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Abstract

Inhomogeneous superconductors with an order parameter of d;2_,2 (d-wave) sym-
metry are investigated within the Ginzburg-Landau (GL) and Bogoliubov-de Gennes
(BdG) formalisms. The inhomogeneities considered in detail are external magnetic
fields, twin boundaries, and external currents. The Ginzburg-Landau equations are
derived within the context of two microscopic lattice models used to describe the high-
temperature superconductors: an extended Hubbard model and the Antiferromagnetic-
van Hove model. Analytical results are obtained for the extended Hubbard model at
low electron densities and weak to intermediate coupling. The variation of the coeffi-
cients in the GL equations with carrier density, temperature, and coupling constants
are calculated numerically for both models. The anisotropic higher-order terms in the
GL free energy are considered, with emphasis on the consequences for the structures
of isolated vortices and the vortex lattice in the mixed-state. Twin boundaries are
investigated numerically using the BdG formalism within the context of the extended
Hubbard model. The twin boundaries are represented by tetragonal regions of vari-
able width, with a reduced chemical potential. For sufficiently large twin boundary
width and change in chemical potential, an induced s-wave component may break
time-reversal symmetry at a low temperature T*. The temperature 7", and the mag-
nitude of the imaginary component, are found to depend strongly on electron density.
The results are compared with recent tunneling and transport measurements. The
behaviour of d-wave superconductors in the presence of external currents is inves-
tigated numerically for both clean systems and those containing twin boundaries.
The current response is studied with emphasis on critical currents and the superfluid
density. The effect of the external currents on the subdominant s-wave components
is characterized. Comparison is made with recent transport and tunneling measure-

ments.
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Chapter 1

Introduction

Just over a decade ago, the first of an intriguing new family of superconductors
was discovered [1]. The compound was La; 35Cag.15CuQO4, with a superconducting
transition temperature T, = 30 K which was 7 degrees higher than that of the pre-
vious record-holder, NbsGe. A large number of similar materials subsequently have
been discovered, and are collectively referred to as cuprate, oxide, or high-T, super-
conductors. All share a perovskite structure characterized by copper-oxygen layers,
and have unusually high superconducting transition temperatures (often well above
the boiling point of liquid nitrogen, 77 K). Indeed, transition temperatures as great
as T. =~ 240 K have been reported for certain Bi and Hg-based materials under high
pressure (2, 3].

While there are presently many cuprate superconductors, only a few are ac-
tively studied. These are Lay_;Sr.CuQOy4 (known as LSCO, maximum T, = 38 K),
YBayCu306,. (known as YBCO or 123, maximum T, = 93 K), Bi,Sr,CaCu;0s,.
(known as BSCCO or Bi 2212, maximum T, = 94 K), and T1,Ba;CayCu3Oi04<
(known as T1 2223, maximum T, = 125 K). These ‘hole-doped’ materials are the
subject of this thesis. Their structure is presented in a simplified manner in Ta-
ble 1.1 [4]. The recently-discovered superconducting perovskites without copper-
oxide planes (such as compounds based on BaBiOj3, maximum 7T, = 30 K) and the
‘electron-doped’ superconductors (based on Nd,CuQ,4, maximum 7, = 20 K) will not

be discussed in the present work.
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Lag_xSrzCuO4 YBa20u306+z BigSl‘zC&CUzOg.H; leBagcaQCu3010+z
LSCO YBCO, 123 BSCCO, 2212 Tl 2223
T.,=38 K T.=93 K T.=94 K T.=125 K
a=3.78 A a=386A a=394A a=394A
c=1324A c=1165A ¢=3084 c=36A
Cqu
CUO‘Z Cll02 Ca
CU02 Y Ca CUOQ
Cu02 CllOz Ca
CUOQ
(La/Sr)O BaO SrO BaO
(La/Sr)O CuO, BiO1 44/ TIO) 422
BaO BiOH.,_-/g T101+_—,_-/2
SrO BaO

Table 1.1: The structure of the most widely-studied cuprate superconductors is shown
schematically. Each line corresponds to an ab-oriented layer in the unit cell, stacking
in the c-direction. Unit cell lengths are given for the tetragonal phases, z = 0. Note
that the transition temperature roughly correlates with the number of copper-oxide

planes.
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The cuprate superconductors have several common characteristics that imme-
diately distinguish them from their low-T, counterparts. Aside from high transition
temperatures, these materials have extremely anisotropic and unusual transport prop-
erties in both the normal and superconducting states, great sensitivity to (low) carrier
concentration, and short superconducting coherence lengths. A complete theory of the
high-T, compounds incorporating all of these features remains elusive; in fact, even the
mechanism for the superconductivity is presently uncertain. Mounting experimental
evidence, however, suggests that the high-T, materials have a superconducting order
parameter with an anisotropic, specifically d,2_,2, symmetry. It is the goal of the
present thesis to elucidate how such an unconventional order parameter symmetry
affects the properties of superconductors in the presence of inhomogeneities, such as

external magnetic fields, twin boundaries, and external currents.

1.1 Properties of High-7, Superconductors

1.1.1 Normal State

Perhaps the most striking feature shared by all the high-T. superconductors is that
the parent states of these materials, which are stoichiometric with z = 0, are found
experimentally to be insulating at low temperatures. In contrast, conventional theory
predicts metallic behaviour since only 9 electrons occupy the Cu 3d shell, leaving one
hole per unit cell. Band structure calculations indicate that the uppermost bands are
predominantly composed of strongly hybridized copper 3d;2_,2 and oxygen 2p., 2p,
orbitals oriented in the CuQO, planes, as shown in Fig. 1.1. The theoretical results
indicate large (approximately 3 eV) bandwidths, and highly anisotropic dispersions
virtually independent of k., where z || c is the direction perpendicular to the ab-
oriented copper-oxide planes [5, 6]. In addition, the cuprates all have small densities
of states at the Fermi surface: 2N(0) = 1, 1.2, 1.5, and 2.5 states/eV/CuO; plane
for T1 2223, BSCCO, LSCO, and YBCO respectively [6]. In theory, the electronic
properties of all the parent compounds appear to be well-described by a single, half-

filled, two-dimensional band with an anisotropic Fermi surface, associated with a
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metallic CuO, layer (7, 8, 9, 10].

Most calculations neglect strong (non-perturbative) electronic correlations which
could drastically alter the picture of extended electronic states in a conducting band.
The effect of the Coulomb repulsion, for example, may be incorporated within the
context of the single-band repulsive Hubbard model [11]:

Huw = —t Z tiicloCis — ,uz nie + U Z Nit iy, (1.1)

ijo ic i

where ¢;, annihilates an electron with spin o at site 7, and the density operator n;, =
¢! c,, tests whether a given site is occupied. The chemical potential fixes the carrier
density. When the on-site Coulomb repulsion U is zero, the Hubbard Hamiltonian
describes electrons hopping between nearby copper sites with a probability ¢, which is
the effective ‘transfer integral’ characterizing the overlap of nearby atomic orbitals. In
the approximation where only z nearest atomic neighbours have any finite overlap, the
non-interacting electrons occupy a tight-binding band of width 2zt (the coordination
number z = 4 in the cuprates). As U increases, however, the energetic cost of electrons
occupying the same site grows. The carriers become more tightly-bound to their site,
and the effective overlap between orbitals decreases. At half-filling (n) = 1 and
U = oo, each spin S = 1/2 electron is localized to a copper site. It has been shown
that the ground state of this system is a Mott-Hubbard insulator, with adjacent spins
antiferromagnetically oriented [12].

Magnetic neutron scattering experiments [13] confirm the theoretical predictions
that the parent compounds are in fact three-dimensional antiferromagnetic (AFM)
insulators, demonstrating strong electronic correlations both within and between the
copper-oxide layers. The Néel temperatures are Ty = 300 K and Ty = 400 K for
LSCO and YBCO, respectively. The low-lying excitations are interpreted as the
spin-waves of a highly anisotropic Heisenberg Hamiltonian (13, 14, 15, 16}:

Hueis = 3 Ji;S:iS;, (1.2)
(i7)
where the sum (ij) is over nearest-neighbours only. The (nearest-neighbour) Heisen-

berg exchange coupling J;; = 4t2/U may be derived from the Hubbard model [12].
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Since J;; > 0, the Heisenberg model favours adjacent spins with opposite orientation,
or antiferromagnetism. While the intralayer coupling is found to be approximately
100 meV, the interlayer coupling is a factor of order 10~* smaller, giving rise to essen-
tially two-dimensional spin-wave excitations [17]. A large on-site repulsion U =~ 6 eV
is implied by the experiments; since U ~ 2zt is comparable to the bandwidth, elec-
tronic correlations are indeed strong in these systems.

A small variation of the stoichiometry rapidly suppresses the long-range antifer-
romagnetic order. As z increases, Ty is found experimentally to decrease rapidly (13,
15]. At the same time, the materials begin to exhibit metallic properties, and become
superconducting for z =~ 0.05 in LSCO and z ~ 0.4 in YBCO. For small z, AFM
correlations persist in the form of antiferromagnetic spin fluctuations, as found in
NMR [18], magnetic neutron [19], and Raman [20] experiments. The change in the
stoichiometry is believed to remove electrons from the copper sites, creating holes in
the antiferromagnetic copper-oxide layers. Even at low concentrations, mobile holes
are known to effectively destroy long-range antiferromagnetic order [21]. The mecha-
nism for this can be simply understood in terms of frustration [22]. As holes propagate
through the AFM background, they leave a trail of ferromagnetically-coupled spins,
locally frustrating the energetically-favoured AFM order.

For very small z, the dispersion of the holes is determined theoretically by min-
imizing the energy cost of weakening the background AFM order. Numerical and
exact-diagonalization studies are usually carried out within the context of the Hub-
bard model (1.1) or the ¢ — J model (7]:

Hmy = —t 3 tislotiy + 3 Jis (S:85 - 377 ) (1.3)
ijo (i7)
which is simply the Heisenberg model including charge transport. Numerical calcula-
tions within the ¢t—J model indicate that the hole dispersion (k) is well-approximated
by [23, 24, 25):
(k) = teg (cos kg + cosky)?, (1.4)

where t.g ~ J/2. This result corresponds to a tight-binding model of holes hopping

between second and third nearest-neighbours. The AFM order is preserved, since
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the holes remain on a single spin sublattice [26]. The minimum of the hole band is
located at the wavevector (k;, k,) = (7/2, 7/2) and symmetry-related points [27].
More recent exact diagonalization studies confirm the prediction of ‘hole pockets’
at this band minimum, but yield a more complicated dispersion with extremely flat
bands near (0, 7) and symmetry-related points [28, 29, 30, 31]. With increasing
hole concentration, the hole pockets gradually evolve into a large hole Fermi surface
centered at the antiferromagnetic wavevector @ = (7, 7), or equivalently a large
electronic Fermi surface centered at (0, 0) that is virtually identical to that of the

non-interacting case [32, 33], with electron dispersion:
e(k) = —2t (cos k; + cosky) . (1.5)

Angle-resolved photoemission spectroscopy (ARPES) experiments have confirmed
the theoretical dispersion relations. Measurements on highly underdoped (z ~ 0)
BSCCO reveal Fermi surface edges only along the diagonals of the Brillouin zone
(ks , £k,), and not at the corners (0, £m) or (£, 0) [34, 35]. A very flat quasiparticle
dispersion is found in the vicinity of (0, 7), in agreement with theory (36, 37]. The
evolution of the Fermi surface with increasing = from small hole pockets to a large
area centered at (7, m) has also been observed [36, 38, 39].

At intermediate stoichiometries, the high-T, oxides have transport properties above
T. that are quite different from those of conventional superconductors. The resistiv-
ity, Hall effect, and thermopower are unlike those of ordinary metals. The resistivity
p(T) is found to have a linear temperature-dependence over a wide range of temper-
atures, except for £ ~ 0 where the cuprates become insulators, and for z > 0 where
p(T) ~ T? [40, 41]. In metals, the resistivity at low temperatures is usually propor-
tional to T™, where n = 2 or higher. The resistivities are also highly anisotropic: while
the results depend somewhat on the doping, experimental data suggest p./p, ~ 10°,
200, 100, and 35 for BSCCO, LSCO, TI 2223, and YBCO, respectively [40, 42, 43].
There is also pronounced in-plane anisotropy of both the resistivity p,/p, =~ 2 and
conductivity o,/0, = 0.4 as = approaches unity in YBCO [41, 44]. The additional
charge transport is due to the formation of b-oriented CuO; chains (one chain per unit

cell in addition to the two CuO; planes) that become increasingly ordered with oxygen
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doping. The resistivity data are corroborated by thermal conductivity measurements,
which find a temperature-independent in-plane anisotropy k,/%, = 1.5 (45, 46]. The
sign of the Hall coefficient Ry changes from positive to negative as z is increased
from zero, reflecting the crossover from p-type to n-type carriers with doping [47]. In
addition, the behaviours of Ry and the Hall angle 84 [48], as well as that of the See-
beck coefficient S defining the thermopower [49], do not match those of conventional

superconductors.

1.1.2 Superconducting State

Before briefly reviewing the plethora of fascinating and important differences be-
tween the superconducting properties of the cuprates and those of conventional met-
als, it is important to stress that the high-T, superconducting state is in many respects
quite standard. The characteristic discontinuity in the specific heat at the transition
temperature T, indicates the onset of a three-dimensional, bulk superfluid [50]; the
phase transition belongs to the usual 3DXY-universality class [51]. The condensation
is due to paired electrons, since the superconducting flux quantum is found to be
$o = hc/2e =~ 2-107 G-cm?® [52, 53], and the superconducting order parameter is
a spin-singlet [54, 55, 56]. As expected, the resistivity drops to zero at T. [41, 57],
below which these materials are able to support current densities comparable with
those of conventional superconductors [58]. The cuprates are all strongly type-II su-
perconductors, exhibiting a perfect diamagnetic response below the lower critical field
H,, [59, 60, 61].

This superficial description of the cuprates’ superfluid behaviour belies the un-
usual characteristics of the condensed state, which are inevitably found in the details.
The most obvious of these are the unusually high superconducting transition tem-
peratures; prior to 1986, the largest known T, = 23 K had been found for Nb3Ge.
Furthermore, the transition temperatures for the cuprates are highly-dependent on
stoichiometry; while for z = 0 the parent compounds are Mott insulators, as z in-
creases the AFM correlations diminish and a superconducting instability appears.

The associated transition temperature is a non-monotonic function of z, reaching a
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maximum at ‘optimal doping’ Zop, and is smaller in both the ‘underdoped’ T < Zopt
and ‘overdoped’ T > oy cases. While the value of z associated with the supercon-
ducting onset and T™** varies among the cuprates, the dependence on the number
of charge carriers per site n is quite universal; superconductivity first appears for
n = 0.05, while T™3* occurs when n & 0.15 — 0.20 [62, 63]. It is striking that high
transition temperatures are obtained in spite of the low density of charge carriers.

The high-T, materials are characterized by extremely short superconducting co-
herence lengths. The zero-temperature coherence length £(0) is often defined in terms
of the upper critical field H, through H(0) = ¢o/2m€%(0) [64]. Since the high-T.
materials have such large upper critical fields at all temperatures T' < T, however,
the precise values of the coherence lengths are difficult to determine. Extrapolation
of resistivity data yields HS(0) ~ 120 T and H%(0) ~ 670 T for fields along the
c-axis and in the ab-plane respectively [65, 66]. By implication the coherence lengths
are £,(0) ~ 16 A ~ 4a in the ab-plane and &(0) = 7 A in the c-direction, where the
latter is of the same order as the interplane distance. The size of £(0) approximately
measures the spatial extent of the Cooper pair, so the superconductivity will be lo-
cally sensitive to the presence of defects, such as impurities and weak links. Yet, the
Bose-like character of the small Cooper pairs could be partially responsible for the
large transition temperatures [67, 68].

The penetration depth A(T), the characteristic length scale for spatial variations
of a magnetic field inside a superconductor, also provides a great deal of informa-
tion about the superconducting properties of the cuprates. In particular, the zero-
temperature penetration depths are all long compared to those found in conven-
tional superconductors: A(0) = 5500 A in the c-direction, while A;(0) ~ 1500 A,
2200 A, and 3100 A in the a-direction for optimally-doped YBCO, Tl 2223, and
BSCCO, respectively; in YBCO, there is additional ab-plane anisotropy As/XAs =~
1.5 [69, 70, 71, 72]. In contrast, clean aluminum, tin, and lead have penetration
depths of 500 A, 510 A, and 390 A, respectively [73]. The long penetration depths
are due in part to the small number of charge carriers, which limits the formation of
the diamagnetic screening currents required to expel the magnetic field. The quasi-

two dimensional distribution of the charge carriers may be responsible for the long
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penetration depths in the ab-plane, since the charge density decreases with increasing
interlayer separation. The pronounced anisotropy of the penetration depth reflects
the normal-state properties, indicating weak interplane coupling but enhanced su-
perconducting transport in the CuO; layers and along the b-oriented CuO chains in
optimally-doped YBCO. Further evidence for anisotropic superconductivity comes
from measurements of the lower critical field H.; (the magnetic field at which vor-
tices begin to penetrate the material), which indicate that the maximum screening
currents generated in the ab-plane I = 2.5- 10! A/m? are an order of magnitude

larger than their c-axis counterparts [59, 60].

Since the coherence lengths are much shorter than the penetration depths, the
Ginzburg-Landau parameter «(T) = A(T)/§(T) > 1. Thus, the high-T. mate-
rials are all strongly type-II superconductors and are well-described by London,
or local, electrodynamics (see Sections 2.1 and 3.2). In this regime, the inverse-
square of the (London) penetration depth is proportional to the superfluid density
ng: A72(0) = dme?ng/mjc?, where m* is the effective mass of the quasiparticles.
From ARPES [74, 75], de Haas-van Alphen [6, 76], and optical data [77], one infers
m*® = 4m, for optimally-doped cuprates (where m, is the bare electron mass). Since
naive band-structure calculations predict m* ~ m,, the large renormalization of the
quasiparticle mass suggests a strong interaction of the quasiparticles with an intrinsic
bosonic mode, such as phonons or spin fluctuations. With the normal-state density
n(0) = 5 - 10®* cm™ and m ~ 4m,, one obtains n,/n(0) ~ 1 demonstrating the ro-
bustness of the superfluidity. In addition, the transition temperature of the cuprates
is found to scale with the superfluid density [78]; this behaviour is inconsistent with
the predictions of Bardeen, Cooper, and Schrieffer’'s (BCS) theory describing con-
ventional superconductors [79], and has been cited as evidence for an unconventional
pairing mechanism in the high-T, superconductors [80]. Indeed, as will be discussed
in the next two sections, experimental evidence indicates that the superconducting

state of the high-T, materials is not well-described by a conventional BCS theory.
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1.2 Why d-wave superconductivity?

In general, the Cooper-pair wavefunction, or superconducting gap function, is

written as a direct product of orbital and spin degrees of freedom [81]:

Al 12) = Viges w-2{ci(r1)er(r))w = (T - rz)”—i—\;—imeﬂ’m*““ﬂﬂ, (L6)

where V., measures the interaction between the fermions on site r, and ry, (...)
denotes an expectation value in the N-particle ground-state, ¢ is the orbital wave-
function dependent only on the relative coordinate, and pcm is the center-of-mass
momentum of the Cooper pair. Since the spin wavefunction for the cuprates is a
singlet, as mentioned above [54, 55, 56], the orbital wavefunction must be symmetric
in order to guarantee the overall antisymmetry of the gap function A. Thus, al-
lowed orbital momenta are [ = 0,2,. .., corresponding to s-, d-, g-,... wave states in
spectroscopic notation. It must be kept in mind, however, that the definite angular
momentum of the state is ill-defined, due to the presence of the crystal field; rather,
the gap function and the superconducting order parameter should be interpreted as

having s/d/g-wave symmetry:
oty —r2) = Y e, (1.7)
k

where ¢y is an s/d/g-wave basis function in k-space satisfying the point group sym-

metry of the crystal.

The high-T, superconductors are either tetragonal (for small z) with crystal sym-
metry I4/mmm and point group Dy, or weakly orthorhombic with space group Abma
(LSCO) or Pmmm (YBCO) and point group Dy, (82, 83, 84]. Assuming that the
superconductivity resides predominantly in the CuO; planes, as indicated by the ob-
served anisotropy in transport (see previous sections), any k.-dependence may be

neglected. For Dy, and assuming singlet pairing, one obtains the one-dimensional
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irreducible representations [85]:
[ const isotropic s-wave (I'7),
cosk +cosky ~ k2 + k2 extended s-wave (I'7),

cos k; — cosky ~ k2 — k2 d-wave (T3),

Pk = { cos kecosky ~ k2 + k2 sy-wave (I'7), (1.8)
sin k; sinky ~ kzky dzy-wave (I'f),
sin k; sink, ~ k;k, d.,-wave (T'7F),
| sin ky sink, ~ kyk. dy.-wave (T'F),

where the I'Y representation has been included for completeness. In the point group
symmetry Dy, the isotropic s-wave, extended s-wave, and s;,-wave basis functions
belong to the trivial I'T representation; these components of the total order parameter
are linearly-dependent in tetragonal systems. In the lower point group Dy, the d-
wave basis function also belongs to I'Y, while d., € T'F, dzy € I'f, and dy, € ['T.!
Thus, both s-wave and d-wave gap functions will be subcomponents of the total order
parameter in orthorhombic superconductors [85].

In order to motivate why the high-T, materials might have an order parameter
with d-wave symmetry, it is instructive to consider the (gauge-covariant) real-space

representations of A with the symmetries defined in (1.8):

isotropic s-wave: Ao(r) = Voley(B)ey(r)); (1.9)

extended s-wave: A,(r) = i[Az(r)+A_,(r)+Ay(r)+A_y(r)]; (1.10)
dwave: Ag(r) = %[A,(r)+A-z(r)—Ay(r)—A_y(r)]; (1.11)
sepwave: Ay(r) = 7[Bacy() + Biary(6) + Doy &) + Aoary ()];

(1.12)

[Az—y(r) + A_ziy(r) — Agyy(r) — A—z—y(r)]’
(1.13)

1Throughout this thesis, extended s-wave and d-wave are taken to represent s;z;,2-wave and
d;2_,2-wave, respectively.

|

dyy-wave: Aqg(r)
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where r is the center-of-mass coordinate, and the relative coordinate is the subscript

of the ‘bond gap functions’:
As(r) = Viey(r)er(x + 8)). (1.14)

In a uniform system with directionally-independent bond couplings, all the bond gaps

will have equal magnitudes. The Fourier transform of the relative coordinate yields:

Ao(r) = Y A(r,k); (1.15)
K

Ag(r) = %ZA(r,k)(coskz+cosky); (1.16)
k

Ay(r) = %ZA(r,k)(coskz—cosky); (1.17)
k

As(r) = Y A(r,k)cosk;cosky, (1.18)
k

Agr) = Y A(r,k)sink;sinky, (1.19)
k

where
A(r, k) = V(e (r)e—ke(T))- (1.20)

The real-space definitions of the gap functions (1.9)-(1.13) demonstrate that an un-
conventional gap function symmetry is a consequence of electrons pairing on nearby
sites. Only in the isotropic s-wave case do electrons pair on the same site; the extended
s-wave and d-wave gaps arise from nearest-neighbour pairing, while the s;,-wave and
d,-wave gaps result from next-nearest-neighbour pairing. The pairing along bonds
ensures that the lobes of the unconventional gap functions are oriented with the un-
derlying lattice. The lobes point along the [100]- and [010]-directions for the extended
s-wave and d-wave, and along the [110]- and [110]-directions for s;,-wave and dgy-
wave. Thus, in systems such as the cuprates where electron-electron correlations are
significant, one would expect the condensate wavefunction to have unconventional

symmetry in order to minimize the energy associated with the large on-site Coulomb
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repulsion. The order parameter symmetry of the physical system depends on the
nature of the pairing potential.

The real-space argument for unconventional gap symmetry is valid only if the
bosons mediating the pairing give rise to an instantaneous interaction. In conven-
tional superconductors, electrons comprising the Cooper pair minimize the Coulomb
repulsion by avoiding not only short-range, but also short-time interactions. Although
phonons provide this retarded BCS pairing mechanism, they do not appear to play
as prominent a role in the cuprates. The experimental evidence suggests that the
magnitude of the isotope effect (the ‘smoking gun’ of a phonon-pairing mechanism)
is inversely correlated with the size of T, as z is varied, i.e. is a minimum at optimal
doping (86, 87, 88]. In addition, phonon-mediated interactions are usually associated
with long superconducting coherence lengths, as can be shown using a variant of
Faber and Pippard’s original argument [89]. The coherence length may be estimated
from the uncertainty principle, £6p ~ h. The momenta ép ~ hwp/vp of electrons
participating in the condensation are in a range governed by the Debye energy fiwp,
the cutoff of the phonon-pairing interaction. Thus, one obtains £ ~ hvp/hwp; since
the Debye energy is much smaller than the Fermi energy, the coherence length is
long. In contrast, instantaneous interactions generally have no intrinsic cutoff ex-
cept (perhaps) the bandwidth, which is much larger than hwp, yielding much shorter
coherence lengths.

While the mechanism for high-T, superconductivity is controversial, there is some
evidence suggesting that antiferromagnetic spin fluctuations may be important. A
large quantity of theoretical work on the large-U Hubbard (1.1) and t — J (1.3)
models demonstrates that the ground state of these systems is an antiferromagnetic
insulator at half-filling, and for small hole concentrations (n) < 1 the system becomes
a superconductor with an order parameter of d-wave symmetry (for excellent reviews
on this subject, the reader is referred to [29, 81, 90]). Weak coupling arguments
indicate that d-wave superconductivity may be favoured by the exchange of AFM
spin fluctuations [91, 92]. The experimental evidence for this pairing mechanism is
presently unclear, however. While short-range AFM correlations are found in the

superconducting state of underdoped samples, they may be wholly absent at optimal
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doping [18, 19, 20].

1.3 Experimental Evidence for d-wave

Over the past few years, the symmetry of the superconducting order parameter
in the cuprates has been the subject of furious debate. Experimental evidence is
beginning to resolve the issue, however, in favour of an order parameter with d-wave
symmetry. The experiments may be roughly divided into two categories: those that
yield superconducting properties most compatible with a d-wave gap function (indi-
rect experiments), and those that are able to explicitly determine the sign changes
associated with d-wave symmetry (direct experiments). A summary of the exper-
imental evidence for d-wave superconductivity in the high-T, materials is sketched

below; further details may be found in the recent reviews (81, 93, 94, 95, 96).

1.3.1 Indirect Evidence

Most experiments attempting to indirectly determine the symmetry of the su-
perconducting order parameter search for evidence of line nodes in the gap function
(extended regions in k-space where the superconductor is gapless). Line nodes are
a common feature of unconventional gap function symmetries, such as extended s-
wave (with nodes along |k;| = |k, — |), d-wave (|k;| = |kyl), and dzy-wave (k. =0,
k, = 0). In conventional superconductors, the number of excitations at low temper-
atures is exponentially activated ~ e~2/%8T due to the presence of a non-zero gap.
When the gap has line nodes, however, the low-energy excitations lead to power-law
temperature dependences of many physical observables.

The low-temperature behaviour of the penetration depth in the cuprates strongly
suggests a gap with line nodes. In very clean samples of optimally-doped YBCO
and BSCCO at low temperatures, a linear magnetic field-dependence of the pen-
etration depth [97], and linear temperature dependence of the superfluid density
ns/n o A2(0)/A%(T) ~ 1 —T/T, was observed [98], consistent with theoretical predic-
tions for a gap with line nodes [99, 100, 101, 102]. In contrast, the low-temperature
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superfluid density is essentially independent of temperature in conventional super-
conductors due to the absence of low-lying excitations. The temperature-dependence
crosses over from linear to quadratic with the addition of non-magnetic impurities such
as Zn and Co, however [103, 104, 105]. While such a crossover is evidently due to
additional low-energy states caused by pair-breaking, the superfluid density of s-wave
superconductors cannot be significantly affected by non-magnetic impurities by An-
derson’s theorem [106]. The results are more consistent with d-wave superconductors,
where non-magnetic impurities are pair-breakers due to the destructive interference
between the positive and negative lobes of the d-wave gap function [107, 108] (this is
described in more detail in Section 4.5).

Additional experiments indicate the presence of gap nodes in the cuprates. The
temperature-dependence of the specific heat is linear at low temperatures, rather
than exponentially activated [109]. Consequently, the entropy gleaned from specific
heat measurements falls more slowly than would be found in conventional supercon-
ductors [50]. A linear excitation spectrum is consistently obtained in single-particle
tunneling experiments [110, 111, 112]. A commonly-observed zero-energy conduc-
tance peak (ZBCP) in the tunneling spectra has been interpreted as evidence for
d-wave superconductivity [113], though such a feature is consistent with any gap
function that changes sign (further discussion of the ZBCP may be found in Sec-
tion 4.5). ARPES data clearly shows that the quasiparticles experience no gap when
moving along the diagonals of the Brillouin zone, but a large gap along the (0, 7)- and
(m, 0)-directions [38, 114]. From NMR, the absence of a coherence (Hebel-Slichter)
peak in nuclear spin-relaxation rates, and the linear temperature-dependence of the
spin-susceptibility obtained from the Knight shift, are most likely due to the presence
of gap nodes [115, 116].

1.3.2 Direct Evidence

The most convincing evidence for d-wave superconductivity in the cuprates has
been obtained from experiments sensitive to changes in the sign of the gap func-

tion [95, 96]. All of the experiments are based on the fact that the phase of the
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d-wave order parameter differs by 7 between the [100]- and [010]-directions of the
CuO, plane because the lobes of the gap function are aligned with the crystal axes.
Under suitable conditions, this phase shift can lead to observable interference and
frustration effects.

Direct confirmation of the m-phase shift has been obtained by dc SQUID (super-
conducting quantum interference device) measurements [95, 117, 118]. In these ex-
periments, tunnel junctions are affixed to the (100) and (010) surfaces of a c-oriented
optimally-doped YBCO sample. The two junctions are joined by a conventional s-
wave superconductor, and the flux enclosed by the composite superconducting loop
is measured as a function of applied bias current (alternatively, the supercurrent is
measured as a function of applied field). If YBCO were an s-wave superconductor,
the supercurrent should be a maximum in the absence of an applied field H. If YBCO
were a d-wave superconductor, a positive lobe of the d-wave gap function would face
one junction, while a negative lobe would face the other; the resulting destructive
interference should yield zero supercurrent when H = 0, but a maximum current for
H = ¢¢/2 = m. While there are many complicating factors, such as twin boundaries
(which will be discussed at length in Chapter 4), orthorhombicity (where the admix-
ture of the s-wave and d-wave components shifts the directions of the line nodes),
and trapped flux, the results agree extremely well with d-wave pairing in YBCO.

The interference effect described above has interesting and observable conse-
quences for granular d-wave superconductors, i.e. high-T, samples composed of many
c-axis superconducting domains (called grains) with arbitrary ab-plane orientations.
As the grain boundary misorientation angle increases, the critical currents should
decrease, reaching a minimum at 45° where there is complete frustration caused by
interference between the positive and negative lobes facing the junction. In order to
maintain high critical currents across the grain boundary, the d-wave superconductor
would prefer to spontaneously generate a magnetic vortex h = ¢/2 in the junc-
tion. These half-integer flux quanta have been observed for special grain-boundary
geometries in YBCO and tetragonal Tl 2201 by several groups using scanning SQUID
microscopy {119, 120] (further details of this effect may be found in Section 4.1.2).

Furthermore, the presence of the spontaneous flux at misoriented grain boundaries
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should give rise to diamagnetic supercurrents attempting to screen the magnetic field.
Indeed, the observed paramagnetic response to applied magnetic fields (the Wohlleben
effect {121, 122]) has been cited [96] as evidence for d-wave superconductivity in the

cuprates.

1.4 OQOutline

The high-T, materials are thought to be d-wave superconductors, characterized
by short coherence lengths and highly two-dimensional transport. In this thesis, the
behaviour of such superconductors in the presence of inhomogeneities is investigated
both analytically and numerically. External magnetic fields, twin boundaries, and
external currents are considered in Chapters 3, 4, and 5, respectively.

In Chapter 2, the phenomenological Ginzburg-Landau (GL) theories describing
inhomogeneous conventional and d-wave superconductors are reviewed. The GL pre-
dictions for the behaviour of d-wave materials in external magnetic fields are outlined
in Section 2.3, with emphasis on the structures of isolated magnetic vortices and the
vortex lattice. In Section 2.4, the possibility of a low-temperature phase transition to
a time-reversal symmetry breaking state is discussed within the context of GL the-
ory. Both uniform and inhomogeneous d-wave superconductors are considered. The
GL theory of critical currents for both conventional and d-wave superconductors are
outlined in Section 2.5.

The GL equations for a d-wave superconductor are derived microscopically in
Chapter 3. Two lattice models used to describe the cuprates are employed in the
derivation: the extended Hubbard (EH) model and the Antiferromagnetic van Hove
(AvH) model. In Section 3.2, the GL equations for the gap functions and the current
are derived using a field-theoretic approach. The superconducting transition tem-
peratures in the uniform state are calculated both analytically and numerically in
Section 3.3. In Section 3.4, the various coefficients appearing in the GL free energy
are obtained analytically for the EH model, and numerically for the AvH model.
The implications of the results for d-wave superconductors in the presence of exter-

nal magnetic fields and currents are investigated. The possibility of subdominant
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s-wave components of the superconducting order parameter, induced by various in-
homogeneities, is also addressed. The contribution of Fermi surface anisotropy to the
GL coefficients is studied in Section 3.5. In Section 3.6, the results are summarized
and compared with recent experimental data for the high-T. materials.

Chapter 4 is concerned with the influence of twin boundaries in determining the
superconducting properties of YBCO. The properties of twin boundaries and grain
boundaries are reviewed in Section 4.1, and the experimental evidence for a local time-
reversal symmetry breaking phase at low temperatures is discussed. The Bogoliubov-
de Gennes (BdG) equations describing a twinned d-wave superconductor are derived
in Section 4.2 within the context of the EH model. In Section 4.3, the behaviour of the
superconducting order parameter near the twin boundary is shown, and the conditions
required to elicit a time-reversal breaking state at low temperatures are determined.
The free energy is evaluated numerically in Section 4.4, in order to verify the stability
of the low-temperature phase. The possibility of quasiparticle localization near the
twin boundary is investigated in Section 4.5. The numerical results are summarized
in Section 4.6, and are compared with recent tunneling data obtained for YBCO.

The behaviour of the cuprates in the presence of external currents is investigated
in Chapter 5, both for clean materials and twinned YBCO. The BdG equations for
a clean d-wave superconductor with a Cooper-pair momentum are derived in Sec-
tion 5.2. The current response of the system is obtained numerically. The depairing
critical current, superfluid density, and penetration depth are calculated, and the re-
sults are compared with experimental data. The magnitudes of subdominant s-wave
components, nucleated by the external currents, are determined. External currents
in twinned systems are considered in Section 5.3, within the context of the BAG the-
ory described in Chapter 4. The behaviours of the currents and the order parameter
in the vicinity of the twin boundaries are obtained, both for time-reversal preserving
and violating superconducting states. The results are compared with recent tunneling

experiments on YBCO.
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Figure 1.1: In (a), the antibonding overlaps of the Cu 3d;2_,2 and O 2p, and O 2p,
orbitals are illustrated for the copper-oxide planes. The associated electronic Fermi
surface in (b) is large, with a band minimum at (7, ).



Chapter 2
Ginzburg-Landau Theory

The Ginzburg-Landau (GL) theory [123], a phenomenological formalism for the
investigation of second-order phase transitions, has been of inestimable value for the
description of a non-uniform superconducting state. Though the GL theory was de-
veloped several years before the microscopic theory of Bardeen, Cooper, and Schrieffer
(BCS), it was able to describe all of the important macroscopic properties, includ-
ing persistent currents, the Meissner effect, magnetic penetration depth, structures of
vortices and vortex lattices, and critical currents and magnetic fields. In this Chapter,
the GL theory for conventional superconductors will be briefly reviewed; the inter-
ested reader is referred to [64] for a complete treatment. Subsequently, the GL theory
relevant to the high-T, superconductors will be discussed with particular emphasis on

vortex structures, the possibility of time-reversal breaking, and critical currents.

2.1 Conventional GL Theory

In GL theory, the order parameter 1 = 9(r) characterizing the onset of supercon-
ductivity is treated as a complex and isotropic (i.e. s-wave-symmetric) wavefunction
which vanishes at the transition temperature 7T,. Near T, the order parameter is

small, and the Gibbs free energy! of the system may be written as a power series in

1Strictly, this is the free energy per unit volume, while the free energy is [ drF. Throughout
this thesis, the term ‘free energy’ will be taken to mean the free energy density, while the ‘total free
energy’ implies the free energy.

20




Conventional GL Theory 21

P:

2

h
F, = F, + o(T)|y|* + B(T)1¥|* + o

2 2

Gﬁ+%@¢'ﬁ? 2.1)

where F, is the free energy in the normal state, e* and m* are the effective charge

and mass, A is the vector potential associated with the magnetic field inside the
superconductor h = V x A, and h%/87 is the associated magnetic energy [124].
Gaussian units are used throughout this thesis. For a second-order phase transition,
o(T) must change sign from positive to negative at T, while 3(T") > 0 varies slowly

with temperature near T,:
aoT)~-(1-t)a ; B(T)=B(To), (2.2)

where t = T/T. is the reduced temperature. The minimum of the free energy in the

normal state corresponds to ¥ = 0, while

(1-ta
28(T)

results below T, in zero field (i.e. ignoring spatial variations of the order parameter).

|vo|? =

(2.3)

The free energy (2.1) may be used to estimate the critical magnetic field H.(T)
required to destroy the superconductivity. In the presence of an external field H, the

normal-state free energy is

H2
Fo(H,T) = Fa(T) + . (2.4)

Assuming a perfect Meissner effect, the magnetic field inside the superconductor is
zero: F,(h,T) = F,(T). At the critical field, the order parameter will vanish and one

_HXT) _«? T\?
Fo=Fo=—gp ‘waao_i)’ (2:5)

where, making use of (2.3), the last term is the free energy difference in the absence

obtains:

of an external field.
In the presence of an external field, or another inhomogeneity giving rise to spatial
variations, the total free energy F = [drF, must be minimized with respect to the

vector potential and order parameter, 6F = 0. After some manipulations, the GL
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equations for the order parameter and the (super)current are obtained:

h2 - e* 2
o (—i9 + A®) v(E) + av(r) + 2Bhu()Pu(r) = O (2.6)
©G x b(r) =) = 2P (v (P (e) — BETE ) + (6 PAR)
47r 2im. m‘c ?

(2.7)

where the current is related to the internal field through Ampére’s law. In the deriva-

tion of these equations, the surface integral is assumed to be zero:
/ dn - [aw (—N + %A) w] =0, (2.8)

which ensures that no current flows through the surface (n is the surface normal).
The GL equations may be used to define the coherence length £(T’) and penetration
depth A(T). In terms of a (real) order parameter scaled to its zero-field value f =
/1o, and neglecting the vector potential, Eq. (2.6) becomes:
52
2m*a

Vif+f—-f3=0. (2.9)

The coherence length defines the range of the order parameter’s spatial variations:

h2
&0 = ~gam)
2

Note that £(T') diverges near T, which reflects the weakening of the superconducting
coherence. The penetration depth is estimated by taking the curl of the current in
(2.7):

4me*’

m*c?

V x V x h(r) = - ¥2h(r). (2.11)

Assuming h(r) = h,(r) and r = z, one finds that the field exponentially decays inside
the superconductor:
h(z) = e~=/AT), (2.12)
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where the London penetration depth given by

_ m*c23(T,)
’\(T) - \] 271’6'2(1 . t)a- ’ (2.13)

governs the length over which the external magnetic field penetrates the supercon-

1/2 close to

ducting sample. The London penetration depth also diverges as 1-1¢)"
T.. In the derivation, the electrodynamics are assumed to be local, i.e. that the field
at a given point is determined entirely by the currents at the same point. This as-
sumption is likely to be valid for conventional superconductors only for temperatures
near T, where the field varies slowly due to the long penetration depth. For local,
or London, electrodynamics to hold, the GL parameter x(T) = A(T)/§(T) > 1 (note
from (2.10) and (2.13) that near T, & is independent of temperature). The high-T.
materials should therefore be London superconductors except perhaps at very low
temperatures. If the order parameter has an unconventional symmetry such as d-
wave or extended s-wave, however, the coherence length diverges along the line nodes
and this condition is no longer satisfied, leading to interesting effects at low temper-
atures [102].

The GL parameter x characterizes the magnetic properties of superconductors.
Since the expulsion of an external field increases the energy of the superconductor by
H?/8r, Eq. (2.5), the system could lower its energy by differentiating into normal and
superconducting regions. If the energy of the superconductor/normal interface is pos-
itive, corresponding to k < 1, this differentiation would not be favourable; these type
I superconductors exhibit Meissner screening until H.. In type II superconductors
where k > 1, the interface energy is negative, and above a lower critical field H, < H,
the field penetrates the sample in the form of vortices which have normal-state cores,
with magnetic flux quantized in units of hc/e* = hc/2e = 2 - 1077 G-cm?. These
vortices arrange themselves into an ‘Abrikosov lattice,” which is generally triangular
in conventional superconductors [125, 126]. Only at a much higher field H, > H.
is the superconductivity destroyed in the bulk of the sample.? The high-T¢ super-

conductors are all highly type-II materials. Many intriguing properties of vortices in

2 Actually, superconductivity may persist near the surface up to an even higher critical field Hcs.
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the cuprates will be discussed throughout this thesis, particularly in Section 2.3 and
Sections 3.4-3.6.

2.2 Order-parameter Symmetry Mixing

As discussed in Chapter 1, the high-T, superconductors are all tetragonal or or-
thorhombic materials, and are characterized by large anisotropies of both normal and
superconducting transport properties. One may assume that the superconductivity
is essentially two-dimensional, residing in the ab-oriented copper-oxide planes (and
chains if applicable). It should be kept in mind, however, that a nominal coupling
in the c-direction is required to stabilize the off-diagonal long-range order. The gap
function, which is proportional to the total order parameter, may be written as a

combination of all components allowed by symmetry:
Y(r) o Ag(r) + A, (r) + Ag(r) + Ay(r) + Au(r) +. .., (2.14)

where the various components are defined in Eqgs. (1.9)-(1.13). Since Ao, A, and
A, mix, the free energy of high-T. superconductors should be written in terms of a
total order parameter with just s-wave and d-wave components. The order parameter
symmetry of the superconducting state depends on which component is stabilized at
the highest temperature; this gap function is referred to as the ‘dominant component’,
while all other gap functions are ‘subdominant components.’

The free energy for the high-T. superconductors is {127, 128):

2
F,=F,+ F* + Fg"™h + F? + F{{ + ﬁ—, (2.15)

8m
where F, is the normal-state free energy, Fg®* and F¢™" are the lowest-order contribu-

tions to the free energy with tetragonal and orthorhombic symmetries, respectively,
and Fy @ are higher-order tetragonal contributions involving s-wave or d-wave compo-
nents only (the motivation for including these will be discussed in the next section).
Assuming spatial variations only within the copper-oxide layers oriented in the zy-

plane, the various terms in the free energy are written:

FE = a]As(r) P + aalAa(r)|? + Bi|As(r)[* + BalAd(r)[*
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+ BalA ()P Au(r)[? + By (A3 (x)*A5(r) + Aj(x)*A3(r))

+ 7| HA(r) [ + 1l T Ag(r)?
+ w[A(E) (M A(r) — (LA(r))" (Ag(r)) + Hee.; (2.16)
F™ = au(A3(r)Au(r) + He)
+ Bs(A3(r)Au(r) + Hee)|A,(r)[ + B (A: (1) Ad(r) + Hee.) [Ag(r)?
+ 7 (IMA() P - MA(0)P) + (T Au(r) P - MLAq(r)?)
+ 9 [(IAL(0) (M A(r)) + (TA(r) (MoAu(r)) + He.|; (2.17)
F} o= 1| A@)IA(r)? + 14 T4 (1) P + 7 |(T - 2)A,(x) % (2.18)

Ff = 04| 8a(r)TA(r)]? + 744 [P As(r)]* + - | (T - D) Ag(r) %, (2.19)

where I1 = —iV + (e*/hc)A(r) and the magnetic field h(r) = h,(r) = V x A(r) is
assumed to be in the z-direction. This free energy mixes components with s-wave and
d;2_,2-wave symmetries; szy and dg;-wave gap functions are not considered for reasons
discussed below. For a tetragonal superconductor very near T, only the dominant
component exists and the free energy describes a pure-symmetry superconducting
state that is indistinguishable from the conventional one, Eq. (2.1), except that 1 (r) =
A,/4(r). Note, however, that rotational symmetry is broken both by orthorhombicity
and by higher-order gradient terms.

In the absence of inhomogeneities giving rise to spatial variations, the stability

conditions for bulk d-wave or s-wave superconductivity are [129, 130]:

a3 <0 ; (63—2061)aq— 2060, <0; d-wave (2.20)
a; <0 ; (Bs—2Bs)as —2010q <0; s-wave (2.21)

In orthorhombic superconductors such as YBCO or BSCCO, there exists a low-order
‘mixed-power’ coupling term between A, and A, (the term proportional to a4 in
F$™) so both components become finite at the same transition temperature. The
existence of one component drives the creation of the other. Of course, this term could

have been anticipated since the d-wave and s-wave components belong to the same
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irreducible representation I'f in orthorhombic superconductors. Only the lowest-order
orthorhombic terms are included in Fg™® because the s-wave component in YBCO is
thought to be no more than 10% of A4 [131]. While s-wave and d-wave channels may
exist simultaneously in uniform tetragonal systems such as T1 2223, the appearance
of a driven subdominant component will only occur at lower temperatures, since the
mixed-power terms with coefficients 35 and f; are fourth-order in gaps. Thus, the
transition temperature for a subdominant component in the presence of a uniform
dominant component is much lower than its bare transition temperature, and may

be zero or negative (this topic is discussed further in Section 3.3).

In non-uniform tetragonal superconductors, a subdominant component may be
nucleated at higher temperatures through the ‘mixed-gradient term’ with coefficient
v, [132]. In the vicinity of inhomogeneities, the spatial variations of the dominant
component give rise to variations of the subdominant gap function. The coherence
length of the dominant component governs the length scale. While the admixture
of the various components is a purely dynamic effect, the magnitude of the induced
subdominant component will depend on the size of the various GL coefficients. The
relative sizes of the components may only be obtained by a microscopic derivation of
the GL free energy, and is a major goal of this thesis. The derivation and interpreta-
tion of the GL free energy for a d-wave superconductor is the subject of Chapter 3.
In orthorhombic superconductors, the other mixed gradient term proportional to 7,

will locally enhance the existing subdominant component.

Minimizing the GL free energy (2.15) with respect to Aj(r) and Aj(r), one obtains

the GL equations for the two gap functions (the r-dependence has been dropped for

simplicity):
0 = g+ 26:|Ad2A0 + B3|Ad2Ay + 2. A2A7
+ aad + Bs|AsPAs + Bs(AIA; +2|A417A,)
+ %2 - M)A, + (2 - T2)A, + T4,
+ na(2A32A] + 4|APTIPA, + 6A4[TIA4[ + 285(TT* Ag) (TTAG))
+ Ya Ay + va- (T2 = TI2)%A, ; (2.22)
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asDs + 261|102 A, + B3)Ad|?A, + 28.A3A;

@5 + B5(A2A] + 2|A*Ag) + B6|Ad]*Ad

(T2 — T2)Aq + 73 (I12 — TI2)A, + 4, IT2Ay

ne (2A224; + 4|4, PIPA, + 6A|TIA,|? + 24] (" A,)(TIA,))

Yo 1A + 7, (T2 — T12)24, . (2.23)

o
i

+ + + +

The equation for the current follows from minimizing the free energy with respect to
the vector potential A(r). Only the leading-order contributions to the GL current will
be expressly shown, since the full expression is complicated and is not of significance
to this thesis; the procedure for the calculation of the higher-order corrections is
straightforward. The current density in the ab-plane with a c-oriented external field
is then

j = 5‘%9 AL + 7, AMTA,
0

— 27, (AL AL+ AYILA, ) + i (AL, Aq + AJILA,)

— (AAITLA, + YAILAG) + §(VATTLA, + AL, A,)

+ oy (aiiag+agia,) + H.c.], (2.24)
where the anisotropy factor § =(layer thickness/layer spacing) is introduced in or-
der to model the layered structure of the cuprate superconductors. In the present
two-dimensional model, § — 0, which reflects the inability of the system to sustain

screening currents. Neglecting higher-order terms, Egs. (2.22)-(2.24) are subject to

the following boundary conditions:

n - [yallAg + 7, (@11, — 210) A, + 7 (11, — 211;) Ay + 7, TIA] = 0; (2.25)

n - [wIA, + v @1, — 311;) Ay + 7, (311, — 311;) A, +7,[1A] = 0, (2.26)

where n is the unit vector normal to the surface of the superconductor. The super-
conducting coherence lengths £(T) and penetration depths A(T) near T, can now be

estimated:

Vs
Exa(T) = I;‘(%"’)—I (2.27)
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M@ (T) = ;’_;\] 8@53;)(3[3“)' (2.28)
where the flux quantum ¢, = hc/e.

It is important to point out that the free energy (2.15) is expressed in terms
of A, and a single kind of d-symmetric gap function, specifically d;2_,2. The A,
may be taken to represent a linear combination of on-site, extended s-wave, and sgy-
wave components. As discussed in Section 1.2, however, d;, and d,2_,2 belong to
different irreducible representations, and therefore each should have terms in the free
energy. A number of reasons preclude the addition of d,-symmetric terms. Assuming
that dg, is not the symmetry of the superconducting order parameter in the high-
T. materials, as indicated by experiments, a gap function with this symmetry (Aq)
would only enter the free energy in a ‘mixed-power’ or ‘mixed-gradient’ term. By
symmetry, the lowest-order mixed-gradient terms go like (I I1,)A3(T12 — I12) A4 and
(III1,)A5Ti2A, [133]. These are fourth-order in derivatives, unlike the conventional
mixed gradient terms with coefficients -y, and -, which are second-order in derivatives.
Mixed-gradient terms involving A, should have less physical significance, since spatial
variations are slow near T,: II ~ /T —t because V ~ £ YT) ~ /1= from (2.10)
and A ~ HXT) ~ +/1—t from (2.5) and (2.13). The lowest-order mixed-power
terms are proportional to A2A2 and A2A?, since terms like AjA, are not allowed
by symmetry. Thus, a second phase transition to a bulk subdominant d,-symmetric
state could occur in principle, but this is unlikely as discussed above.

A more physical reason for neglecting Ay terms in the free energy is that the
experimental (and theoretical) evidence for the cuprates is strongly in favour of an
order parameter with d;2_,2 symmetry. A gap function with this symmetry arises
from nearest-neighbour pairing of electrons. Unless the microscopic mechanism for the
superconductivity allows for more than one pairing channel (such as a second-nearest
neighbour coupling giving rise to A4 and A,), it is more natural to consider a free
energy with terms involving both A4 and an extended s-wave component resulting
from the same nearest-neighbour attraction. Throughout most of this thesis, the
superconductor is assumed to undergo a bulk d;:_,2-symmetric (d-wave) instability,

and components with d,-wave or s;,-wave symmetry are not considered.
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It is clear just from the complicated structure of the GL free energy (2.15) that
the physics of inhomogeneous d-wave superconductors is likely to be quite interesting.
In the following three sections, certain predictions of this GL theory will be briefly
reviewed. In particular, the structures of isolated vortices and the vortex lattice,
the effect of twin boundaries, and the behaviour of d-wave superconductors in the

presence of external currents will be discussed.

2.3 Vortices

One of the most interesting predictions of the GL theory presented above is that
the structures of isolated vortices and the Abrikosov lattice may be considerably dif-
ferent from those of conventional superconductors. In particular, asymmetric vortices
and centered-rectangular vortex lattices are thought to result in d-wave superconduc-
tors [133, 134, 135, 136, 137, 138, 139]. The most important causes of anisotropy
are the s-wave component induced in the vicinity of the vortex core, Fermi surface
geometry, and orthorhombic distortions. The discussion in this section follows the
analysis of [134] and [135].

In tetragonal systems near T, the mixed-gradient term in (2.16) governs the
admixture of an s-wave component in an inhomogeneous d-wave superconductor.® In
order to examine the influence of this term on the vortex structure, first consider the

equation (2.22) for a pure d-wave state to leading order:
(ag + 1} Ag + 262|Ag)?Ag = 0, (2.29)
whose asymptotic solution near the vortex core is:
Ag(r, @) = (dir + dar®)e™, (2.30)

where ¢ is the azimuthal angle. The equation for A4 to this order is rotationally

symmetric and is identical to that obtained for a conventional, isotropic s-wave super-

3Throughout this section, the discussion will assume bulk d-wave superconductivity. It should be
kept in mind, however, that the phencmenological free energy does not itself determine which com-
ponent yields the highest T.. All the results are equally applicable to a bulk s-wave superconductor
with a d-wave admixture, simply by interchanging the s- and d-indices of the gap functions.
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conductor (2.6). Assuming the induced s-wave component is small, one may linearize
Eq. (2.23):
(a, + 73H2)As + '71/(1-132, - Hi)Ad =0. (231)

Substituting (2.30) into (2.31) gives [137]
Ay(r, 0) = s17e % + 533, (2.32)

The leading-order solution for the induced s-wave component has been solved to

yield {135]:
1/ 7
S = 5 (af—s) dl, (2.33)

where &3 = \/m is the d-wave coherence length. Moving in the z = y direction
from the center of the vortex, the induced subdominant order parameter reaches a
maximum, then decreases algebraically; there exist extra nodesin the z =0ory =0
directions. The maximum value of the s-wave component nucleated in the vortex

core is estimated to be {135]

max

a=i(ag) (234
The estimate for the magnitude of the subdominant component is reliable as long as
Amax < Abulk /4 which is always satisfied sufficiently near T (see below).

A number of interesting results may be obtained from this simple analysis. The
magnitude of the maximum induced s-wave component is proportional to the size of
the mixed-gradient coefficient +,, and also £72. Since &, is known experimentally to
be quite small, the local s-wave component could be quite large at low temperatures
T <« T., depending on the magnitude of ,. One would expect, however, that it
would be energetically unfavourable to induce a subdominant component comparable
to A, solely through spatial variations of the d-wave component. One of the primary
goals of this work is the determination of +y,, and the maximum s-wave gap, in the
high-T. materials. Furthermore, since & ~ 1/v/1—¢ from (2.10) and Ay ~ VI —t¢
from (2.3), one finds

Ay ~ (1 —t)32, (2.35)
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Thus, the induced s-wave component disappears more rapidly near T, than does the
dominant d-wave component. Indeed, the same behaviour is immediately apparent
from Eq. (2.31); ignoring spatial variations of A,, which are a correction of order
(1 - t), one obtains:

A, = —g"-(ng ~ 1) Aq. (2.36)

One recovers (2.35) since [T ~ /1 —¢.

The temperature-dependence of the s-wave gap (or the subdominant component
in general) finally permits the justification of carrying the GL free energy (2.15) to
fourth-order in derivatives. The lowest-order term in the free energy involving A, is
as|A|?, which varies near T, as (1 — t)%. The largest terms in Fg® involving only
d-wave components, however, approach T, only as (1 — t)?. Thus, for consistency,
all terms allowed by symmetry up to (1 —¢)® must be included in the free energy.
These terms are given in FZ; in case bulk s-wave superconductivity is favoured, Fy
is included in the free energy for generality.

The simplified equation for A4 (2.36) may be used to demonstrate that an induced
s-wave component leads to four-fold anisotropy. In the zeroth-order approximation,
one sets A; = 0 and the tetragonal free energy F§* has rotational symmetry. To

first-order in a (small) s-wave component, one may substitute (2.36) to obtain:

F + F¢ n ag|Ag(r) + BalAd(r)* + valTIAL(F)|? + nal Ag(r)TA(r)?
2
+ e [2AL) + [vd_ - Z—] (T2 - TI2) Ay(r) 2. (2.37)

8

It is clear from the last term that the induced s-wave order parameter, parametrized
by the mixed-gradient coefficient v,, breaks rotational symmetry in precisely the same
way as a fourth-order d-wave gradient term. In fact, this term gives rise to a four-
fold symmetric (in other words, square) vortex core [136, 139, 140]. From Fg™" it
is evident that orthorhombic distortions would also break the rotational symmetry
of the vortex core; orthorhombicity has been found to lead to a two-fold symmetry,
however [138].

Several other points are worth noting. The fourth-order anisotropic gradient terms

in F} and F¢ are allowed by symmetry, and should therefore appear even for isotropic
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s-wave superconductors. These terms, however, do not arise in the derivation of the
GL equations from the BCS theory [141}; the coefficient -y, is zero because the Fermi
surface, in addition to the interaction, is assumed to be isotropic. Thus, the degree of
Fermi surface anisotropy will partly determine the size of ,/4- and the contribution
to four-fold symmetry of the vortex core. Furthermore, from (2.37) it appears that the
contributions from Fermi surface anisotropy and the s-wave admixture are competing
effects, since they enter the free energy with opposite signs. These issues will be
discussed further in Section 3.5.

The finite s-wave component nucleated in the vortex core for fields near H,; is
predicted to yield an oblique structure for the vortex lattice near Heo. The Abrikosov
lattice would be intermediate between the usual triangle and a square [134, 135, 142].
The degree of ‘obliqueness’ is mostly dependent on the gradient coefficient ratio v, /Va-
For v,/74 = 0, the s-wave component vanishes, yielding a triangular lattice. The
Abrikosov lattice deforms continuously away from a triangle as vy, /74 is increased;
for v, /va = 0.45, the angle between primitive vectors ¢ = 76°. For Yv/va ~ 0.6 and
higher, the flux lattice is square. Other work has confirmed that four-fold gradient
terms in the free energy, possibly arising from Fermi surface anisotropy, deform the
Abrikosov lattice to a similar degree [136]. The GL predictions are consistent with
two recent experimental observations for YBCO of flux lattices with ¢ ~ 73° [143]
and 77° [144]. It is not yet clear, however, whether the a — b anisotropy associated
with the orthorhombicity of YBCO is alone sufficient to account for the distortion in
the flux lattice [138, 145].

2.4 Time-Reversal Breaking

As alluded to in Section 2.2, the GL free energy (2.15) allows for the possibility of
an additional second-order phase transition at a temperature 7' < T,. In this section,
the possibility of a low-temperature time-reversal breaking phase is investigated. It
should be noted at the outset that while GL theory is strictly applicable only for
temperatures near T, it is often qualitatively accurate for much lower temperatures.

Indeed, the intriguing predictions of the theory discussed below have been corrobo-
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rated in detail by the microscopic calculations presented in Chapter 4. The discussion
follows the recent article by Sigrist et al. [130].

The onset of a second phase transition is defined by the stability criteria (2.20)
and (2.21). For a bulk d-wave tetragonal superconductor, the subdominant transition

temperature 7" is defined by
(Bs — 2B4)aa(T") — 26205(T") = 0, (2.38)

which, of course, is equivalent to A (T') = 0. Near 7", the d-wave and s-wave

components in this new phase are defined by

(B3 — 2B4)a, — 26 a4
46182 — (B3 — 2f4)? ’

(B3 — 2B4)ag — 2204
46,102 — (B3 — 2P4)?

The magnitudes of the subdominant components, and the associated transition tem-

|Aq)? (2.39)

A[?

(2.40)

perature T", are governed mostly by the lowest-order mixed-power terms with coef-
ficients B; and B, in F¢®, and by the a,q4, Bs, and (s terms in F§™ (recall that in
orthorhombic superconductors A, and A4 both appear at T, due to the second-order
mixed-power term ayq). It is important to note that the §; term favours a relative
phase § = +m/2 between A4 and A, if 85 > 0. The resulting order parameter would
be proportional to the linear combination ¥ ~ A4 % iA;. In contrast, all the or-
thorhombic mixed-power terms, as well as 8, < 0, favour a relative phase of § = 0 or
7 corresponding to ¥ ~ Ag £ A,.

The presence of an imaginary s-wave component breaks time-reversal symmetry 7.
The time-reversal operator transforms the order parameter to its complex conjugate:
Ty — 9*. If time-reversal symmetry is preserved, ¢ and v* are identical to within a
common spatially-independent phase; in other words, the two states may be related
through a gauge transformation. If time-reversal symmetry is broken, ¢ and ¢* are
distinct states, but the free energy is the same for each. Orthorhombicity suppresses
a low-temperature transition to a 7 -violating state.

The presence of an imaginary s-wave component ¢A, leads to a total order param-

eter with a gap for quasiparticle excitations everywhere except perhaps at isolated
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points on the Fermi surface. As a result, the superconducting properties should be
similar to those of a conventional BCS superconductor. Yet, if the iA; admixture
were weak, the physical gap along the original node-direction could be sufficiently
small to yield the predominantly d-wave characteristics observed experimentally. In-
deed, there is presently no experimental evidence to suggest that the uniform bulk
state of high-T, superconductors violates time-reversal symmetry [146]. The exper-
imental null results may be due to the fact that the GL coefficients appropriate for
the cuprates, appearing in (2.38), conspire to ensure that 7" < 0. Another possibility
is that 84 < 0. These issues will be investigated microscopically in Chapters 3 and 4.

The criteria for a low-temperature 7T-violating phase change when defects are
present in the superconductor. In the vicinity of pair-breaking inhomogeneities, the
dominant d-wave component is locally suppressed. Ignoring spatial variations for sim-
plicity, the dominant d-wave component from (2.29) is approximately A% & —aq/20,
and the equation for the subdominant transition temperature in a tetragonal super-

conductor becomes

(B3 — 2Bs)AY(T™) + as(T*) = 0. (2.41)

A suppression of A, would clearly lead to an increased subdominant transition tem-
perature T* > T'; in other words, a time-reversal breaking phase is more likely to
appear at finite temperatures near the inhomogeneity. Evidently, local T-violation is
most likely to occur in the vicinity of strong d-wave pair-breakers, such as extended
impurities, (110) or (110) surfaces, large-angle grain boundaries, and twin boundaries.

The analysis of the full GL free energy (2.15), including spatial variations of
the dominant d-wave component, is complicated and only the central conclusions
will be presented here; a full treatment may be found in [130]. The imaginary s-
wave component, induced near inhomogeneities below T, is quite different from the
real s-wave component discussed in the previous section, which arises due to spatial
variations of A4. In particular, the 7-violating component is the result of a local
second-order phase transition. As such, its magnitude may be large compared to
Abuk | and its characteristic length scale &, would diverge just below T*. In contrast,

a subdominant component induced through spatial variations alone must be small
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compared to Ag, and vary over the d-wave coherence length £;. To summarize, while
the mechanism for local iA,-generation depends on a strong perturbation of Ag4, the
subdominant pairing channel behaves as if it were essentially decoupled from the
d-wave superconductivity.

In orthorhombic superconductors such as YBCO, the presence of a real s-wave
component at all temperatures T' < T has several interesting consequences. The finite
real s-wave component would suppress the transition temperature T to a locally T-
violating state, unless the perturbing inhomogeneity were itself tetragonal. In fact, as
discussed in Section 4.1, large-angle grain boundaries and twin boundaries are thought
to be oxygen depleted regions which may be tetragonal (z — 0). Furthermore, the
overall order parameter must change from A %A, near the inhomogeneity to Ay+A,
in the bulk, i.e. the relative phase must be spatially varying. This implies spontaneous
supercurrents j V@ near the perturbation.

For the case of (110) or (110) surfaces, (or weak-link grain and twin boundaries
oriented in this direction), it is straightforward to show within the GL theory that

the phase variations lead to currents in the vicinity of the inhomogeneity. Defining
Agr)=d ; A,(r) =905, (2.42)

where s and d are real and assumed to be constant throughout the sample, the

expression for the current (2.24) neglecting the vector potential becomes:
. 4mc . N\ a I\ o~
i= 05 20d sm0[('y,, ) EV.0 — (1, + L) yvyo]. (2.43)
0

Defining the directions perpendicular and parallel to the inhomogeneity to be r =

r. = § — % and R = r; = § + £ respectively, one obtains these expressions for the

currents:
4
jr=jr = —§="2sdsing [0 +4) 936+ (v =) V6]
0
- —5%2&1 $in 8 [7,V 0 + 7.V, 0] (2.44)
0
4
jr=jj = —57'”92&1 sin 6 [v, V0 + 7 V6] . (2.45)
0
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One may set Vg0 = 0 because the relative phase has no spatial variations in the

direction parallel to the twin boundary. Thus,

%%d sin 8V ,.0. (2.46)
0

In tetragonal systems, 7/, = 0, and spontaneous currents flow only in the parallel-

4
jr=j1L= —7L6§£2sdsin0V,-0 L r=ji = =0
0

direction. In orthorhombic materials, spontaneous currents should also exist in the
perpendicular direction, which are smaller than the parallel currents by approximately
4. /v,. In addition, since sin@ is odd around the extended defect, the currents flow
in opposite directions on either side. The currents are expected to vanish in the bulk

due to Meissner screening.

2.5 Critical Currents

Many practical applications of high-T, materials require that the superconduct-
ing state supports large current densities. Due to the short coherence length, how-
ever, even very narrow intrinsic defects such as twin boundaries and wide-angle grain
boundaries act as weak superconducting links. In clean systems, the critical current
is due to depairing and dissipation due to vortex flow. In granular superconductors,
the critical current is governed by the electromagnetic coupling across weak junctions,
and the vortex-pinning potential of stronger junctions. While these issues will be ad-
dressed further in Chapter 5, it is useful to review the GL theory of critical currents
both in systems with and without weak links. The discussion of critical currents in

conventional and d-wave superconductors is based on Refs. [73, 147, 148].

2.5.1 Conventional Superconductors

For the investigation of critical currents limited by depairing, it is simplest to
consider clean two-dimensional systems, such as defect-free thin films of conventional
superconductor or the copper-oxide planes of high-T, superconductors. If the thick-
ness d is smaller than both £(T") and A(T'), then the magnitudes of the order param-

eter, internal field, and current densities may be assumed to be constant even in the
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presence of strong external electric or magnetic fields. Neglecting the vector potential
(which will be justified below), and setting ¥(r) = |¢|e*®), the GL current (2.7) is

written

e*h -
— |02V . (2.47)

i= e’ lyl*v, =
A current j might result from the application of an external electric field, eE =
m*8v,/8t. Since the superfluid velocity is v, = (h/m*)V, the GL free energy (2.1)

becomes

1
Fy = Fo+ oy + Bly|* + gmuf|yl*. (2.48)
Minimizing with respect to 1*, one obtains the gap equation
* 2
mJ
261y =0. 2.49

Introducing the normalized order parameter f = /v, and making use of |o|? =

—a/28 and £%(T) = —h?/2ma(T), one obtains the current:

5=l = el (g ) VI 7 250

In combination with (2.47), this equation relates the magnitude of the order parameter

to the superfluid velocity. As j increases, the normalized order parameter decreases
from unity until the critical current is reached, at which point no solution for f can
be found. The critical current is defined by 85/0f = 0, which yields f2 = 2/3 and

. 2e” h
Je = 3\/§|¢0|2 <_—m'§(T)) . (2.51)

Thus, for currents just below j. the order parameter is reduced by a factor /2/3, while

just above j. the superconductivity is destroyed. Physically, this depairing current is
a maximum when the kinetic energy of the superfluid is equal to the condensation
energy. Note that the critical current approaches zero rapidly near 7., varying as
(1 —1t)%2.

Neglecting the vector potential in (2.47) is equivalent to ignoring self-field effects.
If the internal field h generated by the supercurrents is of order Ho, the penetration

and subsequent flow of vortices in the sample will dissipate energy, lowering the above
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estimate of the critical current. For h ~ H,, however, self-field effects are likely to
be negligible. The largest internal field k. associated with the critical current may be

estimated from Ampére’s Law:

hc ~ i”Erijc
_ 4w (m3BY (2€ |l h
T ed \ 2me*? 33 m*£
= S (1
= 2 (3 \/§g,\>’ (2.52)

where e* = 2e and @y = hc/e have been fixed. In type-I superconductors, this field
is approximately half the thermodynamic critical field H. = ¢ /27261 [64]. In
extreme type-II superconductors, such as the high-T. materials, this field is much
lower than the upper critical field Hy, = ¢o/27€? [73]; assuming k ~ 100, one obtains

He

(o

= 3v/3k = 520. (2.53)

Since the lower critical field for high-x superconductors is H.; = (¢9/47A?) Ink [64],

one has
h. 2 K

H, 3V3lnk ™~
While this ratio is larger than unity, it is sufficiently small that one expects relatively

(2.54)

few vortices in the entire system. In the present work, only the contribution of

depairing to the critical currents is considered.

2.5.2 d-wave Superconductors

The relevant GL free energy for tetragonal d-wave superconductors F§* is given
explicitly in Eq. (2.16). Spatial variations of the d-wave gap function amplitude may
be neglected in sufficiently thin geometries and in the absence of intrinsic defects.
Since the external currents give rise to phase variations, however, a subdominant
s-wave component may still be nucleated through the mixed-gradient mechanism
discussed in Section 2.3. Since s ~ (1—%)%2, the subdominant s-wave component may

be assumed to be zero very near T.. The free energy then becomes indistinguishable
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from Eq. (2.1) and the derivation above holds. Setting Aq(r) = de’¥<), one obtains:

R 86")’4(12 =3 45’)‘4
c = ) ; v = 2674\ Vg = —=—. 2.55
I = 373, Y4l Vgl 336, (2.55)

In orthorhombic systems, both A, and A; must be included at the outset, but their
phase variations will be in concert.

At lower temperatures, a small real s-wave component will be nucleated by the
spatial variations of the d-wave gap function’s phase. While the magnitude of s is
a complicated function of the GL parameters, close to T. one obtains the simple
estimate [147}:

s

i %%(1 — %) cos 26, (2.56)

where the normalized gap function is f = d/dy, and d? = |a4|/20; is the d-wave
component in the absence of an external field. The angle & defines the orientation of
the superfluid velocity, and the resulting current, with respect the underlying lattice;
# = 0 or 7/2 correspond to currents along £ or g.

It is important to note from Eq. (2.56) that the magnitude of the induced s-wave
component depends not only on the mixed-gradient coefficient ,, but also on the
angle #. In tetragonal superconductors, at this level of approximation, currents ori-
ented along £ + § induce no subdominant component. Furthermore, the sign of the
s-wave component reverses as the orientation of the applied current rotates through
90°. Since this result is derived purely from symmetry considerations, it is most likely
correct at all temperatures. In orthorhombic superconductors the two-fold symmetry
would probably alter the angular dependence in Eq. (2.56). In these systems, there-
fore, one would expect additional subdominant components induced from currents
oriented along £ + 3.

Another interesting consequence of Eq. (2.56) is that the magnitude of the s-wave
component induced by external currents is approximately four times larger than that
nucleated in the core of a magnetic vortex, Eq. (2.34). Both inhomogeneities generate
subdominant components through mixed-gradient terms. It is possible, however, that
the induction of an s-wave component through phase variations of the d-wave gap

costs less energy than the induction through amplitude variations.
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The results obtained for clean materials are no longer applicable if there are ad-
ditional inhomogeneities giving rise to spatial variations of the order parameter am-
plitude. Neglecting the subdominant component in the zeroth-order approximation,
the gap equation (2.29) is modified:
j2

2 3
vaVed + aqd + 262d° + 1672

=0. (2.57)

This equation is impossible to solve in closed form, without some additional informa-
tion characterizing the defect and therefore the spatial variations of d. Some numerical
calculations of critical currents in the vicinity of wide-angle grain boundaries in the
high-T, materials have been performed [148]. Experimental data used for bound-
ary conditions are the oxygen concentration as a function of grain boundary angle
(negatively correlated), and the variation of T, with oxygen concentration (positively
correlated); these together yield the local T, (and therefore the gap function) at the
grain boundary. It must be emphasized that for lower temperatures, Eq. (2.57) is not
even remotely correct, since it excludes the possibility of subdominant s-wave com-
ponents nucleated through spatial variations of both the amplitude and the phase of
the d-wave gap function. Evidently, the numerical solution of the full equations that
result would be a formidable task. Critical currents in the vicinity of twin boundaries
(which are essentially wide-angle grain boundaries) will be investigated in more detail

using a more convenient and fully microscopic approach in Chapter 5.



Chapter 3

Derivation of the GL Equations

3.1 Introduction

While phenomenological GL theory has been highly successful in predicting many
interesting properties of d-wave superconductors in external fields, the relative magni-
tudes of the various coefficients appearing in the free energy and their dependence on
temperature and filling are presently unknown. Earlier derivations of the free energy
from a continuum model could not include lattice effects that are believed to be impor-
tant in theories of d-wave superconductivity {136, 137, 138]. In the present chapter,
the GL free energy is derived microscopically within the context of two lattice models
for the high-T, superconductors: the extended Hubbard and ‘Antiferromagnetic-van
Hove' models.

The extended Hubbard (EH) model, which includes a nearest-neighbour attraction
in addition to the usual on-site repulsion, is one of the simplest lattice models which
allows for a d-wave superconducting instability. It has been employed in several
analytical and numerical investigations of d-wave superconductivity [129, 149, 150].
The EH model has recently been shown, however, to favour d-wave superconductivity
only in a very small parameter space, preferring a phase separated or spin-density
wave state [151].

The ‘Antiferromagnetic-van Hove’ (AvH) model [31] strongly favours d-wave su-

perconductivity while incorporating the coexisting antiferromagnetic correlations ob-

41
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served in NMR. [18], neutron scattering [19], and Raman [20] experiments. High
transition temperatures are obtained in the model due to the presence of a van Hove
singularity in the hole density of states near the Fermi energy. In the AvH model,
holes are constrained to move within a single sublattice of a uniform antiferromagnetic
background in order to minimize frustration. The hopping parameters are chosen to
best fit the quasiparticle dispersion for YBCO measured using ARPES {152, 153]. The
resulting band is extended and flat near (3, 7) in momentum space, which is consis-
tent with numerical results for a single hole propagating through an antiferromagnetic
background (23, 24, 25, 28], and with experimental evidence [36].

Both the EH and AvH models represent tetragonal systems. While orthorhom-
bicity could be introduced through a two-fold anisotropy in either the kinetic term
or the nearest-neighbour attraction, it is neglected in this chapter. Orthorhombic ef-
fects are known to be minor even in optimally-doped YBCO, which has fully-formed
b-oriented chains contributing to the electronic transport [131]. Furthermore, the
presence of orthorhombicity would significantly complicate both the derivation of the
GL equations and the presentation of the results. In Chapters 4 and 5, orthorhombic
effects are investigated numerically within the context of the EH model using the
more convenient Bogoliubov-de Gennes formalism.

In Section 3.2, the Ginzburg-Landau equations for the gap functions and super-
current are derived microscopically for both the EH and AvH lattice models using
a finite-temperature Green function method. The relations defining the transition
temperatures are investigated in Section 3.3. It is found that either s-wave or d-wave
superconductivity is stable in the EH model. While s-wave is favoured at low electron
densities, d-wave is favoured either at high densities or at lower densities with strong
on-site repulsion. The equations for T, (the s-wave transition temperature) and Ty
are found analytically in the limit of weak-coupling and low electron densities. The
AvH model, in contrast, only has a d-wave superconducting instability. The d-wave
transition temperature Ty ~ 100 K is consistent with the high-temperature oxides.
Analytical solutions for the AvH model are difficult to obtain due to the compli-
cated angular dependence of the AvH dispersion. The GL free energy is derived for
both models in Sections 3.4 and 3.5. The coefficients of the GL equations are found
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analytically for the EH model in the same limit described above. The coefficients
are calculated numerically for the EH model and for the AvH model near optimal
doping. In Section 3.6, the results are summarized with emphasis on experimental

implications for the vortex structure, time-reversal breaking, and critical currents.

3.2 The Lattice GL Equations

The Hamiltonians for the extended Hubbard (EH) and antiferromagnetic-van

Hove (AvH) models are respectively:

=—t) cwcjde i f - #an +W Zn,Tnu - = Z Vijnignjo;  (3.1)

(i)o (11)00'

HAE =t Y e, P A, S cheis ¢35 JjAa —pd nig
(i (((i)o -

_% (,-f)?d NioTijar, (3.2)
where n;;, = ¢l c;,, A is the vector potential associated with an external magnetic
field oriented in the 3-direction perpendicular to the copper-oxide planes, ¢, = hc/e
is the flux quantum, and u is the chemical potential which is included to fix the
density. In the EH model the carriers are electrons, and positive V; and V;; imply on-
site repulsion and nearest-neighbour attraction, respectively. The superconducting
carriers in the AvH model are holes propagating through the antiferromagnetic back-
ground of the undoped parent state. Second and third nearest-neighbour hopping is
represented by (()) and ((())), respectively. The transfer integrals t;;, = 0.04125 eV
and ty = 0.02175 eV have been fixed in Ref. [31]. The absence of nearest-neighbour
hopping in the AvH model reflects the restricted Hilbert space of the carriers; holes
are constrained to move within a single spin sublattice in order to minimize frus-
tration and preserve antiferromagnetic correlations. The values of ¢;, and ty are
chosen to result in a van Hove singularity near the bottom of the hole band, located

at (r/2,7/2) in momentum space. The large density of states, together with the
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nearest-neighbour attraction V = 0.075 eV, yields a d-wave transition temperature
T; ~ 100 K at optimal doping (1 = —0.075 eV, or hole density (n) ~ 0.2), consistent
with experimental results for YBCO.

If the lattice sites i and j are nearest-neighbours, the mean-field EH Hamiltonian

can be written

HE(B) = —t X e+ e (e — T el)e,
+ ;E;Z(r)cl(r)cr(r) + H.c]
- % }; (A5 E)ey(en(e +8) - AjE)er()es +8) + He], (33)
where |

r+5
_Z—”/r A-dl, (3.4)

and § = +%,+7 (the lattice constant is taken to be unity for convenience). The

‘on-site’ (isotropic-s) and nearest-neighbour gap functions are defined as follows:

Aq(r) = Voley (r)er(r)); (3.5)

As(r) = Viley(r)er(r +8))
—Vi{er(r)ey(r +5)), (3.6)

assuming the existence of pairing in only the spin-singlet channel, in accordance with
experimental results for the cuprate superconductors [54, 55, 56]. The mean-field

Hamiltonian for the AvH model is written:

HAEU(B) = tu Y ch(r+8n)c, (1) +t 3 chir + Go)c, ()€
rfu,tr l‘,gzo,a
1 . .
_ ,uzc (r)e,(r) — 5 > [AJ(r)ci(r)or(r +8) + H.c.] : (3.7)
r,§

where r = m#, + n#s, such that 7, = Z + § and 7, = £ — § are primitive vectors of
a single sublattice, and each lattice site has the two-point basis 0, Z. Then, 511 =
17, £y, bog = (7, + F2), £(F1 — F2), and 6 = +#, +j. Throughout the remainder
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of this section calculations will be presented within the context of the EH model. A
comparison of the EH and AvH Hamiltonians indicates that analogous results for the
AvH model can be obtained at any stage by eliminating the on-site gap function, and
reversing the sign of the kinetic term.

One of the most useful analytical approaches to the solution of the many-body
Hamiltonians (3.3) and (3.7) is the finite-temperature Green function method [154,
155), which allows many-body correlations to be treated in a perturbative manner.

The single-particle Green function is defined as follows:
Gi(r,7i¥,0) = —(T; [er(r, )}, 0)])

Tr {e“”‘Tf [cT(r, )k, O)]}
- Tr {e7%} -

(3.8)

where 3 = 1/T is the inverse temperature (kp is set to unity) and () in this context
defines a grand canonical expectation value over the N-particle ground state |0) at
equilibrium (note that the chemical potential has been included in the definition
of H). The fermion fields have acquired time-dependence through the Heisenberg
transformation

c(r,7) = e*c(r)e M. (3.9)

It is important to notice that in the finite-temperature Green function formalism,
T = it is a fictitious imaginary time which varies on an interval [—1/T,1/T) rather
than on [—oo, 00| [156]. Since the single-particle Green function characterizes the
propagation of a fermion through the N — l-particle ground state from point r at
imaginary time it = 0 to point r' at it = 7, it is ‘time-ordered’ through the operator
T,:

- <cT(r, r)4(r',0)> , >0
Gy(r,7; 7',0) = (3.10)

+ (4(r’, O)CT(I',T)>, 7<0
While the single-particle Green function gives information about the single-particle

excitations of the system, the anomalous Green function

fIT(l‘,T; r,0)=- <Tr [ci(r, 7)4(r’,0)]> (3.11)
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governs the propagation of (singlet) pair correlations. In fact, the anomalous Green

function is closely related to the gap functions (3.5) and (3.6):
AL(r) = VafIT(r, 0;r+0a,0), (3.12)

where a = 0,4. Since there are no spin-orbit terms in the Hamiltonians, 6 = G; = G,
and Ff = ffT = .7-';‘ 1; that is, the equations of motion are spin-independent.
The Green function method consists of deriving, and solving, the equations of

motion for the propagators:

- 0 T
Mg - _<TT (ig—)) 4(r',o>>—5(r—r')6(r); (3.13)

or
OFt(r,7;r,0) dcl(r, 7) o
o7 - <Tf ( ) a®0)). (314)
The time-derivatives of the fermion fields may be explicitly evaluated by noting that
ac(r, 1)
= 7 — D
or - [C (l‘, T) ’ H] 3 (315)

which may be obtained directly from (3.9). After some tedious but straightforward

algebra, one obtains two coupled first-order differential equations:

——ag(r’;; r',0) =ty e G(r+ §,7;1,0) + pG(r,7; r',0) — 8 (r — ') 8(7)
5
—A(r)F(x,7;¢,0) + 3" As(r) Ft(r +6,7; F,0);  (3.16)
5
aﬁ(r’a:_; r',0) —tZe‘i¢‘ff(r+ g,r; r',0) — pFi(r,7;r',0)
5

—ANr)G(r, 75 F,0) + Y ANr)G(r +5,7; ¥, 0). (3.17)
5

It is instructive to rewrite these two coupled equations as a single matrix equa-
tion [157], although the motivation for doing this will only become clear in Section 4.2.
This is accomplished by introducing the two component field

_ [e(r,7)
‘I’(l’, T) = [cl(r, T)] , (318)
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and the 2 x 2 matrix Green function

G(x,7;r',0) = —(T,[¥(r,7)¥(r',0)])
3 ; ,7 O ‘F 3 ; I1 0
_ [Q’(rr r,0) (x,7;1',0) (3.19)
Fi,7;r,0) ~G(r,7;r,0)
Equations (3.16) and (3.17) then become
2 ¢ A
(af- ¢ s = )g(r,r; r,0) = ~14(r — r')é(7), (3.20)
A‘ 8_1: — E‘
where the kinetic energy and gap function operators are explicitly
EX(r) = —tY e X (r+48) — pX(r); (3.21)
§
AX(r) = A(0)X(r) -3 As(r)X(r+96). (3.22)

§
The matrix equation (3.20) in this form has the appearance of an eigenvalue equation,
with eigenoperators 9/0r.
The coupled equations may be greatly simplified by expanding all quantities de-

pendent on 7 in a Fourier series:

X(r)=TY e ™" X(wn), (3.23)
where
wp = (2n + 1)7T, n=0,12,... (3.24)

are the fermionic Matsubara frequencies [158, 159]. It immediately follows that the

gap functions are the Fourier sum of the anomalous propagators:

Ayr) = TV Y, Fi(r,r,ws), (3.25)
Aj(r) = TVsY Fl(r,r+6,wa), (3.26)

Wn

Egs. (3.16) and (3.17) then become

[iw,. +u+ty e“""‘ﬁ,;(r)] G(r,r',wn)
§
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~[A.r) -3 As(r) Bs(r)] FH(x, v, wn) = 8(r — r'); (3.27)
5

[ —dwn tpu+ty e""""f’g(r)]f*(r, r,w,)
5
+[Ao(r) = X As(r) Ps(r)]G(x, ¥, wn) = 0, (3.28)
5

where P5(r)X(r) = X(r + 4). Equations (3.27) and (3.28), subject to the self-
consistency criteria (3.25) and (3.26), are the fundamental field equations for the
superconductor on a tight-binding lattice.

While these exact equations are analytically intractable, under certain circum-
stances they may be solved perturbatively. Formally, this is more conveniently ac-
complished by re-expressing the coupled differential equations as coupled integral
equations. The latter may be obtained by making use of the equations of motion for
the normal-state single-particle Green functions G° (and its Hermitian conjugate),
obtained by setting A o< F' equal to zero in (3.27). One then obtains the lattice

version of the Gor’kov equations [141]:
G(r,r\wn) = Go(r,r',wn) + 3 G°(r, 1", wn) [A(r)
rll

~ 3 As(r)B5(r")| FH ", v wa); (3:29)
5

FHr, P w) = - S G°(r", 1, —wa) [AL (") = 3 Ajx") B ()]G (x", 1, wn).  (3.30)
r’ §

Though superficially these equations appear more involved than the original ones,
their form is in fact quite simple, and much more conducive to perturbative analysis.

Their structure may be represented by:
G=G"+GAF ; Ft=-GA"G, (3.31)

where G°(r, ', —wy) = G°°(r, I, wy) is the normal-state single-particle Green function

in the presence of the vector potential. Iterating these equations gives

G = G°—G°AG”A*G°+..., and (3.32)

ff —_ _g.o‘Atg'o + g"o‘A-g'oAGO‘Atg’o + ... (333)
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Thus, the integral equations allow both the single-particle and anomalous Green
functions to be written as a perturbation series in the normal-state Green function.
The perturbing potential is the order parameter field, as can be made more explicit

by re-writing (3.32) and (3.33) as

g = (¢°) +agTAn (3.34)

(7)) = —(GTag) -a (3.35)

The expressions (3.34) and (3.35) represent Dyson’s equations for the ordinary and
anomalous Green functions, respectively. In the absence of an order parameter field
G = G° as expected, but with A # 0 the single-particle propagator is renormalized,
with a self-energy & = —AG° A*. In contrast, the self-energy of the anomalous
propagator is simply the gap function because F o A; physically, this means that
the gap function must be a self-consistent solution of the coupled Dyson’s equations.

The perturbation theory just described should be valid whenever the order pa-
rameter field is a weak disturbance. Thus, one would expect it to apply close to the
superconducting critical temperature T, in arbitrary external magnetic fields, and
at lower temperatures for fields sufficiently close to H;. Combining the conditions

(3.25) and (3.26) with (3.33), one obtains the self-consistent equations for the gaps:

a*~ —TV Y {67 A*G° - G A*G°AGT A6} (3.36)
More formally, these are written
DAL = -T X G r, ) AT 1+ )
a r'" wn

+ T 2 Z go (l‘”, r, _wn)At (rll)g"o (l‘”, Iy, wn)

r'’,r,r2 Wn
X A(r1)G°(ra, Iy, —wq ) A (r2)G° (T2, T + G,wr),  (3.37)

where

A*(x)

A3(x) - 3 850 Ps(x)
]

> (=) A% (%) Ps(x) (3.38)
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and & = 0, +£&, or +9.

In the strong type-II limit, appropriate for the high-T, oxides, the penetration
depth A(T’) exceeds both the coherence length £(T') governing spatial variations of the
gap functions, and the Fermi wavelength k7' ~ a characterizing the single-particle ex-
citations (where a is the lattice spacing =~ 3.8 A from Section 1.1). The single-particle
Green function is then approximately translationally invariant (first line below), and

the electrodynamics is local (second line below):

- 2w ¥
G°(r,r',w,) = G°(r— r',w,,)e"i_ofr A-dl

Go(r — I/, wy)eles AT, (3.39)

Q

where G°(r — r/,w,) is the normal-state lattice Green function in the absence of an
external field. The normal-state Green function is obtained by Fourier transforming
Eq. (3.27):

eik-x

G°(x,wn) = Y (3.40)

—
k ‘Wn — €k
and the sum is over wavevectors in the first Brillouin zone. The dispersion relations

for the EH and AvH models are respectively

FH = _2t(cosk, + cosky) — 1 (3.41)
EAVH = 2, (cosk; + cosky) + 4tycoskicosks — L, (3.42)

where k; and k; are reciprocal vectors of a given sublattice.

In the high-temperature superconductors, the coherence length is unusually short:
£(0) ~ 3a — 4a. Since rapid variations of the order parameter field are associated
with large energies, the perturbative treatment is expected to be most valid near T,
where the spatial variations are slower due to the divergence of the coherence length
E&T) ~1/ \/—IT/T: Sufficiently near T, therefore, one may assume that the gap
functions vary over distances much longer than k,?l, the characteristic length scale of
the single-particle Green functions. Thus, Eq. (3.37) can be expanded up to fourth-
order in lattice derivatives (see Sections 2.3 and 3.5). Since the derivation is quite

involved, it is relegated to Appendix A. The self-consistent equations for the gap
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functions in the EH model eventually become:

AL(r) = =TV, ZZ( 1)@ Zg°(mx+ny,—wn) G°(mi +nj+ @ — @, wy)

wn o

_i2= AE—a&" R R R "
x e e Al(E °’{1—e§.ﬁ‘ (211,)° — 2% (3I1,)° — €£4 (211,)* — €25 (91,)°

—EH, (311, )? @ny)z} (1)

k Bo" 80 A(r)-&

+ Tvlg 27 07

+2|M(r)PAL(r) — A (£) M* () + Ao(r) M2(r) — |M(r)|2M(r)}, (3.43)

{lau@)PAIE) - 2186@) M ()

where
i GIL) A%, (r) = e%nOALr) - A%, (r) (3.44)
.0 Arm
N [(25;) +70-Az(r)] A (), (3.45)
where Eq. (3.45) is the derivative in the continuum limit, and
M)z T Ay (r)ekfdimAnd, (3.46)
§'=%i45

Note that all gap functions are taken at the same point r in the last term of Eq. (3.43).
This approximation simplifies the resulting equations but is not always appropriate,
as discussed in Section 3.5. The coefficients of the gradient terms e have a compli-
cated dependence on the coordinate variables m and n, and are explicitly written in
Appendix A. As discussed in this Appendix, the gradient terms with odd powers of
#I1, and/or §II, vanish by symmetry for tetragonal systems. The GL equations for
the gap functions in the AvH model are given by:
Aj(r) = Z 3" 3" Go(mfy + nfa, —wn)G° (M) + nify + &' — &, wn)

6, m,n Wn
X e""—A(") (5 8.’){1 AVH (iH )2 _ e;\,w{H (gny)Q
—eMH (211,)" — ep3? (yn ) — el (£11,)° (911,)° } A (r)
TV ek, —=¢0A(r)6
2 & (wE+&)?

| M (r)?M (r), (3.47)
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with

('Flnr;) = i(jnx) (gny) + (inz) + ('gny) ; (3'48)
(oll,,) = —i(2IL;) (FIL,) + (£11z) — (911y) . (3.49)

The coefficients € are also given in Appendix A.

The total current in the superconductor is obtained using [160]
i(r) =i([(#,P)), (3-50)
where the polarization operator is defined by
P=) rc(r)c,(r). (3.51)
ro

Since the density operator commutes with itself, one need only consider the kinetic

energy contribution to (3.50), which for the EH model yields:

FRE) = ity des (b (r +8)c,(r))
5o

= —24T Y I4(r")G(r, r',wn)|r=rl (3.52)
Swn
= -2t [ﬁ"(r) + ﬁ’(r')] TY G(r, r',wn)lrﬂ, (3.53)
Wn
where (3.53) represents the continuum limit of the lattice current, and
i (8T0;) (£) f(x) = e 95 AE T £(r 4 §) — f(r); (3.54)
i) = ~iv+ %%A(r). (3.55)

Using the perturbative solution (3.32) of the single-particle Green function appearing

in (3.52), the total current becomes:

FRO) = 2T 3 3 3 eRAOE @ e

Ri,R2 61,82 ),

x G°(-R;,wn)G°(R; — Ry — @, —wn)A—J(Rz)G"(Rz + @a,wn)
{AL, () [m (1L)" +n (§11)"] Aq, (r)
+ g, (r) [m’ (31L,) + 7' (§11,)] AL, ()}, (3.56)

X
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where R; = mZ + nj and Ry, = m'Z + n'jg. A similar expression for the AvH model
can be obtained by setting t — —t1;, —t20 with 6 — 5'11,5.20 and R; = m7; + nvo,
R, = m'?; +n'fy, and making the replacements (£I1;) — (£I1;) + (9I1,) and (3II,) —
(#11,) — (411,).

The various integrals and sums appearing in the gap equations, Eq. (3.43) and
Eq. (3.47), and the expression for the current Eq. (3.56) in general can be determined
only numerically. One case, however, is analytically tractable: the EH model at low
electron densities and weak to intermediate coupling. For V5 = 0 and V, — —V,, this

limit corresponds to ordinary BCS theory.

3.3 Determination of T,

3.3.1 Extended Hubbard Model

At temperatures sufficiently near T, the gap equations (3.43) and (3.47) can be
linearized. Making use of the definition of the normal-state Green function (3.40),

one obtains for the EH model:

2a,85(r) — A(r)

Ailr) = TV Z 1 8 , (3.57)
ey TV ae[2axA5(r) — A3(r)]

As(r) - 2 ug’k w?,'*‘f,% 1 (358)

Ayr) = TW Y Eds bAy(x) (3.59)

2+£

Wnk

where a, = cosk;+cosk, and by = cosk;—cosky. The extended s-wave and d-wave gap
functions are related to the bond gap functions through the gauge-invariant versions
of (1.10) and (1.11):

1] _i2= i2Z A (r
As(r) = Z € :OAz(r)A:(r)‘f‘e:(‘A:( )A-—z(r)

+e_i§_34,(r) A,(r) + o Au(r) A_y(r)] , (3.60)
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1| _izeg (e 125 Az (r
Aglr) = Z[e A=A (r) + e85 =D A _(r)
e %M (r) - R MPA_(r)]. (3.61)

The inversion of these equations is not trivial; the proof may be found in Appendix B.

The equations that determine the s-wave and d-wave transition temperatures T

and Ty are
Vila(Ts) — 2] Volo(T) + 2] = oVil{(T5); (3.62)
2
I(Ty) = 7 (3.63)
where
I 3 _ .
L(T,) = Z gktanh (m), n=0,1,2; (3.64)

I;(Ty)

2
Zg—" ( 2%) (3.65)

k
It is clear from Eq. (3.62) that if V| = 0, no s-wave superconducting instability can
occur for positive temperature.
The elimination of the Matsubara sums in Egs. (3.57) through (3.59) is accom-
plished by expanding the denominator as a partial fraction:

L =i(. I— ) (3.66)

w,2; + f,% 25]: Wy + fk Wp — fk

The fermionic Matsubara frequencies satisfy [160]

TZ 1 1 1

S lwn, — =3t exp(z/T) +1’

(3.67)

where the right hand side is the Fermi distribution. Combining (3.66) and (3.67) and

making use of standard trigonometric identities yields

1 __ L Sk

Wn

In order to analytically solve the sums I3, Egs. (3.64) and (3.65), one may

employ the standard transformation to an integration over energies, making use of
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the single-particle density of states (DOS)

N(E) = Y é(e—e)
)

b
€

N {N(0)+N(1)ln , if|e| < D; (3.69)

0, otherwise,
where D = 4t is the half-bandwidth and &; = & + u. The DOS is approximated by
a constant plus a term reflecting the van Hove singularity at half-filling (¢ = 0), as is
shown in Fig. 3.1. The best fit is obtained when N(0) = 0.31/D (the DOS for free
electrons in two dimensions is 1/wD) and N(1) = 0.19/D (note that the DOS at half-
filling is approximately (2/m2D)In|D/e|) [149]. Using the relation a; = —2(§+u)/D,

the sums I,_, can be solved to yield:

T*\ 2D
Io(T,) ~ 2N'In (F) - SN (3.70)
M T an (. D
ITSz——N’[ln(—)—1]+—(1+—)N1; 3.71
1( ) D Ts D u ( ) ( )
8u? T* 4(D? - 32
L(T,) = -I%N'ln (T) + 'L—DZ—M)N(O)
270_ 2 _“_‘ 52 2]
+ 02[ 4uD + 64%In |D 5% + D?| N(1), (3.72)
where
N' = N(0) — N(1)In ‘%| , (3.73)
and 5
24 _—
7= 22V - un (3.74)

For all terms proportional to N(1), it is assumed that T, <« D (weak-coupling), so

that
—l,e <y

€= p
tanh (—) ~ { 3.75
2T +1,e > u. (3.75)
Note that in this lattice model, all interactions are instantaneous and therefore the

bandwidth is the only possible energy cutoff. Since b; cannot be written exactly in
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N() (D)

0.0 : ‘
-1.0 -0.5 0.0 0.5 1.0

e (D)

Figure 3.1: The density of states N(g) for tight-binding electrons on the square lattice

is shown as the solid curve. The energy scale is the half-bandwidth D = 4¢. The best

fit, the dashed line, is found to be N(g) = %3t + &I |—EQ
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terms of &, some simplifying assumption must be made in order to evaluate I3. At
low densities (the continuum limit of the lattice model), & = tk? — D — u and thus
br &= —2c0s20(€ + D + u)/D. 1t follows that

4(u + D)? T* 2
L(Ty) =~ —(IiD-2—)—N’ln (Td) + 3 (D? - 4uD — 3u%) N(0)
2 |-2D 2 u ’
= l (4 +D) +,u(3p+4D)ln|D
2 _ 2
Pz 2D o ]N(l). (3.76)

For V; = 0, the equation for the s-wave transition temperature 7, that results

from the application of Eq. (3.62) is:

. —D? — V; [6u2N’' — 2D?N(0) — (D? — 4uD — 5u2) N(1)]
T,=T exp{ VN . (3.77)

The corresponding equation for the d-wave transition temperature Ty from Eq. (3.63)

is:
Ty = T exp { [D*N(0) - 51; (4D° + 7D?*u +12Dp? + 54°) N(1)] /2N"(u + D)2}
X exp { [- D? - ViN'u(4D + 3p)] /2(u + D)2V1N'} (3.78)

The transition temperatures for the cases V; =t and V| = 3¢ are shown as functions
of chemical potential in Figures 3.2 and 3.3 respectively. Near the bottom of the
tight-binding band (¢ =~ —D), an s-wave transition is strongly favoured for any
Vo and V;, whereas a d-wave transition is favoured near half-filling (x = 0). The
value of the chemical potential at which the preferred symmetry of the dominant gap
function changes is extremely sensitive to the strengths of the respective interactions.
As the on-site repulsion is increased, the magnitude of T, is suppressed while T,
is unaffected [149]. As a result, d-wave superconductivity is favoured for virtually
all densities for sufficiently large V5. It should be noted that the magnitude of the
subcritical transition temperature, associated with the subdominant gap function,
is in fact further decreased due to the presence of the dominant gap function. The

relevant equation for the subcritical transition temperature, one of Egs. (3.57)-(3.59),
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is modified by replacing /&2 + APOM? for &, where APM is the magnitude of the
dominant gap function. As shown within GL theory in Section 2.2, the subcritical
transition temperature may be set to zero without loss of generality.

The overall form of the phase diagrams may be understood in a qualitative manner
by considering the structures of Egs. (3.64) and (3.65). The tight-binding dispersion
(3.41) is & = —2tay — p. Near the bottom of the tight-binding band, p — —D and
kr = ky, so & — 0 and by — O while a; > 0. Thus, the sums Iy_, have a larger
contribution than I3, stabilizing s-wave superconductivity. Similarly, near half-filling
g — 0 and k; = ky+7, so & — 0 and ax — 0 while b > 1, leading to a larger I3 and
T,. Evidently, the band structure, in addition to the pairing interaction, is crucial in

determining which order parameter symmetry is stabilized in the physical system.

3.3.2 Antiferromagnetic-van Hove Model

The equations for the s-wave and d-wave transition temperatures T, and Ty in the

AvH model are respectively

|4 1 + cosk;cosk; + cosk;, + cosk, &k
1 = =Y Sk ,
72 & tanh (2,1,8 , (3.79)

(3.80)

V<l kycosks — cosk; — cosk

Vs + coskycosk; — cosk; — coskp, (_{_k_)
4 < &k 2T,
While these equations are not analytically tractable, due to the complicated angular-
dependence of the dispersion (3.42), they may be solved numerically. In practice, the
transition temperature Ty is evaluated for a given chemical potential x4 which fixes

the (normal-state) hole density:

(n) = %Z [1 — tanh (%)] . (3.81)

k

Note that there is a factor of 1/2 in the expression for the particle density in the
normal-state, since the holes move on a single sublattice and are therefore considered
‘spinless.” As shown in Fig. 3.4, the allowed values for 4 are between ex = § +u =
~d4ty0 = —0.087 eV at the bottom of the hole band, and ex = 4(t1, + t20) at the top.
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Figure 3.2: The transition temperatures T, are given as functions of chemical potential
p for nearest-neighbour attraction V; =t and Vp = 0. The results for T; and T are
given by solid and dashed lines, respectively. The analytical results (lighter lines)
are found to compare well with the numerical results (darker lines) in the applicable

low-density regime.
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Figure 3.3: The transition temperatures T; are given as functions of chemical potential
p for Vi = 3t. The solid lines correspond to the numerical evaluation of T for on-
site repulsion Vy = 0, 2.5¢, 3.5t, and ~ oo; linewidth decreases with increased V;.
The d-wave transition temperature Ty (dashed lines) is unaffected by changes in V;.
Note that the analytical (lighter dashed line) and numerical (darker dashed line)
results for Ty still agree closely at low densities in this intermediate-coupling regime.
The correspondence between the numerical and analytical results for T, (not shown)
continues for intermediate coupling but is found to improve with increased V;, or
decreased T5.
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Note that there is a van Hove singularity when g, = —t2,/tyq & —0.078 eV, where
the gradient of the energy vanishes: |Viek| =

The AvH model strongly favours a d-wave transition temperature for all relevant
hole concentrations, as indicated in the inset of Fig. 3.4. At optimal doping, corre-
sponding to u = —0.075 eV, the transition temperature is approximately 90 K and
the average hole density is (n) =~ 0.2 (where 1 eV=11.60445 K). The large transition
temperature at optimal doping is due to the proximity of the Fermi level to the van
Hove singularity. No s-wave superconductivity is stabilized at any density in the AvH
model.

The physical explanation for the stability of d-wave superconductivity in the AvH
model follows the arguments of the previous subsection. Since both the chemical
potential and the van Hove singularity are located very near the bottom of the band,

the AvH dispersion (3.42) may be approximately written
EMH ~ ¢ (cos ky + cos kp + cos ky cos kz + 1), (3.82)

where ( is of order 4ty ~ 2t;;. When this dispersion approaches zero, the numerator
of (3.79) also approaches zero, while the numerator of (3.80) remains finite. Fur-
thermore, since & — 0 for many k-points near the van Hove singularity, d-wave

superconductivity is strongly favoured over s-wave.

3.4 Calculation of the GL Coefficients

3.4.1 Extended Hubbard Model

For sufficiently large systems, the lattice sums in Eq. (3.43) can be transformed
into k-space integrals. Neglecting fourth-order derivatives and making use of the
expressions for the s-wave (3.60) and d-wave (3.61) gap functions as well as the
normal-state Green function (3.40), the following three gap equations for the EH

model are obtained:

Al = 4TV°Z/(2 )2{:‘2(:_2 - 2+€2)2 [16|s(r k)[2s*(r, k)
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Figure 3.4: The density of states per hole is shown as a function of energy for the
AvH model. In the inset, the (d-wave) transition temperature in Kelvin is plotted as
a function of the hole density at T.. Optimal doping corresponds to x =~ —0.075 eV,
while the van Hove singularity is at t3, /t20 = —0.078 eV.
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+32|d(r, k)[?s" (r, k) + 16d°2(r, k) s(r, k)|

2, 22 [ &K eilltk')z o
- /d 9 (2702 (—iwm — Ex) (iom — E&) (COS AITZ + sin 01'Iy)
x [s*(r, k) + d*(r, k)] }; (3.83)

A = 2TV12 / G asabove} (3.84)

Ay = 2V / (%)zbk{i;(:_l;k = 2;_ ey 161d(r, )P (5, k)

+32|s(r k)[2d*(r, k) + 165**(r, k)d(r, k)]

2 2 [ 4K gilk+k)z e
- / d°z 2 ] (27)? (—iwn — Ex) (iwn — &) (cos OI1Z + sin ony)
x [s*(r, k) + d*(r, k)] }, (3.85)

where s(r, k) = %A(r) — ;A.(r), d(r,k) = '—’;Ad(r), 0 is the angle between r and z

(= m& + ng), and the continuum limit of the lattice derivative (3.45)

8 4r
I1, —_25;+ % Az(l') (386)

acts only on the center of mass coordinate r. Egs. (3.83)-(3.85) can be simplified by
noting that A,(r) = eA,(r), where € depends on temperature and chemical potential.
This relation follows from the observation that Eqgs. (3.83) and (3.84) are not linearly
independent, since A,(r) and A,(r) have the same symmetry (see Section 1.2). Near
T, the magnitude of the s-wave component is small. From Eq. (3.57), one infers
e ~ VoI, /(1 + Volo/2), where Iy and I are defined in Eq. (3.64) and are evaluated
in the weak-coupling and low-density limit in Egs. (3.70) and (3.71). The integrals
involving gradients of the gap functions can be greatly simplified by means of the

identity:!

d’k
(2m)?

I am indebted to Prof. Jules Carbotte for drawing my attention to a variant of this integral.

[ #2562, ~w )G @+ Gwn) = [ mze VLG ), (387)
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and similarly for integrals involving y®. Thus,

1 V I *
A0 = TV (1—4“) Z/( wzjigz{kA,(r)

1 . . Al

- Zie [16a;°1 A (r) A3 (r) + 85} Au(r) PAS(r) + 40k bR AT () As(r)
D? - . .

+ T5 (sin%,l'[i + smzkyl'lz) [2a} A% (r) + brAy(r)] ] }, (3.88)

iA;(r) - TVIE/ 27r)2w2+§2{ beAq(r)

~ oy g RIAPAIE) + e A, (i) + 40 AT ) Aule)
2
+ ?2 (sm2k I + sin%k 1'I2) [2a}A%(r) + beAx(r) ]]} (3.89)

where a}, = % — <. Comparing Egs. (3.88) and (3.89) with the GL gap equations

(2.23) and (2.22) immediately yields:

1 € &2k d?
a; = Vl- — m - 4T§/ WW (390)
ag = sz/(27r w2+£2, (3.91)
B a2k {32a*, 2b} , 32a,%b? , 8al b} }
B, B, B, B} =TE [ 5o e (3.92)
o2, (40", —2aibe, B
{¥ss W, W} = T}: / e .t ai’ 7 +a§’°£)"2 3 (3.93)

The coefficients of the tetragonal GL free energy Fg* (2.16) can be calculated
analytically in the same low-density and weak-coupling limit employed earlier by
setting ax ~ —2u/D, by ~ —2(u + D)cos20/D and sin’k, ~ 4(p + D)cos?d/D.

Making use of
/ . TC(3)N'
(27)? (w2 + 52)2 87272

(3.94)
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where ¢(3) =~ 1.202 is a Riemann zeta function, one immediately obtains:

=g 5+ (-F) + @z (55) (-3) e
wom=a{(5+9)" 55D} 50
o sa=a{2(5+5) (52) (540 (5D ] oo

e 0259 (59 (55D). (452)). oo

where

7¢(3)N'

= (3.99)
and v% = D?k%/4 ~ D(u + D). From Egs. (3.70) and (3.71) follows:
VoN'In (L) —~ VN’
au Vol'In () = Vo : (3.100)

"D VN (%) +1

The expressions for o, and a4 are only valid near their respective critical tempera-
tures. Since the subcritical transition temperature is much lower than the dominant
transition temperature, the corresponding coefficient for the subdominant order pa-
rameter can be assumed approximately 1/V; for all values of T < T, (i.e. the con-
tribution of the appropriate integral in either of (3.91) will be negligible). Note that
in the limit V; =0, Vj = —V5, A, and Ay vanish, and the relevant gap equation is
therefore Eq. (3.83) with s(r,k) = Aq(r) and d(r, k) = 0. Then Eq. (2.15) becomes
the two-dimensional continuum BCS GL free energy:
2
P08 = B (1= 1) 18a@)P+ S A o+ g A 4
(3.101)
The coefficients (3.95)-(3.98) of the GL free energy (2.15) imply that the d-wave

component vanishes at the bottom of the band (p = —D), yielding a pure s-wave
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superconductor. At half-filling (x = 0) only the d-wave component remains, with the
caveat that these analytical results become decreasingly valid near half-filling. At
intermediate densities all the GL coefficients are non-zero. In general, both d-wave
and s-wave superconductors in the presence of inhomogeneities will have coexisting
d-wave and s-wave components for any temperature T < T..

The GL coefficients may be used to measure the subdominant components induced
by inhomogeneities such as external magnetic fields and currents. As discussed in
Section 2.3, the GL theory predicts that the maximum amplitude attained by the
subdominant order parameter in the core of a magnetic vortex is given by [135]:

As(Ad)max
Ad (As)bulk

1 v Iad(S)l 1 ( T ) Yo
~ - ~-|1—— ) Tas) > Tsay, 3.102
4vq4s) sy 4 Ta(sy ] Yags) () (@) ( )

where A™ is the maximum value of the induced subdominant s-wave order param-
eter compared with the magnitude of the critical d-wave order parameter Aj"* far
from the vortex core, and vice versa. From Section 2.5, the subdominant component
induced by external currents is predicted to be approximately four times larger than
the above estimate, Eq. (3.102). In both cases, the gradient coefficient ratio ,/va(s)
governs the magnitude of the subdominant component.

From (3.98), one obtains:

Y B+ D6/4|
— = |/, Ty > Ts. 3.103
Yd ‘ p+D ‘ ( )
Y 1-_ p+D

The gradient coefficient ratios (3.103) and (3.104) are compared with the appropriate
numerical results in Fig. 3.5 for the Vj = 0 case. The analytical results capture the
essential physics in their regime of applicability, which is at low densities and weak to
intermediate coupling. Better quantitative agreement at intermediate coupling can be
obtained by including in ay, bk, etc. terms higher order in &. Near half-filling, where d-
wave superconductivity is most stable, the gradient coefficient ratio -, /va grows with
increased coupling. The coefficient v, /7, exhibits a similar behaviour near zero-filling,

where s-wave superconductivity is favoured. As a result, a significant component of
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the subdominant order parameter would only exist for stronger coupling in these two
density regimes. It should be kept in mind, however, that as the on-site repulsion
Vo (and therefore €) increases from zero, the magnitude of the s-wave component is
suppressed for all densities; a d-wave subcomponent would be thereby enhanced in a
bulk s-wave superconductor. The magnitude of the subdominant order parameter can
be significantly larger even for weak coupling at intermediate densities. Not only is the
gradient coefficient ratio enhanced, but also the ratio |@dom|/@sub increases because
aeup — 0 as the subdominant superconducting instability is approached. Fig. 3.6 in
the following section provides further quantitative details.

There are in general two characteristic length scales £ and §; governing spatial
variations of the s-wave and d-wave order parameters, respectively. Near T,, however,
the induced subdominant order parameter is negligible compared to the critical order
parameter by (2.35). Inserting the relevant analytical expressions from Egs. (3.95)
through (3.98) into Egs. (2.27) and (2.28), one obtains:

( VF |7C(3)V1N’ . ([ VF |7§(3)V1N’.
5’(T)~(2WT) 21-T/T,) ° Ed(T)~(21rT) 41 -T/Ta)’ (3-105)

4 W , 4 [ W
()~ 57?\/ - & D=5 \/msu;u —Ty  (106)

Note that the penetration depths are effectively infinite for an isolated layer. The

magnitudes of the coherence lengths can be estimated for parameters stabilizing ei-
ther s-wave or d-wave superconductivity (see Section 3.3). For example, with p = -2t
and V| ~ 3t the transition temperature T, ~ 0.2t corresponds to bulk s-wave super-
conductivity when V; = 0, but d-wave superconductivity when V5 > 0. For these
parameters at T = 0.97,, the d-wave and s-wave coherence lengths are respectively
£ ~ 6a (when Vp > 0) and & ~ 8a (when V5 = 0). The coherence lengths tend
to become progressively shorter with increased electron density. Fig. 3.7 in the next
section gives further details.

It is useful to compare the GL free energy (2.15) with that derived in the contin-
uum model of Ren et al. [137]. Defining s = — (% + §) As and d = ¥R A, (dropping
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reference to the center of mass coordinate r for convenience), one obtains:

— Ty .2 T) 2
F, = F, (1 T)|s| (1 =) 1dl

L
3 1
4 4 21412 2 52 2.2
+ 4v{ls| + gldl* +2ls/*|d] +§(s & +d%s*) }
2

2
YF 7|2 T 712 = . h
+ 73g{2sl® + |Td| + [(ys)* (Tyd) — (Tes)"(Ted) + Hee] } + -

(3.107)

While the various coefficients appearing in the above free energy appear to be similar
to those found by Ren et al., one important distinction must be emphasized: the free
energy (3.107) mixes a d-wave component with both extended and isotropic s-wave
components. In the continuum, all gap functions with s-wave symmetry are indis-
tinguishable. Components with d-wave and isotropic s-wave symmetry must result
from different pairing channels. In the absence of an on-site interaction, the s-wave
component is always zero even in the presence of inhomogeneities. In lattice models,
both A, and Ay are generated by the same nearest-neighbour pairing interaction V.
The analytical and numerical results clearly indicate that the s-wave component is
finite for virtually all densities and T' < Ty in inhomogeneous superconductors, even
when the on-site interaction is zero (see Fig. 3.5). There is therefore no limit in which

the EH model reduces to the continuum theory.

3.4.2 Antiferromagnetic-van Hove Model

Neglecting fourth-order derivatives, the equations for the gap functions in the

thermodynamic limit of the AvH model from Eq. (3.47) are:

. TV d?k [ceAl(r 1 .
Ailr) = T;!f (27r)2{z:2, +(€,%  4(w? + 8 LA () AE)

+2ckdk| Ag(r) [PA3(r) + cede A (X) Ay(r)]
2 ! i(k+k')-z
/ ds d%k e

N 2
2 J (27)? (—iwn — &) (iwn — &) 11° + sin2 (1'[2 - Hy)]

x [chA%(r) + exAL(r)] }; (3.108)
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Figure 3.5: The ratio of the mixed gradient coefficient v, to the ordinary gradient
coefficient of the dominant order parameter -, or 74 is given as a function of chemical
potential . The solid and dashed lines correspond to numerical and analytical results
respectively. The solid lines become progressively thicker as V; is decreased from 3¢
to t in increments of ¢; Vj is taken to be zero. The discontinuity reflects the transition
from an s-wave to d-wave bulk superconductor. The dashed line assumes that this
occurs for u = —1.65t. All values are determined at the appropriate T..
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* - dkA;(r) 1 [ 12 2A*
Ad(r) - E/ (27!')2{ w'gt +€z 4(0),2‘ +§£)2 deAd(r)I Ad(r)
+2ckdk|A (r)[2A3(r) + ckde AT (r) Ad(r)
LK ilkc+i)-z .
_ 2 2 4 o 2 _ 12
[ 5 | Gy [T * 2 (T - 1))
x [exA%(E) + de A(r)] } (3.100)
such that

¢k = 1+ cosk;cosks + cosk; + cosks; (3.110)
di = 1+ cosk,cosky — cosk; — cosky; (3.111)
er = sink;sink,. (3.112)

With Egs. (3.87), (3.108), and (3.109), one immediately obtains the coefficients of the
GL free energy (2.15) for the AvH model:

_ 1 dzk {Ck s dk}

{043 ; ad} = "'/- 4 (271')2 Ek tanh (2T) (3113)
k {&,

{IBI ) :3'2 ’ .B3 ’ ,34 16 Z/ (d2 { &‘J’%‘:‘jk;k); dek}, (3114)

d*k sin2k, (ty, + 2taocoskz)? + sink; (t1; + 2tz0cosk;)” (e, del,
Ck y Ok

{¥s » va} =TZ/ &n)?

(w2 + €2)°
(3.115)
__ dzk 2 (t11 + 2tyocosk;) (tu + 2t20cosk2)
2TZ/ o o o) (3.116)

Note that B3 = 404, as was found in the EH model, Eq. (3.107). The same result has
been obtained within GL theory [135], and in previous continuum calculations (137,
138]. This generic feature of the free energy (2.15) is a direct consequence of the
symmetry between the s-wave and d-wave order parameters and the underlying bond
(or directionally-dependent) gap functions from which they are derived. The above

expressions above are not analytically tractable because the AvH dispersion (3.42) has
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a complicated angular dependence. As shown in Section 3.3.2, at optimal hole doping
(n) ~ 0.2, the d-wave transition temperature found using Eq. (3.80) is ~ 100 K. The
coefficients of the GL free energy have been determined numerically for T' =~ T; at

optimal doping:
T
F, = F,-113 (1 - T) |Ag)? + 10.8] A2 + 38.7|A,|* + 5720|A4/*
d

1
+ 603[|A,%Aql* + 3 (A2AZ +a3242) ]
2.69|[1A,[2 + 7.38|1A4
2

1.50[(ITyA,)* (T, Aq) — (I:4,)" (M- A4) + H.| + g—w (3.117)

The coefficients 3, and B; are large precisely because of the stability of d-wave
superconductivity in this model (see the discussion in Section 3.3.2). This is most
easily demonstrated by evaluating the Matsubara sums appearing in Egs. (3.114),
which may be re-written in terms of (3.68):

1 1 8 1
Tg,,:(wgm%)z B -E&Z[Tzw%%%]

Wn

1 4 gtanh(&/2T) %] . (3.118)

8632 T &k

The largest contribution from the integrands in (3.114) come from the terms of order

1 [tanh2 (€x/2T)

n /€3, since £ — 0 and ¢ — 0 near the van Hove singularity and optimal doping,
while d; stays finite. The AvH model strongly suppresses terms involving s-wave
components.

The GL coefficients indicate that a low-temperature transition to a time-reversal
breaking phase, induced by inhomogeneities, is not likely to occur. This may be
understood qualitatively by the observation that s-wave components are not favoured
in the AvH model. The equation (2.41) defining the second transition temperature
T* may be re-written as:

BsAL(T*) + 2a,(T™) = 0, (3.119)

where the result 33 = 43, has been used. Since f; is extremely large, T* must be

small even if Ay is strongly suppressed near an inhomogeneity. The subdominant
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transition temperature is therefore not likely to be finite. In contrast, the EH model
is more likely to give rise to a finite T, particularly for densities approaching the
crossover to bulk s-wave superconductivity.

The maximum value of the s-wave component nucleated in the vortex core, cal-
culated numerically using (3.91), (3.93), (3.102), (3.113), and (3.115), is shown as
a function of hole density (np) = 1 — (n) in Fig. 3.6. It may be seen that the in-
duced s-wave component in the AvH model can be at most 5% of the bulk d-wave
value; this estimate is obtained for (n,) ~ 25% and T — 0, where it is assumed that
aq(T) o< (1 — T/Ty) for all T. This small subdominant component results in spite
of a large temperature-independent gradient coefficient ratio (v,/va ~ 20% near op-
timal doping) that is found to increase monotonically with doping, up to the largest
densities studied. The small size of the s-wave component in the AvH model may
be partly due to an effective on-site repulsion, which is built into the Hamiltonian
by constraining holes to move within a single spin sublattice of an antiferromagnetic
background.

The EH model can allow for a large subdominant s-wave component Smay/dbulk ~
20 — 30% with a suitable choice of parameters, such as low T, V; and large (n;), V1.
Furthermore, the s-wave component induced by external currents is approximately
four times larger than the maximum s-wave gap nucleated in a magnetic vortex; for
sufficiently low temperatures and densities in the EH model, the s-wave and bulk
d-wave components can become comparable. As the on-site repulsion is increased,
however, the induced s-wave component is suppressed.

The GL d-wave coherence length £(T) is calculated numerically with the aid of
(2.27), and is shown as a function of hole concentration (n;) for T = 0.97; in Fig. 3.7.
As expected, £(T) becomes shorter with decreasing (n,). For hole densities up to
30% filling, the AvH model leads to £ ~ a/ \/1——7’/?,1 where a is a lattice spacing
(=~ 3.8 A). This short coherence length is roughly in agreement with experimental
observations for the cuprates [59, 65, 66, 161]. The EH model yields similar d-wave
coherence lengths for V; = 2t, 3t. These short & strictly violate the initial GL condi-
tion that the gap functions vary over a longer length scale than the Fermi wavelength

kp' ~ la — 2a (see Section 3.2). The GL equations derived thus far must capture
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Figure 3.6: The relative magnitude of the maximum s-wave component induced in
the vortex core Smax/dpulk is calculated numerically and is given as a function of hole
density (n;) for temperatures T' = 0.9T;. The dashed line, corresponding to results
for the AvH model, indicates that the induced s-wave component is largest near
optimal doping ({(ns) ~ 20%). Results for the EH model are given for comparison,
where in the hole representation (n,) = 0 corresponds to 2 = 0. Solid lines (in order
of decreasing thickness) correspond to Vi =t,2t,3t with V, = 0, while the dotted line

is for V| = 3t, V = 4t.
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at least some of the essential physics, however, since the conclusions obtained by
integrating the GL equations [134, 135, 137] closely match the results of numerical
investigations of short-£; superconductors [129]. The validity of the GL equations de-
rived above is further confirmed by the microscopic analyses of inhomogeneous d-wave

superconductors presented in Chapters 4 and 5.

3.5 Extension of the GL Equations

As discussed in Section 2.3, the current and magnetic field distribution around
an isolated vortex of a d-wave superconductor is anisotropic in general. The four-
fold symmetry results when an s-wave component is induced in the vicinity of the
vortex core, and when higher-order d-wave gradient terms are included in the GL free
energy. To assess the relative importance of these two contributions to anisotropy,
the coefficients of the higher-order terms included in (2.15), and vq4(s)- in particular,
must be determined microscopically. The derivation of the coefficients 7, and 7y that
appear in (2.18) and (2.19) requires extending the second term on the right hand side
of Eq. (3.37) to include gradients of the gap functions. Applying similar techniques
to those described in previous sections, one obtains for the EH model:
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where the analytical solution is valid in the continuum limit, and {(5) ~ 1.037. For
the AvH model,
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The coefficients of the fourth-order gradient terms can be derived by evaluating in

the thermodynamic limit terms in (3.43) and (3.47) that have been ignored until now.

After some manipulation, one obtains
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Figure 3.7: The numerical d-wave Ginzburg-Landau coherence length £4(T’), measured
in units of a lattice spacing, is shown for T' = 0.97}; as a function of hole concentration
(ny,). The dashed line corresponds to the AvH model while the solid lines (in order
of decreasing thickness) correspond to the EH model for V; = ¢,2t,3t and V5 = 0.
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where the ellipsis represents the k-dependent part of the integrand. The fourth-order
gradient terms can be evaluated analytically in the EH model for weak to intermediate

coupling and low densities:
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The analytical results obtained for the EH model! indicate that all the higher-order

terms in the free energy (2.18) and (2.19) have a negative sign compared with the
second-order terms. The overall sign of these higher-order terms is not significant,
however, as long as the order parameters are sufficiently small and slowly varying.
While both of these conditions are satisfied near T, one also finds Ys()+/Vs(a) ~
(vp/nT)? — 0 as p — —D. At low densities, the EH model predicts a vanishing 7,
coefficient, consistent with the expectation that the free energy of a continuum s-
wave superconductor should have spherical symmetry. Furthermore, v4y/v4- = 5/2,
as was found by Ichioka et al. within a continuum model [136].

The analytical results for the EH model do not adequately address whether
anisotropy in the free energy is primarily due to the existence of the subdominant
order parameter or fourth-order gradients. For a bulk s-wave superconductor, the
induced d-wave order parameter clearly breaks circular symmetry since v, # 0 for
p > —D while v, = 0. Yet stronger coupling, lattice effects, or Fermi surface
anisotropy could lead to a non-vanishing v,—, which could compete with the v; 2 /oy
coefficient in the free energy (2.37). For a bulk d-wave superconductor, assuming that
o, =~ 1/V}, one finds:
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which is of order —V;/t. This result indicates that the ‘subcritical’ coefficient v2/a,
and the ‘asymmetric’ coefficient 4 enter the free energy (2.37) with the same sign,
and give similar contributions to the anisotropy. Since d-wave superconductivity is
favoured for densities closer to half-filling, however, Fermi surface anisotropy may
significantly alter the analytical results.

The ratios v2/aq(s)Ys(4)— have been calculated numerically for T = T, and are
shown in Fig. 3.8. Virtually indistinguishable results have been obtained for all tem-
peratures 0.5T, < T < T. (not shown). The numerics make clear that the ratios are
always larger than zero. Unlike the weak-coupling prediction, both 7s_ and v4- are
finite and positive in their regimes of applicability 4 — —D and p — 0, respectively.
The positive sign for v,_ is due to the factor of —3 in the integrands of (3.122) and
(3.123); it is finite due to lattice and stronger-coupling effects neglected in the analyt-
ical calculations. The change in sign for 74—, compared with the analytical result, is
mostly due to Fermi surface anisotropy. Thus, the contributions of the subcritical and
asymmetric coefficients to anisotropy are in fact competing. For most densities and
coupling strengths, the contribution of - dominates, and the asymmetric gradient
term in the free energy (2.37) is positive. In the EH model, the subcritical coefficient
may dominate, but only for densities very near the crossover from bulk s-wave to d-
wave condensation (or vice versa); in this regime a — 0 and the asymmetric gradient
term is negative.

It is not presently clear if the overall sign of the anisotropic fourth-order gra-
dient term in the free energy (2.37) has any physical significance. Previous micro-
scopic investigations of the EH model within the context of Bogoliubov-de Gennes
(BdG) theory [129] demonstrated marked anisotropy in the structure of the d-wave
component near the core of an isolated vortex. Parameters chosen correspond to a
substantial s-wave component nucleated near the vortex core, i.e. vi/as > v4-, and
therefore a large negative coefficient for the asymmetric gradient term. The quasi-
classical Eilenberger formalism also has been used to investigate microscopically the
vortex structure in d-wave superconductors [136]. Even though induced s-wave com-
ponents were neglected in this work, the same four-fold symmetry of the d-wave gap

function was found. In this model, the Fermi surface is assumed to be isotropic so
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<n>

Figure 3.8: The ratio 73/ad(3)'ys(d)_ is shown as a function of electron concentration
(ne) for T = T.. Solid lines (in order of decreasing thickness) correspond to the EH
model for Vi = 1.3t, 2t, 3t with V; = 0, while the dotted line is for the EH model
with Vi = 3t, V; = 4t. The dashed line gives the results for the AvH model in the
electron notation such that (n.) = 1 — (n,). To the left (right) of the arrow is shown
V2 /ogys— (v2/asva~) corresponding to bulk s-wave (d-wave) superconductivity.
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the v4_ coefficient is negative as well; the same result is obtained in the low-density
approximation employed above. Very recent BdG calculations, however, which incor-
porate the effects of Fermi surface anisotropy, indicate that the sign of the asymmetric
gradient term may partly determine the orientation of the vortex lattice with respect
to the crystal lattice [162, 163].

For completeness, the coefficients 7,(4) and 7s4)+ also have been determined nu-
merically for both the EH and AvH models. Both coeflicients are always negative
and in general it is found that for the EH model 7y4) ~ 1075a)+ ~ 100|vsa)—|, and
Ys(d)+ is of the same order as 7,(q) at T.. For the AvH model at optimal doping and

T., one obtains:

T -
FAL — F 113 ( ) |A4(r)? + 5720|Ag(r)|* + 7.38|T1A4(r) |?

T

2
— 16300|Ay(r)IIA4(r){? — 16.5|T* Ay(r)[* + 2.65|(IT; — [13) Ag(r)|* + E%F'
(3.127)

The large value of 74 is due to the stability of d-wave superconductivity in the AvH
model, as disussed in Sections 3.3.2 and 3.4.2; the leading contribution to the in-
tegrand of (3.121) is of order 1/£. For both models, the relative sizes of 7,4 and
Ys(d)+ compared with the magnitude of v, clearly demonstrates that the GL theory

derived in this chapter is only strictly valid quite near 7.

3.6 Summary and Discussion

The Ginzburg-Landau equations for a d-wave superconductor have been derived
within the context of two microscopic lattice models used to describe the high-T,
materials: the extended Hubbard model and the Antiferromagnetic-van Hove model.
It has been possible to quantitatively investigate how the lattice and external inho-
mogeneities generate and govern the interplay between co-existing s-wave and d-wave
order parameters. The relative magnitudes of the various GL coefficients, as well as
their temperature and density dependence, also have been ascertained.

Microscopic models describing the cuprates predict a significant admixture of an
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s-wave component in inhomogeneous d-wave superconductors. The results for both
models are qualitatively similar, though the subdominant components tend to be
larger in the EH model. In the presence of external magnetic fields and currents, the
magnitude of the s-wave component is proportional to the gradient coefficient ratio
Yv/74- 1t has been found that within a broad and experimentally relevant parameter
space both microscopic models yield v, /74 ~ 0.1 — 0.4. In the mixed-state, the s-
wave component nucleated in the core of a magnetic vortex may be as large as 30%
at low temperatures. Isolated vortices will become appreciably anisotropic, and the
flux lattice will deviate from that of a triangle. The oblique flux lattice that results,
with an angle between primitive vectors ¢ ~ 70° — 80° [134, 135], is consistent with
recent experimental observations for YBCO [143, 144]. The subdominant components
induced by external currents are generally larger, and the induced s-wave components
may become comparable to the magnitude of the bulk d-wave gap.

In order to determine the sources of anisotropy in the GL free energy, the influence
of Fermi surface anisotropy and lattice effects has been investigated numerically for
both microscopic models. It has been shown that the asymmetric gradient term
in the d-wave gap function contributes a four-fold symmetry comparable to that of
the s-wave component over much of the phase diagram. Furthermore, since these
contributions appear with opposite sign, their effects tend to compete.

Wherever possible, comparison has been made with previous derivations of the GL
coefficients within continuum models. It should be emphasized, however, that lattice
models provide considerably more information regarding the density and coupling-
dependence of the GL coefficients, which in turn regulate the admixture of s-wave and
d-wave components in unconventional superconductors. The results clearly indicate
that s-wave components are always present in inhomogeneous d-wave materials for
temperatures below Ty, even in the absence of a separate s-wave pairing channel.

The primary objective of the present work has been to demontrate that micro-
scopic lattice models used to describe the cuprates yield GL coefficients in a physically
interesting regime. In particular, the calculation reveals values for the coefficients
which favour subdominant real s-wave components nucleated by external magnetic

fields or currents, and imaginary s-wave components near intrinsic inhomogeneities.
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The GL free energy derived in this chapter, therefore, may be a useful reference for

the theoretical investigation of high-T,. materials in the presence of inhomogeneities.




Chapter 4

Twin Boundaries

4.1 Introduction

4.1.1 Properties

The high-T, superconductor YBa;Cu30s+, (YBCO) is a tetragonal Mott insu-
lator in its parent state (z = 0), due to the presence of two proximal ab-oriented
antiferromagnetic CuO, planes in its unit cell. As the doping z increases, addi-
tional oxygen atoms occupy sites between the copper-oxide planes, and charge car-
riers in the form of holes appear in the antiferromagnetic layers. A superconduct-
ing instability, as well as a tetragonal to orthorhombic phase transition, occurs for
oxygen doping at approximately z = 0.4 [164]. The highest superconducting tran-
sition temperature for this material (7, =~ 93 K) is obtained at ‘optimal doping’
z ~ 0.95 [165]. At this doping, the inter-plane oxygens have formed almost contin-
uous a- or b-oriented CuO chains, leading to a maximum orthorhombic distortion of
the unit cell, corresponding to @ = 3.821 A and b = 3.885 A for b-oriented chains, and
vice versa [166]. The large anisotropy of the normal-state resistivities p./p, ~ 35 and
pe/py = 75 observed experimentally [41] (with b-oriented chains) indicates a weak
coupling of carriers in the c-direction (whose unit cell length is 11.65 A), but en-
hanced normal-state transport along the chains. This conclusion is corroborated in

the superconducting state by the anisotropy of the penetration depths (69, 70, 72|

82
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{Xa) A, A} = {1500, 1000, 6500} A.

In general, optimally-doped YBCO minimizes its formation energy by the process
of twinning, i.e. separating into a patchwork of regions, called twins, with different
orthorhombic orientations [167]. The two possible twin domains have unit cell pa-
rameters abc and bac. The domain walls separating the twins are aptly named ‘twin
boundaries,’” and are oriented in the [110] and [110] directions. In pure optimally-
doped samples, or if a small number of the copper sites have been substituted by Zn
or Ni impurities, the twin boundaries are approximately 10 A wide and are separated
by an average distance of order 200 A. The twin boundary becomes wider (up to
approximately 40 A), and increasingly tetragonal, with decreasing z and with Al or
Fe-doping [168]. Since Al and Fe preferentially substitute for copper atoms in the
chains [169], while Zn and Ni are thought to replace planar Cu [170], the twin bound-
ary properties appear to correlate with the degree of chain disorder. Most important,
however, is that the twin boundary regions have a depleted oxygen content relative
to the twin domains [171]. This observation makes intuitive sense: the chain orien-
tation must rotate by 90° over the short length scale of the twin boundary width,
which implies that the twin boundary region is at least oxygen-disordered if not fully
stoichiometric.

Twin boundaries are thought to significantly influence both the superconducting
and normal-state properties of YBCO. These intrinsic defects are known to effectively
pin magnetic vortices against perpendicular flux flow [172, 173, 174, 175, 176], and
are thought to enhance vortex channeling in the parallel direction [177, 178, 179,
180]. In addition, investigations of YBCO in external c-oriented magnetic fields near
H_, clearly indicate that vortices are preferentially located in the vicinity of twin
boundaries [181], which locally distorts the Abrikosov flux lattice [182]. The pinning
properties of twin boundaries may also help explain why the critical currents of YBCO
thin films far exceed those of bulk materials [183, 184, 185, 186]. Perhaps the most
convincing experimental evidence to date that twin boundaries play an important
role in both the superconducting and normal-state properties of YBCO has been
recently obtained by Villard et al. [187]. The normal-state resistivity and the self-

field critical current, measured on unidirectionally-twinned samples in the absence of




84 Twin Boundaries

external magnetic fields, showed 6-fold and 25-fold anisotropy respectively between
the directions perpendicular and parallel to the twin boundaries.

Twin boundaries most likely act as weak superconducting links at low temper-
atures. Since their width is comparable to the superconducting coherence length
£(0) =~ 16-30 A [59, 161], twin boundaries probably behave as short Josephson junc-
tions [188] between adjacent twin domains. The weak-link suppression of supercon-
ductivity in the twin boundaries would be a direct consequence of the local oxygen
depletion discussed above, since both the local T and consequently the local magni-
tude of the superconducting order parameter are proportional to the doping. Strongly
coupled superconducting microdomains of width ~ 40 A have been invoked in or-
der to explain the behaviour of the low-temperature critical current in YBCO thin
films {189]. The experimental evidence, therefore, is beginning to resolve the long-
standing theoretical question of whether superconductivity is enhanced [190, 191] or

suppressed [192] at the twin boundary.

4.1.2 7 Junctions and Half-Integral Vortices

The large ab-plane critical currents (of order 10° A/cm?) observed in twinned
YBCO [187] indicate that adjacent twin domains must be strongly Josephson coupled.
Further insight into the characteristics of the twin boundary Josephson junctions may
be obtained by considering the predominantly d-wave character of the superconduct-
ing order parameter in YBCO (refer to Chapter 1 for details). The Josephson interface

energy can be written [193):

I c¢0
27

where a is the junction phase, I is the critical current through the junction, and ¢ is

Es(p) = —5—cos(¢p — @), (4.1)

the phase difference between the two order parameters on either side of the interface.
If the lobes facing the twin boundary of these predominantly d-wave order parameters
have the same sign then ¢ = 0; if they have the opposite sign, ¢ = 7. If ¢ = 0, the
Josephson energy is minimized with o = 0, while ¢ = 7 would require a = 7; these

two cases are labeled 0- and 7-junctions, respectively. The tunneling current is by
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convention positive for a 0-junction, and negative for a m-junction.

Twin boundaries in d-wave superconductors are m-junctions. To make this clear,
a series of YBCO domains separated by a number of parallel twin boundaries and
a single perpendicular grain boundary are shown schematically in Fig. 4.1. Recall
that the lobes of the order parameter are aligned with the underlying crystal lattice
(oriented 45° to the twin boundary), and a and b are interchanged in adjacent twin
domains. Either the d-wave gap changes sign across the twin boundary, or it doesn’t;
these two possibilities correspond to a O-junction and a m-junction twin boundary,
respectively. Most of the experimental evidence supporting a d-wave superconducting
order parameter in YBCO, however, has been obtained using heavily-twinned YBCO
samples. Assuming that equal volumes of the abc and bac twin domains comprise the
sample, then O-junction twin boundaries imply that the d-wave component should
average to zero, leaving only the finite s-wave component that is always present in
orthorhombic d-wave superconductors. Unless one particular twin domain dominates
the sample [194, 195], one must conclude that twin boundaries are m-junctions [196].
The strong phase-locking of the d-wave component across the twin boundary allows
for the large perpendicular critical current /..

Thus far, ¢ in Eq. 4.1 has been assumed to vary discontinuously across the Joseph-
son junction. Removing this restriction, the relative phase obeys the Sine-Gordon
equation [197, 198]

2D _ ginfo(z) - afa], (42)
where z is the direction perpendicular to the interface. The Josephson penetration
depth Ay = (¢o/27dl,) is the characteristic length scale for spatial variations of ¢
parallel to the junction, and is of order 10 ym in YBCO grain boundaries (J is the
interface width plus twice the sum of the London penetration depth, and ¢ = hc/2e
is the superconducting flux quantum). The spatial variations of the relative phase

induces a local magnetic flux & at the junction, given by [199):
(4.3)

From Eq. 4.3, it is apparent that there will be a spontaneously-induced half-integer

(¢0/2) flux quantum in zero external field, at any intersection of an odd number
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Figure 4.1: Domains of orthorhombic YBCO are shown separated by twin boundaries
(dashed lines) and a grain boundary (solid line). The two grains are 45° misaligned.
The orientations of the d-wave and s-wave components, required by the macroscopic
d-wave symmetry of the sample on both sides of the grain boundary, are illustrated.
Circles at the twin/grain boundary intersections are spontaneously-generated flux.
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of m-junctions [200] (i.e. when the relative phase of the order parameter changes by
7 across one of the junctions). Note that such a flux quantum would not usually
be found in a long isolated m-junction such as a twin boundary, since it would be
impossible to nucleate a (finite) Josephson vortex over its entire length. Rather, a
half-integer flux quantum should be found at each twin/grain boundary intersection
shown in Fig. 4.1 [201, 202], or at two corners of the triangular grain boundary shown
in Fig. 4.2.

Spontaneous half-integer flux quanta have been observed in superconducting quan-
tum interference device (SQUID) experiments on corner-junction grain boundaries of
YBCO [120]. Since m-junctions can only be found in superconductors with unconven-
tional pairing symmetries, these results have strongly reinforced the hypothesis that

the high-T, materials are d-wave superconductors.

4.1.3 Fractional Vortices

In at least one series of SQUID experiments [203], the flux measured in grain
boundaries and junctions in the absence of external magnetic fields were found to be
different from O or ¢o/2, which suggests that important physics has been neglected
in the above discussion. The system under investigation, a triangular grain of YBCO
included in a bulk YBCO thick film with a different ab-plane orientation, is illustrated
in Fig. 4.2. For reasons discussed above, two half-integer flux quanta should be spon-
taneously generated at the intersection of the O-junction and the two m-junctions.
Note that the conventional superconducting flux quantization condition for the ex-
ternal YBCO grain would be satisfied in this case, since the total flux enclosed adds
to an integer flux quantum. In actuality, however, much smaller flux quanta were
measured, and were found at all three corners as well as along the edges, while the
total flux enclosed remained ¢g.

Flux quanta smaller than integer multiples ¢o/2, called fractional vortices, are
inconsistent with time-reversal symmetry. This can be demonstrated by considering
a flux ® trapped at a grain-boundary corner. Reversing time changes the sign of

the magnetic field; yet the single-valuededness of the superconducting wavefunction
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Figure 4.2: The triangular grain boundary defines the perimeter of a YBCO inclusion
with a different ab-plane orientation from that of the external grain. Solid and dotted
lines are 0- and w-junctions, respectively. Circles are spontaneous half-integer flux
quanta. The order parameter is assumed to be pure d-wave for simplicity.
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stipulates that this time-reversed flux —® can only differ from the original flux by
ngo, ® = —® + ndp. Thus, one immediately obtains & = n¢@o/2 in time-reversal
preserving systems [199].

In the SQUID experiments, the size of the triangular inclusion is comparable to
the Josephson penetration depth. One might expect, therefore, that the vortices
located at the corners have sufficiently coalesced to ensure that the sum of their flux
adds to an overall unit quantum. In fact, the vortices are all found to be highly
localized on a length scale much shorter than A;. Furthermore, it is not clear how
overall flux quantization could be guaranteed for time-reversal breaking triangular
inclusions much larger than A;.

One resolution of this apparent contradiction is that the observed flux is an ef-
fective magnetic field due to the presence of spontaneous screening currents flowing
parallel, but not across, the junctions [203]. Recall from Section 2.4 that this is
precisely the low-temperature prediction of the Ginzburg-Landau theory; the phase-
variation of a complex s-wave component gives rise to currents flowing parallel to the
boundary. The magnitudes of these spontaneous supercurrents are proportional to the
degree of T-violation, which is governed by the angle the grain boundary makes with
the orientation of the d-wave order parameter [204]. The Cooper pair-breaking effect,
and therefore the currents, are largest when the grain boundaries are oriented at a 45°
angle to the underlying lattice. The d-wave component is completely unperturbed by
a perfectly smooth 90° grain boundary. Since faceting of the grain boundaries leads to
small variations of this angle [205], the magnitude of the currents near the boundary
could be highly variable, leading to the experimentally-observed localized fractional
flux. Furthermore, the condition that the total enclosed flux equal ¢o is naturally
satisfied within this interpretation, since the currents can equivalently be interpreted
as diamagnetically screening a physical (quantised) magnetic field penetrating the
misaligned inclusion.

The existence of a time-reversal breaking imaginary s-wave component near in-
terfaces may also explain the anomalous results of several other experiments on
YBCO [206, 207, 208). In particular, Dynes et al. [208] have measured large cur-

rents in c-axis tunnel junctions between the conventional s-wave superconductor Pb
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and both twinned and untwinned YBCO. A c-axis junction between an s-wave and a
pure d-wave superconductor is simultaneously a 0- and 7-junction, corresponding to
the s-wave order parameter coupling to the positive and negative lobes of the d-wave
order parameter, respectively. The resulting interference between the positive and
negative tunneling currents should lead to their overall cancellation. The orthorhom-
bicity of YBCO, however, distends either the positive or negative lobes, giving rise
to an additional small real s-wave component in the bulk [85]. This could certainly
couple to the isotropic s-wave order parameter of the lead, yielding the observed tun-
neling currents between Pb and untwinned YBCO. In twinned YBCO, however, the
small real s-wave component should average to zero assuming an equal proportion of
either twin domain in the sample, since the s-wave component changes sign across a
m-junction twin boundary (Fig. 4.1).

Three explanations for the experimentally-observed tunneling currents between
Pb and twinned YBCO are plausible. First, one twin domain may be more abun-
dant than another; though counter-intuitive, this possibility may have been recently
confirmed [209, 194, 195]. Second, YBCO may not be a d-wave superconductor. In
spite of the mounting evidence to the contrary, the experiments by Dynes et al. are
often cited as evidence for s-wave superconductivity in these materials [81, 94, 95]. A
third explanation is that a time-reversal symmetry breaking imaginary s-wave com-
ponent, induced in the vicinity of twin boundaries, is coupling to the lead [130]. If
twin boundaries are indeed weak superconducting links, which appears to be the case
(as discussed in Section 4.1.1), their 45° orientation with respect to the d-wave order
parameter certainly makes them maximally pair-breaking [204].

To date, there is no direct confirmation of 7-violation near twin boundaries. Re-
cent SQUID measurements of vortices trapped by twin boundaries in YBCO found no
evidence of fractional flux [181]. Yet in the absence of additional inhomogeneities in-
tersecting the twin boundaries, such as impurities or grain boundaries, it is not clear
where localized fractional vortices would be nucleated. Rather, the time-reversal
breaking would be manifested as constant spontaneous supercurrents flowing parallel
to, and in opposite directions on either side of, the twin boundary. These super-

currents are equivalent to the diamagnetic currents screening a continuous physical
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c-oriented magnetic field penetrating the length of the twin boundary. The field
decays perpendicular to the twin boundary over a length scale of the London pene-
tration depth Ay =~ 1500 A. Since the size of the SQUID pickup loop is approximately
8 pm? [181], however, the effective field may average to a value far smaller than can be
resolved using this technique. Thus, the possibility of 7-violation near twin bound-

aries has not been ruled out by these experiments.!

4.1.4 Outline

Twin boundaries in YBCO are investigated numerically using the extended Hub-
bard model employed in the previous chapter. In Section 4.2, the Bogoliubov-de
Gennes equations are derived for a d-wave superconductor in the presence of twin
boundaries and an external electric potential. This formalism is equivalent to the
Gor’kov description, but is more conducive to numerical analysis. The possibility of
a low-temperature time-reversal breaking phase in the absence of an external field is
explored in Section 4.3, with emphasis on the temperature and density-dependence of
subdominant imaginary components. The results are compared with the GL predic-
tions, outlined in Section 2.4. The free energy is considered in Section 4.4 in order to
verify whether T-violation is favoured for these systems. In Section 4.5, quasiparticle
localization and spontaneous currents near twin boundaries are studied. The results
are compared with the GL predictions and with recent tunneling experiments. The

results are summarized in Section 4.6.

4.2 Derivation of the BdG Equations

The Hamiltonian for the extended Hubbard model is (see Chapter 3):
Vi
H=-— Z tijc:f,cj, - uZni, - Zu{nig - Vo ZniTnu - -2—1 Z NigNjq, (4.4)
(ij)o i i i (if)ac’
where the sums are over spin and nearest-neighbours on the square lattice, t;; is

a direction-dependent hopping parameter used to model orthorhombicity, y is the

1The observation of a Wohlleben effect [96] on clean but twinned samples would confirm the
presence of spontaneous currents near twin boundaries.
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chemical potential, u/ is a site-dependent impurity potential representing the de-
pletion of the carrier density at the twin boundary, and V4 and V; are on-site and
nearest-neighbour interactions, respectively (V > 0 denotes attraction). Choosing
the unit cell as shown in Fig. 4.3, the Fermi destruction operator may be re-expressed
as:

Cio = C5(r)e®™/?, (4.5)

where r = o7 + R R with # = —% + § perpendicular and R = % + § parallel to
the twin direction (the lattice spacing has been set to umity for simplicity). The
index a labels the two basis points in the unit cell, and r, takes integer values from
1 to unit cell length N, while R, takes values from 1 to the total number of unit
cells W in the system. The momentum p = pf + qR is included in order to allow for
supercurrents resulting from an external potential, discussed in Section 5.3. Imposing

periodic boundary conditions on the system

co(r)eP™? = c,(r+ N + WR)ePr/2eipN+aW)/2
— c,(r)eip"/zei(pN+qw)/2 (4.6)

constrains the components of the momenta: p = 4vm/N and ¢ = 4mm//W, with m
(m') integers between 0 and N — 1 (W —1).

Except for the momentum ¢, the Hamiltonian is translationally invariant in the
[110]-direction. It is convenient to exploit this symmetry by labeling states in the

R-direction by an index k:
Co (l‘ ipr/2 _ Z e:kR zp r/2 (4.7)

where periodic boundary conditions require k£ = 27n/W, where n is an integer be-
tween 0 and W —1. Inserting (4.5) into (4.4) yields the effective Hamiltonian, bilinear

in Fermi operators:

Heg = — ta—c,ta(ra +5.)ck,,(7‘a)€_"p’g/2 -y (#‘*‘l‘l(ra)) clo(Ta)Ces(Ta)

rokad rako

+ 2 {A;(ra)cu("‘a)c—k—ﬂ-(ra) + H.c.}

rak
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-

+ ';' Z {A}(Ta) [ck¢(ra)c—k—qT(Ta +4) — CkT(Ta)C—k—qJ,("'a + g)] + H.c.} ,

r,_,ks'
(4.8)
where the (spin-singlet) gap functions are defined by
Do(r) = Voler(r)ey(r))
= Qo(re) = Vo E(ck‘r(ra)c—k—qi(ra»
k
= -W Z(ckl,(ra)c—k—q‘r(ra)); (49)
k
As(r) = Vifer(r +8)cy(r)
= A&(Ta) = W Z(ckT(Ta + g)c—k—ql('ra))
k
= -V (ek(ra+ 8)e—k—qt(Ta)), (4.10)
k

where (...} denotes a vacuum expectation value, and the nearest-neighbour links
§ = {

connect sites with different basis indices.

ISH

; —Z5 45 -9}
F-R; 7 —R) (4.11)

[en})
~

It is interesting to note that the momentum p appears explicitly only in the
kinetic term of (4.8); consequently, the effect of external currents is to modify the

normal-state dispersion from the usual tight-binding case (see Section 3.2):
e(k) = —2t, cos(kz + p-/2) — 2ty cos(ky + py/2). (4.12)
In the continuum limit, one obtains to lowest-order in k:
e(k) = €°(k) + v(k) - p, (4.13)

where € (k) = t.(-2 + k2) + t,(—2 + k2) is the (anisotropic) conventional normal-
state dispersion. Eq. (4.13) is the usual starting-point for analytical investigations of

superconductors in the presence of supercurrents [210].
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The Hamiltonian given by (4.8) may be diagonalized by employing the canonical
Bogoliubov-Valatin transformation [211, 212]

ckt(Tast) = ) ['ynTun'k(ra)e’ie"‘ — 'y;‘uv;'k(ra)ei‘"‘] (4.14)
n

Cki(Tart) = Y ['yuumk(ra)e“i"“ + 'y:nv;,k(ra)ei‘"‘] , (4.15)

n
of the electron operators, where u, ; and vy, are the hole-like and particle-like quasi-
particle amplitudes respectively, and the fermionic quasiparticle creation (1) and

annihilation (vy,) operators satisfy

(V) = fadmns (4.16)
(711’711’11) = (1—fn)5mm (4.17)

such that
fa - (4.18)

= exp {Ben} +1
is the Fermi-Dirac distribution for the quasiparticle excitations, and 3 = 1/kgT. The

antisymmetry of the original electron operators
Lt b = Ok 4.19
Cko » Ckat kk!Ocq (4.19)
yields the normalization condition
Z [Iun,klz + Ivn,k|2] =1 (4.20)
n

for each k.
The quasiparticle amplitudes may be found by solving the equations of motion
(compare Eq. (3.15)):

; OCks (Ta, t)
ot

After some straightforward algebra, one obtains the Bogoliubov-de Gennes (BdG)
equations [211, 73]:

(Ag‘ —AE) (vjj:_(::a)) — (vfjkk_(::r)a)) ’ (4.22)

= [cka(rm t)a Heff] |t=0' (4.21)
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such that
éun,k(ra) = - Z tde_ip.g/zun.k(ra + g) - [l‘ + Ul (ra)] Unk(Ta),
5
élvn.—k—q(ra) = - Z t66+ip.g/2vn.—k—q(7’a + g) - [.u + /*‘[('ra)] vn,—k—q(ra)y
5
Atuni(ra) = Do(ra)tunk(ra) + 3 As(Ta)tni(ra +8). (4.23)

é

The equations (4.22) are subject to the self-consistency requirements

Ao (Ta) = ‘/O Z un,k(ra)v,’l'_k_q(ra) tanh (%2) y (424)
nk
As(re) = n [un,k(ra + g)v;,_k_q(ra) + Unk(Ta)Vp —g—q(Ta + 5)] tanh ('BQﬁ) ,
nké
(4.25)

where the sum is over positive energy eigenvalues €, only. These equations may be
obtained immediately by substituting Eqs. (4.14) and (4.15) into (4.9) and (4.10).
It is instructive to note that the BdG equations are formally quite similar to the
matrix version of the Gor’kov equations (3.20) derived in Section 3.2. Indeed, the
GL equations could have been derived starting from (4.22) and (4.25), if they were
modified to include an external magnetic field [73].

It is important to stress that the BAG equations are explicitly translationally
invariant along R, even in the presence of external currents. The quasiparticle am-

plitudes and gap functions transform as follows:

Un k(Tof + R) = e*u, i(raf),
’Un,_k—q(rai: + R) = ei(k+q)vﬂ,—k—q(raf)1
A(rof + R) = e A(rqf). (4.26)

Hence, the two coupled BdG equations transform as:

éu"v’“ (rof + R) + A'”n,—k—q(raf + R) = EnUnk(ral + R)
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= feikunlk(raf) + e’i"Aei("+")vn,_k_q(ra7“') = eneikun,k(raf), (4.27)
A‘un,k(raf' + R) - é’vn‘_k_q(raf + R) = EpUn,—k—q(Taf + R)
= DA ey, 1 (raf) — E€F Dy, i o(raf) = €n€F Dup _g_o(raf). (4.28)

Since the exponentials cancel in both Eqs. (4.27) and (4.28), the BdG matrix is indeed
translationally invariant along R.

The total current in the superconductor is obtained using Egs. (3.50) and (3.51).
The kinetic energy contribution to the current is

i(ra) = 1 Z tge—ip-5/25<c;;a (ra+ 8 )cka(ra))
kob

= 2 Ytz P25 u i (ra + 8)uni(ra) fa
nké

+U5 _k—q(Ta) U —i—g(Ta + 8)(1 = fu)]- (4.29)

Note that the total current is translationally invariant along R, even in the presence
of a momentum gq.

The orthorhombicity of YBCO is modeled by an anisotropy in the hopping param-
eters, which reflects the increased electronic mobility associated with the chains [213].
Throughout the present work t,/t; = 1.5 is used, which approximates the observed
a-b anisotropy in the magnetic penetration depth [72], and Vo = —V; = —3t;.2 The
chemical potential x is chosen to ensure bulk d-wave superconductivity. Twin bound-
aries of up to 4|7 width (corresponding to approximately 22 A) are investigated,
with ¢, = t; and p/ < 0 within the twin. The translational invariance of physi-
cal observables in the R direction (parallel to the twin boundary) allows for much
larger system sizes than are usually accessible within BAdG theory. By exploiting this
symmetry, the conventional 2NW x 2NW BdG matrix becomes block diagonal, and
one rather solves W different 2NV x 2N matrices, greatly reducing the cpu-time re-
quired. The largest system studied is N = 100|#| in length with W = 400 k-states,

2Alternatively, one might have chosen an isotropic hopping integral ¢ but anisotropic nearest-
neighbour coupling. I have verified that this choice reproduces qualitatively all of the results
presented below, though the ab-anisotropy in many normal-state properties of untwinned YBCO
certainly makes this a poorer choice.
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Figure 4.3: The unit cell of the finite-size system for the BdG calculations is shown as
a solid line superimposed on a square lattice. Long and short dashed lines represent
twin boundaries of width 0 and ||, respectively. Basis points are labeled by circles

and squares.
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or 100 x 400 x 2 = 80000 sites (for the tunneling conductance Figs. 4.11 and 4.12),
and the smallest system has N = 50 and W = 30. Periodic boundary conditions are

assumed throughout.

4.3 Time-reversal Breaking

In the absence of external currents, physical observables are translationally in-
variant in the R direction parallel to the twin boundary. The system sizes then can
be made sufficiently large to ensure that the gap functions approach their uniform
(bulk) values at the center of a twin domain (i.e. midway between the twin edges
which define the boundaries of the region). With the hopping anisotropy t,/t; = 1.5,
the extended and on-site s-wave components have bulk values that are approximately
10% of A4, consistent with experimental evidence for YBCO [131].

As shown in Fig. 4.4, at a twin boundary of zero width (Wr = 0) and p/ = 0,
the dominant d-wave component of the order parameter is virtually unaffected. The
extended and on-site s-wave components go from their near-bulk values to zero over
a single lattice spacing r, and reverse their sign relative to A4 on either side of the
boundary. As the impurity strength is increased at low temperatures, however, the
d-wave and s-wave components become increasingly perturbed from their bulk values
over the coherence length £;.,(T), where £445(0) = |#| in the present work. When
the magnitude of the d-wave component in the twin boundary is suppressed to ap-
proximately half its bulk value, an additional imaginary s-wave component may be
nucleated near the twin edge, breaking time-reversal symmetry. Most important for
the c-axis results of Dynes [208] is that, unlike the real s-wave components, these imag-
inary components have the same sign in adjacent twin domains, and could therefore
remain finite even in a heavily-twinned sample. No evidence for a phase transition to
a bulk 7-violating state in a uniform system has been found at any temperature in
the present work.

For clarity, the real and imaginary parts of the various components of the order
parameter are shown in Fig. 4.5 for a larger system with N = 100, p! = —10t,,

p = —tz, T = 0, and boundary width Wr = 4|#|. While all the components go to zero
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Figure 4.4: The real and imaginary components of the d-wave, extended and on-site
s-wave gap functions are shown as a function of impurity potential p' and distance
r perpendicular to the twin boundary. Results are obtained using p = ~t;, T = 0,
and twin width W = 0. Twin boundaries are centered at positions » = 0 (which is
equivalent to r = 50 by periodic boundary conditions) and r = 25 in units of |7|.
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rapidly within the twin boundary because of the carrier depletion, both the real and
imaginary parts of the s-wave gap functions are enhanced near the twin edge. In the
immediate vicinity of the twin boundary, the real s-wave components are perturbed
from their bulk values over a short distance comparable to £444(0). This reflects
the local nucleation of additional s-wave components through spatial variations of
the dominant d-wave component, through the mixed-gradient terms in the GL free
energy (2.17). The presence of finite complex gap functions in the bulk, however,
implies that the imaginary components vary over a different characteristic distance
£:5(0) > E444(0). This longer length scale is consistent with the GL predictions [130]
discussed in Section 2.4.

It is also evident from Figs. 4.4 and 4.5 that when the d-wave component is suffi-
ciently perturbed at the twin boundary, the size of Im(Aq) may become comparable
to the bulk value of A,. Indeed, the magnitude of this imaginary component is ap-
proximately equal to the value a real isotropic component would have been, had the
on-site interaction been attractive rather than repulsive. In general, it would be en-
ergetically unfavourable for such a large subdominant pairing channel to be induced
solely through spatial variations of the d-wave component. Indeed, previous BdG
studies of inhomogeneous d-wave superconductors indicate an empirical upper bound
of approximately 30% for the magnitude of a subdominant s-wave component relative
to A4 (214, 129]. Similar results are obtained in Section 3.4. It is more likely that,
if the dominant channel is sufficiently perturbed from its bulk value, the conditions
may be conducive towards a second phase transition to a T-violating state at a lower
temperature.

In order to illustrate that a second phase transition may indeed occur in these sys-
tems, the real and imaginary components of the order parameter are shown in Fig. 4.6
as a function of temperature and # for a large fixed carrier depletion p' = —10¢,.
While the real parts of the order parameter exhibit a relatively weak temperature
dependence, the imaginary s-wave components grow rapidly below T* ~ 0.57,. It ap-
pears, therefore, that the imaginary components are decoupled from the other pairing
channels because their magnitudes are governed solely by their couplings |V5,1| and the

temperature relative to T*. It should be underlined, however, that the d-wave channel
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Figure 4.5: The (a) real and (b) imaginary components of the d-wave, on-site, and
extended s-wave gap functions (corresponding to long-dashed, short-dashed, and solid
lines respectively) are shown as a function of distance r perpendicular to the twin
boundary. In (b), Im(4,) is multiplied by a factor of —10 to facilitate comparison
with Im(Ag). Results are obtained using p = —t., pl = —10t;, T = 0, and twin
width 4|#|. Twin boundaries are centered at positions 7 = 0 (which is equivalent to
r = 100 by periodic boundary conditions) and r = 50 in units of |#|.




102 Twin Boundaries

must be strongly suppressed locally in order to stabilize the imaginary components.

As shown in Fig. 4.7, the maximum size of the imaginary s-wave component that is
nucleated near the twin boundary is extremely sensitive to the temperature, impurity
strength, and the width of the twin boundary. At zero temperature, Fig. 4.7(a), a T-
violating state first appears for u/ &~ —2.7t, at all electron densities for an impurity
line (when W = 0). As the impurity strength increases, the perturbation of the
d-wave component, and the maximum values of the imaginary s-wave components,
begin to saturate. For all twin boundary widths, the imaginary components are
found to vary as \/Ttm near the critical impurity strength p!. For Wr > 0,
however, a lower |u!| can give rise to 7-violation at zero temperature. Time-reversal
breaking is favoured near wider twin boundaries since the d-wave component is already
suppressed by approximately 20% in a locally tetragonal region (with t; = t,) even for
p! = 0.3 Increasing Wr beyond approximately 3|7| has no further effect. This result,
valid for all electron densities, is also consistent with the GL prediction [130] that local
tetragonal symmetry could favor a time-reversal breaking state at low temperature

(see Section 2.4).

The growth of all the s-wave components with decreasing chemical potential re-
flects the impending instability of the system against bulk dominant s-wave supercon-
ductivity at slightly lower electron densities, as has been discussed in Section 3.3. As
the temperature is increased at finite u!, the imaginary component decreases to zero
with the mean-field behaviour /1 — T/T* associated with a second-order phase tran-
sition. The transition temperature T* is strongly density-dependent, scaling roughly
with A,. The same T™ is obtained for wider twin boundaries at a given density, though

the magnitudes of the imaginary s-wave components increases with increasing Wr.

31n fact, the opposite is the case very near u = —t, where there is a van Hove singularity in the
orthorhombic density of states. As a result, the d-wave gap is smaller and the transition temperature
T, is larger than it would be for a locally tetragonal region at the same chemical potential (recall
from Fig. 3.1 that the van Hove singularity for ¢t = ¢, is at 4 = 0; with an orthorhombic distortion
this is split). It should be pointed out, however, that the results depicted in Fig. 4.7a are for u = —t,,
and are qualitatively identical to those obtained at all other fillings.
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Figure 4.6: The real and imaginary components of the d-wave, extended and on-
site s-wave gap functions are shown as a function of reduced temperature 7'/T. and
distance r perpendicular to the twin boundary. Results are obtained using u = —t;,
pu! = —10t,, and twin width 4|f|. Twin boundaries are centered at positions r = 0
(which is equivalent to r = 50 by periodic boundary conditions) and 7 = 25 in units
of |7|.
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s-wave (solid lines) components relative to the bulk value of the d-wave order param-
eter are shown as a function of (a) |p| (note u/ < 0) and Wr at zero temperature
and u = —tz, and (b) T/T. and . In (a) thin and thick lines correspond to twin
boundary widths Wy/|#| = 0 and 1, respectively. In (b), thin and thick lines denote
results for u = —2t; and p = —t,, and u!f = —100t;, and Wr = 0 are chosen.
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4.4 Free Energy

It is important to determine whether a time-reversal breaking phase is indeed
favoured by the system below a finite temperature T*. In particular, the 7-violating
state should have a lower total free energy than that of the 7 -preserving state, ob-
tained by forcing the imaginary components to remain zero. The relevant (Gibbs)
free energy is given by:

F(Th)=#)-TS, (4.30)

where the first term is the ground-state expectation value of the Hamiltonian (4.4),

and S is the usual entropy associated with the fermionic excitations [215]:
S=—2E[fnlnfn+(1—f,,)ln(1—fn)]. (4.31)

The experimental signature of a second phase transition at a lower temperature T*

would be a discontinuity in the specific heat [64]:

_ 088 _ F(T)
Cv(T) =Taz = T3>

(4.32)

The quartic terms of the Hamiltonian expectation value appearing in (4.30) may

be simplified using a variant of Wick’s theorem [155]:

(ch(r + ), (& + 8)ch (), (1)) = (ch(r + d)e, (r +8))(ch (r)e, (x))
— (ch(r + 8)ch (r)) (e, (r + e, (r)), (4.33)

This linearization and the Bogoliubov transformation (4.14) and (4.15) allow the

various expectation values of () to be evaluated. After some work, one obtains

<H) = -2 Z: tfe-ip.gﬂ[u:z,k(ra+S)un,k(ra)fn

nkfra

+0}, kg (Ta )V —i—qg(Ta + 8) (1 = fo)]
— 2% (u+ ) alra) — Vo X 6%(ra) — 2Vi Y alra)bs(ra)

Ta&

- 7 Tl = g T lastrall (434

rad
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where

a(ra) = Y [luap(ra)l® fo + [Un—k—q(ra)l” (1 = fu)]; (4.35)

nk
bo(ra) = X [[unilra+ 8| fo+ [tn-t-q(ra+8) 1= f)].  (436)
nk

The factors of 2 appearing in the free energy expression (4.34) arise from the spin-
degeneracy.

The temperature-dependence of the free energies for both the normal and super-
conducting states are shown in Fig. (4.8) for 4 = —t; and u = —2¢,. As expected,
the superconducting free energy is always lower than the normal-state free energy
below T,, where the latter is obtained by forcing the gap functions to be zero every-
where. Furthermore, the T-violating state is the true ground state of the system at
low temperatures because its free energy is noticeably lower than that found for the
T -preserving state, obtained by forcing the gap functions to be real at each iteration
of the BAG equations. The free energies are found to split at the same temperature 7
shown in Fig. 4.7b. It is interesting to note that the entropy contribution to the free
energy of the T-violating state is much lower than that found for the 7-preserving
state, which is consistent with the existence of a finite gap in the excitation spectrum
below 7.

The energy difference between the superconducting and normal states can be
thought of as the Bose-like condensation energy of the Cooper pairs comprising the
superconductor (see also Section 2.1). The thermodynamic critical magnetic field H,
therefore may be estimated from the difference in the total free energies [64]:

H(T)

£ =2 = Fu(T) - Fy(T). (4.37)

Assuming that t, ~ 1072 eV, obtained using T, = 0.51¢; = 60 K, the critical fields
at zero temperature are estimated to be HS = 160 T and 90 T for o = —t, and
g = —2t;, respectively. The smaller value of H. obtained for p = —2t; is due to
the diminished preference for bulk d-wave superconductivity at lower electron densi-

ties, associated with the proximity to a bulk s-wave instability. Since Hc, = kvV2H,
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with « & 100, however, the upper critical fields are much larger than the experimen-
tal value of H5(0) =~ 120 T for optimally-doped YBCO [65, 66]. This discrepancy
is due to the unphysically large coupling constant Vi = 3t, chosen in the present
calculations. The coherence lengths can estimated from these upper critical fields
using £2(0) = ¢o/2mH.2(0); one obtains £(0) =~ 1.2 A and 1.6 A for 4 = ~t, and
p = —2t,, respectively. While the values are far too small, the increase in the co-
herence length with decreasing chemical potential (or hole density) corroborates the
Ginzburg-Landau results of Section 3.4.1. It should be noted that the extra con-
densation energy associated with the appearance of imaginary components would be
manifested as a sudden increase in H(T) below T*. This effect is presently exper-
imentally inaccessible, however, due to the large upper critical fields at these low
temperatures.

The specific heat for the normal and superconducting states are shown in Fig. 4.9
for both p = —t; and p = —2t,. The heat capacities clearly show anomalies at both
T. and the subdominant transition temperature T* found in Fig. 4.8 and Fig. 4.7b
for the same parameters. The unusually large discontinuity in the specific heat at
T. (particularly for 4 = —t.) is consistent with experimental observations [50]. The
comparable size of the jump at 7*, and the thermodynamic nature of the specific heat,
implies that a significant fraction of the total condensate is taking part in the new
T -violating superconducting channel. The apparent bulk character of the phase tran-
sition is an artifact because the system size chosen is relatively small. The length scale
&5 for the decay of the imaginary components greatly exceeds the distance between
the twin boundaries. In larger systems, where the imaginary component has decayed
to essentially zero in the bulk, the specific heat jump would be smaller. Experimen-
tally, the largest specific heat anomaly should be evident in heavily-twinned samples
at optimal doping, where the chains are virtually fully-formed and the twinning is
most pronounced. No such feature has been experimentally observed. Very recent
microwave data obtained for clean but heavily-twinned samples of optimally-doped
YBCO, however, suggests that there is a second phase transition at low tempera-
tures [216].

The finite value of the specific heat at low temperatures T' ~ 0 in the 7-preserving
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Figure 4.8: The free energies per site for the normal state (dashed line), 7-preserving
superconductor (solid line), and T-violating superconductor (dotted line) are shown
as a function of reduced temperature T/T, for p = —t; (a) and p = -2t; (b).

The twin boundary has zero width Wr

0. The unphysical impurity strength

uf = —100¢t; on the twin boundary is chosen to yield as large 7-violating s-wave
components as possible. Results are obtained for a lattice with 30 x 40 x 2 sites. Note

that a time-reversal breaking state is favoured below T* < T.



Free Energy 109

Figure 4.9: The specific heat in eV/K for the normal (dotted) and superconducting
(solid) states are shown as a function of reduced temperature T/T, for u = —t, (a)
and pu = —2t; (b). The temperature of the lower discontinuity is identical with 7,

as shown in Fig. 4.7.
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superconducting state is most likely due to the presence of low-lying quasiparticle
states localized in the vicinity of the twin boundary; these states disappear in the
T-violating phase where there is a finite (imaginary) gap. No such feature is found in
uniform systems. A similar behaviour of the heat capacity has been observed exper-
imentally for optimally-doped YBCO with Zn impurities which act as unitary scat-
terers [50]. Low-energy quasiparticles, localized near unitary scatterers, are thought
to be a generic feature of superconductors such as the cuprates with short coherence
lengths [214, 218, 219]. The issue of quasiparticle localization will be discussed further

in the next section.

4.5 Localization and Spontaneous Currents

The local suppression of the superconducting order parameter, as occurs in a vor-
tex core or in the vicinity of a pair-breaking inhomogeneity, naturally leads to the
formation of bound states. As illustrated in Fig. 4.10(a), these localized states might
be naively characterized as the quasiparticles occupying the low-energy eigenstates of
an order-parameter ‘potential well’ {217]. While intuitive, this description is overly
simplistic. The excitations, as well as the shape of the potential well, must be deter-
mined self-consistently through the solution of the full BdG equations (4.22)-(4.25).
Furthermore, midgap states occur at (110) surfaces in d-wave superconductors even
when spatial variations of the order parameter are neglected [113, 220]; the states are
caused by interference between the positive and negative lobes of the gap function,

as described below.

A standard approach to the analytical solution of the BdG equations near an ex-
tended inhomogeneity, such as a superconductor—normal (insulator)—superconductor
microjunction, is to approximate the order-parameter potential in the neighbour-
hood of the defect, and then determine the resulting quasiparticle amplitudes » and
v. Since the quasiparticles vary on a short length scale ki' < £(0) (as is certainly
the case for conventional superconductors), one may employ the WKBJ approxima-
tion [113, 220, 221, 222]:



Localization and Spontaneous Currents 111

b(x) = (ﬁ(X)) _ p-ikex (u(X)) ’ (4.38)

(x) v(x)
which neglects rapid variations. Assuming that the system is translationally invariant
in the direction parallel to the junction, one obtains in the continuum limit the

Andreev equations [221, 223]:

—im-lkp%Q+A(r)ﬁ(r) = eu(r),
im-ldeicl(T"—)+A(r)a(r) = ed(r). (4.39)

The wavefunctions satisfying these equations are shown schematically in Fig. 4.10(b)
for a normal metal-narrow insulator-d-wave superconductor junction. An electron
incident to the interface from the normal metal side experiences both conventional
and Andreev reflection. In the absence of external currents or fields, the Andreev-
reflected hole traverses the time-reversed path of the incident particle. The transmit-
ted electron- and hole-like quasiparticles experience different order-parameter po-
tentials, depending on the angle of the junction with respect to the underlying
crystal lattice of the superconductor. Except for the [100] and [010] orientations,
the lobes of the d-wave gap (which are parallel to the crystal axes) will not face
the junction. The resulting destructive interference between the quasielectron and
quasihole wavefunctions gives rise to so-called Andreev bound states near the inter-
face [113, 220, 224, 225, 226}, much like standing waves in a classical system. Clearly,
this pair-breaking effect is maximum for {110] junctions. It should be kept in mind,
however, that for quasi-one dimensional scatterers such as these, the quasiparticle
states are extended in the direction parallel to the interface.

Bound states are a generic feature of conventional superconductors in the presence
of pair-breakers, such as vortices [227, 228], magnetic impurities [229, 230, 231], or
insulating barriers [232]. The bound states are manifested in the local density of states
as a low-energy band inside the superconducting gap. Sufficiently large impurity

concentrations can lead to gapless superconductivity [233]. Since the quasiparticles
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(a)

/ k> (i)
(b)

Figure 4.10: The schematic in (a) illustrates quasiparticle states residing in the poten-
tial well associated with a suppressed superconducting order parameter. The normal
and Andreev scattering processes are depicted in (b). For orientation of the d-wave
order parameter shown in (i) and (ii), the hole- and electron-like quasiparticles expe-
rience the same and different pair potentials, respectively.
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occupying the band can carry current, the spectra obtained in scanning-tunneling
microscopy (STM) and tunnel-junction experiments exhibit a ‘zero-bias conductance
peak’ (ZBCP) in the differential conductance:

OI(r)
ov

o = 3 [[uni()PF (V = £n) + [onr(r)PF (V +ea)], (4.40)
nk

where f' is the voltage-derivative of a Fermi function, and V' is an applied bias. Note
that the tunneling conductance at zero temperature is identical to the local density
of states, since f'(z,T = 0) = —d(z), where §(z) is a Dirac-delta function. In high-
T. materials, the ZBCP is a ubiquitous feature in the superconducting state since
virtually any inhomogeneity is pair-breaking for an anisotropic gap 107, 108]. It is
presently controversial, however, whether the Andreev states in dirty d-wave super-
conductors are localized [214, 218] or extended [234]. Recent numerical investigations
of d-wave superconductors in the presence of random unitary non-magnetic scatterers
indicate that the quasiparticle excitations are indeed highly localized, but only if the
coherence length is sufficiently short (approaching kr) [214]. Clearly, in this regime
the quasiclassical approximation (4.38) breaks down.

From Fig. 4.4(a), one expects a ZBCP in the tunneling conductance with a size
that increases with impurity strength, but that decreases with distance from the
center of the twin boundary. The predicted STM results for this model are shown in
Fig. 4.11. While the tunneling conductance exhibits low-temperature features that
are no doubt finite-size effects, the ZBCP is a well-defined feature at zero voltage for
p! = 0and —2t, at zero temperature. As | p!| increases, however, the ZBCP develops
a dip in the center which deepens and widens. This is evidently a signature of the
T-violation illustrated in Figs. 4.4 and 4.7. Note that the overall magnitude of the
tunneling conductance drops rapidly with increasing |u!| for r = 0, reflecting the
progressive depletion of carrier density at the twin boundary center.

Fig. 4.12 shows the temperature-dependence of the differential conductance for
system parameters chosen in Fig. 4.5. The zero-temperature maximum peak-to-peak
splitting of the ZBCP is found to be approximately 0.2¢; ~ 2 meV, where ¢, ~ 1072eV

(see Section 4.4). The ZBCP diminishes with increasing temperature and distance
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Figure 4.11: A low-energy portion of the tunneling conductance at and near a twin
boundary is shown as a function of energy, distance r from the twin boundary center
where (a) through (c) correspond to 0 through 2|7| while (d) illustrates the bulk, and
impurity strength u/ = 0 (lower), u/ = —2t, (offset 0.1), u! = —4¢, (offset 0.2), and
u! = —6t, (offset 0.3). Parameters are as in Fig. 4.4.
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from the twin boundary. It is evident that the low energy band splits at a temperature
0.17. ~ 6 K which is considerably lower than the T* ~ 0.5T estimated from Fig. 4.7b.
This discrepancy is most likely due to thermal smearing of the local density of states
associated with the Fermi factors in (4.40). A comparable splitting of the zero-energy
peak has been recently observed in tunneling spectra of YBCO surfaces [235], and
has been interpreted as a clear signature of 7-violation [236].

The splitting of the ZBCP in the absence of external fields is consistent with the
presence of spontaneous supercurrents associated with local T-violation [204, 235,
236]. The spatial variation of the s-wave components’ phase relative to A, implied
by Fig. 4.5 leads to currents flowing parallel to the twin surface and in opposite
directions on either side of the twin boundary, as shown in Fig. 4.13. The strong
impurity potential therefore mimics a line of temperature-dependent magnetic flux
passing through the twin boundary and oriented parallel to the c-axis. The currents
can be interpreted as the diamagnetic response of the superconductor attempting to
screen this effective field. Assuming that the spontaneous currents flowing around
the twin boundary exactly cancel the effective field, one obtains from h?/8m =Y. jr
and t, =~ 1072 eV the effective field strength in Tesla: heg ~ 12 T.

The splitting of the Andreev band occurs whenever supercurrents are present in
the system. The energies of the quasiparticle excitations and the Andreev bound
states are shifted by the currents, as shown explicitly by Eq. (4.13). Furthermore,
STM studies of both conventional and high-T, superconductors in the mixed state
find a well-defined ZBCP when the tunneling tip is positioned at the center of a
vortex; the ZBCP splits with increasing distance from the core, where supercurrents

attempt to screen the magnetic field. [144, 227].

4.6 Summary and Discussion

The role of twin boundaries in orthorhombic d-wave superconductors has been in-
vestigated numerically within the Bogoliubov-de Gennes formalism. Twin boundaries
are modeled as tetragonal and carrier-depleted regions of finite width. The results in-

dicate that a time-reversal breaking phase may be favoured in the vicinity of the twin
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Figure 4.12: A low-energy portion of the tunneling conductance near a twin boundary
is shown as a function of energy, distance r from the twin edge, and temperature.
Panels (a) through (c) correspond to || through 3|7| while (d) illustrates the bulk.
Temperatures are T = 0 (lower), T = 0.05T; (offset 0.1), T' = 0.1T; (offset 0.2) and
T = 0.15T, (offset 0.3). Parameters are as in Fig. 4.5.
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edge at a subdominant transition temperature T* < T, where T* /T, scales approxi-
mately with the size of the bulk d-wave gap. In general, imaginary s-wave components
associated with the 7 -violation arise only at low temperatures T* < 0.5T¢, as long as
the dominant d-wave component is suppressed by the weak link to less than half its
bulk value. The magnitudes of the imaginary components and T are proportional to
the chemical potential and carrier depletion in the twin boundary. These imaginary
s-wave gap functions could be responsible for the finite Josephson currents observed
in c-axis tunnel junctions to heavily-twinned YBCO [208].

In addition to possible imaginary subdominant components, quasiparticle states
are found in the vicinity of the twin boundary, caused by Andreev processes at the
interface. These states are localized in the direction perpendicular to the twin bound-
ary, and are exhibited as a low-energy peak in the tunneling density of states, related
to the zero-bias conductance peak (ZBCP) found in tunneling experiments. In the
time-reversal breaking phase, the ZBCP splits due to the presence of spontaneous cur-
rents flowing near the twin edge. The results are comparable with recent tunneling
data for YBCO surfaces [235].

Although the theoretical results predict time-reversal breaking near twin bound-
aries, there is presently no conclusive experimental evidence for a second phase tran-
sition in bulk YBCO materials. A second discontinuity in the specific heat at low
temperatures has not been observed experimentally. SQUID measurements of vor-
tices pinned by twin boundaries failed to detect the fractional flux that would indicate
a time-reversal breaking state. Yet, 7-violation provides a likely explanation for the
fractional flux observed at grain boundary junctions [203], and for the splitting of the
ZBCP in surface tunneling experiments [235]. Furthermore, very recent microwave
measurements on ultraclean but heavily-twinned YBCO samples provide evidence
that another superconducting component may be stabilized at a low temperature
T* ~ 0.5T, [216]. Twin boundaries, unlike wide-angle grain boundaries, may be
strongly-coupled Josephson junctions which only weakly perturb the d-wave order
parameter. Thus, time-reversal breaking near twin boundaries may be a small effect,

the detection of which could be quite challenging experimentally.



Chapter 5

Critical Currents

5.1 Introduction

A great deal of experimental effort has recently been focused on the behaviour of
high-T, materials in the presence of external currents. Of particular relevance for po-
tential applications are the critical current characteristics of YBCO or BSCCO wires
and tapes [237]. Supercurrent densities are predominantly limited by depairing at
low temperatures, and dissipation due to flux flow at higher temperatures [238, 239).
Since the high-T. materials have short coherence lengths and most likely a d-wave
order parameter, depairing results not only globally due to the external currents (see
Section 2.5), but also locally in the vicinity of small defects in the lattice. In particu-
lar, extended inhomogeneities such as grain boundaries and possibly twin boundaries
in YBCO act as weak links at low temperatures, reducing current densities in granu-
lar and heavily-twinned thin films [171, 240, 241]. Large-angle grain boundaries were
responsible for low critical currents in early granular high-T, samples [240]. At higher
temperatures the coherence length diverges, so these small defects have less influ-
ence on the local order parameter, but self-field effects become more important. In
this regime twin and grain boundaries enhance critical currents by effectively pinning
magnetic vortices against flux flow [172, 173, 174, 175, 176, 242, 243, 244].

The GL theory of critical currents outlined in Section 2.5 is applicable to super-

conductors in restricted geometries such as wires, tapes, and thin films. It is not clear,
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however, whether this formalism is appropriate in the low-temperature regime where
self-field effects may be neglected. Furthermore, in d-wave superconductors, the GL
equations are complicated by the presence of subdominant s-wave components, which
may be induced by external currents, orthorhombicity, or intrinsic defects such as im-
purities, grain boundaries, and twin boundaries. In practice, analytical results can
only be obtained in clean systems, and near T, where the s-wave components are
guaranteed to be small. In contrast, the BAG formalism discussed in the previous
chapter is ideal for the investigation of critical currents in YBCO. The BdG approach
is self-consistent, valid at all temperatures, and naturally incorporates many of the
inhomogeneities relevant to physical systems.

In this chapter, the behaviour of d-wave superconductors in the presence of ex-
ternal currents is investigated numerically within the BdG formalism, and using the
extended Hubbard model. Only depairing effects are considered. In Section 5.2, ex-
ternal currents in clean systems are studied. The anisotropy of the current response
is characterized, the superfluid density is determined, and comparison is made with
experimental measurements for the penetration depth. The induction of subdominant
s-wave components by the external currents is considered, and contact is made with
the GL analysis of Section 2.5. The temperature-dependence of the critical current
is calculated and compared with experimental data for YBCO thin films. Systems
with twin boundaries are studied in Section 5.3. The critical current through the
weak-link is determined as a function of twin boundary width and carrier depletion
at zero temperature. The induced currents in the vicinity of the twin boundary are

characterized for both initially time-reversal breaking and 7-preserving states.

5.2 Clean Case

5.2.1 Theory

In the absence of any intrinsic defects causing spatial variations, the BdG equa-
tions (4.22) are translationally invariant in all directions. The resulting single-body

problem is most conveniently studied using a conventional square N x N Bravais
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lattice with primitive vectors # and § (the lattice constant a is taken to be unity for
convenience). A simple way to simulate an applied current in such uniform systems is
to give the gap functions a center-of-mass momentum p. This may be accomplished

by defining

u(r) = Upel®kte/Ar - y(r) = Vieltkp/AT, (5.1)

= %(r) ~ u(r)o(r) = [y|e?") = [pleP™. (5.2)

where k = k.% + k,§ are wavevectors of the first Brillouin zone, and the momentum
is p = p.Z +p,§ with (pz, py) = 4n(m,n)/N (m,n =0,1,2,...,N —1). As discussed
in detail in Section 5.3, this approach is no longer strictly applicable in non-uniform
systems.

The BdG equations (4.22) are now written

D — B)Ue+ AVe = (5.3)
AU — (6P + Ex)Ve = 0, (5.4)

where the k—dependent gap function Ay is

Ar = Ag + 20D + 2bi Ay, (5.5)
with a, = cos k; + cos k,, and by = cos k; — cos k. The dispersions 5(1) and & ) are
y y k k
IE:I) = —2[t; cos(kz + pz/2) + ty cos(ky + py/2)] — p; (5.6)
,(52) = —2[t;cos(k; — pz/2) + ty cos(ky — py/2)] — p. (5.7)

The two equations (5.3) and (5.4) may be combined to yield the quasiparticle exci-

tation energies in the presence of external currents:

(1) _ £(2 (1), 2
E, = & 25 +\](§ & )+|Ak|2. (5.8)

2

With the normalization U2 + V2 = 1, one also obtains the coherence factors

2
U,g = By + f( ) ; V,‘:2 = Ei —26'9) .
2 + &2 — ) 2E; + &2 — e

(5.9)



122 Critical Currents

The solutions of the BdG equations (5.8) and (5.9) are subject to the self-consistency

requirement
Ap {Vo; Viag/4; Vibi/4} (Ek
; ; Ag) = t ——) . i

It is instructive to consider the continuum limit corresponding to the low-density

approximation of the tight-binding model. In this limit,

&P = —2(t. +1t,) +[tk] - k — p + [tk] - p; (5.11)

where the convenient notation [tq] = tz¢;% + t,g,§ has been introduced. Inserting

these expressions into (5.8) and (5.9) yields

1 1
Ee=FEl+[Kp ; Uz=§(1+%) -3 (-%). 6w

E; = /& + |Axl? (5.14)

are the unperturbed quasiparticle excitation energies and & is either (5.11) or (5.12)

where

with p = 0. Thus, in the continuum case the superfluid momentum shifts the energy
spectrum, but not the coherence factors. In the absence of the momentum p, the
expressions (5.8) and (5.9) correctly reduce to their usual BCS limits, though with
a k-dependent gap and a tight-binding dispersion which is either (5.6) or (5.7) with
p=0.

Once convergence has been established, the resulting (single-particle) current from

(4.29) is written
i= 4> {tz [sin(k, + Do /2UE[* fie — sin(kz — p2/2)[Vi[*(1 - fk)] T
k

+t, [sin(k, + py/DUsfi - sin(k, — p/2IVel2(1 - fi)] 3}, (5.15)
where the Fermi factor is fi = (e®+/T + 1)~!. The current may be related to the
Cooper-pair momentum through

2ej = enyv,
2eng

2m*
= 2en,|tp], (5.16)
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where the transfer integral is inversely proportional to the effective mass, t, =
(1/2m?). Since the currents break Cooper pairs, the superfluid density n; = n,(p)
should decrease with increasing momentum p. As discussed in Section 2.5, the or-
der parameter, which is proportional to the superfluid density, is a non-monotonic
function of the supercurrent. The relation between j and p with n; = n,(0) is there-
fore only strictly valid for very small applied currents, where the superfluid density
approaches its unperturbed value:

ne = lim 3= (5.17)

p—=0 [tp]

Since Eq. (5.17) is valid for all temperatures, one may use it to determine the (London)
penetration depth, through the local relation Af?(T’) o n(T). This procedure for the
determination of the superfluid density is analogous to a linear-response theory {155,
245], but in the present case the proportionality constant between A; and n, cannot
be obtained microscopically.

The explicit expression for the current (5.15) may be evaluated in the continuum

limit (5.13). After some straightforward algebra, the current is written:

j = (;l:_l; [1 - -% tanh (QE—,;,)] ([tp] - 2[tk])
~ [tpin), (5.18)

where (n) is the expectation value of the temperature-dependent density (the particle
number) in the absence of a current. With (5.17), one immediately obtains n, = (n)
in the continuum. This result is strictly valid only at the bottom of the tight-binding
band, where d-wave superconductivity is not favoured (see Section 3.3!). In fact,
in this limit (n) — 0. Incorporating the Fermi surface anisotropy associated with
densities closer to half-filling would require the inclusion of higher-order corrections.
Furthermore, the approximation Ex ~ E7 employed in the derivation of the contin-
uum current (note the argument of the tanh) is inaccurate for d-wave superconductors

since Ef can vanish in the vicinity of the line nodes.

1An orthorhombic distortion does not significantly alter the T, — p phase diagram discussed in
detail in Section 3.3.
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As the Fermi surface becomes increasingly anisotropic, the ratio ny(0)/(n) will
decrease. Stated another way, the effective mass is no longer be simply inversely
proportional to the transfer integral as in Eq. (5.16); rather, it is a k-dependent ‘mass
tensor’, defined by the Fermi surface geometry [246]:

1 1 O%E;
(m">ij B Efak,-akj' (5.19)

Since near half-filling (z — 0) the Fermi surface is very flat (see Fig. 1.1b), the
effective mass m* may become quite large. If one assumes that n, and (n) are equal
by definition, however, then any observed decrease in n, with filling measures the
increase in average effective mass.

Both Egs. (5.16) and (5.18) indicate that the resulting current is not generally
parallel to the superfluid velocity in orthorhombic superconductors. Given a Cooper-
pair momentum with equal Z- and j-components, the resulting current will be larger
along 7 if the effective mass of the charge carriers is lower in this direction (i.e. t, > t;).
By implication, an applied momentum p = p7* perpendicular to a twin boundary (see

Section 4.2) will also yield a component along R.

5.2.2 Results

The response of a d-wave superconductor to an applied current has been investi-
gated numerically for clean tetragonal and orthorhombic systems. In order to facili-
tate comparison with the results of the previous chapters, the parameters chosen are
Vo = —3ts, Vi = 3t,, and t, = 1.5t; in the orthorhombic case. This choice gives rise to
d-wave superconductivity at all temperatures, with subdominant s-wave components
in orthorhombic systems. The finite-size system employed contains N = 300 k-points
in both the Z- and fj-directions. The allowed Cooper-pair momenta, parametrizing
the applied currents, are therefore p = (47/300)(m& +nj), m,n=20,1,2,...,N - 1.
In practice, the gap equations for a given applied momentum p (5.10) are iterated
numerically until double precision accuracy is obtained, at which point the resulting
current (5.15) is evaluated.

In Fig. 5.1, the current response at zero temperature is shown as a function of
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the reduced d-wave component f2 = |A4|2/A3J?, where AJ is the unperturbed value.
Results are obtained for 300 x 300-site tetragonal and orthorhombic lattices. As
expected from the GL theory (Section 2.5), the d-wave component decreases steadily
with increasing p, while the supercurrent reaches a maximum at the critical current.
The data points left of the current maximum are almost certainly due to finite-size
effects and are therefore unphysical, so the current maximum is interpreted as the
true critical current. The supercurrent peaks for f2 ~ 0.85, which is much larger than
the GL estimate of f2 = 2/3. As the temperature increases (not shown), the critical
current shifts to lower f2, and the ‘tail’ left of the current maximum shortens. Just
below T, the behaviour closely matches the GL predictions.

The current response shown in Fig. 5.1 is a highly anisotropic function of the
applied momentum orientation. In tetragonal systems, the supercurrent is maximum
for p parallel to the = or y axes, and is a minimum for p in the diagonal direction.
This result is consistent with the presence of line nodes along k; = k, in d-wave
superconductors. Less supercurrent can flow in a direction where the energy gap
vanishes, due to the larger number of single-particle excitations. In contrast, for
orthorhombic systems the maximum current is found for applied momenta along the
y axis, while the minimum occurs along the z axis; for p || £ + 7 the response is
intermediate between these two extremes. The anisotropy of the resulting currents
reflects enhanced superconducting transport along the chains, oriented along 7 or
b. In addition, the presence of finite subdominant s-wave components even in the
uniform case shifts the nodes away from k, = +k,, and thus the Cooper pairs with
momentum in this direction experience a well-defined gap to excitations. To date, no
experimental evidence for such critical current anisotropy has been observed either
in tetragonal or orthorhombic high-T, materials.

Fig. 5.2 shows the variation of the zero temperature superfluid density, which is
calculated from Eq. (5.16), with the applied current or superfluid velocity [tp] = v,/2.
The data are identical to those shown in Fig. 5.1. For a given direction of the Cooper-
pair momentum, the superfluid density is found to decrease linearly with the velocity
until the critical momentum p., at which point it drops rapidly to zero. This linear

behaviour is consistent with d-wave, but not conventional s-wave, superconductiv-
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Figure 5.1: The magnitude of the current at zero temperature is shown as a function
of reduced gap f2 = |Aq4l?/|AJ, where A§ is the unperturbed d-wave component.
Results are obtained for 300 x 300-site tetragonal (a) and orthorhombic (b) lattices,
with parameters V; = —3t,, V} = 3t;, p = —t,, and t,/t; = 1.5 for the orthorhombic
case. Data are shown for superfluid velocity v, oriented in all directions (circles) as
well as along Z (large open circles), § (large filled circles), and Z + § (squares).
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ity [102]. For very small applied currents, the extrapolation of the superfluid density
to p = 0 yields values that are approximately half the zero temperature result for (n)
calculated independently: for tetragonal and orthorhombic systems, (n) are respec-
tively 0.69 and 0.76, where half-filling corresponds to (n) = 1. The small superfluid
densities illustrate the importance of Fermi surface anisotropy: the average effective
mass that may be inferred is approximately twice the bare carrier mass. At half-
filling or optimal doping, the calculations give m* = 3m which is consistent with
experimental results [6, 74, 75, 76, 77].

The data shown in Fig. 5.2 show a dependence on the direction of the superfluid
flow which is consistent with the results shown in Fig. 5.1. It is interesting to note
that in tetragonal superconductors, the unperturbed superfluid density (obtained by
extrapolating p — 0) is found to be essentially isotropic. This result corroborates
previous analytical calculations for d-wave superconductors at zero temperature [102]:

. vl
=pov, [1—-a—2—], 5.20
j=opv ( a2A/vF ( )

where p is the density, and @ = 1 or 1/ V2 for v, parallel to £ + § or Z, respec-
tively; clearly, the resulting supercurrent is independent of direction when v, — 0.
Anisotropy in the tetragonal case appears only for finite external currents: in general,
ns(£) > ne(& + §). This observation is consistent with the analytical result (5.20),
where the magnitude of the nonlinear term is a factor of V2 larger for currents ap-
plied along the gap nodes. Unsurprisingly, in orthorhombic systems the superfluid
density is largest in the direction parallel to the chains, whereas it is smallest in the
perpendicular direction.

The anisotropy in the superconducting transport is reflected in the London pen-

etration depth, which is proportional to the superfluid density n,:

2
AZ3(T) = (%’1:2) ne(T) = (%’05) 87t 1 (T) (5.21)

(see Section 1.1.2). Fig. 5.3 depicts the temperature-dependence of the unperturbed
superfluid density, calculated from Eq. (5.17). While the the data suffer from finite-

size effects, since the smallest applied momentum on a 300 x 300-site lattice is
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Figure 5.2: The zero-temperature superfluid density is shown as a function of the
magnitude and orientation of the applied Cooper-pair momentum, for tetragonal (a)
and orthorhombic (b) systems. Parameters and symbols are as in Fig. 5.1.
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|[tp]| = 0.04, the results agree remarkably well with experiments on the cuprates.
Over a large temperature range, the superfluid density decreases linearly with T'/T..
This behaviour is consistent with theoretical predictions for the low-temperature pen-
etration depth in a superconductor with gap nodes [99, 100, 101, 102] and measure-
ments of the penetration depth for ultraclean samples of YBCO [98] (see also Sec-
tion 1.3.1). In addition, the linear temperature-dependence of the superfluid density
near T, corroborates the mean-field scaling law predicted by the GL theory (Sec-
tion 2.1). The resulting anisotropy of the penetration depths for the orthorhombic
case A2/A2 = 1.7 closely matches experiment {69, 70, 71, 72, and demonstrates that
the choice of the normal-state hopping ratio ¢,/t; = 1.5 adequately models transport
in YBCO.

For a smaller electron density (u = —2t;), the zero-temperature superfluid den-
sity is a larger fraction of (n), reflecting the lower anisotropy of the Fermi surface.
In general, the ratio n,/(n) ~ 1/m* is found to decrease with carrier density, though
the superfluid density itself increases. This result appears to be at odds with ex-
periment [78]. It should be noted, however, that the present toy model employs
electrons, rather than holes, as the charge carriers. Furthermore, while it yields a
d-wave superconducting order parameter, the present theory only employs a variant
of the usual BCS weak-coupling approach which does not necessarily fully describe
the superconducting state of the cuprates.

As discussed in Section 2.5 within the framework of GL theory, the presence of
external currents may induce subdominant s-wave components in clean d-wave su-
perconductors. Fig. 5.4 shows the magnitudes of Ag and A, as a function of applied
Cooper-pair momentum at zero temperature. In tetragonal systems, external cur-
rents are found to induce subdominant components unless p is oriented along the
diagonal, in agreement with the GL theory. The induced real s-wave components
grow with increasing superfluid velocity. A current directed along £ induces isotropic
and extended s-wave components with negative and positive sign relative to Ay, re-
spectively; the same current along § switches the relative signs of Aq and A,. In
short, the induced s-wave components reverse their sign through a 90° rotation of

the applied current’s orientation, which corroborates the cos28 dependence of s/d
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Figure 5.3: The superfluid density, normalized to the zero temperature particle num-
ber, is shown as a function of reduced temperature T/T, for tetragonal (a) and or-
thorhombic (b) systems. The data are shown for a minimal applied current oriented
along § (solid), Z (short dashed), and £ + § (long dashed). Parameters are chosen to
match those of Fig. 5.1, except in (a) the results for both 4 = —t; and p = —2t, are
shown.




Clean Case 131

predicted by GL theory (see Section 2.5.2). At pc, the magnitudes of Ay and A are
approximately 10% of A4, which in turn has been reduced by the currents.

In orthorhombic systems, the existing subdominant components are either en-
hanced or suppressed by the superfluid flow. Cooper-pair momenta oriented along
the z-axis have the smallest effect, decreasing Aq by approximately 10% at p., and
increasing the extended s-wave component to the same degree. Currents parallel to
the chains, in contrast, have a profound influence. At pe, the isotropic component
virtually doubles in size, while A, almost completely disappears. In the absence of
an on-site interaction, these results yield the curious conclusion that currents parallel
to the y-axis induce orthorhombicity in tetragonal superconductors, and ‘tetragonal-
ity’ in orthorhombic systems. Momenta directed along the diagonal have a similar,
though not as pronounced, effect as b-oriented currents, reflecting the lack of gap
nodes in this direction. The subdominant components are found to be least per-
turbed when p,/p, = 2 for small applied momenta, which crosses over to p;/p, = 3
for large momenta. This clearly indicates that the orientation of the gap nodes varies
with applied currents.

While the present formalism does not consider self-field effects that are known to
be important at higher temperatures (see Section 2.5.1), it is nevertheless worthwhiie
to consider the temperature-dependence of the critical current. The critical current,
defined as the maximum current response to an applied Cooper-pair momentum (see
Fig. 5.1), is shown as a function of reduced temperature ¢ = T/T. in Fig. 5.5. The
results for both the orthorhombic and tetragonal systems are nearly indistinguishable.
Near T}, the critical current is found to vary as jc(T")/jc(0) ~ (1 —t)¥/2, in agreement
with the GL theory discussed in Section 2.5. At low temperatures, the critical current

decreases with the composite power-law behaviour
3e(T)/3e(0) = 1 — at — B2, (5.22)

where the best fit to the data yields a =~ 0.17 and 8 = 1.85.
Surprisingly, the temperature-dependence of the critical current shows a remark-
able superficial resemblance to experimental results for thin films of YBCO in the

absence of external fields [239, 240]. In particular, the critical currents for clean
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Figure 5.4: The s-wave components at zero temperature induced by the external
currents are shown as a function of the direction and magnitude of the applied Cooper-
pair momentum. The magnitude of the on-site (left) and extended (right) s-wave
components are shown for tetragonal (a) and orthorhombic (b) systems. Parameters
and symbols are as in Fig. 5.1.
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Figure 5.5: The normalized critical current j.(T)/jc(T) is shown as a function of
reduced temperature t = T/T, for both the orthorhombic (solid line) and tetragonal
(dashed line) cases, and chemical potential 1 = —t,;. The low-temperature (dotted)
and high-temperature (dot-dashed) behaviours are shown for comparison. The best
fit at low temperatures is found for @« = 0.17 and 8 = 1.85. Parameters used are
—V, = Vi = 3t;. The inset shows the variation of the temperature-dependent critical
current with chemical potential.
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materials are found to follow Eq. (5.22) at low to intermediate temperatures. Such
behaviour is often explained in terms of the Anderson-Kim ‘flux creep’ model, where
a and @ are related to the vortex pinning energy [238, 250, 251, 252|. As the carrier
density decreases from half-filling, the low-temperature plateau of the critical current
shortens. This behaviour is either due to a decrease in the magnitude of the d-wave
gap, or the Fermi surface anisotropy, at lower densities. Similar results are found ex-
perimentally; in underdoped materials the critical current follows the GL behaviour
to lower temperatures. In the present system, however, neither the internal field as-
sociated with the currents nor the influence of intrinsic defects is considered, so the
low-temperature behaviour of the critical current must have an origin different from
flux creep. Indeed, the values of @ and 3 obtained above are not close to those derived
from experimental data, a = 0.72, 8 = 0.38 [240]. It should be noted, however, that
the mechanisms limiting critical currents in both clean and granular high-T. materials

are not presently well-understood, as discussed in [239].

5.3 Twin Boundaries

As discussed in Section 4.1.1, twin boundaries significantly influence the trans-
port properties of YBCO, particularly at high temperatures where their flux-pinning
properties are important. At low temperatures, the maximum supercurrents that
may be supported by the high-T, superconductors are largely limited by the intrinsic
weak links, such as grain and twin boundaries. While critical current densities in
YBCO have been greatly improved in recent years by minimizing large-angle grain
boundaries in these materials [247], twin boundaries remain ubiquitous. While twin
boundaries most likely act as weak superconducting links, their role in determining
critical currents of YBCO at low temperatures remains unclear. It would be inter-
esting to explore the consequences of external currents for many of the intriguing
properties of d-wave superconductors near twin boundaries discussed in Chapter 4.
In the present section, the behaviour of twinned YBCO in the presence of supercur-
rents is investigated numerically within the context of the BdG formalism described

in the previous chapter, with particular emphasis on critical currents, time-reversal
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breaking, and bound states.

It should be emphasized at the outset that, in spatially non-uniform systems,
the simulation of an applied current by the application of a Cooper-pair momentum
cannot fully describe the behaviour of the resulting currents. A completely self-
consistent calculation requires the determination of the vector potential. Since the
inclusion of the vector potential would greatly complicate the present formalism,
however, it is disregarded in the calculations. Thus, the results presented below are
at best a first approximation of the correct current distributions in the sample.

In order to determine how the twin boundary structure affects its capacity to
support supercurrents, the critical current densities in the twin boundary region have
been calculated as a function of width Wr and impurity potential u/. Assuming
YBCO at optimal doping, the chemical potential is set to zero (corresponding to
electron density (n) = 1). This choice not only yields the highest d-wave transition
temperature in the bulk (see Section 3.3), but also simplifies the connection between
the carrier depletion and the impurity potential. In this case, u! is identified as the
chemical potential in the twin boundary region. For pl < —2.2t,, d-wave supercon-
ductivity is no longer locally favoured, while for u/ = —5t;, the local carrier density
vanishes completely (note that the bandwidth is 10¢; in the orthorhombic system).
Using this approach, the theory best approximates the experimental observation that
the strength of electromagnetic coupling across weak links is proportional to the local
oxygen concentration [248, 249].

The critical currents at the center of a twin boundary are shown as a function of
local chemical potential in Fig. 5.6 for widths Wr = 27 and 47. It is found that the
magnitudes of the critical current and the d-wave component in the twin boundary
region scale closely with the local transition temperature as the impurity strength is
varied. As the twin boundary width W7 is increased, carrier depletion more effectively
suppresses both the d-wave gap function and the critical current. The critical chemical
potential (at which no current flows through the link) is approximately pl= -1.75
for Wy = 4|#|, corresonding to a low normal state density (n) = 0.43. At this
impurity strength, the twin boundary is equivalent to a d-wave — s-wave — d-wave

junction, with the d-wave superconductor oriented at 45° to the interface. Due to
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the interference between the d-wave lobes, no supercurrent can flow across the twin
boundary. Essentially the same result is obtained in uniform systems; the critical
current is virtually zero near the cross-over to bulk s-wave superconductivity.

It is important to note that |u!| is significantly larger than that required to in-
duce a zero-temperature time-reversal breaking state (see Fig. 4.7 in Section 4.3).
The empirical criterion for 7-violation is that A4 in the link must be suppressed to
approximately half its bulk value. Thus, 7-violating twin boundaries may support
substantial critical currents.

The magnitude and direction of currents in the vicinity of a twin boundary are
shown schematically in Fig. 5.7. Far from the twin edge, the current response is iden-
tical to that of a clean orthorhombic material. As shown in Section 5.2.1, the resulting
current has components both parallel and perpendicular to the applied Cooper-pair
momentum p. This effect is due to the enhanced carrier mobility along the chains in
the (7 + R)-direction since t,/t; > 1, and necessarily vanishes for applied momenta
p = p; or p,. Like subdominant (bulk) s-wave gap functions in orthorhombic sys-
tems, the induced transverse component reverses its direction on either side of the
twin boundary. If both twin domains occurred with equal probability, this component
will average to zero; otherwise, there will generally be a net flow of charge perpendic-
ular to an applied current. In the tetragonal twin boundary region, the applied and
resulting currents are always collinear.

At this level of approximation, which neglects the vector potential, the twin edge
behaves as an unphysical source and sink for current. Treated properly, the currents in
the vicinity of the twin boundary would be enhanced in order to ensure that V-j =0
everywhere. Current conservation could be restored artificially in the present model
by increasing the hopping parameter within the twin boundary. Nevertheless, the
present calculation probably captures the correct qualitative behaviour of the currents
near the twin boundary.

When the impurity strength is sufficient to give rise to a local 7-violating state,
spontaneous currents flow in the vicinity of the twin boundary. These are shown
in Fig. 4.13 and 5.7 for a twin boundary with essentially complete carrier depletion

(u!f = —10t,). For non-zero Cooper-pair momentum, the resulting current is found to



Twin Boundaries 137

1.0

0.8

0.6 I
O AM)/AL0), W =4

® (W) 0), W,=4
0 AW)AL0), Wy =2
02 | =i 0), W, =2 _

0.0 e
0.0 0.5 1.0 1.5 2.0

@)

Figure 5.6: The zero-temperature critical current (filled symbols), and magnitude of
the d-wave component (open symbols) in a twin boundary, are shown normalized to
their values at u/ = 0. Results are obtained for two twin boundary widths Wy = 27
(squares) and 47 (circles). The local reduced transition temperature T.(u")/Te(u' =
0) (solid line) is shown for comparison. Results are obtained on a 50 x 50 x 2-site
lattice using —Vp = V; — 3ts.
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be perturbed by the supercurrents only in the vicinity of the twin boundary. Beyond
two or three lattice spacings, the behaviour is indistinguishable from that of the bulk.
This result should be qualitatively correct for applied momentum parallel to the twin
boundary; a fully self-consistent calculation would increase the resulting currents
only in the vicinity of the twin edge (indeed, V - j # 0 only at the particular points
defining the twin edge). The results for perpendicular applied momentum p = p7
are not physical, however; the complete absence of current within the twin boundary
region would likely force the perpendicular currents in the sample to vanish. The
present approximation should improve as the carrier depletion decreases. In general,
however, the effects of time-reversal breaking in the current-carrying state appear to
be negligible.

As discussed in Sections 4.5 and 5.2.1, currents shift the low energy quasiparticle
spectrum. In the time-reversal breaking phase, the spontaneous currents gave rise to a
splitting of the zero-bias conductance peak, or ZBCP, in the tunneling conductance.
The application of a center-of-mass momentum to the Cooper pair has the same
effect, as illustrated in Fig. 5.8. The T-preserving ground state at zero temperature
displays a well-defined ZBCP at the twin edge in the absence of external currents.
As the currents increase, significant changes in the tunneling density of states occurs.
The ZBCP is shown to split while decreasing in size. The extent of the splitting is
comparable to that caused by spontaneous currents, shown in Figs. 4.11 and 4.12.
Indeed, the magnitudes of external currents for moderate Cooper-pair momenta, are
comparable to those of spontaneous currents in a strongly 7-violating state. Such
a splitting of the ZBCP is often observed in tunneling spectra of high-7, materials
in the presence of external magnetic fields [232, 235, 253, 254]. The splitting is
due to diamagnetic screening currents near the surface. The external currents are
also strongly pair-breaking, as demonstrated by the pronounced suppression of the
coherence peaks at V = A, and the gradual ‘filling in’ of the superconducting gap.
This effect is particularly noticeable in the bulk tunneling spectra, where there are no
additional low-energy features. The large number of quasiparticle excitations caused
by the depairing effectively washes out the ZBCP near the twin boundary.

The behaviour of a time-reversal breaking superconducting state in the presence
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Figure 5.7: The magnitudes and directions of currents resulting from applied Cooper-
pair momenta are shown as a function of distance perpendicular to a twin boundary.
The length and direction of the arrows denote the current magnitude and orientation,
respectively. Vertical and horizontal arrows correspond to directions parallel and per-
pendicular to the twin boundary. The system chosen contains 50x50x 2 sites, but only
those in the vicinity of the twin boundary are included for clarity; the twin boundary
is 47 wide and centered at r = 10. The applied momenta p = 27/50 (mr + nR) are

just under the critical value |p¢| for a clean system. Parameters are —V =

p = —t, and t,/t; = 1.5.
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Figure 5.8: A low-energy portion of the zero-temperature tunneling conductance
near a twin boundary is shown as a function of energy, distance r from the twin
edge where (a) through (c) correspond to |#| through 3|7| while (d) illustrates the
bulk, and applied Cooper-pair momentum p = 0 (lower), p = (47/100)5 (offset 0.1),
p = (87/100)p (offset 0.2), and p = (127/100)p (offset 0.3). Parameters chosen are
~Vy = Vi = 3y, p = —tz, uf = —2t;, and Wr = 0, which yield a time-reversal
preserving d-wave ground state in the absence of external currents.



Twin Boundaries 141

of external currents may help to clarify the experimental evidence for 7 -violation in
YBCO. As discussed in Section 4.1.3, the imaginary s-wave component associated
with the 7 -violation may be the reason for the finite c-axis tunneling currents ob-
served to flow between twinned YBCO and Pb [208]. As described in Chapter 4,
while the real s-wave components have opposite signs in adjacent twin domains, the
imaginary components always have the same sign (see also Figs. 4.4 and 4.6). Only
these imaginary components would remain in heavily-twinned samples, and would
couple to the isotropic s-wave BCS order parameter of the lead, yielding the observed

c-axis tunneling currents.

Fig. 5.9 illustrates the behaviour of the imaginary s-wave components for a 7-
violating system in the presence of an applied Cooper-pair momentum, oriented either
parallel or perpendicular to the twin boundary. The results are striking when com-
pared with the current-free results (Section 4.3, Figs. 4.4-4.6). As soon as the external
currents become finite, the imaginary s-wave component within a given twin domain
gradually reverses its sign. This behaviour is independent of the relative positions
of the twin boundary, as well as the magnitude and orientation of the external cur-
rent. Thus, a nominal voltage applied in the ab-direction should rapidly suppress the
c-axis tunneling currents measured by Dynes et al., if the imaginary s-wave compo-
nents in YBCO are indeed coupling to the order parameter of the lead. In contrast,
small currents have virtually no effect on the real components, except for a negligible

suppression of Ay and enhancement of Ay and A, found for clean systems.

It is not clear how the behaviour of the imaginary components will be altered by
a fully self-consistent calculation of the resulting currents. The data presented above
indicate that there should be only minor corrections for applied momenta parallel to
the twin boundary, or for perpendicular applied momenta with weak carrier depletion
in the twin boundary. In the absence of a more sophisticated calculation, more
experimental data is required in order to determine whether imaginary components

are indeed present near twin boundaries in YBCO.
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Figure 5.9: The imaginary components of A (solid line) and A, (dashed line) at zero
temperature are shown as a function of distance r perpendicular to the twin boundary
for finite external currents (a) p = (4r/50)7 and (b) p = (47/50)R. The extended
s-wave component is multiplied by a factor of —10 in order to facilitate comparison
with the on-site component. Results are obtained on a 50 x 50 x 2-site lattice using
p= —tg, ~Vo =V} = 3t, uf = —8tz, and Wr = 4|#|.
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5.4 Summary and Discussion

In this chapter, the response of d-wave superconductors to external currents has
been addressed within the context of Bogoliubov-de Gennes theory. Only depairing
effects have been considered. The results for both clean and twinned systems have
provided a more detailed understanding of the superfluid characteristics of inhomo-
geneous high-T, materials at low temperatures. Furthermore, several predictions are

made for the behaviour of YBCO in the presence of external currents.

In clean materials, the induced currents have been calculated as a function of
Cooper-pair momentum and temperature. The superfluid densities and critical cur-
rents are found to be highly anisotropic both in tetragonal and orthorhombic systems.
In tetragonal materials, the current response is maximized for momenta applied along
either a or b, and minimized for external currents directed along the diagonals. In
orthorhombic materials, the orientations of the applied and resulting currents are
different, due to the inherent anisotropy in charge transport. The center-of-mass mo-
mentum elicits a response when oriented parallel to the chains that is almost double
the response when oriented along a. The resulting anisotropy, as well as the linear
temperature-dependence, of the ab-plane penetration depth closely matches experi-
mental data for YBCO [69, 70, 71, 72, 98]. The temperature-dependence of the critical
current also resembles the experimental results [239, 240], even though self-field ef-
fects are ignored in the theoretical analysis. The behaviour is found to agree with
the predictions of GL theory at high temperatures, while at low temperatures the
critical current has a power-law temperature-dependence that is sensitive to carrier
concentration.

The induction and perturbation of subdominant s-wave components by external
currents has been studied in detail for clean tetragonal and orthorhombic d-wave su-
perconductors. In tetragonal materials, Cooper-pair momenta along a or b generate,
and determine the magnitude of, both isotropic and extended s-wave components.
The sign of the s-wave components relative to Ay reverses as the applied current
rotates by 90°, as predicted by GL theory. The magnitude of the subdominant

components is found to be at most 10% of the d-wave gap at the critical current.
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In orthorhombic materials, the existing s-wave components are either enhanced or
suppressed by the external currents. At the critical current, the extended s-wave
component is almost completely suppressed by Cooper-pair momenta parallel to the
chains.

The consequences of a Cooper-pair momentum have been investigated for a twinned
YBCO thin film. The current response in the vicinity of the twin boundary has been
studied for both the time-reversal-preserving and 7 -violating phases. In the former
case, the applied momenta split the zero-bias conductance peak, demonstrating that
the currents indeed shift the quasiparticle energies. In the latter case, even very small
applied currents drastically alter the spatial-dependence of existing imaginary com-
ponents: in each twin, the imaginary components average to zero. Thus, the c-axis
tunneling currents between YBCO and Pb observed experimentally [208] may rapidly
vanish in the presence of an applied ab-oriented current.

The critical current through the twin boundary has been calculated with the
width and carrier depletion of the twin boundary as the adjustable parameters. The
transition temperature for a uniform tetragonal d-wave superconductor provides a
good estimate for the critical current in the carrier-reduced twin boundary region. A
parameter regime is found such that twin boundaries may both support significant

critical currents as well as favour local 7 -violation.



Chapter 6

Conclusions

The behaviour of d2_,2-wave (d-wave) superconductors in the presence of inhomo-
geneities has been investigated both analytically and numerically. Two microscopic
lattice models used to describe the high-T, superconductors have been employed in
the calculations: the extended Hubbard (EH) model, and the Antiferromagnetic van
Hove (AvH) model. The inhomogeneities considered have been external magnetic
fields, twin boundaries, and external currents.

Whenever inhomogeneities give rise to variations of the d-wave order parameter,
subdominant components arise. In lattice models, these components tend to have
s-wave symmetry, since both d-wave and s-wave gap functions are generated by the
same nearest-neighbour coupling. The mechanism through which the subdominant
components are generated is different for each of the inhomogeneities studied in this
thesis, however. External magnetic fields nucleate s-wave components through spatial
variations of the d-wave component in the vortex core. Twin boundaries suppress the
d-wave gap function, locally favouring an additional superconducting phase transition
with an imaginary s-wave gap function as secondary order parameter. External cur-
rents induce subdominant s-wave components through phase variations of the d-wave
component. The characteristics of the s-wave components, such as their magnitude
relative to the d-wave gap function, and length scale for variations, are also found to
depend strongly on the nature of the inhomogeneity.

The magnitude of the s-wave components nucleated in the core of a magnetic vor-
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tex has been determined within Ginzburg-Landau (GL) theory. The GL equations
have been derived microscopically within the context of the EH and AvH models.
While the results depend strongly on carrier density, coupling strength, and tem-
perature, the models suggest that the maximum subdominant components induced
in the vortex could be as large as 20 — 30% of the bulk d-wave gap function. Such
appreciable s-wave components should give rise to a significant four-fold anisotropy
of the vortex core, and distort the Abrikosov flux lattice from triangular. Similar, but
competing, effects are also found to result from Fermi surface anisotropy. The results
compare favourably with recent tunneling and small angle neutron experiments on
the cuprates.

The behaviour of the superconducting order parameter near twin boundaries has
been investigated numerically using the Bogoliubov-de Gennes (BdG) formalism,
within the context of an orthorhombic EH model. The twin boundaries are repre-
sented by tetragonal regions of variable width, with a locally reduced carrier density.
At low temperatures, subdominant components are found to be induced through two
distinct mechanisms. The spatial variations of the d-wave gap function near a carrier-
depleted twin boundary induces real s-wave components, approximately doubling the
existing small s-wave gap functions. As in the vortex core, the additional components
disappear over a length scale of the d-wave coherence length. If the d-wave component
is strongly suppressed, to approximately half its bulk value or more, a local phase
transition to a time-reversal breaking state may occur at a low temperature T*. The
order parameter characterizing the secondary superconducting phase is an imaginary
s-wave component which may be large compared with the d-wave gap, and which
varies over an independent length scale. The magnitudes of the imaginary compo-
nents, and the value of T*, are found to depend strongly on the electron density and
the twin boundary attributes. The results provide an explanation for recent tunneling
data.

The behaviour of d-wave superconductors in the presence of external currents has
been investigated numerically within the BdG formalism and the EH model. Both
clean systems and those containing twin boundaries have been considered. Real s-

wave components are found to be either induced or suppressed by phase variations
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of the d-wave component. The characteristics of the subdominant gap functions
depend on the orientation and magnitude of the external currents. In the time-reversal
breaking phase, the existing imaginary s-wave components are strongly perturbed
by the currents, with novel and observable consequences for tunneling experiments.
The temperature- and direction-dependences of the superfluid density and depairing
critical currents have also been calculated, and compare favourably with experimental

measurements on YBCO where data is available.



Appendix A
Lattice Taylor Expansions

In this appendix the lattice Taylor expansion for a slowly-varying periodic function
in the presence of an external magnetic field is derived. The scale of spatial variations
must be longer than the lattice spacing, but shorter than the system size (otherwise
one could simply employ the usual Taylor expansion) and penetration depth. The
derived Taylor series is then used to compute the low-order gradient terms of the
self-consistent gap equations.

In the presence of a gauge field, the lattice derivative operating on an aribtrary
function f(r) is
i(20L) f(x) = €36 f(r 4 2) - £(x), (A1)

where 2 = %,7. For reasons that will become clear shortly, this equation may be

re-written:

€3O f(r + 2) = i(2IL) £(r) + f(r). (A.2)
The second derivative is the left-hand side of (A.1) operating twice:
—(GIL)2f(r) = €624V f(r + 2) — 28'% 4O f(r + 2) + F(). (A.3)
With (A.2), this in turn may be re-written:
e %40 f(r + 23) = —(3IL,)2f () + 2(2IL) f(x) + £ (x). (A-4)
Similarly, one obtains
e'5 >4+ f(r 4+ 35) = —i(2I1,) f(r) — BIL)*f(x) + 3i(3IL) f(r) + f(x).  (A.5)
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It becomes successively more obvious that the coefficients of the lattice derivatives

follow a geometric progression. One then obtains the lattice Taylor series:

n(n

SEMOfaans) = @)+ i) () — 2D Ly

- 2220 i)

n(n - 1)(n - 2)(n — 3)
24

+ GIL)'f@r)+....  (AS6)

Note that in the continuum limit 2 — 0, n — 00, nZ = z < 1 one recovers the usual

Taylor series:
flr+2) = f(r)+2Lf(r)+ —Hzf(r)+—H3f(r) —,r‘r:f(r)+...,(A.7)

where

- 0

i, =2 +i%"a,m) (A.8)

dz o
is the continuum version of the lattice difference i(ZIl;).

The lattice Taylor series will now be applied to the first term in Eq. (3.37):

V—A‘ r) =-T Y &°("r, —wn) A (x")G (", x + @, wy). (A.9)

" wWwn

Making use of Eqgs. (3.38) and (3.39), this may be re-expressed as
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xei;_;A(')'zA;, (r+2) (A.10)

where z = r” —r. The gap functions A* vary slowly compared to the Green functions

G°(z), which give an appreciable contribution only over a few small z = mi + ng.



150 Lattice Taylor Expansions

For the EH model, the last line of Eq. (A.10) may be expanded in a lattice Taylor
series about z:
1

=-T ¥ (—1)FlBADT Go(mz + ng, ~wn)G°(ME + nf — & + &, wy)

m,n,wn,&'

x{ () + m i(Z1L) A% (r) —

e L QLN ~(r)

m(m

D (sIm,)2a5 () +

(Tl A () - 3(%1)(@11,,)%; () +

m(m — 1)n(n — 1)

—mn(i'nz)(ﬂny) o(r) + 4

TP, 85 ) + .
(A11)

Since the system contains a center of symmetry, all terms with an odd number
of lattice derivatives will vanish. For tetragonal, but not orthorhombic systems,
G°(£mi + ng) = G°(Fmz — ng), so all terms with an odd number of (ZI1;) or (§1I,)
will also vanish. To fourth order in gradients, therefore, the first term of Eq. (3.37)

for tetragonal systems becomes:

1 ;2xaAr)a
_—_el %0 A(l‘) C!A; (r)

Qa

=-T Y (=1)F1GAOE GO (ms + ng, —w,)G° (M +ng — & + &, wy)

mnwn,&

x{ A% () — B (ETL) A% (1) — 5 (9T1,) A% (1)

—ea (FIL) AL (r) — 5 (ITL) A% (r) — ez, (811:)*(911,) Zf(r)}- (A.12)

The coefficients of the gradient terms appearing in this equation and (3.43) are:

E = Spml(lml - 1) (A13)
EE = Zinl(Inl - 1) (A1)

8 = —jml(m| ~ 1)(1m] - 2)(m| - 3) (A15)
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&8 = ~lnl(nl - 1)(inl - 2)(Inl - 3); (A16)
E, = —lmi(m] = Dinl(in] - 1). (A17)

The derivation of the gradient terms for the AvH model proceeds in a similar
fashion, starting from (A.10). Since z = m#, + nf,, where 7/, = + g and 7, = Z — 3,

one obtains

iei%’a'A(r)-a‘A;(r)

a
S (2% a " - o -~ ~ - i
=-T Y (-1 letoo ATV T Gomi) + nify, —wn )G (M| + iy — @ + @, wn)

mn,wn,&

x{ 5, (r) +m (AL, AL (r) - '_anz_—L)
(7oll,, )2 A% (r) + ...

m(m — 1)n(n —
4

(7:11—[,-1 )2 ;: (l‘) “+ ...

n(n — 1)
2

_mn(fl Hfl ) (7:21_[1‘2) :1’ (l‘) +

1 i(FaI,) A% (r) -

D (4,11, )2(211,,)2A% (r)}.
(A.18)

The conversion to z- and y-gradients is accomplished by means of the transformations

(Fdly) = i(3ML) (9I) + (£1L:) + (91L,); (A.19)
(F2Ily,) = —i(2I1:) (911y) + (21Le) — (911y) , (A.20)

which may be easily proved by the application of (A.2):

5t f(e 4 71) = RN f(r 4 g+ g) = ilRTL) f(£) + ()
= i(@T) f(x +9) + f(x +9)
= P(IL)(E) f(r) +i(@TL) £ (r) + i(@TL) f(x) + £(x)-
(A.21)

Equating the last term in the first line with the last line immediately yields (A.19),
while (A.20) follows from the antisymmetry of the y-gradient term for § — —7.
Inserting (A.19) and (A.20) into (A.18), and discarding terms that vanish either due
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to centrosymmetry or orthorhombicity, one obtains:
1

.2 -
_ezasA(r)-aA; (l')
a

i2Z A(r)-@

=-T Z (—1)'6'|e %0 G°(m#| + nfy, —w,)G° (Mmf + nfy — @ + &', wa)

x{85/() - AFEIL)AL ) - IF L)AL )

~eMH(211,) A% (r) — 37 (9T1,) A% (r) ~ €3 (411.)° (911,)° A% (r)}- (A.22)

The coefficients of the gradients terms here and in (3.47) are

& = [iml(iml = 1)+ (il = 1) + 2mn]; (A.23)
i = 3[ml(m] - 1) +Inl(n| - 1) — 2mn]; (A.24)
e =~ [fmi(m] = 1)(m| — 2)(fm] = 3) + [nl(lnl = 1)(Inl = 2)(In] - 3)

~ sglmlal{3(ml = (il = 1)

+2[(ml = )l = 2)+ (1l = (1l - 2]} (4.25)
G = = [ImI(ml = D(m] = 2)(m] )+ In(in] ~ 1)1l = 2) (1ol ~ 3]
1
~ Limilal{ 3(ml = 11l = 1
~2[(ml = 1)(m| -~ 2) + (ol = D1l ~2)] (4.26)
¥ = —X[(Imitiml = 1) +Inl(nl - 1)° - 4m?e?] (A.27)

These coefficients are greatly simplified in the continuum limit, in which case one

obtains:

L 21 2! ’

{ehya; ey} = {(T1+’"2)2. (71-7‘2)2}.



Lattice Taylor Expansions 153

(ri+7)*  (ri—ra)*  (r} —ri)?
o s g} = Ol fonl Gonll



Appendix B
Inversion of the Gap Functions

In this appendix the gap functions (3.60) and (3.61) are shown to be invertible.
Specifically, the nearest-neighbour bond gap functions Az and A, may be expressed
in terms of A; and Ay. Though symmetry dictates that there must be at most two
degrees of freedom per site (such as A, and A4, or A; and 4,), the proof that these
combinations indeed close the Hilbert space is in fact quite subtle.

The gauge-invariant definitions of the extended s-wave (3.60) and d-wave (3.61)

gap functions are:
8 1 __i?LA:(r) 1'21‘4'1?(")
Ay(r) = Jle® Ag(r) + e " A_;(r)
+e 5 MA (r) £ B HOA_ ()], (B.1)

where the upper (lower) sign corresponds to s-wave (d-wave). Furthermore, the lattice

derivative (or finite difference) in the presence of the gauge field is

SEIL) AL () = e DA (r+5) - A (r)
= e %A, (r) — AL(r). (B.2)

Note the complex conjugation compared to Eq. (3.44). In the second line use has

been made of the identity
A_;(r+2) = A,(r). (B.3)
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Combining Eqgs. (B.1) and (B.2), one obtains

Ay(r) = %[e_i%%A’(')Az(r):te_i%%A”(')Ay(r)]

j2x

+% [6‘3—2"="’(5;HI)A_,(1-) + e'oo M (F) (gny)A_y(r)] , (B.4)
which may be immediately inverted to yield

Al(r) = e"?s—E"=<"[A,(r)+Ad(r)]-%e*’%"f-"’(mz)a_,(r);

Ar) = €EMOAr) - A(r)] - 5EBVOEIL)AE).  (BS)
The resulting equations for A; and A, appear to depend not only on A, and Ay,
but also on lattice derivatives. Since from (B.2) the finite difference is odd around r,
it might appear that the inversion involves p-wave gap functions that, as spin-triplets,
should be prohibited. The physical origin of the derivative terms is that the system
is not self-consistent. The degrees of freedom for a given site are constrained by
the behaviour at adjacent sites, while the degrees of freedom at an adjacent site are
determined by the behaviour of its near neighbours, etc. As shown below, all p-wave
terms vanish when the self-consistency is imposed, due to the odd symmetry of the
difference operator.

To make this point more explicit, consider the z-bond gap at a given site r:
i2% A_(r 1 iz A (r
Ax(r) = eBHO (1) + Ag(r)] + 5 [Ar(r) _ g >A_,(r)] , (B.6)

where (B.2) has been used. A (gauge-invariant) z-bond gap may also be written for

the sites r + Z and r + 22:

;4w _-2_1r
e BN (r+8) = e &= [A(r+2) + Ay(r + 2)]

+% [e_i;_;A’(')Az(r +i) = Ao(r+ :E)]

e 5N (r+28) = e R O[A,(r +28) + Ag(r + 28))

+% [ H24On, (x4 28) - Alr + 22)|. (B.)



156 Inversion of the Gap Functions

Making use of the identity (B.3), these three gap functions become

Al(r) = €%=OA,(r) + Ag(r)]

1 i3 A (p
+ 5 [A,(r) _ gidn ’A_,(r)] : (B.8)
e BN (r+3) = e w=O[A(r+5) + Ad(r + )]
L[ it a (r) .
b g [N+ 2) - 8.0 (B.9)

eSO (p 4 93) = e tepde® [Aa(r +28) + Ag(r + 22)]
1 _ja= —jdr
+ 5 [e ‘302A’(')A,(r+ 2%) — e ’;oA”(r)AZ(r+i)] )
(B.10)

In the sum over all sites, the last term in (B.9) cancels the second-to-last term in
(B.8), and the last term in (B.10) cancels the second-to-last term in (B.9). Identical
results are found for A,.

Clearly, at each iteration, the p-wave terms are pushed successively closer toward
the system boundary. For periodic boundary conditions they disappear identically.
The remaining terms, such as the last term in (B.8) and the second-to-last term in
(B.10), would be equal by definition if the system contained only three sites in the z-
direction. This is not the case for general boundary conditions. Using open boundary
conditions, for example, the p-wave terms have a finite contribution, but only on the
lattice site just next to the boundary. The physical reason is that the number of
degrees of freedom is slightly higher for these sites since there are fewer constraining
neighbours. Periodic boundary conditions are assumed throughout the derivation of

the GL equations.
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