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ABSTRACT

) The purely hydrodynamical behaviour of a collapsing stellar-
core i$ investigated. Adiabaticity and spherical symmetry are assumed.
The equation of state consists of a high and Tow density branch. Both
branches are parametrized by constant adiabatic in@iceéTQ’The evolution
of the collapsing core is examined for various parametrizations of the
equgtioh of state. Empﬁasis is placed upon seeking Sarametrizations

favouring mass ejection. No mass ejection occurred for any para-

metrization considered. However, behaviour most Suggestive of mass

ejection was observed in those models where the adiabatic index rapidly

changed from slightly e]ow"&/3 to slightly above.
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- CHAPTER 1

Introduction K

Massive stars (M > 8Mo) evolve rapidly to a state of thermonuclear
exhaustion. The only stable stellar configuration not dependent upon
thermonuclear support against gravity are white dwarfs (pressure support
from degenerate electrons) and neutron stars (pressure support from degenerate
neutrons). However, these entities possess maximum masses in the neigh-
bourhood of 1.2 Me (Zeldovich and Novikoy, 1971) in the case of white
dwarfs and 1.5 Me (Baym, Pethick, Sutherland, 1971) in the case of
neutron stars. Clearly, these stellar configurations are much 1ightey
than the massive stars introduced above. As a result, massive stars
suffer dynamical instability at some point following the cessation of
thermonuclear combustion. Dynamical instability will then provoke a
violent explosion/implosion which may culminate as a black hole, white
- dwarf, neutron star, or in a %ota]]y disrupted state.

Observational data suggest that ; supernova exp]ogion may
very well be capable of achieving these resu]ts: Supemovae have been
observed in this galaxy™as well as external galaxies, and are presumdbly
related to the terminal stages of $tellar evolution. In some cases
pulsars (roééting neutrén stars) are known to be associated with super-
novae (for example the Crab pulsar and Vela pulsar), so that not all /
supernovae lead to blqck holes or total disruption. |

As a result of the preceeding considerations the supernova

-~
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explosion emerges not only as an observed astrophysical phenomenon of
spectacular dimensions; but also as an evolutionary 1ink between stars
whose cores have exhausted their thermonuclear resources, and pulsars.

For these reasons, supernovae have been, in the past decade, the subject of
numerous intensive investigations. Since observational data from super-
novae explosions have yet to reveal the nature of the underlying processes,
the bulk of the investigations have sought to explain how a grayitationally
induced implosion can give rise to the observed eff;cts.

The remainder of the introduction will be concerned with prior
attempts to numerically simdlate the evolution of a star through the T
implosion phase. Particular emphasis will be given to the ability of
certain processes (to be discussed below), attending implosion, to
induce supernovae explosions. S .

‘k\ An investigation by Burbidge, Burbidge, gbwler,‘and Hoyle (1957)

| of the evolution of a m£§sive star (M > 10 Me)’ resulted in the recognition

of a possible supernova mechanism. They observed that such a star would
enter an unstable phase, leading to a dynamical implosion. It was then
suggested that the rapid compressidn of the unspent fuel would provide
a thermonuclear detonation of supernova proportion:

Colgate and White (1966) published a paper refuting the Burbidge
et al. proposal. They agreed witﬁ the possiﬁility of such an explosion;
but argued that the explosion would release an insufficient quantity
of energy to affect the subsequent dynamical history of“the star. Instead,
their calculations indicated that neutrino deposition of energy in the
outer layers of the star was responsible for supernovae explosions.

However, the neutrinos were treated intuitéveiy rather than by formal



transport. In part%cu]ar, they assuméd fhat the shockwave and the
neutrino emission surface were coincident, sq that the kinetdc energy
of infall was rapidly transferred to the outer layers of the star. As
a result, all their models exploded ;1o]ent1y.

A first attempt at attacking theﬂneutrino transport problem was °
made by Arnett (1967). .Arnett treated the neutrinos as being either in
thermal equilibrium with the matter through which they moved or completely
decoupied from it (depending on the local opacity). This permitted the
utilization of the thermal diffusion transport approximgtion. The
emission surface, as determined by this approximation, was now further
out r§d1a11y than the core shock with the result that the neutrino energy
transfer was less efficienti--In conjunction with an improved equation
of state this procedure yielded supernovae for the lighter (2, 4 Me)
models, However, the massive models (8 My 3 ZMO), being hotter and
therefore more opaque to neutrinos, failed Eo explode.

A further improvement in the treatment of neutrino transport was
employed by Wilson (1971). Wilson used a multi-group, mﬁlti~ang1e,
Boltzmann transport formulation which included general relativity
(found unimportant). Though it represented a significant advance in
computational sophistication, Wilson neglected to make corresponding
improvements in the microscopic physics (for example; the equation of
state and neutrino-electron scattering). The reaction kinetics, .
neutrino-electron scattering, and equation of state were not improved
relative to previous calculations.

His results demonstrated a neutrino energy deposition which was

too small to expel any mass. The only model (1.25 Me) that exploded,



did so, whether or not neutrinos werL included in the calcdlations.
Another possible neutrino supernova mechanism was conceived
following the discovery of neutral currents in the weak interaction (for
a review of the experimental results pertaining to this diééo&gry, as well
as discussions of theoretical models and astrophysical applications sée
Freedman, Schramm, and Tubbs 1977 and references therein). The existence
of a weak neutral current permitted a large number of neutrino processes
above and beyond the usual charged cudrent. mediated reactions. For
example, it was now possible forf%eutrinos to scatter off nucleons,
electron-positron pairs to annih;1ate into muon neutrino and muon
én#;neutrino pairs and bremsstrahlung by nucleons of neutrino-antineu£rino
pairs. Howeber, the most important reaction allowed by the weak
neutral current is the coherent scattering of neutrinos by nuclei
(Freedman 1974).
The coherent neutrino scatteringiéross-section of a nucleus
consisting of A nucleons is A2 times theitzrresponding cross-section of
a single isolated spin]éss isoscalar mod;?\qucleon. This cross-section
in conjunction with the structure of the imploding star could create
an environment capable of sustaining-a supernova explosion. A massive
star on the brink of dynamical impiosion is generally assumed to have N
an "onion-skin" structure i.e. the star consists of consecutive sheﬁls

(working inward) of H, He, C, 0, Ne, Mg, and Si,.surrounding a dense Fe

¢ore. In the ensuing implosion of the Fe core, there effectively

4

occurs a division of the core ™hto a high density inner core and lower

density outer core or mantle, separated by a region of rapid density
v

.change. Electron capture on whatever nuclear species are present
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addition, large fluxes of neutrinos aregalso being generated interior to
the pure iron mantle. If the cross-section for neutrino-nucleon scattering
in the iron (A = 56) mantle is indeed enhanced by a factor of A relative
to the single neutrons which predominate in the inner core, than the
possibility for supernovae explosions to occur via momentum deposition

. e
exists.

Specifically, a relatively low opacity inner core allows large

neutrino fluxes to escape into a high opacity mantle, resulting in

large scale transfer of momentum from the neutrinos to the mantle. -
The momentum acquired by the mantle may be of sufficient magnitude to ™
expel the mantle and outer layers, (the H, He, C, 0, Ne, Mg, Si layers),

generating a supernova display and leaving the inner core as the neutron

star remnant. However, the impact of this argument is blunted somewhat

by a more realistic calculation of neutrino neutron scattering where it
was found that the nucleon cross-section was larger than for the gimplé
model nucleon mentioned above (Tubbs and Schramm, }975). As a result, the,
core being composed precominantly bf neutrons, would now be more opaque
than previously suspected; further decreasing the flux reaching the

mantle. - |

Wilson (1974) incorporated the weak neutral currents in His

calculation, and found for standard choices of neutral current parameters,



that no .explosdon resulted. Subsequent improvements in the calculation
of the microscopic physics also failed to alter the essential results
(for example Wilson 1975, Bruenn 1975). '

Criteria weres presented by Bruenn, Arnett, and Schramm (1977) for
the ejection of the envelope from a collapsing stellar core. The
ejection is effected, presumably, by an outgoing shock wave thatﬂis
either driven by neutrino energy and/or momentum deposition or generated
hydrodynamically by the bouncing of the core at high densities where
the equat?on of state stiffens. They considered the strength of ghe
outgoing shock wave in terms of neutrino momentum deposition, neutrino
energy deposition, and core bounce.

Assuming that the e]ectroﬁ capture neutrinos escaped unhindered
toﬁthe mantle where they deposited their momentum, they estimated that
the mean energy of the neutrinos should be above 15 M%y for ejection.
For neutrino energy deposition the rate of energy transfer by
inelastic  neutrino-electron g;attering was considered. Thjé gave a
Tower limit of 26 MeV for ejection by energy deposition.

In the case of core Bounce, they found that an inner portion of
the core (inner core) would suddenly cease to implode or even rebound
outwards, when its average adiabatic index changed from below 4/3 to
above 4/3. As the outer regions impinged on the reversed inner core
a sharp velocity and density increase, typical of a shock front, would
be encountered by the infalling matter. It was suggested by them, that
if the shock was sufficiently strong it could be expected to propagate
outwards and eject matter.

Recently, Arnett (1977) has computed the éte11q; evolutionary »



sequence for a massive star (8 Me) through hydrodynamic instability and

neutronization, up to core bounce. His calculations contain neutrino

~——

opacities too large to permit very extensive neutrino transport. In.

fact the mantle neutrino luminosity is substantially less than 10% of
Fhe Eddington luminosity (that luminosity at which radiation pressure
balances gravity); and the average energy_of the neutrinos issuing from
“the core is 8 MeV (well below the minimal criteria of the last pgragraph).
. In view of this, mass ejection via neutrino moméntum‘or energy dé;osition
seems unlikely. '
Although, it must béggautioned that there are a multitude of
improvemgqts yet to be realized in the treatment of this phase of
_evo]utigﬁ? current models appear to yield opacitiés'too large to permit,
. neutrino induced supernovae explosions. E$r1ier models suffered from
inadequate treatmeﬁt of neutrino trnasport, which led to Supernovae via
neutrino energy deposition. Somewhat later, more sophisticated com-
putations did not display such behaviour; %n fact neutrino cooling of
ﬁhe shock actually tended to damp the explosion in some models (Wilson
1971). The advent of the weak neutral current mediated processes,
raised the possibility of explosion viq,neutrino momentum deposition;
but this again appears to be ineffective,_aé least for conventjonal ’
choices of neutral current parameters. This is not to suggest that
mass ejection is never observed; but rather the causative mechanism
is more likely hydrodynaiic bounce than neutrinos. For this reason,

we examine the purely hydrodynamical (no transport) behaviour of

stellar collapse.



(-

In chaptér 2 we di;;uﬁéggome simplifying assumptions and intro-
duce the flow equations. The nuﬁerica] method used to solve the flow
equations is presented in chapter‘3, and in chpater 4, tests of the
numerical method are discussed.‘ Chapter 5 describes the initial model
and the equations of state employed in the subsequent .investigations.
Chapter 6 presents the results of the investigations. 1In chapter 7
the results are discussed, inc]hding their applicability. Chgpter 8
summarizes the prévious two chapters with conclusions. Finally, the-
Appendix contains a glossary of symbols employed in this thesis and
also the coﬁputer co&e used to follow the evolution of theﬁmode1s

-

discussed in chapter 6.
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CHAPTER 2

-Hydrodynamics

* - ’ ) . D
Here and elsewhere in this thesis a quantity like p1gﬂjéé:;;;;;;\}
. a variable reduced by (in this case) 12 orders of magnitude, W cgs units.

Although the problem tonsidered here’may be a very complex one
indeed, we make two assumptions which simplify the hydrodynamical formu-
lation immensely: (i) adiabaticity and (i) spherical symmetry.

The assumption of adiabatié\gydrodynamics is tantamount to ignoring
cha&ées in the thermal energy of an arbitrary core volume element due to
neutrino loss, photon diffusion,nheat conduqtion,‘and convection. We
briefly examine each of these in tdrn. The‘dynamica] time scale to ‘0

which we must compare the rates of non-adiabatic processes is expected

to be of order the free-fall collapse time.

Ao

T 23 -1/2 % : '
ff — v 4 x10 7 p s . (2.1)
= 12

Neutrinozkbsses

~

The most serious threat to the adiabaticity approximation is

loss of energy via neutrinos. The magnitude of the 1qss is determined by

the local neutrino 1umfnosity,~the core opacity to neutrinos,. and the

dynamic timescales characteristic of collapse and bounce. Early in the

collapse, when the core densities are relatively low, the neutrinos

That is,

012,= _p/(]o"z g"cm-'B)

. «
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stream out freely, permanently removing energy from the core. As the
collapse progresses to higher densities and temperature, both the local
neutrino luminosity and core opacity to neutrinos increase greatly,
The opacity and local neutrino 1umiﬁosity dé;ermine the neutrino energy
loss rate froﬁ the core (the neutrino 1uminésity'at the core surface).
It is the surface neutrino 1uminbsity applied on a dynamic timescale that’
when compared to the internal energy of the core determines the degree
.of violation of adiabaticity. Ip order to eétab1ish the near adiabaticity
5f this evolutionary phase, we examine some recent results pertinent to
bounce and pre-bounce evolution. |

Arnett's (1977) Ea]cu]ations(demonstraté;that near bounce the
peak neutrino creation rate is ~10%% ergs—s'] (targe enough to challenge
the validity‘of'the adiabatif approximation). However, due to opacity,
_ the actual core surface neutrino luminosity is ~1053 ergs-s'1. By
employing a typical timescale of 10 ms for bounce, we estimate the total

energy lost from the core during bounce to be m]OS] ergs-s—l.

This
représents in the vicinity of 1% of the internal energy of the core.

' In the pre-bounce. stage, electfon capture neutrinos are- the
pfedomigant neutrino species present. The bulk of these are released
once the central dénsityﬁexceeds 2 x 10" g-cm"3 (Schramm and"A?ﬁett~1975).
As a result, we consideé'the density range from 2 x 10" g--c:m-‘3 to bounce

density (> 1013 g-gm'B). 3

~ ]05‘1

At 2 x 10" g-cm ~ the neutrino Tuminosity is

ergs—s*l (Freedman, Schramm, Tubb 1977), and at bounce the maxi-

-1

ST 53 .
mum luminosity of ~107" ergs-s™ 1is achieved. The timescale for evolution

through this range is once more of the order of a few tens of milli-

seconds (Bruenn, Arnett, Schramm 1976), so that the total neutrino energy

—~

-*> ;
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transport from the core amounts to m105] ergs. Again this represents
~a small fraction of the core's internal energy (v1%).

Hence, the collapse aﬁd’bounce may be regarded as adiébatic to
approkimatE1y 1%, which is'quite écceptab]e in view of thé numerous
other unc$rtainties‘present.

Ultimately, of course; neutrino losses will be very important in
allowing the hot core to settle down as a neutron star. The gravitatiqna]
binding energy of a neutron star, ~100 MeV per nucleon (see, for example,
Baym, Pethick, and Sutherland 1971), is expected to be almost entireiy
removed By neutrinos. This occurs after bounce. Since in this the§1s
our object is to deve15p a hydrodynamics code and follow implosion only
up to the point of bounce and possible mass ejectfon by an outgoing shock,

our neglect of neutrino losses is justified.

Photon Transport

The great opacity of the core matter to photons prevents efficient
transboﬁt of energy on the timesca[e of collapse and bounce. We may very
roughly estimate the mean free patA of a photon (AY) by using the Thémson
cross-section for the electron (oTh). -

m

P -12
_Ay,m 1/(necTh) " Tz 2.5 x 107 “py,cm . (2.2)
The time (ry) required for a photon to diffuse through R = 108 cm at
p 1012 g~cm'3 is:
2
R 13 !
T, " X;E'm ]9 S . (2.3)

AN

This is much greater than the dynamical time scale of collapse and bounce
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(a few tens of milliseconds).

/
Conduction

A simila» argumeht may be developed for heat conduction. The

5

equation for heat cdnductidn °
dE ‘
s2t = ~div(x grad 1) (2.4)

may be written dimensionally as:

L]

ﬁlom
<

<% C o (2.5)
R .
where R represents some distance.scale characteristic of flow. The
thermal energy density (EQ) and the coefficient of thermal conductivity

(x) are replaced by the following order of maghitudé estimates:

EQ v Kg T | (2.6)

where n is.the particle number density {or if the matter is degenerate,
the density of particles within KgT of the Fermi surface), V is an rms

random velocity, and A a mean free path. Then, once again a time scale
may be defined by .

—' 2 " <
t R L (2.7)

VA
A Tower limit for this thermal diffusion time is obtained by setting
the rms velocity equal to the speed of 1ight, so that for R ~ 108 cm

.{core radius) we obtain:
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t v —=—35s (2.8)

According to this, for heat conduction to be important (t ~ 10'2 s)

the mean free path would have to be X ~ 107 cm. At these densities, such

J

’ *
a mean free path is larger than the true value by many orders of magnitude.

Convection P

Lonvective motions occur with strongly subsonic velocities. The
imploding matter on the other hand, is described by near sonic and super-
sonic motion. As a result, convective flows dre also incapable of

transporting significant ameunts of energy on a dynamical timescale.

The second assumption is one of spherical symmetry. This is
equiva;ent to neglecting any dynamical role for stellar rotation and/or
stellar magnetic fields. This neglect is coﬁventioﬁa] in thé theoretical
modelling of supernovae, but’ of course can not be justified. Iﬁ fact
all stars have, to a lesser or greater degree, both angular momentum -
and magnetic fields but their inclusion Has generally been well beyond
the scope of most hydrodynamic studies.

The formulation of flow for the models dealt with here is based

on adiabatic, spherically symmetric hydrodynamics. The particular frame

of reference employed is Lagrangian, with the mass m being the Lagrangian

co-ordinate. In this approkimation the partial differential equation of

N .

[Actually, at very late stages of stellar evolution the ‘mean free
path of neutrinos may become as small as ~107 cm, in which case thermal
diffu;ion by neutrinos may be a significant mechanism for energy trans-
port. ‘



flow take the following form:

\\\“--s__Mas{/Conservation:

m(r, t) = m(r,, o)

~ Momentum Conservation (Radial component of Euler's Equation):

u_ _123P Gm
at " par " 2
r
UL g 23 ém :
FE R

Energy Conservation:
'} -

v .
=p%—-— &

QL
oM

In addition the re]atibnship between m and r(m,t) is described by:

" far
o= (3
ot m

The equations written above take no account of viscosity.

14

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

In

the absence of viscosity, shock-waves (which might be expected to arise

in this 5hase of core evolution) are described by mathematically sharp

discantinuities.

These are difficult to treat numerically. Realistic viscosity

parameters are too small to significantly diffuse the discontinuities.

The usual procedure is to introduce the Neumann-Richtmyer artifical

viscosity (Q) into the equations for momentum and energy conservation,

i

With this modification, they become:

Momentum Conservation:
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u _ 9 -
£ = -4 = (P + Q : ‘ (2.14)
e _ 3V
3% ° ..(p + Q) 5T (2.]5)
2 2
where Q = %— [%g] o if §$-< 0 (2.18)
0 otherwise

-~

In essence, the effect of Q is to give the normally discontinuous

shock a finite width. This width is determined by the size of 2% (where

2

% has dimensions of length); the larger 2 the larger the region occupied

by the shock.

The shocks generated by the inclusion of the artifical viscosity

appear as near discontinuties, across which the flow variables have very
nearly the correct jumps, and which travel with very nearly the carrect
speed through the fluid (Richtmxer and Morton, 1967).

)
/

T -
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CHAPTER 3

Numerical Method

The hydrodynamic partial differential equations (2.14) and (2.15) were
solved numerically by means of an explicit finite difference scheme
(Richtmyer and Morton, 1967). The scheme has the dual advantage of relative
simplicity and established performance. Christy (1964), Colgate and White
(1966), and Van Riper (1978) have applied the scheme to similar scenarios
with success. '

In order to utilize the scheme, the core was divided into a
sequence of concentric spherical shells numbered 0, 1 ...J from the
centre outwards. Variables associated with zone cetres are subscripted
j *+ 1/2 and those with zone boundaries by j. Time centering was
analogously specified by the superscripts n and n + 1/2. For example,
the quantity eg : };g indicates that the specific internal energy is

computed at the centre of the th zone at the centered nth time. The

" scheme is usually invoked by specifying the following initial con-

figuration:
rg j=0,
ug j=0,J
. | (3.1)
Ej+'|/2 j=0,d-1
0 i}
iz 3001 :

]
Since the zone with j = O represents the centre, rg and Ug are equated

16
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to 0. The mass contained in the jth zone is calculated by:

0 _ 4n ) 3 _/,.0\37 o
Amj +1/2 ) [(rj + 1) (rj) 1 Qj +1/2 (3-2)

These are summed to obtain the total mass within the jth boundary:

0 Jz] A (3.3)
m. = m N
J k=0 k +1/72

The mass enclosed within consecutive zone centses is also required:

0
am = l/Z(AmJ st J _1/2) (3.4)

For our purposes it was found convenient to modify the-above procedure
somewhat. Instead of the initial density p§v+ 172 the total mass X
contained within the jth zone m% was read in by the program (see
Appendix). The initial density was then easily determined in the

0 . (o] .
program from mj +1/2 by computing Amj +1/2 and inverting.

The conservation of mass is ensured by keeping the various mass

elements fixed in time:

!

n _ n+ 1/2 _
BMj 4 172 = AMj 4 gy = OM 5 + 1/2
n+1/2_ ,0
AmJ = AmJ = AmJ (3.5)
n_ o
ﬂ‘j mJ

Momentum conservation is accomplished by:

n-1/2

n+1/2 _n-1/2
R SR IR V7

2,.n
j = U - DT Ly 7 P52 e

n - 1/2 At : .
%G - az2) o, J—wt - (3.6)
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" where »t" is the time interval between the centered total times

1t V2 ang ¢ 0 V20 4t s given by: - ’ ]
o, O
st =172 (st Y V2 a pt - M2y (3.7)
* The following are subsequently updated:
n+1 _n n+1/2 .n+1/2
r; =rjt Uj ot
1 {( n +‘1]3 (n+ 133]
= r. - ir,
R 3 i+ L J )
C J+1/2. ams L /2
n+1/2 _ 1 [yn + 1 n
Vi+172 72 [Vj-+ 172 7 V5 52 ] : (3.8)
*m+1/2, 0 1. .n+1/2(n 01
e T2t ? éﬁﬁ—:—77§-(€j +1/2 7 %5+ 1/2]
B _— At
o+ 1/2 _ of *n+ 1/2 . n +'1/2
Piv 12 © P{gj s1/2 0 V5. 1/2]
- 2 h
O #5172 _n + 1/2 n+1/2 .. .on+ n
_JZ YUsv1 Y s Vi v 12 V56072V v 72,
n+ 1/2 n+ 1/2
and UJ + 1 < Uj
T n+1/2 . ) :
Q. = . n+ 1 > N
g+ /2 , 0 . if Vj £ 12 - Vj £ 1/2
n+1/2>,n+ 1/2-
and UJ + ] " Eﬁ
The energy 'is then conserved: -
+1 _.on L *n+ 172 . gn + 1/2)fyn + 1 _ ]
127 5 w12 “'[pj +172 G 1/2} Vs + 172 Y5+ 172
///‘*\ . . .
’ (3.9)
) T~ =
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Prior to the determination of the time step it 'is necessary to
calculate the speed of sound at the centre of each zone 02 i+ 172 This

may be done by replacing the thermodynamic relation

by an appropriate finite difference expression. In our case hawever,
the predominant use of polytropic equations of state allgwed the speed

of sound to be evaluated as Cs = vyP/po and therefore

ch / (3.10)

= Pn
si+ 1Y /2
The time step at" t 1/2 for the succeeding cycle is the Tast
quantity computed. Stepsize is selected by the requirements of stability
and accuracy. Stability in the non-dissipative finite difference

system is guaranteed by the Cdurant condition; i.e.
at < Ar/CS (3.11)

The presence of the artificial viscosity Q requires that a slightly less
liberal form of ~the Courant condition be employed. Experience (see for
example, May and White 1966) suggests that the condition At = .Zgr/cs

will be satisfactor& in most cases. In terms of finite differences

: 2(e" - rQ)
-t (y) = il
ct.
s j+1/2

for a particular zone. Accuracy is gained by calculating time steps
that wou]dtcbnstrain the maximum change in internal specific energy and
volume to below 2%/cycle. The following expression, which for each zone

calculates a time step inversely proportional to the fractional change

IS
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in energy between the current and previous step, has been found

satisfaétory.
‘n N+ 172 )
02 e, At
N o j*1/2 -
j+1/2 7 f5 4172

An analogous time interval is evaluated to restrain the. volume change
n n+ 1/2

AY J n _ Vn - )
j+1/2 j+1/2

3.13)
™~

.

Finally, the time step to be utilized in the next cycle is the smallest

of the 3J intervals

J

The accuracy of the numerical solution is related to the order
of the finite difference scheme. It may be demonstrated (Richtmyef and

Morton, 1967) that the scheme employed here has at best a truncation

, e}ror which is of second order in time and radius, i.e. 0{(Ar)2 + (At)?}.



CHAPTER 4 )
Tests :
Prior to employing the code for the actual core model calculations,
the capacity of the code to follow a variety of flow phenomena was

tested. The three types of flow tested were: free fall, blast wave and

equiTibrium.

4.1 Free Fall

The pressutneless collapse (P = 0) of a uniform density self-

gravﬁtatiné spherical mass istribution was investigated.
A straightforward integration of the gravitational free fall

equation for a homogeneous sphere of initial density (at time t = 0) %o

'

shows that the collapse is_homologous with the radius r of a given

Lagrangian mass coordinate evolving in time according to (Rose 1973).

2 . 172 1/2 o
8nGp
i B A | el (= Wiy~

r.
3 AP YALR ) ‘
. | \
A 2Me sphere of copstant density was divided into 60 zones of \\x‘

equal mass. Each zone had a density Py = 9.56 x 105.9"—cm'3 aﬁd no
pressure support. The code followed the collapse of the unstable sphere
until the radius of the second zone had been reduced app‘?xfmate1y 160

. e AN —_
fold. 4 XJ
The numerical results for zone 2 were compared to the analytic

solution by plotting log (r/ro) vs. log

21
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Fig.

1:

Gravitational collapse of a spherically symmetric, pressureless,

mass distribution.
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\ [n/z - /8500t (see Fig. 1)

where t is the time, L is the radius of the zone at the initiation of
computing (t = 0), and r is the radius of the same zone at time t.

Only one zone was plotted because the freefall was homologous (r/ro is
the same for all zones at given t) to better than 1 part in 105. Asﬂis

illustrated in fig. 1, the numerical and analytic solytion correspond

to high accuracy.

§k2 Blast Wave

The propagation of a spherically symmetric blast wave in a

cqnstint pressure, constant specific heat, gravity free environment
was examined. The blast was provided by an instantaneous intense
explosion triggered in a volume small compared to the initial extent of
the medium. An analytic self-similar solution (the Sedov solution, see °
Landau and Lifshitz 1959) exists for this scenario if two assumptions
are simultaneously valid: the explosion occurred at a point and the
pressure Behind the EhOCk far exceeds the pressure ahead. It shou1§ be
noted %@at the occurrence of the explosion at a poin&gis equivalent to
the shé&kl¥ront having a radius very large in re]at}on to the radius of
the initial volume bbunding the explosion.

On purely dimensianal grounds, the location gnd velocity of the
spherical blast wave following a point explosion of total energy E in

a uniform medium of -density po‘musg bé given by
1/5

. 2 .
- Et ,
R = gO. [———po ] R | ﬂ _ (4.2.7)
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V = ?t_ = g-E- ‘ . (4.2-2)

The dimens%on]ess parameter & depends on the adiabatic exponent of the
matter; for vy = 1.23, Zeldovich and Raizer'(1968) gixe £0.= 0.93. The
detailed structure behind the sh?ck, to which we make comparison in
Figures 2 and 3, may be found in Landau and Lifshitz (1959).

In the numerical calculations,a constant pressure (P0 = 2:27e§i?
1019 dynes/cmz), constant adiabatic index (1.23), é;avity free, spherically
symmetric perfect gas distribution was divided into 100 equal mass
zones. Ah intense explosion was induced by instantaneouﬁﬁy increasing

45 (o =4 x 10"

the internal energy of the first zone from £ = 4 x 10
ergs at t = 0. The resulting shock wave was examined at a seri€s of
subsequent times. For two of these times (t = .99 sec, t = 2,29 sec),
the numerical solution and thekse1f-simjiar analytic solutions (calcu-
lated with E = 4 x 10%°, o = 9.56 x 10°) of the density amd-Vélocity
were plotted in normalized.form (Figure 2 and 3). The normalization was
effected by dividing all velocity and density values by the maximum
theoretical ve]ogity and density respectively. Fig. 2 and 3 display the
results of these effor;s.

As expected, the theoretical curve is discontinuous at the position
of the shock front,and the nuﬁgrical shock is spread by the artificia]~
viscosity over 4 or 5 zones. Although the shock occupies a constant
number of zones, the zones become increasingly condensed so that the

shock width as measured by the radial co-ordinate, decreases. As-a

result the numerical density digtribution becomes sharper with time, and
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the peak of thé density distribution grows.

‘The velocity pro%ile is somewhat more erratic than the deq&ity
profile.. However, it does become increasingly linear with time although
it lies significantly below the theoretical. The smalJ,ostillations in
the vicinity of the peak are due to the extreme strength of the shock;

a larger coefficient on the artifiéa] viscosity would extinguish them.

It must be noted that the radius of the exploding zone was
2.15 x 108 cm and the position of the shock Sfter 2%289 sec was around
7 X 108 cm. Hence tpe point explosion assumption is not applicable so

-that a discrepancy between numerical and analytic solutions should exist.
However, the numerical solutjons become 1n6rgasing]y similar to

the analytic solutions, and at later times when the assuaptions discussed

earlier are valid for the numerical shock, the agreement is much better.

o



Fig. 2:
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N

Comparison of theoretical Sedov golution to the numerical
siudy of a spherically symmetric'b1ast wave propagdting through

a homogeneous perfect gas {(no gravity). Time after explosion

is t = 0.99 sec. ' ' | .
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Fig. 3:

Same as fig. 2, except later on at t = 2.29 s.
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4.3 Equilibrium
The ability of the code to emulate equilibrium was testea on a
self-gravitating perfect gas sphere. Employing a y = 5/3 polytropic
equation of state:
1 o5/3 dyne's-cm'2 ‘ {4.3.1)

P=4.177 x 10
and central density 4 x 109 g~cm—3, the equation for hydrostatic equili-
brium (5.1.5) was numerically 1ntégrated for 20 zones to yield a
ZMQ numerical model in stable equilibrium. This initial model was then
subjected to the action of the hydrodynamics code until the model had
evolved by 5 s. in time.

The results were characterized by small ampiitude oscillations in
the flow variables. During the entire 5 s. interval which'ég;;;}qed 15-30

oscillations (depending on the particular zone considered) the oscillations

remained stable. The density, radius, pressure, and energy displayed peak
changes of approximately 1% about their iﬁitial values. The velocity .
oscillated between positive and negative va1ues\of comparable maénitdde on
timescaies of .17 s. (for one complete cycle) for the innermost zone, and
.35 5. for the.outermost zone. The z;nes in between oscillated with
intermediate periods. These were compared to the small amplitude

pulsational period (t_ ) of a polytrope:

pul

% am(r3sem)1/2 T—IT (4.3.2)

pul 3v-4

The total kinetic ehergy of the oscillations was also computed and

47

found to be at most ~107" ergs, which is .01% of the total internal energy
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(2 x 105]

ergs) of the model.

In view of these results, it appears that the oscillations are no
more than sound waves unavoidably triggered by .,the various errors inherent
in the calculations (for example truncation and round off errors). Hence;

it would appear that the code is capable of simulating equilibrium.



CHAPTER 5

- v

Initial Model. -

Current evolutionary models tend to endow all stars in the mass
range (M > ENB) with nearly identical cores as they approach dynamic
instability (Armett and Schramm, 1973).‘ The cores-3re characterized by
masses near the Chandrasekhar 1limit, central densities of approximately
4 x 109 g-cm'3, and a composition of almost pure Fe56 (the endpoint of
thermonuclear combustion). The primary means of mechanical support for
such an entity is pressure from degenerate relativistic electrons.

D;namic instability (initiating collapse) occurs for these cores

56

when electron capture on Fe™ reduces their Chandrasekhar limiting mass.

Prior to the onset of electron capture the Chandrasekhar mass and core
mass are the same. However, as electrons aré»removed from the core, their
mean molecular weight (ue) increaseX and since the Chandrasekhar mass
(MC) is crelated to the electron mean molecular weight as follows

(Zeldovich and Novikov 1971):

1)2 ' ‘
M [L‘;] _ | (5.1.1)

LS

it is clear that the Chandrasekhar mass must decrease. This_leads to a

dynamic instability. - .

*

The actual capture of electrons is initiated when .the Fermi

energy (ef) of the degenerate electron gas exceeds the threshold for

56

capture on Fe™™, E = 3.7 Mey (Garvey g;_gl; 1969). We may estimate the

density at which capture commences by setting € = 3.7 MeV and employing .

30
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the f0116wing.re1ation between the Fermi energy and the density of an

extreme relativistic completely degenerate gas:

3

173/ ©

2
ep = he %“—P—j (5.1.2)
. Fele )
Here Me o is the mass of an iron nucleus and % is given by:
g = A/Z = 2.15 (5.1.3),

for a gas consisting purely of electrons and iron nuclei. According to

this, the densjty at which electron capture initiates is approximately
7.5 x 10° g-cm'3.

) For our initial model, it was assumed that the pressure was ‘
entirely due to extreme relativistic completely degenerate electrons.

This ‘would permit the cons%guction of a cold po]ytropic_ﬁ = 3 (v = 4/3)

core with equation of state given by:
. ! .

P = Ko N (5.1.4)

. * -, . v H - -
Given the adiabatic index (y = 4/3) and the elattron -molecular weight

(2.]5 for Fe56 composjtion) ,the value of K was fixed by the theory of

the degenerate reiativis;ic electron gas to be 4.46 x j014 dynes—cnl2

-

[g—cm'3]'4/3. The equation of hydrostatic equilibrium

dP _  Gmp .
@ - i | 1 ‘ (5.1.5)

was numerically integrated for a centra1ﬂgensity, P = 4 x 109 g—cn;3

and equation of state represented by Eq. (5.1.4).
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s

The resulting 1.24 Me equilibrium configuration was partitioned
into 60 zones, with the same mass increment in the first 40 zones. The
mass/zone in the remaining 20 was decreased 1inea§1y until the last zone.
contained 1/4db of the total mass.

To/;;;u1ate 1?cipient dynamical instability, we employed fhe
fact that the initial central density (4~ 109 g-cm°3) was larger than

8

the threshold density for electron capture (7.5 x 10 g—cm3) by a factor

of 5. fhjs suggested that the number density of eleétrons in our
equilibrium configuration should be reduced somewﬁat to mimic electron
capture. The reduction was effectively atta%ned by decreasing the
pressure and internal energy of the equilibrium configuration by 10%
(P>.9P). This represented the initizl model for all subsequent

9

investigations.

This somewhat gg_hggf;eduction of the pressure ﬁnd internal
energy serves merely to initiate the col{apse. We have‘Edopted a value.
of 10% for the reduction to ensure that the collapse starts quickly.
Once started, the collapse is determined by a different equation of
state wﬁic;:qua]itative1y accounts for a va;iety of different physical
effects. We "turn to a description of this equation of state in the

next section. )

5.2 Equation of State

~

As discussed in the previous section the equation of state has
adiabatic index 4/3 up to the onset of instability. Although Chandrasekhar
(1939) demonstrated that dynamic instability required an adiabatic

index <4/3, the capture induced decredse of the Chandrasekhar mass

!

,> ~F "
. ~.
)\
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permits instability to occur with index = 4/3 (see section 5.1). As

a result, collapse continues to higher density and temperature (T ~ p]/3)

" With adiabatic index = 4/3. At sufficiently high densities (2 x 10'°

g—cm3) and temperatures (1010°K),photodissociation of iron nuclei

occurs (initially to alpha narticles and neutrons, then to free protons and
neutrons) énd lowers the adiabatic index to below 4/3. Then a true

dynamical instabi]igx exists.

v

>

As the density continues Fo r{ée, the neutrons created by
electron capture and photodissociation become increasingly numerous ’ e}
v so that their contribution to the equation of state must be taken into
account. The neutrons comprise g non-relativistic gas with an equation
of state whiclk possesses én adiabatic index greater than 4/3. Eventually,
this neutron gas effectively drives the adiabatic index of inngr regions
.of the core above 4/3. As a resu1t3 the inner core ceases its implosion,

-

and a shock is engende}ed when the outer core impinges on the arrested

inner core. -

‘ In order to explore the purely hydrodynamical aspect of this
phenomenon, the equatjon of state is modelled by a soft klow adiabetic
index < 4/3) polytrope at low densities, and a hard {large adiabatic
index y > 4/3) at hiﬁhe# densitias. The transition between these éwo .
branches is achieved cont1nuous1y via an 1nterpo]at1ng polynomiatl.

(5 2.1) is the genera] form of all equatlons of sta%e employed in

this thesis." . . .

-



Fig. 4:

The dependence of adiabatic index upon the log of the density

for the equations of .state employed in this thesis. The smooth

curve -effecting the transition between the low density branches

(y = Ymin) and .high density branches (v = Ymax)‘?s either a

parabola or straight line depending on the model.
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- 4.0 x 1014 /3 0o (a)

o
1

prmin. Z (b)

P=K Pp = P > g

1
P = EXP(ata,(Tnp)+as(Tno)2raging)®) o 2 0> oy (c)  (5.2.1)

|
P =K, ™% 0> ey (d)

« The models investigated (see section 6) were constructed by merely
vary%ng the parameters in (5.2.1).

Eq. (5.2.1a) is the equation of state of the unstable initial’
model. Except for one model (G), pg = 4.0 x 107 gr/cms; so that
imme&igtely upon contracting to higher density: the Tow density equation
of state (5.2.1) is invoked. The constant K, ts always determined from
the continuity of pressire a£ p = P

The coeffic%ent K, of the high density branch (5.2.1d§ was pre-
selected for two models (A, B); but evaluated analogously to K] for
the rest. fhe transition from (5.2.1b) to'(5.2.1d) was effected by
connecting the region of y(p) between Y(pb) =y and y(pm)~= Y

min max

E-)

with a polynomial (fig. 4)<

)
-

- dinP

) i 2
dinp = YP) = Tpin + by(1ae) + bp(1ne)T + by ppy < p < gy (5.2.2)

-

The coefficients of the polynomial are determined by the parameters of

fhe equation of statelywhich will be detailed in the next chapter.




CHAPTER 6
Results
Table 1 presents fo? each model, the 1ndependent‘paramefers of
the equation of state and also parameters describing the characteristics

of infall and bounce. In particular, t is the maximum time for which

max
the models were followed, F is the Lagrangian co-ordinate (mass zone

number) of the velocity minima (or infall velocity maximum), S is the
Lagrangian co-ordinate of the shock and K is the total kinetic ener@y.

The significance of tys Btps Praye and Prab is illustrated in Fig. (5).

max
Fig. (5) serves both as a sketch of the timewise behaviour of the.

central densit& and as a pictorial definition of tys Atb, pmax_and

reb* ‘ : ' L S
Fig. (6) and Fig. (7) illustrate the velocity log density, and
log radius distributions for model B. The distributions are p1otte3 in
terms of the zone number for two different times before the initiation
" of bounce (Fig.-(6)) and after (Fig. (7)). Fig. (8), Fig. (9), Fiq.
(10), and Fig. (11) display the same as above; but for model (G).
_.The evo1&£f%n of all models (A, B, E, and G) exhibited
) qué]iiative similarities. .In each cgsea the initial configuration
imploded rapidly, until' at sufficiently high densities a portion of the
core (%nner core) bounced. The fir§t bounse was the most pronounceqt
while subsequent bounces proved to‘Sé increasiﬁg]y &;mped. A shock was

created at the surface of the bouncing inner core as the infalling

outer core impinged on the inner core. Because of these resemblances,

36



Table 1:° Results for“four Models
Densities (p)l/are in g~cm'3, times (t) are in milliseconds,
and total kinetic energies (K) ara in ergs. F and S are Lagrangain

co-ordinates in mass zones (the stellar boundary is zone 60): F is

the location of the infall velocity maximum and S is the location of

the accretion shock.
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Fig. 5: Sketch of time behavjour of central density. Bounce is taken

here to be the section of the curve extending from p to p

max reb’

The remaining sections are usually referred to as oscillations.
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Fig. 6:

Log density {p...), log radius (r---), and ve1ocity (v__)
are plotted vs. mass zone for model B. The figure depicts a
relatively early phase of infall; the density distribution is’

still very similar to the initial distribution and the minima

of the velocity curve (F) is well in front of its final position.

e
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“Fig. 7:

-

The same as figure 6 except at a later time after bounce.

Acecetion has advanced the inner core to almost zone 40. The Ak
i '

graph symbols are: log density (p...), log radius (r~"7),

——

and velocity (v ).
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Fig. 8: Log density (p...), log radius (r---), and velocity (v__) are
plotted vs. mass zone for model G. This depicts a relatively

advanced phase of infall.
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o
Fig. 9: Same as fig. 8 except later (during bounce). Note the large

positive velocities behind the shock. The graph symbols are

Tog density (p...), log radius (r---), and velocity (v__).
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Fig.

10:

Same as fig. 8 excep£ t = 204 ms which corresponds to -
imnediately after bounce. The velocities have become negative
and a reflection shock appears. The graph symbol%® are .,log

dénsity (p...), log radius (r---), and velocity (v__ ).
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Fig.

11:

Same as fig. 8,.but somewhat after bounce at t = 206 ms, dur%ng

a core oscillation. The reflection shock is still present.

<

The graph symbols are log density (p...), log radius (r---),

and velocity (v___ ).

v
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the results will be examined in terms of infall, bounce, and shock.

6.1 Infall e~

For each model, infall is characterized by a V-like velocity
distribution (Fig. (6) and Fig. (g) portray typical examples). The
maximum infall velocity, whose Lagrangian co-O(gfnate we shall hereon
denote as F, occurs at the minima of the velocity curve. Initia]]y,e‘
the velocities are everywhere subsonic. However, the zones continue
to accelerate, and eventually F becpmes the béundéry between subsonic
homologous flow a}d supersonic f{ow. The zones beyond F implode super-
sonically, almost in freg-fa]]; wheréas the zohes interiér to Frfa11 in
homologods1x\at subsonic rates.’

A1l models di}pIayéd the aforementioned general behaviour;‘but

differencies [be%ween‘models A, G, E, and model B] were noted in the

position of F and the magnitude of the velocities. Model B evolved

more rapidly than the rest, attaining a given central density before the '

other models. For example (Table 1), model B required 167 ms to reach

a central density of 10]3 g—cﬁ“3, while the other models reduired

~195 ms. At any given time during infall, the kinetic energy of model

"B was the greatest.

The location of F varied with time. Agéin models A, G, E
exhibsted similar behaviour. Initially, F was located at zone 43; but
as infai] progressed it moved outward to near zorne 50, where'it then A
remained statjoﬁary. In Fig. (8), the velocity curve of ﬁode] G at
an advanced stage of infall shows the velocity minima at zone 50. In

contrast, the position of F in model B, moved inwards from zone 35

>
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until it reached zone 20. Fig. (6) contains a snapshot of the velocity
curve for model B at a relatively early phase of infall. It may be
seen there, that the velocity minimé has only progressed to near zone 30.
~The density profile during infall is again ﬁua1itat1ve1y similar

for all madels.. The density curve may be divided into 3 regions: (i)
a relatively flat inner portion, (ii) a region of rapid density decrea%e,
“(iii) a flatter outer po}tion. Initially, the density curve resembles -
fig. (6). However, at later stages of infall, the density distribution
becomes akin to fig. (8) and the 3 regions described above become
clearly discernible.

| Reéion (ii) effectively divides the core into a higﬂ density
inner core and comparatively low density outer core. Since region (i)
. always contains the Lagrangian co-or&inate F, it is easy to visualize
the evolution of the density profile by merely recalling the behaviour

4
of F as described in the preceeding paragraph.

.

6.2 Bounce
When the central density of the homologously contracting inner
core redches Pmax> the bounce is initiated. Table 1 indicates that B
bounces at the lowest density; followed by G, A, and E at sequentially
higher densities. Upon attainment of pmax,hthe velocities of the zones
comprising the inner core become positive, and the inner core rebounds
to a'central-dgnsity )

reb” L

The ratio of p to Preb is a measure of the strength of the

max
bounce. Large bounces (Table 1) are encountered in models G and E where

Ymax is only sf%ghtly above 4/3; while small bounces are evident in

models A and B where Yax is 5/3.



The duration of the bounce (~.1 ms) is smallest for the models
bouncing at high density and having the stiffest Yoy’ i.e. models A
and B. Models G and E, having a softer Ymax’ demon:§rate substantially
longer bounces (3.5 ms).

%he region of the core participating in the bounce is the
previously defined inner core. For models A, G, E this consisted of
those regions of thg core contained within zone 50. This represents
approximately 1.2 Mo or 95% of the total core mass. In contrast, the
inner core corresponding to model B is bounded by zone 20 which encompasses
40% of the total core mass, or .5 Me‘ ~

The velocity profile during bounce is contained in Fig. (7) and
Fig. (9) for models B and G. (The other models exhibit similar curves).
It is evident that the velocity being positive and linearly 1ncreaséi:
for the bulk of the inner core reflects homologous motion of the inner |
core during bouﬁce. (For example, the inner 45 zones of model G bounce
homologously, see Fig. (9)). The velocities of the outermost zones of
the inner‘core display a sharp nonlinear increase, followed by a steep
drop to the negative values characteristic of the still in?a]]ipg outer
core. This portion of the velocity curve constitutes the initial shock -
ront and will be discussed at greater length below.

Fg]]owing this first bounce more oscillations of the inner
core were observed in every instance. Each succeeding osci11atibp was
increasingly damped (see Fig. (5)) as indicated by‘a,decreasing ratio

o /p

max’ Preb* Despite the damping, the 05c111atjons were sufficiently

strong at t__  to prevent accurate determination of the equilibrium

~ 1

central, density. However, %&Qi:node]s A and B the small initial bounce



(p ~ 1.5) and rapid damping of the oscillations permitted an

max/Oreb
estimate to within a tolerance of half the amplitude. of an oscillation

5 3

or approximately +20%. This gave equilibrium densities of 1 x 10] g-cm

3

and 7 x 10]4 g-cm ~ respectively for models A an?B. “These equﬁibrium

densities were found to be slowly increasing as matter continued to
accrete on the inner core surface. The other models displayed too
large oscillations up to thax 1O permit an estimate 1 of the equilibrium

central densities.

6.3 Shock

-The velocity curves in Fig. 7) and Fig. (8) contain a region where
a negative velocity is rapidly trafsformed into a posit%;e velocity.
Such a region represents a shoék. The shock is spread over 2-3 mass
zones by the .artificial viscosity (see chapter 2). A1l of the flow
variables, pressure, density, velocity, and temperature exhibit larée
increases over these 2-3 mass zones.

Every model considered in this thesis developed shocks as described
above. Model B experienced ongc;hock while models A, E, and G displayed
two shocks (see Fig. (11) for an example); an innermost shock similar .
to the one in model B, and another much weaker shock located further out.
For reasons to be given later, the stronger inner shock will Qg.referred
to as an accretion shock. In each case the accretion shock.appeared at the
-initiation of core bounce near thé sdrface of the inner core. From

‘ table 17 (for model G see‘also Fig. QQ)), it is clear that for models
A, E, G the accré;ion shock is created near’zone 50, whereas ?n model B,

the accretion shodﬁifirst éppears near zone 20. Zone 50 reflects the
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approximate location of the inﬁer core surface during early bounce for
models A, E, and\G as does zone 20 for model B,

The velocity profi]e of the accretion shock was, in every case
and at all times up to tmax® strongly influenced by the oscillatory
phase of the inner core. Positive velocities (referring to the velocity
of the matter jmmediately behind the accretion shock) were observed to
coincide with the .expansive phase of the’core oscillation and negative
velocities corresponded to the cortractile phase of the oscillation.
This behaviour is il]ustgg?gg in the\velocity curves in Fig. (9) and
Fig. (10), which deal with the same model, but at different phases of
the initial bounce.

The accretion shock, as its name guggests, is generated as
the infalling matter is coerced to rédical]y alter its motion, in
order to match the motion of the inner core onto which it accretes. 1In
every case, the accretion shock always remains in the vicinity of the
_imner core. This effect "is particularly striking for model B, where
at tmax the accretion shock has moved to zone 38. By examining the‘
density curve in Fig.‘(7), it is clear that the inner core surface has
also reached that mass zone. Similar observations may be made with
respect to the remainfng'mode1s, although these models we}e nat fol]owed,
Tong enough to obtain a large amount of accretion onto the 1;ner core.
In these cases, the mass ‘increase due to accretion has pushed the inner
zone out by at most 2*;on§s (for mode]-@).

The/existence of'g second shbck is a major difference between

models A, E, G and model B. In model B (Fig. (7)), the velocity increases

monotonically in front of the accretion shock. The other models,

a -
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display an additionalfluctuation in the velocity (Fig. (11)). This
fluctuation is actuaé:j’a second much weaker shock. It differs from
the accretion shock in that it is not coincident with the surface of
the inner core; but is several zones in frontl
Up to tmax’ none of the models ejected any mass or shawed any
propensity to do so. In each case, the maxiﬁum velocities were well

below the escape velocityf€s§imated by

_ J7H
ve = R . (6.3.1)

The shock (not the accretion shock) described above is too weak to expel

any matter.

50



CHAPTER 7

Discussion

7.1 Dependence on Equation of State Parameters

It is clear from the results presented in the previous chaptexr

that the equation of state parameters vy, , and P exe}t a pro-

max’ Ymin
found influence on the evolution of the core. It is our intention here
to utilize those resg]ts in delineating the relationships between the
equation of state parameters mentioned above, and parameters describing
core evolution, namely F, pm%x’ pmaxlpﬁeb’ pequii’ Atb. In so doing,

we ultimately establish a re]ationshib between the equqtioﬁ of state

and the likelihood of mass ejection via hydrodynamic shock.

In the previous chapter, infall was shown .to be qualitatively
similar for all models with respect to the shapes and evo]uﬁion of the
density aﬁd ve]opiéyqdistributipns. Differences, however, were evident
in the behaviour of F which effectively demarcates the surface of the
inner core, and time elapsed iin réadhing a given ceantral density. The
differences noted 4bove were largely due to the low density equation
of staté {see sectidn 5.2). In.particular, it is clear that the 1oweé {_
pressure associated with‘a softE?~equation of stgte'could acéount for
smaller values of F énd shorter times in reaching greater central —
densities. As a zone's density exceeds o, the equatioﬁ of state
becomes characterized by an adiabatic index Ymin®. A smaller Ymin jmp1ies

a smaller pressure and gréater dominance by gravitational forces which-

leads to 19rger infall velocities for the affected zones. Since'the
51 ,
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inner zones are the first to be a%fected by the low density branch of
the equation of state, a smaller index will accelerate their implosion
relative to fhe outer zones. Consequently, the ve{gpity and density will
be more centrally peaked than for a larger Ymin® The density distribution
will be inclined to resemble fig. (7) rather than fig. (10),the velocity
distribution will appear more akin to fig. (6) than fig. (8), and F will
then be located further in masswise. For the same reason, the time required
to attain a given central density will also be-sfiGrter.

As the density of a zone increases.beyond P the adiabatic index

is continuously increased until a maximum index > 4/3 is achieved

‘ * Ymax
at O Once the adiabatic index exceeds 4/3 it is again possible for

2

the pressure to compensate for the gravitational force (the gravitational

4/3,‘50 that if PmpY, where v > 4/3,

force may be easily shown to be ~p
eventually the pressure will surmount the gravitationa],force). Indeed,
when the average adiabatic index of‘the inner core ascends to above 4/3,
%here&exists a stable confiéuration at a central density Pequil with the
same mass, same entropy, and same equat%on of state as the inner core;
but less total energy. This eftra inner core energy exists'in the form

of infall kinetic ener@y. Upon achieving a central density, p the

equil?

inner core ceases to accelerate since at this point, it possesses a stable .

configuration (the gravitational and pressure forces balance). However,
=

the inertia of the infalling matter causes the equilibrium configruation

to be overshot. Beyond this point, ‘pressure forces, "increasing more
rapidly with density than the gravitational, become dominant and

deceleration occurs. The deceleration is finally complete when the

velocities momentarily vanish at the maximum central density, Pmax At
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this point, the inner Fore rebounds. The velocities of the inner core
become positivé\and densities decrease. The rebounding inner core
continues to expgnd beyond pequi] down to Preb* where once more\1t
reverses jts motion. Because of the excess energy relative to the
equilibrium configuration, the'inner core can never completely stop,
but must perpetually oscillate about the equilibrium density. However,
these oscillations may be effectively damped by the redistribution of
kinetic energy via acoustic radiative losses, accretion unto the inner core, and
reflected shock. Since one or more of these phenomena (in addition, the
artificial viscosity dissipates kinetic energy) actually occur, the inner.
core oscillations become increasingly damped as illustred in fig. 5.

_ The important quantities associated with bounce are pmax/preb’

1° Atb. The strength of the bounce is measured by the degree of

pequi ‘
overshoot of the equilibrium density, ie.e. the ratio pmax/preb' A

smaller ymax“imp1ies a smaller rate of pressure increase as the equilibrium
density is exceeded, and'ﬁence, higher dgnsities are attained prior to the
reversal of infall. This becomes quite apparent in,comparing the large
overshoofﬁng of the equi]{brium density in model E(y,., = 1.35) to the

' - 5/3).

only slight Qvershoot'of o displayed by model Ay

equil
Althouveh not explicitly dnvestigated, it would be suspected that

max

a small Ymin and/aor large P would be inclined to favour a strong bounce.
¥ A small Ymin tends tg enlarge the infall kinetis—energy which in turn
leads to a greater overshooting of the equilibrium density. Simjlér]y,
since a larger p implies a smaller pressure constant (KZ’ the -high
density branch of the equat{on of state"is e%%ectivé]& softer and once

more a larger overshoot occurs. . .

-~
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. i
The equilibrium density (pequi1) is determined by v, ;. , o, and

Ynax®  Ymin establishes the behaviour of F during infall and hence the
mass of the inner core [this is true during bounce. ‘At later stages,
accretion - see for example model B - may significantly raise the mass
of the inner core]. A sﬁa]ﬁer ymin\corresponds to a smaller F and a
smaller 1qnér core mass. A lighter\inner core will clearly possess a
small central densit}.

The high density branch of the equation of state is described
by P andiYmax° A larger Yiax and/or smaller P gives rise to a stiffer
equation of state. Since a stiff equation of state generates larger
pressures for a given density, an arbitrary mass may be supporéed by a
19wer density configuratibn than would be required by a softer (smaller
Ynax and/or 1qrger'pm) equation of state. Hence, the equilibrium
central density ‘ is reduced by increasing Ynax and)or decreasing P

The time interval required to bounce from p to Prap® Atb,

max
was compared to half the pulsational period (TDU]) as given by eq'n L

(4.3.1). It was observed that Aty and Tpul agreed well with respect

to théir dependencies on vy According to this, larger

max 34 Paquit-

values of Aty are consistent with smaller equilibrium central densities

and/or smaller v

max- As an example, model E and model G displayed similar

values of Aty. Model E evolved to higher densities than model G, but
bounced on a similar timescale because of a lower‘ymax.
.The physically most notable shock in this study was consistently
¢ >

an accretioﬁ shock. The accretion shock was induced by the’ sudden

.charge in motion eknerienced by the infalling matter as it impinges on

. the bouncing inner core. The strongest accretion shocks, as measured by
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. the positivity of the velocities behind the shock, were quite expected]y
provided by the models exhfibiting the strongest bounces (model E and

model G). The accretion shock, how@ver, is of secondary importance since
it can never induce mass ejectionl In fact, those cases where mass
ejection occurs might be exbected to possess relatively weak accretion Q
shocks, since much of the mass exterior to the surface of the inner

core is now outward bound instead of infalling. This situation is
possible only‘if a shock is able to propagate from the surface of the
bouncing core, outwards in radius. As the shock eacounters the outer
zones, they acquire positive velocities. If" the shock possesses sufficient -
strength it is possible that some of these .velocities may.exceed the
%Fcaﬁe velocities for the relevant zones, so that mass’/ejection eventually
ensues. Such a shock would be expected tb be induced by a strong bounce
(the initial bounce is most effec%ive in depositing kinetic -energy into
the shock. Subsequent oscillations aré weaker and less effective) acting

for a long time, i.e. large p and At . This type of shock

max/ Prets b

" almost appears as a_reflectibn of the infalling matter off the inner
core and heﬁce may be more clearly distinguished from an accretion
shock, by refefring to it as a-reflection shock.

In chapter 6, it was ob%?rved for modeis A, G, and’E that a
reflection shock was Ereéted Ey the bounce. However, tﬁe reflection
shock was very weak in all three cases, (see fig. (11)) Héspite sfrong
bounces in\modéls G and E. It seems likely that although G and E -

\ .
e§Perienced strong bounces, the bounces accurred at such high densities

that the longer tiﬁe required to attain these high densities permitted

-~
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the infalling matter to accumulate b;éat momentum. Consequently, the
shocks generated by the bounce were effectfvé]y engulfed by the unfalling
matter. It would thﬁs'appear that an equation of state capabie of
nducing stroﬁg bounces at somewhat lower deﬁsities than exhﬁbited by‘
models E and G is requiréd to generate a reflected shock capable of
ejecting mass. This may be accomplished by merely reducing the values
of op in models G or E.

It is interesting to note that models A, G, and E having Ymin
4/3 gave rise to a reflected shock, whereas,model B having Yin = 1.25
did not. At bounce, the region beyond the surfacelof fhe inner core is*
described by the Tow density brangh of the equation of state. As a
result, shock progagation depends on the value of Ypin® 5 value of

Ymin much below 4/3 prevents a ref1ection'shock from propagating so o
that only an accretion shock appears, whereas a ?min in the vicinity
of 4/3 is conducive to the propagation of a ref]ectiqn shock.

This effect may be understood by realizing that a smaller adiabatic
index implies a smaller shock velocity. The longer the time a shock
requires to cross a zone, the larger the;kinetic energies gained by the
infalling matter not yet encountered by the shock. The velocity of a
strong shock’(D) relative to ‘the ve}ocﬁgy of the infalling matter (uo)
may be shown to satisfy the following reldtion”(seg_1e1dov{ch and Raizer

o

1968 for example). ' ) _ .
3 1 ) s
lo.‘ uol v C ’\:‘p&x—-——z‘ ) ' . "(7.1..1)

where Csfisffhe perfect gas speed of sound in front of the shock. Since

the infall velocity increases as the 1/6 power of the density (Van Riper,

.1978), it is clear from the above equation that if Y is below 4/3 it -

o,
x L .
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becomes increasingly difficult for the shock to continue propagating
outwards, as it moves further out. The velocities of the matter behind

the shock become increasingly small as it approaches the core surface.

7.2 Applicability

In this section, certain aspects of the results along with the
simplification incorporated in the treatment of stellar collapse will be

examined for the purpose of delineating the applicability of the study g

to more realistic scenarios. We begin with the method utilized to initiate

d////ins%ﬁﬁflity.
* As previously described (section 5.1), instability was initiated

by reducing the energy everywhere throughout the core by 10%. ﬁThﬁs
represents an oversimplification, since in reality the energy loss is
a continuous process (occurring over a density range) occurring at
different rates thoughtout the core. However, this is of 1ittle conse-
quence due to the fact that many prévious authors (Colgate ahd thte
. . 1966, for examp]e) have indicated that the late phases of infall and
_bognce are independent of the partiqg]ar choice of collapse initiating
,instability. ‘ ‘
- ‘ Another simp]ificatiop inythe choice of equatibn of state (section
5:2). More realistic equations of state (for~exaﬁp1e, as deduced from
* Arnett's model 1977) di;p15y similarities tp the simple equaéiqn of
étate emp]oyed here. In Arnett's model the effective index remains below
12 4 3, wheré ff-tﬁén rises finearly

4/3 up to-a density of 5 x.10°" g-cm”

. with-respect to log p until it has attained a maximym'va}yeﬂdf‘T74t

s

€1ear1y,’tbis'isf51mi1ar to theé equation of state described .in section

5.2. ‘ 4 i : i T ‘ 2



58

The other simplification, adiabaticity has already been discussed
extensively in chapter 2. It was demonstrated there, thét the¢ adiabatic
approximation is adequate duriag bounge and for a short period afterwards.
None of the models were f011owed long enough for the adiabatic approxi-
mation to be seriously in error. Had a suff{cient1y strong reflected
shock developed to warrant following the models for the substantial
additionag time required for the shock to reach the surface of the core,
the approximation would have still been éatisfactory for the regions
exterior to the inner core.

_ Other rastrictions on the applicability of the treatment of stellar

co11épse stem from the results themselves. Every model, with the

exception of model G evo]vés to central densities well in excess of 10]4
g—cm'3. At such densities, the vlaue of the expression:
A (7.2.1)
CR .

indicates that general relativisitic effects are non-negligible. However,
our treatment of stellar collapse is strictly Newtonian. As a result,

it is highly unlikely that the evolution of these models (A, B, or E)
accura@eTy represent reality. Nevertheless, models A, B, and‘E. are

not 'without utility. Although the results are unreliable for the realm
of densities in which general re1at1vity'i; important, they do accurately
reproduce the same hydrodynamical behaviour expected at lower densities,
where the Newtbnian_apbroximation is valid. Thus, fhe re]atﬁonsﬁips
between thé equation of state haramétérs and hydrodyﬁamic behaviour are

applicable to the Newtonian regime (below ~10'% 3).

g-cm_
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These arguments restrict the validity of our results to a time
interval extending from the late infall stage to a maximum of ~10 ms

after bounce. In addition, the “Hensity of the bouncing inner bore must

14 3.

be less than a few times 10 ' g-cm ~. Under ;hes% circumstances the

results should be applicable to more realistic astrophysical scenarios.

3
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-CHAPTER 8

Conclusions

Regretably, a full investigation of the hydregynamics of
stel]ﬁr collapse was ‘forbidden by the scarcity of f}me and ponderous
financial demands. Only four models were investigated, so that an
explicit investigation of many of the relationships existing
between the equation of‘state and corresponding hydrodynamical
behaviour was not possible. However, certain ;nteresting relation-
ships were exposed. These relationships are described in the
following evolutionary scenario. E

Infall on a dynamic timescale is triggered by processes
described earlier in this thesis. During infall, the core effectively
subdivides into a high density inner core and low density outer core
ererated by a region of rapid density decrease. The mass of the
inner core is dependent upon Yiin: A small Ymin leads to a lighter
inner core. The infall of the inner core continues until it is ter-
minated by the abrupt occurrence of a bounce. The inner core attains
a maximum centrai density (pmax) and‘afterwards‘reverses its motion,

4gxpanding to a 10Qer central density Preb” The strength of the bounce
is measured by the ratio of ihe densities at the initiafion and ces-

sation of bounce, i.e. p__ /p

° . \
max’ Preb- For given p, and o, the strquth

h s

~

r 60 .
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of the bounce is determined by Ynax A small Ymax3-4/3 results in a

longer, bounce. The duration of the bounce is greater for smaller °

densAties and smaller Ymax Bounce leads to the appearance of two

lection shock requires a Ymin somewhere in the vicinity of 4/3.
If Yimin is’much below 4/3, only anf accretion shock is present. This
is the extent of what may be directly concluded from the results of
this study. From hereon we resort to conjecture to examine mass
ejection. ‘ o
If mass ejectioﬁ is to occur, the infalljng matter must at some
point be reversed and accelerated to beyond escape ;elocity. This may
be accomplished by a sufficiently strong outward propagating reflection
shock. As it propagates further out into the 1essﬁtight1yubound region,
it is possible that the velocity behind the shock wi]l exceed escaqé\‘
velocity and some matter will be expelled. ' :
PN
This phenomenon was not observed as all our models exhibited only -
weak reflection sﬁocks. However, this was due to the large kinetic
energy possessed by the infalling matter. Despite a strong bounce in
two models,qthe momentum of the infall was so great, that fﬁe reflected
shock was simply overwhelmed. It would therefore appear that a strong
reflection shock would emerge from minimizing the kinetic energy of the
infalling material. This could be accomplished most simply by modifying

the equation of state so that the bounce occurs earlier, i.e. before the

infalling matter has attained large kinetic.energies.

o —km  ae m pe  p———— . 2 .~ e e
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Finally, we suggest conditions most likely to be associated witn
the propagationh of a strong reflected ghock, and hence mass ejection. A
strong reflegted shock is concomitant with a strong long lasting bounce
actin§ on slowly infalling matter with yz4/3. In %erms of the equétion §f
state parameters mass ejection is 1ikejy with an adiabatic inddx that
rapidly changes (From fig. 4 it may be seé: that this is equivalent to
fm being only s]igh?]y larger than pb) from slightly below 4/3 to slightly
above 4/3t In addition, a lowgr Py will ensure éﬁ earlier bounce, thus '

&

reducing the infall kinetic energy.
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APPENDIX

\

i

Below we include a glossary of symbols used in the preceéding

text. First we list the English symbols, then the Greek symbols, and

N -

finally the symbo1£ employed in the difference scheme. -
Atomic mass number
Speed of light , ’ o
. Spggd of sqdnd ‘
D Shack velocity in rest frame
E Total internal ‘energy
EQ | Internal energy
F Lagrﬁngian co—ordinatg gf Melécity minima
G ‘ Gravitational constant ‘ |
h Planck's constant
K . PéeséZre constant
K, Equation of state parameter (g‘
Ky ' Equﬁtion oﬁ s%ate parametef (seckion 5.2) )
Kg Boltzmann éonstant
‘ﬁe Solar mass .
M, Chand¥asekhar limiting m;ss
My Proton mass ”
n . Particle number density
;e - “Electron ﬁﬁpbeg density
P . Pressure . 1
Q . Rfchtmyer:von Neumaﬁn artificial viscosft&

.63 . o
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Radius

Temperature

Time

Velocity

Velocity of infalling matter

Specific volume (’
Escape velocity

Atomic number

Adiabatic index

Equation of state parameter (fig. 4)
Equation ?ffﬁka%e parameter (fig. 4)
Time for erTution from density pAax to Preb
Spécific internal ehergy

Fermi energy

Coefficient of thermal conductivétx

Mean free path

Photon mean free path o

Eléctron molecular weight

Density

Equation of étate ﬁargmeter (fig. %)
Central density .
Equilibrium central density (fig. 5)
Equation of state parameter (fig. 4)
Maximum central density (fig. 5) .1 \
Rebound cghtral density (fig. 5)

Equation of state parameter (fig. 4) °
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Coi + 1/2
n

€5+ 172
*!n - 1/2
€5+ 1/2
0

M

Ay 4 172

Am 3
n

Pj + 12
*!n - 1/2
Pj +1/2
n-1/2.

Qj.+ 1/2
n

"

N ;

. o
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2. The computer code employed to follow the @volution of the stellar

models is listed below. ‘Also included in a glossary of the more

Thomson cross-section
Free-fa]] time
Pulsational time

Sound speed at zone boundary at nth time

Sound speed at zone centre at nth time .-
; iy

Specific internal energy at zone centre at nth time

65

Spec{fic internal energy at zone centre at nth centered time

s

Total mass within jth boundary

Total mass in jth zone

Total mass within consecutive zone centres

s
Pressure at zone centre at nth time

A

Pressure at zone centre at nth centered time

Artificial viscosity at zone centre at nth centered time

Radius at zone boundary at nth tim;\\\\\\\_~\\

Totaf time after n, steps

Time interval between step n + 1 apd step n

important symbols contained 1n‘the code.

A0,A1,A2,A3 Coefficients of the interpolating poiynomia] used in the

AUX

equation of state (see section 5.2)

Array containing the cadidates for the time interval, to

be used in the next step
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cl4 f Array containing cgs

c34; Array containing czj +1)2 _

cm3\‘ Array tontaining the masses between the centre otkadjacent
N zones | —

D Gravitational constant, G = 6.673 x 107

DERG Aﬁray containing the fractional change in energy between
: ' succeeding steps'

DERéMAx ’ Largest member of DERG

DM3| Array containing Amg *1/2 ’

PT2 " Array containing at"

DVOL ”Akray containing the fractional volume changes between
3 N succeeding steps ‘

DVOLMAX Largest member of DVOL

E30 \ Array coﬁtaining eg ;.%/2 l

E33 - : Array,containing'sg N }/2 3 ' ” | *

E3ﬁ Array containing eg . 172 - |

ES%Z Array containing e;n+-]}£2

GM@X' . 'Equation of state parameter, Viax

GM%N_‘ "Equation of state parameter, Ymin )

JZONE - Number of_zoﬁés

N . S%qp number

NPBT‘ : © Print output every NPRT steps

NU%RT _Print every UZQNE/NUPRT zone .

NMAX . _ Maximum number'of.steps

. J



P33

P34
PK
PkP

PS32

Q31
Q32

. RI3
R14

‘RHOB.
RHOM
TSUM
TOLE
TGLR

N

Ul

v22

u23’

V31
V?Z
V33
»

XM

"

7

-

e

Array containing

Array containing

p"

Pl

-1

j+1/2

j+ 1/2

Equation of ‘state parameter K,

Equation of state parameter
P - 1/2
j + 1/2
- 3/2-

Array containing

Array conta1n1ng Qj +

Array containing Q “

5

Array containing
{
Array conta1n1ng

fi-
"
]

i

1

1/2

- /2.
1/2

%

_&J

Equation of state paraﬁéter p?_

Equation of state paramEter
Array conta1njng elépsed time after n stégs;
4Max1mum a11owed fract1ona1 change 1n energy

Max1mum allowed ?ﬂactlon change 1n~golumé

Array caﬁtaﬁn1ng

Array containing

Array containing

Array containing
Array conta1n1ng
Array contdining

|

Array containing

N

aﬂaw
Array conta1n1ng Gh

n
uj_

Vn

n
Vj
vn
V

(2]
3

J.

+

J

P

67

~< o



- 4L
X Ty eI
5,
- - PR
\ ”
e - o, -
- R 1 -
>, P :
- -
_ . -
PR M . s - . 7
P L M - — -

AYIOHS OF SEHERICAELY svnm TRIC |
U3 TAT LONAL-PTE ' =
oy AB;E,STCLLAR c@ﬂ'a~“

ol REES = SINPUT, TAPSEZ
5

gi.:3¢fanﬂﬂ,t3utzqg)

o
S a)
bocﬁg

N =N
VN A

231 P ‘ff‘COHMON/
e Tt L s 27 GOMMON/G
et - /w” _ COMMDN:’ICO

RHCM,GMAX, A0, A1, 5K2,43
, g

R .
-. ONS TCLE, TOLE
' N

‘§§
—€§

UL

L e T £"‘INIT§?§IZ¢ CODt PARAMET BS o

L AT - el . - . B

- =T . NNAX 2000 - - R

e i T SR |
R S —/JZONE-<0 LT et

g e VCONG=2"-
Ce e CIQST . L e - 3
S T ST NSTREEY x%/fvrg . e " 3
- ;5;_3;"Z e QPE;? PP . ) N
S S R . g ;fﬁhb.673€-8 > \
- .- B - T NPQT=5“U -

. XINC=1 .~ . .
SR V320=1,356-9 .. - - -
- JM=JZONE=-1 :

: . JMEFX=JZ0NE+L .

. S . T JEXT=3 .

‘- .v.g»a~'r'“ “Jaux= "3%J ZONE

~ i i

i
-

1
§
‘%
3
.
i
»
= z
49
-n
m
n
.
N
»
H
3
,

{a
-
=z
Al
Y=}
) §
1ot
\;
L
\'\
\

4
p=>
>
[

cC<
ny
2!

TI0
OC-H""”
k3
K'e
N
i

iU

. DVMS
) Lo DEMS
A - LX:‘O g 1m o J‘
Lo - IPRT=zL 7 v
O JToL=0"" -
o7 MXCYC=50000 *
TOLE1=1, 0E-4
- TOLRI=1,0E~4 - - .
-~ . ATOLR=,02 . - x .
- ) ATOLE=.02 o , 5 - R | :
- - s TOLF=aTOLA " 7 i )
= ToLE=ATOLE Y- N
o' ~ e ; A\ .: d ~
° - !
LY },\." Y



69

-_

-

] wn

m Q

~ o

(=] (=X

. [oal |
NO ~NW o
-0 ety 1

wan e OO
XU nOed
WZomoOor o

t

BOUNDARY

E
n

~

1R1GIJU+H1),L,E3L 1Y) ULL1(JU+1)

) e~
¢ it
i w o
Z— T
O~nf DO«
NS> W
XA —-Q
pomrd el
O »
finx>x oX
N o
{11} 0
D NP mws
O U= Z AN b
i

CALCULATE INITIAL ZONE MASS,DENSITY,PRESSU®

-

»AND SFEED '‘OF SOUND,.

Qe

C
c

"

X

£
4eR13+C34,C14yJMAX , JZONE s NMAX )

S

X0 1un

-
d d ed 1) S
O DU [
AII0 g
QOV O
L

-
-

PRIMT INITIAL FLOW VARIABL

C‘

r

3

U % {C*i)gﬁﬁ(dé)yDMB(JC)y
)

sU14(
Yo P3G {IC)

-~Q

™) -
QLN b
IMO .t
(I B 1ne 2K )
OX= > O
- el IO »i

US™»10Xe " VELOCITY",5X,"TCTAL MASS"™
ENSITY" 9% “SOUNG " BXs “PRESSUFRE"™ /)

QO X vim|
UK
-y, N o D) .

D *22 NpmemOT » |
OX >OXOOMN
NOWL ML eNDIN
SNMIZE U e ey
DO EONLZ O~
e NZ il o Q=
s WO
ZE o2 (NN L—E -
LHEX e I
F LOonXOJIL LIN00
Gl oD UL O
i i
e
o
o0
ooy

2069

" CALCULATE INITIAL TIME INTERVAL..

C

.,

-~
- !
-
K 4
3 -
[
~N
-
o~ .
- -~ -~
L 17 «d
 Z ~,
- O WV 14V)
o N N
e = ~
Z~ =N Z +
O X #em Ho—~

~LWO IMONNN I
=N st BT TR e

N Z 2 m =m DD

O Nl

D S de~ZI X
O OXZ IS D
X000 i

~N aDDUCT
LY [~}
M wn
-t o



70

M
- L4 (o)
. > w (=]
- <X 11} ~ WU
pd - X - (L] [§%)
[ - > =z Q o
o~ . X s L o e e - O
- ™M s qum X oe ™ X 3§ s <
()] Mmoo ITZNn 2o W [&] - 10O
-+ a & Zoa o™ 0 v
-— s 0 o~ it - D= [~ ¢
- e T R TS R R | [ &) -~ >
1 MXIFZ et OM 00 o P,
Z aoOMOUXA N0 W w =
b d n el oND & T - =z 4 O
vl MM eXTIEN o o us Qo J -~
W HaAMA e XK - Ll " Yo
22 Wil X o2 aU O Q . ¥
b T ZAM & Tl e 2., - T *
- F es XN DO o8 a 3 - % 7
w UITUIT) M) e ™ - . - R} —~
&2 - WLHNL »UD (VT > wy x £ N £
-t s OMM & OM) - W < [§4 ~—
b= NN oINS Cuw ™M D0 z R -~ o %
2 N s e ae M - Z t N O - ! ~ - .
"x 0O ey e > i > O« o<t - (]
S KX CIICOIN & M) - >y W ed -l -+
[sabra Mel oI Cfid 1 .19} oD ] T >
P= ¢ XXX oo e e [ - O o =z -t a
(sl ONDIMNIIP>PANN D a0 o J [o] -~ t I
o <t : * ol) +OOM &% Mim o> Tl . 0O «a [=3 o zZ 17}
< EZ *ZDO>NA>Q~NID Q —~ Z O ., o — oy . o
>0 ML oML e &XME, HU Wl < uie O PV -
w —0DXOQ *tMNZTMIINZ i ZZ XX e XO o - o . >
T o e o 2MOY tOMITW & O OO QLo w o -~ 3 ~ «
O Orib= 444> o)) DIDZ ol Il NN AT Y =i . 2 =0 N e -
It Al oM Z S e e Z O TOITVMJWO IS WS o o bt N >
TR YIDILD *MINOMNULIMNO LY » eZZXO0 X O O o4 -~ o uJ -0
o X S e3> eMIIYNMMZ YN W JVOOUD o -~y = ZOoaOo 4 Xy o
st M MO eI O0 ™) X0 OMNNOGO o - O ¥ o ~DZ= M 0 o
Q> X ANNANY 22 o aolNr o DN SWINDS = OO > N ot ¥ <I s &,
2 pa ADAD edMX FOIMX T I OOQ-—-IT.) Zg QO -~ Z Db O W4 NN -
= g < [ g ol oI ITIN eI HUW ww JODD e uw X Z NEFO- T~
>0 - ONONFXY~IZ DX~ 2ZKX 22X0lkuninx o a ~ O [l e ¢ AR § DO~
o4Jd 1 - mONANMOw A Q N HO >R ETd W< E Nemamri ~N0O > AN
gl Z HIOHAD> U «aQ=3 () &« X Xooou>xX O [ rtNUnu 4.LNN L) X«
o2 e pDZNIOVVOTIWO - O OONHOO L~ Z> b= 00  » oNtU X | U= »
ow o Qe AW MY oM W NUIXXH (O CID wivd ODH=msd QLZ O QoUW
=t OO WMHZNXO0 > dNa Y - >>aAa > X & i eI b=(D Qld~ ¢ . J n o~
< o [Yo. W Ya - 1 e <ay) 2EDDO W XXNXeLZO 6O e e 1O LU . D=
Ad MAdOOZ oZ o J I AN JIN IV ¥ d SdONN> U M AIM N~ Z0Z 222 oDVIIZ
o> ONUSNSNY I IMIIZ I DA IO EIw OO HNOWwIDNZ~ Hi~>li~ = |l N
QO OFXwuMmuNadal <aHIE QO gaa>iw>h, =D XXF-LWW--LOagwgou £ S0u>a
dd OIMNNHOFOOO0 «OOVO & XY OUWOQOQOH QO ¥ IJIIHXOOHONHHD= ™ o000,
<t i - - A aD [ TR TS g
(&S] - (S]&} | 2] 4 ~ o a e
[~] ] K 23"
o =} ied
5 - '

c
¢
c
¢
C
¢
£



A
A
5

ro
Z
- »
wo N ‘
. <
' - o [
'S : - NO X
H ~ > -~ / O
« . [ 6] a [ 2
= n I %4 >~
x 4 113} — < vt -
w z K 4 201X
s a i 2] NDJID
w -4 H O
(=4 - » » S~
[V 4 . > — - QOvd o0\
Tt 1] Q- 1w OO
> w - X + Z e Oelo
< S -~ 0D - -y e~
: — > (B4 N MmXx T
S b — o~ N o+ oVamM
H o~ [aad a0 X - Z il S
(] cdos O N ~Jna E - D - [t
I ~gN O 8 L 3.4 > N Orilrtn b4
- Zhmie 4 D= -~ o b= . Xum -~
[TA N ~0O e L b RN\ MmO gy Y= 111 o
1] b=y " 2> I~ X L] Ll thaadi N
- [ I 7] reoo O I i o . th o
H O el » O MWA re e g LYY D
79] el X QO Xt 2 > 2 eO1U N
) ~o CcOWm Qe M O Z3 o OO0
04 ZM e e ZH W 1 M ) - -
< - e 2 D> QA i L Wil . -~ Q
-4 2t nNoe —“Dox.ra M Z W x> ZZ -
D] D e 11X oM NI = oM.J =« , ot o o
(@] VN e HI Xi=X% Q. =« D ZNH0 ¢ NEVY O
[ = > O sC¥% ~ & X s L) 2 e V) o [ R IR
ol Y <X oQ alDl~O 2 X o s 9> Qeo~ oo~
- 221 (X0 DA YA i M K- 2D *» OXO
: ~l Pl MUZXQ Y & X - OoMmdta O> o>
- © +ZA 2 X S DY > e ZOO0W
x OXHOX>D ADZO FR—1o X e~y - XN X
e~ Do ONENHZNOM e« ¥ () HQAg - XD HKENX
MmN S IVNHNNYNXK IOX 1) Z2 - «ZXTuldo H o o
SNDD eNE N VW XTI e aiNf - ODAdXXO e Y
— el Il OHO>LEDIZ O~A>D0 W . WOOHLZLA DU D
NI E st O DD A e Z - - NS & Db b sl o
A4 D Il <L L)] QI =M L= ¢ < 0O WONLp=ch=r
FWNNOZE +ZL2 e w2Zwlpn,] J Ol JIFAY~-YIXF
QUIINHEXKME o3 lIiwHIEZ g D Uwd~JO O~
OQIUDPXEOOUROXLOALLEMOOD O OLIAIWLANONFFLOWO
L0 MAL O HOYHASWLOO "3 NHOHODOZXYOHL HO
ot i — -t < i
~ (&) o o (ST ] [Ty o o
~ o o oo o tn N 2
t~ =3 (=1 oo -~ o n O
-~ bl 4 < Fuw -l 0 -

(o}

o,

-

}

-

VIOUS ST
34(J)yU23(J+Y)

-
-~

<

TERIOR TO ZCNE PBOUNGARY,

ITY FR0OM PR
14(J¢1),

c

N
R
)

HEYTSUMEN)
X41PE15.3)

.-

Do 8%

1007 AA



72

23,83, JMAX, JZONE , NMAX )

-
w W
-4 Z
Q (&)
[ ~
- “3 ¥
[04 -~
- -d
(&) [
L d o >
- " Q
L b -
S O o
O <L XX
NI -
T o oaTXT <
N~ Z -
N ZO &
«a QMmN -
MO ef= O (]
->ZXQ (=} »
X oo o -
O v o~~~ ho ]
NVOXXIU © had
ot - ™M !
OICIHITLTO ny
- e eM)TINXKOD =
Q) Zwwr— )LD L4
ANNTMN T s -~
EYHAMNMNDIAT 5
NNEIDLE » o
W TS M W
2002222 0wt
HOLOQO™ o (XIWOO
b NNt Houn
DZZNNNO0O~ ~Zomem
QOO LLLGT™) "t
K EE WU W NI~ O b=t
WIELITEIL ~-MilgTZIM
DOORMEFHOUL N A0 vivd
NOVOOOOMENOO X
. O o
o O
- Ny

CALCULATE ZONE VOLUME CHANGES.

c

- I~

iy

- ol

N3¥.I\
O vt
N e
I
LY w174 ]
"~ o
I+
el U

~ Y o~

Y]
b 4

Q
Lal
o

1

—

oMmNMHZZ
eton w4 (X,
NE D IO
N~>QZ0D
ONMMISOWZ
OQrxQOmus

Y DIRECTLY FROM RADII -

§

DENS(RL4»DM3,V33, V3L VB1,V32,4 R34 JMAX,

) 2 VI1(JZONE) 4 V32 (JZONE)

» TCLR,TOL

-t

SAF
JZX
ZON

. &y

S
T
, {
y OM3{JZIONE)

-—
uy
)
-

-

n
P

1 :
L) -
-t >
+ fon]
= 4
—d Z -
3 -J
Ll -~ .
x ~MN
* vy
~ v I
Lal Mo~
+ >0
> N N e
L b I
T M -z’
- T (a3 ]}
¥ N T ~Nn0
~ e wee M ON

™ MMe~eNIT MY e
' WYY w0l
D MDD a0

K ahe 37U SN S,. D
A (IS YT b et
A STRTR L 2 e 4

AJZOV!.P- 1 1\')130JPS
= ATINTIZAYDITIMMIN -~
Q230 O ™I e T o (Y O L)
NNM= N F0 TN 20
MM WEDIM IO
~UONPEE X~ ¢ o) ] »
= WUXZZ
o ZOOZZZ I OOyl N~

WD =ZOOO000N
L0

b NN S

pu ] TR
0o

CC,~

Rl

Hom Lo SO *X

@W.o-CQJSE

OUIN H~>~-D

Hit D eI 2NNV AUIOO ~~ T Z 2

Yl DWOOZZLO o™ v she b)Y
T Z ZETUWIWU G Z~ZZ )DL D

OO0 MOIZIIXEE I wedNN-UZ -0
QRO DINOOMHMHMOW L L LM IECOWZ

@ N0 VODDAMEHHMFMSS HLL QX W

e

[aY=1\V¢]
—“oo
NG

«©



73

CIFIC INTERNAL ENTRGY.

=

SP

C,

SUBFOUTINE TC CALCULATE

—

[VE]

Z

(@]

~N
- b
™M —
N [ ]
> @ -~
L] (L) -
(S} [ ] =
o » Ty
t) PN M
[ ] >ud - ™
- 18] gz = >
4 -l 20 ~ [}
™~ o ZN M -~
w b= ~7 Mm 9
- - [aVh 4 ) o~
n 4 4 -3 n <
”) pu | oM -~ ™M
1 o -> - >
L | oud - " L 4 Ld
o~ - [TV N o »
= =l Zul Ny~
O xu oz LT
. Qi NO -~ )
TN e ia -~
MxX o » ~ Y L P 3aV)
>qm) L3 Ad *™IM
XY X m . o e 4
NL—Oem ON) =3+
M O alt] ) efdem

CWwZ>Z ~ e wZiyT
eZ o o0 memitlon il
NO W ~ANRIYZUE M sV
MNOUVTNIZZOZ WIOTIM
NI o=~ OONDO NI~
A &I NNNTINW A
X e SNV DT el
O ZOW =N O |
Y INNZOMMIINOIO o~
WHIHEHMIMNMTIM ™)
SN A IS oy ew
[F3] s\ F--dg lom gy O™
ZMOOZZZZZ Nt oiymn
HYOOOOO00OO0™ o iy
P 2NN et OO
HZZWNNWNINNOIYE O ~
NOOLZLLZIZD ¢ k="
@ eX T W uinNnZ ~ T)
COENETLIXL S et
DINOOHHHHHHOU LU 10
NIPOOOOOOO A MY
Lol

- -

c

CALCULATE THE STEPHISE ENERGY CHANCGE,

'E1‘50:+’10X'“N="Q IS5}

)
Y JLE34(J) oN
, IS

}

{ehom i)
1oz

i olu)
~pg

N =

M X
LD

([ e 17,1 17]
,((U
Nar-ZZ
o - e 4
Lwx -2
a~0a Ze»0

‘wWhoowZ

Lk ) el

noOw |
NOODY
N
- o]

SUBROUTINE YO CALCULATE PRESSURE AT ZOMNE

CENTRZ,

c

P .
b4
o S -
x wm
z -
L -
o 4
- o 1
o o] Z
- - - .
fan] _— -~ -
- 12)~ 1) -9
N LW - (=]
™M By OXO = i
- - NON -~ [
- O INTY 3 Z2
atd b= Ty %) - e
t o =~M QA ~in
>, W MmN i ol ]
- - nrra - wygy
T O WS e T 7 e
MIDC = L Y 2 1T
><g N o~ M O
el tWIUZ ™M - »
NZXW ZZ20 O N
M ettt QON o ~UJ
LIS NN™Y ~ IinZ
WZ e« DM~ o MmO

eQl ) == N .
MNQY'Z MMM e
MO0 MM D7) =l
Ww N uI> o w0 O
LD me Zg~
I o P N e 15 1Y)
MIT J ety O W
IWDHOVIZIZZIZ Q ++HD
- o +OOQ0O0 T~y
NOTIINNNNIUIYA
N o eITDTINE ew i)
WY Z O~ O~ TOL
O eNNO T TNOM oL
AMHEMGIMMIT) oD -2
MNNHUENZ QA oC 3 » i
a2 Z i > (72}
Z eDOZZZZ1 NS W
HAOOOOOOODJIZ™INY o
NN (YO~ oL
SNZ Z2nnnnarids-ZZ
OLOQLLZZIZOT) d)LriK>
W s Iy 0~ J0 k-0
(CIEXTEZEIE w J~Q b=
DO OHHHHOUL AW OOWZ
NLOLVOOOQOHO LMY
- .
nNow
@ Mmoo
. oo
«©

STEP,

CALCULATE ENERGY AT CENTRE OF TIME

c

E34(J)+DT2(N) ¥
E33(N+5T2(NY*

32y
321¢J)

) e l)) oo

Lo ts) "D

NI D

&Jl\ S 0wt D
rFa)nD o

AN M Y

1w ey ol
e AL o B
~ D~ A

PE—

114
o |

S ey s moOZZ
GO e L (Y
O~ LMD -
Mt ) Z =0
OV W u. OwWZ
O 1L~ bt S et O LY

o
<+
o

.



74

ENERGY.

CIFIC IMTERNAL

£ SPE

-

SUBFQUTING TC CALCULAT

C

}
E -
Z >
(@] < -
N x n »
- o | -~ = fo Ty o~ -~
0] — \D Ad - =z Z
o] (&} -~ ~d = - -
> o Lgad - - . - | e 1) o
~, 3] P H W oy o b I SR,
(S} o - [ [y , M o o
O - hod < - o P Py - EY -
) —~— Lo} H z - =11 > -~ o~
Q »xu ~ ™M - woow LZWZ -~ [ i Mo |
- \J a2z M > > o ™M W O0ZO N ey -~
K4 -l 20 -~ (=] > - NON - - P I P
" o ZN " - Z TS O INT 2+ Z2 . M~
w - S Moo= PP Z M [ e L 2] - e Q. uw o w D
- - DJwr 1)~ -~ o ™ - N O ~n W Hoon -
1) o -1 w3 . I N > ® MmN 1 e - -~ N
r - oM - M u 4] - wd MA e~ =iy [V7} b T B a0 ]
«t [ ] ~> D > O EAal - T~ O WD e T T e - o~
- Lol -~ - L Ml A MX = eem M0 7T} [SVIRN VI + 8
&N - U o % 4 W e - N e T B pa L T
b= ) Zi M o~ I [ 1T w cEbelg) WHIZ ™ S — (7,777, RPN
O >l oz o= O ¥ Y NZXW ZZO a o3 - Ulemitl~")
» g NO - —~—e - DM eyt OON o~ ~Uf B U P
t o~y ey ~ = > ane N VWD NN™ ~ 02 w ~lmto
19X - - - ety O M VN WZ e n OO~ o MO o OZZ™
>A=1) O~ eMIM I N Z U Na)y ~ Ny NN . o o>
PS of s 44 M —— W DO ¥ MNYZ MMM e I~ AN~
NL~O e Or =034+ L M N A MO 1IN U™ ~u " DTN o
9 eNOW sy ) oM~ W WO Y e U= =00 Fh= eQ 0O
SUZ>Z ~ e wZigw hatad | 8 W eXL>> oo n Zpw- p-4 A I L
rZ e 00l Pl I =0 . = <L P Crmmmamen M (] w oo od
NOJNU'YZUl M sy ) MDZ q MJuLIY Q00 o - sl e1y]
MNOOTIZZOZ WOTIM  H srdd> ' a WOOWVIZZZ O eHD SN
NV e OONO HHI~=iN X 22XV D = e OO0 Z~XW (o [T |
QA eI MNNONWUYA~amA Q. mMay O NODIINNNNIIA W < W oeN e\
X e M= ZT) et W MW O NN e eIDIMINZ e iy Z O~~~
OAdZOY >N~ Owrmiyf | e oz I UBWHDZ O O O D O T~
FENNZOMMINOO e~ N« o} O 0 eNNOTFINOM L O NOYGHI DI~
LI EMOMNINTIM eO™) et AMHEMIOMNIM ™) o2 & I e s~
sNVTNWSA W «iO o~ W NI - o MNNUILIZA +C—d - i Ul erdeMIemD
uINZ Z O I O e - W ZZ helbe o3 VN Z AN
ZMOOZZZZZ I v oiUM) = A~ N ZeORZZZZN N~ W u Ny ey sy
HY OO0O0O000T o) el L uintd ‘ W HUOOOOOORJIZSDINY ¢ . Tl th=1 oty
e 2NN it (3O A W e . E FIONNHHHN OO0~ D L L) ~O D~
DHZZNNNINNOIW- Qe = T3 2 i - ODUZZMNNUNOIUS=ZZ b @™ M) eNNOZZ
OMNOVO LI LLZD *oD)=") A I - ODOOLZZIZO™ 1tOAMEI &  f—olwwl il
t *L T WJwWWWnZ >~ J QwEarD D @ eXrXWW YO~ J0 XS L O D
COLXEXLIE www3 D ax-wazZk0 O MAXLTIEEE ~ =0 Zpltr 2D MY MY ot MY Z e O
200MHHHEOLLLM O LWLOoOWZ | @ DM HHHHOLAUL OOWZ O OVl Oz
NIIOOOO0OOOHHHW 4 OHLOZW . o O O000O0HOHLOYW J OHH>HOW W
! S < o ot < el o
(8] nNOWw o« n now O ©
nNo O Mmoo T
LALLM I .,  WNO© o

@© m ©

c
c
c



(glele]

c

c

SUBROUTINE TO CALCULATE SPEED OF SCLMO.

SUBRCUTI OQUND(V3I4,V334P344R14,4713,C34,C14,J"AX,
1JZONEL N ‘
COHHC

ZZXIN

(afelolgd
1O~ V~C MmaOom Oc<cunw-

Hwwr iy ZZ0O0P Z

R1(IMAX)

CAtCUL

w

N
N
S
S
T
c
N

Ve

| <

M~ VW

L(J+1)=VIL(N)

(v3

Y)Y*RI4L(2)/(R14(3)-R1L(2))
ZONE) -C14(JM) ) *
AT
ON

“
(@]
b ]
w1
(o)
~C-l o CMp 720

- - LZZrr
I HNCrHNG OMM N\

~ g NE
P PN

B O~ 1y
4~ F+
Fomp
[ ST TN 2 |
NOPR
OZE ~N
ZMe~

o |

1(R14 ONE)-Riﬁ(JH))

E CEANTRE, .

TV ~UE ~$e

m
\.h (%]

€EED OF SOUND AT Z
*{

gSh(J Clua(J+1)+C14(J))

"IF EQUATION CF STATE POLYTROPIC NEEC ONLY EXZCUTE THIS

D0 6460 J=1,JZONE :
C34(J)=SQART(GL*PIL(JI*V3IalJ)) '
600 CCNTINUZ

‘RETURN ’ ‘ T

END (

.

SUBFOUTIAE TG CALCULATE VISCOSITY AT +«ZONE. CENTRE,

LOoOoP .

SUBROUTINE VISC(V3L,V3I,U23, V32,031,032, J4A X, JZONE | NV X)
COMMGN/CONSI/ Ny JTOLs NSTRTJ
CONPCN/CONSR/CyﬁyGerCCNS,aAFE TCLKk,TOLE
OIMERSION V3% (JZONED) 4V33 (UZONE) 4 V32 (UZONE)
DIMENSION U23(JMAX)oQ31(JZONEY,Q2Z(JZONE) .

DO 90 J=14JZONE -
IF(N.Z0,10C32(d) =0 . - ‘
IF(ITOL,EN.GYQ31L(JII=N32(J)
G T
- 360J) JLT.V3I3(J)) o AND. (U23(U$1) LT U230 .
1C32(J) =VCORS*{U23(J+1) = R 272 H1 I SRAREAR
9§ CCNTINUE .
© EETURN. . -
END. ~
\ ~
\ N



76

=P,

-
-

W TIME ST

<

€ TC CALCULATE N

-
-

SUBROUTIN

c

-
(0]
S [F3]
i) &
X< - (@]
=0 - * b - N
- aN -~ ¥ v ] w
> i - I ¢ - & )
o) ' - ' w (@] >
P21 > My > m Z N -t
- om ~ ™ c - _
[oY] > ry ~ ~ o S,
| - > lag] [] -y (sl (]
[an] -~ - -~ 0 [ 3 X w
s ] XXy 1 X+ xul O wn
g O CZ [72] 0~ ) s g.J - ~ z -~
Mm 0. %20 W b 3~ Ww O ~ - o -~
O = LN < ~—{ytvy) e Z e 2 -~ [GEES
- . >~ O & ~20oh (@) o M I [}
M o e NV XM el (AN s < 20} w 9
ry J = O O N . o™ -3 w e
1w 0 om LSO T~ e~ L - 2 ~ m
LS = -2 dX M- Z — M- O -— "
K4 - - L Qo= - T X - - [1a) W
Lo IR VI ] 2 V3 P s W SNZZNN [ = TR Y s * - -~ X <+
Ww o wxZy e, ~~Or" - el >y L3 | - - e~
« Oz @] ~ANND S Tz MmawZ o~ 1 Z D
M ATINO LW TE"% &N M0 i Wilieg] o W
M e eTIN Z ~0+ -+ Y1 O e eN ~ I -~ 0 ™
> N~ "y 2w 3LIX ) [ 37 e I3 O ¥ z
- PN C LY e e . a I~ i ¥ Z O
2 OFMY W XX rx < w T MO g -~ [
M OWnwm i, D™D W z S>ONM [ -~ T %
DaADZ a0 N ~rIwd n o w e>L> e D =
o> o o o 4 At .~ O N - T ree * O w .
S Dt dlem WO +>oulo r 0 L G R T R %~ X x H
“IOOINK e~~~ X T Oud™D [& T, 3 - OOXUuUl Ne~ X > -
& o OQWEL Hul w40 ™ N a2 NN X L7, |
~Ced INEZw— =l I+ 0 -, O NAEITO e+ I - 9
LIX & &DIOMM o O NIy W o J e eINLLOT -
2 gOIZwwNMM O O aD b Del qd qQUOIT=NZ0N~ %) ~ I
HEINNS ITIDU Z= 0l oWl » UV g~ O ENNIT~0 »3 ~ M M
e Z N e ) v % T ~ HXKEHAEINIH~IZ ~X W X
CNVUIE vrmem Z> LU QO @ 1w X2 (&) VDNEXDINE X —HO = O
W & BIEL MO WI-N T g - e LSt et e
Z2ZOQZ2ZE~~ [~ gm PR I | - XH Z00ZZ 0 M TN 3 N
HOOOOO 3 O ON o% oW k= O~ W HQQOOH 1OX ein>X o 1T oty)
ERNINNHHOMM L L) ) DI NNND N~ £ NN Y 1 DU O W
DZZNNODN O —~+L+lZT = >+ 2Z M OZZNN Xl ~0 J VT2
O «OO0LZOU I Od Z2rXIHH & e OO0OVLZIDWD ™ +O e L’ 4
X EXTwuleArioy o w0 Ul Jd~D D AEIWWAY- I~ O DD
NI XITYE Wl >D XXwXwZ ] JNM-0 Q MITTIE sy )
DZOOHHOMH 40 DOLDOLO Jd a-WwX K DOOHMHOLIILOIUWL O
NOHLOOOVOO T CIHIHO < oW M NOVOAQAQDHOXHOOH V)
-t xXa = o A -
0 %) w1 K SV ~ g N
[V o Nt

c
c
c
c
c



77

NERCY.

TO CALCULATE TaTmAaL

—_
-
[

SUBROUTIN

C

C

INITIALIZE ENERGIES.

DD

LI J oe L]
(=T I I T4}
IHHOO
oISV EI NN M Yov)
ZZH0NNIE 1
et b e e (L O
MYOOWNnLT
> W Qg x

LOCP TO SUM THE ENERGIES CALCULATED IN EACH ZONE.,

Cc

1y#u23(dz+1)
Z+1)

JZ ¢+
u3z
b (J

MHNNY o
AN .
NDD~ VN
—~ kN N o~
NN e M

MM MI% ewrwr o1
WNE T~ 20w
ZDOONNI N
Odrt % DY Omm o~
Nl > N NN
NV M TNANNTYID
LR sl g Pl R = 1 Y
FANANOM XM
HIZZ+IN+TTXT OO
N HAO"NOOQ o
e T ar AV R e e d UL

WX XON2>PONULIDOW
ODIHAEZAACZTNZ ¢t
et (I XY 1 X1
HWHZTZ ot (Y

O tmd b O 1 e OO T e e
QXY YOZNOEZNOOQO

SO XKy Qe X} IO U W

[
o=}
ol

NERGY.

CALCULATE TOTAL =

c

-

oJ

=z

[

¥

>

> L 3

X~ D

o .

- e N

LN 4

et Ul

Udy) Q

«~Q

[YeL o] -

o« 3
o e ([P
- et [SVALN
Qs N WO
o He e
sell) TN
.20 - o
= bt >N

OY « nNQ
Q<X ~
2 N WO e
&t o2
— X DOk=t0 i
Hin, el vt 3
Y e el
HKOHMOA w
- olpjb~ i3
N\ » -
Z it o2 X
il e0g N
HANAHNINYO S =t -
[y ST e NNV N>
OO00O0 » »ei o) »
000QA0Z kvl UY¥
bt NBOr »d
e OO0 W) XKy
TZZZ~N: ~nQl
b=t L] oy et
YN XX e Xrdk
MM | oD
R N !
[PRIRNEEVIL _JVeINoR dis
VNNV e s b b Z
uhigult)inauninl g e

HHHU N el23 2D
UM T LG e
L0000 Xwe
WwWwWI =3I IinX iy

-t -
i o
- L
i -

=~
[

P
-
[y

SUBRCUTINE TC CALCULAT

c

QUATION: CF STATE.

-

!

SUBRGUTINE EQNST(VV,P)

QUATION OF STAT

TCe
\

AyB,y,E45CyZ

o~
[
—

-
~

c

RE TURN
END

e



WM

10.
11.
12.

13.
.14,

15.

16.
17.
18.

19.
20.
21.

. REFERENCES > -
A-nett, W.D., 1966, Canadian J. Phys. 44, 2553
Arnett, W.D., 1967, Canadian J. Phys. 45, 1621.
Arnett, W.D., 1977, Ap. J. 218, 815.
Arnett, W.D. and Schramm, D.N., 1973, Ap. J., 184, 147. )
Baym, G., Pethick, C., and Sutherland, P., 1971, Ap. J. 170, 299.

Bruenn, S.W., 1975, Seventh Texas Sympasium on Relativistic Asto-
physics (Ann, N.Y. Acad. Sci., 262, 80) :

& S -
Bruenn, S.W., Arnett, W.D.D, and Schramm, D.N., 1977, Ap. J. 213, 213.

Burbidge, .M., Burbidge, G.R., Fo¥ler, W.A., and Hoylg, F., 1957,

Rev. Mod. Phys. 29, 547. \

Chandrasekhar, S., 1939, Stellar Structure, University of Chicago Press.

Christy, R.F., 1964, Rev. Mod. Phys. 36, 555.
Colgate, S.A. and white, R.H., 1966, Ap. J. 143, 626.

>

Courant, R. and Friedricks, K.0., 1956, Supersonic Flow and Shock
Waves, vol. 1, INterscience.

Freedman, D.Z., 1974, Phys. Rev. D9, 1389.

-

Freedman, D.Z., Schramm, D.N., and Tubbs, B.L., 1977, Ann. Rev. Nucl.
Sci., 27, |

Garvey, G.T., Gerace, W.J., Jaffe, R)\L., Talmi, J., and Kelson, I.,
1969, Rev. Mod. Phys. 41, SI.

Hansen, C.J., 1968, Ap. Space Sci+—1, 499.
May, M.M. and White, R.H., 1965, Phys. Rev. 141, 1232.

Richtmyer, R.D. and Morton, K.y., 1967, Difference Methods for Initial
Value Problems, Interscience. i

Rose, W.K., 1973, Astrophysics, Holt, Rinehart and Winston.

Schramm, D.N. and Arnett, W.D., 1975, Ap. J., 198, 628.
) ¥

Tubbs, D. and Schramm, D.N., 1975, Ap. J. ggl, 467.
' 78



22.
. 23,
24,
25,
26.

27.

79

Van Riper, K.A., 1978, Ap. J. 221, 304.

Wilson, J.R., 1971, Ap. J. 163, 209.

Wilson, J.R:, 1974, Phys. Rev. Letters, 32, 849.
Wilson, J.R., 1975, Ap. J. 196, 633.

i . )
Zeldovich, Ya.B. and Novikov, I.E., 1971. Relativistic Astrophysics,
vol. 1, University of Chicago Press.

Zeldovich, Ya.B. and Raizer, Yu.P., 1968, Elements of Gasdynamics
and the Classical Theory of Shock Waves, Academic Press.

il

-

[y -





