. In order
to correct the approximation made in equation (4.5), {P};,; can be substituted in equation
(4.1) to calculate {U};., and its derivatives. Therefore, the procedure of the staggered
displacement method can be summarized by the following steps:
1. Knowing the displacement, velocity and pressure at time i, {U}*,,, can be
obtained from equation (4.3). |
2. {U}".., is introduced in equation (4.6) to calculate {P},, .
3. {P},, is substituted into equation (4.1) to calculate;{U} and its
derivatives.

In Chapter two, It was shown that the method of staggered displacement is
unconditionally stable for the linear coupled equation of the dam-reservoir system with
structural damping when ¢=0.0. For the nonlinear equations, the numerical solution is based
on piece-wise linear solution. The solution stability depends on the length of the time steps
and the introduced numerical damping.

The reservoir-dam interaction representation using the staggered solution technique

is introduced to the nonlinear fracture analysis of concrete dams.
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43 FRACTURE MODEL
The smeared crack model based on a nonlinear fracture mechanics crack propagation
criterion is used to study the nonlinear behaviour of concrete gravity dams. The smeared
crack model was used by Bhattacharjee and Léger (1994 and 1993). The main features of the
model are: a) the strain softening of concrete due to micro cracking is included; b) the
fracture band is rotated with the progress of damage; c) conservation of fracture energy is
satisfied; and d) the opening and closing of cracks under cycling loading conditions are

represented.

44  SEISMIC ENERGY BALANCE

In the design of structure subjected to earthquake loading, the energy equation can
be used to study the energy absorbtion of different components. In a satisfactory design, the
energy supply must be larger than the energy demand. In this regard, two approaches can be
considered for the energy equation. Uang and Bertero (1990) used absolute and relative
energy formulations for a single degree of freedom system. They found that absolute energy
formulation is simple and more straightforward. Filiatrault et al. (1994) used energy balance
to study the nonlinear behaviour of different structures under variable earthquake ground
motion. Different time stepping algorithms were used to investigate the effect of numerical
damping. Without the numerical damping, exact energy balance can be achieved. The two
approaches to energy formulation were found to give different energy responses.

The energy equation of the dam structure governed by equation (2.1), can be written
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EK + ED + ER = EP + EQ + EH (4.8)

In equations (4.7) and (4.8), {r} is the vector of the nonlinear restoring force. The absolute
kinetic energy is EK, the viscous damping energy is ED, the nonlinear restoring work is ER,
the work of preseismic applied force is EP, the absolute seismic input energy is EQ and the
work done by the hydrodynamic pressure is EH. The relative displacement is {U} while {U}
is the total (absolute) displacement vector {U}={U}+{ Ug}. {Ug} isthe ground displacement
vector. The restoring energy, ER contributes to the stored elastic energy in a system EE, and

the energy dissipated due to fracture EF (EF= ER-EE), Thus:

EK + EE + ED + EF = EI 4.9)

EK and EE contribute to the stored energy while ED and EF represent the dissipated energy.
The input energy EI is the sum of the seismic input energy due to the inertia force EQ,
hydrodynamic force EH and work of preseismic applied load EP.

The energy balance error is computed as:

(EP +EQ + EH) - (EK + ED + ER)
(EQ + EH)

Error =

x100 (4.10)
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When the dam-reservoir interaction effects are represented by added masses, the
hydrodynamic energy EH is excluded from the energy equation, EH=0. However, energy is
added to the seismic input energy EQ and kinetic energy EK through the mass added to the
structural system. In the analysis, the results of the fracture response are presented for the
time before the five percent energy balance error is reached. The error in the energy balance

represents an excessive amount of damage when numerical damping is introduced.

45 NUMERICAL RESULTS

The tallest monolith of the Pine Flat dam is chosen for the purpose of analysis. This
particular dam was selected because it was the subjec‘;t of numerous experimental and
theoretical studies. It has a typical configuration of a concrete gravity dam. The dam is a
concrete gravity structure with crest length of 560 m. It consists of thirty-seven 15.2 m wide
monoliths and the tallest monolith of which is 122 m.

The modulus of elasticity, unit weight and Poisson's ratio of the concrete were taken
as 27,580 MPa , 2400 kg/m® and 0.2, respectively. The tensile strength of the concrete is
taken to be 2.758 MPa which is 10% of the compressive strength. Fracture energy of
concrete is 150 N/m. A dynamic magnification factor of 1.2 is considered for the tensile
strength and for the fracture energy. An elasto-brittle damping model in which cracked
elements do not contribute to the damping matrix is considered for the analysis. The stiffness
proportional damping equivalent to 5% damping in the first mode is used. The o-method of

time integration is utilized (Hilber et al., 1977). The highest value of numerical damping (
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a=-0.2 ) is used for effective dissipation of high frequency shock wave. The high value of
numerical damping was found not to affect the lower modes of vibration (Hilber et al., 1977).

In order to determine the hydrodynamic pressure on the dam due to horizontal
ground motion under the assumption of infinite reservoir, the reservoir is truncated at a
reasonable distance. In the finite element formulation of the reservoir, Sharan boundary
condition (Sharan, 1986) which truncates the reservoir, was applied at a distance L=10H
from the dam. The velocity of pressure wave in water was taken as 1438.66 m/s. The
elevation of the reservoir water is 116.88 m. For simplicity, the foundation is taken to be
rigid and no absorbtion is considered at the reservoir bottom. The selected dam-reservoir
system is shown in figure 4.1.

The first ten seconds of the horizontal S69E component of the July 21, 1952 Taft
Lincoln earthquake, Kern County site record is shown in figure 4.2. The peak ground
acceleration is 0.179g. The nonlinear analysis of the Pine Flat dam was carried out using the
actual earthquake record when the dam-reservoir interaction was included. No damage was
observed at the top part of the dam. Only a crack formed at the base of the dam and ran
almost half the way through the dam. The analysis was then conducted with the earthquake
record scaled to 1.5 times the peak ground acceleration (PGA) or 0.268g. A time step of

0.002 sec was selected for the analysis.

4.5.1 Linear Analysis
The results of the analysis using the staggered displacement method are compared

with the dynamic analysis using EAGD-84 code (Fenves and Chopra, 1984) which assumes
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infinite reservoir length. The EAGD-84 is a linear analysis computer code in the frequency
domain which gives the steady state response of the system. The time domain solution using
the staggered displacement method gives the steady state and transient responses of the
system. In the case of a typical concrete gravity dam, the transient response is negligible. The
dam crest displacements obtained from the two approaches are plotted in figure 4.3. The
initial nonzero crest displacement at t= 0.0 represents the dam deformation due to the
hydrostatic pressure component. Good agreement is achieved between the response obtained
from staggered displacement method in the time domain and the EAGD-84 frequency
domain solution. The small difference in the dam crest response is because the staggered
solution method accounts for the effect of the slope of the upstream face of the dam while
EAGD-84 assumes the dam face to be vertical. For a dam with large slope of the upstream

face this effect may not be negligible.

4.5.2 Nonlinear Analysis

The nonlinear response of the Pine Flat dam was carried out with dam-reservoir
interaction using the staggered method of solution. The results are compared with the
nonlinear analysis when the dam-reservoir interaction effects are approximated using the
added mass approach. The added mass method is the common approach in most of the
nonlinear analyses of concrete dams. The fracture analysis of concrete dams is classified as
nonlinear analysis with output that is sensitive to the input parameters such as cracking
model, damping model and time step. It is useful to evaluate the fracture behaviour of

concrete dams to a specific nonlinear fracture model. These effects are pronounced when the
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dam-reservoir interaction is included in the analysis.

The time history of the dam crest is shown in figure 4.4 for the two cases of dam-
reservoir interaction and added mass. The two approaches are close before any cracks are
formed at the top part of the dam. The crest displacement responses obtained from the two
approaches are different after initiation of the crack at the top part. The results of the analysis
are shown before the five percent energy balance error criteria was invoked. The excessive
error in energy balance indicates an excessive amount of damage which corresponds to large
deflection of the structure. The results are not reliable for large deflection of the structure.
The crest displacement responses obtained from the linear and nonlinear analyses are plotted
in figure 4.5. In comparison with the linear analysis, it can be seen that base cracking does
not change the response significantly. The difference between linear and nonlinear analyses
is observed when top cracking is initiated at approximately 7 seconds. In the presented
results, the first high peak of the ground acceleration at approximately 4 sec causes cracking.
However, the solution remains stable until the second high peak at approximately 7 seconds
when what is believed to be structural instability occurs.

The cracked configuration of the dam is shown in figures 4.6 and 4.7 at different
times for the case of dam-reservoir interaction staggered displacement solution and the added
mass approach. The figures show that including dam-reservoir interaction yields a different
crack pattern than in the case of the added mass approach. The crack pattern predicted when
the dam-reservoir interaction is included is similar to the observed damage to the Sefid-rud
dam during the 1990 Manjil earthquake (Iran). The crack pattern in the Sefid-rud dam

consisted of cracks at two levels in the upper parts of most of the monoliths (Ghaemian and
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Ghobarah, 1997). Results of the numerical analysis carried out by Wepf et al (1993) shows
a crack pattern which is very close to the crack pattern obtained in this study. The dam-
reservoir interaction was included in their analysis using boundary element techniques.

When the dam-reservoir interaction is included in the analysis, cracking of the top
part starts later than in the case of added mass. Once started, the cracking in the case of dam-
reservoir interaction moves faster than in the added mass case. In a fraction of a second after
crack initiation, the maximum damage is reached. The reason for late cracking at the top part
of the dam in the case of interaction may be due to the damping.

The energy response of the Pine Flat dam is shown in figures 4.8 and 4.9 for the case
of dam-reservoir interaction and the added mass, respectively. When the top crack occurs,
the seismic energy EQ has a peak for both cases of the analysis. This peak in the case of
added mass approach is at 4.4 seconds and for the case of staggered method is at 6.87
seconds. At the time of peak ground acceleration t= 3.7 seconds, peak of the kinetic energy
response is higher in the case of added mass approach than the case of dam-reservoir
interaction method. This is due to the dam-interaction effect which shifts the peak of the
kinetic energy response away from the peak of the earthquake record. In both cases of added
mass approach and staggered solution method, the fracture energy dissipation is negligible
when compared with the other sources of energy. The variation of the energy balance error
is higher when dam-reservoir is included than the added mass approach. The high energy
balance error is due to the numerical damping inherent in the numerical method. However,
before failure, the maximum error remains less than 5 percent. It is noted that the added mass

approach accounts for the hydrodynamic force input in the form of the inertia force input.
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Thus, before cracking, the seismic energy input in the case of added mass method and the
dam-reservoir interaction approach are comparable.

Spurious deformation modes will occur particularly if there is a lateral spread of the
cracking profile. Introducing of numerical damping provides a convergent numerical solution
when the energy balance error is below a certain level. The increase of the energy balance
error is an indication of diffused crack pattern over a band of elements, as shown in figure
4.6f at time of approximate 7 sec. The energy balance error is approximately 30% while in

the cases shown in other figures, the energy balance error is below 5%

4.6 CONCLUSIONS

The nonlinear seismic fracture response of concrete gravity dams is conducted when
the effect of the dam-reservoir interaction is taken into account. The dam-reservoir
interaction is included in the time domain analysis using the staggered solution method.
Smeared crack analysis model based on a nonlinear fracture mechanics crack propagation
criterion is used to study the cracking and response of the dam. Results of the analysis are
compared to the case when the dam-reservoir interaction was represented by added masses.
It is found that the nonlinear analysis of concrete gravity dams that includes dam-reservoir
interaction gives a crack pattern that is close to the observed damage of the Sefid-rud dam
during the 1990 Manyjil earthquake. The predicted crack pattern is different from that of the
case when the dam-reservoir interaction is approximated using the added mass approach. It
is concluded that proper modelling of the dam-reservoir interaction is important in the

nonlinear response analysis of concrete gravity dams.
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Figure 4.1. Finite element model of the dam-reservoir system
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Lincoln earthquake, Kern County site record,
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CHAPTER FIVE

EXPERIMENTAL STUDY OF SMALL SCALE DAM MODELS

51 INTRODUCTION

The dynamic response of dams is a complex problem because of dam-reservoir-
foundation interaction effects. Most of the research conducted in the area of dam engineering
is theoretical in nature. Alihough substantial progress has been achieved in mathematical
modelling, none of the various models has been verified and several assumptions in the
analysis remain to be substantiated. Field tests are expensive and difficult to run. They can
not provide insight information on dynamic behaviour of the dams (Paultre and Proulx,
1995; Rea et al., 1975). Dam model testing has the potential of being used for analysis
verification purposes. In small scale model testing of concrete dams, it is important that both
material criteria and load criteria are met. Due to the complex nature of the problem, the
large size of the structure and difficulties in physical modelling, little experimental work has
so far been pursued.

Oberti and Lauletta (1960) studied structural stability of dams by means of physical
models. The main purpose of the test was to observe the resonance amplitude of the models

when the frequency of vibration coincides with the frequency of free vibration of the test

122
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specimen. The model was attached to a steel platform and the whole assembly was
suspended from a steel frame by means of a spring. The model was subjected to both
horizontal and vertical vibrations. The concrete of the model used litharge for aggregate and
plaster of paris as binder.

A significant number of the early experimental research programs were concerned
with the development of materials for the dam model. Raphael (1963) investigated the
properties of plaster-celite mixtures for use in dam models. He found that plaster-celite has
the same Poisson's ratio as that of concrete while its strength can be controlled to be lower.
Plaster is the material providing strength and the celite is the medium for retaining the
required quantity of water in contact with the plaster. It was found that the strength and
elasticity of plaster mixtures are profoundly affected by the water content. Yoshida and Baba
(1965) performed dynamic tests on models of arch dams. A scale of 1:50 was used to model
the Futatsuno arch dam in Japan which is 76 m high and of 210 m crest lengths. The model
was built of plaster, diatomite, lead powder and water. The model collapsed due to resonance
on the shake table with an empty reservoir. They also studied the dynamic behaviour of
Ikehara arch dam in Japan which is 111 m high and of 460 m crest lengths. The dam model
was built of plaster and was tested with full and empty reservoirs. Random vibration and
actual earthquake loading were applied using a shake table. Oberti and Lauletta (1967) tested
more models of the dam with different heights and crest lengths. Most of the tests were done
on arch dams with height varying from 56 m up to 187 m with scale factors of 75 to 180. For
each dam, three models were constructed. The models were made of litharge and gypsum

mix whose density was about 39.2 N/m’ and the elastic modulus were 29.4 to 98 kPa. The
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input earthquake intensity was increased beyond the elastic range up to failure of the model.
To investigate the magnitude of acceleration at which the failure of the Toktogul dam

in Russia occured, Lyatkher et al. (1977) conducted a test on a model of scale 1:100. The
test was carried out in a centrifugal force field. The model was made of plaster with rubber
crumbs, bentonite and lead powder. A container with the model of foundation and dam filled
with water, was placed on a vibrating platform. Bakhtin and Dumenko (1979) used the mass
ratio of the material components as P:Li:R:Pb:M:W=1:1:2.5:30:1:4 in which W is the mixing
water, P is plaster binder with fillers as limestone powder Li; and R is rubber crumb. Lead
powder Pb, was used as the weighing substance. Mineral oil AK-10 ,M, was used for
neutralizing the binding properties of the Lead powdgr and to reduce the modulus of
elasticity and tensile strength of the model material. The reservoir water was modelled using
calcium chloride solution with unit weight of 1.4 ton/m® poured into a stationary tank
attached to the model by a thin rubber diaphragm. The seismic load was applied using a
shake table. They found that the most critical zone in concrete gravity dams during a seismic
event is the upper quarter of the dam at which failure of the model occurred. Niwa and
Clough (1980) investigated the use of plaster, celite, sand and lead powder to construct the
models. They tested models of an arch dam and a concrete gravity dam monolith using shake
table. Difficulties were encountered with model cracking due to shrinkage during the drying
process. Gutidze (1985) conducted an experimental program to determine the seismic stress
state in a dam. A model was built using cement-sand base with the addition of rubber
crumbs and bentonite clay. Different scale models of an arch dam were built for elastic and

inelastic response studies. For the first 8 modes of vibration, the maximum elastic
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displacement and natural frequency were measured. Norman (1986) applied an impact load
on the foundation using a steel mass to provide input motion to the foundation block ofa
dam model. This method was used to apply a dynamic failure load to the model. Donlon
(1989); and Donlon and Hall (1991) tested a small scale model of a dam monolith using
shake table. Difficulties were encountered due to shrinkage cracking of the model in the
process of drying. To repair the cracks, polymer-based material was used in the lower part
of the dam.

Mir and Taylor (1995) conducted an experimental investigation of the nonlinear
seismic response of a low-height concrete gravity dam. They could overcome the shrinkage
problem by special effort in mould treatment, curing and by minimizing friction between the
mould and model material. They modelled a small 30 m high dam. The model material
properties almost attained all of the target values. They used Westergaard's added mass
approach for simulating the hydrodynamic pressure. Scaled masses were evaluated at 64
equidistant levels along the height of the model and were separated by plastic sheets
containing air bubbles. The hydrostatic reservoir forces were simulated by a very rigid
rectangular steel tank attached to the upstream face of the dam. They found that the
hydrodynamic pressure using Westergaard's added mass was not reasonably representative,
especially near the top of the model. They concluded that low-height dams are usually
damaged at the base. Excluding the reservoir (hydrostatic and hydrodynamic) loads, cracks
form at both heel and toe of the dam. When the effects of the reservoir were included, the
crack occurs only at the heel and is restricted to a very small length. The hydrostatic pressure

was found to cause sufficient compressive stress at the toe of the dam to prevent the initiation
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of the toe crack. They also found that sliding and overturning of a gravity dam monolith
under earthquake loading is not a serious concern. Mir and Taylor (1996) investigated base
sliding of a concrete model of a rigid gravity dam using a shake table. They concluded that
for dams of normal geometry the likelihood of overturning about its toe is low, if the uplift
pressure is not significant.

In the field of fracture mechanics and crack propagation in concrete gravity dams,
several attempts were made to test small scale dam models using static loads {Bolzon et al.,
1994; and Pellegrini et al., 1994) and in a centrifuge (Plizzari et al., 1994; and Renzi et al,,
1994). However, in all these tests, no modelling of the hydrodynamic forces during
earthquakes was attempted.

The difficulties in physical modelling of concrete dams are mostly in material
modelling and the availability of suitable equipment for testing. Some of the materials used
in modelling are hazardous and prone to shrinkage cracking in the process of drying. The
objective of this experimental program is to develop a new testing approach using small scale
modelling to investigate the linear dynamic response of concrete gravity dams. The attention
is focused on the stress distribution at the top part of the dam near the slope change of the
downstream face where major cracking has been observed to occur. The dam model is
constructed of plain concrete. The static and dynamic loads are applied using actuators. The
inertia effects are included in the applied loads and the dynamic loads are applied pseudo
statically. The measured response of the model is compared with the predicted analytical

response.
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52 DIMENSIONAL ANALYSIS AND SIMILITUDE REQUIREMENTS
Tt is difficult to maintain both kinematic and dynamic similarities between model and
prototype of a concrete gravity dam (Shames 1982). Although, the introduction of the idea
of "distorted model” allowed the relaxation of some requirements for similarity, satisfying
the basic requirement is difficult and can hardly be achieved. To simplify the dimensional
analysis, the dam and reservoir interaction with the foundation is neglected. For the case of
a dam-reservoir system, three basic requirements that relate model and prototype parameters

are obtained as follows:

S T? . :

L = 5.1
0 er .1
A T2

’L I =1 5.2)

g =1 (5.3)

where T, L, S, A, € and p are the time, length, stress (or pressure), acceleration, strain and
mass density, respectively. Index r, represents the ratio of these parameters in the prototype
and model.

Equating the gravitational force (g) in model and prototype results in the following

two formulas (Donlon 1989):
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T, =L, (5.4)

S =p L, (5.5)

Due to the limited range of mass density of available fluids, S, may be large for small scale
models. This shows a possibility that the model material can be significantly weak but of
approximately the same mass density as the prototype. If water is selected as reservoir fluid
in the model, the restriction is imposed on the material properties of the dam model, modulus
of elasticity, tensile and compression strength, by a factor of 1/L, of that of the prototype. In
addition to the difficulties associated with modelling the interaction between dam and
reservoir, the problem of modelling is complicated by two factors: a) if the model is to be
brought to failure, high range of shaking frequencies is required and, b) the properties of dam
material and reservoir fluid provide a limitation for p and therefore for S,.

Satisfying the mass density in the model is quite difficult. For proper modelling, the
mass density in the model should be greater than that of the prototype by a factor of L/S..
L, is a large number for the case of small scale modelling of the dam and S, can not be large
enough to compensate for L,. Therefore, a large ratio of weight density is needed. For
example, a dam model of 1:100 dimensional scale should have a weight density of 100 times
larger than that of the prototype, if the same material strength properties are used for both

the model and the prototype.
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53 EFFECT OF GRAVITY ON SMALL SCALE MODELLING

In geometrically similar and undistorted model, the Buckingham m-theorem (Shames,
1982) requires three independent scaling factors for the variables of the system. In small
scale modelling, the first independent scale ratio is the length ratio. If the mechanical
properties of the model material is selected to be the same as that of the prototype, one
independent parameter remains to be chosen. Selecting the acceleration ratio to be the same
in the model and the prototype, the mass density of the model material should be increased
by a factor of a length ratio. Another approach would be to set the mass density ratio to unity.
This requires the acceleration in the model to be increased (Dancygier 1995).

In the proposed testing approach, the materials of the prototype and the model are
selected to have the same mechanical properiies. Parameters such as Poisson's ratio and the
strain at the yield are also taken to be the same for prototype and model. For the same mass
densities in the model and the prototype, the acceleration of the model should be increased
in order to properly represent the inertia force effects. Some researchers used a centrifuge to
apply acceleration to the model that is increased by the scale factor of the model. In the
present experimental program, the effect of the inertia force was calculated and added to the
applied cyclic load, thus avoiding the difficulties associated with dynamic load scaling.

If the weight density is scaled in the model, adequate vertical force due to weight will
exist to prevent early cracking of the model. When weight density is not scaled, the applied
horizontal loads will cause high tensile stresses at the heel which may result in early cracking
of the model dam. In the proposed testing approach, the effect of weight on the stresses is

calculated and added to the test measurements.
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The early cracking of the model at the base may be a problem associated with

modelling that needs to be addressed. Cracking of the dam prototype at the base was

demonstrated analytically, however, it does not imply instability. Thus, the area of interest

is at the top part of the dam where major cracking may lead to loss of function of the
structures as well as dam safety concern.

To check the distortion of the stress at the base of the dam model, the stress at the

base is written as (Dancygier 1995):

G=0 + © (5.6)

where g, is the stress due to gravity load and 0, is the stress due to the non-gravity external

loading. The distortion due to gravity modelling can be computed as follows:

o™ -0’ 1

true
(o)

1 + _l_ _o_m_ (5.7)
n-1 o"‘g

where n is the linear dimension scale factor, o™ is the true value of the stress at the base and
o* is the scaled value of the stress at the dam base using the test results. d* and d" jare the
total stress and stress due to gravity in the model, respectively. The scale factor used in the

test to extrapolate the stress for the prototype is unity (i.e., 6,=1).
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The ratio of total stress to stress due to gravity can be written as:

_P" , M"C"
_9___ = 4 = 1 - 6 (5.8)
o _P" hmP"
Am

where h™ is the base length of the model and P™is the weight of the model and A ™is the area
of the model at the base. Equation (5.8) gives a factor for correcting the distortion in the

measured stress at the model base due to the effect of gravity.

54 EXPERIMENTAL APPROACH

The complexity in the scale model testing of dams arises from material modelling and
modelling of the dam-reservoir-foundation interaction. In most of the experimental work, a
rigid foundation and incompressible water are assumed in the process of modelling. To avoid
the difficulties associated with material modelling in dynamic load testing, the proposed
approach is based on quasi-static (cyclic) loading. In order to replace the dynamic and inertia
loads by quasi-static loads, it is necessary to determine the loads acting on the dam due to
a given earthquake ground motion. The simplified method of analysis of concrete gravity
dams (Fenves and Chopra, 1985, 1986, 1987) is used to calculate the hydrodynamic pressure
and inertia force. The dynamic loads are replaced by equivalent concentrated static forces

acting on the upstream face of the model. These equivalent cyclic static forces representing
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the hydrodynamic and inertia forces on the dam are added to the hydrostatic pressure.

The simplified method of analysis is a procedure to calculate the maximum response
of the dam using the response spectrum approach. For a dam-reservoir system, the
distribution of the maximum hydrodynamic pressure and the inertial force distribution are
determined considering the effect of dam-reservoir interaction. The height of the reservoir,
the properties of the dam concrete, the damping of the structure, the wave reflection
coefficient of the reservoir bottom materials and the acceleration response spectrum of the
ground motion are the parameters used to evaluate the equivalent lateral force distribution.

Once the distribution of the sum of dynamic and hydrostatic loads is established, the
location of the concentrated forces can be determined based on the number of concentrated
loads used in the test. A.mechanism is designed to apply both loads at common concentrated
points on the upstream face of the model. The number of concentrated points is limited by
the space available on the upstream face of the model.

In order to decide on the number of concentrated loads needed to accurately represent
the hydrostatic and dynamic loads on the dam, a finite element analysis was performed. In
the analysis, the number of concentrated loads that are assumed to represent the applied loads
was varied. A balance needs to be struck between load modelling accuracy and practical
experimental limitations. The results of the analysis were found to be sufficiently accurate
when the distributed loads are represented by a minimum of four concentrated loads.

The problem of modelling is simplified if the same material as the concrete of the
prototype is used in the model. Using the same properties of concrete in the model and

prototype requires that the effect of increased density of the model material be compensated
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for. In the test set-up no supplementary self weight is provided to compensate for scale
reduction. However, the effect of the weight was accounted for analytically. For a start, this
testing program and the associated analyses are limited to the linear behaviour of the dam-

reservoir system.

5.5 MODELLED DAM

A configuration similar to that of the existing Pine Flat concrete gravity dam is
selected for the purpose of modelling and testing. The concrete gravity dam is of a typical
configuration and consists of thirty seven 15.2 m wide monoliths and crest length of 560 m.
The tallest monolith is 122 m high. The configuration of the tallest monolith which is used
for the purpose of modelling, is shown in figure 5.1 (Donlon and Hall 1991).

The model dimensional scale is selected as 1:100. Wooden forms are constructed to
the scaled dimensions of the dam with special attention to the accurate modelling of the
curves near the top part of the model. Figure 5.2 shows the wooden forms of the scaled Pine
Flat dam model. The forms were lightly oiled to enable easy stripping of the forms without
damage to the model. Portland cement concrete with the maximum specified aggregate size
of 20 mm is used. On the day of pouring, the slump of the delivered concrete mix was
measured at 60 mm. The concrete model was covered with burlap and cured twice daily.
Forms were removed after 48 hours and the concrete was moistened twice a day for 7 days.
The model was left for more than 28 days before testing. Thirteen test cylinders were poured.

The compressive strength, f. and tensile strength of the concrete are given in table 5.1. The
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tensile strength was determined using the split cylinder test f,,. The modulous of elasticity

of concrete was determined from the cylinder tests to be 35,000 MPa.

Table 5.1 Results of cylinder testing (MPa)

Cylinder 7 days 28 days Day of test
number Compression | Compression Tension Compression | Tension

1 20.20 27.20 2.52 36.7 3.79

2 19.70 23.90 223 384 3.80

3 18.60 26.70 2.40 - -
Average 19.50 25.90 2.38 375 3.79

5.6 TEST SET-UP AND INSTRUMENTATION

The load application system was designed to transfer the loads from two actuators
to four locations on the upstream face of the model. The horizontal ground acceleration
recorded at Kern County during the 21 July 1952 Taft earthquake was selected for
calculating the hydrodynamic pressure and inertia force distribution. The distribution of the
dynamic load was obtained from the simplified analysis method (Fenves and Chopra, 1985;
1986 and 1987). The dam was divided into 10 blocks of equal height. Rigid foundation with
full reservoir and no reservoir bottom absorbtion was assumed. The damping effects due to
the dam-reservoir interaction were considered in the analysis. The hydrodynamic pressure

distribution at the upstream face of the dam and the inertia forces at the centre of the mass
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of each block were calculated. It was found that the effect of higher modes is small in
comparison with the total response of the dam. The total dynamic load was divided into four
concentrated loads acting at the upstream face of the dam. The hydrostatic load was also
divided into four concentrated loads having common points of application with the dynamic
loads. The dynamic and hydrostatic loads were then scaled to represent the loads that will
be applied to the model dam. The distribution of the dynamic and static loads on the model
are shown in figure 5.3.

In order to check if the selected four concentrated loads can accurately represent the
distributed loads on the upstream face of the prototype dam, the deflection of the dam is
compared for the two cases of loading. The dam deflection calculated using the finite
clement analysis is shown in figure 5.4. The deflection of the dam when subjected to the
actual distributed loads and the four concentrated loads are found to be close.

Two actuators are used to apply the hydrostatic and dynamic loads. The hydrostatic
load is kept constant while the hydrodynamic load is varied cyclically to represent the cyclic
nature of the dynamic load. The characteristics and capacities of the two actuators are listed

in table 5.2.

" Table 5.2 Characteristics of the actuators

Actuators Model | Force capacity Stroke Piston area
MTS kips (kN) in (mm) in? (mm?)
Static load 204.71 +55 (245) 6 (150) | 18.53(11955)
Dynamic load | 202.01 +250 (1112) 8 (200) | 89.36(55720)
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The loading mechanism for applying four concentrated quasi-static loads on the dam

is shown in figures 5.5 and 5.6. The transfer of the four concentrated loads to the specimen
was made by using 4 U-shaped channels which are glued to the model. Figure 5.7 shows the
attachment of the U-shaped channel to the upstream face of the model. The high strength
structural epoxy “Sikadur” injection gel is used for bonding of the U-shaped channel and
specimen. Its non-abrasive texture permits application with pumps or automated pressure
injection equipment. The two component, solvent-free epoxy material conforms to ASTM
C-881 Type L, I, IV and V Grade 3, Class B and C for epoxy resine adhesive. Table 5.3

shows the mechanical properties of the Sikadur injection gel.

Table 5.3 Mechanical properties of Sikadur injection gel

Compressive strength | Bond strength Modulus of elasticity
23°C MPa Hardened concrete to steel MPa GPa
1 day 48 2 day (dry cure) 23 | 28day 3.7
28 day 62 14 day (moist cure) 18

Figures 5.8 and 5.9 show details of the test set-up for the experimental program. The
dam model is anchored to a thick steel platform supported on a large size I-beam. The
actuators are installed at different elevations on two different heavy steel reaction frames.
Two load cells are used to measure the applied load from each actuator. The static actuator
is connected to a control unit to maintain the applied static load at a constant level.

Continuous adjustment to the static load was needed as the model was deflecting due to the
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applied cyclic loading. A MTS 436.11 control unit provides automatic control of the
hydraulic pressure. Figure 5.10 shows a schematic of the MTS control unit connections.

Twenty strain gages are placed at ten locations on the model to capture the horizontal
and vertical strains. The strain gages used are of N11-FA-30-120-11 type from Showa
Measuring Instrument Co. with gage length of 30 mm. The deflection of the upstream face
is measured using Linear Potentiometer Differential Transducers (LPDT). A second LPDT
installed at the base near the upstream face of the dam model to monitor the strain and crack
opening at the base. Both LPDTs can measure displacements up to 5 cm. Four load cells
measured the applied concentrated loads at the upstream face of the model face. Figures 5.11
and 5.12 show the location of the strain gages, LPDT’s and load cells. All the instruments
were connected to the computer controlled data acquisition system for automatic data

recording at 5 second intervals.

57 SUMMARY

A new approach for small scale model testing of concrete gravity dams is proposed.
The testing procedure uses a distorted model which is a hybrid of analysis and experimental
techniques. A mechanism is designed to apply both dynamic and hydrostatic loads to the
upstream face of the dam model. The procedure involves the calculation of the dynamic
forces on the dam for a given ground motion and the simulation of these forces using a
number of quasi-static concentrated loads applied at the upstream face of the model.

Approximating the reservoir forces on the dam by four concentrated loads appears to provide
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a reasonably accurate experimental representation of the dam-reservoir interaction effect.
The proposed experimental technique can be used in the comparative testing of
models of dams with different structural characteristics such as original and rehabilitated
dams where analytical modelling may be difficult. In the test set-up, it is not necessary to
model the entire dam. Instead, modelling and testing may be applied to the top part of the
dam only thus focusing on the areas of high stresses and potential cracking.
The results of the testing program and comparison with analytical predictions are

described in Chapter 6.
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Figure 5.2 Specimen wooden form
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Figure 5.6 Loading mechanism
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Figure 5.7 Attachment of U-shaped channel to the specimen
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Figure 5.9 Dam model on foundation platform
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Figure 5.12 Specimen instrumentation



CHAPTER SIX

BEHAVIOUR OF THE DAM MODEL

6.1 INTRODUCTION

The criterion of safe performance for a dam during an extreme event is that the dam
shall continue to safely retain the reservoir water. The complete assessment of dam safety
requires a comprehensive knowledge of design and a judgement based on experience and
analysis. To achieve an engineering judgement the, Canadian Dam Safety Guidelines (1996)
requires that “stability and stress shall be evaluated in concrete dams”. It also requires a
physical model study to assist in evaluating the behaviour and performance of dams.

The Canadian Dam Safety Guidelines (1996) requires that “Concrete dams shall be
designed to resist and prevent

@ sliding at the dam-foundation interface, within the dam and at any plane in the

foundation

@ overturning of the structure

@ overstressing of the concrete dam or foundation

@ cxcessive seepage through the foundation and through joints in the concrete dam”™.

151
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The guidelines offer no strict rules for performing the analysis in the process of safety

assessment. The guidelines safety requirement can be achieved by applying a nonlinear
fracture analysis or by model testing.

In this chapter, the results of the experimental measurements of the dam model

performance are presented. Experimental results are compared with theoretical predictions.

6.2 TESTING PROGRAM

In order to check the test set-up and to ensure that all equipment and instrumentations
are functioning properly, the first test was conducted usir}g hydrostatic load only. The load
was gradually increased to approximately 60 kN. Results of the first test are shown in figures
6.1, 6.2 and 6.3. The measured load distribution using the load cells at the concentrated load
locations is plotted in figure 6.1. The proper representation of the hydrostatic loading is
demonstrated. The load-base strain relationship is plotted in figure 6.2. The base tensile
sfrain is measured in a vertical direction by the LPDT located near the heel of the model
dam at the base. Cracking was first observed at the base at an applied load of 45 kN. The
specimen attained a maximum load of 60 kN before rapid loss of strength due to the crack
propagation.

The strain measurements at the 10 strain gage locations (figure 6.3) indicated that at
locations no. 1, 6 and 8, the concrete experienced tensile strains while all the other locations
showed compressive strains in the both x- and y-directions. The maximum tensile strain

oceurs at the base of the dam at the upstream face (heel). This confirms that in the case of
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hydrostatic loading, a crack is initiated at the base of the upstream side of the dam. After
cracking occurs, strains at other locations remain almost constant. This indicates that most
of the energy input due to increasing the hydrostatic load is dissipated by increased crack
width at the heel where the crack was initiated.

In the second test, both dynamic and static loads are applied. The static load is kept
constant at 30 kN while the dynamic load is increased cyclically up to 40 kN. The loading
routine and the measured load distribution on the upstream face of the dam are shown in

figure 6.4. The variation of base strain, crest displacement and the strain measurements at

all the strain gage locations are shown in figures 6.5, 6.6 and 6.7. The variation of the applied

load resultant with the strain at the base is shown in figure 6.5. Cracking is initiated at the
base of the concrete dam model on the upstream side at static plus dynamic loads of
approximately 45 kN. The failure load capacity of the dam model is reached at 65 kN. The
measured crack mouth opening displacement with the applied load is plotted in figure 6.5.
The plot is in a different format from the traditional crack mouth opening displacement
graphs due to the cyclic nature of the applied load.

The variation of the load with the crest displacement is plotted in figure 6.6. As
expected, the dam model behaviour is elastic until the initiation of the crack, when the
response becomes nonlinear. The variations of the strains at various locations with the
applied load are plotted in figure 6.7. The maximum tensile strain is approximately 0.025 x
107 at locations no. 1 and 3. This shows that when the hydrodynamic load is applied to the
dam, the maximum tensile stress is shifting toward the upper part of the dam near the slope

discontinuity. When the hydrostatic and dynamic loads are acting in opposite directions, the
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dynamic loads have higher values at the top part as compared with the hydrostatic load. This
is the main reason for cracking and damage at the top part of concrete gravity dams when the
dynamic loads are taken into account.

A third test was conducted to evaluate the behaviour of 2 dam anchored to the
foundation and to evaluate the effect of the ratio of the static / dynamic load on the test set-up
and on the performance of the model. The dam base was anchored to the foundation using
4 anchor bolts. The anchors were glued to a hole drilled at the bottom of the dam and bolted
to the foundation. The static load was kept constant at 70 kN. The dynamic load was cycled
from 10 kN up to 100 kN, increasing by 10 kN per cycle. The results of the test are shown
in figures 6.8, 6.9 and 6.10. The dam model behaviour shown in figure 6.8 is more ductile
when compared with the previous case. The cracking strain was reached at static plus a
dynamic load of 45 kN. Comparing figures 6.5 and 6.8, indicates that in the second test after
crack initiation, the stiffness and strength deteriorated rapidly such that cracking load and
failure load are very close. This shows brittle behaviour of the model in the second test. In
the third test, the static plus dynamic load was increased to almost three times the cracking
load. This performance indicates the effectiveness of the anchoring method proposed for the
third test.

The crest displacement variation with the applied load is plotted in figure 6.9. The
maximum crest displacement is 17.5 mm which is almost 3 times higher than the crest
displacement in the second test. The variation of the crest displacement in figure 6.9 is
bounded in a narrow range which is similar to figure 6.6 from the second test. This represents

the almost elastic then brittle behaviour of the model.
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Figure 6.10 shows strain variation at the different location in the third test which are

fairly similar to the strains measured in the second test (figure 6.7). Since the loading
capacity was increased substantially in comparison with the second test, all the ten locations
experienced higher strains in comparison with the previous tests. Location no.1 reached

tensile strain of approximately 0.07 x 107

6.3  ANALYSIS
Analysis of the dam model and prototype was performed in order to evaluate the
proposed experimental approach. The evaluation is based on the results of static and dynamic

analyses of the dam-reservoir system.

6.3.1 Effect of Gravity on the Dam Model

Considering the maximum modelling load which is obtained from the first and
second tests, the moment at the base M™,=Y..,* F; h is calculated to be 23.93 and 32.03
kN.m. respectively. The distortion at the failure stage can be found for the first two tests
using the equations (5.7) and (5.8). The third test was excluded because anchoring at the base
causes additional distortion of the results. The parameters of the equations for the model are:
n=100, h™=0.968 m, P™ = 13.58 kN, M" ,=23.93 kN.m (first test) and M",,, =32.03 kKN.m
(second test). From equation (5.7), the stress correction factor due to the gravity load
distortion is, D' = 111% and 116% for the first and second tests, respectively.

With the scaling of the weight density in the model, there is enough vertical force
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(p™) to prevent early cracking of the model at the base. Higher values of the external load
result in higher distortion. This is because the bending moment in the model at the base M™,,,,

increases and consequently the value of the distortion factor D'is increased.

6.3.2 Static Response of the Model and Prototype

To evaluate the performance of the test set-up, a comparison is made between the test
measurements and analytical predictions. Linear finite element analyses of the dam model
and prototype are carried out for il third test specimen. In the finite element analysis of the
model, the reservoir effect and the inertia force due to weight of the structure are represented
by four concentrated loads acting at the upstream face. In order to obtain the maximum state
of stress and strain, two cases of maximum loading are analyzed. The hydrostatic load is
taken constant at 70 kKN while the dynamic load is taken as 100 kN.

The finite element analysis is conducted for three different cases using four
concentrated loads: a) Model dam, b) Prototype, c) Model dam with the appropriate mass
density factor. Results of the analyses are compared with experimental measurements. It is
found that the strains in the prototype and dam model agree closely when the mass density
factor is taken into account. Figures 6.11 and 6.12 show the predicted and measured strains.
In these figures, location number zero refers to the dam base at which there was no strain
gage. Strain gage at location number 9 and the strain gage in the horizontal direction at
location number 7, were damaged during the test. Figures 6.11 and 6.12 show that the
predicted and measured strains are in good agreement at location numbers 2, 4, 5 and 7

which are far from the local effect of the concentrated loads. This confirms that the
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performance of the test set-up and measurements of the strain gages are a reasonable
representation of the loading and strains the maximum stress zones in an actual dam.

The predicted maximum tensile stress contours using the finite element analysis are
shown in figure 6.13. The principal tensile stress contours in the prototype (figure 6.13 b)
and model with the appropriate correction for the mass density (figure 6.13 c), are found to
be similar. It is important to note that the mass density can be compensated for in the
distorted model by the analytical correction factor. It is also concluded that in spite of
violating the mass density scale in the specimen the stress distribution at the top part of the
dam model remains very similar to that of the prototype. At the top part of the dam the effect

of mass density is low.

6.3.3 Dynamic Response of the Dam-Reservoir System

The finite element analysis of the prototype dam is conducted including the dam-
reservoir interaction when the dam is subjected to earthquake ground motion. An infinite
reservoir with rigid dam foundation and no reservoir bottom absorption is considered in the
dynamic analysis. The horizontal S69E component of the Kern County site record during the
July 21, 1952 Taft Lincoln earthquake scaled to PGA of 0.242 g, is used in the analysis. In
the dynamic analysis, the hydrostatic load was decreased to the corresponding value in the
third test. The dynamic load applied in the third test corresponded to PGA scaled to 0.242
g. Figure 6.14 shows that the stress distribution in the prototype dam using finite element
analysis including dam-reservoir interaction, when the PGA of the horizontal component of

the Taft earthquake record is scaled to 0.242 g, is in good agreement with the test
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measurement for the model using four concentrated loads (figure 6.13c). The agreement is
close especially at the critical zone on the downstream face of the dam near the slope
discontinuity. At the upstream face of the model, the stress contours are distributed as shown

in figure 6.13 due to the concentrated nature of the applied load.

6.4 CONCLUSIONS

The proposed new approach for small scale modelling of concrete gravity dams is
evaluated. The efficiency of the testing approach was investigated by comparing the
measurement with theoretical predictions.

It is concluded that approximating the reservoir forces on the dam by four
concentrated loads provides a reasonably accurate experimental representation of the dam-
reservoir interaction effect. Measured sirains during the testing of the model with the same
material properties as the prototype, are found to be in good agreement with strains
calculated using the finite element approach. The stress distribution at the top part of the dam
model and the prototype of the same material properties are found to be in close agreement.

The proposed experimental technique has the potential for being used to validate
some of the assumptions adopted in the formulation of the dynamic analysis solutions for the
response of dam-reservoir systems. The approach has the recognized limitations of relying
on analytical methods for the calculation of the equivalent quasi-static load to simulate
hydrodynamic and inertia forces and to analytically include the gravity effects in the stress

and strain distributions in the dam.
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169

Strain in X-direction
40

20 L

i
LK

¥
(1)

0=

Strain x1000,000
o
4
fl

-20 -L

-40 ; ; ' ' ; ; ' " "
0 1 2 3 4 5 6 7 8 9 10
Location number

Strain in y-direction

150
100 |
50 |

501 o
1001 °
-150 . et ————+

0 1 2 3 4 5 6 7 8 9 10
Location number

%1

Strain x 1000,000
o
A
%
N
&

o Experimental Data +~ F.E Analysis of Model
=< F.E Analysis of Prototype

Figure 6.11 Comparison of strains obtained from experiment and finite element analysis
static load=-70 kN, dynamic load=100 kN



170

Strain in X-direction

40
8 201l
<
8
S 0
x j 3 —_ _ el -
c 4 - e - - = o)
E =20 X I3 . >- B <
75 ~ a
-40 ; ) ' " " ; ; ' ;
0 1 2 3 4 5 6 7 8 9 10
Location Number
Strain in Y-direction
150
e 100 1
< . = o
8 50 T = -~ =3
= 0 = _
£ -100 .
7))
-150 ; } ' } } } ; } }
0 1 2 3 4 5 6 7 8 9 10

Location Number

o Experimental Data
= F.E Analysis of Prototype

+~ F.E Analysis of Model

Figure 6.12 Comparison of strains obtained from experiment and finite element analysis
static load=-70 kN, dynamic load=-100 kN



171

I

a) Model dam

b) Prototype

L
S

¢) Model dam with correction for gravity effect

Figure 6.13 Maximum principal tensile stress contours obtained from finite element analysis
using proposed experimental approach, MPa
static load=-70 kN, dynamic load=+100 kN
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N

Figure 6.14 Maximum principal tensile stress contours (MPa) obtained from dynamic analysis of
the prototype under the Taft earthquake ground motion scaled to PGA 0f0.242 g,
(Hydrostatic pressure=0.69735 full hydrostatic pressure)




CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

7.1 INTRODUCTION

A study was conducted to investigate the dam-reservoir interaction effect on the
linear and nonlinear seismic response of concrete gravity dams. A mathematical approach
has been developed for the time domain solution of the coupled dam-reservoir interaction
problem which can be implemented in the nonlinear seismic analysis of concrete gravity
dams. The developed approach is applicable when the effect of the travelling seismic waves
on the dynamic response of the dams is taken into account. An experimental study of small-
scale models of concrete gravity dams was conducted. The dam reservoir interaction in terms
of hydrostatic, hydrodynamic and seismic loads were simulated using a mechanical loading

system.

7.2 CONCLUSIONS
The following conclusions can be reached based on the numerical analysis and the

experimental work conducted in this research program.
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The proposed method of partitioned solution, namely the staggered solution
procedure is found to be accurate when compared with the existing frequency domain
analytical solution. The proposed staggered method requires no iterations and is less
time consuming than the other classes of solution for the coupled field problem. The
method is convenient and easy to apply in the nonlinear seismic analysis of concrete

dams.

The dynamic response of concrete gravity dams to earthquake ground motion can be
significantly influenced by the effect of the travelling seismic excitation waves.
Nonuniform ground motion may result in higher response for the horizontal
earthquake component than in the case of uniform ground motion. The earthquake
wave velocity is an important factor that affects the response parameters
significantly. The inclusion of nonuniform earthquake excitations is necessary in the
calculation of the hydrodynamic pressure distribution and therefore on the dam crest
displacement. Due to limited speed of the travelling seismic wave, the assumption
of uniform earthquake ground motion may not be realistic.

The direction of the earthquake wave propagation in the horizontal direction
has a noticeable effect on dam response. A seismic wave propagating from the
reservoir’s far boundary toward the dam may have more effect on the dam response
than a seismic wave travelling in the opposite direction. The response parameters due
to the vertical earthquake excitation are not sensitive to the direction of the wave

propagation.
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The nonlinear seismic fracture response analysis of concrete gravity dams that
include dam-reservoir interaction gives a crack pattern that is close to the observed
damage to the Sefid-rud dam during the 1990 Manjil earthquake. The predicted crack
pattern is different from that of the case when the dam-reservoir interaction is
approximated using the added mass approach. It is concluded that proper modelling
of the dam-reservoir interaction is important in the nonlinear response analysis of

concrete gravity dams.

From the experimental study of small scale dam models, it is concluded that the
hydrostatic, hydrodynamic and seismic loads can be simulated using the proposed
mechanical loading system.

It is found that approximating the reservoir forces on the dam by four
concentrated loads provides a reasonably accurate experimental representation of the
dam-reservoir interaction effect. Strains measured during the testing of the model
with the same material properties as the prototype, are found to be in good agreement
with strains calculated using the finite element approach. The stress distribution at
the top part of the dam model with the gravity load scaling correction is found to be
in close agreement with the stress distribution in the prototype of the same material
properties.

The proposed experimental technique has the potential for being used to
model and test the top part of the dam only as well as the comparative testing of

models of dams with different structural characteristics such as original and
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rehabilitated dams. It may be also used to validate some of the assumptions adopted
in the formulation of the dynamic analysis solutions for the response of dam-

reservoir systems.

RECOMMENDATIONS

Base on the experience gained from the dam-reservoir interaction study, the

followings are recommendations for future work:

The proposed staggered solution method can be applied to the 3 dimensional dam-

reservoir interaction problem.

The effect of travelling seismic waves can be investigated using different earthquake
ground motions. The effect of different configurations of the reservoir can be studied.
Various reservoir geometries can be investigated such as rectangular or triangular
reservoirs with different slopes of the far end.

The effect of nonuniform earthquake motion on the three-dimensional
analysis of the dynamic response of the dam-reservoir system can be investigated.
The variation of the earthquake components in all directions can be included in the

dynamic response of the dam.
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Finite element stress type analyses based on G- type smeared crack model are
useful in identifying the crack profile. However the post cracking behaviour is not
well represented because a closed crack cannot slide. Moreover, small displacement
theory is used. Dynamic instability of dams is induced by large displacements. A
separate dynamic stability analysis recognizing the cracked components as rigid
bodies (or elastic bodies) with appropriate interface constitutive model (e.g. Mohr-
Coulomb for sliding) is needed to asses the dynamic stability of cracked gravity
dams. Due to the limitations of the constitutive model used, the magnitude of the
sliding displacement cannot be determined.
A Smeared crack model based on nonlinear fracture mechanics crack
propagation criterion needs to be developed to study the three dimensional cracking
of dams. The validity of the model can be checked using damage data obtained from

the Sefid-rud dam during the 1990 Manjil earthquake (Iran).

Experimental work on the dynamic testing of dam-reservoir systems is extremely
difficult. It is acknowledged that model shake table testing lacks the appropriate
representation of the dam-reservoir interaction. In most of the experimental studies,
water was taken to be incompressible and the material of the dam model did not meet
the corresponding properties of the prototype material. Therefore, the results of the
tests cannot be considered to provide a good indication of crack profile in concrete
gravity dams. There is a need to develop the proposed experimental technique to take

advantage of the distorted modelling approach. Developments may be in the direction
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of pseudo-dynamic loading and the modelling and testing of the top part of the dam

only.
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