COOPERATIVE WINDOWING FOR REAL-TIME VISUAL TRACKING

Samer Chaker Nassif, B.Sc. , M.Sc. , P. Eng.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

© Copyright by Samer Nassif, April 1997

COOPERATIVE WINDOWING FOR REAL-TIME VISUAL TRACKING

DOCTOR OF PHILOSOPHY (1997) McMASTER UNIVERSITY

(Electrical and Computer Engineering) Hamilton, Ontarno

TITLE: Cooperative Windowing for Real-Time Visual Tracking.
AUTHOR: Samer Nassif, B.Sc. , M.Sc. (University of Michigan-Dearborn)
SUPERVISORS: Professors D.W. Capson and M. A. Elbestawi

NUMBER OF PAGES: xiii, 104

ii

ABSTRACT

A new, computationally efficient windowing methodology for motion tracking is
described. The proposed approach is well suited to real-time focus-of-attention
applications in which regions-of-interest, or windows, are used to reduce image data
rates. Applications include robot guidance, where high speed image processing is required
for real-time position control in operations such as fixtureless assembly for flexible
manufacturing.

A hierarchy of windowing functions which includes motion detection and target
detection and tracking has been developed. This has resulted in a new algorithm for
corner detection in image windows, as well as a proposal for measuring the information
content of an image based on corner location accuracy. The techniques have been
experimentally verified with the implementation of a vision system based on a high speed
digital camera, a custom-built video interface board, and a network of digital signal
processors. Dynamically positioned at video frame rates, windows within the camera
field-of-view are made cooperative by exchanging information among their corresponding
processors to allow real-time adaptation to visual motion. A cooperative windowing
scheme using two networked target tracking windows is demonstrated. Motion tracking
is based on the best-case output of the simultaneous application of a feature-based
algorithm applied in the first window and a model-based algorithm running in the second.
The experimental results demonstrate the advantages of motion tracking using this
cooperative windows approach.

ACKNOWLEDGEMENTS

The author cannot thank God Almighty enough for the great help he has received during
the period of this research work including :

-The financial support provided by McMaster University.

-The support of Dr. Capson and Dr. Elbestawi.

-The help of Dr. Vaz, who has been a source of ideas for the development of this work.
-The help of the department technician Ken Frost in the development of the hardware.

-The encouragements of friends and family to pursue this Ph.D. degree.

Finally, the love and patience shown by my parents and my wife during the good times

and the bad times enabled me to complete the requirements of this degree.

iv

Table of Contents

CHAPTER 1 - INTRODUCTION

1.1 Overview

1.2 Literature Survey
1.2.1 Motion Analysis Methods
1.2.2 Vision System Requirements
1.2.3 Motion Analysis Processing Requirements
1.2.4 Visual Servoing Applications

1.3 The Structure of the Thesis
1.3.1 Hardware
1.3.2 Motion Tracking Algorithm
1.3.3 Window Confidence Measure

1.4 Contributions of this Thesis

CHAPTER 2 - A DSP-BASED WINDOWING NETWORK
2.1 Introduction
2.2 Vision System Implementation
2.2.1 Hardware
2.2.2 Window Logic Design

v

11
14
15
16
17

17

19
19
20
20
23

2.3

2.4
2.5
2.6

Windowing Strategies

2.3.1 Single Processor, Multiple Function
2.3.2 Triple Processor, Dedicated Function
2.3.3 Multiple Processor, Dedicated Function
Image Processing Algorithms

Window Acquisition/Interaction

Experiments

CHAPTER 3 - WINDOWING-BASED CORNER DETECTION

3.1
3.2

3.3

3.4

Introduction

Corner Detector

3.2.1 Pixel Labelling Filter
3.2.2 Morphological Filtering
3.2.3 Corner Detection
Golden Section Search

Experimental results

3.4.1 Information Content Measure for Corner Detectors

CHAPTER 4 - COOPERATIVE WINDOWING

4.1-

Introduction

4.2- Cooperative Windowing Strategy

28
31
34
36
38

41

50
50
54
55
55
56

59

68

71

71

72

4.3- Window Confidence Measure

4.4- Experimental Results

CHAPTER 5 - DISCUSSION
5.1- Conclusions

5.2- Future Work

APPENDIX A
APPENDIX B

REFERENCES

vii

73
74

80
82

89
99

LIST OF FIGURES

Figure 2.1 System architecture.

Figure 2.2 Window acquisition process.

Figure 2.3 Block diagram of the window acquisition process.

Figure 2.4a Watch mode of SPMF.

Figure 2.4b Tracking mode of SPMF.

Figure 2.4c Detection mode of SPMF.

Figure 2.5 Windowing strategy TPDF.

Figure 2.6 Windowing strategy MPDF.

Figure 2.7 Timing diagrams of the three modes of operation.

Figure 2.8 Actual XY path taken by the moving object.

Figure 2.9 RMS position error of the Foveal window centroid based on the
three strategies versus target speed.

Figure 2.10 Time required by the three strategies to initially lock on the

target versus target speed.

Figure 3.1 Data flow diagram of the corner detection strategy.
Figure 3.2 Bounding box extraction and corner detection when Q, is defined
((a),(b)), and when Q, is undefined ((c),(d)).

vili

21
22
24
32
33
34
35
37
42

46

48

49

54

Figure 3.3 The metal part (left) used in the experimental setup.

Figure 3.4 Actual XY path taken by the moving object.

Figure 3.5 Mean error of the corner location measurement in the X and Y
directions.

Figure 3.6 RMS error of the corner location measurement in the X and Y
directions.

Figure 3.7 RLT percentage using the multi-windowing strategy (1) and a single
window approach (2).

Figure 3.8 Edge pixel information content in the image based on edge detect
threshold selection.

Figure 3.9 RMS error in the X and Y directions based on edge pixel
information content in the image.

Figure 3.10 Information content measure for corner detection evaluation

Figure 4.1 Cooperative windowing strategy.

Figure 4.2 Average gray level intensity of the Foveal windows over the
entire path.

Figure 4.3 Switching process between the two Foveal windows.

Figure 4.4 RMS position error using the NCC algorithm.

Figure 4.4 RMS position error using the CD algorithm.

Figure 4.6 RMS position error using the COOP algorithm.

ix

& %

67

67

69

70

70

72

75
76
78
78

79

Figure Al.1 Window logic implementation (part 1).

Figure A1.2 Window logic implementation (part 2).

Figure B1.1 Timing diagram of the "Start Flag Set " sequence of events.
Figure B1.2 Timing diagram of the "Frame Valid Rising " sequence of
events.

Figure B1.3 Timing diagram of the "Line Valid Rising " sequence of events.

Figure B1.4 Timing diagram of the "Line Valid Falling " sequence of events.

Figure B1.5 Timing diagram of the "Frame Valid Falling " sequence of

events.

85
86

94

95
96

98

LIST OF TABLES

Table 2.1 Block diagram internal signals definitions.
Table 2.2 Window sizes in the different modes of operation.
Table 2.3 Average lock-on, tracking, and recovery times in the different

modes of operation.

Table 4.1 Average RMS position errors of the NCC, CD, and COOP

methods.

Table Al.1 Xilinx internal signals definitions (Figure Al.1).

Table Al1.2 Xilinx internal signals definitions (Figure A1.2).

25

37

77

87

88

LIST OF SYMBOLS AND ABBREVIATIONS

D - Three dimensional

2D - Two dimensional

SSD - Sum of squared differences

rad/s - Radians per second

cm/s - Centimeters per second

Hz - Hertz

VME - Virtual memory expansion

CCD - Charge coupled device

FPGA - Field programmable gate array
DSP - Digital signal processor

C40 - TMS320C40

MOPS - Million operations per second
CPU - Central processing unit

Mb/s - Megabytes per second

MHz - Megahertz

PC - Personal computer

FOV - Field-of-view

SPMF - Single processor, multiple function
TPDF - Triple processor, dedicated function

Xti

MPDF

SIMD
ATR
NCC
SSD
SAD
ms
mm

GSS

RLT
COooP
CD

SSE

Multiple processor, dedicated function
Kilobytes

Transistor transistor logic
Single instruction multiple data
Automatic target recognition
Normalized cross-correlation
Sum of squared differences
Sum of absolute differences
Millisecond

Millimeter

Golden section search
Threshold

Rate of loss-of-tracking
Cooperative windowing scheme
Corner detector

Sum of squares of the errors

xiii

CHAPTER 1

INTRODUCTION

1.1 Overview

Humans can apply their sense of vision to move in 3D space, and to detect and
track moving objects with great ease. However, incorporating such visual abilities in
machines has proven to be a difficult task. While growing research efforts have led to
major advances in this area of computer vision, more work still needs to be accomplished
before machines can be given 3D motion detection and tracking abilities similar to those

of humans [Huang94].

The list of applications motivating this interest in real-time 3D motion analysis has
also been growing to include a wide variety of applications [Aggarwal88]. Robots with
the ability to navigate freely on the factory floor and handle industrial parts at the same
time, will represent a significant boost to the automation industry. The surveillance of
people for reasons of security, or the detection and tracking of speeding automobiles are
two examples of domestic applications. Military applications including the automatic
detection and tracking of moving targets, such as tanks and warplanes, are also of great
interest. The space industry is increasingly relying on visual data in the servoing of robot

1

arms for the placement and retrieval of satellites. These are only a few examples to
indicate the diversity of applications where real-time 3D motion analysis is of critical

importance.

Our application, which involves the real-time 3D motion tracking of a part being
placed on a surface by a robot arm, is relevant mainly in the automation industry.
However, the proposed work can also be applied in some of the above mentioned areas,

i.e. domestic, space, and military.

Based on the literature survey (section 1.2.2), we have developed and implemented
a hardware-based windowing system capable of the real-time acquisition and processing
of various windows at frame rates (section 1.3.1). The selection of a motion tracking
algorithm involved an extensive literature survey (sections 1.2.1,1.2.3) to review the
different approaches currently being used. The survey shows that these approaches are
mainly variations of two methods: the optical flow-based method, such as Sum-of-
Squared-Differences (SSD), and the correspondence-based method, such as edge detection.
To take advantage of the merits and demerits of each approach (section 1.3.2), we have
developed an implementation that uses both approaches in a 'multiple cooperative
windowing' scheme for a more robust tracking. A discussion of the confidence measure

techniques needed to determine the tracking results is included in section 1.3.3.

1.2 Literature Survey

1.2.1 Motion Analysis Methods

The various approaches to motion analysis are generally classified in two main

groups: Optical flow-based methods, and Correspondence-based methods [Vega89].

A- Optical flow-based methods

Optical flow refers to the distribution of the apparent velocities of moving
brightness patterns in an image. These brightness patterns represent the moving objects
in the image. The optical flow arises from the relative motion of the objects and the
imaging sensor. Optical flow can provide important information about moving objects
including their spatial arrangements and structural features. Discontinuities in optical flow
can also be used in segmenting images into regions that correspond to different objects

[Vega89].

The optical flow constraint equations can be derived using different methods
[Hom81], [Schunk84]. The method proposed by [Hom81] assumes that the image
brightness varies smoothly without any spatial discontinuities, which ensures that the
brightness function is differentiable. [Schunk84) derives the optical flow constraint

equation using a different approach, which assumes that the perceived change in image

brightness is entirely the result of translational motion, and that the image is smooth,
except for a finite number of lines of step discontinuities. A description of other
approaches for the estimation of optical flow and the relations between them is also given

in [Nagel87].

While optical flow-based algorithms are in general computationally fast, they are
usually based on some assumptions which are hard to obtain. The computation of the
optical flow also requires the evaluation of partial derivatives of image brightness values.
Since the evaluation of derivatives is a noise enhancing operation, it can have an adverse
effect on the estimation of the optical flow. Therefore, the images have to be subject to

some processing before starting the motion computation.

B- Correspondence-based methods

Correspondence is the process which identifies elements in different views as
representing the same object at different times, therefore maintaining the perceptual
identity of objects in motion or change [Thom79]. The correspondence problem can be
tackled at the level of feature points, surfaces, or whole objects. However, establishing
and maintaining such correspondences is not a trivial task. The development of robust
techniques to solve the correspondence problem is still an active area of research. Current
approaches include cross-correlation-based methods ([Arking78], [Tian84]), and feature-

based methods ([Barnard80], [Shah84], [Sethi87]).

The cross-correlation of two images can be used to search for an object, and to
determine the object's relative displacement from one image to the next. [Arking78]
applies a cross-correlation-based method to measure cloud motion from satellite imagery.
[Tian84] recursively computes a new estimate of the object's position based on the peak
of the cross-correlation. The sharper the peak, the more reliable the motion estimation

becomes.

In [Barnard80], a technique for matching features in stereo imagery based on
smoothness in change of depth is proposed. The same method can be applied to match
features in two monocular images, based on smoothness in spatial displacement of image
features. [Shah84] discusses the use of a measure of corneress to identify and track the
motion of objects. Corners are generally used because the two velocity components at
these feature points can be easily computed. A method for finding and maintaining
correspondence between feature points based on a long sequence of monocular images is
presented in [Sethi87]. The iterative optimization algorithms used are based on preserving

the smoothness of velocity changes.

The above examples illustrate some approaches used in correspondence-based
methods for the computation of motion. Although several methods and approaches have
been developed to solve the correspondence problem, it is still a difficult task with
reliable solutions only in the case of constrained applications. Prior image segmentation

and feature labelling are usually required before a unique solution for object displacement

can be determined. In general, correspondence-based methods are more computationally

expensive, but less sensitive to noise.

1.2.2 Vision System Requirements

The vision systems used in 3D motion tracking applications can be based on using

one camera, multiple cameras, or even no cameras, by using different sensors such as

range-finders instead.

A- Range-Finders

Little work has been done so far in the area of range-finder sensing for real-time
motion tracking applications [Arch88], and [Venkat90]. The advantage of using range-
finders over cameras being that depth information is immediately available. Although in
general cameras provide more reliable information than range-finders at a lower power

consumption.

In [Venkat90], two laser range-finders are mounted on the wrist of a robot for the
tracking of a flat object in five degrees of freedom. Sensory feedback from the range-
finders is used to servo the robot, so that it can maintain a trajectory similar to that of the
object. The Maximum linear and angular tracking speeds are reported to be 25 cm/s and

.5 rad/s respectively. However, the robot maintains the required pose at these speeds only

with a small time lag.

B- Multiple Cameras (Stereo Vision)

Stereo vision is a technique for determining the 3D description of a scene observed
from several viewpoints. It is often used in the recovery of the depth and 3D motion of
moving objects. While the term stereo vision immediately brings to mind the use of two
cameras (binocular vision), many stereo vision systems have been developed based on

three cameras (trinocular vision), or even more than three cameras.

In [Dhond89], a review of major stereo algorithms, which use binocular images,
is presented. The three main stages in stereo analysis are preprocessing, establishing
correspondence, and 3D depth computation. However, solving the correspondence problem
is difficult, mainly because the geometric constraints of binocular stereo are not sufficient
to impose a unique solution. Several heuristic constraints must be added before an
adequate solution can be computed [Ayache91]. In the recent past, new techniques for
achieving matching based on trinocular imaging have been proposed ([Ayache87],
[(Ito86], [Pietikan86], and [Yashida85]). A cost-benefit analysis of adding a third camera
for stereo correspondence has been conducted by [Dhond91]. The results show that
trinocular matching reduced the percentage of mismatches by more than one half when
compared to binocular matching. On the other hand, the trinocular stereo analysis

increased the computational cost by about one forth over the binocular analysis.

Gennery et al. [Gennery87] describe the research at JPL involving a space
telerobot with a perception subsystem using five video cameras, which can provide the
locations, orientation, and velocities of objects in the work environment. Special image

processing hardware (PIFEX) is used to maintain real-time operations.

Although using stereo vision is advantageous in recovering 3D information, the
computational cost is high, and special hardware may be needed to achieve real-time

performance is achieved.

C- One Camera (Monocular Vision)

Monocular vision has mainly been used in visual tracking applications involving
targets moving on a plane. It is well known that an image represents a 2D projection of
a 3D scene at an instant of time. In order to recover the lost information, some
assumptions about the world must be made, or a sequence of image frames must be
analyzed [Sethi87]. In [Silven93], the results of 3D visual tracking experiments based on
monocular vision are presented. The initial 3D object position is assumed to be
approximately known, and the tracking error is reduced through the integration of new

observations. However, model uncertainties are shown to cause failure in tracking.

A major advantage in using monocular vision over stereo vision in motion tracking

applications is in the computational cost. While the recovery of 3D information using

monocular vision is generally a difficult task, application specific assumptions can be

made to reduce the level of complexity [Pap9l1].

1.2.3 Motion Analysis Processing Requirements

Real-time 3D vision applications involve several key issues which must be
considered in the design of the vision system, if an adequate performance is expected. The

first issue to be considered is the motion analysis process.

In general, motion analysis can be divided into three main processes. The first is
an early detection process involving low-level processing algorithms, such as image
differencing, to detect motion in the early stages of image analysis [Jain81]. The second
is a peripheral process in which image data is translated into symbolic data to achieve
motion tracking. The final process involves high-level processing techniques in which
symbolic data is manipulated to obtain recognition results. A significant number of
complex operations can take place in each process, and therefore, the performance of the
vision system is not expected to be satisfactory when all three processes are run

sequentially on one computer.

The second important issue to be taken into consideration is that of image
acquisition. The different processors of the vision system should have independent access

to any area within the image frame, in order to keep the image acquisition overhead as

10

small as possible. Many vision systems have implemented the region-of-interest
("window") acquisition process by software ([Allen93],[Buttazzo94],[Koivo9la]), i.e. by
acquiring the whole image frame, then extracting the window from it. This of course
introduces unnecessary delays in the image acquisition cycle, which can only be avoided
by using the proper hardware in the system, so that only the pixel data within the window
is acquired. Lee [Lee92] and Lang [Lang87] use custom built cameras with on-board A/D
converters and computers to acquire and process regions of interests within the image
frame. The multiple window vision systems proposed by Graefe [Graefe84], and Inoue
and Mizoguchi [Inoue85], include a common video bus for all of the window processors.
However, the three-level hierarchy of motion analysis is not taken into consideration,
which limits the performance of these systems in applications involving time-consuming
algorithms. Kubota et al. [Kubota93] propose a multi-stage vision processor with an
overall image processing unit for locating candidate regions of moving objects, a local
multiprocessor system consisting of 16 modules for tracking regions of interest, and a host
workstation for recognition results. For optimum performance, the communication delays
between processors should be minimum, the number of processors performing any one
of the motion analysis tasks should not be restricted, and the position updates should be
directly accessible, so that delays associated with the use of the communication bus of the

host computer are avoided.

11

1.2.4 Visual SeMing Applications

Vision is a useful robotic sensor fundamental to increasing the versatility and
application domain of robots. Typically, visual sensing and manipulation are combined
in an open-loop fashion ('look' then ‘move'). More recently, machine vision has been used
to provide closed-loop position control for a robot end-effector to improve its accuracy.
This is referred to as visual servoing [Hill79]. Proposed applications span the
manufacturing, military, and space industries. A comprehensive review of the literature

in this field is given by [Corke93].

Visual servoing is the fusion of results from many elemental areas including high
speed image processing, kinematids, dynamics, control theory, and real-time computing
[Hager96]. Irrespective of the control approach used, the vision system is required to
extract the information needed to perform the servoing task. For the purposes of our work,
the high speed image processing area will be the highlight of the following literature

review.

Visual servoing pre-supposes the solution to a set of potentially difficult static and
dynamic vision problems. Many reported applications have assumed a simple vision
problem, by painting objects, using artificial targets, or using task specific clues
([Hom87], [Castano94], [Allen93]). In less structured conditions, vision algorithms

typically rely on the extraction of sharp contrast changes (edge/corner detection) to

12

indicate object boundaries, or on the observation that the appearance of small regions in

an image sequence changes very little (SSD approach).

The implementation of an edge extraction method, using a Sun Sparc II
workstation, which can localize and track up to 22 edge segments at a rate of 30 Hz is
discussed in [Hager96]. However, this edge-detection scheme is susceptible to mistracking

caused by background or foreground occluding edges.

[Weiss87] proposes an adaptive model-reference controller for a visual feedback
system. Only simulation studies of two and three degrees of freedom systems are
performed, with a highly structured environment assumed in order to keep the vision

processing relatively simple.

An example of a vision system module and a feature-based trajectory generator
for tracking a moving planar object is presented in [Feddema89]. The vision module uses
the location of binary image features to control the position and one degree of orientation
of the robot manipulator. The desired image features of the moving object must be taught
to the system before tracking begins. The approximate positions of the image features are
also assumed to be known initially. A steady state position error is shown to occur due
to the time delay caused by the image processing unit. The vision hardware consists of
a Sun 3/160 workstation, an Imaging Technologies ITEX-151 image processing hardware

with a VME bus interface, and a Pulnix CCD camera.

13

Visual information obtained from a stationary camera is incorporated in an
adaptive self-tuning controller to allow a robotic manipulator to grasp a moving object in
a 2D plane [Koivo91]. Time delays due to the processing of images is reduced by
selecting one out of every 8x8 pixel array, thus reducing the image size from 512x512
to 64x64. An experimental threshold value is chosen to create a binary image before
processing begins and motion information is extracted. The motion of the object is
assumed to be smooth, and its maximum velocity is about one third that of the robot
gripper. The vision system involves a VAX 11/780 computer, a Sun workstation, and an

ITEX 151 imaging system connected to the workstation through a VME bus.

Papanikolopoulos and Khosla [Pap91] address the problem of robotic visual
tracking (eye-in-hand configuration) of a target that moves in 3D with translational
motion. The relative motion of the target with respect to the camera is measured by using
the SSD optical flow technique. The user initially selects the object features that must be
tracked, and multiple 10x10 windows are then used to maintain tracking. Large tracking
errors are noted when abrupt changes in trajectories occur. In addition, a larger tracking
error appears in the Z direction. An extension of this work is presented in [Pap93]. The
problem of visual tracking in 2D space is formulated as a combination of control and
vision. The formulation is with respect to the camera and not the world frame, for better
control of the camera. It is claimed that noisy measurements from the camera when
combined with the control law can yield a better performance. Four 10x10 windows are

placed on selected feature points of the object to track its motion. The best tracking

14

measurement is chosen based on the window with the best confidence measure.

The work of Wang and Wilson [Wang91] involves estimating the 3D pose of an
arbitrary moving object for real-time robot tracking control. It represents an extension of
the planar motion tracking control approach of [Wilson88] for estimating 3D motion
parameters for 3D tracking control using Kalman filtering. The validity of this method is
verified by computer simulation and real-time experiments. Because the locations and the
number of object features affect the accuracy of the Kalman estimates, five non-coplanar

features are used to improve the tracking performance.

A robotic system capable of intercepting and grasping a moving object based on
the visual feedback from a pair of stationary cameras is presented in [Allen93]. the 3D
motion parameters are computed based on the optical flow method. In their experimental
results using the PUMA 560 robot and a special parallel image processing computer
(PIPE), it is shown that the robot can track, intercept, and grasp a train moving in an oval
path at velocities of up to 30 cm/s. The system is able to cope with sources of noise and
error by applying parametrized filters that can smooth and predict the position of the

moving object.

1.3 The Structure of the Thesis

In this thesis, the following important issues are addressed in order to implement

15

a robust real-time visual tracking system :

-The hardware.
-The motion tracking algorithm.

-The window confidence measure.

1.3.1 Hardware

Our strategy in designing a vision system with real-time performance is to
minimize the delays associated with both the image acquisition and image analysis cycles.
This vision system, which can implement the three processes of motion analysis in
parallel, is designed based on a high speed digital camera, programmable gate array
technology, and a network of digital signal processor (DSP) modules. The system is
capable of acquiring and processing regions of interest ("windows") on a frame-by-frame
basis. These multiple windows of varying sizes can be used as "tracking windows" for
focus of attention, or as "watch windows" for peripheral vision. Unlike the vision systems
proposed in [Fukui92] and [Kubota93], this system is flexible enough so that each DSP
module may be assigned either one of the two window functions depending on the
requirements of the application. The DSP module performing the cognitive process can
also be used for dynamic servoing of a robot position controller using the DSP's external

communication ports.

16

Multiple hierarchical windowing strategies, which implement the three processes
of motion analysis in parallel, have been developed and applied, so that the real-time

motion tracking capability of this system is demonstrated.

1.3.2 Motion Tracking Algorithm

The selection of an appropriate tracking method is application dependent. For
example, in the case of tracking a single pattern that is approximately planar and moving
at moderate speeds, the cross-correlation approach is suitable. It can accommodate some
image distortions, and it can be implemented to run at frame rates for tracking small
motions. Because it relies on gray value arithmetic, it is sensitive to illumination and
background changes and occlusions. Thus, if a task requires the tracking of an object with
occluding parts in a changing background, feature-based methods should be faster and
more robust. A new computationally efficient comer detection algorithm has been
developed and applied for this purpose. However, feature-based methods, which typically
involve edge detection, can be susceptible to mistracking due to background or foreground
occluding edges [Hager96]. Therefore, in more realistic situations, neither approach will
yield a robust performance. Since the disadvantages of both methods manifest themselves
in opposite scenarios, we have integrated the two approaches in two separate but
networked foveal windows (‘Cooperative' windows) to improve the tracking performance
and achieve the desired robustness. A constant communication link between the two

window processors ensures that the windows are acquired at the same instant of time,

17

based on the same image coordinates. The tracking results of both windows is compared
and weighed using the measure of confidence of each window, before a decision is made

and the window coordinates are updated.

1.3.3 Window Confidence Measure

The choice of an appropriate confidence measure for both foveal windows will
have a significant effect in determining the tracking results. [Anandan87) developed a
confidence measure which can recognize errors due to homogeneous areas and occlusion
boundaries. The problem with this confidence measure is that it is based on the
computation of second order derivatives, and therefore it is noise sensitive. [Matties89]
computes the variance in the estimate of one-dimensional displacement. The computation
is based on a parabolic fit to the SSD curve. In [Pap93], an extension of this technique
to 2D displacement is proposed. The confidence measure statistically describes the
sharpness of the minimum of the SSD curve. This technique can be computationally
expensive. The applied confidence measure to implement the cooperative windowing

approach is based on least-squares regression, which is not a computational burden.

1.4 Contributions of this Thesis

This work is relevant in the area of real-time motion analysis. Based on the

literature survey, our work stands out with several contributions :

2.

18

The development and implementation of the hardware-based window acquisition
and processing system using off-the-shelf components.

The development and implementation of a hierarchical windowing method in
which motion tracking is performed in real-time.

The development and implementation of a new comner detection method.

The development of a new information content measure based on the number of
edge pixels in the image window.

The development of a cooperative windowing method in which the motion
tracking results from different approaches can be combined to improve tracking.
The implementation of a real-time 'Cooperative Windowing' scheme, and its

application to a real life experiment.

The implications of this work in the area of real-time motion analysis are

significant. The real-time capability of our platform is demonstrated without the use of

expensive special image processing hardware. A new corner detection approach has been

proposed. Finally, the validity of integrating the results of different approaches to improve

motion tracking has been established.

CHAPTER 2
A DSP-BASED WINDOWING NETWORK

2.1 Introduction

In recent years, many proposed vision systems have implemented the concept of
region-of-interest (window) in visual tracking applications, to achieve real-time
performance. By selective positioning of windows within the input image, the amount of
pixel data to be processed can be substantially reduced. Although many systems have
implemented the window acquisition process by software ([Buttazzo94], [Rizzi92],
[Pap93]), this typically results in whole image frames being transferred before the image
processing cycle can even begin. Hardware implementations allow for the processing to
commence immediately at the completion of a window acquisition time. For example,
Lang [Lang87] and Lee [Lee92] use custom built cameras with on board A/D converters
and computers to acquire and process regions of interest within the image frame. The
multiple window vision systems proposed by Graefe [Graefe84], Inoue and Mizogushi
(Inoue85], and Kubota et al. [Kubota93] include a common video bus for all of the
window processors. The architecture proposed in this work is based on a high speed
digital camera, field programmable gate arrays (FPGA), and a network of TMS320C40
digital signal processor modules (Figure 2.1). In this system, each processor has

19

20
independent access to any area within the image frame, in order to keep the image
acquisition overhead as small as possible. Multiple windows within the same image can
be acquired using an efficient implementation of gate array-based custom logic that feeds
only the pixel data within the designated window to a dedicated DSP. The image analysis
process then begins as soon as the window data transmission is complete. The DSP can
update the size and the position of the window on a frame-by-frame basis, and also
communicate with other DSPs dedicated to additional windows. Windows may also
overlap to any extent. The system is modular, independent of the host computer, and

may be readily extended to include any number of windows.

2.2 Vision System Implementation

2.2.1 Hardware

The vision system includes a high-speed digital camera, a custom built video
interface board using FPGAs for window logic operations, and a DSP-based processing
board (Figure 2.1). The digital camera is a Dalsa CA-D1 camera with a CCD image
sensor, an 8-bit pixel array size of 256x256, and a frame rate of up to 200 frames per
second. The video interface board consists of the XILINX XC3042-125 Field
Programmable Gate Arrays chips and assorted buffers. The DSP modules in the
processing board are based on the Texas Instruments’ TMS320C40 DSP chip which

features a 275 MOPS CPU and six 20 Mb/s communication ports. The host computer

21

system is a 486 SX/50 MHz PC.

Host
C40 C40 C40 C40
488 SX (OSPO) (osP1) (DSP2) (DSPY)
Logic Logic Logic Logic
(FPGAD) (FPGAT1) (FPGA2) (FPGAJ)
cm | Video/Sync.

Figure 2.1. System architecture.

Our design uses two of the C40's six communication ports in the window
acquisition process (Figure 2.2). One port outputs the window coordinates to the FPGA,
while the other port receives the camera data through the buffers on the interface board.

Two conditions must be met for a pixel to be strobed into the C40's port:

1. A valid set of coordinates (xmin,xmax,ymin,ymax) defining the window
location within the camera field-of-view (FOV) must have been transmitted.

2. The pixel must be within the window.

CA-D1
Digital
Camera

E> Butfers

Xilinx

input Port

input Strobe

C40 DSP

Figure 2.2. Window acquisition process.

A set of window coordinates is valid if :

(0 < xmin < 255) A (0 < xmax < 255) A (xmin < xmax), and

(1 < ymin < 256) A (1 < ymax < 256) A (ymin < ymax).

22

This difference in the ranges of the X and Y coordinates is addressed in section 2.2.2.

Only one window is received for every set of window coordinates transmitted. The C40

can start processing image data as soon as window transmission is complete. A detailed

23
block diagram of this window acquisition process is given in Figure 2.3, and the

definitions of the internal signals are included in table 2.1.

2.2.2 Window Logic Design

The window logic is implemented using the XILINX XC3042-125 programmable

gate array chip, and it is divided into the following sections:

-Input : C40 Data Input and Camera Synchronization Signals
-Position Counters
-Magnitude Comparators

-Output : Strobe Generation

The C40 data input section consists of a series of four 8-bit wide D-type registers which
can store one set of window coordinates. The position counters use the camera
synchronization signals to keep track of the X and Y position of the current pixel relative
to the image frame. The magnitude comparators determine if the current pixel is within
the window that is being sampled. If it is, then a strobe signal is generated and the pixel
is transmitted to the C40. A detailed description of this logic is shown in figures A1.1 and
A1.2 (appendix A), and the definitions of all the internal signals in these figures are given

in tables Al.1 and Al.2.

OCTAL ’

“m

8 om0 7ans874 | 8 | 7emss7a | 8 | 7eas2es | 8
? OCTAL OCTAL |7
c's._‘PA' D-FUP FLOP D-FUP FLOP
D L -
CAMERA ax ax 2
ps—— | VAL
— VAL $TROsE
CSTRS! cummmmmmmge-
8 | 74ALS245 J. XILINX
@ e " ey —! XC3042-125
- STROBE —————
l' VAL cosmssage-

ooms

VAL s

——,‘:— ©o-o7M

'

Figure 2.3. Block diagram of the window acquisition process.

24

25

(OD0-0D?7) The camera's digital output data, ODO (LSB) to OD7 (MSB). ;
STROBE | The digital Pixel Valid clock. i
STROBE Not Pixel Valid signal. H
LVAL Line Valid signal.
FVAL Frame Valid signal.

“ G Octal transceiver enable (Low True).
CLK Octal D-flip flop input clock.
CSTRB1 C40 communication port 1 strobe (Data Valid).

i CRDY1 C40 communication port 1 ready (Data Received).
(DO-D7N)1 C40 communication port 1 data bus.
CSTRB4 C40 communication port 4 strobe (Data Valid).

Table 2.1. Block diagram internal signals definitions.

The C40 data strobe signal (CSTRBI1), which is active low, has to be inverted to
generate an active high clock. It is also fed through the Auxiliary Clock buffer (ACLK)
to ensure that the C40 data input flip-flops and the shift registers are clocked
synchronously. This clock (AC) is then used to load the window coordinates in the shift
registers, and to start the window logic process. The Pixel Valid clock (STROBE) is

inverted and fed through the Global Clock buffer (GCLK), so that the resulting clock

26
(PVC) can be used to synchronize all of the window logic operations. The inverter
introduces a one half period delay which is necessary to synchronize the camera's Line
Valid (LVAL) and Frame Valid (FVAL) signals to the PVC clock. A minor disadvantage
in this synchronous window logic implementation is that the first two pixels in every line
of data are always missed. Consequently, the camera's digital data has to be delayed by
two pixel clocks so that the window logic applies to the correct set of pixels in every
image frame. Two octal D-flip-flops are used to implement this delay (Figure 2.3), and
it is important to note that an inverted Pixel Valid clock is applied to these flip-flops to

match up with the inverted pixel clock PVC used in the window logic.

The pulses of the AC clock set the output of a flip-flop, which is used to set the
window logic start flag (START) at the next LVAL high to low transition. The window
logic enable flag (WLEN) is then set in the in-between frames time period, so that the
process is always enabled before the start of the next frame. The following FVAL low
to high transition sets the strobe signal enable flag STRBEN. Next, the location of the
image pixels is compared with the window coordinates, and the strobe signal (CSTRB4)
is activated for the pixels which are within the specified window. A Window Valid flag
(XYVAL) is set to indicate that the current pixels are within the window, and CSTRB4
is used to strobe these pixels in the memory of the C40. Figure 2.4b shows the two
counters and four compare circuits used to determine which pixels are within the specified
image window. The X counter (XCOUNT) specifies the pixel number in a given line of

data, while the Y counter (YCOUNT) specifies the line number in a given frame of data.

27
Two compare circuits constantly check for the condition when XCOUNT and YCOUNT
equal the xmin and ymin coordinates, and the other two compare circuits check for the
condition when XCOUNT and YCOUNT reach xmax and ymax. Note that the Y counter
is enabled when a LVAL high to low transition occurs, so that the Y count is equal to 1
at the beginning of the first line of every frame. Therefore the range of the Y coordinates
of the window has to be 1 to 256. As far as the X counter is concerned, it is enabled
during the whole LVAL period, and the first pixel in the line corresponds to an X count
of 0. Therefore the range of the X coordinates of the window has to be 0 to 255. Timing

diagrams are included in appendix B to further describe the window acquisition process.

This DSP/FPGA combination, or windowing unit, enables the system to acquire
one window of selectable size and position within the camera field-of-view, and process
it. Because of the flexibility in the design, the number of windowing units in the system
can easily be increased simply by adding more DSP modules to the network, together
with their corresponding FPGAs to the interface board. Additional windowing units
operate independently and in parallel. Currently, our experimental system uses four

windowing units in order to demonstrate the advantages of this design.

Neither the processing board nor the interface board use the host computer in the
operation of a windowing unit. This independence of the host computer plus the
availability of the DSP's external communication ports enable the DSP to directly

communicate with other systems, such as robot controllers, thus avoiding delays

28
associated with using the host computer's communication bus. Also, this eliminates the
need to use a host computer of a certain type. For example, the network has been run

using a VME bus chassis without major modifications.

2.3 WINDOWING STRATEGIES

The vision system is configurable to allow acquisition and processing of selected
windows within the camera field-of-view, and the size and location of these regions are
dynamically updated on a frame-by-frame basis, based on processing results such as the
motion of a target. Using the high-speed communication ports of the DSPs, the windows
may be made cooperative by exchanging information among processors to allow real-time

adaptation to visual motion.

In biological vision, the distribution of the photoreceptors in the human eye is
nonuniform with sensing elements arranged in the form of a high resolution fovea at the
center of the field-of-view, surrounded by peripheral sensors with space-variant
resolution. Prior work has been based on this model, such as that described in [Baron94}]
which uses space-variant sampling and a massively parallel SIMD computer for
processing. The dynamic windowing approach we have implemented maintains the
uniform image sampling using the rectangular grid of the camera, however, we collect
varying resolution "Peripheral” and "Foveal" windows using the custom designed video

interface board that collects pixel data from the camera for processing by the DSPs.

29

Based on this dynamic window design, a high speed motion analysis system has
been implemented to demonstrate the use of this network in real-time applications. In
general, motion analysis may be divided into three main processes [Jain81]. The first is
an early detection process involving low-level processing algorithms, such as image
differencing, to detect motion in the initial stage of motion analysis. The second is a
peripheral process in which image data is translated into symbolic data to achieve motion
tracking. The final process, or foveal process, includes the high-level processing
techniques in which symbolic data is manipulated to obtain recognition results. A
significant number of complex operations are required in each process, and therefore, the
performance can be compromised when all three processes are run sequentially on a
single processor. The architecture of the proposed vision system facilitates the
implementation of the three processes in parallel through cooperative windowing schemes.
Depending on the requirements of the application, at least one DSP may be assigned to
perform any of the three tasks, while at the same time communicating with the other
processors using the high speed communication ports of the DSP. The processors in the
network can also be assigned to acquire the same window within the input image and
perform various algorithms in parallel, so that the performance of the system is
significantly improved. In fact, the design of this system is such that the communication
delays between the different processors are minimized, the number of processors
performing any one of the motion analysis tasks is not restricted, and the position updates

can be directly accessed through the DSP's external communication port. Delays

30
associated with the use of the communication bus of the host computer are thus avoided.
Multiple windows of varying sizes may be assigned as "Foveal windows" for focus-of-
attention, as "Peripheral windows" for motion tracking, or as "Watch windows" for

motion detection.

Prior work on multi-processor architectures includes the multiple object tracking
system proposed in Fukui et al. [Fukui92] which uses a multi-window vision processor
comprising 16 M68030-based processing modules and the host computer, a Sun Sparc
Station. Two modules carry out the object detection, while the other 14 are reserved for
object tracking, and the host computer performs the object motion interpretation. A
similar configuration is described in Kubota et al. [Kubota93], with 16 M68030-based
processing ("local™) modules, and a Sun Sparc 2 Station as a host computer. A special
hardware ("overall") unit capable of parallel and pipeline processing is also used to carry
out overall image processing. Our system runs independent of the host computer, and it
is flexible enough so that each DSP module may be assigned any one of the previously

mentioned window functions, depending on the requirements of the application.

Our application is the real-time guidance of an industrial robot in fixtureless
assembly operations. The requirements of such an application include a global fixed
camera, high speed position update capability, and robust image processing techniques for
initial target lock-on and recovery from loss-of-tracking. This DSP-based network may

be used in applications involving robot servoing ([Allen93], [Koivo91]), or Foveal vision

31
using head/eye platforms as in [Murray94],[Murray93], and [Reid93]. Other applications
include 3D pose determination from 2D images using inverse photogrammetry from
multiple windows placed on feature points of the target, and automatic target recognition
(ATR) as in [Bennam94] and [Sadjadi92]). The fixed camera scenario is one of two
camera configurations which are typically used in visual servo systems: end-effector
mounted, or fixed in the workspace [Hutch96]. We have implemented and experimentally
verified several windowing strategies, with demonstration of tracking moving objects at

frame rates of 114 frames per second. These are described in the following sections.

2.3.1 Single Processor, Multiple Function (SPMF)

A single processor-based algorithm using three modes of operation, namely
"Watch" mode, "Detection” mode, and "Tracking” mode. In the Watch mode (Figure
2.4a), whole image frames, or "Watch windows" (W1), are acquired, and a motion
detection algorithm is applied. The motion detection algorithm returns the coordinates of
the "motion area” within the image frame, wherein motion is detected. Once motion is
detected, a "Peripheral window" (W2) is defined based on the coordinates of the motion
area, in order to locate the target approximately. Once the target is located, a smaller size
"Foveal window" is defined about a chosen feature point of the moving object for position
verification. The system then switches to the Tracking mode (Figure 2.4b). In this mode
of operation, the system only acquires that section of the image frame corresponding to

the Foveal window, and an area-matching algorithm is applied to update the window's

32

FOV
w1

wa

Figure 2.4a. Watch mode of SPMF.

coordinates based on the motion of the target therein (W1..W4). While moving across the
field-of-view of the camera, if the object stops, or if it suddenly changes its direction of
motion, the system switches to the Detection mode (Figure 2.4c), and a larger size
Peripheral window is defined based on the coordinates of the last Foveal window (W1).
As shown in Figure 2.4c the window size is then increased (W2,W3) until the object is
once again approximately located, and the system switches back to the Tracking mode

(W4). The Detection mode allows for two size increases for the Peripheral windows, at

33
which time the system switches back to the Watch mode, if it still fails to locate the
object. A similar window placement algorithm is used in [Buttazzo94], but is software
based, and therefore less likely to switch from one mode of operation to the next in

consecutive frames.

FOV

w2

Figure 2.4b. Tracking mode of SPMF.

34

FOV

w2
w1

Figure 2.4¢. Detetction mode of SPMF.

2.3.2 Triple Processor, Dedicated Function (TPDF)

A window placement algorithm using three processors to independently perform
the "Watch", "Detection”, and "Tracking" modes (Figure 2.5). In the Watch mode,
whole image frames, or "Watch windows" (Ww), are acquired by the Watch processor,
and a motion detection algorithm is applied. Once motion is detected (P1 to P2), the
coordinates are transmitted to the Detection (Peripheral) processor, and the Peripheral

window (Pw) is acquired. This processor acquires alternate pixels from every other row

35
of the image (25 % resolution) and applies a difference measure algorithm based on cross-
correlation to locate the target approximately. The coordinates of the approximate target
location are then passed to the Foveal processor, which acquires the Foveal window (Fw)
and applies a high resolution similarity measure algorithm to accurately determine the
target position (P2). The sizes of the Peripheral and Foveal windows are chosen based
on the size and speed of the moving target. Should the Foveal window lose track of the
object, the Peripheral processor transmits the updated target position to the Foveal
processor, and tracking is resumed. If both windows lose track of the object, the
Peripheral and Foveal processors pause for the next motion coordinates to be received

from the Watch processor before resuming tracking.

FOvV

T

Figure 2.5. Windowing strategy of TPDF.

36

2.3.3 Multi-Processor, Dedicated Function (MPDF)

In this strategy, the algorithm uses multiple processors for the "Watch" mode, one
for the "Detection” mode, and one for the "Tracking” mode. The Watch process of
SPMF and TPDF involves the analysis of the FOV, or 64 Kb of data, which is a
computational burden for one processor. However, in the Watch mode of the proposed
strategy, multiple windows of different sizes and locations can be acquired depending on
the application. In the example of Figure 2.6, two processors are used, so that two
rectangular-shaped Watch windows (Wwl and Ww2) can be placed along the top and
bottom of the input image, where the object is expected to enter the FOV. This approach
results in a quicker initial lock-on response in the Watch mode, compared with the single
processor whole image frame Watch window approach of the previous two strategies.
Once the object enters the FOV, the coordinates of the entry location are communicated
to the Peripheral processor to begin the Detection (Pw) then Tracking (Fw) phases as
described previously in strategy TPDF. In this Detection phase however, if the Peripheral
window loses track of the object, the window size is increased until the object is once

again located.

A summary of the window sizes used in the different modes of operation of these
strategies is given in Table 2.2. These sizes have been empirically chosen to illustrate the

implementation of the selected windowing strategies using this system.

37

ww2
r

Figure 2.6. Windowing strategy of MPDF using four processors.

Window Strategi

-SPMF:
Watch /Peripheral /

|

Detection mode

Watch mode

256x256 /Variable / | 24x24

256x256 No change No change
Peripheral Variable 40x40 40x40 , 64x64

Foveal windows 24x24 No change No change
-MPDF:

Watch 1 256x20, Y=0-19 No change No change

Watch 2 256x20, Y=237-256 | No change No change

Peripheral Variable 40x40 40x40..256x256

Foveal windows 24x24 No change

Table 2.2. Window sizes in the different modes of operation.

38

2.4 Image Processing Algorithms

The motion detection method used within the Watch window is based on motion
energy detection [Murray94]. By calculating the temporal derivative of the image and
thresholding at a suitable level to filter out noise, we segment the image into regions of
motion and of inactivity. The temporal derivative is estimated by applying simple image

differencing:

dEf_ £(x,y,t) -£(x,y, t-8¢)
dt [Y3

The target tracking algorithm applied within the Peripheral window continuously
determines the approximate location of the target. A variety of low resolution template
matching algorithms were evaluated for this task. In general, matching methods are
classified as being either a similarity measure or a difference measure [Hussain91]. For
the former, a high value and for the latter, a low value indicates a match. Given an image
I(x,y) where xmin < x < xmax, ymin <y < ymax, and a template R(u,v) where:

0 <u<ulen, 0 <v<vlen, and 1 < ulen < (xmax-xmin), 1 < vlen < (ymax-ymin), the

NCC is used to detect the instances of R(u,v) in I(x,y) as follows:

1- Normalized Cross-Correlation, or NCC (similarity measure)

NCC(x,y) = }Q:%i_'i%

39
where

vien ulen

P(x,y) » g 2 R(u, v) .I(x+u, y+v)
ved u=

and

vien ulen vien ulen

Q(x,y) = J ; ; R¥*(u,v). ,2.2 ug I3 (x+u,y+v)

2- Sum of Absolute Differences, or SAD (difference measure)

vien ulen

SAD(x,y) = VZK 2; |R(u, v) ~I(x+u,y+v) |
us

3- Sum of Squared Differences, or SSD (difference measure)

vien ulen

SSD(x,y) = ; 2; (R(u, v) -I(x+u,y+v))?
us=

The sum of squared differences weights the values, and therefore it is more sensitive to
some data points being widely separated. For this reason, the SSD algorithm is chosen
to be implemented within the Peripheral window. The normalized cross-correlation, which

is more robust in the presence of image distortion, is considered to be the most accurate

40
of the three algorithms [Aschwan92]. Since the function of the Foveal window is to
provide proper target identification and maintain accurate tracking of the moving object,
The NCC algorithm is chosen to implement this window function based on 100% pixel

resolution, in order to maintain the desired accuracy.

The computational complexity of the algorithms being applied within the different
image windows varies significantly in each case. Given the input image S of dimensions
NxM, the computational requirement of the detection algorithm is NxM difference
operations. Therefore, the application of this algorithm within the Watch window, the size
of which may be as large as the camera's FOV, will not affect the real-time performance
of the system. However, the template matching methods, which involve the cross-
correlation of the given template with the input image, have a computational complexity
of (NxM)x((ulen+1)x(vlen+1)). In the case of the SSD algorithm, the required
computational effort for every template position within the image is (ulen+ 1)x(vlen+1)
multiplication and difference operations. Alternatively, for the NCC algorithm, the
required computational effort is 4x(ulen+ 1)x(vlen+ 1) multiplications, one division and
one square root operations. However, because the size of the Foveal window is small,
applying the NCC algorithm within this window is not computationally demanding, and

real-time performance is maintained.

41

2.5 Window Acquisition / Interaction

The vision system has been tested at a camera speed of 114 frames/s, which
corresponds to a pixel valid (PVAL) clock rate of approximately 8 MHz. Timing
diagrams for initial lock-on (Watch mode), Tracking mode, and recovery from loss-of-
tracking (Detection mode) are shown in Figure 2.7. For convenient reference, key points
in time (L1, L2, L3, LT, Rl, R2, R3) have been indicated in this figure. The
acquisition times (T,, , T,) and processing times (T, , Tg,) of the Watch and Foveal
windows respectively do not change because the window sizes remain fixed in the three
modes of operation. On the other hand, the size of the Peripheral window varies from one
mode of operation to the next. In fact, the window acquisition and processing times
during initial lock-on (Ty, , Ty), target tracking (T,,; , Ty), and recovery from loss-
of-tracking ((Ty » Tpp2) and (Ty , Tpps)) depend on the initial motion coordinates of
the target and the Detection mode sizes as listed in Table 2.2. The time intervals of the

three modes of operation are defined as follows:

Lock-on Time:
Ty =T + Tpp + T+ Ty, 2.1)
Tracking Time:
T, =Ta+ Ty 2.2)
Recovery Time:

42

Watch ‘ u
[] |
| JOSEEGpeC e ———Ce
Periphere | “ Tl T |
[]
Fovesl Tt !l T | s Toaz | Tppe |
i ||
i T, T T [T | Ty !
(a)
T
R L~ L =Y = |
g i B
I.T: R R2 ;m
; Y ;
(b)

Figure 2.7. Timing diagrams of the three modes of operation: a) Initial lock-on and
target tracking. b) Recovery from loss of tracking.

43

The sequence of operations in each of the three windowing strategies to initially

lock on the target begins in the Watch mode, with consecutive Watch windows being
sampled to detect motion. Once motion is detected (L1), the position and size of the initial
Peripheral window is defined based on the motion coordinates received from the Watch
window. The sizes of subsequent Peripheral windows are based on the Detection mode
of the three strategies listed in Table 2.2. In the Peripheral window, the Detection
algorithm is applied to determine the approximate location of the moving target, and the
window's position is updated accordingly. Once the approximate target location is
determined (L2), it is passed on to the Foveal window to verify the target's location (L3),
which completes the interval for initial lock-on (Eq.(2.1)). However, in strategies TPDF
and MPDF, the Watch, Peripheral, and Foveal windows continue to be acquired in
parallel after initial target lock-on, which ensures a quicker response to target loss of
tracking. Next, the Tracking mode is activated, and the Foveal window maintains
accurate tracking of the target's motion. The target tracking time equals the acquisition
plus the processing times of the Foveal window (Eq.(2.2)). If the Foveal window loses
track of the target (LT), the Detection mode is activated, and the Foveal processor stands
by until it receives the approximate target location from the Peripheral processor. If the
target is not located at the end of the processing time of the current Peripheral window
(R1), the position of the next Peripheral window is adjusted based on the coordinates of
the last Foveal window before attempting to relocate the target (R2). If the attempt is not
successful, the size of the following Peripheral window is increased to improve the

chances of relocating the target (R3). However, if the second attempt also fails, the

44
Watch mode is activated, and the sequence of operations for initial target lock-on is
restarted. If the current Peripheral window locates the target, the recovery time is (R1 -
LT), whereas if the target is located at R2, the recovery time increases to:

(R1 - LT) + (T,y + Ty)- In the worst case, the target is located at R3 and the

recovery time is given by Equation (2.3).

A summary of typical measured times for lock-on, tracking, and recovery from

loss-of-tracking for each of our three strategies is given in Table 2.3.

Window Strategies T, (ms) T, (ms) T, (ms)

-SPMF: 320

Table 2.3. Average lock-on, tracking, and recovery times in the different modes of
operation.

45

2.6 Experiments

In order to demonstrate the performance of this vision system in tracking moving
objects, the experimental setup involved planar motion tracking of a target which was
attached to the end-effector of a robot arm. The CA-D1 camera, which was operating at
a frame rate of 114 frames per second, or 8.8 ms per frame, was mounted at a fixed
height of 800 mm, and had a focal length of 25mm. The robot, which was a five degrees
of freedom CRS Robotics A255 arm, was programmed to move the object in an XY path
(Figure 2.8) at speeds of up to 60 mm/s. This resulted in an equivalent velocity of
approximately 100 pixels/second. The resulting motion of the object was similar to that

of a pendulum, moving in and out of the FOV of the camera in a continuous manner.

The tracking algorithm made no assumptions about the motion of the object, i.e.
no a priori knowledge of the object's path was needed to maintain tracking. The
algorithm was set to track the center point of the object, so the Foveal window would be
centered about the selected point. The template size used in the matching algorithm was
chosen to be 20x20, and the Foveal and Peripheral window sizes were chosen to be 24x24

and 40x40 respectively.

The experimental results clearly demonstrated the advantage of using separate
processors for the "Watch", "Detection”, and "Tracking" modes over the single processor

approach, especially when the moving object undergoes a sudden change in direction.

46

Figure 2.8. The actual XY path taken by the moving object.

Such a scenario forced the single processor to switch to several windows of increasing
sizes before the target could be relocated, which results in a time delay of several image
frames and an increase in the RMS error. This is more obvious at higher speeds , and the
maximum tracking speed of this strategy was found to be 80 pixels/second beyond which
tracking was completely lost (Figure 2.9). In contrast, for the multi-processor case, the
Foveal window could be redirected in the next image frame, based on the coordinates

received from the Peripheral processor. This resulted in a RMS pixel error of around

47
0.25 pixels for speeds of up to 80 pixels/second, and a maximum tracking speed of 100

pixels/second (Figure 2.9).

The use of two rectangular-shaped Watch windows in strategy MPDF had a
significant effect compared with the one window whole image frame approach of strategy
TPDF. The coordinates of the motion area were determined and transmitted to the
Peripheral window at a higher rate, which resulted in a faster target lock-on time than
that of strategy TPDF (Figure 2.10). However, the limited function of these Watch
windows in determining the motion area, because of their smaller sizes, caused a larger

RMS position tracking error at higher target speeds (Figure 2.9).

Based on a template size of 20x20, the rate of the Foveal processor is 18 ms, or
half the frame rate of the camera, in 70% of the image frame. In the bottom 76 lines of
the pixel array, the rate decreased to 27 ms due to the processing delays which caused
the following image frame to be missed. Smaller template sizes such as 16x16 were also
tested, and the rate was measured at 8.8 ms. Using template sizes of 16x16 or smaller,
the target tracking could be performed on a frame-by-frame basis, and the target position
updates could be provided every 8.8 ms. These position updates could also be

communicated to other processors directly using the DSP's high speed communication

ports.

Our current experimental setup includes a S-axis CRS Robotics A255 robot arm

48
which uses a transputer-based controller. We have added a transputer link interface
module to the processing board in our system, so that the DSP output is simply redirected
to the robot controller for motion control applications. The vision system can provide the
robot controller with target position updates at high rates, as high as 114 Hz in certain
cases. This allows real-time visual path control updates, since the motion control update

rate of the robot is typically 10 ms.

2.5
2 e
-
7 it R EY Y AR 1 SPMF
) —_
x
X TPDF
o L T S e T DR - S & Al L LRttty —v—
MPDF
(1 1 T Lty At e bty
0 M T v 4 M L) M T T 1 T
0 20 40 60 80 100 120

Pixels/sec.

Figure 2.9. RMS position error of the Foveal window centroid based on the three
strategies versus target speed.

600

BOO 4------o-eqfxrommerememmmmeneee e oot es
v
E

400 -
Q
£ SPMF
= 300
c | TPDF
9 ——
=< 200 MPDF
8 |
|

100 -

(1} v . v

0 20 40 60 80 100 120
Pixels/sec.

Figure 2.10. Time required by the three strategies to initially lock on the target
versus target speed.

49

CHAPTER 3
ROBUST REAL-TIME CORNER LOCATION MEASUREMENT

3.1 Introduction

Corners are useful features to be extracted from images because they are invariant
to image translation, rotation, and change of size. Model-based approaches such as
template matching are sensitive to image rotation and change of size, and their use would
require a library of all possible model orientations and sizes, which is not practical.
Hence, corner detectors (CD) are generally preferred to model-based algorithms in
computer vision tasks, such as solving the image correspondence problem. For example,
in Huertas [Huertas81] corners are used to detect buildings in aerial images, and in
Frendo [Frendo89], corners are used to track 4-point planar patterns in 3D. In general,
an image feature is called a corner where two edge boundaries meet, or where the
direction of the edge boundary is changing rapidly. The different approaches to corner
detection may be divided into two categories:

1- Methods which rely on prior segmentation of the image and subsequent analysis
of region boundaries.
2- Methods which operate directly on the gray scale image.

50

51

An example of the first class of methods is that of Jain et al. [Jain95b] which uses
a corner detector that requires fitting lines to edge points, and then computing the
intersection of the lines. Such a method is clearly dependent on the success or failure of
fitting lines to edge points, and this can have a negative effect on the overall performance
of the corner detector. For example, considering a list of edges from two adjacent sides
of a rectangular-shaped object, the likelihood of assigning some edge points to the wrong
side is significant in the neighborhood of the corner point. Therefore, the lines may not
be fitted to the edges properly, which consequently results in an error in the corner

location measurement.

Examples of the second category include the works of Haralick and Shapiro
[Haralick93], Wang and Brady [Wang94], and Gaiarsa and Capson [Gaiarsa94]. In
Haralick and Shapiro [Haralick93], several edge detection methods which operate directly
on the gray scale image are presented. They include computing the incremental change
in gradient direction along the tangent line to the edge at the point that is a corner
candidate, or evaluating the incremental change along the contour line that passes through
the corner candidate. The main advantage of such corner detectors is that their
performance is not dependent on the success or failure of a prior segmentation step as in
[Jain95b], however, the computational expense is more significant. Also, in real life
images which include scattered edge points, edge points fitting the characteristics of the
candidate corner point may be more than one, which increases the chances of

misclassification.

52

The corner detection algorithm suggested by Wang and Brady [Wang94], is based
on the observation of surface curvature. A measure of corner detection consistency is
combined with a measure of accuracy in corner localisation to achieve optimal trade-off.
Since surface curvature is proportional to the second derivative of the unit tangent vector
along the edges, a smoothing operation using Gaussian convolution is applied to reduce
the effects of noise. However, this operation causes a displacement in the corner location
measurement, proportional to the standard deviation of the Gaussian convolution.
Therefore, additional constraints on the equations of the algorithm have to be introduced,
which is bound to restrict the performance of the corner detector. Also, the authors do
not provide a quantitative measure to demonstrate the advantages of the proposed

approach.

In Gaiarsa and Capson [Gaiarsa94], the proposed corner detector determines the
object corner location based on the area and the XY moments of the portion of the planar
shape contained within the image window. In addition to this information, the geometric
properties of each intersection case of the shape with the window sides are used to locate
the corner. The intersection case is determined based on the number of intersections with
the sides of the window. However, this technique is not evaluated in situations where the
sides of the object are made up of jagged edges, which is often the case in real

applications.

The corner detection algorithm in this paper exploits the geometry of the object

53

within the image window, without having to compute the object area and XY moments
as in [Gaiarsa94]. Furthermore, it has the advantage that it performs robustly in the
presence of pixel intensity variations (noise) and a non-uniform background which makes
target tracking harder (clutter). The edge points are first determined, and a clutter
removal algorithm using pixel labelling and morphological filtering is applied next. The
bounding box of the filtered edge pixels is then extracted, and the corner location is
measured based on the relationship of the edge pixel vertices on the sides of the bounding
box. A search algorithm is also used to efficiently determine the corner location with a
minimum of distance computations. An information content measure based on the number
of edge points in the image is developed and applied to determine how hard it is to detect
and track the corner point. The peak value corresponds to the number of edge pixels
required to yield the lowest tracking error. The metric is also compared to other measures

[Bhanu86] to demonstrate its advantages.

The performance of the corner detection is demonstrated using a real-time motion
tracking experiment on a precision motion table with an accuracy of 0.005 mm. The
computed results were compared to the coordinates obtained from the motion table. It was

found that an accuracy of 0.5 pixel RMS (0.25 mm) could be obtained at 114 Hz.

54

3.2 Corner Detector

The proposed corner detection algorithm exploits the geometry of the object within
the image window. A Sobel filter [Sobel70] is initially used to detect the edges within the
input gray scale image, and hence generate the corresponding binary image (edge map).
A pixel labelling algorithm for clutter removal is applied next, followed by morphological
filtering. The corner detection algorithm is then used on the filtered image for accurate
measurement of the location of the corner. A data flow diagram of this corner detection

strategy is given in Figure 3.1.

Fikered Edge Map
Edge M
ap
Corner Morpholog
Detect Filtor“
Corner Location |

Figure 3.1. Data flow diagram of the corner detection strategy.

55

3.2.1 Pixel Labelling

Once the edge map is generated, a pixel labelling algorithm is applied to remove
clutter from the image. Given the x and y coordinates of an edge pixel P,[x,][y.] to be
X, and y,, Pi{x][y] and P[x;](y;] are defined to be neighbors :
if (I x-% 1 <DACy-y1<D.

For a given set of labels L, (p = 1, 2, 3, ..), if P; and P, are neighbors, then

label(P;) = label(P;).

The edge pixels with the label L, , which has been assigned the most number of times,

are preserved, and all other edge pixels are deleted from the edge map.

3.2.2 Morphological Filtering

The proposed pixel labelling algorithm is useful for removing patches of clutter
which are away from the object. However, in cases where these patches are neighboring
the object, the algorithm will add them to the original shape of the object instead. Such
cases, require mathematical morphology to help distinguish the object boundary from
clutter. In our application a morphological "Opening" [Jain95a] is applied, which involves
a binary erosion followed by a binary dilation. Both the erosion and dilation operations
are performed with a "Plus-shaped” structuring element. This operation filters the edge

map further and yields the clean edge map.

56

3.2.3 Corner Detection

Given the clean edge map of the object within the Foveal window, the bounding
box of the edge pixels is extracted. The vertices are then determined, and the corner
location is measured based on the relationship of these vertices. A total of eight points are
needed to determine the bounding box and the corner location. These points define the
minimum (Min) and maximum (Max) edge pixel location in the image I(x,y) both in the
X and Y directions.
-First Minimum Bounding X :

Pyl Vools Xoo=Min (xy)€l, Yoo=Min,(xy.y)€l

-Last Minimum Bounding X :

POl[xw] b'o]]' You =Max,(xwy) €l

-First Maximum Bounding X :

P m[xm][Vlo]s X,o=Max (x.y)€l, Y10 =Miny(x10'y) €l

-Last Maximum Bounding X :

P u[xlo] [Yl 1]: Yu =Max,(x,°.y) el

-First Minimum Bounding Y :

Pogrool Do)y Yoo =Min Gy €l
-Last Minimum Bounding Y :

LN EN Xo =Max (xy)€l
-First Maximum Bounding Y :

P [x 01Dl X,0=Min (x.y)€l

-Last Maximum Bounding Y :

Palfallbg FneMax(eFel

Yoo=Min (xy)el

Yio=Max (xy)el

57

58

Next, the required vertices to locate the corner are defined based on the coordinates of
the bounding box. Typically, the bounding box is defined by three of the eight minimum
and maximum edge point locations (Figure 3.2a), and by choosing the same two points,
Q, and Q, , out of the total eight, the third point (Q,) is selected from the remaining six
based on the corner location (Figure3.2b).

Q, is chosen to be the first minimum bounding X :

Q=P

Q, is chosen to be the first maximum bounding X :
Q,=Py,

(Q, is distinct unless the object is a vertical line)

The selection of Q, is such that it remains distinct from Q, and Q, :

Py, if P* Q) N\ (Po* @)
Po if P* Q) \ Pp* @)
o |BrCr
Py, if (P,,*» Py
Py, if (Poy* Poo)
| Py f (P> Pyy)

else Q, is undefined.

59

The midpoints between Q, and Q, (M,;) and Q, and Q; (M;;) are computed, and the
number of edge pixels in a 3x3 neighborhood (MidNum) about each one of these

midpoints is determined (Figure 3.2b). The corner location logic is given as follows :

if Q, is defined then

Q i (MidNum(M,,) = 0)
-The corner is { Q, if (MidNum(M,,) > O)\ (MidNum(M,;) = 0)
Q if (MidNum(M,) > O)\ (MidNum(M,3) > 0)

else if Q, is undefined (The bounding box is defined by two vertices only, Figure 3.2c)

-Use the method based on the Golden Section Search technique.

3.3 Golden Section Search

The use of the above-mentioned Boolean logic for corner detection is not possible
in the case of an undefined vertex Q,. An alternative approach is adopted instead,
whereby the distance D, from the edge pixels to the line joining the two vertices Q, and
Q, is computed, and the corner is determined by the edge pixel yielding the maximum
distance. The computational complexity of this method is significantly reduced by using

a maximization of function method such as the Golden Section Search.

(camax,ymax) Q,

(a) (b)

© @

Figure 3.2. Bounding box extraction and corner detection when Q, is defined
(@), (b)), and when Q; is undefined ((c),(d)).

60

61

Given a single function F(x) (0 < x < 255), the Golden Section Search (GSS)
method determines the value of x where F(x) takes on a maximum value, and calculates
the value of F(x) which is achieved at the maximum. Since the cost of the evaluation of
the function is the dominant computational effort, these steps are performed while F(x)

is evaluated as few times as possible.

A maximum of a function is known to be bracketed only when there is a triplet
of points a < b < c, such that F(b) is greater than both F(a) and F(c). In this case the
function is known to have a maximum in the interval (a,c) (if it is non-singular). A new
point v is chosen next, either between a and b or between b and c. As an example,
suppose that the latter choice is made, and F(v) is evaluated. If F(b) > F(v), then the
new bracketing triplet of points is a < b < v, otherwise, if F(b) < F(v), then the
new bracketing triplet isb < v < c. In all cases the middle point of the new triplet is
the abscissa whose ordinate is the best maximum achieved so far. The process of
bracketing is continued until the distance between the last two outer points of the triplet

(bl and b2) is sufficiently small, i.e. within a pre-defined tolerance "r0l".

The optimal bracketing interval a < b < c has its middle point b a fractional
distance 0.38 from one end (such as a), and 0.62 from the other end (such as ¢)
[Press90]. The number of function evaluations required by the Golden Section Search

method is proportional to :

62

(b1-b2)

log: ot

Given Qy[xg lyoo] and Q,[x;o I[yi0], the slope of the equation of the line L

joining the two points is computed :

m=J10 Yo

*10 %00

If the line L is vertical (xoo = X,), or horizontal (y, = y,o), then there is no corner
to locate and the algorithm is stopped. Otherwise, the algorithm is continued to determine

the maximum distance between the edge pixels and L .

The distance D, between Q1 and Q2 has to be computed before the initial

bracketing triplet are determined :

a=xgyg, C = X0, and b = 0.62*D, .
The new bracketing points coordinates are given by v(x,, y,), where :

X, =X + &, Yo = Yoo + m* &,
and &, is given by the iterative results of the Golden Section Search. Based on every
bracketing point v, an iterative process is initiated along the line L, that is perpendicular
to L to locate the last edge pixel (P,) on L,, and then compute the distance D, from P,

to v (Figure 3.2d). This distance represents the function value based on v (F(v)), which

63

is returned to the GSS algorithm to determine whether it is the maximum of the function

or not.

The iterative process along L, begins by computing the incremental change 4, ,
where : a, = Minimum(|m| ,1).
Given the product of the slopes of the two perpendicular lines (L and L) :

m*m, = -1,

P,[x,][Y,] is determined :

X, =X, L a*i, (3.1a)

Yo =Y ot my*ari, (3.1b)
and i is the iteration variable. For a given row of the edge map, corresponding to y,,
if the X coordinates of the edge pixels are greater than x,, the positive signs are used in
equations (3.1), otherwise the negative signs are used. The iterations continue until P, is
found to be the last edge pixel along L, . Once P, is determined, the distance from P, to

v is computed :

D’=,[(x’—x‘)f+(y’ -y

This value of D, is then returned to the GSS algorithm, and the search continues until the

maximum value is found.

3.4 Experimental Results

To demonstrate the performance of this corner detector, the experimental setup
involved planar motion tracking of a metal part on the surface of an XY table in the
presence of clutter (Figure 3.3). The digital camera, which was operating at a frame rate
of 114 frames per second, or approximately 9 ms per frame, was mounted at a fixed
height of 800 mm, and had a focal length of 25 mm. The XY table, based on the Techno
Isel C-Series controller, was programmed to move the object in a triangular XY path

(Figure 3.4).

Figure 3.3. The metal part (left) used in the experimental setup.

65

The tracking algorithm made no assumptions about the motion of the object, i.e.
no a priori knowledge of the object's path was needed to maintain tracking. The
algorithm was set to track the corner point of the object, so the Foveal window would be
centered about the selected point. The template size used in the matching algorithm within
the Peripheral window was chosen to be 16x16, and the window sizes were chosen to be
20x20 and 40x40 for the Foveal and Peripheral windows respectively. Based on these

window sizes, the corner location was measured on a frame-by-frame basis, or 114 Hz.

Because the performance of the corner detector is based on the resulting clean
edge map, the evaluation process was performed over a wide range of edge detection
thresholds (TH). The experimental results demonstrated that for an average image gray
scale intensity of 80, a mean error of around 0.3 pixels (Figure 3.5) and an RMS error
of around 1 pixel could be maintained within a threshold range 30 < TH < 70, both
in the X and Y directions (Figure 3.6). However, the corner detection performance

deteriorated using threshold values outside this range.

The experiments also included the computation of the rate of loss-of-tracking
(RLT) over the entire path based on the different TH values. The advantage of using the
proposed multi-windowing strategy over a single window approach was demonstrated by

comparing the RLT of both approaches (Figure 3.7).

66

Y Pixels

Figure 3.4. Actual XY path taken by the moving object.

40 0
Threshold

Figure 3.5. Mean error of the corner location measurement in the X and Y directions.

67

12
10 »1\ ---
8
» -
® g] X
g -
" Y
2 __‘__,.‘4//‘/
0 $ $ + ot
0 20 80 100

© 60
Threshold

Figure 3.6. RMS error of the corner location measurement in the X and Y directions.

% RLT

Threshold

Figure 3.7. RLT percentage using the multi-windowing strategy (1), and a single
window approach(2).

68

3.4.1 Information Content Measure for Corner Detectors

The evaluation of the corner detection performance based on the edge pixels
information content ([Bhanu86]) within the Foveal window was performed. This
information content is measured by finding the pixels in the image at which the magnitude
of the edge detection operator exceeds TH. Then, an information content measure I is
defined by :

I = -Log, P, 3.2)
where P is the probability of possible pictures made up of edge pixels. This edge pixel
information content measure was evaluated based on different values of TH (Figure 3.8).
Then, by plotting the RMS error versus the information content (Figure 3.9), the
optimum point in the plot was found to correspond to a threshold value within the range

of 30 to 70.

This information content measure (Eq.(3.2)) is expected to yield a high value for
a large number of edge pixels, and a low value for a small number of edge pixels. The
same is true for similar measures listed in [Peters88]. However, the corner detection
performance measure should peak when the number of edge pixels within the image
window represents a clear set of edges, which may not be possible when the number of
edge pixels is maximum. Whether the window is full of edge pixels, or contains a
minimum number, the information content measure should be at its minimum because the

corner location error will be maximum.

69

We propose computing the inverse of the corner location error (CLERR) based
on the number of edge pixels as a new information content measure (I4) to evaluate the

performance of the corner detector :

1
I""CLERR

Plotting I, (Figure 3.10) shows that the maximum value of this information content
measure corresponds to the number of edge pixels that yields the minimum corner
location error, while the maximum and minimum points of Figure 3.8 correspond to the

thresholds that yield the maximum errors.

10 26 33 :o 50 60 70 a&
Threshold

Figure 3.8. Edge pixel information content in the image based on the edge detect
threshold selection

70

12

10 +----- x ----- s

a ---
n
61 d -- X
E -

R Y

2 \Mﬁ:

0 = + + - $ + $

40 60 80 100 120 140 160 180
Information Content

Figure 3.9. RMS error in the X and Y directions based on the edge pixel information
content in the image

1.8

o o
[- 3 [] -

Information Content
r'S

het
o N

Y & Fa— .
t T

60 80 100 120 140 160 180 200
Edge Pixels

s

20

Figure 3.10. Information content measure for corner detection evaluation.

CHAPTER 4
COOPERATIVE WINDOWING

4.1 Introduction

The results of using the windowing strategies and the image processing algorithms
of chapters three and four prompted the development of a 'cooperative’ windowing

scheme to improve the tracking performance of the system.

Using windowing strategy TPDF, which implements the three processes of motion
tracking in parallel, both a correspondence-based (NCC) and a feature-based method (CD)
were applied within the Foveal window to achieve real-time tracking. However, the NCC
approach relies on gray value math, which makes it sensitive to changes in illumination
and occlusions. Also, because the corner detector depends on edge detection, it is
susceptible to mistracking due to background or foreground occluding edges and clutter
[Hager96]. Since the disadvantages of both methods manifest themselves in opposite
scenarios, the two approaches are integrated in two separate but networked Foveal

windows to improve the tracking performance.

71

72

4.2 Cooperative Windowing Strategy

The cooperative windowing scheme (COOP) involves one watch window, one
peripheral window, and two networked Foveal windows (Fwl and Fw2) (Figure 4.1).
The Foveal windows processors, DSP2 and DSP3 (Figure 2.1), maintain a constant
communication link to ensure that Fwl and Fw2 are acquired at the same time based on
the same window coordinates. The tracking results of both windows are compared and
weighed using a measure of confidence, and the window coordinates are updated

accordingly.

FOV

Figure 4.1. Cooperative windowing strategy.

73

4.3 Window Confidence Measure

The applied window confidence measure is designed to determine the variations
in the results of each algorithm (NCC and CD). The algorithm that computes data with
lower variation is selected, and the coordinates of the Foveal windows are updated based

on these results.

The adopted method consists of finding a least squares line for the NCC and the
CD data sets and comparing their respective sum of squares of the errors (SSE) before
a decision is made. Given a data set NCC(p,t) of size n, which represents the Foveal
window centroid position (p;) over time as computed by NCC, where p; is determined

by its X and Y coordinates (x; and y;) :

p‘=Vx,2+y‘2

the least squares line equation is defined to be:

p=a+b
where
a = is.g
SS,
and
4 p
and

2
s, =Y ¢ - (9212 Zi")

74

and

b=EP:_“E’:
n

The sum of squares of the errors is then determined by:
SSE = Y Ip, - J A G

The same equations are applied to the CD algorithm to determine the least squares line

and compute the SSE based on the CD data set (CD(p,t)).

4.4 Experimental Results

The same experimental setup as in chapter 3 was used to prove the validity of this
cooperative windowing approach. The XY table was programmed to move the object in
the same triangular path (Figure 3.3), except that the lamp used was moved in a way such

that the projected light intensity was no longer the same in all of the areas of the path.

Before implementing the window confidence measure within the Foveal windows,
an initial experiment was performed to establish the need for COOP. In this experiment,
the NCC and CD results were compared to the actual current position of the object over
the entire 300 point path, and the position of the Foveal windows were updated based on
the result closest to the actual position. The NCC template was acquired with an average

gray value of 71, and the selected CD threshold TH was 70. The average gray value of

75
the Foveal windows did not remain constant over the entire path as shown in Figure 4.2.
The CD algorithm was applied in Fwl (window 3), and the NCC algorithm was applied
in Fw2 (window 4). The Foveal windows coordinates alternated between those calculated
in Fwl and Fw2 (Figure 4.3), depending on the error of the computed target position.
Since the interval between path points 50 and 250 exhibited an increase in the average
gray value of the Foveal windows (Figure 4.2), the Foveal window coordinate switching
process was expected to be dominated by window 3 (Figure 4.3). However, because the
gray value of the remaining intervals (0 to 50 and 250 to 300) was closer to the template

gray value, window 4 dominated.

Gray Value

0 50 100 150 200 250 300
Path Point

Figure 4.2. Average gray level intensity of the Foveal windows
over the entire path.

76

...

H
f
.

Window Number
W

+) & s " 'l e 4 $ b e
Al T T T - L4 ™ ¥ T v

0 S0 100 150 200 250 300
Path Point

Figure 4.3. Switching process between the two Foveal windows.

The implementation of the proposed confidence measure in the Foveal windows
verified the advantages of COOP. The SSE for the NCC and CD data sets were
computed, and the Foveal windows coordinates were updated using the results of the
algorithm with the lower SSE. The experiment was performed for data set sizes of three,

four, and five samples. The average RMS position error were also computed for

7
comparison (Table 4.1), and the four sample COOP was selected because it resulted in

the lowest error.

3 points, 4 points, 5 points

0.61, 0.59, 0.60

Table 4.1. Average RMS position errors of the NCC, CD, and COOP methods.

The RMS position errors of the NCC, CD, and COOP methods are given in
Figures 4.4, 4.5, and 4.6 respectively. The COOP algorithm is based on NCC in the
intervals O to 100 and 200 to 300 (Figures 4.4 and 4.6). However, due to the higher error
of NCC in the interval 100 to 200 (Figures 4.4 and 4.5), COOP is switched to use CD
in this interval (Figures 4.5 and 4.6). Also, in this interval, the average gray level
intensity of the Foveal windows (Figure 4.2) is almost 25% higher than the average gray
level of the NCC template. Therefore, the NCC position error is expected to be higher,

and using the CD algorithm is more reliable.

78

|
, IR)

0 S0 100 150 200 250 300
Path Point

Figure 4.4. RMS position error using the NCC
algorithm.

14
et &
10 ---4-

Pixels

LARAAS ARAR

0 50 100 150 200 250 300
Path Point

Figure 4.5. RMS position error using the CD algorithm.

79

0 S0 100 150 200 250
Path Point

Figure 4.6. RMS position error using cooperative windowing.

CHAPTER §
DISCUSSION

5.1 CONCLUSIONS

We have developed and implemented a flexible windowing network capable of
acquiring multiple image windows of selectable size and position within the camera's
FOV on a frame-by-frame basis. The operation of the windowing unit does not involve
the host computer, thus avoiding delays associated with using the host computer's
communication bus. This also eliminates the need to use a host computer of a certain
type. The network is modular, so that the number of windowing units can be increased

without major modifications.

Unlike other windowing networks which are custom-built, this network is based
on off-the-shelf components, and it does not require any special image processing
hardware. With the window logic implemented in programmable gate array technology
(FPGA), improvements and design changes in the windowing logic are readily

programmed.

80

81

This DSP-based network for real-time imaging applications has been tested
successfully. The system is capable of grabbing regions of interest within the image frame
at the hardware level. The sizes and locations of these windows can be updated on a
frame-by-frame basis at frame rates, demonstrated as high as 114 frames per second.
Window processors operate independently, but are connected by 20 Mb/s communication
ports, so that multi-function windowing or cooperative windowing schemes can be
implemented. A motion tracking experiment was set up to test the system and demonstrate
consistent tracking of feature point(s) on a moving object. A motion tracking algorithm
based on image differencing and template matching was implemented using a variety of
windowing strategies to run the experiment. The results of the several experimental runs
indicate that this vision system can be used successfully in applications requiring high
speed motion tracking capabilities. Targets moving at speeds of up to 100 pixels per
second may be tracked on a frame-by-frame basis, with the camera operating at a frame
rate of 114 frames per second. Position updates can also be provided by the DSPs at the

same rate.

A computationally efficient corner detection algorithm that does not involve line
fitting or calculation of moments has been developed and implemented. Multiple
experiments using real images of moving objects were performed to assess performance.
It was found that the algorithm is capable of locating corners accurately (+ 0.25 mm) at
a high frame rate (114 Hz). Furthermore, the performance is robust for a wide range of

edge magnitude thresholds. A new information content measure has also been developed

82
and applied to evaluate the corner detection performance based on the number of edge
pixels in the image window. The peak value of this measure corresponds to the number

of edge pixels that yield the minimum corner location error.

A cooperative windowing scheme is developed based on a combination of template
matching and corner detection methods. A confidence measure uses a least-squares
regression strategy to determine the algorithm with lower variations in its results, so that
it is selected for use by COOP. The experimental results have demonstrated the

advantages of using COOP over NCC and CD.

§.2 Future Work

This thesis has demonstrated the cooperative windowing approach in target
tracking applications, based on a change of illumination scenario. This method could also
be applied in experiments involving measurable image clutter and occlusions. However,
a more sophisticated window confidence measure, such as Kalman filtering could be used
to decide whether the CD or NCC results should be selected. This is an avenue worth

exploring to further demonstrate the advantages of using COOP.

This vision system is designed in such a way that it can be easily expanded to
include additional windowing units to meet the requirements of the application. This

multiple window scenario can be used to improve the tracking capabilities of the system,

83

or to reduce the computational cost of the vision algorithms used. Possible future
applications include extracting 3D information from the acquired 2D images using inverse
photogrammetry, the implementation of a foveal vision system with a head/eye platform,

and automatic target recognition.

APPENDIX A
WINDOW LOGIC IMPLEMENTATION

84

ol
<id
gl

R
sondlt y o820

et !
it
=&

1]

ot
3
T
vofd

sob B

-3

i
0844

BEOWLE
“TYAAR
Y+

*8ULEd:

BOOW1S

'ﬂ‘l‘;‘” L] ﬂ"ﬂ

idazeddd iz HHH

A.’“a‘ }T“
10204
g
A]
v
LMA
OA
A
o
ENA
A
TNA
OMA
10
v

18

g -
i S S B
c 2 € Ld .
s. a- 23 . B L
HOEE BE g eEw 83
i
> | %) - T - Ja—

Figure Al.1. Window logic implementation (part 1).

85

*88% ‘B ‘wvr
BOw B WS

I 5 T Q 1 °

Figure A1.2. Window logic implementation (part 2).

86

AC

87

The SB1 signal is fed through the Auxiliary Clock buffer ACLK to latch the

window coordinates in the shift registers, and set the Start flag.
FVC Frame Valid synchronized to the PVC clock.
FVHL Frame Valid High to Low transition flag.
II FVLH Frame Valid Low to High transition flag.
|| LVC Line Valid synchronized to the PVC clock.
LVHL Line Valid High to Low transition flag.
NFV Not Frame Valid.
NLV Not Line Valid.
PVC The Not Pixel Valid signal is fed through the Global Clock buffer GCLK so
that all internal operations are synchronized to this clock.
SB1 The C40's CSTRBI signal is inverted to generate the SB1 clock.
START A Start flag to begin executing the window logic operations. It is set once
the window coordinates are strobed in.
STRBEN A Strobe Enable flag which is set at the start of a new frame with WLEN
already set.
WLEN A Window Logic Enable flag which is set when NFV is high with START
f already set.
WLRST A Window Logic Reset flag which is set either at the end of a frame, or at
the end of all window logic operations.
X0-X7 The X count which represents the pixel number in a line of pixels.
XNO-XN7 | An 8-bit number which represents the minimum X coordinate of the
window.
XX0-XX7 | An 8-bit number which represents the maximum X coordinate of the
window.

Table Al.1. Xilinx internal signals definitions (Figure Al.1).

The XMIN flag indicates that the X count is equal to the minimum X
coordinate of the window.

The XMAX flag indicates that the X count is equal to the maximum X
coordinate of the window.

XTC The X Terminal Count flag is set when the X count reaches 255.

XYVAL The Window Valid flag XYVAL indicates that the current pixel is within
the specified window coordinates.

II YO0-Y7 The Y count which represents the number of lines in a frame.

YNO-YN7 An 8-bit number which represents the minimum Y coordinate of the
window.

YX0-YX7 An 8-bit number which represents the maximum Y coordinate of the

i window.
YMAX The YMAX flag indicates that the Y count is equal to the maximum Y
coordinate of the window.
YMIN The YMIN flag indicates that the Y count is equal to the minimum Y
coordinate of the window.
YRST The flag which resets the Y counter in the Not Frame Valid period.

YTC The Y Terminal Count flag is set when the Y count reaches 255.

YVAL The flag which indicates that the current line of pixels is within the
specified window coordinates.

Table A1.2. Xilinx internal signals definitions (Figure Al1.2).

APPENDIX B
WINDOW ACQUISITION TIMING DIAGRAMS

89

90

B1 Description of Timing Diagrams

Bl.1 Start Flag Set (Figure Bl.1)

1-

The C40 strobes in the window coordinates into the Xilinx chip at an arbitrary
point in time relative to the camera's synchronization signals. It is shown in this
diagram to occur when the Frame Valid signal FVAL is low and the Not Frame
Valid flag NFV is high, which represents the in-between frames period of invalid
pixel data.

The window coordinates (xmin,xmax,ymin,ymax) are stored in (XN0-XN?7), (XX0-
XX7), (YNO-YN7), and (YX0-YX7) respectively. The input to the Start flag flip-
flop (not shown) is synchronized to the PVC clock and then set.

A Line Valid high to low transition indicating the end of a line of invalid pixel
data.

The Line Valid high to low transition is synchronized to the PVC clock. The Line
Valid high to low transition flag LVHL is set, which enables the Start flag flip-
flop.

The Start flag START is set, and LVHL is reset. The input of the Enable flip-flop
is high if the NFV and START flags are both set.

The Enable flag WLEN is set.

The Start flag is reset one clock period after the Enable flag is set.

91

B1.2 Frame Valid Rising (Figure Bl.2)

10-

11-

A Line Valid high to low transition indicating the end of a line, and a Frame
Valid low to high transition indicating the beginning of a new frame. The Enable
flag WLEN, which is an input to the Strobe Enable flip-flop, is already set.

The Line Valid and Frame Valid signals are both synchronized to the PVC clock.
The Frame Valid low to high transition flag FVLH and the Line Valid high to low
transition flag LVHL are set. The FVLH flag enables the Strobe Enable flip-flop,
and the LVHL flag enables the Y counter YCOUNT.

The Strobe Enable flag STRBEN is set. The Y count becomes 1 and the YMIN
flag is set, which indicates that the Y count is equal to the ymin window
coordinate. The LVHL and FVLH flags are both reset. The LVC signal is low, so
the Not Line Valid signal NLV is high, which resets the X counter XCOUNT.

The YVAL flag is set since the YMIN and WLEN flags are both high.

B1.3 Line Valid Rising (Figure Bl.3)

12-

13-

A Line Valid low to high transition with FVAL high indicates the start of a new
line of valid pixels. The STRBEN and YVAL flags are both high.

The Line Valid low to high transition is synchronized to the PVC clock. The X
count still stands at zero, and the XMIN flag is high, which indicates that the X

count is equal to the xmin window coordinate.

14-

15-

16-

92
The Valid Pixel flag XYVAL is set. The X count is 1 and the XMIN flag is reset.
The pixel strobe signal CSTRB4 is activated and pulled low, and the first pixel
is strobed into the memory of the C40.

The X count is 2, and the next pixel to be strobed in is pixel number 2.

The first pixel strobed in actually corresponds to the third valid pixel in the line. The

digital data of the camera has to be delayed by two pixel clocks so that the first pixel

strobed in does correspond to the first valid pixel in the line.

Bl1.4 Line Valid Falling (Figure Bl.4)

17-

18-

19-

20-

21-

Pixel number 253 has just been strobed in, and the X count is 254.

Pixel number 254 has just been strobed in, and the X count is 255, which sets the
X counter's terminal count flag XTC. The X count is now equal to the xmax
window coordinate, but the XMAX flag is set one clock period later.

A Line Valid high to low transition indicating the end of a line of valid pixels.
The Line Valid high to low transition is synchronized to the PVC clock, and the
NLYV flag is set high. Pixel number 255 has just been strobed in, and the X count
is back to zero, which resets the XTC flag. The XMAX flag is set to indicate that
the next pixel is the final valid pixel to be strobed in.

Pixel number 256 has just been strobed in, and the XYVAL flag is reset by the

XMAX flag, which signals the end of valid pixels in this line of data. The pixel

93

strobe signal is deactivated and set high, and the XMAX flag is reset.

B1.5 Frame Valid Falling (Figure Bl.5)

22- A Line Valid high to low transition indicating the end of the of a line, and a
Frame Valid high to low transition indicating the end of a frame. The Y count is
256.

23- Both the Line Valid and Frame Valid signals are synchronized to the PVC clock,
and the high to low transition flags FVHL and LVHL are set. The Y counter reset
flag YRST is activated if FVHL is set or LVHL and NFV are both high. The
Enable Reset flag WLRST is activated if YRST is high or YMAX,YVAL, and
LVHL are all high.

24- The WLRST flag resets both the WLEN and YVAL flags, and the window logic

is disabled.

9

23

EVENT NO. : 1

b — = ——— |

b ————— -3

e

IIIIIIIIIIIIIII - B il Rt ettt R R LT
fHH llllllllllll Y iy Sy R R RN U M g | -
o g 4 g 7
Mm_w gl & 3 w_m

Figure B1.1. Timing diagram of the "Start Flag Set" sequence of events.

95

11

10

IIIII

EVENT NO. :

EvC
FV

| STRBEN

YMIN

YVAL

—

Figure B1.2. Timing diagram of the "Frame Valid Rising" sequence of events.

96

14 15 16

12 13

-

B .

R —

T r—

||||||||

lllllllllll

.

EVENT NO. :

| PVC

LVC

XMIN

TR

Figure B1.3. Timing diagram of the "Line Valid Rising" sequence of events.

97

18 19 20 21

17

EVENT NO.:

STROBE

[ROUNE TRNVEND N, - [RUPNEIE KPP R UO

llllllllllllllllllllllllll

\'/
BV,
VG
LVC

| NLV

Figure B1.4. Timing diagram of the "Line Valid Falling" sequence of events.

EVENT NO. :

STROBE

LVAL

FVAL

PVC

-——

S S I

LvC

FVC

FVHL

LVHL

YEST
| WLARST

YMAX

YVAL

———————g———

Figure B1.5. Timing diagram of the "Frame Valid Falling" sequence of events.

98

REFERENCES

[Aggarwal88] Aggarwal, J.K., Nandhakumar, N., "On the computation of motion from

[Allen93]

[Anandan87)

[Arch88]

[Arking78]

[Aschwan92]

[Ayache91]

[Ayache87]

[Barnard80]

sequences of images -- a review”, IEEE Proceedings, 1988, Vol. 76, No.
8, pp. 917-935.

Allen, P.K., Timcenko, A., Yoshimi, B., Michelman, P.," Automated
Tracking and Grasping of a Moving Object with a Robotic Hand-Eye

System", IEEE Trans. on Robotics and Automation, Vol.9, No.2, p.152,
April 1993

Anandan, P., "Measuring Visual Motion from Image Sequences”, COINS
Dept., Univ, of -TR-87-21, 1987.

Archibald, C.C., "Real-Time Feedback Control Using a Laser Range

Finder and Harmony Proc. 7th Canadian CAD/CAM Robotics Conf.,
1988, p. 6:56.

Arking, A., Lo, R.C., Rosenfeld, A., "A Fourier Approach to Cloud

Motion Estlmatlon Mmmm 1978, Vol. 17, pp.
735-744.

Aschwanden, P., Guggenbuhl, W., "Experimental Results from a
Comparative Study on Correlation-Type Registration Algorithms", Robuyst
Computer Vision, Forstner/Rudwiedel (Eds), Wichmann 1992, pp. 268-
289.

Ayache, N., Lustman, F., "Trinocular Stereo Vision for Robotics", IEEE
Trans. PAMI, Vol. 13, No.1, January 1991, pp. 73-85.

Ayache, N., Lustman, F., "Fast and Reliable Passive Trinocular

Stereovision”, 1st Int. Conf, Computer Vision, June 1987, pp. 422-427.

Barnard, S.T., Thompson, W.B., "Disparity Analysis of Images", IEEE
Trans. PAMI, Vol. 2, No. 4, 1980, pp. 333-340

99

[Baron94]

[Bennam94)

[Bhanu86)

[Buttazzo94]

[Castano094]

[Corke93]

[Dhond91]

[Dhond89]

[Feddema89]

[Frendo89]

[Fukui92]

[Gaiarsa94]

100

Baron, T., Levine, M.D., Hayward, V., Bolduc, M., Grant, D., "A
Biologically-Motivated Robot Eye System", 8th CASI Conference on
Astronautics, November 1994, pp. 231-240.

Bennamoun, M., Boashash, B., "A Vision System for Automatic Object

Recognition”, W&L&MMM
pp. 1369-1374.

Bhanu, B., "Automatic Target Recognmon State of the Art Survey”,
, Vol. 22, No. 4, July

1986, pp. 364-379.

Buttazzo, G.C., et al., "Mousebuster: A Robot for Real-Time Catching”,
IEEE Control Systems, February 1994, pp. 49-56.

Castano, A., Hutchinson, S., "Visual Compliance: Task-Directed Visual

Servo Control" IEEE Trans. on Robotics and Automation, Vol. 10, No.
3, June 1994, pp. 334-342.

Corke, P., "Visual Control of Robot manipulators -- A Review", K.

Hashimoto ed., Vol. 7 of Robotics and Automated Systems, pp. 1-31,
World Scientific.

Dhond, U.R., Aggarwal, J.K., "A Cost-Benefit Analysis of a Third

Camera for Stereo Correspondence”, Int, J. Computer Vision., Vol. 6,
No. 1, 1991, pp. 39-58.

Dhond, U.R., Aggarwal, J.K., "Structure from Stereo: A Review", IEEE
Trans. Syst. Man Cyber., Vol. 19, No. 6, 1989, pp. 1489-1510.

Feddema, J., Mitchell, O., "Vision-Guided Servoing with Feature Based

Trajectory Generation” EEE.’Lms.m.Bp.bmand_AQOnm Vol.5,
No.6, p.691, 1989.

Frendo, M.J., "Three Dimensional Tracking of Four Point Planar Patterns

Using Corners” » Ph.D, Thesis, McMaster University, 1989.

Fukui, K., Nakai, H., Kuno, Y., "Multiple Object Tracking System with
Three Level Continuous Processes”, IEEE 3rd Int. Conf. on Computer
Vision, 1992, pp. 19-27.

Gaiarsa, A.E., Capson, D.W., "Real-Time Measurement of Corner
Position in Binary Images”, IEEE Trans. on Instrumentation and

[Gennery87]

[Graefe84]

[Hager96)

[Haralick93]

[Hill79]

[Horn81]

[Horn87])

[Huang94]

[Huertas81}

[Hussain91]

[Hutch96)

[Inoue8S5]

101
Measurement, Vol. 43, No. 4, August 1994, pp. 567-577.

Gennery, D., "Sensing and Perception Research for Space Telerobotics at
JPL", Proc. of the 1987 [EEE Conference on Robotics and Automation,
p.311, 1987.

Graefe, V., "Two Multi-Processor Systems for Real-Time Vision",

Mmmmmmmmm M. Brady et al. (eds), Springer-Verlag
Berlin Heidelberg 1984, pp. 301-308.

Hager, G.D., Hutchinson, S., Corke, P., "Visual Servo Control”, Tutorial
TT3, mmﬁmmnmmmnnm April 1996.

Haralick, R.M., Shapiro, L.G., Computer and Robot Vision, Vol. I,
1993, Addison-Wesley, pp. 410-419.

Hill, J., Park, W.T., "Real-Time Control of a Robot with a Mobile
Camera”,Proc. 9th ISIR, March 1979, pp. 233-246.

Horn, B.K.P., Schunk B.G., "Determining Optical Flow", Artificial
Intelligence, 1981, pp. 185-203.

Horn, B.K.P., "Motion Fields are Hardly Ever Ambiguous”, Int, J.
Computer Vision, Vol. 1, pp. 263-278, 1987

Huang, T.S., Netravali, A.N., "Motion and Structure from Feature

Correspondences A Review" W Vol. 82, No. 2,
1994.

Huertas, A., "Corner Detection for Finding Buildings in Aerial Images",

usgml_cmmnm_ummmmmm 1981, pp. 61-68.

Hussain, Z.,

mmg’l_‘x_h_nmg; Elhs Horwood 1991 pp 141- 143

Hutchinson, S., Hager, G.D., Corke, P.I., "A Tutorial on Visual Servo

Control", IEEE_'Lms._Qn_Bmgs_and_A.thmanm Vol.12, No.§,
October 1996, pp. 651-670.

Inoue, H., Mizoguchi, H., "A Flexible Multi Window System for
Robots", MMWM
Cambndge, Mass., pp. 95-102.

[Ito86]

[Jain95a]

{Jain95b]

[Jain81])

[Koivo91a]

[Koivo91b]

[Kubota93]

[Lang87]

[Lee92]

[Matties89]

[Murray94]

[Murray93]

102

Ito, M., Ishii, A., "Range and Shape Measurement Using Three-View

Stereo Analys1$,lEEE_Qqnt._qum_Ls._Em._m June 1986, pp.
9-14.

Jain, R., Kasturi, R., Schunck, B.G., Machine Vision, 1995, McGraw-
Hill, pp. 194-214,

Jain, R., Kasturi, R., Schunck, B.G., Machine Vision, 1995, McGraw-
Hill, pp. 61-69.

Jain, R., "Dynamic Scene Analysis Using Pixel-Based Processes”, IEEE
Computer, August 1981, pp. 12-18.

Koivo, A.J., Houshangi, N., "Real-Time Vision Feedback for Servoing
Robotic Mampulator with Self-Tumng Controller”, IEEE Trans. on

Systems,Man,and Cybernetics, Vol.12, No.1, January 1991, pp. 134-141.

Koivo, A.J., "On Adaptive Vision Feedback Control of Robotic

Manipulators”, IEEE Conf. Des. Cont.,, December 1991, pp. 1883-
1888.

Kubota, H., Okamoto, Y., Mizogushi, H., Kuno, Y., "Vision Processor
System for Moving-Object Analysis”, Machine Vision and Applications
1993, 7:37-43.

Lang, G.K., Gale, M.T., Knop, K., "A Low Cost Smart Camera and its
Apphcanon to motmn Detecnon and Suweﬂlance , Time-Varying Image

, V. Cappelhm (ed.), Elsevier
Science Publishers B.V., 1987.

Lee, K.M., Blenis, R., "Flexible, Integrated Machine Vision", Vision,
Vol. 8, No. 4, 1992,

Matties, L., Kanade, T., Szeliski, R., "Kalman Filter-Based Algorithms

for Esnmatmg Depth from Image Sequences , Int. J. Computer Vision,
Vol. 3, pp. 209-236, 1989.

Murray, D., Basu, A., "Motion Tracking with an Active Camera", JEEE
Trans, on PAMI, Vol.16, No.5, May 1994, pp. 449-459.

Murray, D.W., McLauchlan, P.F., Reid, I1.D., Sharkey, P.M., "Reactions
to Peripheral Image Motion using a Head/Eye Platform", JEEE 4th Int.

Conf. on Computer Vision, December 1993, pp. 403-411.

[Nagel87]

[Pap91]

[Pap93]

[Peters88]

[Pietikan86]

[Press90]

[Reid93]

[Rizzi92]

[Sadjadi92]

[Schunck84]

[Sethi87]

[Shah84]

103

Nagel, H.H., "On the Estimation of Optical Flow: Relations between
Different Approaches and Some New Results", Artificial Intelligence, Vol.
33, 1987, pp. 299-324.

Papanikolopoulos, N.P., Khosla, P.K., "Feature Based Robotic Visual
Tracking of 3-D Translational Motion", IEEE Conf Des. Cont,
December 1991, pp. 1877-1882.

Papamkolopoulos, N.P., Khosla, P.K., Kanade, T., "Visual Tracking of
a moving Target by a Camera Mounted on a Robot: A Combination of

Control and Vision", IEEE Trans. on Robotics and Automation, Vol.9,
No.1, p.14, February 1993.

Peters, R.A.II, "Image Complexity Measurement for Predicting Target
Detectability”, Ph.D, Thesis, University of Arizona, 1988.

Pietikanien, M., Harwood, D., "Depth from Three Camera Stereo”, IEEE
c_oni._go_mn.__ni..zain_lsm June 1986, pp. 2-8.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.,
mw.c Cambndge, 1990, pp. 290-298.

Reid, I.D., Murray, D.W., "Tracking Foveated Corner Clusters Using

Affine Structure”, JEEE 4th Int. Conf. on Computer Vision, December
1993, pp. 76-83.

Rizzi, A.A., Whitcomb, L.L., and Kodischek, D.E., "Distributed Real-
Time Control of a Spatial Robot Juggler”, IEEE Computer, May 1992, pp.
12-24.

Sadjadi, F., "Automatic Recognition of Partially Occluded Objects”,

Proceedings of the SPIE, Automatic Target Recognition II, Vol. 1700,
1992, pp. 277-284.

Schunck, B.G., "The Motion Constraint Equation for Optical Flow", Proc,
7th Int. Conf, on Pattern Recognition, 1984, Montreal, Canada, pp. 20-22.

Sethi, I.K., Jain, R., "Finding trajectories of Feature Points in a

Monocular Image Sequence”, [EEE Trans. on PAMI, Vol. 9, No. 1,
January 1987, pp. 56-73.

Shah, M.A., Jain, R., "Detecting Time-Varying Corners", Proc. 7th Int.
Conf, on Pattern Recognition, 1984, Montreal, Canada, pp. 2-5.

[Silven93]

[Sobel70]

[Thom79]

[Tian84]

[Vega89]

[Venkat90]

(Wang91]

[Wang94]

[Weiss87]

[Wilson88]

[Yashida85]

104

Silven, O., Repo, T., "Experiments with Monocular Visual Tracking and

Environment Modeling”, 4th Int. Conf. on Computer Vision, 1993, pp.
84-92,

Sobel, I., "Camera Models and Machine Perception”, Stanford Al Memo
121, May 1970.

Thompson, W.B., "Combining Motion and Contrast for Segmentation”,

C_o_p.._S.c.L._mp.LJlm_._gLanm March 1979.

Tian, Q., Huhns, M.N., "A Fast Iterative Hill Climbing Algorithm for

Subpixel Registration”, Proc, 7th Int, Conf. Patt. Recog., Montreal,
Canada, 1984, pp. 13-15.

Vega-Riveros, J.F., Jabbour, K., IEE Proceedings, Vol. 136, Pt. I, No.
6, December 1989, pp. 397-404.

Venkatesan, S., Archibald, C., "Real-Time Tracking in Five Degrees of
Freedom Usmg Two Wnst-mounted Laser Range Finders", IEEE Intl.

Conf, on Robotics and Automation, Cincinnati, Ohio, May 1990, pp.
2004-2010.

Wang, J., Wilson, W.J., "3D Relative Position and Orientation Estimation
Using Kalman Flltenng for Robot Control”, IEEE Robotics and
Automation Conf,, Nice, France, May 10-15, 1992, pp. 2638-2645.

Wang, H., Brady, M., "A Practical Solution to Corner Detection", IEEE
Int, Conf. on Image Processing, 1994, Vol. I, pp. 919-923.

Weiss, L.E., Sanderson, A.C., Neuman, C.P., "Dynamic Sensor-Based
Control of Robots with Visual Feedback", IEEE J. Robotics and
Automation, Vol.3, No.5, October 1987, pp. 404-416.

Wilson, W.J., editor. "Vision Sensor Integration for Dynamic Control of

Robots"”, Robots 12 Vision'88 Conf,, Detroit, Michigan, June 5-9, 1988.

Yashida, M., "3-D Aquisition by Multiple Views", Proc. Int, Symp.
Robotics Res,, October 198S.

o) 7
:Qae geo \ @
OQQQ@QWLVI%/%\\\ 0 \\\ \A//\\//MAAM%A@
V 24 R SRR
4 ¢
Y, o Y A
N L\ PR A
N \
27 0
28 FEERE girt |
3 S EE L
25 i B [N S0l
9 _ = 3 n__________m_"__ ;
5= EEE N
2 === -
-
RN
Y|y \\\9/% £ \\\0 N

L
Y ST
S lege

