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ABSTRACT

Dam safety is an important issue of current interest. In seismic regions. dynamic
forces on the dam may be significant and may lead to crack initiation and propagation in the
dam. A significant component of the dynamic forces is due to the hydrodynamic effects of
the impounded water in the reservoir. The developed hydrodynamic force on the dam is
highly dependent on the physical characteristics of the boundaries surrounding the reservoir
including the reservoir bottom and sides.

In this study, the effects of the reservoir boundary conditions on the seismic response
of the dam are investigated. This study consists of four components. First, a mathematical
model is proposed to account for the absorption effect of a sedimented reservoir bottom on
the seismic response of the dam-reservoir system. Secondly, a study is conducted to examine
the possibility of reducing the earthquake response of concrete gravity dams using
hydrodynamic isolation at the dam-reservoir boundary. Thirdly, an analytical procedure is
developed to compute the response of the hydrodynamic pressure and the seismic response
of the dam impounding a reservoir of general shape and boundary conditions. Finally, The
earthquake response of the dam was studied with special attention to the stresses in the dam.
An index for the evaluation of the overall state of stress in the dam subjected to different load
combinations is proposed. The dynamic component of stress and the proposed index in the
dam are computed when the dam-reservoir system is subjected to different ground motion

records.
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The effect of the reflected waves from underlying reservoir foundation rock on the
calculated response of the dam when subjected to earthquake ground motion was found to
be very important. It is concluded that the effect of the stiffness of a semi-infinite reservoir
foundation on the reduction of the dam seismic response is more significant as compared to
the dissipation effect of the sedimentation layer. It is shown that the isolation layer needs to
be very soft and with sufficient thickness so as to effectively reduce the hydrodynamic
pressure acting on the dam. The effects of the reservoir length and the type of boundary
condition at the truncated reservoir boundary on the calculated response of hydrodynamic
pressure were found significant. The proposed index for the stress in the dam (Stress Factor)
was shown to have an acceptable correlation with the intensity of the input ground motion
and can be used as a complementary design factor for seismic design of concrete gravity

dams.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

There is a large number of concrete dams worldwide. Some of the dams are in
seismically active areas. Dam safety during and after an earthquake is an area of current
concern. The failure of a dam during an earthquake may be catastrophic in terms of loss of
life and financial loss. The analysis of dams is a complex problem due to the dam-reservoir
and dam-foundation interaction. In addition to the static water pressure, the dam is subjected
to dynamic forces from the reservoir when the system is subjected to earthquake ground
motion. The magnitude of this additional hydrodynamic force is quite significant and may
lead to crack initiation and propagation in the dam even under a moderately strong seismic
event (Hall 1986, Hall er al. 1992). The developed hydrodynamic force on the dam is
dependent on the physical characteristics of the boundaries surrounding the reservoir
including the reservoir bottom and sides. In general, maximum values of the dam structure
response are dominated by the amount of the damping present in the dam-reservoir-
foundation system. Concrete dams do not possess high structural damping as compared to
other civil engineering structures. Due to the effect of the adjacent reservoir, however, there
are other sources of damping present in a dam-reservoir-foundation system. The added
damping due to the radiation of waves in the unbounded upstream direction of the reservoir

and due to the absorption of incidental waves at the reservoir bottom may result in significant
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reduction in the response of a concrete dam under earthquake excitation. In addition to the
radiation of refracted waves from the bottom of the reservoir, the foundation of the dam
allows for the radiation of energy waves from the vibrating dam to the far field.

There are a number of techniques to calculate the hydrodynamic force on a gravity
dam impounding a reservoir of arbitrary shape when subjected to the ground motion (Hall
and Chopra 1980, Tsai and Lee 1989 and Tsai and Lee 1992). Current numerical techniques
are also capable of providing the desired degree of refinement and accuracy in the solution
for the structural response of the dam subjected to seismic excitation (Fenves and Chopra
1984a, Tsai et al. 1992 and Galindo et al. 1992). However, regardless of the degree of
refinement incorporated in the structural model of a dam-foundation system, reliable results
can not be achieved without a consistent level of accuracy in evaluating the effects of
reservoir boundaries on the developed hydrodynamic pressure. For example, the absorption
effect of the reservoir bottom is included by selecting an approximate wave reflection
coefficient for this boundary. It has been shown by Fenves and Chopra (1983, 1984a and
1985) that depending on the selected value for the wave reflection coefficient, the
hydrodynamic pressure and the response of the dam can vary significantly. There are no
available guidelines for the selection of an appropriate value for the reflection coefficient
based on the physical characteristics of the reservoir bottom. Consequently, maximum values
of the dam response including crest displacement and developed stresses are not necessarily
reliable values for a given set of input ground motion and reservoir characteristics. Structural
damage to some existing concrete dams that have experienced severe ground motions
(Chopra and Chakrabarti 1972, Ahmadi et al. 1992, Leger and Tinawi 1994, Pekau et al.
1995) illustrates the importance of a realistic analysis and design. In such a design, the

appropriate physical parameters of the dam-reservoir system should be selected.
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In the following sections, the relevant research available in the literature is reviewed.
Following the survey of the literature, the objectives of the present study are defined and the

overall scope of the work is outlined.



1.2 LITERATURE SURVEY
1.2.1 General

In seismic response analysis of concrete dams, the effects of various sections of the
reservoir surrounding boundary have been individually addressed. These sections include the
reservoir bottom, the reservoir far end, the water surface and the dam-reservoir interface.

The effect of the reservoir bottom absorption of hydrodynamic pressure waves has
been extensively studied. However, the associated amount of structural response reduction
still needs to be predicted more reliably using a realistic and efficient approach.

The effect of the truncated upstream boundary of the reservoir model on the resulting
hydrodynamic response has been the subject of several recent studies. As a result,
appropriate boundary conditions to account for the effect of the truncated far field on the
hydrodynamic pressure on the dam under horizontal ground motion are available. No such
model is available for the case of vertical excitation of the reservoir model.

According to the results of the studies on the seismic response of a finite-length
reservoir with a solid upstream boundary, the hydrodynamic loading on the dam varies
significantly depending on the assumptions made in the mathematical model including the
differential excitation of the reservoir end boundaries as well as the aspect ratio of the
reservoir model.

The effect of water surface waves on the hydrodynamic loading on the dam has been
shown to be negligible. This is due to the size and dynamic characteristics of common dam-
reservoir systems and the characteristics of the seismic ground motions.

In most of the studies of the seismic response analysis of concrete dains, the dam-
reservoir interface is considered as completely reflective. Results of some investigations,

however, indicate the possibility of reducing the hydrodynamic force on the dam by




attaching an isolating soft layer.

Different approaches for dealing with the fluid domain in the response analysis of
dam-reservoir systems vary from continuum solutions to various numerical methods. In this
investigation, the hydrodynamic response analysis is based on both a closed-form solution
and the finite element approach. The closed-form solution is applied in the case of a simple
geometry and boundary conditions whereas the finite element method is applied in the more
general case of geometry and boundary conditions of the reservoir model.

In the following sections, a survey of some numerical solutions of the reservoir
hydrodynamic response with special emphasis on the two dimensional finite element
approach in the frequency domain, is presented. The available studies addressing the

individual parts of the reservoir boundary are reviewed.

1.2.2 Numerical solutions of the hydrodynamic response

Chopra et al. (1969) examined the applicability of the finite element method as a
numerical technique for the response calculations of a dam-reservoir system. They studied
the response of the hydrodynamic force on a dam impounding a finite-length reservoir with
the aspect ratio (reservoir length to water height) of L/H=1 under horizontal excitation. For
the case of a rigid dam and far boundary under unit step function, good agreement between
the results of the finite element technique and the closed-form solution was obtained.
However, there was a modest frequency shift of the hydrodynamic response based on the
finite element approach compared with the theoretical solution. Chopra et al. found a
significant discrepancy in the results of the two solutions for the response of the
hydrodynamic force under earthquake type of excitation. They attributed the source of error

to the chosen time step in the analysis. They concluded that the Finite element method is
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potentially a versatile approach for the seismic response analysis of the dam-reservoir
systems with arbitrary geometry and material properties.

Nath (1971) studied the response of the hydrodynamic force on a gravity dam. He
used the finite difference method to solve the coupled equations of motion in the frequency
domain. Nath argued that the reservoirs of many existing dams are limited at the far end. On
this basis, he assumed the reservoir model to have a finite length. The reservoir aspect ratio
was taken as L/H=4.5. In the absence of pressure wave radiation at the far boundary and
viscosity of water, the only source of damping was taken to be the structural damping of the
dam. Nath's model did not include the refraction of the impinging pressure waves at the
reservoir boundaries. The dam structure was approximated as a cantilever beam and the
system excitation was limited to the harmonic horizontal ground motion. Nath presented a
simplified formulation for the evaluation of the fundamental coupled frequency of the dam-
reservoir system which was shown to give more satisfactory results than the traditional added
mass approach.

Wylie (1975) utilized an approach based on latticework of pipelines analogy to solve
the two-dimensional wave equation in the reservoir. The wave equation in the two-
dimensional space was replaced by one dimensional transient flow equations in two
orthogonal directions. The principles of identical pressure heads and mass conservation at
internal nodes were applied to obtain the time-variation of the hydrodynamic pressure in the
reservoir. The method of characteristics was used to solve the resulting equations. Both cases
of rigid as well as flexible dams were included in the analysis. In the case of the flexible
dam, a one-dimensional shear beam analogy was made for the structural response. Wylie
obtained a satisfactory agreement between the theoretical and the pipeline network analogy

solutions for the transient hydrodynamic response under unit step excitation function. The
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results showed good agreement in both the amplitudes and the phase of the response. Both
cases of finite and infinite length reservoirs were included in the analysis. The response of
the hydrodynamic pressure on the rigid dam subjected to the horizontal component of a
typical earthquake excitation for the case of L/H=2 was found to be larger than the response
in the case of L/H=1. Wylie attributed the reason for the observed anomaly to the frequency
content of the input ground motion in relation to the natural frequencies of the reservoir in
the above two cases. The results of the hydrodynamic response in both cases were
overestimated because no absorption of pressure waves was allowed in the reservoir model.

Zienkiewicz and Bettess (1978) categorized the solution of coupled fluid-structure
systems, neglecting the large scale flow, into two general approaches. The first approach is
called Lagrangian approach in which the fluid is treated as a solid with a negligible amount
of shear resistance. The fluid motion is described by its displacements similar to a solid
structure. Accordingly, it is possible to use identical discretizations for both the fluid and
structure domains. Besides, this method has the advantage of obtaining banded matrices in
the global algebraic equations of motion of the dam-reservoir system. In the second
approach, called the Eulerian approach, the fluid is identified by the nodal pressure as a
single unknown quantity. In this approach, the coupling of the fluid and the structure is
achieved through the equilibrium of the interface forces. The advantage of the Eulerian
approach over the Lagrangian method is in the much smaller number of unknowns for the
fluid domain. The Eulerian method has been more extensively used in the seismic analysis
of dam-reservoir systems than the Lagrangian approach.

Hall and Chopra (1980) analyzed the case of a uniform channel of infinite length
attached to a near-field reservoir of an irregular shape. The irregular part of the reservoir was

modelled by the finite element method. The infinite-length channel, solved as a one-
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dimensional finite element model in depth, was combined with a theoretical solution in the
streamwise direction. The model formed the basis for numerous studies by Chopra and his
co-workers (Hall and Chopra 1982a and 1982b, Fenves and Chopra 1984a and Hall 1986)
as well as by other researchers (Jablonski 1990).

Lotfi et al. (1987) used the so-called hyperelements to model different solid and fluid
parts of the dam-reservoir-foundation model in its response analysis when subjected to
earthquake ground motion. Their hyperelement approach included the finite element
discretization in depth together with the continuum solution in the horizontal direction for

the regions away from the dam.

1.2.3 Reservoir Bottom Boundary
The influence of the reservoir bottom absorption on the seismic response of concrete
dams has been the subject of some recent studies. Different models for the interaction of the

reservoir water with its foundation may be categorized as follows:

Rigid Reservoir Foundation

In the early studies of the seismic response of concrete dams, the foundation of the
reservoir was assumed as completely reflective (Bustamente and Flores 1966, Chopra 1967
and 1970, Chopra et al. 1969). Since a rigid foundation does not allow for the radiation of
the impinging pressure waves away from the reservoir, the hydrodynamic pressure and the
resulting structural response of the dam are generally overestimated. The overestimation of
the dam response was found to be especially significant in the case of vertical excitation of
the dam-reservoir system (Chopra 1967, Chakrabarti and Chopra 1973, Fenves and Chopra

1984a and 1985). With the assumption of completely reflective reservoir bottom, the
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frequency response function of the dam at the natural frequencies of the reservoir is
unbounded for vertical input ground motion. In this case, the interaction effects due to the
vertical excitation form a significant part of the total hydrodynamic force on the concrete

dam as compared to the contribution of the horizontal ground motion.

Partially Absorptive Foundation (with no sediment layer)

In recent studies (Hall and Chopra 1980, Fenves and Chopra 1983, Antes and Von
Estroff 1987, Chandrashaker and Humar 1993), a flexible reservoir foundation was
considered in the analysis which allows for the radiation of incidental pressure waves to
lower depths. This results in bounded peaks with generally lower values for the response of
the dam. Chandrashaker and Humar (1993) compared the results of the analysis based on the
one-dimensional wave propagation model with the results obtained using a rigorous model
utilizing the boundary element method for the foundation underneath the dam-reservoir
system. They evaluated the reflectivity of the reservoir bottom on the basis of the
characteristics of the foundation while the effects of the overlying sediment layer were not
included. Chandrashaker and Humar concluded that the simplified one-dimensional
representation of the fluid-foundation interaction is reasonably accurate in evaluating the

displacement response as well as the stresses in the dam due to an actual earthquake.

Partially Absorptive Foundation (neglecting the effect of the foundation rock)

According to Fenves and Chopra (1984a and 1985), the interaction of the reservoir
water with its foundation is dominated by the energy dissipation and hysteretic behaviour of
the overlying sediment layer. The impinging pressure waves to the reservoir bottom are

assumed to be dissipated before they reach the underlying foundation rock and therefore only
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the material properties of the sediment layer are used to evaluate the reflectivity of the
boundary. In the model, however, the thickness of the layer is not explicitly included.
Therefore, the effect of the proximity of the underlying rock to the surface on the equivalent
reflection coefficient of the reservoir bottom is not included in the representation of the
boundary. Consequently, their simplified approach excluding the influence of the reservoir
foundation rock leads to overestimation of the reduction of the dam response due to the

absorption effects of the reservoir bottom.

Partially Absorptive Foundation (including the sediment layer)

In more rigorous investigations (Zuoxin 1987, Lotfi et al. 1987, Cheng 1987, Medina
et al. 1990, Bougacha and Tassoulas 1991a and 1991b, Valliappan et al. 1991), the effect of
the sediment layer is explicitly included in the model of the dam-reservoir-foundation
system. Zuoxin (1987) examined the effect of a sediment layer with a constant thickness over
a semi-infinite foundation on the response of the hydrodynamic pressure on the dam based
on the solution of the one dimensional wave equation. In that study, however, the attenuation
of the refracted waves across the sediment layer was not included. The reduction effect of
the sediment layer was obtained in the form of a trigonometric function of the layer thickness
with no damping effect of the sediment material. Accordingly, little reduction was obtained
for a typical value of the sediment layer thickness at the reservoir bottom. Moreover, the
study was limited to the case of a rigid dam subjected to the horizontal ground motion.

Lotfi et al. (1987) developed a finite element formulation for the linear, viscoelastic
layered foundation. It was found that the effect of sediments in reducing the dynamic
response of the dam is considerably less than that suggested by Fenves and Chopra (1985)

using the one dimensional wave reflection coefficient approach. Their evaluation of the
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performance of the one dimensional wave reflection coefficient model is claimed to be
inaccurate due to the inconsistency of the selected material properties used in their
comparison (Chandrashaker and Humar 1993). Medina et al. (1990) found that their results
utilizing the boundary element method are in good agreement with the results of Fenves and
Chopra (1984a) for the case of a time-harmonic vertical excitation. However, Medina er al.
concluded that the approach of Fenves and Chopra results in an underestimation of the
acceleration response of the dam to the horizontal ground motion for an identical equivalent
reflection coefficient of the reservoir bottom based on the properties of the foundation rock.
In spite of the above discrepancies in the results of different approaches, all the above studies
share in common that the reduction effect of the sediment layer at the reservoir bottom is
most significant for the case where the underlying foundation rock is assumed as ngid.

Bougacha and Tassoulas (1991a) and Cheng (1987) modelled the sediment material
as a poroelastic continuum. The results were presented for both fully and partially saturated
sediments. Bougacha and Tassoulas (1991b) found that fully saturated sediments lead to little
decrease in the response of the hydrodynamic force as well as the maximum acceleration of
the dam. The amount of response reduction was found to be highly dependent on the degree
of saturation of the sediment material when subjected to horizontal excitation. No significant
reduction was observed due to the absorption effect of the sediment layer under vertical
ground motion regardless of the degree of saturation. This conclusion is inconsistent with
the results of other related studies (Hall and Chopra 1980, Fenves and Chopra 1984a and
1985). The model by Cheng (1987) was incorporated into the solution of the one-
dimensional Helmholz equation for the hydrodynamic pressure in the reservoir. The one-
dimensional Helmholz equation along the depth of the reservoir does not include the

variations of the boundary conditions along the reservoir end boundaries.



12
The rigorous poroelastic model for the sediment material requires consistently
accurate information on the layer characteristics such as the material grain size, porosity,
degree of saturation and hydraulic conductivity. Such detailed data for the reservoirs of the
existing dams is not readily available. Besides, the rigorous poroelastic modelling of the
reservoir bottom sediments is less attractive from computational point of view than the
simplified viscoelastic approach which is simpler and requires less data for the analysis.
Valliappan et al. (1991) modelled the reservoir foundation and the overlying sediment
layer using finite and infinite elements. The sediment layer was assumed to be of constant
thickness. They examined the response of a dam subjected to horizontal ground motion for
three different cases; namely, full reservoir with sedimentation, full reservoir without
sedimentation and empty reservoir. Valliappan et al. found that the displacement response
of the dam in the case of full reservoir with sedimentation at the bottom was larger than in
the case of no sedimentation. The thickness of the sediment layer in a 100 m deep reservoir
model was assumed to be 20 m. The acceleration response at the top of a dam subjected to
an earthquake ground motion including the effect of the sediment layer was unrealistically
larger than the case of no sedimentation. The maximum acceleration including the sediment
layer in the model was found to be four times the acceleration peak for the case of no
sedimentation. The above observation is in contradiction with the trend of results obtained
by other investigators (Fenves and Chopra 1984a and 1985, Lotfi et al. 1987, Cheng 1987,
Medina er al. 1990, Bougacha and Tassoulas 1991b). Valliappan et al. found that the
fundamental frequency of the dam-reservoir system varies noticeably for the cases of
including the sedimentation and no sedimentation in the reservoir model. They attributed the
amplifying effect of the sediment layer to the proximity of the predominant frequency of the

input ground motion to the fundamental frequency of the dam-reservoir system including the
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sediment layer. This argument is not credible because the contradictory effect of the
sediment layer was also observed for the frequency response function of the dam
displacement which is independent of a given transient input. No damping effect was
included in the sediment model. Accordingly, the sediment model did not result in a realistic
response evaluation of the dam-reservoir system subjected to the seismic input.

The above review indicates that there are no practical guidelines for a reliable
evaluation of the absorption coefficient of the reservoir bottom in the analysis of the

hydrodynamic response for different reservoir bottom conditions.

1.2.4 Reservoir Far Boundary

The applied boundary condition at the upstream end of a two dimensional reservoir
model primarily depends on its geometrical configuration. For a sufficiently long reservoir
in the streamwise direction, the effect of reflected waves from the far boundary on the
imposed hydrodynamic pressure on the dam is negligible. Accordingly, a radiation condition
is applied at the far boundary of the finite-length discretization of the reservoir model. For
a finite reservoir, the reflected waves from the upstream end are no longer negligible and
may result in significant increase in developed hydrodynamic pressure in the impounded
water. This is the case where there is a bend in the river or where the dam is built parallel to
the course of the river with the far bank of the river serving as the upstream boundary.
Another example is the case where the reservoir has a steep slope of its bottom ending at a
shallow river on the upstream side.

For the case of an infinite-length reservoir, the applied radiation condition and its
location to account for the outgoing pressure waves in a limited-length numerical model of

the reservoir is important. The proper boundary condition to account for an infinite domain
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at a truncated boundary has been the subject of many studies in various areas of continuum
mechanics (Smith 1974, Hanson and Petschek 1976, Engquist and Majda 1977, Clayton and
Engquist 1977, White et al. 1977, Kausel and Tassoulas 1981). A review cf the studies with
specific application to the modelling of dam-reservoir systems is presented.

In early studies of the hydrodynamic pressure on dams based on the analytical
solution, the governing wave equation was solved subject to the boundary conditions
including a radiation condition at the far side of the infinite-length reservoir (Westergaard
1933, Chopra 1967). The theoretical solution is possible for simple reservoir geometry. For
more complex geometries, the hydrodynamic wave equation has to be solved numerically
with appropriately discretized reservoir domain. From the computational point of view, the
extent of the discretized model representing an infinitely long channel of the reservoir is
limited such that the response computation can be made in a reasonable time. The infinite
characteristic of the reservoir should be represented by adopting an appropriate numerical
model at the truncated boundary to account for the absence of the reflected waves towards
the dam. Various techniques which have been used in numerical models of the reservoir are
briefly reviewed with emphasis on the two-dimensional analysis of the concrete gravity dams
in the frequency domain.

Zienkiewicz et al. (1977) examined the basic formulation of infinity conditions in the
solution of pressure wave equation in the reservoir. They concluded that Sommerfeld
boundary condition is appropriate for a sufficiently large reservoir model and can be easily
incorporated in the finite element discretization of the fluid domain. According to
Zienkiewicz et al., utilization of Sommerfeld boundary condition prevents any reflection of
the striking pressure waves at the curtailed boundary in the normal direction. The assumption

of normal incidence of the waves to the far boundary is valid for sufficiently far distance
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from the disturbance. According to Lysmer and Kuhlemeyer (1969), almost no reflection was
observed even for obliquely impinging waves for the angle of incidence of up to = 60° from
the normal. Zienkiewicz et al. proposed a similar form of boundary condition for radiation
of gravity waves at the surface of the reservoir. In that boundary condition, however, the
wave propagation velocity is a function of frequency. According to Zienkiewicz et al., the
proposed boundary condition can not be applied simultaneously with the Sommerfeld
radiation condition for short reservoir models with truncated boundaries. However,
Zienkiewicz et al. argued that since the important depth ranges of the dilatational waves and
surface waves as well as their decaying rates with distance from the disturbance are
practically separated, the simultaneous application of the two boundary conditions is
possible. However, they did not clarify the range of reservoir length to depth ratio for which
the application of such a boundary condition is recommended.

Bettess (1977) introduced infinite elements with the shape functions in a form similar
to Lagrange polynomials including an exponential decay term. He illustrated the success of
the method in problems involving viscous flows. Bettess concluded that for a satisfactory
result, the unknown quantity in the field problem should vanish at the far field. Moreover,
the decay rate parameter should be carefully selected. Bettess also concluded that the infinite
element approach models the effect of the far field on the near field of the reservoir rather
than give a true indication of the model behaviour at infinity.

Saini et al. (1978) and Saini (1982) used infinite elements to model the radiation
damping at the truncated upstream boundary in a two-dimensional model of the dam-
reservoir system. Saini et al. showed that modelling radiation damping using infinite
elements required a shorter length for the reservoir model than the length required when

utilizing the conventional radiation boundary condition.
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Hall and Chopra (1982a and 1982b) studied the hydrodynamic effects of the
impounded reservoir on the seismic response of concrete gravity dams. They utilized
approximate one-dimensional boundary conditions for the radiation of the outgoing waves
from the reservoir and the refraction of the waves at the reservoir bottom. The only
restriction imposed on the boundary condition at the far end was the assumption of a constant
depth for the semi-infinite channel attached to the reservoir near field. The dam and reservoir
subdomains were discretized based on the finite element method. They found the finite
element approach to be successful in seismic response analysis of the dam-reservoir systems
including dam flexibility and water compressibility in the model. Hall and Chopra (1982b)
found that when the compressibility of the impounded water is neglected, the hydrodynamic
force on a rigid gravity dam when subjected to horizontal ground motion is slightly
dependent on the shape of the fluid domain. Under vertical excitation the hydrodynamic
force was found to be virtually independent of the reservoir shape.

Humar and Roufaiel (1983) proposed a modified Sommerfeld boundary condition in
the frequency domain for the truncated boundary of a finite-length representation of an
infinitely long reservoir channel. The performance of the proposed boundary condition was
superior to the classical Sommerfeld condition (Zienkiewicz ez al. 1977) in the frequency
range between the first and the second natural frequencies of the reservoir channel. In the
above frequency range, the increase in the length of the reservoir model using Sommerfeld
boundary condition did not result in any improvement in the accuracy (Hanna and Humar
1982, Humar and Roufaiel 1983, Sharan 1984 and Humar 1984).

Humar (1984) argued that the discrepancy between the Sommerfeld boundary
condition in the finite element model of the reservoir and the theoretical solution for the

hydrodynamic response can be better illustrated by the distribution of the pressure along the
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dam height. Humar demonstrated that the total hydrodynamic force on the dam may be
accurate, however, the results of the pressure distribution can be substantially different.

Sharan (1985a) proposed a radiation boundary condition for the truncated boundary
of the reservoir model. His proposed boundary was based on the closed-form solution for the
hydrodynamic pressure in the reservoir in the frequency domain under horizontal excitation.
Water was treated as incompressible and the dam was assumed rigid in the analysis of both
cases of having vertical and inclined upstream face of the dam. Sharan obtained reasonably
good agreement with the available theoretical solutions in each case for considerably short
reservoir lengths in the model.

Sharan (1985b) extended the proposed boundary condition for a compressible model
of the impounded water. The reservoir bottom was assumed horizontal and completely
reflective. The reservoir model was subjected to harmonic horizontal input ground motion.
Sharan showed the Sommerfeld boundary condition and the modified boundary condition
proposed by Humar and Roufaiel (1983) to be special cases of his proposed boundary
condition. He further showed that for excitation frequencies lower than the fundamental
frequency of the reservoir, satisfactory results for the hydrodynamic response are not
obtained using Sommerfeld boundary condition unless the truncated boundary is located
sufficiently far away from the dam. He also demonstrated that for higher excitation
frequencies, the numerical approach using the Sommerfeld boundary condition does not
converge to the exact solution by increasing the length of the reservoir model. Rather, it
oscillates about the result corresponding to the case of infinite reservoir as the length of the
reservoir model is increased. However, the pressure amplitudes are generally lower for
higher excitation frequencies. Accordingly, the resulting errors are insignificant in the

excitation frequency range that is higher than the second natural frequency of the reservoir
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and the use of the simpler Sommerfeld boundary condition is recommended.

The radiation condition proposed by Sharan (1985b) is limited to the case where the
fluid domain is unbounded in the direction of the structural motion. Sharan (1986) extended
his proposed radiation boundary condition for the analysis of a submerged structure with
truncated surrounding fluid boundary in all directions in a two-dimensional model.

For the near field of a reservoir of arbitrary geometry, Sharan (1987a) proposed a
modified radiation condition. The reservoir far-field was limited to a constant-depth, semi-
infinite channel with a horizontal rigid bottom. The dam was assumed deformable with an
arbitrary shape. Satisfactory results were obtained with a short length of the reservoir model
for frequencies lower than the second natural frequency of the uniform channel.

Sharan (1987b) modelled the radiation damping in the two-dimensional finite element
analysis of hydrodynamic pressure in the time-domain. Water was assumed compressible.
The expression for the proposed radiation condition was independent of the excitation
frequency. For this reason, the expression was appropriate for the time-domain analysis of
dam-reservoir systems. However, the effectiveness of the proposed boundary condition was
dependent on the excitation frequency and showed a slight discrepancy with the theoretical
solution in the vicinity of the fundamental frequency of the fluid domain. Sharan showed that
the proposed boundary condition performed better than the traditional Sommerfeld boundary
condition when the dam upstream face was inclined. However, the boundary condition was
derived based on the assumption that the upstream face for the dam is vertical.

In later studies, Sharan (1991 and 1992) included the influence of an absorptive
reservoir bottom in the proposed radiation condition. He observed some discrepancies with
the theoretical solutions near the second and third natural frequencies of the reservoir

channel. However, Sharan concluded that the proposed boundary condition leads to more
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accurate results as compared to the Sommerfeld boundary condition for shorter length of the
reservoir model. The proposed model was still limited to the case of a semi-infinite
horizontal far-field attached to the near-field of arbitrary geometry.

Jablonski (1990) studied the effect of the location of a transmitting boundary on
developed hydrodynamic pressure in the reservoir. Based on a two-dimensional model for
the dam-reservoir-foundation system, the effect of the location of the transmitting boundary
due to the change of geometry of the near-field part of the reservoir was investigated. In this
aspect, Jablonski's study was different from those made by Sharan (1991 and 1992) where
the location of the truncated boundary did not affect the geometry of the reservoir near-field.
Jablonski used the radiation condition proposed by Hall and Chopra (1980) at the truncated
boundary. He found that the slope of the reservoir bottom had a significant effect on the
resulting hydrodynamic force on the dam. He also concluded that for the case of a
completely reflective bottom, the length of transmitting boundary elements should be less
than a tenth of the shortest wave length in the reservoir so that the radiation effect can be
properly represented. Jablonski's conclusion is comparable with the condition proposed by
Lysmer and Kuhlemeyer (1969) suggesting a ratio of one-twelfth between the size of the
largest element and the minimum wave length propagating in the domain of analysis.

In the present study, both finite and infinite length reservoirs are included in the
analysis. The finite-length reservoir is limited to a solid far boundary. In the numerical
solution of the hydrodynamic response, one-dimensional boundary elements are included
along the reservoir solid boundaries to account for partial absorption of impinging waves.
For the cases where the solutions of the finite-length discretization of the reservoir model are
compared with those of the semi-infinite case, the corresponding reflection coefficient of the

elements at the far boundary are set to zero to model the case of complete absorption.



1.2.5 Water Surface

Since the first studies of the seismic response of dam-reservoir systems, the effects of
surface waves have traditionally been neglected (Bakhmeteff 1933 and Chopra 1967). There
are two main reasons behind this assumption: First, the excitation frequency associated with
the gravity waves are well separated from the resonant frequencies of the typical dam-
reservoir systems. It is quite unlikely that the low-frequency sloshing modes of the
impounded water are significantly excited for the common depths of the concrete dam
reservoirs. Secondly, developed hydrodynamic pressure due to the effects of surface waves
vanishes rapidly with the depth of the water leaving the imposed hydrodynamic pressure on
the dam due to the compressive waves virtually unchanged.

Bustamente et al. (Newmark and Rosenblueth 1971) showed that for the ratio of
reservoir depth to the dominant period of disturbance exceeding 75 m/s, neglecting water
surface waves as compared to the more accurate Poisson boundary condition leads to
insignificant errors in the total hydrodynamic force on the dam. The margin of error was
found to be not more than 5 to 20% depending on the above ratio. The error margin was
considered to be conservative (Newmark and Rosenblueth 1971). Based on practical values
of the depth to dominant period parameter, the actual errors are likely to be much smaller.
The dam in the study by Bustamente et al. was assumed with vertical upstream face
impounding an infinitely long reservoir.

Nath (1969) examined the effect of water surface waves using Poisson boundary
condition. In a case study, he compared the pressure coefficient at water surface based on
Poisson's linear condition with the case where the surface waves were neglected. The
difference between the results was insignificant except for very low excitation frequencies.

Nath concluded that for the frequency range of interest in seismic analysis of concrete dams
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where the compressibility effects are important, the effect of gravity waves is negligible.

Eatock Taylor (1981) studied the effect of surface waves on the response of the
hydrodynamic force in a two-dimensional model of a gravity dam. In his model, The
deflection of the dam with a vertical upstream face was approximated using the fundamental
vibration mode of the structure. Eatock Taylor concluded that the effect of reservoir surface
waves is negligible for the case of deep reservoirs and rigid dam structures. The associated
error margin based on an error estimation proposed by Bustamente et al. (Eatock Taylor
1981) was found to be 5%. Eatock Taylor compared the range of frequencies where the
conditions for neglecting the surface waves and including the compressibility of the
impounded water are valid. Based on his analysis, the above two conditions overlap when
the depth of the reservoir is over 1890 m. This is beyond the practical reservoir depths in
existing dams. Accordingly, there is no significant interactive effect of the surface waves and
compressibility of water in the modification of the hydrodynamic response. This is consistent
with the common assumption of neglecting the effects of surface waves and including the
water compressibility in hydrodynamic response analysis of dam reservoirs.

The most serious effect of the earthquake-induced gravity waves is the possibility of
overtopping. This phenomenon is of major concern in earth- and rockfill dams for its
potential threat to the downstream side and should be accurately calculated for the proper
design of the freeboard.

Based on the results of the above studies, the influence of the surface waves on the

earthquake response of the dam is neglected throughout the course of the present study.

1.2.6 Dam-Reservoir Boundary

In past studies of the hydrodynamic pressure in the reservoir, the upstream face of the
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concrete dam has been traditionally considered as completely reflective. Few studies in the
available literature address the effects of a partially absorptive boundary at the upstream face
of the dam. These studies examine the possibility of reducing the imposed hydrodynamic
pressure on dams by means of hydrodynamic isolation. The investigated hydrodynamic
isolation systems are limited to those utilizing air as the intermediate layer between the dam
and the reservoir.

Lombardo et al. (1987) proposed the idea of an air curtain as an aseismic provision
for the reduction of seismic loading on concrete dams. Hall and El-Aidi (1989) examined the
possibility of reducing the hydrodynamic pressure by considering two practical alternatives
for providing the air curtain at the upstream face of the dam: a) anchored air balloons and
b) injected gas bubbles. Neither of these two methods achieved significant reduction in the
dynamic response of the dam-reservoir system mainly due to the violation of the assumption
of the linear variation of the air pressure along the depth of the curtain in addition to the
excitation of extra modes associated with the oscillation of the gas domain. Hall et al. (1991
and 1992) studied the effect of a soft material attached to the upstream face of the concrete
dam on the reduction of the dam response. However, the compressibility of the matenal was
assumed to be that of a perfect gas with a simplified one-dimensional behaviour. With this
model for the soft layer, Hall er al. did not obtain significant reduction in the response of the
concrete dam.

The idea of reduction of hydrodynamic pressure on the dam by using an air curtain at
the upstream side of the dam has also been examined by Sheinin (1992). He considered the
air curtain in the forms of air bubbles and air vessels. The air bubble scheme did not seem
practical due to the large quantity of air needed for providing a secure air-layer. There is also

a prohibitive amount of expense associated with the air bubble scheme as an active type of
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isolation. In this scheme of isolation, an on-line system of supply and surveillance is needed
to obtain a reliable isolation curtain. The air containers provided a more practical type of
permanent air curtains. Sheinin measured a significant reduction in the hydrodynamic
pressure on Krivoporozhsk dam in Karelia, Russia, isolated from its reservoir with air
containers.

Savinov et al. (1992) conducted theoretical studies on the effectiveness of the air
curtains on the hydrodynamic isolation of dams. They assumed a linear mechanical
behaviour along the depth of the curtain. Assuming the water as incompressible, Savinov ez
al. concluded that when the vibration frequency of the added mass of water acting on the air
curtain is less than a third of the fundamental frequency of the dam, hydrodynamic pressure
is reduced by a factor of 5 to 10. Savinov et al. suggested that compressibility of water
increases the effectiveness of the air curtain scheme of isolation, however, little
substantiation was provided.

As'kov et al. (1992) and Gellis et al. (1992) examined the idea of hydrodynamic
isolation by laboratory model tests as well as measurements of the dam prototypes equipped
with air curtain. They reported promising reductions of the hydrodynamic force exerted on
the dam due to the effect of the isolation layer.

The effectiveness of the isolation in reducing the hydrodynamic pressure on the dam
is decreased if the specific volume of the air in the curtain is reduced. This may happen due
to leakage of the air out of the containers with time under the effects of the temperature
variations, bio-organisms and vibrations of the dam and the isolation system due to the
seismic events. Consequently, the air curtain scheme of isolation necessitates additional

expenditure and maintenance for its long term reliability.



1.3 OBJECTIVES AND SCOPE

The main objective of the present study is to examine the effects of the reservoir
boundaries on the seismic response of the concrete gravity dam. Special emphasis of the
study is on the effects of the reservoir bottom absorption and the effects of a partially
absorptive boundary at the interface of the dam and reservoir. The far end boundary of a
finite-length reservoir is considered as a partially absorptive, stationary boundary in the
analysis. For an infinitely long uniform reservoir channel, Sommerfeld radiation condition
was used for the theoretical solution. A measure of the dynamic stress response of the dam
is proposed and applied in the evaluation of the response of a dam with different reservoir
characteristics when subjected to various earthquake ground motions. A theoretical
investigation of the case of a partially absorptive boundary condition at the dam-reservoir
interface is conducted. Because of the potential for important practical application, this study
was extended to investigate the response and design of an isolating layer to protect the dam
against the hydrodynamic loading.

To achieve the above objectives, an analytical study was conducted. The investigation
of different parts of the reservoir boundary are presented in different chapters. Chapter 2
is devoted to the examination of the absorption effects of the reservoir bottom on seismic
response of the dam. A theoretical model is proposed to effectively account for the
absorption effect of the hydrodynamic pressure waves impinging on the boundary. Results
of the dependence of the equivalent reflection coefficient and the structural response of the
dam on the thickness and mechanical properties of the sediment layer are presented.

The dam-reservoir boundary is addressed in Chapter 3. The effect of the current
assumption of a completely reflective dam-reservoir interface on the dam response is

compared with the case where this boundary is assumed as partially reflective. The practical
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application of such assumption is the case where a layer made of a soft material is installed
at the upstream side of the concrete dam. An analysis was conducted to examine the isolation
effects of various soft materials with proper thickness and dissipation characteristics on the
structural response of a dam subjected to earthquake ground motion. The effects of the
material parameters on the amount of response reduction are investigated.

Chapter 4 includes a general case of the reservoir boundary-value problem which
is solved using the finite element method. When the dam-reservoir system is subjected to
vertical excitation, the boundary-value problem of the reservoir with absorptive boundaries
needs to be solved numerically. The two-dimensional model of the reservoir is discretized
using finite elements with hydrodynamic pressure as the unknown nodal parameter. The
computed nodal pressures evaluated at the dam-reservoir interface replace the analytical
values currently used to obtain the hydrodynamic terms in the general frequency-domain
equations. The developed procedure is applied to verify the analytical results for horizontal
excitation as well as to study the effects of the reservoir length-to-depth ratio and the effects
of an absorptive far boundary with an arbitrary reflection coefficient on the dam response.

Chapter 5 contains the stress analysis of the dam when subjected to selected
horizontal and vertical input ground motions. A global parameter to include the stress time-
history response as well as the overall state of stress over the cross section of the dam
monolith is proposed. The proposed parameter, (the Stress Factor) is verified and used to
express the state of stress in the dam subjected to different ground motions. Subsequently,
the effects of reservoir boundary conditions on variation of the stress factor are investigated.

The conclusions resulting from the investigations in this thesis are presented in
Chapter 6. The major assumptions through the course of the study are underlined which

provides the basis for the recommendations for further studies on the subject.



CHAPTER 2

RESERVOIR BOTTOM BOUNDARY

2.1 INTRODUCTION

In this chapter, a model is proposed to include the absorption effects of the reservoir
bottom in earthquake analysis of dams. The model utilizes the wave reflection coefficient
approach which was used by Hall and Chopra (1980). The proposed model is based on the
solution of the wave equation in a sediment layer of viscoelastic material with a constant
thickness overlying an elastic semi-infinite foundation rock. Expressions for the equivalent
reflection coefficient of the reservoir bottom are derived using two alternative approaches.
In the first approach, the compliance function is first obtained from the material properties
of the reservoir bottom. The function is subsequently used to calculate the wave reflection
coefficient of the boundary. In the second approach, the impedance of the reservoir bottom
is used to calculte the equivalent wave reflection coefficient.

Numerical studies were conducted to evaluate the effects of the sediment layer
thickness and material properties as well as characteristics of the underlying rock on the
response of the dam. In addition, the criteria for the significance of the absorption effects at
the reservoir bottom for a given set of mechanical characteristics and the thickness of the

sediment layer are presented.
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2.2 THE PROPOSED MODEL

The foundation of the dam-reservoir system which is assumed as a semi-infinte space
with an overlying layer of sediment materials of constant thickness in the reservoir is
schematically shown in Fig. 2.1. The compliance function, C(w), and the equivalent wave
reflection coefficient, &, (w), of the reservoir bottom are calculated based on the properties
of both the foundation rock and the overlying sediment layer of assumed thickness.

Two separate approaches are presented to evaluate the absorption effect of the
reservoir foundation. In the first approach, the compliance function, C(w), is obtained for the
water-sediment-foundation rock system. Based on the compliance function, the wave
reflection coefficient, o, (w), is calculated. In the second approach, the expression for the
equivalent wave reflection coefficient is derived based on the impedance of the reservoir

bottom which is subsequently incorporated in the corresponding boundary condition.

2.2.1 The Compliance Function Approach
The boundary condition for the reservoir-foundation interaction in a two-dimensional

model of the reservoir in the frequency domain is expressed as (Fig. 2.2):

a—P(x,O;(o) -p, Wy (x;w) =-p
dy

Y (2.1)

where

P(x,y;w) is the complex frequency response function of the hydrodynamic pressure

v, (x;w) is the frequency response function of the total vertical displacement at the surface
of the reservoir bottom due to the water-foundation interaction

Puw is the density of water




® is the frequency of excitation
The continuous function, v,(x;w), is related to the hydrodynamic pressure at the reservoir

bottom by the expression:

v, (x;0) = ~C(w) P (x,0;w) (2.2)

The compliance function, C(w), is obtained through the solution of Helmholz equation

representing the steady-state vibration of the sediment material and the foundation rock:

d*v, (y;w)

Y (@), (;0) =0 (0sys<d)
dy2

dPv,(y;0)
) =0 »2d) (2.3)
Y c

s

where d, is the thickness of the sediment layer and v(y;w) and v(y;w) are the frequency
response functions for the vertical displacements of the sediment layer and the foundation
rock, respectively. The travel speed of longitudinal waves in the foundation rock is C,, and

v,(w) is defined as:

w/C

s

J1+ iwn J/E

where 1, E, and G are the coefficient of longitudinal viscosity, elastic modulus and the

Y, (W) = (2.4)

equivalent travel speed of longitudinal waves in the sediment material, respectively. In Eq.
2.3, the sediment material is considered as viscoelastic overlying an elastic foundation rock

with no material damping. The complex function, y,(®), can be expressed as:



Y (W) =k ~ip, (2.5)

where k, is the wave number in sediment material and p, is the attenuation coefficient. The
wave propagation parameters k, and p, are functions of frequency and can be found by

equating Eqgs. 2.4 and 2.5 which yields:

[P A (@).00' 2 - 1

p (W) > (2.6)
2E _[1 +A[(w)]
and
P00’ (w) ]
k (@) = — [, (@] 2.7
2E [1 + A (w)]
where p, is the density of the sediment material and:
(A
A (w)= i (2.8)
E

For a given frequency of excitation, the wave propagation parameters k;, and p, are known
based on the mechanical characteristics of the sediment material. The response function

v,(y;w) for the sediment layer can be expressed as:

v, (r;w) =v,, (w).exp(-u d).expli(k, ~ip)y]

+v, (W).exp[-i(k,—ip)y] (2.9)
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where v, (w) and v, (w) are the amplitudes of the reflected and transmitted waves in the
sediment layer, respectively. The proposed wave function v(y;w) is obtained based on the
assumption of an exponential attenuation of the transmitted and reflected waves in the
sediment layer as shown in Fig. 2.2. It can be readily shown that v(y;w) satisfies Eq. 2.3.

The response function, v/(y;w), for a semi-infinite, elastic foundation is written as:

vf(y;(.o) = vmf(co).exp( - ikfy) (2.10)

where v, (w) is the amplitude of the transmitted wave in the foundation rock and £, is the
wave number of the travelling pressure wave in the foundation rock. The amplitudes of the
dilatational waves in the sediment layer and the foundation rock are obtained by applying the
conditions of force equilibrium and displacement compatibility at the reservoir bottom and
sediment - foundation boundaries using the response functions of Egs. 2.9 and 2.10. The

compliance function for the reservoir bottom is obtained as:

C(w)=v (0;w)

) i (B+1)yexp(u, +ik)d, - (B -1)exp[-(u, +ik)d] o
E (k,+in) (B+1exp(n, +ik)d, +(B-exp[-(n, +ik)d ] -

where:

B E/‘f

- I (2.12)

and Ef is the elastic modulus of the foundation rock.

From the general expression for the compliance function, the following special cases
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are discussed:
a) Neglecting the viscosity of the sediment layer (attenuation coefficient p, =0), Eq. 2.11

reduces to:

-1 PBcoskd -isinkd,

mO p,C.w Psinkd +icoskd,

C(w) | (2.13)

b) The compliance function for the sediment layer on a rigid foundation rock (£, ~ =) is:

i exp(p, +ik)d —exp[-(u, +ik)d ]
C(w)]g..= —. : : (2.14)
E (k +in) exp(u, +ik)d +exp[-(u, +ik)d]
c) For an inviscid sediment layer on a rigid foundation (p, = 0, £, ~ «):
C(w)= — tank d, (2.15)

L 1 5

The equivalent wave reflection coefficient, ¢, (w), of the reservoir bottom with rigid
foundation can be obtained using Eq. 2.14 as:
1+ ip,C,wC (w)

o, (W)= 2.16
»(©) 1-ip,C,wC (w) (2-10)

which results in:

o (@)]q__=] B (exp(n, +ik)d, +exp[-(p, +ik)d,]) - (exp(n, +ik)d -exp[~(u, +ik)d ]) |
TP B (expa, +ik)d, +expl-(un, + ik)d,]) +(exp(u, * ik,)d, - expl ~(k, +ik)d,)

(2.17)



where
iu C
B'=p_ (1 - . %) (2.18a)
and
C
B, = :‘C‘ (2.18b)

where C, is the traveling speed of waves in water. For an inviscid layer, Eq. 2.17 reduces

to:

B, coskd -isinkd, [

B, coskd +isinkd, '

%, (@) |, -0, p-n = (2.19)

2.2.2 The Wave reflection coefficient approach
An equivalent method may be used to evaluate the absorption characteristics of the
reservoir bottom. The boundary condition at the water-foundation interface can be written

in the form:

[a_P+ iw

3 ﬂ—?Pl |0:0) = " Pu (2.20)

where B,, is based on the material properties of the sediment layer and neglecting the effect
of reflected waves from the foundation rock. For a sediment layer overlying the foundation
rock, P,. is replaced by the frequency dependent equivalent relative impedance, 3, (w), in

the boundary condition at the reservoir bottom, where:
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1 +o, (W)
B, (w) = ——— (2.21)

1 -o, (W)
In Eq. 2.21, () is the overall reflection coefficient of the reservoir bottom which can be
directly obtained from the impedance of the reservoir bottom defined as the ratio of the
acting pressure to the particle velocity at the surface of the boundary. The steady-state
response functions for the incidental, transmitted and reflected pressure waves shown in Fig.

2.2 can be expressed as:

P =exp(-ik y)

P, =P, exp(iky) (y<0)

P, =Py expl~(k, *ik)y]

P =P, exp[- u,(d, -y) +ik’y] (0<y<d)

P9¢=P0,f exp(—ikfy) 6% zd:) (2.22)

where indices i, ¢ and r are used for incidental, transmitted and reflected waves and indices
w, s and f denote water, the sediment material and foundation rock, respectively. &, j=w,s,f
are the wave number of traveling pressure waves in water, the sediment layer and the
foundation, respectively. The response functions of pressure amplitudes are obtained using
the conditions for continuity of pressure and particle velocities across the boundaries as:

at y =0:
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l POrw POu POr:'exp(_p'.rds)

pw CW p\' C" p! CJ pJ’ C.l'
at y=d.:
P, expl-(u, +ik)d] +P .exp(ikd) =P, exp( ~ikd )
P, exp[-(u, +ik)d] -P, .exp(ikd)= B”Pw.exp( -ikd) (2.23)
where
pJCS

(2.24)

P PL,

and p, is the density of the foundation rock. By definition, the wave reflection coefficient,

o, (w), is obtained from the solution of the Egs. 2.23 in the form of (Hatami 1996):
o, (W) =P, | (2.25)

For the case of a rigid foundation rock, Eq. 2.25 yields:

B (expu, +ik)d, +expl—(, *ik)d,]) - (exp(, + ik)d, ~exp[ ~(k, *ik)d,D)

o, (W) =| - , - : !
B,.(exp(n, +ik)d, +exp[~(n, +ik)d,]) +(exp(u, +ik,)d, -exp[~(n, *ik)d,])

(2.26)

Eq. 2.26 is identical to Eq. 2.19 for u,=0. For the case of u, # 0, Eq. 2.26 is equivalent to
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Eq. 2.17 provided that:

«l (2.27)

The condition of Eq. 2.27 can be examined based on the available data on the attenuation
coefficient, p,, of the underwater sediments. Since ,p is a function of frequency, the
dominant coupled frequency of the dam-reservoir system, w',, is selected to be used in Eq.
2.27. A typical cross section of a gravity dam with 91.44 m (300 ft) height and the
downstream slope of 0.78:1 is considered in the present study. The fundamental peak of the
crest response at full reservoir condition occurs in the vicinity of @ =20 rad/s as shown in
Fig. 2.3 which hereafter is referred to as the coupled fundamental frequency of the dam-
reservoir system on a rigid foundation, w',. On the basis of the attenuation coefficient
obtained for natural saturated sediments (Hamilton 1972), the attenuation coefficient of the
sediment material for the fundamental frequency of the dam-reservoir system is calculated
to be: u,=6x10° m™' (2x107 f'). The speed of dilatational waves in the sediments can also
be estimated based on the available measurements (Shumway 1960). For C,=1500 m/s (5000

fps), u,C,/w =4.5x107 « 1 which satisfies condition 2.27.
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2.3 NUMERICAL STUDIES

The results of several numerical solutions for specific cases are presented in two parts.
In the first part, the effect of the sediment layer and the foundation rock characteristics on
the equivalent reflection coefficient is examined. These characteristics include the layer
thickness, the modulus of elasticity and the attenuation coefficient of the sediment material
as well as the modulus of elasticity of the foundation rock. In the second part of the study,
the effect of the sediment and rock characteristics on the dam response is evaluated.

A typical two-dimensional model of a concrete gravity dam monolith with vertical
upstream face, is considered. The dam impounds an infinite-length reservoir of rectangular
shape. With smooth contraction joints, the monolith is assumed to be in plane stress
condition. The height of the monolith is taken to be 91.44 m (300 ft) with the overall
downstream slope of 0.78:1. The modulus of elasticity of the concrete is assumed to be
21500 MPa (3125 ksi) with the Poisson’s ratio of 0.2. The hysteretic damping factor of the
dam concrete is assumed constant for all modes and is taken as 0.1. Only dynamic forces
are considered in the analysis and the effect of the static loads is excluded. Water level in
the reservoir is assumed at the crest level of the dam. The recorded S69E component of the
Kern County earthquake, California at Taft Lincoln School Tunnel on July 21, 1952 was
selected as the free field ground acceleration for the analysis. The same accelerogram input
ground motion was applied in both horizontal and vertical directions.

The analysis was made in the frequency domain using the substructuring technique with
Ritz vectors for the dam substructure together with a continuum solution for the reservoir.
The first ten mode shapes are included for the dam substructure.

Results from experimental measurements on underwater sediments indicate that the

traveling speed of the dilatational waves varies in the range of 1400-1800 m/s (4500-6000
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fps) (Hamilton 1972). Available measured data also indicate that the attenuation, p,, is a first-

order function of the frequency:

u,=bf" (2.28)

where f is the frequency in kHz and & is a constant. The measured values of the
exponent of the frequency, m, in the natural sediments over some widely scattered
geographic areas, various water depths and over a wide frequency range were found to be
very close to one (Hamilton 1972). The constant b, on the other hand, varies considerably
according to the sediment material and its mechanical characteristics such as grain size and
porosity. It is also a function of frequency. Reported measurements on the attenuation
characteristics of marine sediments in the seismic frequency range of excitation suggest that
the value of b isin the range of 0.035 to 0.35.

For the present study, the density of the sediment material was taken as twice the value
for the water. Accordingly, with the speed of dilatational waves equal to C,= 1500 m/s
(5000 fps), the equivalent modulus of elasticity for the sediments are obtained as: E, = p,C,2
= 4500 MPa (653 ksi). The constant b in Eq. 2.28 was assigned the values of 0.05, 0.25
and 0.50. The depth of the sediment layer was varied between 0.9 m (3 ft) (d, /H = 0.01)
and 4.5 m (15 ft) (d /H = 0.05). The modulus of elasticity of the flexible foundation was
taken as 23000 MPa (3333 ksi).
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2.4 RESULTS
2.4.1 Equivalent Reflection Coefficient

The variation of the reflection coefficient of the reservoir bottom, o, (@), with the
characteristics of the sediment layer and the foundation rock are presented in Figs. 2.4 to 2.8.
The effect of the change in the attenuation constant, b, on the variation of the wave reflection
coefficient a, (w) with the thickness of the sediment layer normalized to the depth of the
impounded water, H is shown in Fig. 2.4. The elastic modulus of the material is taken as
E, = 4500 MPa (653 ksi) overlying a rigid and a flexible foundation rock, respectively. The
results are shown for the excitation frequency w = w'.. It is shown that the reflectivity of the
reservoir bottom is reduced with the increase in the thickness of the sediment layer. The rate
and extent of reduction are higher for the case of a rigid foundation. As would be expected,
the overall value of ¢, (w) is lower for the case of a more dissipative soil.

The variation of o, (w) with frequency for selected values of sediment layer thickness
of d,/H=0.01 and d, /H = 0.05 overlying a flexible foundation is plotted in Fig. 2.5. The
frequency is normalized with respect to the fundamental frequency of the reservoir, ',. The
reflection coefficient of the reservoir bottom decreases for higher frequencies of excitation
and is generally lower for a larger attenuation constant. According to Fig. 2.5, the effect of
the attenuation constant is more significant for a deeper layer of sediment.

The effects of the thickness and the attenuation constant of the sediment layer on the
variation of «, (w) with respect to frequency for the case of a rigid foundation rock are
shown in Fig. 2.6. For low values of the attenuation constant, b, the reflection coefficient
of arigid reservoir bottom covered with natural underwater sediments remains slightly below
unity over the dominant range of characteristic frequencies of the dam-reservoir system. This

conclusion is in agreement with the results obtained by Bougacha and Tassoulas (1991b) for
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a fully-saturated poroelastic model for the sediments. On the other hand, for a large value of
the attenuation constant, a noticeable reduction is obtained for sufficiently large thickness
of the layer. The value of the attenuation constant of 5 =0.50 is unrealistically high. In this
case, the significant part of reduction in the equivalent reflection coefficient, o, (w), is at the
higher range of frequencies which is beyond the dominant characteristic frequencies of the
dam-reservoir system.
The effect of the foundation rock flexibility on the variation of o, (w) is shown in Fig.
2.7 for a wide range of rock modulus of elasticity. For a given set of typical sediment layer
characteristics E,, &, and d and for a given frequency of excitation, the equivalent
reflection coefficient of the reservoir bottom increases with the increase of the elastic
modulus of the rock, E,. The value of «,(w) is more sensitive to the variation of the elastic
modulus of rock for lower values of E/E; ratio (Fig. 2.7). The value of a, (w) is lower for
a larger attenuation constant of the sediment material. The variation of «, (w) with E, is
less sensitive to the attenuation constant of the sediment when the underlying rock is closer
to the surface as shown in Fig. 2.7. The effect of the softness of the sediment material,
characterized by its modulus of elasticity, on o, (w) is presented in Fig. 2.8. The overall
reflection coefficient at the boundary increases slightly with the increase in the modulus of
elasticity of the sediment material. The effect of the attenuation constant on variations of
o,(w) with respectto E, and E, is more significant for a lower value of E /E  and a larger
thickness of the sediment layer. From Figs. 2.7 and 2.8 it is also concluded that for the case
of a stiff sedimentation, the value of o, (w) is not significantly affected by the thickness of

the sediment layer.
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2.4.2 Structural Response

Fig. 2.9 shows a plot of the crest acceleration response versus the non-dimensionalized
frequency w/w', where w', is the fundamental frequency of the dam on a rigid foundation
rock with empty reservoir. In the figure, the response function of the dam crest acceleration
for the case of a constant value for «, based on the properties of the sediment material (e,
= 0.35) is compared with the cases where a, (w) is obtained according to the proposed
model for various thicknesses of the layer. The difference in the magnitude of response
between the various cases is quite significant. The difference in the crest acceleration
response even for the high value of 5=0.5 for the attenuation constant may amount to one
order of magnitude. The responses shown in Fig. 2.9 represent the case of a rigid foundation
rock. For a flexible foundation rock, the value of the reflection coefficient is generally lower
than for the rigid case and the effect of variation of the sediment characteristics is less
significant (Fig. 2.10). For low values of the attenuation coefficient of the sediment matenal
the response of the dam is dominated by the characteristics of the underlying rock.

Based on the available measurements of the sediment characteristics, neglecting the
effects of foundation rock underneath the reservoir may significantly underestimate the
reflectivity of the reservoir bottom which results in an unconservative estimate of the
structural response of the dam.

The effect of the modulus of elasticity of the sediment material for selected values that
correspond to typical soft, medium and dense type of soils (Bowles 1984) on the structural
response of the dam was examined. The effects of layer characteristics on the structural
response of the dam are presented in Figs. 2.11 and 2.12 for horizontal and vertical excitation
of the dam-reservoir system, respectively. To restrict the study to the effect of sediment layer

characteristics on the amount of response reduction, the foundation rock underneath the dam
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and the reservoir is assumed to be rigid. The maximum principal tensile stress at the heel of
the dam is selected for the purpose of comparison between various cases. The reduction in
the structural response is represented in terms of the response of the dam for a completely
reflective reservoir bottom (e, = 1.0). Comparing the results presented in Figs. 2.11 and
2.12 indicates that the percentage of response reduction is larger for the case of vertical
ground motion as compared to horizontal excitation of the system. The difference is
significantly reduced with the increase in the modulus of elasticity of the sediment material.
This observation is specially important in the analysis of the response of the concrete dam
to vertical ground motion. The effect of dam - reservoir interaction is reduced when the
bottom of the reservoir is assumed absorptive. The realistic representation of the absorption
effect of the reservoir bottom is important. Based on the results of the present study, the
relative significance of the vertical excitation in the overall seismic response of the concrete
dam is underestimated without the proper attention to the reflected waves from the reservoir

foundation rock.
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2.5 CONCLUSIONS
The wave reflection coefficient approach is modified to model reservoir bottom
absorption effects in the earthquake analysis of concrete dams. The proposed model
explicitly accounts for the effects of wave attenuation in the sediment layer as well as
reflection of waves from the underlying foundation rock. The above effects are in addition
to the radiation of the refracted waves into the foundation which is the only effect that is
normally considered to account for the absorption of pressure waves at the reservoir bottom.
The proposed model provides a representation for the reservoir - foundation boundary that
is consistent with the recent approach for modelling dam-foundation system. Besides, the
proposed method utilizes the mechanical parameters of the layer and the foundation rock that
are more readily available compared with the ones needed in more sophisticated poroelastic
models for the sediment material.
From the analysis presented in this chapter, the following conclusions are arrived at:
1- The overall reflection coefficient of the reservoir bottom increases with the increase of
the modulii of elasticity of the sediment material and the foundation rock. The
dependence of the reflection coefficient, &, (w), on the elastic modulus of the underlying
rock, E, is more significant when the sediment material is stiff with a high modulus of
elasticity, E,, and a low coefficient of attenuation, p,. The reflection coefficient, a, (w),
becomes more significantly dependent of E, in the case of a very soft and dissipative
sediment and a stiffer underlying rock. The reflection coefficient decreases for higher
frequencies of excitation, larger thickness of the sediment layer and for higher values of
the attenuation constant of the sediment material. The effect of the sedimentation
attenuation constant on ¢, (w) is more significant for a deeper layer of sediment. The

value of o, (w) is not significantly altered with the thickness of the sediment layer for
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the case of a stiff sedimentation.
If the wave reflection coefficient at the reservoir bottom is evaluated based on the
characteristics of the sediment material alone while neglecting the effect of reflected
waves from the underlying rock, a significant underestimation of the seismic response
of the concrete dam will result.
Due to the unexpectedly high modulus of elasticity and low attenuation coefficient of the
typical underwater sediments, it is concluded that the response of the dam is not
significantly reduced by the absorption effect of a thin sediment layer, overlying a rigid
foundation rock, compared with the case of a completely reflective boundary.
Accordingly, radiation of refracted waves to the foundation of the reservoir plays a more
important role in the reduction of the dam response than the absorption of the wave
energy within the sediment layer. The above argument is valid with minor differences
for both horizontal and vertical components of the input ground motion. If the absorption
effect of the reservoir bottom is evaluated based on the properties of the sediment
material only, the relative significance of the vertical excitation in the overall response
is underestimated.
The presented observations and conclusions are based on the response analysis of a
specific dam to a single record of ground motion. All the conclusions that are case
specific may not apply to all concrete gravity dams and all ground motions. For example,
the dam-reservoir interaction and reservoir-foundation boundary absorption depends to
a certain extent on the specific dam and ground motion selected. However, the broad

conclusions remain applicable to many cases.
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CHAPTER 3

DAM-RESERVOIR BOUNDARY

3.1 INTRODUCTION

The interface of the dam with the impounded water is an important boundary where
the static and hydrodynamic forces are applied to the dam structure. Theses forces provide
a significant contribution to the seismic response analysis and design of the dam. The
maximum hydrodynamic pressure on the dam when subjected to a moderately strong
earthquake ground motion may reach the magnitude of the hydrostatic pressure (Chopra
1967, Hanna and Humar 1983, Tsai and Lee 1989). Current approaches to the seismic
analysis of dams assume a completely reflective boundary at the dam-reservoir interface.
This assumption may not be realistic since a partially absorptive surface is a closer
representation of the physical characteristics of the dam face boundary.

In this chapter, an analysis of the earthquake response of a concrete dam with a
general boundary condition at its interface with the reservoir is conducted. The commonly
used condition of a completely reflective boundary is replaced with a more general form of
a partially absorptive surface. The resulting boundary value problem is solved and
implemented in the analysis to examine the effect of boundary absorption on the seismic
response of the concrete dam. The analysis is applied to both cases of an infinite reservoir
and a finite-length reservoir subject to horizontal and vertical excitations.

The introduction of an artificial absorptive boundary at the dam-reservoir interface
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represents an attempt for hydrodynamic isolation. The function of the isolation material is
to reduce the hydrodynamic forces transmitted to the dam structure from the reservoir during
an earthquake. Due to its important application in seismic response reduction of the concrete
dam, the effects of the thickness and material properties of the isolation layer on the
structural response reduction are investigated. Practical considerations concerning the design
and installation of the isolation layer are presented followed by the overall conclusions based

on the results of the analysis.
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3.2 EFFECT OF A PARTIALLY REFLECTIVE DAM-RESERVOIR INTERFACE
3.2.1 Theoretical formulation
Infinite-Length Reservoir
The analysis is carried out in the frequency domain using a two dimensional model
of the concrete dam (Fig. 3.1). The substructure method is applied using modal analysis for
the dam structure together with a closed form solution for the infinite-length reservoir
continuum (Fenves and Chopra 1984a). The hydrodynamic pressure in the reservoir is
evaluated by solving the governing pressure wave equation in the frequency domain together
with the appropriate boundary conditions. With the assumption of linearly compressible and
non-viscous water, the small amplitude irrotational vibration of the reservoir is governed by

Helmholtz equation:

?p P
+ +
ox? oy? C:

P=0 (3.1)

where P (x,y,w) is the complex-valued frequency response function for the hydrodynamic
pressure, C,, is the travelling speed of pressure wave in water and w is the frequency of
excitation.

In past studies of the hydrodynamic pressure in the reservoir, the upstream surface of
the concrete dam has been assumed to be completely reflective. However, it is possible to
evaluate the equivalent wave reflection coefficient of this boundary based on the physical
properties of concrete. For typical values of the modulus of elasticity and the specific density
of concrete, E, = 2.24x10* MPa and p, =2.48x10% kg/m?® , the traveling speed of
dilatational waves in concrete, C, , is equal to (E/p.)"? = 3005 nvs. It is assumed that the

specific density and the travelling speed of pressure waves in water are p,, = 1000 kg/m’




59

and C,= 1440 m/s, respectively. The relative acoustic impedance of concrete with respect
to that of water, B,, can be obtained as: B, =p .C./p,C, =5.175. The wave reflection
coefficient, &, which is defined as the relative amplitude of the reflected wave to the
amplitude of the incidental wave normal to the dam-water interface, can be computed using
the relative impedance, B, , as: a,= (B,-1)/(B.+1) = 0.676. The relative impedance, B ., is
calculated based on the assumption that the effect of reflected waves from the downstream
face of the dam on the hydrodynamic pressure at the dam-reservoir boundary is negligible.
Therefore, the magnitude of the wave reflection coefficient, «,, of the concrete dam with
finite thickness is expected to be slightly higher than the calculated value of 0.676.
Traditionally, in studies of the effect of reservoir bottom sediments on the hydrodynamic
pressure, the wave reflection coefficient is normally assigned values in the range of 0.68-
0.85 (Chopra and Chakrabarti 1981, Hall and Chopra 1982, Hall 1986, Staurdi and Prato
1990). These values are higher than the equivalent wave reflection coefficient of the concrete
dam face.

In the present study, a soft layer is assumed to be attached to the upstream face of the
dam. This layer which partially absorbs the incident pressure waves from the reservoir is
referred to as the isolation layer. Due to the finite thickness and geometry of the concrete
dam, the reflected waves from the downstream face of the dam and the dam-layer interface
may slightly alter the equivalent value of the wave reflection coefficient at the upstream face
of the dam. However, the effect of waves reflected back to the reservoir is neglected. It is
assumed that the reflected waves from the layer-dam interface and the downstream side of
the dam are dissipated within the soft layer before re-entering the reservoir. The boundary
condition for the partially reflective surface of the dam covered with a soft layer is written

as:
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oP , NRTZ )
S O»@) =P, [1 -, (.0) + 1212 ¥,0) ¥ ()] (3.2)
where
YY) is a continuous function representing the jth mode shape of the dam
NRTZ is the number of Ritz vectors in the dam-foundation system
Y, (w) is the complex frequency response function of the generalized coordinate
?J(t) with the dots representing time derivatives
qu (y,w) is the frequency response function for the horizontal displacement of the
dam-reservoir interface due to the interaction between the impounded
water and the soft layer attached to the upstream face of the dam
The three different terms on the right hand side of Eq. 3.2 correspond to the free-field
ground motion (rigid-body vibration of the dam in horizontal direction), the acceleration of
the solid particle at the surface of the dam due to the effect of the impinging waves from the
reservoir and the acceleration of the boundary due to the flexible structural response of the
dam, respectively. The response of a solid boundary to the incidental water pressure waves
depends not only on the overall response of the dam structure but also on the soft layer’s
acoustic impedance p,C, where p, is the density of the material and C, is the speed of
travelling dilatational waves in the material. In the case where the soft isolation layer is so
supported that flexible vibrational mode shapes are insignificant, the developed
hydrodynamic pressure in the reservoir is still dependent on the impedance of the wall
material.
The dam-reservoir interface is treated as an absorptive boundary in a similar fashion
to the analysis of reservoir bottom sediments (Fenves and Chopra 1984a). An approximate

one-dimensional model for the absorption of water pressure waves at the surface of the dam
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is considered. In this approximation, the dam is assumed to consist of hypothetically
independent horizontal layers which receive the impinging pressure waves at right angles to
the dam-reservoir interface. The ratio of the intensities of the reflected and incidental waves
from a solid boundary remains virtually unchanged for incidental angle up to about 15°
(Brekhovskikh and Maksimovich 1991). Accordingly, a small angle of inclination for the
incident waves is assumed not to introduce significant errors in the results.

The frequency response function g, (y,w) can be related to the hydrodynamic

pressure at the upstream face of the dam through the compliance function [, (w):

th (y’w) =- Fl ((‘)) . P (OaY9w) (33)

The function I, (w) is obtained from the solution of the wave equation in the isolation layer

subject to the appropriate boundary conditions as:

1

[(w)=
! p,C,w

i (3.4)
where i=V'-1 and C,=(E,/p,)'2. With the substitution of Egs. 3.3 and 3.4 into Eq. 3.2,
the boundary condition at the reservoir-isolation layer interface is written as:

NRTZ

[-é%-+iwq,]P(0,y,o))=—pw[l + 3 bo) ()] 3.5)
j=1

where q, = p.,/p/C,. For the streamwise horizontal ground motion, the boundary conditions

at the reservoir bottom and reservoir free surface are:
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J . _ (3.6)
['a_; -z(:.)qf] P(x,0,w) =0

P(x,H,w) =0 (3-7)

In Eq. 3.6, q,=p,./p/C;, where p, and C, are the mass density and the travelling speed
of dilatational waves in the reservoir foundation, respectively. The frequency response
function P (x,y,w) for the hydrodynamic pressure in the reservoir of depth H, is the
solution of Eq. 3.1 subject to the boundary conditions 3.5 to 3.7 together with the
radiation condition at the upstream boundary of the reservoir. The frequency response
function for the hydrodynamic pressure can be written as:
NRTZ
P(xy,0) =P§ (xy,0) + ¥ if'j(m).Pf (x.y,0) (3.8)
J=1
where P~ (x,y,w) Iis the frequency response function due to the horizontal acceleration of
a rigid dam and P/ (x,y,w) is the frequency response function due to the horizontal
acceleration of the deflected dam associated with the jth Ritz vector. The solutions of the
boundary value problem for the hydrodynamic pressure due to rigid body motion and

flexible response of the dam are:

e A (y,w) (3.9)

. = Co(w) L, (w)
Pixyw) = ~2p,HY —— —
"1 H[G (@) ~(wg )] +ing, K, *104,
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- C(w) I ()
Plyw) = -2p,HY — !

A @) (3.10)
"1 H[C(0) -(wg)) +iog, Kn™i04,

where
Kn = [Cn : ((‘)) - “)Z/szll/z
¢ ,(w) is the nth eigenvalue of the impounded water

A_(y,w) is the nth eigenfunction of the impounded water given by:

1 1 (w)y —1{ (w)y
A (,w) = { + LN - g
() 27 ) [C,(w)+wg Je (£ (w)-wq Je (3.11)
I, (w) and I, (w) are defined as:
| rH
I =— [ "A (y,0)d 12
W)= [0 L0,0)dy (3.12)
l
L@ Yy A, .0y (3.13)

Although Egs. 3.9 and 3.10 account for the contribution of an infinite number of modes in
the hydrodynamic response, the number of significant modes is limited by the highest

frequency of excitation considered in the analysis.

Effect of the Reservoir Length
In the case of a reservoir of finite length, L, a partially absorptive boundary condition
replaces the radiation condition of the infinite reservoir at the far side. The presence of a

reflective boundary at the far end of the reservoir introduces horizontal modes in the solution
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of the hydrodynamic pressure in the reservoir. For a complete solution, the single
summations in expressions 3.9 and 3.10 should be replaced by sets of double summations
over the reservoir eigenvectors in both horizontal and vertical directions. Such a theoretical
solution for a general case of reservoir shape and boundary conditions is not available. In
analogy with Egs. 3.9 and 3.10, however, one may express the solution for the hydrodynamic

pressure in the reservoir of rectangular shape in the form (Hatami and Ghobarah 1995):

kK, Tivg, L, KL K

2 e £
i p (W) I (W) K -iwg,
Plxy.w) = -2p HY, =t (_ i = il _ A (,0)
nel H[pi(m)-(mqf)zl +iwg, K, -iwg, K +iwg, K -iwg, g L
K -iwg, K, -iwq,
(3.14)

where 1, (w) is given by Eq. 3.13 when the effect of ground motion at the far boundary is
neglected. In the case of the rigid body motion of the dam, I, (w) given by Eq. 3.12
replaces I, (w) in Eq. 3.14. Damping coefficients of dam upstream surface, reservoir
foundation and reservoir far boundary are denoted by q,, q, and q, , respectively.

For the case of an infinite-length reservoir (L — « ), Eq. 3.14 reduces to the
expression for the hydrodynamic pressure given by Eq. 3.10. In the case of a finite-length
reservoir confined within solid boundaries, it is expected that the response reduction due to
the partially absorptive dam boundary is more significant than for the case of the reservoir
of infinite length.

The distribution of hydrodynamic pressure in the reservoir of finite length subject to
the horizontal ground motion is represented by Eq. 3.14. A major assumption in deriving
Eq. 3.14 is to neglect the interaction effect of off-diagonal reservoir modes in the horizontal

and vertical directions; i.e., only the diagonal terms in the summations are kept in the series
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expansion of the solution. The problem is also solved using the finite element method
introduced in Chapter 4. The results of the structural response based on the two approaches
are compared to examine the margin of error involved in the approximate closed-form
solution given in Eq. 3.14.

For uniform vertical excitation of the reservoir, the solution for the hydrodynamic
pressure is independent of the horizontal coordinate (Fenves and Chopra 1984a). Such a
solution is not capable of including the variations of boundary conditions along the reservoir
sides; namely, partial absorption of pressure waves into the boundaries. Moreover, the
boundary value problem of the reservoir with general boundary conditions at the sides when
the reservoir is subjected to vertical excitation does not form a separable homogeneous
Sturm-Liouville problem due to the excitation of the reservoir bottom. Accordingly, the latter

problem was tackled numerically using the finite element procedure described in Chapter 4.

3.2.2 Numerical Example

To evaluate the effect of a partially absorptive dam-reservoir interface on the dam
response, a numerical example is analyzed. A typical cross section of a 91.44 m high
concrete dam with a downstream slope of 0.8:1.0, is considered. The upstream face of the
dam is assumed to be vertical. The modulus of elasticity of concrete is taken to be 21,500
MPa and Poisson's ratio is taken to be 0.2. Water is assumed compressible with the
travelling speed of the acoustic wave C,, = 1440 my/s. The ground motion used in the analysis
is the S69E component recorded at Taft Lincoln School Tunnel during 1952 Kern County
earthquake. This earthquake record has been extensively used in the analysis of dams
because the record's predominant frequency coincides with that of many dams.

The dam foundation rock is assumed rigid and the reservoir bottom is assumed to be
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completely reflective. In the case of the finite reservoir, the far boundary is assumed as
totally reflective, Egs. 3.9 and 3.10 were used to obtain the frequency response of the dam
with a partially reflective upstream surface impounding a reservoir of infinite length. For the
case of the finite-length reservoir, Eq. 3.14 as the simplified closed-form solution together
with the finite element procedure introduced in Chapter 4 were used. A simplified
procedure was applied using the first two mode shapes of the dam in the analysis (Baumber
and Ghobarah 1995). The accuracy of the procedure was shown to be satisfactory provided
that the dominant frequencies of excitation are smaller than the frequency of the second
mode of the dam monolith. Since this is normally the case for many concrete gravity dams,

the analysis is considered to be valid for a wide range of practical applications.

Infinite reservoir

The isolation layer contributes to the hydrodynamic pressure reduction as a low
reflection coefficient material. This effect can be isolated by neglecting the effect of the layer
thickness. In the case of a full reservoir with an infinite-length, the main contribution to the
dam response is due to the fundamental mode of vibration of the dam-reservoir system as
shown in Fig. 3.2. With the reflection coefficient ay=2/3, a 40% reduction of response
at the fundamental frequency of the system is obtained. In practical terms, it appears possible
to design an attached soft layer with reflection coefficient e, = 2/3. In terms of stresses,
Figs. 3.3b and 3.3c show a range of 30-40% reduction which brings the maximum
developed stresses below the allowable tensile stress of concrete and reduces the risk of crack

initiation and propagation in the dam monolith.



67

Effect of the reservoir length

The effect of a partially absorptive boundary at the dam face on response reduction
is more appreciable for a reservoir of finite length. For a short reservoir length of L/H = |
with o, = 2/3 for the absorptive layer, the reduction in response at the fundamental
frequency of the dam-reservoir system is approximately 57% (Figs. 3.4 and 3.5). The
amount of reduction decreases for higher values of L/H and remains nearly constant for
L/H > 2. Figure 3.5 shows the relationship between the L/H ratio and the amount of
response reduction at the fundamental frequency of the dam-reservoir system.

The structural response of the dam monolith with a finite-length reservoir shown in
Fig. 3.4 is obtained using the approximate closed-form solution given by Egq. 3.14. The
closed-form solution captures the higher frequency peaks due to the effect of reflected waves
from the far boundary. The corresponding finite element solution, however, indicates larger
number of reponse peaks due to the additional horizontal modes (Fig. 3.6). Comparison of
Figs. 3.4 and 3.6 reveals that the additional peaks are secondary to the principal higher
frequency peaks and do not introduce significant modifications to the monolith response. The
general trend of the monolith frequency response obtained with the finite element procedure
shows a good agreement with the results based on the closed-form solution (Figs. 3.4 and
3.6). The fundamental peak of the crest acceleration response is somewhat (about 20%)
overestimated based on the closed-form expression and does not include the singularity of
response at @ = ', as is captured by the finite element approach (Fig. 3.6). For the case of
o, < 1.0, the aforementioned differences between the two approaches are significantly
reduced.

The monolith response when subjected to vertical ground motion is shown in Fig. 3.7.

The reservoir bottom and far boundary are assumed as completely reflective which is the
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cause of the singular peaks of the response in the figure. The dam boundary is considered
with different reflectivity conditions as shown. From Fig. 3.7, it is concluded that the effect
of an absorptive dam boundary on the reduction of the monolith response becomes more
significant as the L/H ratio is decreased. This conclusion is in accordance with the effect
of a partially absorptive dam boundary subject to horizontal excitation.

Comparison of Figs. 3.6 and 3.7 reveals that the effect of reservoir’s finite length
on the monolith response when subjected to horizontal and uniform vertical ground motions
are different. In the case of horizontal ground motion, a longer reservoir with a reflective far
end introduces a larger number of peaks in the structural response of the dam but has little
effect on the magnitude of the fundamental peak of the response (Fig. 3.6). In the case of the
uniform vertical excitation of the reservoir, the longer reservoir has a more noticeable effect
on the fundamental peak of the monolith response compared to the horizontal excitation but
has little effect on the number of frequency response peaks of the dam (Fig. 3.7). The results
shown in Fig. 3.7 also reveal the dependence of the monolith response on the boundary
condition of the dam-reservoir interface when the system is subjected to uniform vertical
excitation. The latter effect as well as the reservoir length effects are not captured by the
special case theoretical solution for the hydrodynamic pressure currently available in the
EAGD-84 program (Fenves and Chopra 1984b).

Compared with the infinite case, higher modes of reservoir vibration are present in
a limited-length reservoir; a soft dam boundary reduces the response of the dam at higher
frequencies considerably. As the ratio of L/H increases, the number of resonant peaks
increases accordingly; yet, all the amplitudes of the response peaks are reduced due to the

absorption effect of the upstream layer.
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3.3 HYDRODYNAMIC ISOLATION
3.3.1 Introduction

During an earthquake, the contribution of the hydrodynamic pressure to the seismic
response of a concrete gravity dam is significant. The resulting stresses may lead to crack
initiation and propagation inside the dam during a moderately strong seismic event. The
direct approach for response reduction of a concrete dam is to increase its structural damping
to a desired high value. However, due to the nature of the dam structure and the concrete
material properties there is little that can be done on the structural damping aspect of
response reduction. The idea of reducing the hydrodynamic loading on the dam appears to
be a promising approach for seismic response reduction of concrete dams.

In this part of the study, the possibility of reducing the hydrodynamic pressure on the
dam is investigated. An absorptive layer attached to the upstream face of the dam is
considered. The resulting boundary value problem for the hydrodynamic pressure is solved
for the cases of infinite and finite-length, rectangular shaped reservoirs. The response of an
isolated dam is compared with the response of an unisolated dam. The effect of the thickness
and material properties of the isolation layer on the extent of response reduction is evaluated.
A set of criteria is developed for the design of the isolation layer material.

The isolation layer is assumed attached to the upstream face of the dam as shown in
Fig. 3.8. The layer reduces the dam response due to the hydrodynamic effect of the reservoir
in essentially two different ways:

a) The layer serves as a boundary for the reservoir with a low reflection coefficient
which results in reduction in the developed hydrodynamic pressure in the reservoir
compared with the case of a completely reflective boundary. This effect was addressed

in the previous part of the theoretical solution excluding the layer's isolation effects.
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b) The isolation of the dam from the hydrodynamic pressure is the result of the layer
thickness as well as its material properties which alter the amplitude of the transmitted

pressure wave across the layer.

3.3.2 Mathematical Model

The compliance function [;(w) in Eq. 3.4 depends only on the characteristics of the
upstream surface of the layer without any explicit reference to its thickness and the
associated dissipation of the incident waves across the layer. However, in practical terms, a
thick layer introduces an additional decaying effect towards reducing the influence of the
reservoir loading on the dam. With the assumption of a homogeneous and viscoelastic
material for the upstream layer, the one-dimensional wave equation including the material

damping is written as:

Su _& Pu E, u

ot P azaxz-E'Qw (-13)
where
u(xt) is the longitudinal displacement, t is time
n is the viscosity coefficient of the isolation layer
o} is the mass density of the layer material
E, is the Young's modulus of elasticity
X is the spatial coordinate in streamwise direction with the origin at the

upstream face of the dam
Introducing u (x,t) = G (x,w) € in Eq. 3.15 for the steady-state response, the Helmholz

equation is obtained in the form:
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2—
au(—x,(;))_ +Y121_‘-(x’°~)) =0 (3.16)
Ox?
where
Y, = =
{ .
w
Cl(l - ln[ )1/2 (3.17)

The equilibrium condition at the surface of the layer (x=-t,) is:

du _
Elal('ﬁ.w)-l (3.18)

With the soft layer attached to the upstream face of the dam, the kinematic boundary
condition at the dam-layer interface is @ (0,w) =0 . The solution of Eq. 3.16 subject to the

above boundary conditions is:

_ Sin(Y x)
u(x,w)= L . ad (3.19)
E,Y, Cos(YItl)
The resulting pressure on the upstream face of the dam (x = 0) is obtained as:
0(0,w) IS S (3.20)
’ Cos [B(w)] -
where:
wtl
B(w) = -
c, zﬂ,&))m (3.21)

([ +—_
El
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The modulus of the complex-valued pressure, 8(0,w), represents the fraction of the unit
amplitude hydrodynamic pressure transmitted to the upstream face of the dam at the
frequency of w and hereafter is referred to as the transmissibility ratio, TR . Accordingly, the
hydrodynamic terms in the global system of equations for the solution of the generalized
coordinates (Fenves and Chopra 1984a) are multiplied by b(O;w)i .

The effectiveness of the isolation is strongly dependent on the characteristics of the
upstream layer as shown by Eqgs. 3.20 and 3.21. A typical variation of the transmissibility
ratio with respect to the frequency of excitation for different values of the layer viscosity is
shown in Fig. 3.9. The viscosity parameter, f;, is defined in terms of the viscosity coefficient

of the layer, 1, and other mechanical properties as:

Due to the significance of the vibration of the reservoir at its fundamental mode, the
frequency is normalized to the fundamental frequency of the impounded water, w',.
Alternatively, the coupled frequency of the dam-reservoir system at the fundamental mode,
w'., may be used. The frequency range of interest in hydrodynamic isolation is in the
vicinity of w/@', =1 or w/w' =1. In the present analysis, the ratio w/w', is used. The nth

natural frequency of a reservoir of depth H is:
n RCW

W, =2n-1)— (3.23)
2H

Depending on the relative natural frequencies of the isolation layer and the reservoir, the

hydrodynamic loading on the dam may be reduced or magnified. The isolation layer reduces
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the hydrodynamic pressure on the dam in the region where the transmissibility ratio is lower
than 1.0 (Fig. 3.9). This implies that in order to reduce the transmitted pressure to the dam-
layer interface it is necessary that: w,/w', <1 where w, is the first free vibration frequency

of the layer of thickness t, given by:

W, =— (3.24)

[n the frequency range w > ® , where @ denotes the non-zero frequency corresponding to
unit transmissibility ratio, higher viscosity coefficient reduces the efficiency of the isolation.
However, if the viscosity of the layer material is too low, other peak values corresponding
to higher modes result in transmissibility ratios greater than 1.0. In this case, adding the
viscosity to the layer is an advantage because it reduces the magnitude of the higher
frequency peaks as shown in Fig. 3.9. In the case of a very low viscosity of the isolation
layer material, higher frequency peaks occur according to Eqs. 3.20 and 3.21. In the limiting
case of no viscosity, the period of the function o (0,w) in terms of the circular frequency,
w, is 2nC, /t; during which the transmissibility ratio tends to infinity twice. As the viscosity
increases, the imaginary term in the denominator of 0 (w) is increased proportional to &
for the kth higher peak which lowers the contribution of higher harmonics in the plot of the
transmissibility ratio.

The critical values of the layer viscosity, 1, , below which the higher harmonic effect
is significant, can be obtained numerically. The variation of 1, with layer characteristics
is plotted in Fig. 3.10. The viscosity parameter f; is the slope of the 1, curve. The
minimum value of viscosity obtained from Fig. 3.10 can be used to evaluate the minimum

transmissibility of the hydrodynamic pressure to the upstream face of the dam. Figure 3.11
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shows the transmissibility as a function of the frequency ratio, R,, and its variation with the
viscosity of the material in the isolation layer. The lowest transmissibility ratio corresponds

to the curve with f; = ( f; )., The frequency ratio R, can be expressed as:

c,/cC,
R.=
Y

(3.25)

The ratio w/w, (Fig. 3.9) was found to vary in the range of 1.55 to 1.65 which is slightly
different from the expected value of v2. Accordingly, for the upstream layer to reduce the
hydrodynamic pressure on the dam, it is necessary that R,<0.6. For C,=1440 m/s, Eq.
3.25 indicates that:

E t
€, = (=)' < 860(=) (3.26)

P,
The upperbound value for the elasticity modulus to specific density ratio (E, /p,) for the
isolation layer limits the selection of the material to very soft substances in the range of
foams or similar materials. The reason for this is the low frequency range of interest for

hydrodynamic isolation.

3.3.3 Numerical Study

The layer thickness and material properties contribute to the reduction of the
hydrodynamic effects as an isolation medium. Figs. 3.12a to 3.12d show the amount of
response reduction with respect to the frequency ratio R,, for the layer with completely
reflective surface (o;=1.0). Fig. 3.12a indicates the amount of reduction of the fundamental

peak of the dam crest acceleration. Fig. 3.12b shows the percentage reduction of the mean
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value of the crest displacement over a 20s period. Although the maximum displacement of
the dam crest is also reduced due to the effect of isolation, the mean value over a period of
time is selected for comparison purposes because it provides a more reliable measure of
response reduction. The reduction in the maximum tensile stresses in the dam due to the
isolation is shown in Figs. 3.12c and 3.12d. The response reductions for the case of a layer
with a partially reflective surface (o, = 2/3 ) are shown in Fig. 3.13.

The frequency response function of the crest acceleration for the two limiting cases
of full reservoir with no isolation layer and dam without reservoir are compared in Fig. 3.14.
The presented results are based on a material of assumed p,= 1500 kg/m?® and E,= 500 kPa.
In the case of a thin isolation layer (t,/H = 0.01), the response reduction of the dam is mainly
dependent on the wave reflection coefficient of the surface of the isolation layer, ¢, (Fig.
3.2). With lower ¢, , lower hydrodynamic pressure at the fundamental frequency of the
reservoir develops. As both the softness and the thickness of the isolation layer is increased
(lower R, in Fig. 3.13a,t /H=0.02 in Fig. 3.14), the peak of the acceleration response
approaches the peak of the no-reservoir case with larger magnitude. It appears that for low
value of ¢, , softer isolation layer reduces the amount of reduction of the peak frequency
response value of the dam crest acceleration (Fig. 3.13a). In terms of overall crest response
as well as developed stresses in the dam, however, this does not necessarily result in a lower
response reduction. A major factor is the ratio of the dominant frequency of the input
earthquake to w'.. Fig. 3.15 shows the frequency spectrum of the S69E component of the
1952 Taft earthquake. From the figure, the dominant frequency of the record is in the vicinity
of 14 rad/s. Since the fundamental frequency of the dam without the reservoir (w', = 25.03
rad/s) is farther away from the dominant ground motion frequency than the coupled

frequency with full reservoir (w'. = 19.25 rad/s), a thicker and softer isolation layer results
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in more reduction of the maximum tensile stress in the dam and the crest displacement as
shown in Figs. 3.12 and 3.13.

A soft isolation layer with low value of R/, suppresses the effect of reservoir in the
overall response function of the dam-reservoir system and shifts the fundamental frequency
of the system from the coupled frequency of w'. to the fundamental frequency of the
concrete dam without the reservoir, w' as shown in Figs. 3.16a and 3.16b. The direction
of the frequency shift is in accordance with the experimental results of As'kov er al. (1992)
and Gellis er al. (1992). As the isolation layer becomes softer and thicker, the two separate
peaks at w'. and w', get closer to each other and eventually form a single peak at w'; (Fig.
3.14). Although this effect suppresses the fundamental peak of the reservoir to a considerable
extent, higher-frequency peaks of the structure spectrum become significant. The effects of
the thickness and material type of the isolation layer are presented in Fig. 3.17. For a given
type of the isolation material, a thicker layer results in higher reduction of the dam response.
The effect of the layer thickness is more significant for lower values of 1/C;.

The amount of reduction of the maximum tensile stresses in the dam near the heel and
at the downstream side of its cross section is more than 60% for R <0.1 (Figs. 3.12 and
3.13). It follows that provided w, is less that 10% of w), the dam is essentially isolated
from the dynamic effect of the impounded water. This conclusion can also be made by
examining Fig. 3.11.

Based on the results of the analysis, a guideline for the design of the isolation layer
may be suggested. The isolation layer can be designed on the basis of the expected
predominant frequency content of the ground motion at the dam site and coupled frequency
of the dam-reservoir system. The objective is to shift the dam-reservoir coupled frequency

away from the frequency range associated with a high seismic energy. The range of variation
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for the material properties can be obtained from Figs. 3.17 to 3.19 together with Eq. 3.26.
The performance index for selection of the material is its equivalent travelling speed of
dilatational waves denoted as C,. According to Eq. 3.26, a combination of the material

density and modulus can be chosen for a given thickness of the isolation layer.

3.3.4 Practical Considerations
Material

At the low frequency range needed for the hydroseismic isolation, only very soft
materials provide effective isolation. Foams and other soft polymers may be regarded as the
practical categories of appropriate materials. This can be observed in Fig 3.18 where
various materials are mapped according to the performance index E/p. As shown in the
figure, the E/p ratio of the elastomer materials including rubber is very close to the
appropriate range according to Eq. 3.26. The ranges of various mechanical properties of
foams and elastomers are also shown in Fig. 3.19. On the basis of the available ranges of
material properties and based on the criterion given by Eq. 3.26, the design of the
appropriate isolation foam material can be made. The ranges of mass density and modulus
of elasticity of the isolation material considered in the numerical example are shaded in Fig.
3.19. As a practical example, for H=100 m, t,=2.5 m, p,= 1300 kg/m* and E,=0.5 MPa
Eq.3.26 yields: (E,/p)"*=19.6 m/sand 860(t,/H) =21.5 m/s and therefore, condition
3.26 is satisfied. Table 3.1 includes some information about the mechanical properties of
rubber materials.

The amount of response reduction is dependent on the damping of the isolation layer.
The damping parameter considered in the present analysis is a theoretical value that takes

into consideration the decay of the pressure amplitude across the thickness of the layer. A
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realistic value for the equivalent damping coefficient of a specific selected material should
be determined by experimental measurements within the appropriate frequency range. A
practical solution for a soft isolation layer can be in the form of a composite layer made of
a soft core placed inside a stiff external crust which faces the reservoir. This upstream crust
can be supported on the dam upstream face at properly designed spans such that it can resist

the hydrostatic pressure with negligible deformation.

Location

The isolation layer can be installed at the upstream face of the dam either attached to
its surface or at a short distance away from the dam. If the layer is not attached to the dam,
it may be supported by a floating cap at the reservoir surface and moored to the dam for
stability. The supporting pontoon cap and attachment sysiem have to be designed for the
effect of floods, floating debris and fluctuations of the water surface level due to the reservoir
operation. In the present study, the isolation layer was assumed to be attached to the

upstream face of the dam.
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3.4 CONCLUSIONS

The effect of a partially absorptive boundary at the dam-reservoir interface on the

amount of response reduction of a concrete gravity dam when subjected to earthquake is

examined. The commonly used boundary condition for the interface of the dam and reservoir

is modified to account for the effect of the relative impedance of the solid boundary to water

in addition to the effect of the structural flexibility of the dam. Based on the results of the

analysis, the following conclusions are reached:

1.

9

The use of an absorptive layer attached to the upstream face of the dam, in the form
of hydrodynamic isolation, provides an effective means of reducing seismic response
of concrete gravity dams. With an absorptive layer at the upstream side of the concrete
dam, the anticipated seismic stresses in the dam may be reduced.

The amount of reduction in the hydrodynamic pressure transmitted to the dam
depends on the sofiness and thickness of the absorptive layer as well as on the
reflection coefficient of its surface. The layer thickness and softness influence the
dissipation of the transmitted pressure across the layer.

In the case where the reservoir is limited at its upstream end, hydrodynamic isolation
is more effective in reducing the response of the dam. The reservoir length effects are
noticeable for reservoir length/height ratio, L/H <2 with more response reduction for
lower L/H values.

It is concluded that the foam or polymer isolation layer provides an alternative system
to the air curtain scheme in seismic response reduction of concrete dams. With the
proper design of the isolation layer, it appears possible to suppress the effect of the
reservoir without increasing the peak response amplitude at the higher frequencies of

the dam-reservoir system.
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5. It is possible to include the proposed system in the design of new dams as well as the

rehabilitation of existing dam structures.



Table 3.1 - Properties of low-stiffness elastomers (rubber) (from CMS 2.0)

Property Range of Variation
Density (kg/m?) 850 - 1340
Bulk Modulus (MPa) 1500 - 2000
Compressive Strength (MPa) 10 - 30
Elastic Limit (MPa) 5-15
Poisson's Ratio 0.495 - 0.499
Shear Modulus (MPa) 02-1.0
Tensile Strength (MPa) 5-15
Young's Modulus (MPa) 0.5-3

Price (£/kg , 1975) 0.45-1.5
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Crest acceleration response of a dam with a partially absorptive
upstream face and impounding an infinite-length reservoir
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Fig. 3.4
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CHAPTER 4

RESERVOIR WITH PARTIALLY ABSORPTIVE BOUNDARIES

4.1 INTRODUCTION

In the previous chapters, analytical models were developed to examine the effects of
the absorption of hydrodynamic pressure waves at individual sections of the reservoir
boundary. The study was limited to the special case of a rectangular-shape reservoir where
a theoretical solution for the associated boundary value problem can be obtained. For the
case of a reservoir of arbitrary shape, the hydrodynamic pressure may only be obtained by
the numerical solution of the governing equation subject to the specified boundary
conditions. In addition, there is no closed-form solution available for the case of a
rectangular-shaped reservoir of compressible water with a partially absorptive interface with
the flexible dam when the dam-reservoir system is subjected to vertical ground motion. The
case of a reservoir with a partially absorptive interface with the dam under horizontal ground
motion is addressed in section 3.2 of the present study.

In this chapter, a general case of the boundary value problem for the hydrodynamic
pressure in the reservoir is addressed. A reservoir of any arbitrary shape and absorptive
boundaries is modelled in two dimensions. Both horizontal and vertical ground motion

components are included in the analysis.

101



4.2 THE BOUNDARY VALUE PROBLEM OF THE RESERVOIR
4.2.1 Governing Equations

The hydrodynamic pressure developed during the small-amplitude vibration of the
inviscid reservoir water is obtained from the solution of the two-dimensional Helmholz
equation (Eq. 3.1):

?p P . w?

—_— et —— _=0

ox? oy? ¢?

w

The solution of the governing partial differential equation is subject to the following
boundary conditions:

- along the solid boundanes:

g—P(s,m) - D(W) P (5,@) = =P, i, (5) @.1)
n

- at the reservoir free surface:

P(x,Hw)=0 (4.2)

where w is the frequency of excitation, P(x,y,w) is the amplitude of the steady-state
hydrodynamic pressure and p, is the density of water. The depth of the reservoir water is
denoted by H. The local coordinate along the reservoir solid boundary and the inward
normal direction into the fluid are denoted by s and n, respectively. The normal
acceleration of the reservoir boundary is denoted by ii,(s). D(w) is a complex-valued,
frequency dependent function which represents the refraction of incoming pressure waves

to the reservoir surrounding boundary. Along the absorptive part of the reservoir boundary,



103

the function D(w) reduces to:
D(w) =iwg 4.3)

where g is the absorption coefficient of the boundary. The function D(w) contributes to
the added damping of the dam-reservoir system. The two-dimensional model of the reservoir
with absorptive boundaries is shown in Fig. 4.1. Although the approach is general and is
applicable to a reservoir of any arbitrary shape, for simplicity a rectangular reservoir is
assumed in the present study. The absorption coefficients of the dam-reservoir interface,
reservoir bottom and the reservoir upstream far-end are denoted by gy, ¢,, g, , respectively.
The symbols &, and §,,/ =x,y in Fig. 4.1 are the Kronecker delta. The reservoir is
assumed to be of limited length. In the analysis, the following assumptions are adopted:

* The impounded water is assumed compressible and inviscid.

* The effect of surface waves is neglected.

*  The depth of water is assumed equal to the height of the dam.

* The dam is considered to be flexible; its deformation is approximated using its

first few modes of vibration.

* The foundation of the dam and the reservoir is semi-infinite and elastic.

4.2.2 Reservoir Upstream Boundary Condition
The boundary condition at the far end of the finite-length reservoir model (x = L) can

be expressed as:

g—i(L,y,co) -ig, P (Ly,w) = -p, (4.4)
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where g, is the absorption coefficient of the far end boundary which is obtained as:

1 u
—_ 4.5
:w(l+ u) “>)

q9,~

where C, is the travelling speed of the compression wave in water and e, is the reflection

coefficient of the far end boundary. For the case of a stationary far end boundary, the right
hand side of Eq. 4.4 is zero as is shown in Fig. 4.1. The excitation of the reservoir far
boundary can also be included in the procedure. In the present study, however, the effects
of the motion of the far end of the reservoir are excluded. The effect of different input ground
motions at the dam and far end boundaries of the reservoir has been examined in a few past
studies (Newmark and Rosenblueth 1971, Aviles and Sanches-Sesma 1989, Baumber 1993).

In the case of an infinitely long reservoir model, the partial absorption boundary
condition at the far end may be replaced by an appropriate condition for the radiation of
pressure waves to the upstream far field. In the present study, the limited reservoir far end
boundary condition is chosen so as to investigate the effects of reservoir aspect ratio on the
monolith response. However, radiation conditions proposed by Sommerfeld (Zienkiewicz
et al. 1977) and Sharan (1992) are examined to verify the results of the hydrodynamic
response of a truncated finite element model of the reservoir with the available closed-form
solution for a semi-infinite fluid domain under horizontal excitation (Fenves and Chopra
1984a).

The radiation condition in the truncated model of an infinite length reservoir can be
considered as a special case of the refracting boundary condition with no reflection of waves

to the reservoir from the truncated boundary. If the striking waves are assumed to be

completely absorbed at the far end boundary, the reflection coefficient, «,, is set to zero and
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Eq. 4.4 reduces to the Sommerfeld boundary condition:

doP

iw
_x(Lay,w) - E—P(Lvva) =0 (46)

w

In Eq. 4.6, the function D(w) equals to:

iw
D(w) =—
(w) c (4.7)

w

The basic assumption involved in Sommerfeld boundary condition is that the striking
pressure waves at the truncated boundary are planar and normal to the boundary. For a
general irregular shape of the near field of the reservoir, this needs a long uniform channel
to be included in the discretized model of the reservoir. In the present study, a radiation
condition proposed by Sharan (1992) is also examined in the truncated model of the semi-
infinite reservoir to investigate the performance of an alternative radiation condition in a
dam-reservoir model which includes a deformable dam and an absorptive reservoir bottom.

Sharan radiation condition is expressed as:

g_P(L,y,w) il P(L.y,w) (4.8)
X
where

K (@) "\ G —(—(Z,H)z (4.9)

The parameter k, (w) in Eq. 4.9 is expressed in terms of the first eigenvalue of the
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impounded water, (,, in the series expansion of the hydrodynamic pressure response in the

form:

K, x/H

P(xy,w)=Y, 7, (nw()e (4.10)
n=1

In Eq. 4.10, .7, is a function of the complex value ;{ and the elastic and geometrical

properties of the dam-reservoir system in the near field. The eigenvalue ¢, is the first

complex root of the equation

¢, _ 94 ¢,
o.)q/.H +C"

e 4.11)

where ¢, is the absorption coefficient of the reservoir foundation. The function D(w) in this

case takes the form:

D(w) = %K, (w) (4.12)

For the case (, =0, Eq. 4.8 reduces to Sommerfeld boundary condition (Eq. 4.6).
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4.3 THE SOLUTION TECHNIQUE

A computer program for dynamic analysis of dams (DAD-96) is developed for the
case of concrete gravity dams of finite reservoir with absorptive boundaries. The numerical
solution technique utilized in DAD-96 is an adapted version of the computer program
EAGD-84 developed by Fenves and Chopra (1984b). The program EAGD-84 is a versatile
program which includes the effects of the structure and foundation flexibility as well as
water compressibility. The program is based on the theoretical solution for the special case
of an infinitely long, rectangular-shaped reservoir. The only absorbing boundary included
in the program is the reservoir bottom where an approximate reflection coefficient, o, ,
accounts for the effects of this boundary on the monolith structural response. The reservoir-
foundation boundary is addressed in chapter two where the proposed analytical model
includes the effect of a layered reservoir foundation. It is concluded that the proposed model
is a more realistic representation of the bottom boundary and leads to a more reliable
selection of the reflection coefficient.

The closed-form solution of the hydrodynamic pressure under vertical ground motion
currently used in the EAGD program (Fenves and Chopra 1984a and 1984b) does not
account for any variation of the reflection coefficient, the reservoir depth and the boundary
conditions along the streamwise direction. The solution is based on the special case of a one
dimensional, vertical excitation of the reservoir with the assumption of a completely
reflective boundary at the upstream face of the dam. In the case of an isolated dam with a soft
layer at its upstream face, the interface of the dam and the reservoir is partially absorptive.
With a more general boundary condition at this boundary, the current closed-form solution
for the resulting hydrodynamic pressure is not valid.

In order to enhance the ability of the program DAD-96 to apply to a general
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reservoir shape and set of boundary conditions, a finite element program was developed for
the computation of the required hydrodynamic terms in the reservoir. The finite element
procedure outlined by Hall and Chopra (1980) was chosen for this purpose. The developed
computer code was incorporated into the DAD-96 program to replace the related routines
based on the closed-form solution for the reservoir used in EAGD-84 approach. The output
of the developed finite element routine includes the frequency dependent hydrodynamic
terms due to the vibration of the dam by a specified number of monolith's modes of vibration
as well as excitation of the reservoir bottom boundary. The output terms of the finite element
routine are input to the main program to formulate the frequency dependent sets of equations
of the dam-reservoir-foundation system.

In the finite element model, one-dimensional damper elements are included to account
for the refraction of the impinging waves at the finite-length reservoir bottom and end
boundaries. The damper elements are two-noded and coincide with one side of the four-
noded, isoparametric elements of the fluid domain at the vicinity of the solid boundaries.
Variation of the wave reflection coefTicient at different sections of the surrounding reservoir
boundary can be readily accommodated using the above damper elements. The dynamic
loading from the reservoir surrounding boundary is also introduced through one-dimensional,

two-noded boundary elements.
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44 VERIFICATION OF THE SOLUTION PROCEDURE
The developed finite element program is examined for the validity of the resulting
outputs before it is applied to the case studies. The verification procedure includes comparing
the results of the hydrodynamic terms and the structural response of the dam with the cases
where theoretical solutions are available. The results of parametric studies are also presented
which include the effects of the reservoir mesh refinement, the number of structural modes
of vibration as well as the effects of foundation flexibility and absorption of hydrodynamic

pressures at the reservoir boundaries.

4.4.1 Hydrodynamic Pressure in the Reservoir
Comparison with theoretical solutions

Fig. 4.2 shows a rectangular-shaped reservoir subjected to a unit-amplitude, time-
harmonic vertical ground motion. The bottom of the reservoir is partly reflective with the
reflection coefficient, &, and is under uniform excitation. The presented case is the simplest
model for which a closed-form theoretical solution is available. The solution for the resulting

hydrodynamic pressure in the reservoir is given as (Fenves and Chopra 1984a):

C -
P (Oyw) = 22 ' sin 2L 2Y)
© _  OH c. (4.13)

. WH
+iq fC , Sin
w CW
where y is the vertical coordinate which is measured upward from the reservoir bottom.
A rectangular, 100 m deep reservoir is considered in the analysis. The mesh width

representing the column of water, a, subjected to vertical excitation is taken as 10 m. Fig.

4.3 shows comparison of theoretical predictions of the frequency response of the
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hydrodynamic pressure with the response obtained utilizing the finite element procedure for
a set of selected values for the bottom boundary reflection coefficient, «,. In the figure, the
absolute value of the hydrodynamic pressure normalized to the maximum hydrostatic
pressure (|P,|/P,,) is plotted vs the normalized frequency of the input ground motion. The
fundamental frequency of the reservoir is denoted by w',. It is concluded that the results of
the finite element solution are in good agreement with the theoretical solution for different
values of the reflection coefficient for the reservoir bottom. The only difference between
figures 4.3a and 4.3b is an expected slight frequency shift of the response peaks to higher
frequencies in the results of the finite element solution. The finite element discretization of
the reservoir is based on a linear variation of the hydrodynamic pressure along the sides of
the finite elements. This linear approximation makes the resulting reservoir model to be
stiffer than the corresponding theoretical model. Consequently, the associated natural
frequencies of the reservoir are slightly higher (negligible difference for the fundamental
frequency and 0.7% higher for the second resonance frequency) than the ones obtained
based on the theoretical approach.

The theoretical solution for the hydrodynamic pressure in Eq. 4.2 is based on the
assumption of a completely reflective boundary at the upstream face of the rigid dam and a
finite amplitude of pressure at the far field. The above conditions form a special case of
solution for the resulting hydrodynamic pressure which is virtually independent of the spatial
coordinate in the horizontal direction. As a result, the solution is independent of the reservoir
length-to-depth ratio as verified by the finite element procedure (Fig. 4.4).

For the case where the reservoir is subjected to horizontal excitation, the theoretical
solution is based on a series expansion of the reservoir eigenvectors (Fenves and Chopra

1984a). For the case of a rigid dam, the expression for the hydrodynamic pressure in the



111

reservoir, P;* (x,y,w), can be expressed in the form of Eq. 4.10 where:

¢ (w) I, (@)

HICh (@) ~(0g )] +i(wq,) [C(w) -w?/C1"

7,00, =-2pH A (y.w)

(4.14)

in which A, (y,w) and [,(w) are given by Egs. 3.11 and 3.12, respectively. The rest of
the parameters are as defined in section 3.2.1. The distribution of the hydrodynamic pressure
along the dam height is obtained by evaluating Eq. 4.10 at the dam upstream face (x = 0).

Fig. 4.5a shows the response of the hydrodynamic force on rigid dam subjected to
the harmonic horizontal excitation for the case where «, varies between 0.0 and 1.0.
Figure 4.6a shows the corresponding set of response results under vertical ground motion.
The reservoir length to depth ratio is L/H = 5. In the above figures, the hydrodynamic force
on the dam normalized to the hydrostatic force (|F,,|/F,) for unit width of the monolith is
plotted vs the normalized frequency of the input ground motion. The undulatory
characteristic of the response curve for «, = 1.0 in Fig. 4.5a is due to the effect of
reflected waves from the far boundary. The influence of the reflection coefficient of the
reservoir bottom, ¢, , is represented by different curves in the figure. The results shown in
Figs. 4.5aand 4.6a are in good agreement with the resuits of the theoretical solution given
by Fenves and Chopra (1984a) for both horizontal and vertical ground motions (Figs. 4.5b
and 4.6b). The frequency response function for the hydrodynamic force on the rigid dam
subjected to the horizontal ground motion is virtually independent of the length of the
truncated reservoir model for sufficiently large L/H ratios (say, L/H > 5). However, for the
case of completely reflective bottom boundary (o, = 1.0) the number of additional peaks in

the hydrodynamic response of the limited length reservoir increases with the L/H ratio in



the finite element model of the reservoir (cf. Figs. 4.5a and 4.7).

The effect of the far boundary on the number of additional response peaks is illustrated
in Fig. 4.8. The responses of the hydrodynamic force on the rigid dam when subjected to
horizontal ground motion are shown for the cases of a completely reflective (e, = 1.0) and
a completely absorptive (¢, = 0.0) far boundary. The response peaks associated with
reservoir vertical modes are less affected by the refraction of pressure waves at the far
boundary in comparison to the significant suppression of the additional peaks due to the
horizontal modes of the finite-length reservoir. This suppression effect is more significant
for a lower L/H ratio as shown in Fig. 4.8. [n Fig. 4.8, the dam-reservoir boundary and the
bottom of the reservoir are assumed to be completely reflective.

For the case of vertical ground motion, a completely reflective far boundary and dam-
reservoir boundary (a,= &, = 1.0) result in a special solution for the hydrodynamic pressure
similar to the one given by Fenves and Chopra (1984a) for the case of an infinitely long
reservoir. This solution is virtually independent of the horizontal coordinate. The response
of the hydrodynamic force on the dam remains unchanged for different L/H ratios and no
additional peaks due to the horizontal modes appear (Figs. 4.9 and 4.10). The hydrodynamic
response is the same as the curve corresponding to o, =1.0 in Fig. 4.6a. In Fig 4.9, the
dam-reservoir boundary and the bottom of the reservoir are assumed as completely reflective.

When the reservoir far boundary is assumed absorptive, the problem is two-
dimensional and additional peaks due to the finite length of the reservoir appear (Fig. 4.9).
The number of additional peaks increase with L/H ratio similar to the case of horizontal
excitation. For partially absorptive reservoir sides (¢, < 1.0 and a,< 1.0), the slope of the
frequency response function of the hydrodynamic pressure, dP(x,y,w)/ on , at the dam and

far end boundaries is non-zero (Fig. 4.1). Accordingly, the special case of the one-
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dimensional response of the impounded water with completely reflective boundaries at its
sides is replaced by a two-dimensional reservoir response which includes coupling effect of
horizontal and vertical modes. The coupled horizontal modes are less significant for the
symmetric case of o, = o, < 1.0 (Fig. 4.10) as compared to the non-symmetric case of «, =
o, (Fig. 4.9) where a stronger two-dimensional behaviour is expected from the reservoir.
From Fig. 4.10 it can be concluded that the absorption effect of the reservoir side boundaries
is more significant for a lower L/H ratio. This conclusion is in agreement with the results of
studies including an absorptive dam-reservoir interface in section 3.2.2.

In Figs. 4.9 and 4.10, there is a slight frequency shift in the hydrodynamic response
of the reservoir subjected to vertical ground motion as the reflection coefficients of its side
boundaries are decreased. This behaviour is opposite to the direction of the frequency shift
of the response peaks in Fig. 4.6 which represents a typical trend in the response of the
systems subjected to the harmonic loading. In Fig. 4.6, as the reflection coefficient, o,
decreases, the reservoir substructure remains unchanged except for an increased damping
ratio which results in a lower value for the response peak and a slightly lower resonance
frequency. In Figs. 4.9 and 4.10, as the reflection coefficients of the reservoir sides
decrease, the behaviour of the impounded water excited by the uniform vertical ground
motion becomes more two-dimensional which leads to higher frequencies of free vibration
for the resulting system. Nevertheless, the lower reflection coefficients along the reservoir
boundaries reduce the response peaks of the system as compared to the case of completely

reflective boundaries at the sides.

Mesh refinement analysis

In order to select an appropriate mesh size for the finite element analysis of the dam-
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reservoir system, a study is made on the effects of the mesh size on the hydrodynamic
pressure response in the reservoir. The main factor in selecting the mesh refinement for
computation of the response of the hydrodynamic pressure is the maximum frequency of
harmonic excitation included in the analysis. According to Lysmer and Kuhlemeyer (1969),
the characteristic size of a finite element in the solution of a wave propagation problem in
a continuum should be limited to one twelfth of the minimum wave length considered in the
analysis. In this study, the upper bound cut-off frequency in the closed-form solution of the
hydrodynamic pressure is selected as f= 25 Hz. The frequency interval 0 < f< 25 Hz
covers the significant part of the seismic frequency range in earthquake response analysis of
the structures. The results of the analysis within this frequency range are comparable with
those reported by other researchers (Fenves and Chopra 1984a and 1985).

The wavelength of pressure waves in water associated with the frequency of f=25
Hz is obtained as: A = C, /f= 1420/25 =57 m which suggests a characteristic size of a =
5 m for the finite element mesh. Table 4.1 shows the relationship between the maximum
excitation frequency included in the analysis in terms of the reservoir eigenfrequencies and
the corresponding characteristic length of the finite element mesh.

The margin of error associated with the selection of a coarser mesh size is
investigated. The results of the response of the hydrodynamic pressure at the reservoir
bottom and the hydrodynamic force on a rigid dam subject to a harmonic vertical ground
motion are presented in Figs. 4.11 and 4.12, respectively. Two different mesh sizes of a =
5and 10 m equivalentto a=0.05 H and a=0.10 H are used where H denotes the depth
of the reservoir. The results of the hydrodynamic response remain virtually unaffected by the
reservoir mesh size for the frequency range of ® < 4w',. The above frequency interval

includes the first two peaks of the frequency response of the reservoir. Results of a case study
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in section 4.4.2 show that maximum stresses in the dam do not significantly change by
including more than the first two reservoir mode shapes in the analysis. Consequently, for
the application of stress analysis of the dam and according to the criterion proposed by
Lysmer and Kuhlemeyer, the mesh size of a =10 m (a = 0.10 H) corresponding to
including the first two reservoir mode shapes in the analysis is used towards a resulting

saving in the computation time.

4.4.2 Structural Response of the Dam
Comparison with theoretical solutions

Figs. 4.13 and 4.14 show the finite element discretizations of the two-dimensional
model of the reservoir with aspect ratios of L/H=2 and L/H=S, respectively. The one-
dimensional loading and damping elements at the reservoir surrounding boundary are also
shown in the above figures. Fig. 4.14 includes two different mesh sizes of the reservoir
model. Fig. 4.14a contains a uniform mesh identical to the mesh shown in Fig. 4.13 for
L/H=2 which is extended to the length of SH. A different finite element discretization for
the case of L/H=5 is considered as shown in Fig. 4.14b to reduce the number of elements
in the fluid domain. The number of fluid quadrilateral elements in Fig. 4.14b is reduced to
216 compared with 360 elements in the uniform mesh shown in Fig. 4.14a. The number
of one-dimensional loading and damping elements are also reduced from 42 and 54 to 30
and 42 elements, respectively. The loading elements are considered along the dam-reservoir
interface and the reservoir bottom. The damping elements are included over the entire solid
boundary of the reservoir model.

The structural response of the dam impounding the reservoir of L/H=5 for the two

discretization models shown in Fig. 4.14 are compared to examine the margin of error
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associated with replacing the uniform finite element mesh with a mesh with fewer number
of elements. Fig. 4.15 shows a comparison of the crest acceleration response of the dam
subjected to horizontal ground motion using the above two reservoir models. The
acceleration of the dam crest is calculated for the unit input acceleration to the model.
Maximum tensile stresses at locations of the dam monolith that are more prone to crack
initiation are shown in Table 4.2. The finite element discretization of the dam monolith
together with the elements with the highest stresses across the monolith section are shown
in Fig. 4.16. The locations of the elements of maximum tensile stress in Fig. 4.16 are in
accordance with the reported evidence of crack locations in the dams that have undergone
severe ground motions (Pekau 1951, Ahmadi 1992).

The selected ground motion is the longitudinal component of Nahanni earthquake in
Northwest territories, Canada on December 23, 1985 with the PGA of 1.1g recorded at
[verson (Naumoski et al. 1988). The 1985 Nahanni ground motion record is selected as one
of the available strong ground motion records in Canada with high frequency content. It is
expected that the conclusions based on the above mentioned record are also valid for the
records with lower peak values. The Nahanni accelerogram has a PGA/PGYV ratio (Peak
acceleration in g's to maximum velocity in m/s) of 2.38. The record is scaled to the PGA
of 0.35g for the analysis so that the maximum stresses remain within the uncracked range
of the material behaviour. The selection basis for the mechanical strength of the monolith
concrete is discussed in Chapter 5. The scaled record of Nahanni earthquake is shown in
Fig. 4.17.

The foundation of the dam is assumed as rigid and the reflection coefficients of the
reservoir bottom and the far boundary are chosen as «,=0.9 and a,= 0.0, respectively. The

structural response of the dam is approximated using its first six mode shapes. The effects
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of hydrostatic loading and the weight of the monolith are included in the computation of the
stresses.

According to Fig. 4.15 and Table 4.2, the results of the dam crest acceleration
response and developed stresses in the dam are virtually unchanged after replacing the
uniform mesh shown in Fig. 4.14a with the nonuniform mesh of Fig. 4.14b. It is concluded
that the selected finite element discretization shown in Fig. 4.14b can be satisfactorily used
for further analysis of the reservoir model with L/H = 5. The number and size of transition
elements are appropriately selected so as not to develop noticeable spurious reflections
within the fluid domain (Celep and Bazant 1983).

Seismic response of short-period structures, such as concrete gravity dams, is
essentially due to the fundamental mode of vibration. Accordingly, The response of the dam
based on the fundamental mode is studied here as the initial step of the solution procedure
verification with regard to the structural behaviour of the dam. Fig. 4.18 shows the crest
acceleration response of the dam monolith on rigid foundation under horizontal excitation
using the fundamental mode of the dam for the approximation of the structural response. The
finite element solution results corresponding to different L/H ratios are compared with the
response of the dam impounding an infinitely long reservoir based on a closed-form solution
for the hydrodynamic pressure. The curves corresponding to the closed-form solution for the
case of an infinitely long reservoir (L/H - «) shown in Fig. 4.18 are in good agreement with
the closed-form solution curves given by Fenves and Chopra (Curves | and 3 in Fig. 4.19).
Two main parameters governing the structural response of the dam are identified. These are
the reservoir-to-monolith frequency ratio and the wave reflection coefficient of the reservoir
bottom materials, o,. A third parameter is the depth of the impounded water to dam height,

H/H,. However, this parameter is not included in the present analysis by assuming full
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reservoir condition, H/H, =1.0. The reservoir-to-monolith frequency ratio, Q, , is defined as:

e-—-

@)
I

(4.15)
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where ', is the fundamental frequency of the dam monolith on rigid foundation. The
results in Fig. 4.18 are given for two different values of o, =1.0 and «, =0.5,
respectively. For the cases presented in Fig. 4.18, Q, = 22.305/24.325 = 0.92. For this
reason, the fundamental frequency peaks for the case of infinite reservoir (L/H - =) in Fig.
4.18 are slightly different from the peak values for the frequency ratio of Q, = 1.0 given by
Fenves and Chopra (Fig. 4.19).

According to Fig. 4.18, the results of the structural response of the dam impounding
a finite length reservoir model with aspect ratios shown in the figure and radiation condition
at the truncated boundary are similar to the results for the case of an infinitely long reservoir
subjected to horizontal ground motion. The agreement is satisfactory for both cases of «,
=1.0and o, =0.5 at the reservoir bottom as two extreme cases of practical situations.

For the case of vertical excitation, there is a noticeable difference between the two
cases of the closed-form solution of an infinite reservoir and the finite element solution of
the truncated reservoir model. Sommerfeld radiation condition requires that the radiating
boundary should be sufficiently far from the source of excitation. When the dam-reservoir
system is subjected to horizontal ground motion, the harmonic excitation of the rectangular-
shaped reservoir originates from the monolith's vibration. Therefore, for a sufficiently long
reservoir model (e.g., L/H 2 2) the absorptive boundary condition with «,=0.0 leadsto a
satisfactory agreement with the solution for the case of the infinite-length reservoir. In the

case of vertical component, the excitation of the reservoir is introduced along the entire
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reservoir bottom which extends as far as the truncated end of the fluid model. In this case,
the absorption boundary condition does not satisfactorily represent the radiation of pressure
waves to the far field because the absorptive boundary is not sufficiently far from the
exciting boundary. Accordingly, applying the absorption boundary condition or the
equivalent Sommerfeld radiation condition leads to erroneous results for crest acceleration
response of the dam subjected to the vertical ground motion. In a reservoir model with
absorptive far end boundary, the geometric ratio between the loading length of the reservoir
boundary at the bottom, L, to the length of its absorptive part at the far end, H, when
subjected to uniform vertical ground motion is larger for a higher L/H ratio. In this case
where the far boundary is modelled with Sommerfeld radiation condition, the fundamental
peak of the monolith response is unrealistically larger for a higher L/H ratio of the reservoir
model.

In Fig. 4.20, curve 2 shows the calculated response of the dam when the far end
boundary of the reservoir under vertical ground motion is modelled using the Sommerfeld
boundary condition. Comparison between curve 2 and curve 1 (which is based on the closed-
form solution of the infinite-length reservoir) reveals that Sommerfeld boundary condition
is not a valid model for radiation of the pressure waves to the upstream far end under uniform
vertical excitation of the reservoir bottom boundary. However, in the case where only a part
of the reservoir bottom adjacent to the dam is assumed as the exciting boundary of the
reservoir under vertical ground motion, the result of the crest acceleration response
approaches the corresponding result for the case of a theoretically infinite reservoir (Curves
3and 4 in Fig. 4.20).

In the case of partial excitation of the reservoir bottom under vertical ground motion,

horizontally travelling waves similar to the case of horizontal excitation of the reservoir
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develop in the impounded water. The response function of the hydrodynamic pressure in the
reservoir is similar to the response function in the case of horizontal ground motion. In the
case of a short excited part of the reservoir bottom to the total length of reservoir model,
L/L, close agreement with the closed-form solution is obtained. This is because the excited
boundary becomes sufficiently far from the radiating boundary. The case of partial excitation
of the reservoir bottom appears to be more realistic compared with the uniform excitation
throughout the bottom boundary (Hall 1986). However, the part of the reservoir bottom
boundary subjected to vertical excitation in the model should be long enough so that the
response of the dam for the two cases of truncated and infinite length reservoir models are
comparable. In the case study shown in Fig. 4.20, the calculated response of the dam using
the finite element model for the reservoir with L/H=5 coincides with the response obtained
based on the closed-form solution of the infinite-length reservoir when L/H=1 (Curve 4 in
Fig. 4.20). This result suggests a characteristic length equal to the reservoir depth as the
minimum loading length of the reservoir bottom boundary under vertical ground motion. For
a shorter loading length, the dam response will be substantially reduced (Curve 5 in Fig. 4.20
and Hall 1986). The numerical results may vary to some extent for different models of the
dam-reservoir systems. However, the general conclusions regarding the performance of
Sommerfeld boundary condition under uniform vertical ground motion and the length of the
loading bottom boundary in the finite element analysis of the reservoir remain valid.

The frequency response functions of the crest acceleration under horizontal ground
motion including ten Ritz vectors are shown in Fig. 4.21. Compared with the results of Fig.
4.18 when only the fundamental mode shape of the dam was included, there is a difference
between the results of the truncated and the infinite-length reservoir models in the higher

frequency range. The difference is significant in the vicinity of the second resonance
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frequency of the reservoir. This is in accordance with the reported drawback of the
Sommerfeld radiation condition in some previous studies (Humar and Roufaiel 1983, Sharan
1984 and Humar 1984). Also, from Fig. 4.21 it is apparent that increasing the length of the
reservoir model does not lead to an improvement in the result of the dam response as
indicated by Humar and Roufaiel (1983).

A different boundary condition proposed by Sharan (1992) is also examined to model
the truncated far end boundary of the reservoir. Fig. 4.22 shows the crest acceleration
response of the dam with a truncated reservoir model where the curtailed boundary is
modelled using Sommerfeld and Sharan (1992) boundary conditions (Eqgs. 4.6 and 4.8,
respectively). The results of the acceleration response for the case of the infinite-length
model based on the closed-form solution of Egs. 4.10 and 4.14 are also shown for
comparison. The dam foundation is assumed rigid. Sharan boundary condition (Eq. 4.8) is
proposed as a model for the radiation of pressure waves when the reservoir bottom is
absorptive. The reflection coefficient of the reservoir bottom is taken as o, = 0.5. Sharan
radiation condition is claimed to have satisfactory performance for short truncated reservoir
models (Sharan 1992). The results in Fig. 4.22 are presented for the range of reservoir aspect
ratios from L/H=1 to L/H=10. The first six Ritz vectors are included for the structural
response of the dam. According to Fig. 4.22, the above two radiation conditions coincide for
the case of L/H 25 (Figs. 4.22b and 4.22c). However, there is a significant difference
between the two numerical results and the closed-form solution in the frequency range of
1.5 < w/w', < 3.5 regardless of the reservoir length to depth ratio. The above discrepancy in
the results of the radiation conditions is reported by Sharan (1984) and Humar and Roufaiel
(1983) for the case of Sommerfeld radiation condition (Eq. 4.6) and by Sharan (1992) for

the condition given by Eq. 4.8.
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For the case of L/H = 1, on the other hand, there is a significant difference between
the results of the dam response using Sharan boundary condition and the closed-form
solution throughout the frequency range shown in the Figs. 4.22 and 4.23. Although by
increasing the L/H ratio of the truncated reservoir model the results of the acceleration
response of the dam crest approach the corresponding results for the case of the infinite-
length reservoir, the difference is remarkable even for a large value of L/H=10 (Figs. 4.22
and 4.23). For the case of L/H=10, the difference is mainly limited to the frequency range
1.5 < w/w', < 3.5 similar to what is reported by Sharan (1991 and 1992); However, the L/H
ratio of the reservoir truncated model is much larger than the ratio used in the above
references.

Results of Fig. 4.23 confirm that Sommerfeld boundary condition is less dependent
on the variation of the L/H ratio (Humar and Roufaiel 1983 and Sharan 1984) compared with
Sharan radiation condition.

Equation 4.8 is based on the closed-form solution for the hydrodynamic pressure in
the reservoir under horizontal excitation (Egs. 4.10 and 4.14). The closed-form solution is
expressed in terms of series expansion of the eigenvectors of the reservoir model. The
boundary condition in Eq. 4.8 is derived on the grounds that the second and higher terms in
the series expansion are negligible for a relatively large value of L/H ratio. Figures 4.24 and
4.25 show the plots of the real and imaginary parts of the eigenvalues {, and «, for n=
1,2. Based on the magnitudes and variations of these eigenvalues with the normalized
frequency, w/w', , the assumption of neglecting the higher terms regardless of the dominant
frequency of excitation is not justified for low L/H ratios.

Based on the above analysis, Sommerfeld boundary condition is chosen as the

radiation condition which gives the results for the hydrodynamic response of the truncated
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reservoir models that are comparable with the response obtained using the closed-form

solution for infinite-length reservoir.

Effect of mesh refinement on the structural response

The finite element approach developed in this study requires a long solution time. To
make the analysis more efficient, it is of interest to investigate the optimum number of
parameters that should be included in the analysis procedure. The main analysis factors
include the refinement of the finite element mesh of the reservoir and the number of Ritz
vectors to represent the structural response of the dam. According to the results of section
4.4.1, the mesh refinement can be decided upon based on the number of reservoir mode
shapes that are sufficient to be included in the analysis. The criteria adopted in the present
study to decide on the number of reservoir eigenvectors are based on the maximum
developed stresses in the monolith together with the frequency response of the crest
acceleration.

A dam 91.5 m high with base width of 72.0 m is analyzed. The modulus of
elasticity of the dam concrete is taken as 20700 MPa. Figure 4.26 shows the finite element
discretizations of the dam-reservoir system using reservoir mesh sizes of a =4.6 m and
a =9.1 m, respectively. The reservoir aspect ratio of L/H=1 is considered so as to reduce
the number of finite elements in the reservoir model to a minimum.

The crest acceleration response of the dam for the above two discretized models is
shown in Fig. 4.27. The calculated maximum stresses in the dam based on the above two
numerical models are presented in Table 4.3. The foundation of the dam is assumed rigid
and the reflection coefficients of the reservoir bottom and far end boundaries are taken as

a, = o, = 0.9, respectively. The average of the calculated stress values at the Gauss points
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of four neighbouring elements in the fine mesh is compared with the corresponding element
in the coarse mesh as shown in Fig. 4.26. The stress time history responses at the kink of the
downstream slope (elements 31,32,39 and 40) and the heel of the dam (elements 145,146,153
and 154) are shown in Fig. 4.28. The results of acceleration response shown in Fig. 4.27 and
4.28 together with the values of the stresses in the dam presented in Table 4.3 indicate that
the calculated structural response of the dam does not change significantly by replacing the
finite element mesh size of @ =4.6 m with the coarser mesh size of a =9.1 m. According
to Table 4.1, the use of the coarser mesh size of a=9.1 m is equivalent to including only
the first two mode shapes of the reservoir in the analysis. This result is in accordance with

the conclusion reached in section 4.4.1 (Fig. 4.12).

Minimum Number of Ritz Vectors

A series of parametric studies is conducted to investigate the appropriate number of
Ritz vectors (NTRZ) for the case of a finite element solution of a limited length reservoir.
The main factors included in the study are presented in Table 4.4. The results of the
frequency response of the crest acceleration for different analysis cases are plotted in Figs.
4.29 to 4.34. In the above figures, the excitation frequency is normalized with respect to the
fundamental frequency of the dam-foundation system with an empty reservoir, w',. The value
of w!', is selected because it is independent of the reservoir boundary conditions in the
parametric study. The corresponding values of w', for the cases of rigid and flexible
foundation rock (E,= E, = 20700 MPa) are 24.305 and 18.634 rad/s, respectively.

Figure 4.29a shows the comparison of the monolith's crest acceleration response
using selected numbers of Ritz vectors, NRTZ, for the structural approximation. The dam

is assumed to rest on a flexible foundation with modulus of elasticity E = E_. The reservoir
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length is twice its depth and the reflection coefficients of the reservoir bottom and far side
are taken as o, = &, = 0.9, respectively. Three values of Ritz vectors (3, 6 and 10) are
included to approximate the deflection of the dam. In Fig. 4.29a, the curves associated with
6 and 10 Ritz vectors coincide satisfactorily within the frequency range w < 4w',. The
curve using 3 Ritz vectors approximately matches the fundamental peak of the response
using larger number of Ritz vectors but does not satisfactorily capture the higher frequency
peaks. Figure 4.29b shows similar results for the case of a longer reservoir with L/H=5.

In the case of rigid foundation rock (Fig. 4.30), the frequency response of the dam
crest acceleration calculated using 3 Ritz vectors shows a better agreement with the curve
using 10 Ritz vectors over a wider frequency range compared with the case of flexible
foundation. This agrees with the observations reported by Fenves and Chopra (1984a).
Figures 4.31 and 4.32 show the corresponding results of the above study for the case of
o, = &, = 0.5. The results shown in Figs. 4.29 to 4.32 indicate that the amplitudes of the
frequency response peaks do not significantly vary with the increase of the reservoir length
to depth ratio from L/H =2 to L/H = 5 regardless of the number of Ritz vectors used in the
analysis. This conclusion is in accordance with the results of the reservoir length effect
discussed in section 3.2.2 based on the closed-form solution for the hydrodynamic pressure
(Fig. 3.5).

The crest acceleration response results for the case of a dam-reservoir system
subjected to vertical ground motion is presented in Figs. 4.33 and 4.34. The general
conclusions for the case of horizontal ground motion are also valid for uniform vertical
excitation of the dam-reservoir system. Comparison of Figs. 4.29 and 4.33 indicates that
for the case of a dam on flexible foundation, a larger number of dam mode shapes is needed

for reasonable accuracy of its structural response in the higher frequency range (w 2 6w',)
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when the dam-reservoir system is subjected to the vertical ground motion compared to the
horizontal component. [n the present numerical example, w',=18.634 rad/s and therefore:
® > 6x18.634 = 112 rad/s or f 2 18 Hz. This frequency is in the higher range of the
dominant earthquake frequencies and therefore of little concern.

The stress in the dam is the important parameter in the design and safety assessment
of dam structures. Accordingly, the effect of the number of Ritz vectors on the magnitude
and location of the maximum principal stresses developed in the dam monolith is studied.
Table 4.5 contains the calculated maximum principal stresses in the monolith during the first
12 seconds of the Nahanni horizontal ground motion for the cases of the flexible and rigid
dam foundation, respectively. For the vertical excitation of the dam-reservoir system, the
Nahanni accelerogram is applied in the vertical direction. Similar results for the vertical input
ground motion are given in Table 4.6. [n Tables 4.5 and 4.6, the reflection coefficients of
the reservoir bottom and far end boundary are taken as o, = ¢, = 0.9, respectively.

Results of Tables 4.5 and 4.6 indicate that the location of the calculated maximum
stress in the cross section of the dam monolith may be different based on the number of Ritz
vectors included in the analysis. The above issue is a concern regarding the proper design of
the dam monolith. A possible solution is to consider the envelope of the maximum stress
values at different locations within the monolith cross section based on various numbers of
Ritz vectors in the analysis. The selected number of Ritz vectors in the analysis depends on
the foundation flexibility and the frequency content of the input ground motion. A higher
number of Ritz vectors is included in the analysis for a stiffer foundation and a higher

dominant frequency of the design ground motion.



4.5 CONCLUSIONS

A finite element program (DAD-96) is developed to calculate the dynamic response
of gravity dams impounding a finite-length reservoir with absorptive boundaries. The
reservoir model is two-dimensional and can be of any arbitrary shape. The dam can have
vertical or inclined upstream face and subjected to both horizontal and vertical ground
motion components. The performance of the program is tested and verified by comparing the
results of the hydrodynamic response of the reservoir and structural response of the dam with
the available closed-form solutions for special reservoir geometry and boundary conditions.
The developed hydrodynamic pressure at the bottom of a rectangular shaped reservoir and
the total hydrodyamic force on the vertical upstream face of a typical gravity dam are
selected for comparison. The structural response of the dam is characterized by the frequency
response of the crest acceleration.

The response of the reservoir model with different length to depth ratios under
harmonic horizontal and vertical excitations is studied. It is concluded that the response of
an infinitely long reservoir under horizontal ground motion can be satisfactorily modelled
using the Sommerfeld boundary condition at the far end boundary of a sufficiently long
truncated reservoir model. The response of the truncated model confirms the existence of
some discrepancies with the closed-form solution in the vicinity of the second resonant
frequency of the impounded water reported in some former studies (Humar and Roufaiel
1983, Sharan 1984 and Humar 1984). It is shown that modelling the truncated far end
boundary using the Sommerfeld boundary condition under vertical ground motion does not
lead to satisfactory results. However, for the case where a part of the reservoir bottom
boundary was subjected to vertical excitation (L,/H = 1), the use of the Sommerfeld

boundary condition resulted in better agreement with the closed-form solution of the
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structural response of the dam impounding an infinitely long reservoir and subjected to
vertical ground motion.

A series of studies are conducted to determine the appropriate values for the important
parameters governing the response of the dam-reservoir model. The refinement of the finite
element mesh and the number of Ritz vectors for approximating the dynamic response of the
dam are selected as the main study parameters. For the example dam-reservoir system
studied in this chapter, a minimum number of six Ritz vectors for the dam model together
with the finite element mesh size of smaller than a =0.1 H was needed for satisfactory
results of the calculated stress in the dam for various conditions of the foundation flexibility,
ground motion components and reflection coefficients of the reservoir boundaries. It was
shown that the mesh size of a = 0.1 H is equivalent to including the second free vibration

frequency of the reservoir in the response computation of the dam-reservoir system.
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Table 4.1. Relationship between the number of reservoir mode shapes in the analysis
and the size of the finite element mesh

Reservoir mode shape in  Frequency = Mesh size

vertical direction f a=2A12
(n) (Hz) (m)
1 35 33
2 11 11
3 18 7
4 25 5

Table 4.2. Maximum tensile stresses in the dam monolith subjected to the horizontal
component of Nahanni earthquake using different reservoir mesh sizes
shown in Fig. 4.14 (values in MPa)

Element # Uniform Mesh  Non-Uniform Mesh

13 3.93 3.95
16 3.97 3.96
45 1.64 1.64
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Table 4.3. Calculated maximum tensile stresses in the dam based on the finite element
models shown in Fig. 4.26.

Fine mesh Coarse Mesh

Location Error

Element# Stress Average | Element # Stress .

(MPa)  (MPa) (MPa) *
25 4.55

Up- 26 3.19 3.70 9 3.53 4.6
stream 33 4.24
Neck 34 2.83
31 3.81

Down- 32 5.42 4.16 12 4.04 2.9
stream 39 3.48
40 3.93
145 2.08

Heel 146 1.38 1.77 37 1.73 23
153 232
154 1.29
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Table 4.4 Study parameters in the finite element analysis of the dam-reservoir system

Description Variants
Ground Motion Component Hand V
L/H 2and 5
Foundation Flexibility, E ./ E, | and «

o, 1.0

o, 0.5and 0.9
o, 0.5and 0.9
Number of Ritz vectors (NRTZ) 3,6and 10
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Table 4.5. Maximum principal stresses in a dam monolith subjected to horizontal
ground motion based on different numbers of Ritz vectors (NRTZ)

L/H Foundation NRTZ Maximum Elem. Maximum Elem.
Condition Tension,O,,, No.  Compression,Oy,, No.
E,/E. (MPa) (MPa)

2 1 3 1.71 16 -1.55 16
6 1.68 16 -1.46 13

10 1.69 16 -1.47 13

00 3 5.00 16 -5.31 16

6 4.61 16 -5.10 16

10 4.63 16 -5.15 16

5 1 3 1.73 16 -1.75 16
6 1.48 16 -1.27 13

10 1.51 16 -1.30 13

oo 3 5.10 16 -5.07 16

6 4.87 16 -4.77 16

10 4.90 16 -4.77 16
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Table 4.6. Maximum principal stresses in a dam monolith subjected to vertical
ground motion based on different numbers of Ritz vectors (NRTZ)

L/H Foundation NRTZ  Maximum Elem. Maximum Elem.
Condition Tension,o,,,, No.  Compression,0,,, No.
E,/E, (MPa) (MPa)

2 1 3 1.31 13 -1.53 16
6 1.20 13 -1.19 16

10 1.17 13 -1.19 16

oo 3 4.76 16 -4.47 16

6 4.34 16 -4.20 16

10 4.34 16 -4.23 16

5 1 3 1.55 16 -1.61 16
6 1.27 16 -1.20 13

10 1.26 16 -1.25 13

oo 3 5.15 16 -4.92 16

6 4.83 16 -4.45 16

10 4.84 16 -4.47 16
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CHAPTER 5

STRESS ANALYSIS

5.1 INTRODUCTION

Earthquake response of a concrete dam is typically represented by the time history
response of displacements and developed stresses in the structure. The stress time history
contains valuable information concemning the response of the structure during the dynamic
loading of the ground motion. However, the entire time variation of the stresses is not
utilized in the design and safety evaluation of concrete dams. The instantaneous maximum
values of principal stresses in the monolith cross section are normally used in evaluating the
possibility of crack initiation and in conducting seismic design of the concrete dam.
However, the local maximum stress values do not represent the overall state of stress in the
dam cross section. The variation of developed stresses with time at several locations within
the dam cross section is an important parameter in the post-cracking behaviour of the
concrete dam when subjected to strong earthquake ground motion.

In this chapter, a measure of the dynamic response of concrete gravity dams is
proposed in an attempt to include the effects of the stress time history and the variation of
the stress magnitude over the cross section of the dam when subjected to ground motion and
the hydrodynamic loading from the adjacent reservoir. Parametric studies on the effect of

different zones of the reservoir surrounding boundary on the developed stresses in the dam
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are conducted. These studies include the reservoir bottom absorption effects based on the
model proposed in Chapter 2 as well as the influence of hydrodynamic isolation of the dam

discussed in Chapter 3.
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5.2 MEASURE OF DYNAMIC RESPONSE
5.2.1 Stress Time History Response

The maximum stresses in a dam subjected to several earthquake records are not
sufficient for a reliable comparison of the effects of different input ground motions on
seismic response of concrete dams. Comparing the entire time history response of the
stresses at different locations in the dam cross section is difficult and is not an efficient
design approach. An illustrative example is provided to compare the effect of different input
ground motions on the stress time history response of a concrete gravity dam.

A 91.44 m high dam with a vertical upstream face and a downstream slope of 0.8:1
is considered (Fig. 5.1). The selected geometry of the dam is typical for many concrete
gravity dams. A survey of the geometrical data of several gravity dams in the United States
is presented in Table 5.1. The concrete dam is discretized using 48 isoparametric four-
noded finite elements and is assumed in the plane stress condition. The foundation of the
dam is assumed rigid and the reservoir bottom is considered as completely reflective. The
impounded water is assumed compressible. The speed of the travelling pressure wave is
taken as C, = 1440 m/s. The depth of the reservoir is taken equal to the height of the dam.
The modulus of elasticity and Poisson's ratio of concrete are assumed as E.= 20,700 MPa
and 0.2, respectively.

Figure 5.2a shows the time history responses of the maximum principal tensile stress
at the neck of the dam when subjected to two different ground motions. The ground motion
records are the 1970 Lytle Creek S25W and the 1971 San Fernando N9QE earthquakes,
respectively. The above records are denoted by HH6 and HI7 in Tables 5.2 and 5.3,

respectively. Both ground motions are selected from records of California earthquakes with
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nearly equal peak ground acceleration (PGA) values. The PGA of the 1970 Lytle Creek
(S25W component) and the 1971 San Fernando (N90OE component) ground accelerations
are 0.20 g and 0.21g, respectively. The two ground acceleration records cause almost
identical maximum peak tensile stress at the neck of the dam. However, the stress time
history response due to the San Fernando earthquake with larger number of significant peaks
appears to be the more critical of the two responses.

Another example is shown in Fig. 5.2b where the stress response at the upstream
neck of the dam for the two cases of the 1966 Parkfield N8S5E (record HH1) and the 1952
Taft S69E (record HI2) ground motion records, are compared. The stress response due to
the Parkfield earthquake is significant for a short period of time between 4 <t < 6 seconds.
The stress magnitude becomes immediately negligible after t =6 s. The maximum peak of
the stress response to Taft ground motion is lower than the maximum stress peak due to the
Parkfield earthquake. However, the stress response due to the Taft earthquake shows
considerably longer fluctuations with a significant magnitude. The extent of crack
propagation in the concrete dam under severe ground motion is significantly influenced by
the number of strong peaks of the stress response after the crack is already initiated.

The above examples illustrate that the maximum stress at a specific point of the dam
cross section does not adequately indicate the critical case of response to the applied dynamic
loading. In other words, it is not possible to judge which case of loading is more critical for

the dam.



5.2.2 Proposed Measure of Dynamic Response
The instantaneous maximum principal stress value at a point in the cross section of

the dam is replaced by a quantity that represents the varying magnitude of the stress response
during the earthquake ground motion. The norm of the principal stress can be written in the
form:

7

fo=f|o'l(t)|dt (5.1)

0
where t, is the duration of time for which the response analysis is made and @', (t) is the
time variation of the maximum principal stress at a given point in the cross section of the
dam. The right hand side of expression 5.1 contains the time variation of stress including
the effects of all significant stress peaks other than the maximum value in the response

history. The definition of I, in Eq. 5.1 is a special case of the Lebesgue norm in the form:
[4

wl, = [[IwmPdt]™ < = (5.2)
0

The Lebesgue norm (L, - norm or {-{, ) is calculated for the function w (t) defined over
the interval [0,t]. For the case of p =1, Eq. 5.2 reduces to the L,-norm of the function w (t)
as defined in Eq. 5.1. Since concrete is weaker in tension, the tensile stress in the monolith
is monitored during the earthquake loading. The maximum principal stress at the heel of a
dam monolith subjected to earthquake ground motion may remain compressive when the
weight of the structure is included in the analysis. For tensile stress, the stress norm defined

in Eq. 5.1 is modified as:
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7

I, =fo‘, (1 dt ., for 0\ (1)20 (5.3)
0

The condition set in Eq. 5.3 is to ensure that only the tensile stress in concrete is included
under different loading conditions.

The stress function @', (t) varies at different selected points in the cross sectional area
of the dam monolith. A weighted average of the stress norm over the cross section of the
monolith is an indicator of the overall state of stress in the dam cross section. In a four-noded
finite element discretization of the monolith cross section, the stresses are calculated at the
geometrical centres of the elements. The computed stresses are assumed uniform over the
element and can be interpreted as the average of the stresses across the area of the
corresponding finite element. The same reasoning can be extended to other types of finite
elements with some modifications. To change the stress into a force, both sides of Eq. 5.3
are multiplied by the element area of the finite element ;j, A, (Fig. 5.1) in the form:

Y

I, =Aj.(f0‘,(t)dt)j
0

The right hand side product has the dimension of momentum and its summation over the
total number of the finite elements is analogous to a measure of the total momentum (or the
equivalent impact) received by the concrete dam due to the input ground motion. The

summation of the momentum over the entire monolith is written as:

N fa
§,=) 4, f 0y (0)do), ., for &\ (£)20 (5.4)
7=1 0
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where the total number of finite elements in the dam model is denoted by N. The summation
given in Eq. 5.4 represents a measure of the response of the dam to the seismic loading and
not just the maximum values of the calculated stresses at the specific points of the monolith
cross section.

The parameter S, is referred to as the pseudo-impact to the concrete dam. The prefix
pseudo refers to the fact that the area of the finite element is different from the area on which
the principal tensile stress o'((t) is acting. The pseudo-impact parameter is normalized to

a nondimensional form as:

L&
=t_Z

sJ

4 j % ©, for G20  (5.5)
A4, .
where A; is the total area of the finite elements over which the stress norm is averaged
which is the total area of the monolith, f, is the tensile strength of concrete and & is the
duration of strong ground motion. The parameter SF is the Stress Factor of the dam cross
section and represents an overall measure of the state of stress in the dam structure. The
definition of SF is based on the elastic behaviour of the material and does not include the
post-cracking behaviour of the concrete dam.

Beside the area under the curve of the stress time history response as noted in Eq.
5.1, an important factor in comparing the effects of different earthquake records on the
monolith response is the frequency of stress fluctuations. The significant part of the seismic
loading is normally limited to a small fraction of the total recorded duration. The dominant
frequency of stress variation in the dam is basically the coupled fundamental frequency ',

for the case of full reservoir and the fundamental frequency of the dam-foundation system
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for the case where the reservoir is empty. The dam-reservoir system is significantly affected
only by dynamic loadings with dominant frequencies in the vicinity of the fundamental
frequency of the system. Accordingly, the frequency of the stress variation in the dam
subjected to various ground accelerations does not significantly change as is observed in

Fig. 5.2.
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5.3 CORRELATION STUDIES
5.3.1 Intensity of the Input Ground Motion
The applicability of the proposed stress factor in seismic response analysis of dams
is verified by examining its correlation with the intensity scales of the input ground motion.
Three different measures of the ground motion intensity are considered. The intensity
measures include the peak ground acceleration, PGA, the spectral intensity, SI and the
energy-based definition of ground motion intensity, [g, given by Arias (1970). The peak
ground acceleration of the recorded earthquake partly represents the severity of the ground
motion specially for short-period structures. Therefore, it is included in the correlation
studies for comparison purposes. The spectral intensity, SI, is defined by Housner (Anas

1969) as:

2.5

5.6
s1®)= [ S,ED dT -0
0.1
where £ and T are the viscous damping ratio and the period of the equivalent single degree
of freedom (SDOF) system of the structure, respectively. The pseudo-relative velocity
S.(&,T) is given by:

4

S, (§,T)=max | %{ i (T)exp[ - zTﬁa (t-1)] sin%(t—t) dT | (5.7)
where Ty = T(1-§2)'? denotes the damped vibration period of the structure and i, (t) is
the recorded ground acceleration. The limits of integration in Eq. 5.6 are chosen based on
the range of the natural periods of common buildings. The spectral intensity approach is
widely used in spectral analysis of structures. For dam analysis, however, the range of

interest is in lower free vibration periods. The period range representing the limits of
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integration in the formulation of the spectral intensity for dams is taken as 0.05< T< 0.5 s
which is equivalent to the frequency range of 2.0< f <20 Hz. This range of integration is
more appropriate for the analysis of concrete gravity dams. The damping ratio in Eq. 5.6
is chosen as £ =0.20 for the analysis of ordinary structures (Arias 1969). The damping ratio
is selected on the basis of the expected energy dissipating mechanisms in joints and
connections between various structural and non-structural elements in buildings. Such
mechanisms do not exist in concrete dams. For this reason, it is more appropriate to assume
a lower damping ratio in the analysis. The conservative value of £ =0.05 is assumed for the
monolith's damping ratio.

A different definition for the intensity of ground motion is given by Anas (1969) as:

RN
1.6 = cos &) [ i (r)dt (5.8)

where t; is the total duration of earthquake and g is the gravitational acceleration. The
definition of [;(§) is based on the concept of energy dissipation in a viscously damped
harmonic oscillator. The intensity Iz (§) in Eq. 5.8 is a quadratic function of the input
ground acceleration, ii , (t). A modified intensity formulation is proposed utilizing the L, -

norm of the ground acceleration in the form:

-1 r

- ®  r.2 1”2

Iy €= =22 ([, (@)dr) (5.9)
gy1-¢& { ’

The modified earthquake intensity, Iz, (§), is a linear function of the ground acceleration and
therefore is consistent with the peak ground acceleration, PGA, and the spectral intensity, SI,

of the ground motion.
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A set of 27 records of horizontal components and 24 records of vertical components
is used in the correlation study of the proposed stress factor with the intensity measures of
the ground motion. The data for the selected ground motion records are presented in Tables
5.2to 5.5. The earthquake records are denoted alpha-numerically for convenient reference.
The first letter denotes the component of the record (horizontal or vertical) followed by a
letter indicating its PGA/PGYV ratio category (H-high and I-intermediate). The parameter
PGV denotes the peak ground velocity of the recorded ground motion. The PGA and PGV
values in the PGA/PGYV ratio are substituted in terms of the gravitational acceleration, g, and
m/s, respectively. The records of horizontal components are categorized based on their
PGA/PGV ratios (Naumoski er al., 1988). The plots of horizontal ground acceleration
records with high (PGA/PGV > 1.2) and intermediate (0.8 < PGA/PGV < 1.2) PGA/PGV
ratio are presented in Appendix I. The records of horizontal components with high and
intermediate PGA/PGV ratios are selected in the analysis of the gravity dam example due
to the high fundamental frequency of the structure. A similar classification is not available
for records of vertical components. However, the records of vertical components generally
contain high frequency contents and therefore are included in the correlation study. The
plots of vertical ground acceleration records corresponding to the horizontal high and
intermediate PGA/PGYV ratio classification are presented in Appendix II. The ground
acceleration records in Appendices [ and II are presented within the same duration of 30
seconds for horizontal components and 20 seconds for vertical components so that the plots
of the recorded ground motions are visually comparable. In order to evaluate the effect of
severe earthquakes on the state of stress in concrete gravity dams, some of the actual
earthquake records are scaled by a factor of 3. The resulting set of ground motion data
includes a wide range of peak ground accelerations and earthquake intensities which are

used in the correlation studies.
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5.3.2 Duration of the Input Ground Motion

The response of the dam subjected to various ground motions is calculated for an
identical duration of t,= 10 s. The selected part of the ground motion records also includes
the significant part of the accelerograms with duration of 10 seconds. In general, the
duration of strong ground motion, t, is different from the arbitrarily selected duration of
response computation, t, , in Eq. 5.5. The duration time,t, is an application-based
definition and was found to be different for the two categories of the PGA/PGYV ratio. The
duration of the strong motion part of the record was found to be generally longer for the case
of the intermediate PGA/PGYV ratio category compared with the corresponding duration for
the records with high PGA/PGV ratio. The significant duration of the ground motion is
reported to be dependent on the frequency characteristics of the recorded earthquake
(Novikova and Trifunac 1994). For simplicity, the significant duration of the ground motion
in Eq. 5.5 was arbitrarily taken as t; = s in the correlation studies so as to exclude the

effect of the definition of the ground motion duration on the variations of the stress factor.

5.3.3 Tensile Strength of the Monolith Concrete

The calculated tensile stresses over the cross section of the dam are compared with an
indicator of the tensile strength of the mass concrete. This limiting value depends on the
testing method as well as on the origin of the concrete sample. The tested tensile strength of
the cores taken from a number of concrete dams are reported to be lower than the values
taken from laboratory samples due to the drying shrinkage and surface cracking of the core
samples from the dam concrete (Jansen 1988). The resulits of the splitting tension tests on
core samples of a few existing concrete dams are reported to be generally higher than the
results obtained using the direct tension test. The splitting test measures the tensile strength

of the concrete at a predefined plane within the sample whereas the tensile fracture occurs



180

at the weakest plane of the entire specimen urder the direct tension test. The results of the
splitting tests are also found to be less scattered due to transportation and storage problems
and are more reliable as the true tensile strength of concrete (Jansen 1988).

The calculated stresses in the dam also depend on the adopted simplifying
assumptions. The linearly elastic model for the concrete with a constant modulus of elasticity
results in an overestimation of the evaluated stresses in the dam. The developed stress for a
given strain level in a more realistic, nonlinear model for the concrete is lower than the
predicted value based on linear analysis. This difference becomes significant at higher stress
levels near the ultimate strength of the concrete. An apparent tensile strength is defined to
compensate for the difference between the linear assumption and the true behaviour of the
concrete. Raphael (1984) presented the following expressions for the tensile strength of mass
concrete as a function of its compressive strength:

- Actual static tensile strength:

f,, =115 (5.10)
- Apparent static tensile strength:

f,,=23£" (5.11)
- Actual dynamic tensile strength:

foa=261" (5.12)

- Apparent dynamic tensile strength:
foa=341" (5.13)

where f. is the compressive strength of concrete in psi. In the present study, the apparent
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dynamic tensile strength, f,,, is used as the cracking limit for the calculated tensile stresses
in the dam. The compressive strength of concrete is taken as 27.6 MPa (4000 psi) which
yields f,,=5.9 MPa (857 psi) for the tensile strength of the concrete.

The magnitude of the calculated principal tensile stress in nearly all the elements over
the cross sectional area of the dam can theoretically reach the f,, value during the main
shock of the excitation, tg, when the dam is subjected to a severe input ground motion. The
stress is assumed negligible during the excitation time apart from the main shock period. The
magnitude of the stress factor of a dam monolith subjected to a severe earthquake approaches
unity based on Eq. 5.5. The summation in Eq. 5.5 is zero for the structure at rest.

Therefore, the expected range of variation of the stress factor, SF, is:

0<SF<1 (5.14)

The stress factor, SF, provides a measure of the state of the principal tensile stress in the dam
under dynamic loading. It is based on the time variation of the stress response which includes
the effects of the significant stress peaks other than the maximum value. The stress factor is
a linear operator on the stress function ¢, (t). Accordingly, it is directly proportional to the
intensity of the ground motion which makes it consistent with the idea of Spectral Intensity
proposed by Housner (Arias 1969). The stress factor is also based on the tensile stress
magnitudes over the entire cross sectional area of the dam monolith. Therefore, it is a
global, single-valued parameter that can be used to study and compare the effects of different

input ground motions on the dam as is discussed in the next section.



5.4 DISCUSSION OF RESULTS
5.4.1 Intensity Measures

The correlations between the maximum principal tensile stresses in the dam cross
section, (0°,)m.. » and the intensity measures of the input ground motions are presented for
horizontal ground motion in Figs. 5.3 and 5.4 and for vertical ground motion in Figs. 5.5
and 5.6. The maximum stress values are shown for both the neck (Figs. 5.3 and 5.5) and
the heel (Figs. 5.4 and 5.6) of the dam and are normalized with the apparent dynamic
tensile strength of the concrete, f,,. The dynamic response of the structure in Figs. 5.3 to
5.6 does not include the hydrostatic loading or the weight of the monolith. From figures 5.3
to 5.6 it is concluded that the PGA of the input earthquake record is an acceptable measure
of the ground motion intensity for concrete gravity dams. The resuits of correlation between
(0') = and PGA of the input excitation are nearly as good as the corresponding results for
the spectral intensity, SI and the modified Arias intensity, Igq. The reason is that concrete
gravity dams are generally short period structures. Consequently, the effect of higher modes
of the structure are less significant and therefore, there is a direct proportionality between the
magnitudes of the applied ground acceleration and the maximum developed stress at a given
point in the dam.

The concept of spectral intensity introduced by Housner with modified limits of the
period range and viscous damping ratio proves to be applicable for seismic analysis of
gravity dams. Housner's idea was to propose a measure of ground motion intensity which is
directly proportional to the maximum developed stresses in the structure (Arias 1969).
Figures 5.3t0 5.6 show such a relationship for maximum principal stresses in the dam with
the spectral intensity of the ground acceleration. The correlation is quite acceptable at both
monitoring locations within the dam cross section (namely, the neck and the heel) subjected

to both horizontal and vertical components of the input ground motion.



183

5.4.2 Stress Factor due to Horizontal and Vertical Ground Motions

The correlations of the tensile stress factor, SF, with the ground motion intensities are
shown in Figs. 5.7 and 5.8 for the horizontal and vertical ground motion records,
respectively. The response shown in Figs. 5.7 and 5.8 does not include the hydrostatic
pressure or the weight of the monolith. The calculated intensity measures of the selected
horizontal and vertical components are presented in Tables 5.6 and 5.7, respectively. The
PGA and SI intensities of the ground motion records depend on tiie determined maximum
values and do not vary with the duration of response calculation, t, ,provided that t, includes
the significant part of the strong motion in the earthquake record. The Arias intensity of the
earthquake record depends on the duration time included in the response calculation
according to Eqs. 5.8 and 5.9. The adequacy of the calculation time of t,=10s is verified
by calculating the modified Arias intensity (Eq. 5.9) for a longer duration of t,=20s. The
modified Arias intensity almost remains unchanged after including the insignificant part of
the ground motion records up to t, =20 s for almost all the accelerograms presented in
Tables 5.6 and 5.7. The intensity calculations for t, = 20s are performed for the
earthquakes with the available record of duration longer than 20 s. The vertical ground
motion records in Tables 5.4 and 5.5 are named according to the PGA/PGV classification
of the horizontal components. The vertical component records are classified based on their
own PGA/PGV ratio in the results of the correlation studies for the vertical ground motions.
An arbitrary value of 1.6 is chosen to separate the vertical records based on their available
PGA/PGV ratios into an intermediate and a high category. The limit of 1.6 for the
PGA/PGYV ratio is slightly higher than the corresponding value of 1.2 for the horizontal
ground motion records suggested by Naumoski et al. (1988).

The correlations of the maximum tensile stress , (0')).. » and the stress factor, SF, with

the intensities of the horizontal and vertical ground motion components including the effects
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of the hydrostatic loading and the weight of the structure, are presented in Figs. 5.9 to 5.14.

By comparing the variations of the maximum tensile stress and the stress factor with the

intensity of the ground motion in Figs. 5.3 to 5.14, the following conclusions are reached:

1

The stress factor, SF, shows generally good correlations with all the included intensity
measures of the ground motions and proves to be a valid parameter in comparing the
effects of different earthquake records on the overall structural response of gravity
dams.
The stress factor of the monolith cross section under horizontal ground motion shows
a noticeable dependence on the PGA/PGV ratio of the input earthquake (Fig. 5.7).
The overall state of tensile stress over the entire monolith cross section is generally
higher when the dam is subjected to a record with intermediate PGA/PGV ratio
based on the values of the stress factor in Fig. 5.7. The peak ground velocity of the
input earthquake is an indicator of the energy conveyed to the structure. The amount
of the input energy of the ground motion for a given PGA is expected to be higher
for a record in the intermediate PGA/PGV category compared with the energy of a
record with high PGA/PGV ratio. Examination of the response spectra of the
horizontal component records (Naumoski er al. 1988) reveals that there is no
significant difference in the spectral amplitudes between the two PGA/PGV ratio
categories in the vicinity of the fundamental frequency of the dam-reservoir model
(w', = 20 rad/s). Therefore, records in the high and intermediate PGA/PGV ratio
categories have different effects on the dam-reservoir model based on their energy
rather than their frequency contents.

The dependence of the dam response on the PGA/PGV characteristic of the
ground motion is not present in the variation of the maximum tensile stress at a point

within the monolith cross section (Figs. 5.3 to 5.6). The results of the maximum
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tensile stresses at both the heel and the neck of the dam show an independent vaniation
with the PGA/PGYV ratio of the input ground motion. The dependence of the stress
factor on the PGA/PGYV ratio of the ground motion record is less significant when the
dam-reservoir system is subjected to vertical excitation. The reason is partly due to
the fact that vertical ground motion categories in the present study are arbitrarily set.
More investigation is needed for the classification of the vertical component records
based on their PGA/PGV ratios.

Comparison of Figs. 5.7 and 5.13 indicates that the tensile stress factor is
significantly influenced by the hydrostatic loading and the weight of the dam. The
difference between the two cases of loading is pronounced when the dam is subjected
to vertical ground motion (Figs. 5.8 and 5.14). This difference is not indicated in the
plots of maximum tensile stress at a given point of the dam cross section (cf. Figs. 5.5
and 5.6 with Figs. 5.11 and 5.12). The reason is that the additional tensile stresses at
the heel and (to a less extent) at the neck of the dam due to the effect of the
hydrostatic loading are counteracted by the imposed compression due to the weight
of the monolith. However, the redistribution of the stresses across the cross sectional
area of the monolith due to the weight and hydrostatic loadings affects the associated
stress factor as indicated in Figs. 5.13 and 5.14. It follows that the tensile stress factor
is a more reliable indicator of the dam response than the maximum stress value at a
point of the cross section under different load combinations.

The relative significance of the weight of the dam and hydrostatic force of the
reservoir in the overall response of the dam can readily be assessed by comparing the
corresponding stress factors for the two different load cases (Figs. 5.9 and 5.10 which
neglects hydrostatic and weight loadings) and (Figs. 5.15 and 5.16 which includes the

monolith weight and the hydrostatic loadings). A curve of best fit of the data of the



186

stress variation with the ground motion intensity under seismic loading only in Figs.
5.3 and 5.4 appear to pass through the origin. Tensile stresses develop in the dam
when the hydrostatic loading is included before the dynamic loads are applied. The
variation of the stress factor with the ground motion intensity appears to be asymptotic
at the low-intensity range of earthquakes. This indicates nonzero tensile stresses in the
monolith cross section (Figs. 5.13 and 5.14) due to the static loads only. The stress
factor also shows good correlation between the stress level in the dam and all three
measures of ground motion intensity for strong earthquakes. The vanation of the
stress factor with the ground motion intensity shows that the overall state of tensile
stress in the dam is essentially governed by the effects of hydrostatic loading and the
weight of the dam when PGA <0.30g for high PGA/PGYV ratio records. For the case
when the dam is subjected to an intermediate PGA/PGYV ratio ground motion, the
range of PGA drops to < 0.15g (or equivalent intensities of the records). This
represents the level of excitation below which the effect of seismic loading on the
overall state of stress in the dam is negligible compared to the other sources of the
loading. The same observations conceming the maximum tensile stress in the dam can
be made whether or not the hydrostatic loading and dam weight is included (Figs. 5.3
to 5.6 and Figs. 5.9 to 5.12). The local maximum tensile stress vanishes without
approaching a lowerbound value as the intensity of the input ground motion to the
dam-reservoir model is reduced. The main reason for the above behaviour is that the
maximum tensile stress is monitored at predetermined areas such as the heel and the
neck of the dam. When the effects of the hydrostatic loading and the weight of the
dam are included, the maximum tensile stress in the monolith shifts to the other parts
of the cross section which, in general, can not be readily located. The location of the

maximum tensile stress varies depending on various factors including the geometry
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of the dam, the water level in the reservoir and the level of seismic excitation.
However, this occurs at very low levels of earthquake intensities which are below the
values of interest in design.

5) The effect of vertical ground motion is less significant when compared with the
horizontal excitation when the effects of hydrostatic loading and the weight of the
dam are included in the analysis. When the gravity and the hydrostatic load are
included, the stress factor of the dam due to the vertical ground motion is much less
than the case when these loads are not included in the analysis. The reduction in the
stress factor is significant for low intensities of the input ground motion (cf. Figs. 5.8

and 5.14).

5.4.3 Influence of Ground Motion Characteristics

The time history response of maximum principal stresses at the neck of the dam due
to different input ground motions are compared as shown in Fig. 5.2. It is noted that the
maximum peaks of stress due to the 1970 Lytle Creek S25W (record HH6) and the 1971
San Fernando N9OE (record HI7) earthquakes are identical. However, the overall time
history response of the maximum stress in the dam subjected to the 1971 San Fernando
N9OE earthquake is more severe than the case of the Lytle Creek earthquake (Fig. 5.2a).
Comparing the effects of the 1966 Parkfield N65W (record HH1) and the 1952 Taft N69E
(record HI2) earthquakes on the dam response shown in Fig. 5.2b is difficult. The effects
of the ground motion records on the dam response can readily be examined by comparing
the corresponding stress factors. The maximum tensile stresses in the dam subjected to Lytle
Creek and San Fernando earthquakes are 0.358 f,, and 0.357 f,,, respectively. The stress
factors of the monolith due to the Lytle Creek (record HH6) and San Fernando (record HI7)

ground motions are 0.177 and 0.426, respectively. Comparison of the stress factors
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indicates the severe effect of San Fernando ground acceleration.

A more interesting case is the comparison between the developed stress levels in the
dam when subjected to the 1966 Parkfield N65W (record HH1) and the 1952 Taft N69E
(record HI2) earthquakes. The maximum tensile stresses of the dam subjected to the
Parkfield and Taft earthquakes are 0.558 f,, and 0.394 f,, respectively. The stress factors
of the monolith model due to the 1966 Parkfield N65W (record HH1) and the 1952 Taft
N69E (record HI2) ground motions are 0.277 and 0.621, respectively. Based on the
corresponding stress factors, it is concluded that Taft ground motion produces higher risk

level of crack initiation and propagation in the dam as compared to the Parkfield earthquake.

5.4.4 Damage Evaluation

The stress factor of the dam monolith is used to examine the extent of the overstressed
part of the dam cross section. Figures 5.15 and 5.16 show the parts of the dam cross
section where the calculated principal tensile stress exceeds the tensile strength of the
concrete. The dam-reservoir model described in section 5.2.1 is used to obtain the results
presented in Figs. 5.15 and 5.16. The results do not include the hydrostatic loading and the
weight of the dam. Three different ranges of stresses are defined. The unshaded areas denote
finite elements where the principal tensile stress is less than the concrete static strength:
(0" e < fos Where (0')) o and f,, denote the maximum principal tensile stress and the
actual static tensile strength of the mass concrete given by EQq. 5.10, respectively. In this
stress range, the concrete is uncracked. The lightly shaded finite elements indicate the parts
of the dam that undergo stresses that are higher than the actual static tensile strength of the
concrete but do not exceed its apparent seismic tensile strength, f,,as: fo; < (%)) nac < fou-
In this range of tensile stress, the concrete may develop some cracks. The elements of the

dam which are darkly shaded indicate the parts of the dam cross section which develop
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excessive tensile stresses. The tensile stress is larger than the apparent seismic tensile stress
of the monolith concrete computed according to Eq. 5.13. Therefore, at these locations:
(0" )max 2 Jfoa - The states of stress depicted in Figs. 5.15 and 5.16 are due to the ground
accelerations presented in Table 5.8. According to the Figs. 5.15 and 5.16 and Table 5.8,
the stress factor of the dam appears to be an appropriate measure to evaluate the progress of
overstressing in the dam cross section. The extent of the expected cracking in the dam cross
section is directly proportional to the computed stress factor of the monolith cross section
for both horizontal and vertical ground motion components.

The results illustrated in Figs. 5.15 and 5.16 also suggest that the stress factor of
a dam can be utilized as a convenient means for optimum design of the monolith. A larger
SF value with lower extent of the parts with (0',),.. 2 f., indicates a more favourable stress
distribution under a given load combination. Accordingly, the geometry of the monolith as
well as the design of the mass concrete at different parts of the monolith cross section can
be made such that a larger portion of the dam cross section carries the tensile stresses

provided the stresses remain within the uncracked range of the dam concrete.
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5.5 EFFECT OF THE RESERVOIR BOUNDARIES ON THE STRESS IN THE

DAM
5.5.1 Introduction

The evaluation of the effects of the reservoir boundary conditions on the dynamic
response of the dam-reservoir system in previous chapters is based on specific earthquake
records. In this section, the effects of the reservoir boundary charactenstics on the developed
stresses in the dam are investigated when the dam is subjected to a number of different
ground motion records. The study is conducted in two separate parts: First. the effect of
reservoir bottom sedimentation is addressed. The charactenistics of a layered reservoir
bottom boundary are varied and the maximum tensile stresses in the dam are determined.
The stress factors of the dam for various cases are evaluated. Secondly, the effect of
hydrodynamic isolation on the tensile stresses and the stress factor of the dam is examined.
The isolation layer characteristics are selected according to the results obtained in Chapter
3. The extent of response reduction due to hydrodynamic isolation of the dam when
subjected to different input ground acceleration records, is investigated.

The selected dam example is that shown in Fig. 5.1. The finite element discretization
of the monolith includes 48 four-noded quadrilateral elements. The dam is assumed in plane
stress condition with the height of H,=91.44 m (300 ft). The modulus of elasticity of the
concrete and the Poisson ratio are assumed as 21500 MPa and 0.2, respectively. The
foundation rock underneath the dam is assumed rigid. However, the method is equally
applicable to the case of a flexible foundation beneath the entire dam-reservoir system. For
simplicity, only the dynamic component of the response of the dam is included in the
analysis. The reservoir is assumed infinitely long with a constant depth equal to the height

of the impounding dam (H = H,).
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5.5.2 Reservoir Bottom Absorption Effects on the Stresses in the Dam

Two horizontal component records from each category of high and intermediate
PGA/PGYV ratio are chosen. The selected ground accelerations are the HH1, HH6, HI2 and
HI7 records as listed in Tables 5.2 and 5.3. The selected vertical component records are
VHI1 and VI9 as described in Tables 5.4 and 5.5, respectively. All the selected records
are from California earthquakes in an attempt to exclude major site differences in the
parametric studies. The PGA/PGV ratios of the high categories in both horizontal and
vertical ground motion records are approximately twice the PGA/PGV ratios of the
intermediate groups according to Tables 5.2 to 5.5. The ground acceleration records are
scaled to PGA =0.25g.

The characteristics of the reservoir bottom are varied and the dam is subjected to the
selected ground accelerations. The stresses in the dam and the stress factor of the dam
monolith are evaluated. The mechanical properties of the reservoir foundation are chosen to
represent the practical ranges of the sedimentation and the underlying rock characteristics.
The modulus of elasticity of the sediment material is chosen in the range of E, =360 - 1440
MPa (50 - 200 ksi ) which represent typical values for soils (Bowles 1984). The damping
constant b in Eq.2.28 istaken as b =0.5. The modulus of elasticity of the foundation rock
is assumed as E;= 71820 MPa (10400 ksi ). The normalized thickness of the sediment
layer is varied in the range of d, /H =0.010 - 0.075.

Figure 5.17 shows the variation of maximum tensile stress in the dam with the
normalized thickness of the sediment layer when subjected to the selected horizontal ground
motions. The maximum tensile stress is normalized to the apparent seismic tensile strength
of mass concrete, f,,. The variation of the tensile stress factor with the normalized thickness
of the sediment layer is shown in Fig. 5.18. The effect of the sediment layer thickness on

developed tensile stress and the stress factor of a dam subjected to vertical ground motions
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is presented in Fig. 5.19. From Figs. 5.17 to 5.19, the following conclusions are reached:

)

4)

5)

The variation of the modulus of elasticity of the sediment material does not show
significant effect on the stresses in the dam for a given rigidity of the underlying
foundation rock under the same horizontal input ground motion (Fig. 5.17).

The dam response is reduced by increasing the thickness of the sediment layer for all
the selected ground motion records. The variation of the seismic tensile stresses in the
dam with the normalized thickness of the sediment layer is almost linear within the
examined range of the layer thickness.

The amount of reduction in the response in terms of both maximum tensile stress and
the stress factor of the dam due to the effect of the sediment layer varies with the input
ground acceleration (Figs. 5.17 to 5.19). However, the rate of the reduction in the
stress factor with increasing the thickness of the sediment layer is almost independent
of the input earthquake record (Figs. 5.18 and 5.19b).

The maximum tensile stress in the dam does not show any dependence on the
PGA/PGV ratio of the input ground motion. The stress factor, on the other hand,
shows a clear dependence on the PGA/PGV ratio of the ground excitation. The
examined horizontal ground motions with intermediate PGA/PGV ratio produce
higher stress factors in the dam (Figs. 5.18 and §.19). This conclusion is in
accordance with the second conclusion mentioned in section 5.4.2. The examined
records with intermediate PGA/PGV ratio result in higher values of the stress factor
for the range of the sediment layer thickness and modulus of elasticity used in the
analysis.

The effect of reservoir bottom characteristics on the stresses in the dam is more
significant when the dam-reservoir model is subjected to vertical ground motion.

Figure 5.19a shows a noticeable difference in the maximum tensile stress in the dam
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when the normalized modulus of elasticity of the sediment material, E, / E,, is varied

from 0.005 to 0.02. The same increase in E,/ E, value does not result in observable

increase in the maximum tensile stress in the dam under horizontal ground motion

(Fig. 5.17). The sediment thickness also shows a significant influence on the

developed stresses in the dam under vertical ground acceleration as compared to the

case of horizontal excitation (Fig. 5.19). The above observations are valid for both

VHI and VI9 vertical ground motion records with considerably different PGA/PGV

ratios.

The absorption effect of the sediment layer on the tensile stress in the dam when
subjected to vertical excitation is examined using the set of the ground motion records listed
in Tables 5.4 and 5.5. The objective is to verify the response reduction effect of the
sediment mathematical model discussed in Chapter 2 using the ground motion records with
various characteristics. Figure 5.20 shows the calculated reduction of the maximum
principal tensile stress and the stress factor of the dam for the set of vertical ground motion
records. The vertical component records are classified as high and intermediate categories
based on their PGA/PGV ratio according to an arbitrary value of PGA/PGV = 1.6. The
response of the dam is computed for the two cases where no sedimentation is considered at
the reservoir bottom and when the a sediment layer with the thickness of d/H =0.05 is
assumed. The mechanical properties of the sediment material and the reservoir foundation
are given in the figure. The results presented in Fig. 5.20 confirm that the mathematical
model of the sedimented reservoir bottom shows stress reduction in the dam for all input
ground motion records as compared to the case where no sediment layer is assumed. The
amount of stress reduction in the dam-reservoir example subjected to different vertical
component ground motions varies in the range of 10% to 40% for the maximum principal

stress and in the range of 8% to 35% for the stress factor of the dam.
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The amount of response reduction of the dam due to the effect of the reservoir bottom
sedimentation does not show any specific variation with the peak ground acceleration of the
input ground motion (Fig. 5.20).

The variations of the maximum tensile stress and the stress factor of the dam with the
PGA/PGYV ratio of the input earthquake are shown in Fig. 5.21. The ground motion records
are scaled to PGV = 0.1 m/s. The thickness of the reservoir bottom sediment layer is taken
as d, /H = 0.05. The normalized maximum tensile stress shows a linear variation with the
PGA/PGYV ratio of the input earthquake which is independent of the PGA/PGV ratio
category. This observation is in accordance with the variation of the computed maximum
tensile stress in the dam with PGA of the ground motion shown in Fig. 5.5a. The reason
is that for a constant PGV value, Fig. 5.21a represents the almost linear dependence of the
developed stress in the dam as a type of low-period structure on the PGA of the ground
motion as shown in Fig. 5.5a. The stress factor of the dam shows different trends of
dependence on the PGA/PGV ratio of the ground motion input. According to Fig. 5.21b,
the PGA/PGV of the records in the intermediate category has more significant effect on
the stress factor of the dam as compared to the records of high PGA/PGV category. The
stress factor increases with the PGA/PGYV of the records in both categories when scaled to

the same PGV value.

5.5.3 Stress Reduction With Hydrodynamic Isolation of the Dam

The performance of the hydrodynamic isolation layer when the dam-reservoir system
is subjected to different earthquake excitations is investigated. The objective is to examine
the effectiveness of hydrodynamic isolation in reducing the seismic response of the dam
under different ground motion characteristics. The same dam-reservoir example discussed

in section 5.5.2 is used in the study. The only difference is that the reservoir bottom is
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assumed completely rigid with no sediment layer and «, = 1.0. An attached isolation layer
is assumed to cover the upstream face of the dam. The thickness of the layer is assumed
constant and equal to t,=2.4 m (t,/H = 0.025). The density and the modulus of elasticity of
the isolation material are assumed as: p,= 1300 kg/m*® and E, = 0.1 MPa, respectively. The
appropriate damping of the material is obtained using Fig. 3.9 as: p,C;t, =27.9 kPa.s and
therefore: 1, = 0.5x27.9 = 14.0 kPa.s. Figures 5.22 and 5.23 show the vanation of the
maximum tensile stress and the stress factor of a dam subjected to the horizontal ground
motion records listed in Tables 5.2 and 5.3, respectively. The horizontal components of
the ground motion are selected for the analysis because they cause higher stresses in the dam
than the vertical components. The results presented in Figs. 5.22 and 5.23 confirm the
reduction effect of the hydrodynamic isolation scheme on the stress in the dam subjected to
ground motion records with different intensity and frequency characteristics. The reduction
effect of the hydrodynamic isolation appears to be more significant when the dam is
subjected to stronger ground motion records. However, more recorded ground motions need

to be examined for verification of this observation.
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5.6 CONCLUSIONS

A measure of the structural response (Stress Factor) is introduced to evaluate the
overall state of stress in a gravity dam monolith over a given period of time. It is shown that
the introduced parameter correlates well with various measures of the input ground motion
intensity and therefore, is applicable in seismic design and reliability analysis of concrete
gravity dams. The maximum tensile stress and the stress factor proved useful in the
evaluation of the effects of reservoir bottom sedimentation and the hydrodynamic isolation
layer introduced in previous chapters on the seismic response of the dam-reservoir system.

It is concluded that the evaluation of the stress factor of the dam as a complementary
design parameter provides a convenient measure in comparing the effect of different input
ground motion records as well as the influence of reservoir boundary characteristics on
earthquake response of the dam.

The stress factor can also be used in damage evaluation of the concrete gravity dam
when subjected to severe earthquake ground motion. The stress factor is shown to be a direct
measure of the expected overstressed part of the dam cross section. However, it only
provides an overall indication of the state of excessive stress in the dam subjected to strong
ground motion. A nonlinear analysis is needed to study the post-cracking behaviour of the

dam and the extent of crack propagation over the monolith cross section.
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Table 5.1 Partial list of large concrete gravity dams in the United States (Kollgaard 1988)

Year Height Face Slope
Dam Buil (m) Notes
t D.stream  Upstrea
m
Lower Crystal 1888 469 0.71 0.25
Springs
Arrowrock 1915  106.7 0.67 0.05

Elephant Butte 1916 91.7 0.83 -

O'shaughnessy 1938 131.1 0.78 \'% 95.1 m above streambed
Shaver Lake 1927 56.4 0.71 \%

Morris 1934 100.0 0.81 0.05

Hiwassee 1940 93.6 0.69 \%

Friant 1942 97.2 0.70 v

Grand Coulee 1942 167.6 0.80 \'%

Fontana 1944 1463 0.76 \% 140.2 m above streambed
Shasta 1945 183.5 0.80 v

Hartwell 1963  73.2 0.67 \'% 62.2 m above streambed
Dworshak 1973 2185 0.80 \%

Willow Creek 1983 539 0.82 \% 51.5 m above streambed
Middle Fork 1984 37.8 0.88 -

Galesville 1986 509 0.80 \Y 47.9 m above streambed
Upper Stillwater 1988 838.4 0.60 \% Roller Compacted

Concrete

) For the cases where the dam has multiple face slopes, the main slope is listed.
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Table 5.6 Intensity measures of the selected horizontal components

Record trecord ty Ground motion Intensity
s) () PGA SI Igg x10?
(2) (cm) (s)"”
t;=10s t,=20s
HH1 30.3 10, 20 0.269 11.9 3.0 3.0
HH2 44.0 10, 20 0.434 15.5 438 5.0
HH3 39.8 10, 20 0.105 3.5 1.2 1.2
HH4 40.8 10, 20 0.085 3.5 1.2 1.2
HH5 51.0 10, 20 0.146 4.3 1.5 1.5
HH6 16.8 10 0.200 6.4 2.1 --
HH7 12.4 10 0.084 2.5 1.2 --
HH9 36.9 10,20 0.146 5.1 2.3 24
HHI11 16.9 10 0.151 4.0 1.7 --
HHI12 28.0 10, 20 0.146 53 1.7 1.8
HH13 9.9 10 0.270 7.1 2.7 --
HH15 16.4 10 0.074 23 1.1 --




Table 5.6 (Contd.) Intensity measures of the selected horizontal components

53.7
54.3
54.3
449
45.1
65.1
79.4
62.5
429
47.0
299
60.0
40.3
325
40.6

10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10
10

0.348
0.179
0.156
0.046
0.041
0.150
0.211
0.165
0.180
0.200
0.070
0.078
0.171
0.105
0.123

13.0
7.6
6.8
1.6
1.9
59
8.7
5.1
6.8
8.9
23
3.2
9.3
3.7
4.4

5.0
3.5
3.2
0.8
0.7
2.9
4.2
3.0
3.1
3.7

-

1.3
0.3
4.1
1.9
1.9

6.8
3.9
3.7
0.8
0.7
29
4.3
3.2
33
39
1.4
0.4
43
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Table 5.7 Intensity measures of the selected vertical components
Record trecord ty Ground motion Intensity
(s) (s) PGA SI leq x10°
(8) (cm) (s)"?
t=10s  t=20s
VHI1 304 10, 20 0.132 33 1.2 1.3
VH2 440 10, 20 0.119 4.3 22 2.2
VH3 39.7 10, 20 0.037 0.8 0.4 0.4
VH4 40.6 10, 20 0.044 2.0 0.6 0.6
VH5 51.0 10, 20 0.089 32 1.1 1.1
VH6 16.6 10 0.054 1.8 0.8 --
VH7 12.1 10 0.115 2.7 1.1 -
VHS 41.7 10, 20 0.709 27.0 10.9 11.0
VH9 37.0 10, 20 0.154 4.2 22 2.2
VHI13 10.0 10 0.058 1.9 0.7 --
VH14 11.5 10 0.03 1.0 0.4 --
VHIS 16.5 10 0.044 1.7 0.7 --




Table 5.7 (Contd.) Intensity measures of the selected vertical components

53.8
54.2
45.2
45.2
65.2
79.5
62.5
43.0
47.1
30.0
40.4
325
40.6

10, 20
10, 20
10
10
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10, 20
10
10

0.21
0.105
0.055
0.037
0.071
0.089
0.057
0.123
0.069
0.039
0.163
G.051
0.059

4.7
4.6
1.3
1.4
29
2.0
2.2
3.8
24
1.0
6.8
2.5
2.7

35
2.1
0.7
0.6
1.6
1.5
1.1
2.0
1.2
0.6
34
1.1

1.2

.o

3.7
2.5

1.7
1.6
1.3

~
—

1.3
0.7
3.5
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Table 5.8 Ground motion and stress factor data for the stress analysis of Figs. 5.17 and

5.18.
Case No. Ground Motion PGA® Stress
(g) Factor
1 | San Francisco, CA, 1957, S80E | 0.315 0.179
Golden Gate Park
Horizonta
l 2 | Helena, Montana, 1935, NOOE 0.438 0.287
Carroll College
3 | Lytle Creek, CA, 1970, S25W 0.594 0.531
Wrightwood
4 | Parkfield, CA, 1966, N65W 0.807 0.832
Temblor No.2
1 | Parkfield, CA, 1966 0.357 0.449
Cholame, Shandon No. 5
Vertical
2 | San Fernando, CA, 1971 0.462 0.491
Lake Hughes, Station 4
3 | San Fernando, CA, 1971 0.369 0511
Griffith Park Observatory, L.A.
4 | Impenal Valley, CA, 1940 0.630 0.798
El Centro

) The records are scaled by a factor of 3.



~"~\Elcmcnt #45

4x180=720m

Fig. 5.1 - Finite element discretizations of the dam monolith indicating
elements of maximum principal stress
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Stress (MPa)

Time (s)

- Lytle Creek S25W, 1970 — San Fernando N9OE, 1971

Stress (MPa)

- Parkfield N65W, 1966 — Taft S69E, 1952

Fig. 52 Tensile stress time history response at the neck of the concrete dam
subjected to different ground motions: (a) Identical maximum peaks (b)
Different maximum peaks
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Fig. 5.15 Extension of excessive tensile stress over the cross section of the dam
monolith with the increase of the stress factor (horizontal ground motions,

dynamic response only). Cases numbered in the figure are described in
Table 5.8.
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Fig. 5.16 Extension of excessive tensile stress over the cross section of the dam
monolith with the increase of the stress factor (vertical ground motions,
dynamic response only). Cases numbered in the figure are described in

Table 5.8.
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Fig. 5.17 Maximum tensile stress in the dam monolith subjected to horizontal
ground accelerations HH1, HH6, HI2 and HI7 scaled to PGA = 0.25g:
Reservoir foundation properties: 5=0.50 and E,= 71820 MPa: (a) E,
/B,=0.005 (b) E,/E,=0.02
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Fig. 5.18 Tensile stress factor of the dam monolith subjected to horizontal ground
accelerations HHI1, HH6, HI2 and HI7 scaled to PGA = 0.25g:
Reservoir foundation properties: 5=0.50 and E,= 71820 MPa: (a) E,
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Fig. 5.19 Maximum tensile stress and tensile stress factor of the dam monolith
subjected to vertical ground accelerations VHI1 and VI9 scaled to PGA
= 0.25g: Reservoir foundation properties: b =0.50, E = 71820 MPa
and E,/E,=0.005 and 0.02
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CHAPTER 6

CONCLUSIONS

6.1 CONTRIBUTIONS

In this thesis, the effects of the reservoir boundary conditions on the seismic response
of gravity dams are investigated. The boundaries of the two-dimensional model of the
reservoir include the reservoir bottom, the dam-reservoir interface boundary and the far end
upstream boundary.

An analytical model is proposed for the sedimented bottom of the reservoir to
account for the damping of the reflected waves into the sediment layer as well as the
reflection of pressure waves from the underlying foundation rock. The effects of the
mechanical properties of the sediment layer and the foundation rock on the overall reflective
characteristic of the reservoir bottom boundary and the dynamic response of the dam are
studied.

The response of the dam to the seismic excitation with an isolation layer at the dam-
reservoir boundary is investigated. The appropriate mechanical properties of the isolation
layer for an effective response reduction is determined. The amount of seismic response
reduction compared with the case of an unisolated dam for a range of mechanical
characteristics of the isolation layer is studied. A theoretical solution for the hydrodynamic

pressure in a finite, rectangular-shaped reservoir with generally different reflection
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coefficients at its boundaries subjected to horizontal ground acceleration is derived. The
effect of the reservoir aspect ratio, L/H, on the performance of the isolation layer is
investigated using the developed theoretical solution for the finite-length reservoir model.

A detailed analytical procedure is developed to evaluate the seismic response of a
gravity dam impounding a reservoir of given length and absorptive charactenstics at its
boundaries. The response of the hydrodynamic pressure in the finite-length reservoir under
horizontal and vertical ground accelerations is studied. The effects of a number of theoretical
parameters including the number of Ritz vectors in the dam structural model, the reservoir
aspect ratio, the far end boundary condition and the reflection coefficients at the reservoir
boundaries on the calculated earthquake response of the dam-reservoir model are
investigated.

Finally, a stress analysis is conducted to evaluate the variation of stresses in the dam
monolith subjected to different ground motion records and impounding a reservoir with
various boundary characteristics. A single-valued parameter, called the stress factor, 1s
introduced to accommodate the stress time history and stress variation across the monolith
cross section in the structural response of the dam when subjected to different earthquake
ground motions. The introduced parameter is verified by examining its variations with the
intensity of the input earthquakes. The studies of the effects of reservoir different boundary
conditions on the seismic response of the gravity dam model are extended to include the
variations of the tensile stresses and the stress factor of the dam monolith subjected to a

range of ground acceleration records.



234

6.2 CONCLUSIONS

From the analysis conducted in the present research, the following conclusions are

reached at different parts of the study:

l.

[89]

The proposed model for the reservoir bottom boundary shows reasonable variations
with the mechanical characteristics of the sediment layer and the underlying
foundation rock and may be used to evaluate the equivalent reflection coefficient of

the layered reservoir bottom in the earthquake analysis of dams.

The proposed model for the sedimented reservoir bottom reveals a strong dependence
of the equivalent reflection coefficient of this boundary on the stiffness of the
underlying foundation rock. The dependence of the reflection coefficient of the
reservoir bottom on the mechanical properties of the sediment layer is more
significant for the case of a very soft and dissipative sediment. The sedimentation in
a newly built, deep reservoir is expected to be thin and dense under high hydrostatic
pressure. The hydrodynamic pressure in such a reservoir overlying a stiff foundation
is significant in the case of a seismic event due to the large reflection coefficient of

the reservoir bottom boundary.

The results of a theoretical study shows that the seismic response of the dam can be
reduced by isolating the dam from the imposed hydrodynamic pressure of the
reservoir. The isolation layer reduces the hydrodynamic loading on the dam in two
different ways: First, it serves as a boundary for the fluid domain with low reflection

coefficient which results in lower developed hydrodynamic pressure in the reservoir
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as compared to the case of an unisolated dam. Secondly, it reduces the amplitude of
the transmitted pressure to the dam based on its designed mechanical characteristics.
The isolation material needs to be very soft and with sufficient thickness so as to
reduce the hydrodynamic pressure on the dam significantly. The appropriate
mechanical properties of the isolation layer for an effective response reduction of the
dam are determined in the present study. A survey is made to determine the
appropriate range of materials that can be used as practical solutions for the
hydrodynamic isolation of dams. The properties of rubber materials appear to be
appropriate as the isolation material and can be adjusted to the required mechanical

characteristics for an effective isolation scheme.

The effectiveness of the isolation of the dam at the dam-reservoir boundary is more
significant when the dam impounds a confined reservoir at the upstream end as
compared to the case of an infinitely long reservoir. The reason is that the importance
of the hydrodynamic isolation at the dam-reservoir boundary increases in the absence
of the radiation of pressure waves to the far-end. The reservoir length effects were
negligible in the dam-reservoir model with the stationary upstream boundary when
the reservoir length was selected more than twice the reservoir depth in the present

study.

The problem of hydrodynamic pressure in the reservoir under vertical excitation with
generally different boundary conditions at the dam-reservoir interface and the

upstream far-end boundary can not be tackled with the available theoretical solution
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for the infinitely long reservoir. The existing theoretical solution for the
hydrodynamic pressure in the reservoir under vertical ground motion is in fact a one-
dimensional solution which does not accommodate any variation of the boundary
conditions in the horizontal direction. A finite-element program is developed to
calculate the earthquake response of a gravity dam impounding a reservoir of
arbitrary shape and boundary conditions. The procedure includes the boundary
conditions due to hydrodynamic isolation of the dam, a solid far-end upstream
boundary and a layered reservoir bottom with a constant sedimentation thickness.
The results of the frequency response of the hydrodynamic force on the dam indicate
that the two-dimensional response of the reservoir under uniform vertical ground
motion is pronounced when the boundary conditions at the side boundaries of the

two-dimensional, rectangular-shaped reservoir model are significantly different.

The finite element mesh refinement of the dam-reservoir model and the number of
Ritz vectors in the structural response approximation of the dam should be properly
chosen so as to capture the effects of higher frequency modes of the dam and the
reservoir in the seismic response of the dam-reservoir model. The refinement of the
finite element mesh and the number of Ritz vectors depend on the required degree
of accuracy in the results as well as the selected parameter to represent the response
of the dam. The increase of the mesh refinement and the number of Ritz vectors
beyond a certain limit slightly alters the peak amplitude of the frequency response
function of the crest acceleration while having no observable effect on the maximum

stress in the dam.
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The effects of reservoir boundary conditions on the stresses in the dam subjected to
different ground motion records are studied by using an introduced index (called the
stress factor) in the stress analysis. The stress factor of the monolith cross section is
defined in an attempt to describe and compare the overall state of the tensile stress
in the dam subjected to different earthquake ground motions using a single-valued
parameter. The applicability of the introduced parameter in seismic response analysis
of the gravity dams is tested by studying its variation with the intensity of the input
ground motion. The stress factor showed acceptable correlations with the intensity

of the selected ground motion records under different load combinations.

The stress factor is shown to be a valid parameter in evaluating the overstressed part
of the dam cross section. The portion of the monolith cross section with excessive
tensile stress grows with the increase of the stress factor. Based on this observation,
the stress factor can be used as a complementary design tool for optimum design of

the dam cross section.



6.3 RECOMMENDATIONS

A list of suggestions for further studies is presented below. These suggested subjects

have been developed along the course of the present research work. The major

recommendations include:

1.

o

The proposed model for the sedimented reservoir bottom should be extended to
include a two-dimensional behaviour of the layered foundation. However, it should
be attempted to develop a model which preserves its practical applicability for design
purposes without excessive number of design parameters. The two-dimensional
model will include the effect of variations of the thickness of the sediment layer in

the streamwise direction which has practical applications in sloped-bottom reservoirs.

There is little available experimental evidence on the mechanical characteristics of
the sedimentation in the reservoirs of existing dams. A realistic evaluation of the
reflectivity of the reservoir bottom boundary requires experimental measurements of
the input parameters of the proposed mathematical model. In situ measurements
provide more reliable information about the sedimented material than the laboratory

tests on disturbed samples of the matenal.

The isolation layer in the present study was assumed to uniformly cover the entire
upstream face of the dam monolith. There is a possibility of reducing the cost of the
isolation scheme by providing the isolation layer at separate parts along the height
of the dam where it can be most effective. The optimum design of the isolation

scheme should be conducted based on the analysis of a proper mathematical model.
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The three dimensional effect of the reservoir on the hydrodynamic force on the dam
is expected to be significant when the reservoir banks taper towards the upstream
end. The reflection of pressure waves towards the impounding dam may result in
significantly higher stresses in the dam as compared to the two dimensional
assumption of the fluid domain. The seismic response reduction of the hydrodynamic

isolation scheme for such reservoir geometry needs to be evaluated.

The use of rubber materials is determined as one practical solution for the isolation
scheme in this study. Laboratory tests are needed to determine their favourable
material design so as to develop the required mechanical properties for an effective

isolation. Their mechanical response in dynamic isolation tests needs to be evaluated.

The earthquake response of the isolated dam was computed with the assumption that
the reservoir water is compressible. The effect of water compressibility may be
negligible for the case where the impounded water subjected to ground motion is in
contact with the soft isolation layer. The effect of water compressibility on the

seismic response of the isolated dam needs to be investigated.

There is no proper boundary condition available for the frequency domain analysis
of a dam-reservoir model with truncated boundary at the reservoir upstream far-end
subjected to vertical ground acceleration. An appropriate boundary condition needs
to be developed for reducing the size of the truncated reservoir finite element model

under vertical input ground motion. A possible solution is to study the response of
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the hydrodynamic pressure under vertical excitation at the truncated boundary using

the results of the finite element analysis.

The response of the hydrodynamic pressure and the seismic response of the dam
impounding a finite-length reservoir are evaluated based on the assumption of a
stationary far-end solid reservoir boundary. The vibration of the upstream boundary
alters the hydrodynamic pressure in the reservoir. The effect of the moving upstream
boundary on the response of the dam needs to be evaluated including the effects of
phase difference between the vibrations of the reservoir side boundaries, incoherence
of the excitations, the travelling direction of the seismic excitation and the effects of

site conditions.

The reservoirs of many concrete dams do not have a perfect rectangular shape.
Consequently, the complexity of the reservoir shape should also be included in the
analysis of a specific dam-reservoir system. A survey of the reservoir shapes of
currently existing dams can be made and a set of typical geometrical groups can be
defined. The results of the present study can be examined by including different

geometrical shapes of the reservoirs in the analysis.

The stress factor of the dam proved to be a reliable complementary design parameter
in evaluation of the overall stress response of the dam when subjected to ground
motion. The validity of the stress factor can be further examined by including various

geometrical shapes of the monolith cross section.
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San Francisco, California 1957
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Oroville, California 1975
Seismogr. Station, N53W
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Near E. Coast of Honshu, Japan 1972
Kushiro Central Wharf, NOOE
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[mperial Valley, California 1940
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Borrego M., California 1968
San Onofre SCE, Power Plant, NSTW
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San Femnando, California 1971
Hollywood Storage, L-A., N9OE
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San Fernando, California 1971
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Monte Negro, Yugoslavia 1979
Albatros Hotel, Ulcinj, NOOE
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APPENDIX II

RECORDS OF VERTICAL GROUND MOTION



Parkfield, CA, June 27,1966
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Honshu, Japan, Apr. 5, 19566
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Imperial Valley, CA, May 18, 1940
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San Fernando, CA, Feb. 9, 1971
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San Fernando, CA, Feb. 9, 1971
Griffith Park Observatory, L.A.
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Monte Negro, Yugoslavia, Apr. 15, 1979
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