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ABSTRACT 

The purely hydrodynam;cal behaviour of a collapsing stellar' 
, . 
core is investigated. Adiabaticity and spherical symmetry are assumed. , 
The equation of state consists of a high and low density branch. Both 

branches are parametrized by constant adiabatic indices.QThe evolution . ' . 
of the,collapsing core is examined for various parametrizations of the 

) 

equation of state. Emphasis is placed upon seeking ~arametrizat'ons 

favouring mass ejection. No mass ejection oocurred for any para­

metrization considered. However,· behaviour most suggestive of mass' 

ejection was observ~tl those models where toe adiabatic index rapidly 

changed from slightly slightly above. 
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/ CHAPTER 1 

Introduction \ 
Massive stars (M > 8M~) evolve rapidly to a state of thermonuclear 

exhaustion. The only stable stellar configuration rot dependent upon 

thermonuclear support against gravity are white dwarfs (pressure support - " 

from degenerate electrons) and neutron stars (pressure support from degenerate 

neutrons). However, these entities possess maximum masses in the neigh­

bourhood of 1'.2 Me (Zeldov;ch and Noviko~, 1971) in the case of white 

dwarfs and 1.5 Me (Baym, Pethick~ Sutherland, 1971) in the case of 

neutron stars. Clearly, these stellar configurations are much lighter . -" 
than the massive stars introduced above. As a result. massive stars 

suffer dynamital _instability at some point following the cessation of 

thermonuclear combustion. Dynamical instability will then provoke a 
violent explosion/implosion which may culminate as a black hole, white 

dwarf,- neutron star, or in a totally disrupted state. 

Observational data suggest that a supernova explosion may 

very well be capable of achieving these results. Supernovae have been 

observed in this galax~s well as external galaxies, and are presuma;ly 

related to the tenninal stages- of stellar evolution. In some cases 

pulsars (rotating neutron stars) are known to be associated with super­

novae (for example the Crab pulsar and Vela pulsar), so that not all / 
.' 

supernovae lead to bl~ck holes or total disruption. 

As a result of the preceeding considerations the supernova 

1 / .. 
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explo~ion emerges not only as an observed astrophysical phenomenon of 

spectacular dimensions; but also as an evolutionary link between stars 

whose cores have exhausted their thermonuclear resources, and pulsars. 

2 

For these reasons, supernovae have been, in the past decade, the subject of 

numerous intensive investigations. Since observational data from super­

novae' explosions have yet to reveal the nature of the underlying processes, 

the bulk of the investigations have sought to explain how a gra~tational1Y 
induced implosion ~an give rise to the observed effects. 

The remainder of the introduction will be concerned with prior 

attempts to numerically simulate the evolution of a ~tar through the 

implosinn phase. Particular emphasis will be given to the ability of 

certain processes (to be discussed below), attending implosion, to 

induce supernovae explosions. 
, 

.~ An investigat10n by Burbidge, Burbidge, Fowler, and Hoyle (lQ57) 

of the evolution of a missive star (M > 10 Me)' resulted in the recognition 

of a possible supernova mechanism. They observed that such a star would 

enter an unstable phase, leading to a dynamical implosion. It was then 

suggested that the rapid compression of the unspent fuel would provide 

a thermonuclear detonation of supernova proportion; 

Colgate and White (1966) published a paper refuting the Burbidge 

et a1. proposal. They agreed with the possibility of such an explosion; 

but argued that the explosion would release an insufficient quantity 

of energy to affect the subsequent dynamical history of"Ehe star. Instead, 

their calculations indicated that neutrino deposition of energy in the 

outer layers of the star was responsible for supernovae explosions. 

However, the neutrinos were treated intuitively rather than by formal 

, 
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trans·port. In particular. they assumed that the shockwave and the 

neutrino emission surface were cOincident. so that the kine~c energy 

of infall was rapidly transferre~ to the outer layers of the star. As 

a result, all their models exploded vio1entl~. 

A first attempt at attacking the neutrino transport problem was' ' 

made by Arnett (1967). <~rnett treated the neutrinos as being either in 

thenmal equilibrium with the matter through which they moved or completely 

decoupled from it (depending on th~ local opacity). This permitted the 

utilization of the thermal diffusion t~ansport approxim~tion. The 

emission surface, as determined by this approximation, was now further 

~ r~dially than the core shock with the result that the neutrino ~nergy 

transfer was less effici~~_COnjUnction with an improved equation 

of state this procedure yielded supernovae for the lighter (2,4 Me) 

models. However, the massive models (8 Ma , 3 2~a)' being hotter and 
, 

therefore more opaque to neutrinos. failed to explode. 

A further improvement in the treatment of neutrino transport was 

employed by Wilson (1971). Wilson used a multi-group. multi-angle, 

Boltzmann transport formulation which included general relativity 

(found unimportant). Though it represented a significant advance in 

computational sophistic~tion, Wilson neglected to make corresponding 

improvements in the microscopic physics (for example; the equation of 

state and neutrino-electron scattering). the reaction kinetics, 

neutrino-electron scattering. and equation of state were not improved 

relative,to previous calculations. 

His results demonstrated a neutrino energy deposition wh1ch was 
"r 

too small to expel any mass. The only model (1.25 Me) that exploded, 

. , 
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did so, whether or not neutrinos werl included in the calcalatfons. 

Another possible neutrino supernova mechanism was conceived 

folJowing the discovery of neutral currents in the weak interaction (for 
• < " 

a review of the experimental results pertaining to this discoverYt as ~ell 

as discussions of theoretical models and astrophysical applications see 

freedman, Schramm, and Tubbs 1977 and references therein). The existence 

of a weak neutral current permitted a large number of neutrino processes 

above and beyond the ~sual charged cu~rent,mediated reactions. for 

example, it was now possible for/~eutrinos to scatter off nucleons, 
\ 

electron-positron pairs to annihilate into muon neutrino and muon 

~ntineutrino pairs and bremsstrahlung by nucleons of neutrino-anti neutrino 
~ 

pairs. However, the most important reaction allowed by the weak 

neutral current is the coherent scattering of neutrinos by nuclei 

(freedman 1974). 

The coheren.t neutrino scatterin<':ross-section of a nucleus 

consisting of A nucleons is A2 times the )orresPOnding cross-section of 

a singl~ isolated spinless isosca~ar mOde),~ucleon. This cross-section 

in conjun~tion with the structure of the imploding star could creat~ 

an environment capable of sustaining.a supernova explosion. A massive . \ .., 
star on the brink of dynamical implosion is generally assumed to have 

an "onion-skin~ structure i.e. the star consists of consecutive shells 

(working inward) of H, He, C, 0; Ne, Mg, and Si,surrounding a dense Fe 

~ore. In the ensuing implosion of the Fe core, there effectively 
" 

occurs a division of the core ~to a high density inner:: core and lower 

density outer core or mantle, separated by a region of rapid density 
I 

---j/ • change.- Electron capture on whatever nucl ear speci es are present 
• 

, 
) 
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asingly n~ytron rich mixture as 

the density increases. 

As a result, the neutron is 1 arge 

in the inner core and negligible in the outer core with change 
J 

occurring in t~e narrow region betw~en (neutronization reg; n). In 

addition, large fluxes of neutrinos are~a1so being gene to 

the pure iron mantle: If the cross-section for neutrino-nucleon scattering 

in the iron (A = 56) mantle is indeed enhanced by a factor of A relative 

to the single neutrons which predominate in the inner core, than the 

possibility for supernovae explosions to occur via momentum deposition 

exists. 
/' 

Specifically. a relatively low opacity innet core a11O\'Is large 

neutrino fluxes to escape into a high opacity mantle, resulting in ., 

large scale transfer of momentum from the neutrinos to the mantle. 

The momentum acquired by the mantle may be of sufficient magnitude to ~ 

expel the mantle and outer layers, (the H. He, C, 0, Ne, Mg, Si layers), 

generating a supernova display and leaving the inner core as the neutron 

star remnant. However, the impact of this argument is blunted somewhat 

by a more realistic calculation of neutrino neutron scattering where it 

was found that the nucleon cross-section was larger than for the simp1~ 

~o_del nucleon mentioned above (Tubbs and Schramm, 1975). As a result~ the~ 

core being composed precominantly of neutrons, would now be more opaque 

than previously suspected; further decreasing the flux reaching the 

ntantle. 

Wilson (1974) incorporated the w_eak neutral currents in tiis 

calculation, and found for standard choices of neutral current parameters, 
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that no .explos~on resulted. Subsequent improvements in the calculation 

of the microscopic physics also failed to alter the essential results 

(for example Wilson 1975, Bruenn 1975). ~ 

Criteria wer~ presented by Bruenn, Arnett, and Schramm (1977) for 

the eje~tion of the envelope from a collapsing stellar core. The 

ejection is effected, presumably, by an outgoing shock wave that is 

either driven by neutrino energy and/or momentum deposition or generated 

hydrodynamically by the bouncing of the core at high densities where 
"' 

the equation of state stiffens. They considered the strength of the 

, outgoing shock wave in terms of neutrino momentum deposition, neutrino 

energy deposition, and core bounce~ 

Assuming that the electron capture neutrinos escaped unhindered 

to the mantle where they deposited their momentum, they estimated that 

the ~ean en~rgy of the neutrinos should be above 15 MeV for ej~ction . 
• 

For- neutrino energy deposition the rate of energy transfer by 

inelastic' neutrino-electron ~attering was considered. 

lower limit of 2b MeV for ejection by energy deposition. 

This gave a 
) 

In the case of core bounce, they found that an inner portion of 

the core (inner core) would suddenly cease to implode or even rebound 

outwards, when its average adiabatic index changed from be~ow 4/3 to 

above 4/3. As the outer regions impinged on the reversed inner core 

a sharp velocity and density increase, typical of a shock front, would 

qe encountered by the infalling matter. It was suggested by them, that 

if the shock was sufficiently strong it could be expected to propagate 

outwards and eje~t matter. 

R~cently, Arnett (1977) has computed the stell~ evolutionary 
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sequence for a massive star (8 Me) through hydrodynamic instability and 

neutronization, up to core bounce. His calculations contain neutrino 

opacities too large to permit very extensive neutrino transport. In. 

fact the mantle neutrino luminosity is substantially less than 10% of 

the Eddington luminosity (that luminosity at which radiation pressure 
\ 

balances gravity); and the average energy_of th~ neutrinos issuing from 

~he core is 8 MeV (well below the minimal criteria of the last paragraph) . 
• • 

In view of this, mass ejection via neut~jno momentum or energy deposition 

seems unlikely. 

Although, it must ~cautioned that there are a multitude of 

improvements yet to be realized in the treatment of this phase of 
l''(9 

.evolution~ current models appear to yi~ld opaciti~s too large to permit. 

neutrino induced supernovae explosions. "Earlier models suffered from 

inadequate treatment of neutrino trnasport, which led to supernovae via 
• 

neutrino energy deposition. Somewhat later, more sophisticated com­

putations did no~ display such behaviour; in fact neutrino cooling of 

the shock actually tended to damp tbe explosion in some models (Wilson 

1971). The advent of the weak neutral current mediated processes, 

raised the possibility of explosion vi~.~eutrino momentum deposition; 

but this again appears to be ineffective, at least for conventional 

choices of neutral current parameters. This is not to suggest that 

mass ejection is never observed; but rather the causative mechanism 

is more likely hydrodynaITHc bounce than neutrinos. For this reason, 

we examine the purely hydrodynamicel (no transport) behayiour of 

stellar collapse. 



, 
-l 

In chapter 2 we di sCU'S-s~'Some simp l; fy; n9 assumpti ons and i ntro-
.' 

duce the flow equations. The nu~erical method used to solve the flow 

equations is presented in chapter 3, and in chpater 4, tests of the 

numerical method are discussed. Chapter 5 describes the initial model 

and the equations of state employed in the subse.quent .investigations. 

Chapter 6 presents the res~lts of the investigations. In chapter 7 

the results are discussed, including their applicability. Chapter 8 
/ 

summarizes the previous two chapters with conclusions. Finally, the' 

Appendix contains a glossary of symbols employed in this thesis and 

also the computer code used to follow the evolution of th~odels 
w 

discussed in chapter 6. 

J 
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CHAPTER 2 

,Hydrodynamics 

Although the problem considered here may be a very complex one 

indeed, we 'make two assumptions which ·simplify ,the hydrodynamical formu .. 

lation immensely: (i) adiabaticity and (ii) spherical symmetry. ", 

I 

The assump'tion of adiabatic~ydrodynamics is tantamount to ignoring 

changes in the thermal energy of an arbitrary core volume element due to 

neutrino loss, photon diffusion,~heat conduction, and convection. We 

briefly examine each of these in turn. The dynamical time scale to 
• 

whi~h we must compare the rates of non-adiabatic processes is expected 

to be of order the free-fall co_lapse time., 

(2.1) 

Neutrino~sses 
The most serious threat to the adiabaticity approximation is 

10$s of e~ergy via neutrinos, The magnitude of the loss is determined by 

the 1 oca 1 neutri no 1 umi'nos i ty ,'the core opaci ty to neutri nos ,. and the 

dynamic timescales characteristic of collapse and bounce. Early in the 

collapse. when the core densitie~ are relatively low, the neutrinos 

* Here and elsewhere in this thesis a quantity like Pl 
. a variable reduced by (in this case) 12 orders of magnitude, 1 

That is. ' . . 
= p/(lo12 g-cm-~) " 

9 
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stream out freely. permanently removing en~rgy from the core. As the 

cOllapse progresses to higher densities and temperature. both the local 

neutrino luminosity and core opacity to neutrinos increase greatly: 

The ,opac ity and 1 oca 1 neutri no 1 umi nos i ty ddtermi ne the neutri no energy 
. 

loss rate from the core (the neutrino luminosity at the co~ surface). 

It is the surface neutrino luminosity applied on a dynamic timescale that' 

when compared to the internal energy of the core determines the degree 

of violation of adiabaticity. In order to establish the near adiabaticity 
.. 
of this evolutionary phase. we examine some recent results pertinent to 

bounce and pre-bounce evol uti on. 

Arnett's (1977) calculations demonstrate~that near bounce 'the 

peak neutrino creation rate is ~'054 ergs-s-1 (large enough to challenge 

the validity of ' the adiabatic approximation). However. due to opacity • 
.oQ 

53 ' -1 
the actual core surface neutrino luminosity is ~lO ergs-s • By 

. 
employing a typical timescale of ;0 ms for bounce. we estimate the total 

51 ...:, 
energy lost from the core during bounce to be ",10 ergs-s . This ~~ 

represents in the vfcintty of 1% of the internal energy of the core. 

In the pre-bounce,stage, electron capture neutrinos are'the 

predomi~ant neutrino species present. The bulk of these are released 
t'I -3 ( . . ) once the central density,exceeds 2 x 10" g-cm Schrarrm and Arnett, 1975 . 
• -3 As a result. we consider the density range from 2 x 10" g-cm· to bounce 

density (> 1013 g_cm- 3). At 2 x 1011 g_cm-3 the neutrino luminosity is . 
51 -1 ( ~ 10' ergs-s·. Freedman. Schramm. Tubb 1977), and at bounce tHe maxi-

1 . '~'t if 1053 -1 mum umlnOSl Y ~ ~ erg'S-s' is achieved. The timescale for evolution 
. 

through this ran~~ is once mOre of the order of a few tens of 'mi 11 i-

seconds (Bruenn, Arnett, ~chramm 1976)~ so that the total neutrino energy 
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transport from the core amounts to ~1051 ergs. Again this represents 

a small fra~tfQn of the core's internaT energy (~l%). 

Hence, the collapse and bounce may be regarded as adiabatic to 
-

approximately 1%, which is' quite acceptable in view of the numerous 

other uncertaintie~ present. 
I 

'" . 
Ultimately, of course. neutrino losses will be' very important in 

allo\'ling the hot core to settle down as a neutron star. The gravitatiQnal , 

binding energy of a neutron star, ~lOO MeV per nucleon (see, for examp1e, 

Baym, Pethick, and Sutherland 1971), is expected to be almost entirely . 
removed by neutrinos. This occurs after bounce. Since in this thesis 

our object is to develop a hydrodynamics code and follow implosion only 

up to the- point of bounce and possible mass eject'lon by an outgoing shock, 

our neglect of neutrino losses is justified. 

Photon Transport 

The great opacity of the core matter to photons prevents efficient 

transport of energy on the timescale of collapse and bounce. We may very 
I 

roughly estimate the mean free patA of a photon (A ) by using the Th!mson 
. y 

cross-section for the electron (o,h)' 
IJ 

m 
Ay ~ 1/(neoTh ) ~ ~ = 2.5 x 10-12P12cm 

. 
(2.2) 

The time (T ) required for a photon to diffuse through R = 10
6 cm at 

y 

p ~ 1012 g_cm- 3 is: 

(2.3) 

This is much greater than the dynamical time scale of collapse and bounce 



(a few tens of milliseconds). 

I 
Conduction 

A simila~ argument may be developed for heat conduction. The 

equation for heat co'nductio~ 

~ 
aE 

12 

~ = -div(K grad T) at (2.4) 

may be written dimensionally as: 

E . 
.JL'V KT (2.5) 
t if 

where R represents some distance. scale .characteristic of ,flow. The 

thermal energy.density (EQ) and the coefficient of thermal conductivity 

(K) are replaced by the following order of magnitude estimates: 
• 

'....-.' where n is the particle number density (or if the matter is degenerate, 

the density of particles within KBT of the Fermi surface), V;s an rms 

random velocity, and \ a mean free path. Then, once again a time scale 
.-

may be defined by 

, 2 
t '\, !L 

V\ 

0, 

(2.7) 

A lower limit for this thermal diffusion time ;s obtained by setting 

the rms velocity equal to the speed of li9ht, $0 that for R '\, 108 cm 

,{core r.adius} we obtain: 



_,,' ,ji 
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(2.8) 

According to this J for heat conduction to be important (t ~ 10-2 s) 

the mean free path would have to be A ~ 107 cm. At these densities, such 

* a mean free path is larger than the true value by many orders o~ magnitude. 

Convection .. 
~onvective motions occur with strongly subsonic velocities. The 

imploding matter on the other hand, is described by near sonic and super­

sonic motion. As a result, convective flows are also incapable of 

transporting significant amounts of energy on a dynamical timescale. 

The second assumption is one of spherical symmetry: This is 

equivalent to' neglecting any dynamical role for stellar rotation and/or 

stellar magnetic fields. This neglect is conventional in the theoretical 

modelling of supernovae, but'of course can not be justified. In fact 

all stars have, to a lesser or greater degree, both angular momentum 

and magnetic fields but their inclusion Kas generally been well beyond 

the scope of most hydrodynamic studies. 
, 

The formulation of flow for the models dealt with here is based 

on adlabatjc, spherically symmetric hydrodynamics. The particular frame 

of reference employed is lagrangian, with the mass m being the lagrangian 

co-ordinate. In this approximation the partial differential equation of 

* [Actually, at very late stages of stellar evolution the 'mean free 
path of neutrinos may become as small as ~l07 em, in which case thermal 
diffusion by neutrinos may be a significant mechanism for energy trans-
par't.] , 
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flow take the following form: 

~conservation: 

m(r, t) = m(ro ' 0) 

14 

(2.9) 

~'omentum Conservation (Radial component of Euler's Equation): 

au 1 a? Gm 
at = - p or - ~ 

au . -4~r2 1- {p} _ :-:2Gm n = am . r 

Energy Conservation: 
'l 

de: = p EJ.. 
at at 

.. 
In addition the relationship between m and r(m,t) is described by: 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The equations written above take no account of viscosity. In 

the absence of viscosity, shock-waves (which might be expected to arise 
" 

in this phase of core evolution) are described by mathematically sharp 

di scooti nUl ties. 

These are difficult to treat numerically. Realistic viscosity 

parameters are too small to significantly diffuse the discontinuities. 

The usual procedure is to introduce the Neumann-Richtmyer artifical 

viscosity (Q) into the equatlons for momentum and energy conservation. 

With this modification, t~ey become: 

Momentum Conservation: 



/ 

where 

~ = _(p + Q) 'dV 
at at 

Q = ~ 2 (au] 2 p if au < 0 v ar ar 

o otherwi se 

15' 

(2.14) 

(2.15) 

(2.18) 

In essence, the effect of Q is to give the normally discpntinuous 

shock a finite width. This width is determined b~ the size of ~2 (where 

• ~ has dimensions of length); the larger ~2 th~ larger the region occupied 

by the shock. 
'. 

The shocks generated by the inclusion of the artifica1 viscosity 

appear as near discontinuties, across which the flow variables have very 

nearly the correct jumps, and which travel with very nearly the correct 
: 

speed through the fJuid (Richtm~er and Morton, 1967). 
( 

) 

.. 

/ 



CHAPTER 3 

Numerical Method 

The hydrodynamic partial differential equations (2.14) and (2.15) were 

solved numerically by means of an explicit finite difference scheme 

(Richtmyer and ~orton, 1967). The scheme has the dual advantaqe of relative 

simplicity and established performance. Christy (1964), Colgate and White 

(1966), and Van Riper (1978) have applied the scheme to similar scenarios 

with success. 

In order to utilize the scheme, the core was divided into a 

sequence of concentric spherical shells numbered 0,1 ... J from the 

centre outwards. Variables associated with zone cetres are subscripted 

j + 1/2 and those with zone boundaries by j. Time centering was 

analogously specified by the superscripts nand n + 1/2. For example. 
. n + 1/2 the quantlty. ~j + 1/2 indicates that the specific internal energy ;s 

computed at the centre of the th zone at the centered nth time. The 

scheme is usually invoked by specifying the following initial con­

fi gurati on: 

0 
j 0, J r. = 

J 

U~ j = 0, J 
J 

(3. 1) 
a e: • + 1/2 j = 0, J 1 
J 
0 j 0, J 1 Pj + 1/2. = 

t 

Since the zone with j = a represents the centre, 0 
ro and U

O 
0 

are equated 

16 



to O. The mass contained in the jth zone is calculated by: 

o 4n [( 0 )3 (0)3] 0 
~m j + 1/2 = '3 r j + 1 - r j r P j + 1/2 

These are summed to obtain the total mass within the jth boundary: 

j-l 0_0 
m. - E Am k + 1/2 

J k=O 

17 

(3.2) 

(3.3-) 

The mass enclosed within consecutive zone cent~s is also required: 

~~ = 1/2(~~ + 1/2 + ~mj 1/2) 
I-

(3.4) 

For our purposes it was found convenient to modify th~,above procedure 

o • somewhat. Instea~ of the initial density Pi + 1/2 the total mass 

contained within the jth zone mj was read in by the program (see 

Appendix). The initial density was then easily determined in the 

program from m~ + 1/2 by computing ~mj + 1/2 and inverting. 

The conservation of mass is ensured by keeping the various mass 

elements fixed in time: 

n = ~m~ + 1/2 = ~m~ ~m j + 1/2 J + 1/2 J + 1/2 

n ~n. + 1/2 ~q (3.5) ~m· = = 
J J J 

n 0 Il'·=m· 
J J 

Momentum conservation is accomplished by: 

u~ + 1/2 U'1 1/2 (rn)2(pTl p~ + 0~ 1/2 
= 1/2 + 1/2 J J - j j + 1/2 J - J 

Q~ - 1/2 ~tn ~ n (3.6) ) - - 6t 
J 1 /2 ~m. (r~) 

,J J . 

. 

-, 
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" 
" \ 

" 
! 
f 

t .. 
I 

18 

where~,:,tn is the time interval between the centered total times 

t n + 1/2 and n - 1/2 e:.tn is given by: t . 
~ 

" <) 

l.tn = 1/2 (;tn + 1/2 + 6tn - 1/2) (3.7) 

. The following are subsequently updated: 

n + 1 r~ + U~ +, 1/2 I1tn + 1/2 
rj ::; 

J J 

.!. (f n + 1J3 r n + 1 J 3} 
1 

- ,r. 
V~ + = 

3 (j + 1 ~ J 
J + 1/2. e:.m j + 1/2 -. 
n + 1/2 1 ( n + 1 n ) V j' + = V j -+ 1/2 + V j + 1/2 2 1/2 (3.8) 

.' 

*n + 1/2 n 1 n + 1/2 (€j + 
n - ~/2) E:j + 1/2 

!: ej + 1/2 + "2 I1t 1/2 - c· 
1/£ J + 

6tn -
• 

p~n + 1/2 { *n + 1/2 n + '1/2) = P €:j + 1/2 t Vj + 1/2 J + 1/2 

2 
... 

1 1ul} *~1/2 
~- + 1 

- ul} + 
J 

1/2J / V~ + 1/2 
J + 1/2 

Of vI} + 
1 J + 1/2 

< v'f) 
J + 1/2· 

O
n + 1/2 _ 
j + 1/2 - .0 

The energy 'is then' conserved: 

~ 

r 

and Un + 
j + 

if -n + 
Vj + 

n + 
and U j + 

1/2 < 
1 

Un + 
j 

1 > Vn 
1/2 - j + 

1/2 > ~~ + 
1 - [~\ 

n + 1 ~. n :( *n + 1/2, n + 1/21 r n + 1 - vn J 
~j + 1/2 = € j + 1/2 - : P j + 1 /2 ,,+- Q j . + 1 /2) l V j + 1 / 2 j + 1 /2 

-..-------
• (3.9) 

1/2 

1/2 

1/2 . 
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~t' 
Prior to the determination of the time step it is necessary to 

calculate the speed of sound at the centre of each zone c~ j + 1/2' This 

may be done by replacing tHe thermodynamic relation 

c = 11E.~J 
S dp s 

by an appropriate finite difference expression. In our case however, 

the predominant use of polytropic equations of state allQwed the speed 

of sound to be evaluated as Cs = lyP/p and therefore 

n / n (3.10) 
Cs j + 1 k£ = . y P j + 1/2 

The time 'step 6tn + 1/2 for the succeeding cycle is the last 

quantity computed. Stepsize is selected by the requirements of stability 

and accuracy. Stability in the non-dissipative finite difference 

system is guaranteed by the Courant condition; i.e. 

At <_ A /C 
Ll wr S (3.11) 

The presence of the artificial viscosity Q requires that a slightly less 

liberal form of-the Courant condition be employed. Experience (see for 

example, May and White 1966) suggests, that the condition 6t = .2~r/Cs 
will be satisfactory in most cases. In terms of finite differences 

.2(r
n
. + 1 - r

n
.) 

J J 

for a particular zone. Accuracy is gained by calculating time steps 

that would' constrain the maximum cbange in internal specific energy and 

volume to below 2%/cycle. The following expression, which for each zone 

calculates a time step inversely proportional to the fractional change 



J 

in energy between the current and previous step, has been found 

sat; sfa~tory. 

. n n + 
= .02 c j + 1/2~t 

( n n -
£j + 1/2 - (j + 

1/2 

1 
1/2) 

20 

(3.12)~ 

An analogous time interval ;s evaluated to restrain the volume change 

n n + 1/2 
_ .02 Vj + 1/Z6t 
--(n n-1 ) 

Vj + 1/2 - Vj + 1/2 
(3.\3) 
~ 

Finally, the time step to be utilized in the next cycle is the smallest 

of the 3J intervals 

-(3.14) 

The accuracy of the numerical solution is related to the ord.er 
. .. 

Of the finite dttf~rence scheme. It may be demonstrated (Richtmyer and 

Morton, 1967) that the scheme employed here has at best a truncat~on 

• ~ror which is of second order in time and radius, i.e. O(br)2 + (6t)2] . .. 

r . 

\ 
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CHAPTER 4 

Tests 

Prior to employing the code for the actual core model calculations, 

the capacity of the code to follow a variety of flow phenomena was 

tested. The three types of flow tested were: free fall, blast wave and 

equl1ibrium. 

4.1 Free Fall 

The of a uniform density self-

grav'; tating investigated. 
,. 

A straightforward inte ration of the gravitational free fall 

equation for a homogeneous sphere of initial de~sity (at time t = 0) Po 

shows that the collapse is,homo1ogous with the radius r of a given 

lagrangian mass coordinate evolving in time according to (Rose 1973): 

(4.1.1) 

" 

I 
i 

.\ 

/ 

A 2Me sphere of cOQstant density was divided into 60 zones of 

equal mass. Each zone had a density Po = 9.56 x 105. g:cm- 3 a~d no 

\ 

pressure support. The code followed the collapse of the unstable sphere 

until the radius of the second zone had been reduced app~ximate1Y 160 
/ . ------

fold. 

The numerical results for zone 2 were compared to the analytic 

solution by plotting log (r/ro) vs. log 
'. 

21 



Fig. 1: Gravitational collapse of a spherically symmetric t pressureless, 

mass distribution. 
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where t is the time, ro is the radius of the zone at the initiation of 

computing (t = 0), and r is the radius of the same zone at time t. 
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Only one zone was plotted because the freefa11 was homologous (r/ro ;s 

the same for all zones at given t) to better than 1 part in lOS. As~;s 

illustrated in fig. 1, the numerical and analytic solytion correspond 

to nigh accuracy. 

~ B1 ast \~ave 
The propagation of a spherically symnetric blast waVe in a 

constant pressure, constant specific heat~ gravity free environment . . 
was examined. The blast was provided by an instantaneous intense 

explosion triggered in a volume small compared to the initial extent of 

the medium. An analytic self-similar solution (the Sedov solution, see' 

.Landau and Lifshitz 1959) exists for this scenario if two assumptions 

are simultaneously valid: the explosion oC·C,urred at a point and the 

pressure behind the shock far exceeds the pressure ahead. It should be .. 
noted ~at the occurrence of the explosion at a pOi~is equivalent to 

<'" - ./ 

the shock front having a radius very large in relation to the radius of 

the initial volume bounding the explosion. 

On purely dimensional grounds, the location and velocity of the 

spherical.bl~st wave following a point explosion of total energy E in 

a uniform medium of-density po·mus~ be given by 
1/5 

R = ~ (Et
2
) 

o .. Po 
(4.2.1) 

\-
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dR 2 R V=-=--dt, 5 t (4.2.2) 

The dimensionless parameter ~o depends on the adiabatic exponent of the 

matter; for y = 1.23, Zeldovich and Raizer'(1968) gi~e ~o-= 0.93. The 

detailed structure behind the shock, to which we make comparison in 

Figures 2 and 3, may be found in Landau and Lifshitz (1959). 

In the n,umerical calculations ,a constant pressure (Po = 2:27 h 
1~19 dynes/cm2), constant adiabatic index (1.23), gravity free, spherically 

symmetric perfect gas distribution was divided into 100 equal mass 
.. 

zones. Ah intense explosion was induced by instan~aneously increasing 

the internal energy of the first zone from E = 4 x 1045 to E = 4 x 1049 

ergs at t = O. The resulting shock wave was examined at a series of 

subsequent times. For two of these times (t = .99 sec, t = 2.29 sec), - -
> 

the numerical solufion and the self-similar analytic solutions (calcu-

lated with Eo = 4 x 1045 , Po = 9.56 x lOS) of the density a~ocity 

were plotted in normalized form (Figure 2 and 3). The normalization was 

effected by dividing all velocity and density values by the maximum 

theoretical velocity and density respectively. 

results of these efforts. 

. Fig. 2 and 3 display the 

As expected, the theoretical curve is discontinuous at the position 

of the shock front,and the nu~r;cal shock ;s spread ,by the artificial 

vi~cosity over 4 or 5 zones. Although the shock occupies a constant 

number of zones, the zones become increasingly condensed so that the 

shock width as ,measured by the radial co-ordinate, decreases. As·a 
• 

result the numerical density distribution becomes sharper with time, and 
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the peak of the densi ty di stri buti on' grows .. 

The velocity profile is somewhat more erratic than the den~~ty . 
profil~~ However, ;~ does become increasingly linear with time although 

it lies significantly below the theoretical. The sm~ll. oscillations in 

xhe vicinity of the peak are due to the extreme strength of the shock; 

a larger coefficient on the artifical viscos~ty would extinguish them. 

It must be noted that the radius of the exploding zone was 

2.15 x 108 cm and the position of the shock after 2~289 sec was around 

7 x 108 cm. Hence t~e point explosion assumption is not applicable so 

. that a .discrepancy between numerical and analytic solutions should exist . .. 
However, the numerical solutions become increasingly similar to 

1-

the analytic solutions, and at late~ times when ~he assumptions discussed 
" . 

earlier are valid for the numerical shock. the agreement is much better. 
," 

J 



• 
Fig. 2: Comparison of theoretical Sedov ~olution to the numerical 

c.. .~\ 
, . 

stuay of a spherically symmetric blast wave propagating through 

a homogeneous perfect gas (no gravity). Time after explosion 

; s t = 0.99 sec . .. 
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Fig. 3: Same as fig. 2, except later on at t = 2.29 s. 
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4.3 Equilibrium 

The ability of the code to emulate equilibrium was tested on a 

self-gravitating perfect gas sphere. Employing a y = 5/3 polytropic 

equation of state: 

28 

P = 4.177 x 1011 p5/3 dynes-cm-2 {4.3.1) 

9 -3 and central density 4 x 10 g-cm ~ the equation for hydrostatic equili-

brium (5.1.5) was numerically integrated for 20 zones to yield a 

2Mo numerical model in stable equilibrium. This initial model was then 

subjected to the 'action of the hydrodynamics code until the model had 

evolved by 5 s. in time. 

The results were characterized by sm~ll amplitude oscillations in 

the flow variables. 
",-

During the entire 5 s. interval which conta~Qed 15-30 

oscillations (depe~in~ on the particular zone considered) th~ osclllatiohs 

remained stable. The density, radius. pressure, and energy displayed peak 

changes of approximately 1% about their initial values. The velocity . 

oscill~ted between positive and negative values of comparable magnitude on 

timescales of .17 s. (for one complete cycle) for the innermost zone, and 

.35 s. for the-outermost zone. The zones in between oscillated with 

intermediate periods. These were compared to the small amplitude 

pulsatio,nal period ('{pul) of a poly trope: 

'" 2 (R3/GM)'/2 1 
L pul '" 1T (3y-4 ) 

• 
(4.3.2) 

The total kinetic energy of the oscillations was also computed and 

found to be at most ""047 ergss .which is .01% of the total i~ternal energy 
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(2 x 1051 ergs) of the model. 

In view of these results, it appears that the oscillations are no 

more than sound waves unavoidably triggered by ,the various errors inherent 

in the calculations (for example truncation and round off ~rrors). Hence, 

it would appear that the code is capable of simulating equilibrium. , 

. 
~ 

r 



( I n it i a 1 Model, . . 

. . CHAPTER 5 

Current evolutionary models tend to endow all stars in the mass 

range (M > a-te ) with nearly identical cores as they approach dynamic 

instability (Ar~ett and Schramm, 1973). The cores·are characterized by 

masses near the Chandrasekhar limit, central densities of approximately 

4 x 109 g_cm- 3 , and a composition of almost pure Fe56 (the endpoint of 

thermonuclear combustion). The primary means of mechanical support for 

such an entity is pressure from degenerate relativistic electrons. 

Dynamic instability (initiating collapse) oc~urs for these cores 

when electron capture on Fe56 r~duce~ their Chandrasekhar limiting mass. 

Pri or to the onset of e'l ec tron capture e Chandrasekh ar mass and core 

mass are the same. However, as elec rons are removed from the c9re, their 

mean molecular weight (~e) increase and since the Chandrasekhar mass 

(Mc) is crelated to the electron mean molecular weight as follows 

(Zeldovich and Novikov 1971): 

'2 
. M "\.. (L) (5.1.1) 

c l-le 

it is clear that the Chandrasekhar mass mu·st decrease. Th;s_ leads to a 

dynamic instability. 

The actual capture of electrons ;s initiated when',t-be Fermi 

energy (cf ) of the degenerate electron gas exceeds the threshold'for .. 
capture on Fe56 , E = 3.7 MeY (Garvey et al., 1969). We may estim~te the o .--
density at which capture commenceS by setting €f = 3.7 MeV and employing 

30 
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the following. relation between the Fermi energy and the density of an 

extreme relativi~tic completely degenerate gas: 

(-5.1.2) 

H~~e mFe is the mass of an iron nucleus and ~ ;s given by: 

~ e = AI Z = 2. 1 5 ( 5. 1 . 3) , 

for a gas consisting purely of electrons and iron nuclei. According to 

this, the density at which electron capture initiates is approximately 
8 -3 7.5 x 10 g-cm . 

For our initial model, it was assumed that the· pressure was 

entirely doe to extreme relativistic completely dege~erate electrons . . 
This '~ould permit the const~uction ~f a COL~ polytroPic~n = 3 (y ~ 4/3) 

core with equation of state given by: 
"' 

(5.1.4) 

Given the adiabatic tndex (y ='4/3)' and1ttre e-let:tron-molecu1ar weight 

(2. ,15 for Fe56 compos 1 ti on) • the va 1 ue· of K was fi xed by the theory of 

the degenerate relativistic electron gas to be 4.46 x 1014 dynes-cm2 
... 

[g_cm- 3]-4/3. The equation of hydrostatic equilibrium 

dP Gme ( ) 
dr = - rL 5.1.5 

9 -3 was numerically integrated for a central.~~nsity, Pc = 4 x 10 g-cm 

and equation of state represented by Eq. (5.1.4). 
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The resulting 1.24 Me equilibrium configuration was partitioned 

into 60 zones, with the same mass increment in the first 40 zones. Th~ 

mass/zone in the remaining 20 was decreased linearly until the'last zone . 
... 

contained 1/400 of the total mass. 

To (s~~1Ul ate i ?'ci pi en t dynami cal i nstabi 1 ity, we etnp 1 oyed the 

fact that the initial central density (4~ 109 g-cm-3) was larger than 

~ the threshold density for electron capture (7.5 x 108 g-cm3) by a factor 
"' 

of 5. This suggested that the number densHy qf electrons in our . 
, equilibrium configuration should be reduced somew,hat to mimic 'electron 

capture. The reduction was effectively attained by decreasing the . 
pressure and internal energy of the equilibrium configuration'by 10% 

(p'~.9P). This represented the ;n;ti~l model for all subsequent 

investigations. 
'I: 

This somewhat ad hoc reduction of the pressure and internal 

"" energy serves merely to initiate the collapse. We have adopted a value. 

of 10% for the reduction to ensure that the collapse starts quickly. 

Once started~ the collapse is determined by a different equation of 

state which qua1itatively accounts for a variety of different physical 

effects. We ~urn to a description of this equation of state in the 

next section. 

5.2 Equation of State 

As discussed in the p'revious section the equation of state has 

adiabatic index 4/3 up to the onset of instability. Although Chandrasekhar 

(19~9) demonstrated that dynamic instability required an adiabatic 

index <4/~, the capture induced decrease of the Chandrasekhar. mass 

.) 
r 
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permits instability to occur with index = 4/3 (see section 5.1). As 

a result, collapse continues to higher density and temperature (T ~ p1/3) 

witn adiabatic index = 4/3. At suffic~ently high densities (2 x 1010 

g_cm3) and temperatures (lO'OOK) ,photodissociation of iron nuclei 

occurs (initially to alph~ ~articles and neu~rons, then to free protons and 

neutrQns) and lowers the adiabatic index to below 4/3. Then a true 

dynamical instabilit~ exists. 

As ~he density continues to rise, the neutrons created by 

electron capture and photodissociation become increasingly numerous . > 
.... so that their contr,ibution to tile' equation of state must be taken into 

account. The neutrons comprise a non-relativistic gas ~ith an equation 

• 

of state whic~ possesses an adiabatic index greater than 4/3. Eventually, 

this neutron,gas effectively drives the adiabatic index of inner r.egions .. 
. of the °core above 4/3. As a result, the inner core ceases its implosion, 

and a shock is engendered when the outer core impinges on the arrested 

inner core. -
In order to explore the purely hydrodynamical aspect of this 

phenomenon. the equatjon of state is modell~d by a snft (low adiabatic 
\ 

index ~ 4/3) poly trope at low'tiensities, and a hard (large adiabatic 

index y > 4/3) at highe~ densities. The transition between these two 

branches is achieved continuously via an interpolating polynomial. 
;-. 

Eq. (5.2.1) is the general form of all equations of state emplo~ed in 
':. ~,. .. 

this thes is .. 
.. , . 

. 
- . 

_ t" 

' .. 
, 

• '. .,1t 

.. 



Fig. 4: The dependence of adiabatic index upon the log of the density 

for the equations of ,state employed in this thesis. The smooth 

curve -effecti ng t~ trans iti on beb/een the low density branches 

(y = Y~;n) and .high dens,Hy bra~ches (y = Ymax).is either a 

parabOla or straight line depending on the model. 
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P = 4.0 x 1014 p4/3 < p - Ps (a) 

P = K ymin 1 p Pb ~ P > Ps (b) 

p = EXP(al+a2(lnp)+a3(lnp)2+a4(lnp)3) Pm :: P > Pb (c) (5.2.1) 

P = K yma\x 
2 p P > p m (d) 

~ The models investigated (see section 6) were consuucted by merely 

varying the parameters in (5.2.1). 

Eq. (5.2.1a) is the equation of state of the unstable initial 
, 

model. Except for one model (G), Ps = 4.0 x '09 gr/cm~; so that 

immedi~tely upon contracting to higher density, the low density equation 

of state (5.2.1) is invo'ked. The constant K, is always determined from 

the contin'ui ty' of pressiJre at p = Ps' . 

The coefficie~t Kz of the high density branch (5.2.1d) was pre­

selected for two models (A, B); but evaluated analogously to Kl for 

the rest. The transition from (5.2.lb) to (5.2.ld) was effected by , . 

conne'cting the region of yep) between y(Pb) = Ymin and Y(Pm) ,:: Ymax 
with a polynomial (fig. 4)~ 

The coefficients 

the ~quation 

polynomial are determined by the p-arame"ters of 

"hich will be detailed in the n~xt.chapt~r. 

" I 

,. 
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CHAPTER 6 

Resul ts 

Table 1 presents for each model, the independent parameters of 

the equation of state and also parameters describing the characteristics 

of infall and bounce. In particular, t max is the_max~mum time for which 

the models were followed, F is the Lagrangian co-ordinate (mass zone 

number) of the velocity minima (or infall velocity maximum), S is the 

Lagrangian co-ordinate of the shock and K is the total kinetic energy. 

The significance of t b, 6tb, Pmax ' and Preb is illustrated in Fig. (S). 

Fig. (5) serves both as a sketch of the timewise behavi~ur of the. 

central density and as a pictorial definition of t b, ~tb' Pmax.and 

Preb' 

Fig. (6) and Fig. (7) illustrate the velocity log density, and 

log radius distributions for model B. 
. \ 

The distributions are plotted in 

terms of the zone number for two different times before the initiatiun 

of oounce (fig.-{.6)} and after (F.ig. (7). Fig. (8), Fig. (9L F1q. 

(10), and .,F~g. (ll) display the same as above; but for model (G) . 

...... Jhe evolut1an of a11 model,s (A, B, E, and G) exhibited 
. 

qualitative similaritie& •. In each case, the ini~ial configuration . . . 
imp10ded rap"idly,. until~ at sufficiently high densities a portion or the 

core (inner core) bounced. The first bounce WpS the most pronounced, , 
- '. ' 

while subsequent bounces proved to be increasingly damped. A shock Was 

created at the surface of the bourcing inner core as the infalling 

outer core impinged on the inner core. Because of these resemblances, 

36 
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Table 1:" Results 

times (t) are i~ milliseconds, 

and total kinetlc energies (K) ara in ergs. F and S are Lagrangain 
... 

co-ordinates in mass zones (the stellar boundary is zone 60): F is 

the location of the infall veloci"ty maximum and S ;s the location of 

the accretion shock: 
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MODEL A B E G 

Ymax 5/3 5/3 1.35 1.38 

Ymin .--..., 4/3 1. 25 4/3 1. 33 

Ps 4 x 109 4 X 109 4 x 109 1 x 1010 

Pb 1 x 1013 1 X 1013 1 x 1013 1 x 1013 

Pm 5 x 1014 5 X 1014 4 x 1013 1.02 x 1013 
... 

t(p = 1013) 196.15 167 196. 15 195.2 . 
K(p' = 1013) 2 x 1051 , 3 x 1051 2' x 1051 

Pmax . 1.3 X 1015 4.9 x 1014 
'~. 

1.9xlO'6 7.7 x 1014 

. 
t(p = Pma) 198.41 169.10 198.91 197.79 

8.5 x 1014. 3.3 x 1014 2.8 x 1013 
. 13 

Preb 2 .. 1 x lO 
'" 

t(p = Preb) 198.60 169.38 202.66 > 201. 45 

6tb . 19 .28 • 3.75 3.46 

Pma/Preb 1.5 1.5 685 37.5 

Pequi 1. 1 x 1015 ",7 x 10~4 

t max 200.2 173.48 205.09 212.10 

f F INITIAL 43 35 43 43 
, F(p ~' 1013) 50 24- .50 50 i-

,I . 

I F(p = Pmax ) 50 20 50 50 
~-

S{p = Pmax) 50 20 50 9tr 
i i . S(p = Preb) 50 25 54 54 

I Set = t.'-. ) 52 38 54 ' 55 , ~max 

; 



.... 

--' ._- c 
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Fig. 5: Sketch of time b~hav our of central density, Bounce is taken 

t 

here to be the sect on of the curve extending from Pmax to Preb' ~ 

The remaining sections are usually referred to as oscillations. 

, 

• .,.. 
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CENTRAL DENSITY vs. TIME 
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Fig. 6: Log density {Po .• )t log radius (r---)t and velocity (v ___ ) 

are plotted vs. mass zone for model B. The figure depicts a 

relatively early phase of infal1; the density distribution is 

still very simi1ar to the initial distribution and the minima 

of the velocity curve (F) is well in front of its final position. 
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The same as figure 6 except at fr later time after bounce . 

Ac~etion has advanced the inner core to almost zone 40. 
I 

'\ 
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U 

The i. 
. ,.. 

graph symbols are: log density (p ..• ), log radius (r---), 

and velocity (v_). 
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Fig. 8: Log den~;ty (p ... ), log radius (r---), and velocity (v _____ ) are 

. -

plotted vs. mass zone for mOdel G. This depicts a relatively 

advanced phase of infall . 
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Fig. 9: Same as fig. 8 except later (during bounce). Note the large 

posifive velocities behind the shock. The graph symbols are . . 
log density (p ••• ), log radius (r---)~ and velocity (v ___ ). 

, 

. , 



42 

0 ().. 
~ "b -og ~ ~ 

_ ..... 
Eg 0 0 - ..... .- ..... .-.... , 

I I I I 
U . . - , 0 

<D 

", 
.,..". ", 0 -., 
.' ' In 

" ' '\ 

\ 
\ 

\. ," 
\ 
\ 
\ 0 ...,... 

\ w 
\ Z 
\ 

.... 0 
\ 

N 
tI) . \ V) 
E ·0 en 

\ 
\ ~ 

CO « ().. I 
~ 

,..... 

I' I ...... 
I 
\ 
\ 0 

" \ 
<:U 

l! 

\ 
\ 
\ 
\ 
\ ~ . \ - \ u 

GJ \ 
~ 
E, 

>·u 
~o 

..-/ .-l In '::::'M <:U 0 (\J (""') ...... .... ,,;.-- \ I I I -<? 
E' i , i i i i 

Q... y::90 
"<:t N, 0 COo -0' '-q--g -g ''-g 0 0 ...... .- ...-0> ..... I, -

" . 



" 

• 

Fig. 10: 
q: 

Same as fig. 8 except t = 204 ms whicb co~responds to 
. 

immediately after bounce. The velocities have become negative 

and a reflection shock appears. The graph symbol~ are ,log ------- ' density (p ••• ), log radius (r---), and velocity (v ___ ). 
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Fig. 11: Same as fig. a,.but somewhat after bounce at t = 206 ms, during 
, , " 

a core oscillation. The reflection shoc~ is still' present. 

The graph symbols are log density (p ..• ), log radius (r~--), 
" 

and velocity (v _____ ). 
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the results will be examined in terms of infall t bounce, and shock. 

6.1 Infall 

For each model t infall is characterized by a V-like velocity 

distribution (Fig. (6) and Fig. (8) portray typical examples). the , 

maximum inf~ll velocity, whose Lagrangian co-o~inate we shall hereon 

denote as F, occurs at the minima of the velocity curve. Initially, 

the velocities are everywhere subsonic. However, the zon~s continue 

to accelerate, and ~entually F becomes the boundary between subsonic 
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homologous flow and supersonic flow. The zones beyond F implode super-

sonically, almost in free-fall; whereas the zo~es interior to F fall in 

homologousl.}': at subsonic rates .. ' 

All models displayed the aforementioned general behaviour; but . ( 
differencies [between,models A, G, E, and model B] were noted in the 

position Qf F and the magnitude of the velocities. Model B evolved 

. -/ -

mo"re rapidly than the rest, attaining a given central density before the 

other models. For ~xample (Table 1), model B reqUired 167 ms to reach j 

a central density of 1013 g_cm-3, while the other models required 
" 

'\,195 ms,. At any giver:l time during infall, the kinetic 'energy of model 

, B was the greatest. 

The location of F varied with time. Again models A, G, E 

exhi~ted>similar behaviour. Initially, F was located at zone 43; but 

as infall progressed it mov~d outward to near zone 50, where it then 

remained statjonary. In Fig. (8), the velocity curve of model G at 

an advanced stage of infall shows the velocity minima at zone 50. In 

contrast, the position of F in model B, moved inwards from zone 35 



until it reached zone 20. Fig. (6) contains a snapshot of the velocity 

cutve for model B at a relatively early phase of irtfal'. It may be 

46 " , 

seen there, that the velocity minima has only progressed to near zone 30. 

The density profile during infall is again qualitatively similar 

for all mC\,dels." The density curve l1lay be divided into 3 regions: (i) 
. 

a relatively flat inner portion, (ii) a region of r~pid density decrease, 

"(iii) a flatter outer portion. Initially, the density curve resembles· 

fig. (6). However, at later stages of infal', the density distribution 

becomes akin to fig. (8) and the 3 regions described above become 

clearly disce~nible. 

Region (ii) effectively divides the core into a high density 
. 

inner core and comparatively low, density outer core. Since region (ii) 
. 

always contains the Lagrangian co-ordinate F, it is easy to visualize 

the evolution of the density profile by merely recalling the behaviour 
, 

of F as described in the preceeding paragraph. 

6.2 Bounce 

When the central density of the homologously contracting inner 

core reaches Pmax ; the bounce is initiated. Table 1 indicates that B 

bounces at the lowest density; followed by G, A, and E at sequentially 

higher densfties. Upon attainment of Pmax ' the velocities of the zones 

comprising the inner core become positive, and the inner core rebounds 

to a central"d~nsity Preb" \ 

The ratio of Pmax to Preb is a measure of the strength of the 
" . 

bounce. Large bounces (Table 1) are encountered in models G and E where 

Ymax is only s{ightly dbove 4/3; while small bounces are evident in 

models A and B where Ymax is 5/3. 
, 
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The duration of the bo~nce (~.l ms) is smallest for the models 

bouncing at high density and having the stiffest Ym~; i.e. models A 

and B. Models G and E, having a softer Ymax ' demons~ate substantially 

longer bounces (~3.5 mst. 

The region of the core participating in the bounce ;s the 

previously defined inner core. For models A, G, E this consisted of 

those regions of the core contained within zone 50. This represents 

approximately 1.2 Mo or 95% of the total core mass. In contrast, the 

inner core corresponding to model B is bounded by zone 20 which encompasses 

40% of the total core mass, or .5 Me' ~ 

The velocity profile during. bounce is contained in Fig. (7) and 

Fig. (9) for models Band G. (The other models exhibit similar curf ). 
It is evident that the velocity being positive and linearly ;ncreas~ng 

for the bulk of the inner core reflects homologous motion of the inner 

core during bounce. (For example, the inner 45 zones of model G bounce 

homologously, see Fig~ (9)). The velocities ?f the outenmost zones of 

the inner core display a sharp nonlinear increase, followed by a steep 

drop to the negative values characteristic of the still ;nfalli~g outer 

core. This portion of the velocity curve constitutes the initial shock 

~ront and will be discussed at greater length below. 

~ f~llowing this first bounce more oscillations of the inner 

core were observed in every instance. Each su~ceedtng oscillation was 

increasingly damped (see Fig. (5) as indicated by a decreasing ratio 

'Pmax/Preb' Despite the damping, the oscillatyons were sufficiently 

strong at t max to 

centNl. density. 

prevent accurate determination of the equilibrium 
r-,.. , 

However, ~mOdelS A and B the s~all initial bounce 

I -, 
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.. 

.,. ' 

(Pmax/Preb ~ 1.5) and rapid damping of the oscillations permitted an 

estimate to within a tolerance of half the amplitud~ of an oscillation 
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15 -3 or approximately ±20%. This gave equilibrium densities of 1 x 10 g-cm 
" 

and 7 x 1014 g_cm- 3 respectively for models A an~B. ~hese e~uilibrium 
, . 

densities ~ere found to be slowly increasing as matter continued to 

accrete on the inner core surface. The other models displayed too 

large oscillations up to t max to permit an estimate' of the equilibrium 

centra l' dens i ti Ii,s. 

6.3 Shock 

·The velocity curves in Fi~(7) and 

a negative velocity is rapidly tr:~formed into ~ positive velocity. 

Fig. (8) contain a region where 

Such a region represents a shock. The shock is spread over 2-3 mass 

zones by the .artificial viscosity (see chapter 2). All of the flow 

variables, pressure, density, velocity, and temperature exhibit large 

increas~s over t~e 2-3 mass zones. 

Every model considered i~ ~his thesi~ developed shocks as described 

above. Model B experienced one shock while models A, E, and G displayed 

two shocks (see Fig. (11) for an examp'le); an innermost shock similar . 

to the one in model B, and another,much weaker shock located further out. 

For reasons to be given later, the stronger inner shock will be referred 
.1 

to as an accretion shock. In each case the accretion shock,appeared at the 

·initiation of core bounce ne~r the surface of the inner ~ore. From 

table r (for model G see also Fig. (9», it is", clear that for models 
.;.. 

A, E, G the accre~ion s.hock is created near zone 50, whereas 'in model B, 

the accretion sho~~ .first appears near zone io.. Zone 50 reflects the 
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approximate location of the inner core surface during early ,bounce for 

models A, E, and G as does zone 20 for model B. 

The velocity profile of the accretion shock was, in every case 

and at all times up to tmax' strongly influenced by the oscillatory 

phase of the inner core. Positive velocities (referring to the velocity 

of the matter immediately beh;~d the accretion shock) were observed to 

coincide with the ,expansive phase of the core oscillation and n'e.gative , 

velocities corresponded to the coJ1tractile PDase of th~ oscillatfon. 
""- ' 

This behaviour is illustra~ in the velocity curves in Fig. (9) and 

Fig. (10), which deal with the same model, but at different phases of 

the initial bounce. 

The accretion shock, as its name suggests, is generated as 

the infalling matter is coerced to radically alter its motion,;n 

order to match the motion of the inner core onto which it accretes. In 

every case, the accretion shock always remains ;n the Vicinity of the 

i~er core. This effect'is particularly striking for model B, where 

at t max tbe accretion shock has moved to zone 38. By examining the 
. .. 

density curve in Fig. (7), it is clear that the inner core surface has 

also reached that mass zone~ Similar observation~ may be made with 

respect to the remaining models, although these models were not followed 

long enough to obtain a large amount of accretion onto.the inner core. 

In these -cases, the mass '; ncrease due to accretion has pushed the ; nner . 
zone out by at-most 2~zones (for model 'A). 

The' exist~nce of a second shbck ;s a major difference between 

models A, E, G and model B. r~ model B (Fjg. (7)}, the velocity increases 

monotonically in front of the accretion shock. Th~ other models; 

, . 

, 
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disp1~y an additional~luctuation in the velocity (Fig. (11)). This 

fluctuation is actual~y a second much weaker shock. It differs from 

the accretion shock in that it is not coincident with the surface of 

the inner core; but is several zones in front. 

Up to tmax' none of the models ejected any ~ass or showed any 

propensity to do so. In each case, the maximum velocities were well 

~ below the escape, veloc;tY~imated by 

V = /2GH 
e R (6.3.1) 

50 . 

The shock (not the accretion shock) described above ;s too weak to expel 

any matter. 
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CHAPTER 7 

Oi sC,uss i on 

7.1 Dependence on Equation of State Parameters 

It is clear from the results presented in the previous chapte,r . 
that the equation of state parameters Ymax ' Ymin' and Pm' exert a pro-

found influence on the evolution of the core. It is our int€ntion here 

to utilize those results in de.lineating the relatio~ships between the 

equation of state parameters mentioned aboye, and parameters describing 

core evolution, namely F, Pmax ' Pmaxl,Preb' Pequ i'l' t.tb' In so doing, 

we ultimately establish a relationship between the equa,tion of"state 

and the likelihood of mass ejection via Hydrodynamic ~hbck. 

In the previous chapter, infall was shown ,to be qualitatively 

similar for all models with respect to the shapes and evolution of the 

density and velo~ity, distributi9ns. Differences, however, were evident 

in the behaviour of F which effectively demarcates the surface of the 

inner core, and time elapsed in reaching a given central density. The 

differences noted \bove were largely due to the low density equation 

of state (see section 5.2). In particular, it is clear that the lower 
, 

pressure associated with a softer equation of st~te 'could account for 

smaller values of F and shorter times in r,?aching greater centrai--­

densities. As a zone's density exceeds' Ps ' th~ equation of .state 

becomes characterized by an' adiabatic index Ymin'. A smaller Ymin implies 
. ' 

a smaller pressure 'and greater dominance by gravitational force,s which' 
." 

leads to larger infall velocities for the affected zones. Since the , 
51 
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inner zones are the first to be affected by the low d~nsity branch of 

the equation of state, a smaller index will accelerate their implosion 

relative to the outer zones. Consequently, the velicity and density will 

be more centrally peaked than for a larger Ymin' The density distribution 

will be inclined to resemble fig. (7) rather than fig. (lO),the velocity 
. . 

distribution will appear more akin to fig. (6) than fig. (8), and F will 

then be located further in masswise. For the same reason, the time required 

to attain a given central density will also be-sfiOrter. 

As the density of a zone increases. beyond Pb the adiabatic index 

is continuously increased, until a maximum index, Ymax > 4/3 JS achieved 

at Pm" Once the adiabatic index exceeds 4/3 it is again possible for 

the pressure to compensate for th'e gravitational force (the graVitational 

force may be easily shown to be "up4/3,·so that if P"upY, where y > 4/3, 

eventually the pressure will surmount the gravitational force). Indeed, 
~ 

when the average adiabatic index of the inner core ascends to above 4/3, 

there\xists a stable con'fi~uration at a central denSit~ Pequil with the 

same mass, same entropy, and, same equati on of state as the inner core; 

but less total energy. This extra inner core energy exists in the form 

of infall kinetic energy. Upon achieving a central density, Pequil' the 

inner ~ore ceases to accelerate since at this point, it possesses a stable. 

configuration (the gravttational and pressure forces balance). However, 
~: 

the inertia of the infalling matter causes the equilibrium configruation 

to be overshot. Beyond this point, "pressure forces, 'increasing more . 
rapidly with density than the gravitational 1 become dominant and 

deceleration ~ccurs. The dec~leration i~ fi~ally complete wh~n the 

T'OCftieS momentarily vanish at the maximum central density, Pmax ' At 



this point, the inner fore rebounds. The velocities of the inner core 

become positive) and densities decrease. The rebounding inner core 

continues to expand beyond Pequil dowri to Preb' where once more lit 

reverses its,motion. Because of the excess energy relative to the 

equil'ibrium configuration, the inner core can never completely stop, 

but must perpetually oscillate about the equilibrium density. However, 

these oscillations may be effectiv~ly damped by the redistribution of 
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kipetic energy via acoustic radiative losses, accretion unto the inner core, and 

reflected shock. Since one or more of these phenomena (in addition, the 

artificial viscosity dissipates kinetic energy) actually occur, the inner. 

core osci-llations become increasingly damped as illustred in fig. 5. 

The important quantities associated with bounce are Pmax/Preb' 

Pequil' ~tb' The strength of the bounce is measured by the degree of 

overshoot of the equilibrium density, ie.e. the ratio PmaxlPreb' A 

smaller l"max'implies a smaller rate of pressure increase as the eq~i1ibrium 

density is exceeded, and nence, higher densities are attained prior to the 

reversal of infall. This b~comes quite app~rent in comparing the large 

overshoo'tl ng oJ the equil i bri um density in modelE (Ymax = 1.35) to the 

only slight ~vershoot of Pequil displayed by model A(Ymax = ,5/3). 

Althol'cn not t;xplh:itly inllestiqated, it wou'ld be suspected that 

a small y. and/or large Pm would" be inclined to fayour a, strong bounce. mln - , 
~ A small l". tends to enlarge the infall kineti-e-energy which in turn mln , 

leads to a greater overshooting 'of the equi.librium density. Sim~"arly, 

since a larger Pm implies a ,smaller pressure constant (K2, the ·high 

density branch of the equation of state is effectively softer and once 

more a larger overshoot occurs. 
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The equilibrium density (Pequil) is determined by Ymin' Pm' '~nd 

Ymax . Ymin establishes the behaviour of F during infall and hence the 

mass of the inner core [this is true during bounce. "At later stages, 

accretion - see for example model B - m.ay Significantly raise 'the mass 

of the inner core]. A smaller Ymin corresponds to a,smaller F and a . , 

smaller inner core mass. A lighter inner core will clearly possess a 

small central density. 

The high density branch of the equation of state is described 

by Pm and: Ymax · A larger Ymax and/or smaller Pm gives rise to a stiffer 

equation of state. Since a stiff equation of state generates larger 

pressures for a given density, an arbitrary mass may be su~ported by a 

lower density configuration than would be required by a softer (smaller 

Ymax and/or l~rger, Pm) equation of state. Hence, the equilibrium 

central density is reduced by increaSing Ymax and/or decreasing Pm' 

The time interval required to bounce from Pmax to Preb' 6t b, 

was compared to half the pulsational period (Tpu1 ) as given by ~q'n ~ 

(4.3.1). It was obse.rved that .6.tb and ~pul agreed well with respect 
~ , 

to their dependencies on Ymax and Pequil. According to this, larger 

~alues of 6tb are co~sistent with smaller equilibrium central derisities 

and/or smaller Ymax ' As an example, model E and model G displaye,d simila'r 

values of 6tb. Model E evolved to higher denSities. than moq~l G, Dut 

bounced on a 'similar timescale beeause of a lower·ymax ' 

.The physJcally most notable shock in this study was conSistently 
I ' , 

an accretion shock. The accretion shock was induced by the'sudden 

,charge in motion exp.erienced by the .~nfalling matter as it impinges on 

. the bounci,ng inner core. The strong'est ~ccretion shocks, as measured by 

( 
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the positivity of 'the velocities behind the shock, were quite expectedly 

provided by the models eXhE"tin,g the strongest bounces (model E and 

model G). The accretion shock, ho~ever, is of secondary importance since 

it can never induce mass ejection. In fact, those cases where mass 

ejection occurs might be expected to possess relatively weak accretion 

shocks, since much of the mass ex~erior to the surface'of the inner 

core is n'ow outward bound instead of infalling. This situation is . 
possible only if a shock is able t~ propagate from the surface of the 

bouncing core, outwards in radius. As the shock e~counters the outer 

zones, they acquire positive velocities. If'the shock possesses sufficient' 

strength it is possible that Some of these·velocities may. exceed the 

~cape velocities for the relevant~ones, so that mass/ejection eventually 

ensues. Such a shock would be expected to be induced by a strong bounce 
, 

(the initial bouQce is most effective in dep~siting kinetic-energy into 

the shock. Subsequent oscillation> are weaker and less effective) acting 

fpr a long time, i.e. large Pmax/Pre~ and 6tb' This type of shock 

almost appears,as a.reflection of the infalling matter off the inner 

core and hence may be more clearly distinguished from an accretion 

shock, by referring to it as a-reflection shock. 

In chapter 6, it was ob~rved for mOdeis A, G, and'E t~~t a . \ 

reflectioQ shock was created by the bOUnce. However, the reflectio~ 

shock was very weak in all three case's,. {see fig. (ll}) -despite strong 

bounces in models G and E. It seems likely that although G and E -
'\ 

e~erienced strong bounces, the bounces Qccurred at such high densities . . 
that the longer time required to attain these ~igh densities permitted -

l 

.. 
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" the infalling matter to accumulate great momentum. Consequently, the 
. ' 

shocks generated by the bounce were effectively engulfed by the unfalling 
~ 

matter. It would thus appear that an equation of state capable of 
... ~ ~ ..... 

i-nducing strong bounces at somewhat lower densities than exhibi.ted by 

models E and G is required to generate a reflected shock capable of 

ejecting mass. This may be accomplished by merely reducing the values 

of Pb lin models G or E. 

It is interesting to note that models A, G, and E having Ymin 

"'4/3 gave ri'se to a reflected shOCK, w~ereas, model B having Ymin .. 1.25 
, . 

did not. At bounce, the' region'oeyond the surfac~ ·of the inner core is' 
. 

described by the low density branch of the equation of state. As a , 

result,. shock pro~agation depends "on the va1ue of Ymin' t value of 

Ymin much below 4/~ prevents a reflection shock from pro~agatin~ so 

~hat only an accretion'sh0ck appears, whereas a Ymin in the vicinity' '­

of 4/3 is conducive to the propagation of a reflection shock. 

This effect may be understood by realizing that a smal1e~ adiabatic 

index implies a smaller shock velocity. The longer the time a shock 

requires to cross a zone, the larger the, kinetic energies gained by the 

infal.ling matter not yet e:'\countered by the 'shock. The velocity of a 

strong shock '(0) relative to -the veloci1ty of the infalling matter (uo) 

may be shown to satisfy the following relation (seg_Zeldovich and Raizer 

'-968 for ~xample). 
", 

where Cs" i ~Cthe perfect ga~ sp~ed' of sound in front of the ,shock. Since 

the i~fa'll veloc.ity increase~ a~ the' 1/6 power of the s.fe.nsity (Van Rie~r, ., 
~ .. 

. 1978), it is clear from th~ above eq·u-ation that .if y is below 4/3 it 
/ ~ ~ /~~ ~ - ;>.'< ~ ~. ~ 

\ 
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becomes increasingly difficult for the shock to continue propagating 

outwards, as it mov~s further out, The velocities of the matter behind 

the shock become increasingly small as it approaches the core surface. 

7.2 Applicabili-ty 

In this section, certain aspects of the results along w~th the 

simplification incorporated in the ~reatment of stellar collapse will be 

examined for the purpose of delineating the applicability of the study 

to mdre realistic scenarios. We begin with the method utilized to initiate 

~ility. 

~ J, As previously described (s~ctio~ 5.1), instability was initiated 
, 

by reducing the energy everywhere throughout the core by 10%. Thls 

represents an oversimplification, since in reality the energy loss is 

a continuous process (occurring over a density range) occurring at 

different rates thoughtout the core. However, this is of little cOnse-
, 

quence due to the fact that many previous authors (Colgate and White 

,~ 1966"for example) have indicated that the late phases of infall and 

"bo~nce are independent of the parti~~lar choice of ~ollapse initiating 

,instability. 

Another simplification in the choice o'f equation of state (section 

5:2). More realistic equations of state (for exampl~, as deduced from 

. Arnett's model 197Z) display similarities to the sjmple equati~n of 

~;I--_- -

state employed here. In Arnett's model the effective ind~x remains below 

4/~ uP-t~ density of 5 x J012 ~_cm-3, wher~ i~th~n rises linearly 

wit~respect to log p until it has attained a max;m~ value or T~4. -- . - , 

€learly, this is $imilar to the equation of state described ,in section 
--..- ~ ...... .~ 

:" 5.2. 
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The other simplification, adiabaticity has already been discussed 

extensively i~ chapter 2. It was demonstrated there, tpat th~ adiabat5c 

approximation is adequate duri~g bounce and for a short period afterwards. 

None of the models were followed long enough for the adiabatic approxi­

mation to be seriously in error. Had a sufficiently strong reflected 

shock developed to warrant following the models for the substantial 

additiona\ time required for the shock to reach the surface of the core, 

the approximation would have still been satisfactory for the regions 

exterior to the inner core. 

Other r~strictions on the applicability of the treatment of stellar 
'----~--, -_ .... 

collapse stem from the results themselves. Every model, with the 

ex~eption of model G evolV~ to central densities well in excess of 1014 

g-cm-3. At such densities, the vlaue of the expression: 

GM 

C2R 
(7.2.1) 

indicates that general relativisitic effects are non-negligible. However, 

our treatment of stellar collapse is strictly Newtonian. As a result, 

it is highly unlikely that the evolution of thbse ~odels (A, B, or E) 

accurately rep~esent ~eality. Nevertheless, models A, B, and E. are 

not i,without uti 1 ity. '" Although the results are unreliable for the realm 

of densities in which general relativity is important, they do accurately 

reproduce the same hydrodynamical behaviour expected at lower densities, 

where the Newtonian.approximation ;s valid. Thus, the rela~ionships 

between the equation of state paramet~rs and hydrodynamic behaviour are 

applicable to the Newionian regime (below ~~014 g_c~-3) . . . 

• - ;- --'--'''''::',-::"' .. '-, .-- ~.:. .. - -'~ --. 
" 
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These arguments restri ct the va 1 i,di ty of our resul ts to a time 
, 

interval extending from the late infa11 stage to a maximum of ~lO ms 

after bounce. In addition. the~ensity of the bouncing inner core must 

be less than a few times 1014 g_cm-3., Under these circumstances the • r 

results should be applicable to mOre realistic astrophysical scenarios. 
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-CHAPTER 8 

Conclusions 

Regretably, a full investigation of the hydrodynamics of 

stellar collapse was 'forbidden by the scarcity of time ami ponderous 

financial demands. Only four models were investigated, so that an 

explicit investigation of many of the relationships existing 

between the_equation of , state and corresponding hydrodynamical 

behaviour was not possible. However, certain tnteresting relation-

ships~ere exposed. These relationships are described in the 

following evolutionary scenari,o. 

Infall -on a dynamic Hmrscale is triggered by processes 

described earlier in this thesis. During infall, the core effectively 

subdivides into a high density inner core and low density outer core 

seperated by a region of rapid density decrease. The mass of the 

inner core is dependent upon Ymin' A small Ymin leads to a lighter 

inner core. The infall of the inner core continues until it is ter-

minated by the abrupt occurrence of a bounce. The inner core attains 
• 

a maximum central density (Pmax) and afterwards reverses its motion, .. , 

expanding to a lower central density P .k' The strength of the bounce re.u 
is measured by. the rati 0 of the dens Hies a't the i ni tiaiion and ces-

. . \ 

sation of bounce, i.e. Pmax!Preb' For 91ven Pb and Pm' the strength 

60 



of the bounce is determined by y . A small y a > 4/3 results in a 
~ max m x-

longe~ bounce. The duration of the bounce is greater for smaller \ 

den 'ties and smaller y . Bounce leads to the appearance of two max 
pes of schocks, an accretion shock appears in every case while the 

lection shock requi'res a y, somewhere in the vicinity of 4/3. mln 

If y 1 is much below 4/3, only an accretion shock is present. This m n ' 
is the extent of what may be directly concluded from the results of 

this study. From hereon we resort to conjecture to examine mass 

ejection. " 
\ , 

" 

... 

If mass ejection is to occur, the infalling matter must at some 

point be reversed and accelerated to beyond escape velocity. This may 

be accomplished by a sufficiently strong outwa~d propagating reflection, 
.,/ 

shock. As it propagates further out into the less tightly bound region, 
". it is possible that the velocity behind the shock will exceed esca~e 

velocity and some matter will be expelled. . 
'. "--,,,/'--

This phenomenon was not observed as all our models exhibite&only 
. 

weak reflecti~n shoc~s. However, this was due to the large kinetic 

energy possessed by the infalling matter. Despite a strong bounce in 

two models. the momentum of the infall was so great. that fne reflected 

shock was simply overwhelmed. It would therefore appear that a strong 

reflection shock would emerge from minimizing the kinetic energy of the 

infalling material. This could be accomplished most simply by modifying . . , 
the equation of state so that the bounce occurs earlier, i.e. before the 

infalli.ng matter has attained large kinetic,energies. 

- -----~-.... - ...... - ...... - -..-_ .... "_ '- - 'or .... ± __ _ 
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, 

Finally) we suggest conditions .most likely to be associ'ated witn 

the propagation of a strong reflected shock) and hence mass ejection. A 

strong refl~ted shock is concomitant with a strong long lasting bounce 
-

actifig on slowly infalling matter with y~4/3. In terms of the equation of 

state parameters mass ejection is likely with an adiabati~ inddx that 
~ 

rapidly changes (From fig. 4 it may be seen that this ;s equivalent to 

Pm being ~nlY slight.ly larger than ,Pb) from slightly below 4/3 to slightly 

above 4/3. In addition, a low:r Pb will ensure an earlier pounce) thus 

reducing the infall kinetic energy. 

'. 
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APPENDIX 

Below we include a glos?ary of symbols used in the preceeding 

text. First we list the English symbols, then the Greek symbols, and 
,\ 

finally the symbol~ employed in the difference scheme. 

A Atomic mass number 
\ 

C Speed of light v 

.€ Sp~ed of sound s 
Q. Shock velo:ity in rest frame 

E Total internal 'energy 

EQ Internal energy , 

/ 

F Lagrangian co-ordinate ~ ~elocity minima 
J< ... *-:" 

G Gravitational constant 
~ 

h PlanckJs constant 
,... 

K Pressure constant 

Kl Equation of state paramete'r 

K2 EquatioQ o~ state parameter 5.2) 
: 

" 
Ks Boltimann eon5tan~ 

~e Solar ,mass 
, 

Me Chan~asek~ar limiting mass 

mp Proton mass 
",' 

n Particle ~bmber density 

ne 'Electron ~umbe~ d~ns;ty 
p . Pressure 

. 
,Q Rlchtmyer-von Neumann artificial visco$ity 
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r 

T 

t 

u 

v 
Ve "~< 

Z 

y 

E:f 

Pmax 

Radius 

Temperature 

Time 

Velocity 

Velocity of infalling matter 

Specific volume 

Escape velocity 

Atomic number 

Adiabatic index 

( 

Equation of state parameter (fig. 4) 

Equation ~late parameter (fig. 4) 

Time f,o; evolution from density p \ x to Preb ,. ma 
Specific internal e'nergy 

Fermi, energy 

Coefficient of thennal conductivitt 

Mean free path 
!::. 

Photon mean free path 

Electron molecular weight 

oen~ity 

Equation of state par~meter (fig~ ~) 

Central de.ns.ity 

EquiliDriu~ central density (~ig. 5) 

Equation of state parameter (fig. 4) 

Max i mum centra 1 den"s i ty (fi g. 5) 
, i 

R'ebound central ,dens i ty (fi 9 ~ .5) 
" 

\ ... ' ~ 

Equation of state parameter (~;g. 4) 

\ 
\ 

64 

" 

f 



0\',' lpul 
en, 

SJ 

en, 
SJ + 1/2 
n 

e:j + 1/2 

Thomson cross-section 

Free-fall time 

Pulsational time 

Sound speed at zone boundary at nth time 
$ 

Sound spe~d at zone centre at nth time ,. 
'J 
'1 

Specific internal energy ~t zone centre at nth time 

65 

*n - 1/2 
e:j + 1/2 Specific internal energy at zon~ centre at n~h centered time 

o 
mj 

8mj + 1/2 
~m, 

J 

n 
Pj + 1/2 

, *n - 1/2 
Pj + 1/2 

n - .1/2 ' 
Qj .+ 1/2 

r~ 
J 

t n , , 
, ~ 

L\tn + 1/2 

• 

Total mass within jth boundary 

Total mass in jth zone 

Total mass within consecutive ~one centres 

Pressure at zone centre at nth time 

Pressur~ at zone centre at ntt\ cente'red time 
. 

Artificial viscosity at zone centre at nth centered 

R~diUS at ,zone ,boundary at nth t;me~ 
Total time after, n\steps 

Time fnterval between ~tep n t step n 

time 

2. The computer cqde employed to follow the stellar 

models is listed below. 'Also included in a glossar~ of t~e more 

important ,~ymbols contained i.n'the code. 
c 

AO,Al ,A2,A3 eoeffic'i~nts of the interpolating polynomial .used ip the 

equation of state (see section 5~2) 

\ AUX Array conta;~ing the cadi dates for the time interval, to 

b,e used in the next step 
, . 



I 

i . 

r 

c 

c14 : 
I 
I 

c34 

cm3 
. , 

1 ... 
0 

DERG 

OER~MAX 

OM3 ' 

PT2 

ovo~ 
i.., 
I 

OVOlMAX 

E30 

E33i 
I 

E3d 
, I 

ESj2 
1 

GM~X' 

GM~N . 
, 

JZONE 

N 
f;, 

NP~T 
I ' , 

NUPRT 
. 

N~X ~ 

.. 

41f/3 

Array containing c~j 
n Array conta~ning csj + 1/2 

Array tontai ni n9 the masses be,tween the centre of adjacent 

zones --
Gravitational constant, G = 6.673 x 10-8 

Array containing ,the fractional change in energy between 

succeeding steps 

largest member of DERG 

~rray containing bmj + 1/2 

Array containing ~tn 

Array containing the' fractional volume changes between 

succeeding steps 

largest member of OVOl 

A 't .. n - 2 rray con alnlng €j +'1/2 

Array containing'€~ : 
, J 

1 
1/2 

Array containing €~ + 
. J 1/2 
.. *n - 1/2 

Arr~y contalnlng €j + 1/~ 

Equation of stats parameter, Ymax . 

Equation of state parameter, Ymin 

Number of zones 

St~p [lumber 

Print output every NPRT steps 

Print' eve·ry "JZONE/NUPRT zone . . ,. , 

Ma'x;mum number of .steps 

.. 
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P33 

P34 

PK 

PKP 

PS32 

Q31 

Q32 

R13 

R14 

'Rl{)B. 

RHOM 

TSUM 

TQ~E 

TqL.R 
\"-

U11 

U22 

U23' 

V31 

V32 

V33 

V34 
. " 

XM 

. "-

Array containing 

Array containing 

Equation of'state 

, 

.-
> 

" 

1 
.. 

. \ 
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P~ - 1 
J + 1/2 ~--

n 
Pj + . 

1/2 .-.. -
parameter Kl ~~':i~~{. 
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c 
c 
C 
c 

. 

€=SQRT(2.(}/'3.u) 
MJP~T=20 
BX=l 
8=.5 
C=1t .18R7 gO Z3S 
O=&.cl':!E-8 
TCU T-=2 
R14(1)=O 

INITIALIZE FLOW VA~IA8LES IN two STAGES-
1. F~AO IN TOTAL MASS WITHIN OUTER ZONE BOUNDARY 
.ZOtlE ~AOIUS.ZON=': ENiRGY 
AND ZOt-E VEL CeITY.' 

,1150 
8100 

00 8100 J=l,JZON~ 
REAO(S,11S0)XM(J),Q14CJ+l),E34(J),Ul1(J+l) 
FO RMAT (..lilX .lP'+i::15 • .3) 
CONT'lNUE: . 
REAO(S,61011TSUM(11 
FORMAT(10X,lPE1S.3) 

c 
c 

8101 . . 
2. CALCULATE INITIAL ZONE HASS,OENSITy,PRESSUR~ 
,AND SPEeD 'OF SOUND. ) \ 

CALL ~~ASS(R14,V34tCM3,OH3,X~,J~AX,JZO~E,JNl 
CALL OEN~(fi14, OM.)., V33, V 34, V31, V32, R 3 ,JMA'X,J ZONE, NHAX) 
CALL PRESS(£34,E33,E~32,V3~,V33,V32,CT2,P34,PS32· 

69 

1,P~3,~30,JMAX,JZONc,N~AX) , 
CALL SCUNO(V34.V33,p34,R14,R13,C3~,C14,JMAX,JZONEiNHAX) 

C PRINT INITIAL FLOW VARIABL£S. 
"i . 

FFINTU)',2009} • . 
2009 FORMATU9X,"RAOIUS",10X,"VELOCITY",5X,"TCTt\L I-1ASS" 

1 , 5 X , II Z ON E to: ASS" t., . 

18X, "ENERGY", oX, uDENSITV", 9X,"S OUNC, "ax, "P~i:: ssu t:c: u /) 
00 Z010 JC=l.JMAX 
JL=(JCtIPRT)~lPRT-J~ 
IF(JL.~E.O)GO TO 13~ . 
FR..Il\Tt6, 2000~14(JC.l) ,Ul1(JC+1) ,5<H(JC), OM3 (JC), 

lE3~(JC),V34(J ),C3~(JC),P34(JC) . 
2000 FORMAT(lS)(,l -15.8/) 
-2010 CONTINUE , , " -< 

C CALCULATE INITIAL TIME INTERVAL •. 

135. ZW60=Q 

:)

00 950 L= 1, JZONE' > 
UX(Ll=(R14(L+l)-R14(L»/C341L) 

9.50 ONT INUE. ',->' 
i ALL V.SORTH(AUX,JZONE) ", . 
OT2(2)=AUX(1)~.2 
01' 2 ( 1) =B" 0 T 2 i 2 ) 
OT . .IN=OT2(1) 
CT1=(OT2(1)·OTIN)/2 
TSUN(1)=TSUH(1)+OT2~1) 

~ .. 

'. 
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. . .. 

C LOOP Te AOVANC~ FLOW VAR.IA8L~S H,' TII"E. 
C CALCULATE FLeW VARIA'fiLES AT .~tW Tlto'E. TSU/!' 0 .. -1') +OT2(Nl. 

c 
c 

C I~ TOLERANCES NOT HET RECALCULATE hITH LOW VA~IA8LES 
C RECUCEC av A Fi\C TOR," REO" • 

KX=KX+l 
LX=lX+ 1 
JTOL=l 
IF(KX.GT.HAXCYC)GO TO 9000 
REO=Tcur 
OT2(~)=OT2(N)/REO 

" 

CTN=OT2( N) . 
IF ( N. G T. 1J OT N= OT 2 ( N) +0 T 2 (N-i) 10:( c: C "''''KX) 
GO rb 1001 ' 

1003 24=0. . 
IF ( N. G T.·1) T S U H ( N) = T S u M."r N - 1> + 0 T 2 (f\J "t 

. IFOf.EC.NSTf;-T1GO ·TO 122 . 
~ vQ = N - ( t-:./ NP R T) ... N PR T 

IF(JO.Nc.O)GO TO 123 

PRlft.T FLew VARrA8lE:S. 

145 
122 

-
'04=0 
00=0 . 
OE MAV= OC:: HSUM/NPIH 
CVMAV;= CV MS\.iMI t-.PRT 
PP INT (6,1777 ),LX. OV t1AV, OE:t1AV 

'. 

I\J ' • 
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c 

C 
C 

1777 FOP MAT (/30 x."r TO LARGE", IS, 10 ,"AVt:~AGE MA.,~," . 
l1P2E15.7/) , 

OEMSUM =t} 
OVMSUM=Q ~ 
LX=O 
PRI~T(Gt~OGO)N,TSUH(N),OT2(N). 

4000 FOR,..ATCliOX."N=··,IS,30X,uTOTAL TI E=··,lPE1S.7, 
130X,"TIME I~,rERVALd",lFc15."(/) 
F~ I NT ( 6, 4 a 0 2' \, 

~O(j2 FORt-1AT(/25X,I'RADIUS",8X,"VELOCITY", X,uEf-i:::::GYIO
, 

1 8 X , .. C E f\ SIr Y I. t 6 X , .. S au NO" • 
l1CX,··PRESSORE",8X, "VISCOSITY IO

/) 

00 SOOO K=l,NUPRT 
KP=(JMAX/NUP~T)·K-l 
IF«(JMAX/~UPRT)~NUPRT-JMAX' .LT.O)KP: P.l 
PRINT(o,~001)KP.l,Rl~(KP.l)tU23(KF~1), 

1 V 3'+ (I< P h C.3!( K P) , p :3 It ( K P ) , Q 32 ( K P ) 
4001 FORt-CATCSX, 5,10X,lP7E15.6) _. 
5000 CO~TINUc 0 

CALL TOTER (R14,U23,E34,OM3,XM,JZCNE) 

CALCULATE NEW T,rME INTERVAL,OT2(N+l'. \ 
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123 ZQ=Q· , , . 
IF(N.EQ.1).OR.(N.£h.N~AX»GO TO 1000 
CALL SCUND{V34,V33,P3~,R14,R13,C34,Cl~,J~AX,~ZONE,NMAX~ 
I~«CVCLMAX.LT.TOLR1).0~. (OERGMA~~LT.TOL21})~ T~ 1955 
~ALL TIM~(R14,V34,V33,EJ4,E33tC34,OT2,AUX,J~AXl 

lJZOf\E,f\MAX,JAUX) . 
GO TO 1000 

1955 WZ8(j=Q 
KT:;:KT·1 
OT2(h+1)=XINC·OT2(N) 
IF ( K T • G T '. 1-1 xc Y C ) Pi( I N'T (6 , ~ 5 2 0 ) K T 

8520 FO RMA r (f 11160 X, '.1( T =It, 15) 
IF(KT.GT.HXCYCtGO TO 9000 

litO 0 CO NT INUE 
\ 

RAOIUS,cf\EFGY,ANO VELOCITY F~OM PREVIOUS ST~p. 
·FUNCH VAL.LJ~S OF MASS INTERIOR TO zcr-.e OOUN(jA~Y, 

.:J; 
100 7 ~~ = g"'9~9g J= 1, JZONE, 

PU NCH ( 7, 8998) x:-t (J:) ,Rllt (J ,,1) , =: 3 4 ( J ) ,U 2 3 ('J +1) 
8998 FORHAT(10X,lP4E15.3) 
8999 CONTINUE ' 

PUNCH(7,666)TSUM~N} 
666 FORMAT(10X,1~E15.3) 

900G ZR6=0 
STOP .. 
END 

. , 
'. 

, ' 
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C 
C 
" 

SU8ROUTr~~ TC CALCULATE ~~OIUS OF ZCNE aCUNOA~Y 
GIV~N RACIUS AT PREVIOUS STEP AND TI~E INT~RVAL. 

( 
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• SU8R6uTINE RAD(6T2,R13.~14,nVCL,U23,~3,J~A~,JZCNE'NMAX) 
COMMON/CONSRIC,A,Gl,VCONS,SAFE,TCLR,TOLE 
COMMON/CONS!/N,JrOL,~STRT,JcXT 
OIM£~SION R14(JMAX),R13{JMAX) 
OIM~~SION C23(JMAX),OT2(NMAX.,OVCl(JZONE) 
OIHE~SIO~ ~3(JZONE) 
00 200 J=2,JMAX 
IF(JTO(.EO.l)GO TO 206 
R13CJ)=R14(J) 

Z06 Z5=0 
R14(J)=R13(J)+U23(J)~OT2(N) 

ZOO CON T INUt: I-
R14(1)=0 ' 
R13 ( 1) =0 

C CALCULATE ZONE VOLUH€ CHANGGS. 

C 
.C 
r-J 
\ 

. ~ 

SUBROtiTINE TO tALCULATE O~NSITY DIREC~LY FROM QADII 
OF CO~SECUTIVE ZONE OOUNDARIES. ,"\ . 

SUBROU T~ NE DENS (R 14, OM3, V33, V34, V3~1, V3Z, R3. JHA X, 
lJZONE,~MAX) . 

COMMGN/CONSR/C,A,Gl,VCCNS,SAFE,TCLR,rOlE 
COHMON/CONSr/~,JTOl,~STRT,JEXr . 
OIME~SION ~3J(JZONE),V34{JZONE),V31(JZQNE),V32(JZONE) 
DIHE~SION R3(JZONEY . 
OIME~SION Rl~(J~AX),OH~(JZONE) 
00 40D ~=ltJZONE' 
IF(N.E~O)R3(J)=R14(J+l)~Rl~(J+l)~R14(~+1)-

lRi4(J)~14(J)~~14(~) -
IF(~.EC.O)V3~(J)=C·RJ(J)/O~3(J) 
IF ( N • £ Co. 0) V32 ( J) : V.34 (J ) 
IF(JTOL'.£Q.O)V3UJ)=-VJ2(J) . 
IF(JTOL.~Q.OJV33(J)=V34(J) 
V34(J)=C'~J(J)/OM3(J) 
V32(Jl=.S.(V33iJ)+V34(J» J q 

IIJ (V 34 (J ) • l T • 0 J PR I NT <'6.6515. J • V 34 (J) ,N , 
8515 FgP.f04ATC50X,uOENSITY OF ZON=:",!5,~lS.Lt;10X,"\J=",IS) 
~OO CO~T INUE . . ~ 
406 RE.URN . , 

EN~ , 
\ 

.. 

.. 

. . 

. . 
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C, SUeF-OUTlt-.£ Te CALCULATE SP~CIFIC Il'.lERNAL EI\j'::<'GY. 

, SURROUTIN€ E~G(PS32,a32,V3~,OT2,c33,E34,C~~~,V33, 
1c30,SI~K32.~H~X.~ZONE,~HAX) 
COHMCN/CO~SI/N,JTOL,NST~T,JEXT 
COMNON/CONSR/C,A,GltVCONSt~AFEtTOlR,TOLE ? 
DIM£t-.SION SINK32(JZONEl 
orM£~SION E3G(JZONf) 
DIXEt-.SION V33(JlONc) 
DIHE~SION PS32(JZONE),Q32(JZONE),CT2(N~AX),D~RG(JZONE) 

• OIM£~SION ~33(JZONE),E3~(~ZONE"V34(JZCN~) 
OO'~GO J=l,JZONE 
IF ( N. c: C. 1) = 3 J ( J) = E 34 (J ) 
IF{(JTOL.EC.O).ANO.(N.GT.1»~3g(J)=~33(J} 
IF(JTOl.EQ.O)c33(J}=E34(J) 
E34(J)=E33(J)-(PS32(J)+~32(J»·(V34(J)-V33(J» 

C CALCUL~TE THE STEPWISE E~ERGY CHA~GE. 

O£~G(Jl=A8S(1-E34(J)/E33(J}. 

85 25 ~~J~~t ~~ ~x ~!E2~k~ i Nbt6 ig~~?! ~s ~~t~~! : ~ 0 X,"N: ", IS') 
500 CONTINUE 
50& RETURN 

END 

. 
C sua~OUTII'.E TO CA'LCULATE pqESSU~E AT ZO.~E C~Nrc~~. 

" 

SUBROUTINE PP.ESS(E34,E33,ES32,V34,V3~,V32,OT2, 
IF34.,PS32,P33,E30,JMAX,.JZON::,NMAX) ~ ..:. 
COHMON/CONSI/N,JTOL.~ST~T,JEXT 
COHMON/CONSR/C,A,Gl,VCONS,SAFE7TCL~~TOl£ 
OHIEt-.SION E3G (JZON::). -
OIME~SION £3~(JZONE),£33(JZONE),ES32(JZO~E' 
OIMeNSION V34.(JZONE) ,V33(JZONc} ,.V32(JZC/'-:i!) 
OIMEl'iSION P34(~ZONEr"-pS32 (JZONE) ,P33(JZO~c} ,OT2(NHAX) 

~~ ( 13 ¥ ~~ : ~ 0 ~ ij ~ ~~ NO. { N. '(; T • 0 ) ) P 33 ( J ) = p 3,+ (J ) . 
. CALL EONST (V34(J), P34(J» 
. IF(P~4 (J).LT.O)PRINT(6,8535}J,P34(J) ,N 

8535 FOPMAT (5 OX, "PRESSURE OF ZONE", I'5 ,e 15.4, 10X, liN:", 15) 
800' CCNT INue: . 
806 . R-E TURN 

ENTRY PRES1 

C CALCULATE EN£RGY AT CENT~E OF TIME S?EP. 
- t< 

00 84Q> J=l,JZONE 
ES32tJ):.E34(J) 
IF{(~.GT.l).A~O.(JTOL.EQ.O»~S32(J)=E34(J)·ar2(N)· 

1 (E J'+ 'J ) -~ 33 (J }~) / ( 2' • 0'" 0 T 2 ( N-'1 ) , 
IF«~.GT.l).ANO.(JTOL.ta.1)ES32(J)=E33(J)·~r2(N)· 

1 (E, 3 3 (J)- E3 0 ( J ) ) / t 2 .0 i-D T 2 (.N -1 ) } 
IF(JTOL.EQ.G)CALL £QhST(V32(J)tPS32(J~) 

d40 CONT INU~ , -
BETURN 
END, 

-

.. 

8. 

'. 



C SUP.FOUTI~~ Te CALCULATE SP~CIFIC I~lE~NAL E~c~GY. 

SUAFOUTIN€ E~G(PS32,QJ2,V3~,OTZ,c~3,E34tC~oG,V3J. 
lr:3G,SIfI,I(32,JMAX,JZONE,t-.~A·X) , . 
COH~CN/CONSI/NtJTOL,NST~T,JtXT 
CO~MON/CONSR/C,AtGl,VCONS,~AFE,TOLF,TOLE 
OIHt~SION SINI(32(JZONE) 
O!MEt-ASION £3G (JlONE) 
DlfJE~SION V33(JlONC:) 

74 

OIH£t-.SION PS.32(JIONE·),C32fJlONE),CT2(Nt-AX),n::RG(JZJNEl 
O~HEhSION E33(JZONE),~3~(J~ONE),V34(JZCNE) 
00 5 G 0 J = 1 ,.Jl 0 N E 
I~(N.EC.l)~3J(J)=E3~(J) 
IF«JTOL.Ea.O).ANa.(N.Gr.l»~30(J)=E33(J) 

',IF(JTOL.Ea.O)~33(J)=E34(J) 
E34(J);E33(J)-(PS32(J)+132(Jl)~(V34(J)-V33(J» 

C CALCULATE THE STEPWISE E~ERGY CHA~GE. 

6525 
50(j 
SOb 

.. '~ .:... 

OE~G(J~=AaS(1-r:34(J)/E33(JJ) 
IF(E34(J).LT.01PRINT(6,dS25'J,E34(J),N 
FOP.MIIT (5 OX "'ENE~GY OF ZONE", 15 t E 15.:. t 10 X, tit\! = ",15) 
CONTINUE 
RETURN 
END 

~... ""'- -- -

C SUO~OUTI~E Te CALCULATE P~ESSURE AT ZO~E C~NT~~. 

~~UaF.OU!INE_PRE§S(E~4'~33'E~32'V34'V33'V32'OT2' 
1 34,PS~2,P~3,E~O,J~AX,JZON~,NMAX) . 

MMGN/CONSI/N,JTOL,~ST~T,JEXT 
OOH~CN/CONSR/C,AfGltVCO~,SAFE~TCLK,TOl~ 
OII-IE~SION E3G (JZONEl • 
DIMEhSIaN E3~(JlONE),~33(JZONE)tES32(JZOhEl 
OIMeNSION V3~(JZON~),V33(JZON~),V32(JZCNE) .~ 
OIMEhS10N P34CJZONE) ,PS32 (JlONE) ,P33 (JlON=:l,.,OT2(NHAX) 

¥~(13~~t:~Q~ff?~~No.{N.Gr.O})P33(J)=P34(J) 
CAll EONSTIVJ4-lJ),P3lt(J» • 
IF ( Pc 4 (J ) • L r • 0 ) PR I NT (b , ffs 35) J , P.3:' (J) ,N 

8535 FOPMAT(50X,"?RE:SSURE OF ZON~",I5,c-15.'+,10X,"N::",I5) 
800 CONT INtk: 
806 REiURN' 

ENTRY f1R.ESl 
'>\ 

C CAL C U L ATE, ENE R G Y A T C E NT It E:. 0 F T I t1 EST c:: P • 

00 840 J::l,JZO~E 
ESJ2(J,=E34(J1 · ~ 

, IF ( (t4 .. GT .1> • A N-O. ( J TO l. E Q • ~ ) '"S S 3 2 (J ) :: E 34 ( .j) .. 0 T2 { N} .. 
·1 (E 34 (J ) - E 3:3 (J ) ) I ( 2 .0" 0 T 2 I N-ll ) , 

IF ( ( r-.. G r ! 1 h A NO. ( J TO L. t. a . 1.1 ) E S.3 2 (J) :: £:3 3 ( J) .. :; rz ( N I .. 
1(533{J)-EJO{J»/(Z.O"OT2(N-l» . 

IF (J.Tt)·l:.£Q.G)CALL t:Qf-.ST<V32CJ) ,PS32(J» 
0'+0 CaNT I Nt;:: 

kC. TU~N * 
END 



. -

<t 

I 
C SU8ROUTII\E TO CALCULATE SPeEO OF scy.a. 

C 
C 
C 

SU8RCUTIN~ SOUND(V~4,V33,P34~R14,~13,C~4,C14,J~AX, 
IJIOt..E,,.,MAX) 
COMHCN/CONSI/N,JTOL.~ST~T,JEXT 
COMHCN/CONS~/C,A,Gl,VCCNS,5AFE,TCLR,TOlE 
OIM£hSION V34(JZONE),P34(JlONE),C14(JHAX),R14(JHAX) 
OIHEI\SION C34(JZONf),V33(JZONE),~lJ(JHAX) . 

CALCULATE SPEro OF SOUNO AT 40UNOARV OF ZOl\~. 
ONLY "ECESSARY IN ABSENCE OF EXPLICIT Exp~£SSrON 
FOR SCUNO SPC:ED. 

00 60 J= 1 t JH 
CRHO=t/V34{J+l)-1/V34(J) 
C14(J+l)=(P34(J+l)-P34(J»/(V34{J+l)-V34(J) ) 

60 CaNT INlJE 
C14(1)=C14(2)~(C14(2)-C14(3»·Rl~(2)/(Rl~(3)-R14(2» 
C14(JMAX)=Cl~(JZONE)~(C14(JlONE)-C14(J~»¥ 

1(R14(JMAX)-R14(JZONE»/(Rl~(JZONE)-R14(JM» 

C CALCULATE SPEED OF SOUND AT lONE C~~TR€. 

_ C34(J)=.S·CC14(J+l)+C14(J» 
6? 2Z=0 ' , 

75 
I 

\. 

C . IF EQUATION CF STATt'POLYTROPIC "EEC ONLY EX2CUT£ THIS LOOP 

C 

00 6GO J=l,JZONC:: 
C34(J)=SQRT(Gl·P34(J~·V3~(J» 

600 CCNT INUE '_ 
'RE T Uf<N 
END" 

.' 

SUBRO~TI"E TO ,CALCULATE VISCOSITY AT~ZON& CENT~E • 
• 

I 

SUBROUTINE ,VISC(V34,V33"U23,V32,Q31,Q32,JtiAX,JZOUE,Nf"AX) 
COMt-tGN/CONSI/N,JT<tL, "SrRT.,JEXT . 
COMMCN/CONSR/C,A,Gl,VCC~S,3AFE,TCl~,TOL£ 
OIME~~ION V3~(JZON[),V33(JlONE),V32(JZONE} 
OI~~'SION U23(JMAX),Q31(JZONt:J',Q32(JlOf',;E) 

~~ (q~~~: if ~3~~5) ~o . 
IF(~TOl.EQ.O)Q31(JJ=~32CJ) 
C32 (.J) =0 ' 

'.IF«V3Lt(J).LT.V33(JH.ANO.(UZ3{Jfl).LT.U2HJ))) '­
lC32(J)=VCO~S~(U23(J~1)-J»)~~'/V32(J) 

9u CCNT'INUE ' 
. FE. rUJ<N_ . _ • 

, ~NO." .... 

( 

\ 
\ 



C 

c 
C 

SU8~OUTI~E TO CALCUlAT€ N~W TIME STEP. 

SU!3ROUTINE Tr,...ECf.'14,V34tV33,E34,E33,C34,OT2, ~UXt 
lJMAX,JZONE 1 NHAX JAUX) 
CO~HON/CON~R/C,l,Gl,VCCNS,SAFE,TCL~,TOlE 
COMMON/CONSI/~,JTOL,NST~T,JEXT . 
01 ME 1\ S 10 N E 31+ ( J l 0 N £) ,£' 31 ( J ZaN E ) , 0 T 2 ( t-.. t" A X ) , IUJ x ( J A LJ X' ) 
Olt1Er-.SION R14(JriAX) ,C34(JlONE) ,V31t(JZONE) ,v 33(J70NO 
00 1900 M=l,JlONE 
OIF1=V3'+ (1)-V33(M) . 
OIF2=~J4(M)-~33CM) 

.... , 
ARRAY CO~TAI~ING TIM~ STE?S FOR ALL ZONES 
CALCULATiO BY THQEE OIFFERENT ~ETHCOS. 

AU X (M) =SAFE.f. CR14( N +1) -1<14 (01) ) IC34 (M) 
AUX(~+JZONt)=TOLR~V34(H.~OT~(N)/(V34(Ml-V33(~) ) 
IF(OIF1.LT.l.GE-100)AUX(""+JlONE)=1~G£.6 
AUX(M+2·JZONE)=TOLE·E34(~)·OT2(~l/(~34(M)-~33{M») 
IF(OIF2.LT.l.0E-l~O)AUX(H+2·JZONE)=1.0E+6 

1900 CONTINUE 

C SMALLEST TIME STE? CHOSE~. 

CALL VSORT~(AUX,3·JZONE) 
GT2(~+1) =AUX(lL 
RE TURN 
END 

C SU8ROUTI~E Te CALCULATE ~ASS wrTHI~ lONE. 

SU~POUTINE XMASS(R14,V3~tC~3,OH3,~H,JHAX,JZ1~E,J~) 
CO""MON/CONSP/C,AtGl,VCCNS,SAFE,TCLR,TOL~ 
COMMCN/CONSI/N.JTOLt~ST~TtJEXT 
DINEf\SION R14(JHAX),V34(JZONc) ,Ct'3(Jt'),QI"HJZONE) 
DIME~S10N XM(JlONE) 
00 10 J::l~JZONS 
IF (JU<T- 2) 24 t 2&,27 

24 DM3(J)=C·(R14(J+l)··J-F14(J)~·3)/V34(J) 
26- XH (1):: eM 3 ( 1) 

IF(J.GE.2) XM(J)=X:1(J--l)t-OMHJ) 
GO TC '25 

270M .3 ( 1) = X H ( 1> 
IF(J.GE.2)OM3(J)=XH(J)-XM(J-l) 

76 

C ALSO CALCULATE MASS WITHIN C~NTR£S CF CONSEC~TIVE ZO~ES. 

25 IF(J.GE.2)CM3(J-l)=.5~(OH3(J)+O""3(J-1» 
10 CONTINUE • 

RE TURN \ 
END 

I 
I; 
\ 

I 



.. 

1 

C SU8~OUTI~E TO CALCULATE TOTAL ~NEkGY. 

SUOROUTINE TOT~RG(R14,U23.E34.0~3,XH,JZO~El 
o I ME f\,S 10 N X M (1 0 a) , U2 3 ( 1 u a ) ,E 14 (100) .0 M 3 ( 100 ) 
DIME~SION Rl~(100) 
0=6.673E-8 

C INITIALIZE ENE~GIES. 

XKIN1-=u.O 
XKlt-i2=O.O 
FOT1=O.O 
POT 2=0.0 
ESP=(J.G 
XM2=Q 

C Loep TO SUM THE ENERGIES CALCULATED IN EACH ZONE. 

100 

00 100 .JZ=l,JZONE 
U32~(U23(JZ+l)+tl23(JZ)1/2.0 
XKIN1=XKIN1+.S .... 0M3 (JZ> ·U23(JZ+1P·U23 (JZ+l) 
XKI~Z=XKIN2+.S·0H3(JZ)·U32""U32 
FOT1=POT 1+01'13 (JZ) ·XH{JZl /Rllt (JZ+ 1l 
XH2=XH2+0H3(JZl/2.G 
R2=(R14(JZ+l)+R14(JZ1}/Z.O 
FOT2=PGT2+XM2 .... 0H3(JZ)/R2 
XM2=XH2+0H3(JZ)/2.0 
ESP=ESF+OH3(JZ)·EJ4(JZ) 
CONT INUC:: 
FOT1=-O· POTl 
Fa T 2 = - C· PO T 2 

C CALCULATE TOTAL ENERGY. 

ET l=E.SF+ Xl( Ita+oOT 1 
ET2=ESF+X~IN1.PQT2 
ET3=lSF+XKIN2+POTl 
ET4=~S~+XKIN2+POT2 
WPITE(E,111)~SP,XKIN1,XKIN2.POT1,~OT2 

, 

77 

111 FO R,.. A T (/ ... :: s 0 =" • 1 p E15 • b • 5 X , .. X K 11'\ 1::", 1 PE 1 5 • 6 , 5X , "X KIN 2= II , 

11 P':: 15. 6, 5X , ., F 0 T 1 =" , 1 PE 15'. 0,5 X , lip C T 2 =", 1 P t: 15 • 01 
WF IT E ( 0, 11 Z) E T 1, E T 2 ,~T 3 t c: T 4 

112 F 0 F t- A T (JI. ., 5 X , .. E T 1 = .. , 1 P € 1 S • 6 , 5 X , .. E T 2 = .. , 1 p =: 1. 5 • 6 , 
15 x, "E T 3=", 1 PE 15 .6, 5 X t "E T 4 = " t 1 P t:: 1 S .6/ ) 

RE TUF<:N • 
Ef'!U' 

C SU8QCUTI~E TC CALCULATE EQUATION~CF STATE. 

c 
SUBROUTINE (ONST{VV,P) 

EQUATION OF STATE: A,8,E,G,~TC. \ 

R£ rU~N 
END 

• 1 

i 
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