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Abstract

We consider a model of the chemostat that involves a three species food chain
with no imposed periodicities. The bottom trophic level species depends on
a single, essential, growth-limiting nutrient. For a particular choice of proto-
type response functions, numerical simulations exhibit complicated dynamical
behavior for reasonable parameter values. Using bifurcation theory methods
we show the possibility of chaotic dynamics in a neighborhood of a particular
equilibrium point. Moreover, we examine the role of each of the response func-
tions with respéct to the dynamics (i.e. chaos) of the model by systematically
changing one response function at a time from linear to a more biologically

reasonable Michaelis-Menten response function.
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Chapter 1

introduction

1.1 The Chempstat

The chemostat is a laboratory apparatus used for the continuous culture of
microbial organisms. It provides a controlled environment for the study of
microorganism.growth under nutrient limitation. The first description of the
chemostat is due to both Monod [33] and Novick and Szilard [34], however,
the term ‘chemostat’ is attributed to Novick and Szilard. The apparatus itself
is relatively simple. It consists of three chambers : a feed vessel, a culture (or
growth) vessel and a collection vessel. Nutrients are pumped at a constant
rate from the feed vessel into the culture vessel and simultaneously, medium is
pumped out of the culture vessel, at the same rate, into the collection vessel.
Thus, constant volume is maintained in the culture vessel. With the excep-
tion of the nutrients under consideration, the feed vessel contains sufficient
levels of all other required nutrients. The culture vessel is well stirred, thus
nutrients, organisms and byproducts are removed in proportion to their con-
centrations in the culture vessel. All other parameters that may affect growth

(i.e. temperature, light, pH conditions etc...) are kept constant.
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One of the attractive attributes of the chemostat, from a experimental
point of view, is that it allows the experimenter to make measurements based
on the contents of the collection vessel without disturbing the behavior in the
culture vessel, hence reducing the risk of tainting the experiment.

Over the years, the chemostat has played an important role in industry.
It has been used in industrial processes such as water purification and waste
decomposition ([10], [28], [54]), and commercially for the production of ‘useful’
microorganisms ([19], [42]). The chemostat also plays a key role in theoretical
ecology (see, for example, [4], [9], [47]). It provides a model of microorganism
interactions in a very simple lake. Surface waters of lakes are host to planktonic
communities comprised of a variety of microbial organisms such as bacteria
and unicellular algae. These planktonic communities are entirely dependent
on the availability of nutrients in the surface waters (Hutchinson [24]).

However, natural occurring planktonic communities often deviate from
the ideal laboratory conditions of the chemostat. For example, in nature it
is rare to have a uniform distribution of planktonic communities across the
surface waters of a lake. Distribution of these communities can depend on
such things as shoreline stuctures (i.e. bays, coves etc...). Shoreline structures
can provide protection against the general circulation of the open water and
wind action, and hence allow the plankton to flourish in numbers in these areas
(Welch [48]). Thus when we refer to the chemostat as a model of a lake, we
are refering to an extremely simple, and perhaps artificial lake, characterized
by near uniform distributions of shoreline profiles, temperature, light etc.

Also, the well stirred hypothesis of the chemostat can be violated when

one considers seasonal weather changes. As pointed out in Waltman, Hubbell

and Hsu [47],

‘..in deeper lakes and oceans, gradients of water density established in



summer prevent complete mixing of the water column, thereby cutting
off the supply of nutrients to the surface waters from bottom sediments
or nutrient-rich older and denser waters below. In the spring and fall,
however, heating and cooling of the surface waters, respectively, equal-
ize the water densities throughout the water colunm, and more nearly

complete mixing occurs.’

Despite this deviation, predictions based on chemostat studies are still suc-
cessful. This is due to the fact that the same nutrients remain limiting to
the planktonic communities during the fluctuation or rapidly become limiting
again after the fluctuation has subsided ([47]).

As a result, the chemostat is an extremely good theoretical and ex-
perimental tool that can uncover and probe complex mechanisms that govern
microbial interactions in nature. All chemostat parameters, species’ specific
or otherwise, are measurable. The experimental work can confirm the theoret-
ical work (see for example [23] and the subsequent experiments of Hansen and
Hubbell [17]), and the ecology guides both the theoretical and experimental
work of the chemostat.

We refer the reader to Smith and Waltman [41], and the references

therein, for a survey of the various chemostat models.

1.2 Background Material

Models of biological systems are often parameter dependent and varying one
or more of these parameters can change the dynamical behavior of the model.
For example, consider pure competition in the chemostat with a single growth-
limiting nutrient and equal dilution rates. Let S50 denote the concentration of

nutrient in the feed vessel. For S° sufficiently small, we have wash out of the



competitors (see, for example, (1], [8], [22], [23], [33], [43], [46], [51] and [52]).
That is, all populations are driven to extinction. However, for sufficiently large
S°. one competitor population can survive. This change in dynamical behavior
as SO passes through a critical value is called a ‘bifurcation’. S° is called the
‘bifurcation parameter’ and the critical value of S° that produces this change
is called the ‘bifurcation value'.

Consider the following example of a one dimensional, one parameter
dependent vector field, demonstrating an elementary bifurcation and the rel-

evance of nonhyperbolicity of the fixed point.

Example A: Consider the following vector field
' = flz,p)=px—2’, z€R, peR. (1.1)

It is easy to check that f(0,0) = 0 and (8/92)(0,0) = 0. The fixed
points of (1.1) are z =0 and z = p and for p =0, z = 0 is a nonhyperbolic
fixed point. For u < 0, the fixed point = 0 is stable while £ = p is unstable.
At u = 0 the two fixed points coalesce and there is an excha-nge of stability,
that is for p > 0, £ = 0 is unstable and = p is stable. Thus there is a

bifurcation at the critical value u = 0.

A bifurcation occurs for a dynamical system if the phase portrait un-
dergoes a topological qualitative change. More precisely, there is no smooth
deformation of the curves of one phase portrait to the curves of the other phase
portrait as in Example A.

Many bifurcations occur when the vector field becomes nonhyperbolic.

Studying bifurcation points of vector fields aids in the understanding of the



dynamical behavior of the vector field. That is, consideration of small pertur-
bations of a vector field at a bifurcation point reveals all possible dynamical
behavior of the system in a neighborhood of the bifurcation point.

There are two classifications of bifurcations: global and local. Global
bifurcations can often be very difficult to deal with analytically. However, local
bifurcations can readily be dealt with analytically. What is a local bifurcation?
First we need the notion of a ‘perturbation’ of a vector field.

Let f(x;p) and g(x;p,n) be C” vector fields in R", with p € R? and
i € RI. Assume both f and g are continuous functions of the parameters.
If f(x;p) # g(x;p, ) but f(x;p) = g(x;p,0), then we say that g(x;p, ) is a
‘perturbation’ or ‘unfolding’ of f(x;p).

An ordinary point of a vector field is any point other than a fixed point.
The Flow Box Theorem ([2]) tells us that there is no topological qualitative
change in the vector field for small perturbations in a neighborhood of an ordi-
nary point. Hence, in order to produce qualitative change in a vector field we
need to consider perturbations of the vector field in a neighborhood of a fixed
point. The Hartman-Grobman Theorem ([2]) tells us that there is no qualita-
tive change in a vector field due to small perturbations in a neighborhood of a
hyperbolic fixed point. Thus we need to consider nonhyperbolic fixed points.
Nonhyperbolic fixed points have at least one associated eigenvalue with zero
rea! part. Small perturbations in a neighborhood of a nonhyperbolic fixed
point can change the sign of the real part of the eigenvalue. Hence, 1t can
change the local stability of the fixed point. If such a change occurs, we then

say a ‘local’ bifurcation has occurred about the fixed point.

Example B: Consider the vector field

g;lzf(g;,#)zﬂ—-x3, zeR, peR. (1.2)



Once again f(0,0) = 0 and (9f/0z)(0,0) =0, and z =0, at u =0, is
again a nonhyperbolic fixed point. However, unlike in the previous example,
here the dynamics are qualitatively the same for p < 0 and g > 0. Namely,

there is a unique stable fixed point and no bifurcation occurs.

An unfolding (perturbation) of a vector field that yields all possible
topologically distinct dynamical behavior is called a ‘versal’ unfolding. A
versal unfolding that uses the minimum number of parameters is called a ‘uni-
versal’ unfolding. The number of parameters required for a universal unfolding
is called the ‘codimension’ of the bifurcation. Hence, every bifurcation is at
least codimension one. The bifurcation of example A is a codimension one bi-
furcation, also known as a ‘transcritical’ bifurcation. For a more detailed con-
sideration of codimension one bifurcation (i.e. pitchfork, saddle-node, etc...)
and bifurcations in general, we refer the reader to Wiggins [49], [50].

Local bifurcation of fixed points can be determined by studying their
associated eigenvalues and Taylor series expansions. There are however bifur-
cations that cannot be determined in this manner. We refer to these bifurca-
tions as global bifurcations. For smooth vector fields in R", global bifurcations
can be a result of saddle connections between invariant sets of the flow (i.e.
fixed points, limit cycles, etc...) breaking under small perturbations. There
are two types of saddle connections: homoclinic and heteroclinic orbits. A
homoclinic orbit, or loop, is created by a trajectory forming a loop which is
closed by a saddle type point. The stable and unstable manifolds of the saddle
type point cross away from the point, and since we are considering smooth
vector fields, this implies that these two manifolds must coincide.

A heteroclinic loop is formed by a series of at least two trajectories

connecting saddle points. The stable manifold of one saddle point crosses the



unstable manifold of the other saddle point. Once again, this implies that they
must coincide.

Consider a smooth parameter dependent vector field in R". Let p
be the bifurcation parameter that moves the vector field through a global
bifurcation. As u passes through the bifurcation value, the local stability of the
saddle points does not change. However the global dynamics can be drastically
affected. As p moves through the bifurcation value there is usually the creation
of a limit cycle. Moreover, global bifurcations can produce chaotic dynamics.
For example, a two dimensional, parameter dependent, discrete dynamical
system possessing a homoclinic or heteroclinic loop can be chaotic (Wiggins
[50]) for certain parameter ranges. The chaotic behavior here is associated
with local stretching, contracting and folding of regions near bifurcation.

For smooth autonomous vector fields, chaotic dynamics are only possi-
ble in R” for n > 2 (Peixoto’s Thm.). However, one can determine chaos in
many vector fields by identifying global bifurcations for an associated (n — 1)
dimensional Poincare map. One is usually restricted to computer simulations
in order to locate and identify global bifurcations of vector fields.

Unlike the case for global bifurcations, there are analytical reduction
methods that simplify the study of local bifurcations. One such method is
the theory of normal forms, which will we use in our work and thus briefly
outline below.

Consider the n dimensional vector field
v=G(v) for ve R", (1.3)

where GG is CT, and 7 is to be determined later. Assume that (1.3) has a fixed
point at v = vo. We outline the method of computation of the ‘normal form’

of (1.3), about vq, as given in Wiggins [49]. First, translate the fixed point to



the origin and then separate the linear part of the vector field to obtain
u= Dg(0)u + g(u), (1.4)

where u = v — vo, G(u + vo) = g(u) and g(u) = g(u) — Dg(0)u. Let T
denote the similarity transformation that takes the matrix Dg(0) in (1.4) into
J, a matrix in real Jordan canonical form. That is, under the transformation

u = T'x, (1.4) becomes

x = T 'Dg(0)Tx+ T 'g(Tx) ,
= Jx+ F(x).

Next, find the Taylor expansion of F(x) about the origin. That is,
x= Jx + Fp(x) + F3(x) + ... + Fro1(x) + O(x7), (1.5)

where Fi(x) for i = 2,..r — 1, are the order 7 terms in the Taylor expansion.
Notice that up to this point we have simplified the linear terms as much as
possible. We now seek to simplify the higher order terms in (1.5). We want
to simplify the second order terms without changing the linear terms. After
accomplishing this, we want to simplify third order terms without changing
the second order and linear terms. We can continue in this manner to any

desired order r* <r — 1.

We begin with order 2 and introduce the near linear transformation

x =y + ha(y), (1.6)

where hy(y) is order 2 and will be determined later. Substituting (1.6) into
(1.5) we obtain

(I + Dha(y)) Y= Jy + Jho(y) + Fa(y + ha(y)) + Fa(y + hao(y)) + O(4), (1.7)



where I,, denotes the n x n identity matrix. Note that

Fy(y + ha(y)) = Fa(y)+ DF(y)ha(y) + Fa(h2(y)),
Fa(y + hay)) = Fis(y)+ DFs(y)ha(y) + O(5).

Regrouping terms in (1.7) by order we have
(In + Dha(y)) ¥=Jy + Jha(y) + Fa(y) + Fa(y) + O(4), (1.8)

where
F3(y) = DFy(y)ha(y) + Fa(y)-

For a n X n matrix A = (ai;), we define the norm of A as
[|A]lmae = Ir}gx lai;|.
Then for ||Dha(y)||met < 1 we have

(In + Dha(y))™ = 3(~1)"(Dha(y))" = I — Dha(y) + (Dha(3))? + O(3)

"= (1.9)

For ||y|| sufficiently small, ||Dh2(y)||me: can be made arbitrarily small and
thus (I, + Dho(y))™! exists. Apply (1.9) to equation (1.8) to obtain

Y= Jy + Jha(y) — Dha(y)Jy + Fa(y) + Fa(y) + O(4), (1.10)

where

Fy(y) = (Dha(y))*Jy — Dha(y)Jha(y) — Dha(y) Fa(y) + Fs(y)-
So far we have not specified ho(y). We would like to choose hy(y) such
that
Jha(y) = Dha(y)Jy = = Fa(y), (1.11)

and thus remove all second order terms in (1.10). However, in general this is

not possible. Below we outline a method describing how to choose ha(y) such
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that we are only left with the ‘essential’ second order terms, denoted F7(y).
For now assume ho(y) has been determined. Equation (1.10) then takes the
form

y=Jy + Fj(y) + Fs(y) + O(4). (1.12)

We now seek to simplify the third order terms in (1.12). Introduce the

near identity transformation

y =Yy + ha(y),

where hg(y) is third order in y. Applying the above transformation to (1.12)

and proceeding as we did for the second order terms, we have

(I + Dha(y)) ¥ = Jy+ Jho(y) + F5(y + ha(y)) + Fa(y + hs(y)) + O(4)
= Jy+Jhs(y) + F5(y) + F5(y) + O(4).

For ||y|| sufficiently small, (I, + Dh3(y))~! exists and we have

Y = {I.— Dha(y) + O@)} {Jy + Jha(y) + F§(y) + Fa(y) + O(4)}

= Jy+ F5(y) + Jha(y) — Dhs(y)Jy + F3(y) + O(4).
(1.13)
We would like to choose hz(y) such that

Jha(y) — Dha(y)Jy = —Fs(y), (1.14)

and thus eliminate all third order terms (1.13). In general this is not possible.
Thus we choose ha(y) in such a manner as to leave only the ‘essential’ third
order terms, Fj(y).

The procedure can continue to the desired order r* < r — 1. Notice
that at each application of a transformation of the form y = y + hx(y), the
k + 1 order terms are changed but not the lower order terms.

We now quickly outline how to determine hi(y). First let Hi denote

the space of vector-valued monomials of degree k, in R™. For example, take



the standard ordered basis of R2, and let the coordinates with respect to this

basis be denoted by z and y. Then H? is given by

x? 2 0 0 0
H22 = Span b zy k] y 9 9 b Y
0 0 0 z? Ty y?
and the set of vectors above are referred to as the standard ordered basis of

H}.
Next, reconsider equation (1.11). Clearly, ho(y) € H7 and the map

ha(y) — Dha(y)Jy — Jha(y)

is a linear map of HY into Hy. Moreover, for hi(y) € H}} we have the linear

map of HY into HE given by

hi(y) — Dhi(y)Jy — Jhi(y)-

This map is often denoted as

Ly(hi(y)) = —(Dhi(y)Jy — Jh(y)) = [h(y), JY],

for the Lie bracket operation on the vector fields hx(y) and Jy ([21]).

The task of solving equation (1.11) and determining h,(y) is now much
easier if we work in the linear space setting of Lj. Solving equation (1.11) is
like solving a linear system Az = b. To see this let B, denote the standard
ordered basis of HZ. By determining the action of Lj on each basis vector of
B,, we can construct a matrix representation of L; with respect to B,, say

M,. Then, since Fy(y) € H}, equation (1.11) is equivalent to

M, - ho(y) = —Fa(y)- (1.15)

If the above equation has a solution, then all second order terms can be

omitted. That is if F, is in the range of L, then Ly(HZ) = H3 and all second



order terms can be eliminated. However, in general, equation (1.15) may have

no solution.

If equation (1.15) has no solution then proceed as follows. First, Hy

can be represented (non uniquely) as
H3 = Liy(H}) @ Go,

where G; is a space complementary to Lj(H). If F, ¢ L;(H7), then choose
ha(y) such that only second order terms in G- are left. That is,

F3(y) € Ga.

Determine G, in the following manner. First, note that Lyj(HY) is the
column space of M,. Choose G3 to be the orthogonal complement of Ma, that
is, G2 can be chosen to be the nullspace of the transpose of M. Next, choose
bases for Ly(H}) and G;. Concatenate the two bases to form a new basis of

H}. Now rewrite F with respect to this new basis and decompose F; into
Fy = FL + F}, where F} € L;(H;) and F; € Go.
Finally, determine h,(y) by solving the linear system
M, hy = —Ff.

By iteration determine each hy. The above is summarized in the fol-

lowing theorem.
Normal Form Theorem : (Wiggins [49})

By a sequence of analytic coordinate changes (1.5) can be transformed into
y=Jy + Fj(y) + F3(y) + . + F_1(y) + O(ly]"), (1.16)

where FI(y) € Gk, 2 <k <r—1, and Gy, is a space complementary to Lj(HE).

Equation (1.16) is said to be in normal form.



We conclude this section with a few general remarks on normal forms.
First, notice that a normal form computation is solely dependent on the linear
part of the vector field. Thus a particular normal form can represent a large
class of vector fields with similar linear part. Secondly, since the choice of
G\ is not unique, normal forms (unlike Taylor series) are not unique. Thus
determining a universal unfolding for a normal form is crucial if one wants to
compare the dynamical behavior of the normal form to the behavior of the

original vector field.

1.3 Thesis Outline

In this thesis, motivated by the results of Hastings and Powell ([18}), we con-
sider a model of a three species food chain in the chemostat (super-predator,
predator, prey) without any imposed periodicities. Numerical work on this
model seems to indicate chaotic dynamical behavior for certain parameter re-
gions when all response functions are of Michaelis-Menten form ([41]). The
work in this thesis centers around two questions. First, what are the bifur-
cations that lead to chaos? Secondly, how are these bifurcations related to
the structure (i.e. nonlinearity) of the response functions? In an attempt
to answer these questions, we begin by considering the mathematically sim-
plest example of the model which is described by linear response functions.
We then change one uptake function one at a time, from linear to Michaelis-
Menten, and determine what new bifurcations have been introduced to the
model. That is, we systematically build towards the known chaotic model of
three Michaelis-Menten response functions.

This thesis is organized in the following manner. In Chapter 2 we

give the mathematical description of the model for general monotone uptake



functions along with the necessary biological constraints. In addition, we give
a non-dimensional version of the model and introduce notation for the fixed
points. Finally, we present some preliminary results and give conditions for
the global asymptotic stability of the wash-out state and the single species
survival state.

In Chapter 3 we restrict our attention to prototype response functions
and consider three examples of the model. The first example (Case 1) incor-
porates linear response functions. In this case we are able to give a complete
global analysis of the model. Example 2 (Case 2) consists of changing the
super-predator’s response function from linear type to Michaelis-Menten type.
We present some global stability results for this case and also give a neces-
sary and sufficient condition for uniform persistence. The final example of the
model (Case 3), that we consider in this chapter, is given by Michaelis-Menten
response functions for both super-predator and predator. We show the exis-
tence of a codimension 2 bifurcation on one of the faces of R*. We conclude
the chapter with some numerical simulations of this example.

Chapter 4 contains the normal form calculation of the codimension 2
bifurcation of Case 3. We introduce an unfolding for the normal form and
then describe the bifurcations of this unfolding. We end Chapter 4 with a
comparison of the bifurcation behavior of the unfolded normal form to the dy-
namics of the original vector field. In Chapter 5 we consider one last example
of the model (Intermediate case). This case consists of a Michaelis-Menten
response function for the predator and linear response functions for both prey
and super-predator. Once again, this case has the same codimenéion 2 bi-
furcation, but appears not to be chaotic. We conclude this chapter with a

comparison of bifurcation behavior of Case 2, Case 3, and the Intermediate
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case. Finally, Chapter 6 contains a summary and discussion of our results. Ap-
pendices A and B contain Maple programs for the calculation of the normal

form of Chapter 4 and the calculation of the associated 3-jet, respectively.



Chapter 2

Three Species Food Chain in
the Chemostat

2.1 The Model

We consider a model of a food chain in the chemostat described by the following

system of ordinary differential equations :

S'(t) = (8°— S(t))D — nasE)
) = z(t)(—D + h(S(t))) — =enl) o
zy(t) = @(t)(=D +pi(zi(t))) — =iealzl)
3

t) = x3(t)(—D + p2(z2(t))) ,

5(0) = So = 0 and z;(0) = 250 > 0 for ¢ = 1,2,3.

The culture vessel is assumed to be well-stirred so that spatial variation
can be neglected and for convenience the volume of the culture vessel is as-
sumed to be one cubic unit. S(¢) denotes the nutrient concentration and z;(t),

i = 1,2,3, denote the concentrations of microorganisms in the culture vessel

16



at time ¢. Population z3 is the top predator in the food chain. Population z3
consumes population z,. Population z3 in turn consumes population z,, and
population z, consumes the nutrient S. The functional response of population
z; on nutrient S is given by h(S), with corresponding growth yield constant ¢.
Thus, h(S)/( is the rate of consumption of nutrient S for population z, and so
we assume that consumption of nutrient by the microorganism is proportional
to conversion to biomass. Similarly, p;(z;), ¢ = 1,2, denotes the functional re-
sponse of predator z;4; on prey z; and p:(z;)/n; is assumed to denote the prey
uptake function for the respective predator. Thus, the constants 7;, i = 1,2,
are the growth yield constants for the respective predator populations. S°
denotes the concentration of nutrient in the feed vessel and D denotes the di-
lution rate. The species’ death rates are assumed to be insignificant compared
to the dilution rate and are neglected.

We make the following assumptions concerning the functions p;(z;) and

h(S) in system (2.1) :

pih: Ry = Ry
p:.h are continuously differentiable ;
R'(S)>0 forall S € Ry ;
pi(z;) >0 forall z; € Ry ;'
p;(0) = 0 and h(0) = 0.

VY
)
o

—

The following substitutions help simplify the analysis of system (2.1) :

R(Z) =48 5,(7) = 242 for i = 1,2,

Omitting the bars, to simplify the notation, the scaled version of system



(2.1) can be written as follows :

S'(t)y = S°—S(t) - zi(t)h(5(1)) ,

zi(t) = z(t)(=14h(S(1))) — z2(t)pa(za(2))
zo(t) = z2t)(—1+pr(21(2))) — z3(t)p2(z2(t))
z3(t) = z3(t)(—1+ p2(z2(t))) ,

(2.3)

So>0, 240>0, for:=1,2,3.

There is no loss of generality if we analyze system (2.3) instead of system
(2.1). We identify (S, z1, z2,z3) — space with RY.
From the assumptions in (2.2) it follows that there exist uniquely de-

fined positive extended real numbers A and §;, ¢ = 1,2, such that

R(S) <1 if S<A,
R(S)>1 if S>A,
pi(z:) <1 if zi<é;,

(zi)>1 if z; >4

Hence X and §; (i = 1,2) denote the break-even concentrations of nu-

trient and prey respectively. Prototypes of monotone response functions com-

monly used in the literature ([25], [33], [46]) are :

(7) plz)==z/d Lotka — Volterra
(i) p(z)=mz/(§(m—1)+z), m>1 Michaelis— Menten  (2.4)
(i17) p(z) = mz?/(a + z)(b+ ), m >1 Sigmodial .

We will focus the majority of our attention on response functions of types ()

and (22).



The critical points of system (2.3) will be denoted by

Es = (5°0,0,0),
Ex = ()\5°=1,0,0),
E;, = (8°0,8,,—62),
Es. = (8%,41,23,0),
E® = (S%21,8,25) ,

where $* must satisfy S° — S* = §h(S*), 23 = &i(—1 + h(S")) and 84,
z2 must satisfy S — $& = 2h(52) and z$(—1 + h(52)) = Sap1 () with
z5 = 8(—1+ p1(z2)). Note that there may be more than one fixed point of
the form E&.

We say that a critical point exists if and only if all of its components are
nonnegative. Hence F) exists provided A < S°. Eg. exists provided S* > A.
E5 exists provided z2 > &,. Note that Es, cannot occur in the nonnegative

cone due to the biological constraint d; > 0.

2.2 Preliminary Results

As is the case with any reasonable model of the chemostat, the solutions of

system (2.3) are well behaved which is the content of our first proposition.

Proposition 2.1 All solutions S(t), zi(t) for i = 1,2,3 of system (2.3) for
which 230> 0 (i = 1,2,3) are (i) positive and (ii) bounded for t > 0.

Proof : (z) If S(0) = 0 then 5'(0) = S° > 0. Suppose there exists a first
to > 0 such that S(to) = 0 and S(t) > 0 for 0 <t < to. Then S'(to) < 0, but
from (2.3) S'(to) = S° > 0, which is a contradiction.

Next, since the boundary faces z; = 0 (i = 1,2,3) are invariant, by the

uniqueness of solutions of initial value problems, they cannot be reached in
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finite time by any trajectory originating in the interior of R}. Therefore, for
all t >0, z;(t) >0 for ¢ = 1,2,3.
(i7) Let
2(t) = S(t) + za;m,(t) .

Then adding the equations in (2.3) we obtain z'(t) = SO — z(t). Solving this
first order differential equation leads to z(t) = S° + (20 — S%)e™*, and thus
z(t) = S° as t — oo. In particular, S(t) + Y3 ,z:(t) =S°>0ast— oo,
and since by part (i) solutions are positive, it follows that all solutions are

bounded. w]

Proposition 2.2 The simplez,

3
S = {(S,z1,22,23) € R} : 5,2 20, §+) 2 = 5°} (2.5)

i=1

is a global attractor for system (2.3).

Proof : See the proof of Proposition 2.1 part (iz).

Remark : Let y(t) = (S(t),z1(t),z2(t), z3(t)) be a solution of system (2.1)
and let Q denote the omega limit set of v(¢). By Propositions 2.1 and 2.2, Q2

is a nonempty, invariant, compact and connected subset of R} (see [16], Thm.

8.1).

The following theorem is concerned with the extinction of the popula-
tions z;(t) due to insufficient nutrient amount. The extinction is independent
of predation. We will first require the following proposition and a lemma due

to Miller ([32]) which we state below for the sake of completeness.



Proposition 2.3 For all solutions of system (2.3),
(1) Given any e > 0, S(t) < S® + ¢ for dall sufficiently large t.
(31) If there exists to > 0 such that S(t) < S°, then S(t) < S° for allt > to.

Proof : (:) By Proposition 2.1 all solutions of (2.3) are positive and bounded
and thus
S'(t) = S°—5S(t) — z()R(S(t))
< §°-5(),
which implies that given any € > 0

S(t) < S°4(So— S%et
< 894 ¢, for all sufficiently large t.
(17) Assume there exists a first ¢; > to such that S(¢;) = 59, Then

S(t) < S° for all ¢, < t < t;, and so S'(t;) = 0. However,

S'(t1) = —z1(t)R(5(t1)) < 0

which is a contradiction. ]

In addition to the above propositions we will need the following lemma

due to Miller ([32]).

Lemma 2.4 Let w(t) € C%(tg,00), w(t) > 0 and K > 0.
(3) Ifw'(t) > 0, w(t) bounded and w" (t) < K for all t > to, then w'(t) — 0 as

{ = oo.

(31) Ifw' (1) <0, w'(t) > =K > —co for all t > to, then w'(t) = 0 as t — co.

Theorem 2.5 For all solutions of system (2.3), if S° < X then z;(t) — 0

(1=1,2,3) ast - oo.



Proof : If S° < A then h(S°) < 1 and by the continuity of h(S(t)), there exists
¢ > 0 such that h(S° + €) < 1. By Proposition 2.3 part (i), S(t) < S°+¢ for
all sufficiently large t. Since all solutions are positive and bounded, z,(t) <0

for all sufficiently large ¢t. By Lemma 2.4, z,(t) — 0 as t — co. However
limsuph(S(t)) < h(S® +e) < 1.
t—00

This and (2.3) imply that z,(t) — 0 as £ — oo.

Next, since lim;—eo z1(¢) = 0, then for an arbitrary € > 0, there exists
to sufficiently large such that for all ¢ > ¢o, we have —1 + p1(z;(t)) < 0 which
implies that z,(t) < 0. As before, we have by Lemma 2.4 z,(t) = 0 as t — oco.

By (2.3), we obtain z3(t) — 0 as t = oo. Similarly, we have z3(t) — 0 as

t — oo. ) 0

2.3 Stability of Ey and E),

In this section we concern ourselves with the global stability of the fixed points
E, and E) of system (2.3). Whenever possible, the results of this section are
obtained for response functions satisfying only the basic assumptions in (2.2).
In certain cases, the results are restricted to the prototype response functions
given in (2.4).

For S° < A, Ej is the only fixed point in the nonnegative cone R} . The
Jacobian of (2.3) evaluated at E; = (5°,0,0,0) is

~1 —h(S% 0 0O
0 —1+hA(S® 0 0
0 0 -1 0
0 0 0 -1
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and the associated eigenvalues for Eg are —1,—1,~1,—1 + h(S°). Hence, Eq
is locally asymptotically stable provided —1 + ~(S°) < 0 (i.e. S° < A). Under
the condition S° < A, E° is not only locally asymptotically stable but also
globally asymptotically stable.

Theorem 2.6 If S° < A then Ey = (5°,0,0,0) is globally asymptotically
stable for system (2.3).

Proof : Let P € {(S,z1,22,23) € Ry : z; >0, i = 1,2,3} and let Q(P)
denote the omega limit set of P. If Q@ = (5,%1,%2,T3) € Q(P), then by
Theorem 2.5, T; = 0 for i = 1,2,3. On the subspace {(5,0,0,0) € R}}
system (2.3) reduces to
S'(t) = S° — S(t).

Hence, by Proposition 2.2, S(t) = S® as t = oo. If @ € Q(P), then the entire
trajectory through Q is in Q(P), and since Q(P) is closed then E, € Q(P).
Since S° < ), E, is locally asymptotically stable. Therefore {Eo} = Q(P),
and thus Ej is globally asymptotically stable for system (2.3). O

For system (2.3), when S® = A, E; and E) coalesce. As S0 increases
past A, Eq becomes unstable with a three dimensional stable manifold and a
one dimensional unstable manifold. Simultaneously, E enters the nonnegative

cone R%. The Jacobian of (2.3) evaluated at Ej = (A, 8% = ),0,0) is

—1— (8= MA'(N) -1 0 0
(S° — MR'(N) 0 —m(8°=x) 0O

0 0 —14+pm(S°=X) 0

0 0 0 ~1

and the associated eigenvalues for Ey are —1,—1,—(5° — MA'(A), and —1 +
p1(8° — A). Thus E), € R% and is locally asymptotically stable provided
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A < S° < X+ &;, and the exchange of stability between Eo and E, is via
a transcritical bifurcation. In order to show global stability for E) we will

require the following preparatory results.
Proposition 2.7 If A < S°, then S(t) < S° for all sufficiently large t.

Proof : Let A < S° and assume S(t) > S° for all sufficiently large . Then
S'(t) < 0 for all sufficiently large ¢, and S(¢) { S° 2 S°. If S* > S° then
S'(t) < (S° — §*) < 0, which implies that S(¢) | —o0, a contradiction.
Next, if $* = §°, since by Proposition 2.2
3
S(t) +D_zi(t) > S® as t — oo,

i=1

and since solutions are positive and bounded, it follows that z;() — 0 as

t — oco. However, since by assumption A < S° < S(t) for all sufficiently large
t, then
7 (1) = zi(t)(=1+h(S(t))) — z2(t)pi(21(2))
> 0 for all sufficiently large ¢ .

This contradicts z;(t) = 0 as ¢ — oo. Thus for sufficiently large ¢, by Propo-
sition 2.3 (ii), S(t) < S°if A < S°. O

Next, consider the system of differential equations

x'(t) = £(x(2)) (26)

where f : G~ C R" —» R" is a continuous vector-valued function.

Definition 2.8 A function V on G € G* is called a Liapunov function for
(2.6) if :

(i) V is continuously differentiable on G,



(12) V not continuvous at X € G implies that

lim V(x) =00, for x € g,

X=X

(iii) V=VV-£ <0 on G.

The following modification of the LaSalle Extension Theorem, given in
LaSalle [29], is due to Wolkowicz and Zhiqi [53] and as they point out the

proof only reqﬁires a minor modification to the proof given in Hale [16].

Theorem 2.9 (Modified LaSalle Extension Theorem)

Assume that V is a Liapunov function for (2.6) on G C G". Define € = {x €
GNG":V (x) =0}. Let M denote the largest invariant subset of €. Then
every bounded (for t > 0) trajectory of (2.6) that remains in G (fort > 0)

approaches the set M as t — oo.

To obtain global stability for E», under the condition A < S0 < A+4y,
we restrict p; (z,) to be one of the prototype response functions given in (2.4).
The response functions h(S) and py(z;) are still general monotone uptake

functions satisfying only the assumptions in (2.2).

Lemma 2.10 Let the response function pi(z1) be any one of the prototype

functions given in (2.4). Then, for A < 5% < A+ 4, there ezists a scalar o >0
such that

< < 1
omnax, glz) < a< s,i?f‘éoog(x‘)

where
(21 = (S° = A))pa(z1)
(=1 +pi(z1))

Proof : See Wolkowicz and Zhigqi [53].

glzi) =



Theorem 2.11 Let py(z,) be one of the prototype response functions given
in (2.4) and let A < S° < A+ 6. Then Ey = (X, S° — A,0,0) is globally
asymptotically stable for system (2.3) with respect to intRY.

Proof : By Proposition 2.7, it is enough to show global stability on the set
G = {(S,z1,22,23) € R} : § € (0,5°) and z; € (0,00) i = 1,2,3.}. Define a

Liapunov function V (S, z1,z2,23) on the set G by

V(S,.’E],.’Eg,.’l::;) = /;\S (_1 +(};(§?—)(ES)' — /\) d5+ {IE] -~ 7Ty —Tl ln(g—i)}+2a,~m,~

=2

where 7, = S° — X and a3,a3 > 0 real scalars. Then the time derivative of

V(S, z1, T2, z3) calculated along solutions of (2.3) is :

. . o o, '
V(Seranas) = SHEEFEAS 4 (1 - Sa + Tlo o

= 21(=1+ h(S)) — 31h(S) N 22

+ 021‘2(—'1 + pl(:l:l)) — .’Ezpl(.’lll)mflo—_)‘ll — 33 .

Choosing a; = a3 we have

V (S,21,22,85) = z(—1+h(S)) {1 — LYEA}
+ o {oa(-1+p(z) - =E2py(z))} (27

— QpX3 .

The first term in (2.7) is always non-positive for 0 < 5 < S0 and is
zero for S € [0,8°] if and only if S = A or z; = 0. By Lemma 2.10, we
can choose ay > 0 such that the second term in (2.7) is always non-positive
and equal to zero if and only if 2 = 0. Similarly, since solutions are positive
and bounded and a; > 0, the third term in (2.7) is non-positive and equal
to zero if and only if z3 = 0. By the Modified LaSalle Extension Theorem
2.9 every bounded solution of (2.3) is contained in G, and thus by Lemma 2.7

every solution of (2.3), approaches the set M, the largest invariant subset of



£ = {(S,z1,22,23) € G :V (S,21,72,z3) = 0}. The set M consists of points
of the form (.5,0,0,0) for S € [0, 5%, and (A, z,,0,0) for z, € [0, 00).

First, consider points of the form (S,0,0,0) for S € [0, 5°). If any such
point is in the omega limit set of any solution initiating in intRY%, then since
the entire trajectory through any point in € must lie in §2, this would imply
that € is not compact, a contradiction. If S = S° then E° = (§°,0,0,0)
is a saddle fixed point whose stable manifold does not intersect intR%. This
implies that Q # {E°} and hence some other point of £ must lie in {. Next,
consider points of the form (A, z,,0,0) for z; > 0 since if z; = 0 we are back
in the previous case. If any such point with ; > 0 is in the omega limit
set, €2, of any solution initiating in intR‘_‘,_, then E) € Q since E, is globally
asymptotically stable on the subspace {(S,2,,0,0) : S =2 0,2z, > 0}. However,
E, is locally asymptotically stable with respect to R} and henceif E € Q then
Q = {E,}. Since E) is the only possible point in €2, and {2 is nonempty, then
Q = {E\} and E, is globally asymptotically stable with respect to intR}. O

Theorems 2.6 and 2.11 illustrate that there is an orderly transfer of
global stability from one fixed point, Eo, to another fixed point, Ej, as the
parameter S° increases through the value A. When S° = \+46,, F\ and Es-
coalesce. Simultaneously, as S° increases past A+ 61, we have Es. entering the
nonnegative cone and E) becoming unstable. For general monotone response
functions, the global stability description of Es. is at best difficult. As a
result, in the following chapter we consider three specific cases of the model
given by (2.3). In the first case we will consider, all three response functions
will be assumed to be of Lotka-Volterra form. In case two, h(S) and pi(21)
will be Lotka-Volterra and pa(z2) is Michaelis-Menten. In case three, h(S5) is

Lotka-Volterra and p;(z;), i = 1,2, are Michaelis-Menten.



Chapter 3

Dynamical Effects of Different

Prototype Response Functions

In this chapter we consider three different scenarios of model (2.3), each de-
scribed by a different combination of prototype response functions. In the first
scenario all response functions are of Lotka-Volterra type. That is, h(S) = S/A
and p;(z;) = z:/8; for i = 1,2. We will refer to this case as the linear response
functions case. In the second case, h(S) and p;(z,) are linear u.ptake functions
and pa(z2) = maz2/(82(mg — 1) + z2) is a Michaelis-Menten uptake func-
tion. We will refer to this case as the one Michaelis-Menten response function
case. Lastly we consider the scenario when h(S) is linear and pi(z;) (i = 1,2)
are both Michaelis-Menten response functions. This case will be referred to
as the two Michaelis-Menten response functions case. By considering these
three cases we hope to extend the stability description of the chemostat model

in (2.3). Specifically, we want to consider the dynamics of the model when

S0 > A+4.



3.1 Case 1: Linear Response Functions

For this particular choice of functional responses, system (2.3) becomes

SI = SO—S—.’L‘l%,

1"1 = :171(—1'*'%)—272% N (3 1)
z; = zp(—1+§) - e,
Tz = za(—1+8).

We begin by examining the local stability of the fixed point Es. =
(S*,81,235,0), where S* = AS®/(A + 6,) and zj = 8:1(S° — X — &1)/(A + &)
When S° = X\ + &, E, and Es. coalesce. E) loses stability via a transcritical
bifurcation as S° increases past A + ;. At the same time Eg. enters the
nonnegative cone Ri. The Jacobian of (3.1) evaluated at Es. = (5*,61,73,0)

1s

-1-4& - 0 0
& 4S8 -Z -1 0
0 3 0o -F
0 0 0 -1+2

and the associated eigenvalues of Es. are

148 l_é\/ﬁ_io__
1+52’ 1, and2{ )\:i: 32 /\(S A—61) -
Thus Es. € R} and is locally asymptotically stable provided

/\+51<S°<(,\+51)(1+%).
1

In this instance, the local stability criterion is sufficient for global stability of

Eg. which is the content of the following theorem.

Theorem 3.1 If A +6; < S° < (A + &)(L + 82/6;) then Es. = (5™, 61,23,0)
is globally asymptotically stable for system (3.1) with respect to intRY .



Proof : Define a Liapunov function V : intR} — R by

V(S,z1,22,73) = S-—S‘——S‘ln(%)-{-x, —6,—6,1n(%)
+ mg—x;—m;ln(%)+m3.
The time derivative of V(S,z;, s, x3) calculated along solutions of (3.1) is

given by

. S‘ I 5 I > 7 !
Vv (S,wl,zz,xs) =(1- ?)S + (1 - _l)ml + (1 - ﬁ)mz + z3.
I I

Substituting the equations for S, z; (i = 1,2,3) into the above expression

yields

V (S, z1,22,23) = ‘S;SSH(S°—S)+a:1(—1+%)—51(—1+§—§3
— x;(—1+%—§2)—z2—x3
= =S50 8) 4 ay(~1+ 5 — F)

+ 23— &(-1+ %)+ E(z; — &).

Replacing z3 with §;(S° — A — 6;)/(A + &) gives

V (S,z1,22,35) = EFUS - 8)+8(5— 5) + (25 — &)

(Aé) *\2 T (3.2)
= - ,\s‘ (S—S ) +32-(:1:;—52).

The first term above is clearly non-positive. By the assumption that S° <
(A + 6,)(1 + 82/61), =3 < &2 and thus the second term is also non-positive.
Moreover,

V (S,z1,22,z3) =0« §= 5" and z3 = 0.

Hence V is a Liapunov function for (3.1) with respect to intRj. Since all
solutions of (3.1) are positive and bounded, then by the LaSalle Extension

Theorem, every solution of (3.1) approaches M, where M is the largest in-

variant subset of

£ ={(S,z,,2s,13) € intRY vV (S, z1,22,23) = 0}.



Since S = S* = S°A/(A + &) then §' =0 = S — §* — 2,5%/ and hence
z, = 6,. Similarly, since z; = 4; then z) =0 =§8(-1+S"/X) — z2 and thus
Ty = 61(5°—X=68,)/(A+681) = z3. Therefore, if A+6, < SO < (A+8;)(1462/d1)
then & = M = {Es.}, and Es. is globally asymptotically stable with respect

. 4
to intRj. 0

For the linear functional response case there is a unique interior fixed

point E& = (S2,z%,8;,25) given by

S& = M1+¢),
i = PE-A, (3.3)

A _ 580 2
I3 T 5+ d2(1 + 51) ’

For E4 € R} we require z8, 28 > 0, in particular
2 20 & SO>M1+2), (3.4)
2320 & > +6)(1+2). '

Therefore, E4 € RY if and only if S° > (A 4 &;)(1 + 82/61). The Jacobian of
(3.1) evaluated at E2 is

z2 sa
-1-% -5 0 0
2 z8
I 0 -3 0
§
0 - 0 -1
a
0 0o = 0
2

and the associated characteristic equation is

N a VPN a A A YNIV-NPIN
4. 3 o o X102 x3 TpS xr ., x5  Tp o zrx3 S
1+=- I3 21 v ol W Y k< 28 : —
ré4+r2{1+ 3 ¥ 57 +52+ 32 e {(1+ 3 (52+ 52 ) N, 0,

or equivalently,

(r+1D)(* +ar®+ar+a3)=0 (3.5)



where

.'IYA
a, = “i"‘

22 P S
a; = Xé_(’\+6l)(1+'§f)_(—,t'+1) )

a
a = EL_...L(l + 82
By the Routh-Hurwitz criterion ([15]), for all the roots of (3.5) to have negative

real parts we require a;,a3 > 0 and a,a; — a3 > 0. Clearly aj,a; > 0 and

& [ 8 s z8 2 S
4yas — a3 = _AL{-L(HJ) A+ — (B 4+ -+ & }

25 (El 1 1) >0

Hence when E4 € R, it is locally asymptotically stable.

When S° = (A + 8;)(1 + 82/6,), Es- and E® coalesce. As S® increases
past (A + &;)(1 + 82/8;), Es+ becomes unstable and simultaneously E* enters
intR3 and is locally asymptotically stable. The exchange of stability occurs
via a transcritical bifurcation. As was the case for Es., in this case the local

asymptotic stablity of E2 is enough to ensure that it is globally asymptotically
stable.

Theorem 3.2 If S° > (A + 8)(1 + §;/68,) then EA = (5%, z) B 8y,x5) is
globally asymptotically stable for system (3.1) with respect to intRY.

Proof : Define a Liapunov function V : intR} — R by

V(S,z1,22,23) = S—82—8%In(E) +a1— 28 — a0 In(E x)

+ 23— 8 — 82 In(2) + 23— 25 — 25 ln(fg-)

The time derivative of V(S,z;,z,,3) calculated along solutions of (3.1) is
given by

SA

. bg |
V(57$17$23z3) (l - S )S +(1_—)‘Tl ( —2).’1,‘2-}-(1-——)’1,3
]



Substituting the equations for S',z; (i = 1,2,3) into the above expression

yields

V (S,z1,@2,0) = (80— S)EE 4o, {2 -1}
R | A P IR
= ($°- )P +aP {E+1-F}
= (5-s9{f= -

Replacing z5* with —X + (6:5°)/(8, + &2) gives

V(Sar,e02) = (8- S){F - 85} 36)
= —Zx(5 -S4

Clearly (3.6) is non-positive and equal to zero if and only if S = S54. Hence V
is a Liapunov function for (3.1) with respect to intR}. Since all solutions of

(3.1) are positive and bounded, then by the LaSalle Extension Theorem, every

solution of (3.1) approaches M, where M is the largest invariant subset of
£ = {(S,z1,z2,23) € intRY :V (S, 21,22, 23) = 0}.

Since S = 2 = A(1 + 8,/6,) then §' =0 = S° — S& — 154 /X and hence
1 = 28 = =X+ (6,:8°)/(61 + &2). Similarly, since z; = 28 then z; = 0 =
(=14 52/X) — 2,28 /6, and thus z, = &,. Finally, since z; = §; then T, =
0 = §y(—14 z2/6,) — x5 and hence 23 = z5 = —6,(1+A/8,)+(825°)/(61+62).
Therefore, if S° > (A+6,)(1+62/6,) then € = M = {E?}, and E# is globally
asymptotically stable with respect to intRY. O

In light of Theorems 3.1 and 3.2, the food chain in (3.1) cannot exhibit
any complex behavior such as limit cycle stability. The food chain in (3.1) is
characterized by an orderly transfer of global stability from one fixed point to
another via transcritical bifurcations. At each stage of this transfer, conditions

become sufficient such that a new population survives.



3.2 Case 2: One Michaelis-Menten Response
Function

For this particular choice of functional responses, system (2.3) becomes

SI = SO—'S'—JII'f,

4 —_ S

o = oL R) g (3.7)
zy = @2(—1+ %)~ a5 T -

Ty = (=14 g hm)

where m, > 1. The local stability description of Eg. = (S*,6,23,0), where
S = AS®/(A + &) and x5 = &;(S° — A — &1)/() + 61), is similar to case 1. E)
and Eg. coalesce when S° = A + 6, and E) loses stability via a transcritical
bifurcation as S° increases past A + §;. At the same time Es. enters the

nonnegative cone R}. For this case the associated eigenvalues of Es. are

_ mzy 1] & ¢§i_3 o s
Y e — 1)+ 23’ l’a“dz{ Y EY w80 A-a)

and hence Es. € R% (i.e. S > )+ &) and is locally asymptotically stable

(i.e. =3 < 62) provided
/\+51 < SO< (A+51)(1+%2‘) .
1

Theorem 3.3 If A+ 6, < S < (A+61)(1 +82/61), then Ese = (S*,6,,x3,0)
is globally asymptotically stable for system (3. 7) with respect to intRY.

Proof : Define a Liapunov function V : intR{ — R by

V(S,.’L‘l,il:z,.’l,‘g,) = S-— S* — S“ln(

S
S‘
= x
+ mp—zy— m;ln(;?;-) + az3

)+.’I21 —51-—511n(%)

1



where a@ > 0 is a scalar. The time derivative of V(S,1,22,23) calculated

along solutions of (3.7) is given by
. S‘ ! 5 ! b ' !
V(S,z1,22,23) = (1 - )5 +(1 - —1')331 +(1 - ﬁ)5"‘2 + az;.
S ) T2

Substituting the equations for S,z (i = 1,2,3) into the above expression

yields

V(S,enenzs) = SFEUS - +m{-1+ 5 -F}+a3-6(-1+3)
+ z3{a(=1+pa(z2) — E2p, (22)}

where pa(z2) = maz,/(82(m2—1) +x2). Replacing z3 with §;(S°—A—=6,)/(A+
41) gives

V(S,z1,z0,23) = EFHS-85)+R(5"-5)

+ w3 {a(—l + pa(z2)) — (ﬂ;‘filpz(wz)}

(3.8)
_ Sz\:\i-;'l[(s _ S:)2

1l

+ z3 {01(—1 + p2(z2)) — E%apz(xz)}-
For z; € [0,d2) U (82,00) define

(z2) = (z2 —o3)pa(za) _ _ ma(T2—23)
za(—=14 pa(a2))  (m2 —1)(z2 — b2)

Differentiating with respect to z2 we obtain

mo(z} — &2)

g (1:2) = ('rn,2 — 1)(:1:2 — 52)2 < 0 for xo € (0,52) U (52’ OO),
and thus
_ mMaTs
Oénalx 9(1:2) g(O) (m2 _ 1)52 >0
and
min g(z2) = hm g(z2) = 2 _>0.

§2<z2 <00 me — 1



Since by assumption zj < §;, there exists a scalar a > 0 such that

Jax. glz2) < a < 5, min g(z2) . (3.9)

The first term in (3.8) is clearly non-positive and by (3.9) above, the

second term in (3.8) is also non-positive. Moreover,
V (S,71,22,23) =0& § =5 and 23 =0.

Hence V is a Liapunov function for (3.7) with respect to intRY. Since all
solutions of (3.7) are positive and bounded, then by the LaSalle Extension

Theorem, every solution of (3.7) approaches M, where M is the largest in-

variant subset of
€ = {(S,z1, %2, 3) € intRY :V (S, 21, T3, 23) = 0}.

Since S = S* = S°A/(A + &), then §' = 0 = S° — §* — 2,57/ and hence
z; = 6;. Similarly, since z; = 6,, then :1:'1 =0 =68(~1+ S"/\) — z; and thus
2o = 81(S°—A—68,)/(A+61) = z. Therefore, if \+6; < S < (A+61)(1+62/41),
then £ = M = {FEs.}, and Es. is globally asymptotically stable with respect
to intR}. O

As was the case for the linear functional response model (3.1), system
(3.7) has a unique interior fixed point E2 = (SA,$1A,62,$:3A) where S2,z1
and x5 are given by (3.3). Similarly, E® € R} if and only if :c? > 0 (i.e

5% > (A +6;)(1+82/81) ). The Jacobian of (3.7) evaluated at E® is

-1 £ 0 0
zp e
A 0 8 0
s o
0 3?1- dam2 =1
0 0 =ilm-l) g

Sama2



and the associated characteristic equation is

.’L’A zA'm—- IA IAA
r4+r3{1+—;— 52m2}+ 2{ e Tf 52m2(1+—L)}

dam2

o FaN a A
+r {(1 +3) (“3"—I (ma—1) . xs’?) - z,i:s;::} + 5 zieg S2ma=l) =0

d2mo A2my

or equivalently,
(r+ 1) (r® + by + bor + b3) =0 (3.10)

where . N
by = &2 Za_
1 A damg
a

b= s {m - -+ HRG+ ),
by = ZLEmSolmell(y oy &y,

By the Routh-Hurwitz criterion, for all the roots of (3.10) to have neg-
ative real parts we require b;,b3 > 0 and byb, — b3 > 0 (note that this implies
by > 0). When S° = (A+6,)(1+62/61), Es- and E® coalesce. As S° increases
past (A + &;)(1 + 82/81), Es+ becomes unstable and simultaneously E? enters
intRY and is at least initially locally asymptotically stable. Clearly b3 > 0,

since m2 > 1. Also b; > 0 since

&, S° 8 2 8
Akﬁ&+a—7‘&<h<7

0<(-1+
However, the sign of byb; — b3 is unknown. In fact, it appears that b,b; — b3

can change sign, which implies that E® can undergo a Hopf bifurcation.

Example 1 : Let $° = 345, A = § = 0.9 and §, = 0.3. The interior
fixed point is E4 = (1.2,1.6875,0.3,0.2625) and the associated characteristic

equation (3.10) becomes

9 ! _
(r+1) {7-3 g (1.875 _ 0‘875> +r (2.125 — “'5156) +2.1875 <m2 1)} =0.

Mg ma ma

Let mo € [1.2,2]. From Figure 3.1 we see that on the interval [1.2,2], b; as a

function of m, is a positive increasing function. In addition, there is a unique
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value m, = mj &~ 1.74 such that bjb; —bs = 0 on [1.2,2]. Thus for m; € (1.2,2],
we have b; > 0 and

bib, —bs < 0Oon[l.2,m3),

byb, —bs > 0on (m3,2].

-0.4 : .

1.2 14 16 1.8 2

Figure 3.1 : Plot of bybz — bs and by vs. ma. by is the dashed curve
and b1by — b3 is the solid curve. :

In general, for b; > 0 (i = 1,2,3) and biby — b3 = 0 we have a pair
of pure imaginary roots. This can easily be verified by substituting r = +iw
(w > 0) into 7 + by7? + bor + b3 = 0 with b; > 0. In particular, for my = m3
we have the pair of pure imaginary roots r = +0.235:. For m; slightly greater
than mj, E® is locally asymptotically stable. As m2 becomes less'than m3,
E® seems to lose stability via a supercritical Hopf bifurcation. Figure 3.2

depicts sustained oscillations in intR% for mp = 1.475.
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Figure 3.2 : Sustained oscillations for the chemostat model in 3.7
with m, = 1.475. The plots in order (top to bottom) are z,(t), S(t),
z2(t) and z3(t) vs. t.

The presence of an interior Hopf bifurcation makes it difficult to de-
termine conditions that ensure the global stability of E4. Unlike the lin-
ear response functions case, here the condition S° > (A + &1)(1 + 62/61)
is not sufficient for global stability of E2. However, under the condition

S% > (A + 8;)(1 4 8,/81) we still can describe the global behavior of solutions

200

250

300

in terms of coexistence of the species z;. This is the subject of the following

subsection.



3.2.1 Persistence of System (3.7)

We begin with the definition of persistence as given in [5] and [6], and the state-
ment of the Butler-McGehee Lemma (whose proof may be found in Freedman

and Waltman [12]). This Lemma will be used extensively to prove our results.

Definition 3.4 Let x' = f(x(t)) be a system of differential equations, where
f is a continuous vector valued function in x = (z1,....,zn) € R™.

(i) The system of differential equations is weakly persistent if all solutions with

z;(0) > 0 fori = 1,...,n satisfy

limsupz;(t) >0forz=1,...,n.

t—o0

(17) The system of differential equations is persistent if all solutions with

z;(0) > 0 fori = 1,...,n satisfy
liminfz;(¢) >0fori=1,...,n.
t—o00

(113) The system of differential equations is uniformly persistent if there exists

e > 0 such that all solutions with z;(0) > 0 fori=1,...,n satisfy
liminfz;(t) > efore=1,...,n.
t—o0

Lemma 3.5 Let P be an isolated hyperbolic critical point in the omega limit
set QU X) of an orbit through X of a dynamical system. Then, either QUX) =
{P}, or there exist points P° and P*, satisfying P° € W*(P)\{P} and P* €
Wx(P)\{P}, where W*(P) and W*(P) denote the stable and unstable mani-
folds of P respectively.

Recall that in the linear response function case, the condition S° >
(A + 6,)(1 + 82/8,) was necessary and sufficient to show that E4 was globally

asymptotically stable with respect to solutions with positive initial conditions.
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This is an example of persistence. Although the condition S° > (A + é;)(1 +
82/8,) is not sufficient to prove an analog of Theorem 3.2 for system (3.7), it

is however sufficient to show persistence of system (3.7).

Proposition 3.6 Let v(t) = (S(t),z1(t), z2(t), z3(t)) be a solution of system
(3.7). Then

() liminf,00 S(t) >0,

(ii) if A < S° and z10 > O then liminf, o 2:1(t) > 0,

(431) if A + 8, < S° and zip > 0 for i = 1,2, then liminfi e z4(2) > 0,
() if A+ 61)(1 4+ 62/81) < S® and z;0 > 0 fori=1,2,3, then

lim infyy0 23(t) > 0, and hence system (3.7) is persistent.

Proof : Let () denote the omega limit set of ¥(¢). All solutions are positive
and bounded, thus @ C R} is a nonempty, compact, invariant set with respect
to system (3.7).

(1) Since z,(t) is positive and bounded, then by (2.2) and (3.7), S'(t)>0
if S(t) is sufficiently close to zero. Hence, it follows that any point in Q must
satisfy lim inf,,e S(t) > 0.

(i) Assume A < S° and z10 > 0. Suppose Ep € . For A < S0, Ey is

an unstable hyperbolic fixed point with a three dimensional stable manifold
WS(Eo) = {(S,z1,22,23) € R} : S, 23,23 >0 and z; = 0}.

From (3.7) and the proof of Theorem 2.5 it is clear that Eq is globally asymp-
totically stable with respect to solutions initiating in its stable manifold. Since
~(0) ¢ We(E,) then Q # {Eo}. Therefore, by Lemma 3.5, there exists
R* € (W*(Eo)\{Eo}) N Q and hence c/O(R*) C Q. But then, as t = —o0,
either O(R*) becomes unbounded or one of the components of the trajectory
becomes negative. In either case we have a contradiction since the entire

trajectory through any point in € must lie in Q. Therefore Eo ¢ Q.



Next, suppose liminf;, z1(t) = 0. Then there exists a point R =
(5,0,%,73) € Q, which implies that clO(R) C Q. By Proposition 2.2 and
from the proof of Theorem 2.5 it follows that F(t), Z3(t) — 0 and S(t) — S as
¢ — oo and thus Ep € €, which is a contradiction. Hence lim inf,y00 z1(t) > 0.

(4ii) Assume A+6; < S° and z10, 720 > 0. By part (1) we have Eg ¢ Q.
Suppose Ex € . For A+ 6, < S° E, is an unstable hyperbolic fixed point

with a three dimensional stable manifold
WS(E/\) = {(591:17 T2, wB) € R:, ;>0 and z; = 0}

From (3.7) and the proof of Theorem 2.5 it is clear that E, is globally asymp-
totically stable with respect to solutions initiating in its stable manifold. Since
20 > 0, 7(0) ¢ W*(E,) and so Q # {E,}. Therefore, by Lemma 3.5,
there exists Q° € (W?*(Ex)\{Ex}) N and hence clO(Q*) C 2. But then,
as 1 — —oo, either c/O(Q?) becomes unbounded or leaves the positive cone or
Eo € clO(Q*) C Q. In any case, we have a contradiction, and thus E) ¢ .
Next, suppose lim inf; o z2(t) = 0. From the proof of Theorem 2.5 it
follows that z3(t) — 0 as t — oo. Thus, there exists a point @ = (S,z,,0,0) €
Q, and hence clO(Q) C Q. On the subspace T1 = {(S5,21,0,0) € RY iz, >0}

system (3.7) reduces to

S'(t) = §°—5(t) -z (t)h(S(?))
zi(t) = :i()(-1+A(S?))
and thus E) is globally attracting with respect to all solutions initiating in 7.
Therefore Ex € clO(Q) C , a contradiction. Thus lim inf,_,e z2(t) > 0.
(iv) Assume (A+6;)(1+62/81) < §° and z0 > Ofor i = 1,2, 3. By parts
(41) and (iii) we have Eo, Ex ¢ Q. Suppose Es- € Q. For (A+61)(1+62/81) <

SO Eg. is an unstable hyperbolic fixed point with a three dimensional stable
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manifold
W*(Es-) = {(S,z1,22,23) € R} : 21,22 > 0 and z3 = 0}.

From (3.7), it is clear that Eg. is globally asymptotically stable with respect
to solutions initiating in its stable manifold. As before, since 230 > 0 then
v(0) ¢ W*(Es.) and so Q # {Es-}. Thus, by Lemma 3.5, there exists P° €
(W*(Es-)\{Es-}) N Q and hence c/O(P*) C Q. But then, as t - —oo, either
clO(P*) becomes unbounded or leaves the positive cone or Eo and/or E) €
clO(P*) C Q. In any case, we have a contradiction and thus Es. ¢ Q.

Next, suppose liminf, z3(t) = 0. Then there exists a point P =
(5,%,,%2,0) € ©, which implies that c/O(P) C Q. On the subspace T =
{(S,z1,22,0) € R} : 21,22 > 0} system (3.7) reduces to

S'(t) = S§°—S(t) - z:(t)h(S(1))
z(t) = ()(=1+ h(5(1))) — 22(t)p1(21(2))
zy(t) = @t)(=1+p(:1(2)))
and thus Es. is globally attracting with respect to all solutions initiating in 7.

Therefore Es. € clO(P) C 9, a contradiction. Thus liminf;e z3(¢) > 0. O

If a dynamical system is uniformly persistent, then there exists a com-
pact attractor in the interior. For system (3.7), this would imply that all
solutions eventually approach a compact invariant set in intR3. To show uni-
form persistence for system (3.7) we will utilize a theorem of Butler, Freedman
and Waltman ([5]). Before we give a statement of this theorem we state a few

preparatory definitions.

Definition 3.7 Let F be a dynamical system on R%. Denote the boundary of
R by OR} and let OF denote the dynamical system F restricted to ORY.



(i) The dynamical system F is said to be dissipative if for each x € R, the
omega limit set of x is nonempty (QUx) # 0) and Q(F) = Uxery UX) has
compact closure.

(i1) A nonempty subset M C R7, invariant with respect to F, is said to be an
isolated invariant set if it is the mazimal invariant set in some neighborhood
of itself.

(iii) OF is said to be isolated if there exists a covering M of QOF) of
pairwise disjoint, compact, isolated invariant sets My, ...., My for OF such that
each M; is also isolated for F. M is then called an isolated covering.

(iv) The stable set W+(M) of an isolated invariant set M is defined to be
{x e R? : Q(x) # 0,9(x) C M} and the unstable set W~ (M) is defined to
be {x € R? : a(x) # 0,a(x) C M}, where o denotes the alpha limit set.

(v) Let M, N be isolated invariant sets (not necessarily distinct). We say that
M is chained to N, denoted M — N, if there exists x ¢ M U N such that
x e W-(M)NWT*(N).

(vi) A chain of isolated invariant sets is a finite sequence My, ...., My, such
that M; = My — .... > My. The chain is called a cycle if My = M,.

(vit) OF will be called acyclic if there exists some isolated covering M =

UL M; of Q(OF) such that no subset of the {M;} forms a cycle.

Remarks : (1) The property of 8F being isolated is a hyperbolicity condition.
It prevents fixed points (or other invariant sets such as periodic orbits) from
accumulating on the boundary R?}.

(2) The definitions of W*(M) and W~(M) coincide with the definitions of
local stable and unstable manifolds if M is a fixed point, periodic orbit, or in
general if M is compact ([20], [40}).

(3) &F being acyclic prevents homoclinic and heteroclinic cycles from forming

on the boundary oRZ.



Theorem 3.8 Let F be a continuous flow on a locally compact metric space
E with boundary OE. Let OF be the restriction of F to OE. Assume that

(7) F is dissipative,

(i7) F is weakly persistent,

(ii1) OF is isolated,

(iv) OF is acyclic.

Then F is uniformly persistent.

The dynamical system given by (3.7) is not invariant on the boundary
OR:. The (21,2, 23)—face repels into intR}. However, Theorem 3.8 can be
modified to apply to this situation ([44]). Let B denote the (z,,z,,23)—face
and let A = OR%\B. Then OR} = AU B and F, the associated flow of 3.7),
is invariant on A. If F,, the restriction of F to A, satisfies conditions (z:z)
and (iv) of Theorem 3.8, then F is uniformly persistent.

Condition (i) holds for system (3.7) by Proposition 2.2 and the remark
that followed it. Condition (#7) holds since we have proved the stronger asser-
tion of persistence in Proposition 3.6. By Theorems 2.6, 2.11, and 3.3, the only
invariant sets on JR% are the fixed points Eo, E) and Es.. They are clearly
isolated and thus form a trivial isolated covering of Q(0F4). Hence 8F, is
isolated. Moreover, since the transfers of global stability from Ep to E, and
from E\ to Eg. are via transcritical bifurcations, we have the following chains
on JRY :

Ey — E\, Ex = Eg« and E; — E\ — Es..

Thus no subset of {Eq, Ey, Es-} forms a cycle, and 8F, is acyclic. Hence for

SO > (A +6;)(1 4 6,/68)), system (3.7) is uniformly persistent.



3.3 Case 3: Two Michaelis-Menten Response

Functions

For this choice of functional responses, system (2.3) becomes

S = §—-S5—a%,

p s _myzy

, = oi(=1+3%) = Tegmanre; (3.11)
T, = 1‘2( -1+ 51(m|-1)+1‘l) - z362(m72—:i)+32 ’

zz; = xz3(—1+ 52(m2 1)+T-2) ’

with m; > 1 for i = 1,2. The food chain in (3.11) has five fixed points that
may exist in the nonnegative cone, Ri. They are Ey, E), Es. and two interior

fixed points given by

A A A A .
Ei = (St ,.’l:li,(sz, $3i) for : = ]., 2,

where
A —ur(=1)H Vi —4u
Ty = 2 )
o ml-"—'“ ‘
:1:31 _ 62( ]. + 61(7'"1 l)+$ ) (3.12)
A SO\
Si - rﬁ+/\ !
with

u = my(d+38)—S°—8+X,
v = mA(; + &) + 6(S%— S%m; — ).
The local stability description of Es. = (S~,é;,3,0) is similar to the
previous two cases. When 5% = A+ 4,, E\ and Es. coalesce and E) loses sta-
bility via a transcritical bifurcation as S° increases past A+4,. Simultaneously,

Es- enters R‘j_. The associated eigenvalues of Es. are

1{_7:&\/;_4(50—,\—51)(m1—1)} ’
/\ml

maZ,
62(7712 - 1) + :13;

-1, -1+ and

o |



where
& S8 =A-4,
TEN T (A +8)

Thus Es. € intR% (i.e. S® > X +4;) and is locally asymptotically stable

(3.13)

provided
(A+6)(1+ §)ie 25 < b,
A+6 <8< (3.14)
(A +8)(1+ =8) je. v > 0.

At this point, unfortunately, global stability information is not easily
obtained. As a result, to facilitate the further analysis of system (3.11), we
utilize the existence of the globally attracting simplex & in Proposition 2.2 to
reduce the dimension of the model by one. Using S + ¥, z; = S°, the four

dimensional system in (3.11) can be written as the following three dimensional

system

— _ SCegy—zo—-za) __ mz
Ty z(—1+ ) ) 2 T W)

zp = T2~ 5 s ) T 2 nme e (3.15)
T3 = z3(—1+ m’-;‘%ﬁz)-_-'_-x—z)

Notice that the omega limit sets of system (3.15) are also omega limit sets of
the four dimensional system (3.11) (see [45] and the references therein). For
system (3.15) the fixed point in the z,z,—plane, when it exists, will be denoted
by E3., and similarly the two interior fixed points will be denoted by E3 for
i = 1,2. Denote the associated eigenvalues of EZ. by

{—7 + \/72 _ A= A= ) — 1)} and

)\ml

Ti2 =

o=

m-z.'lta

—_1
rs Y= D)+ 23

where v is given by (3.13).



First consider the pair of eigenvalues ;2. At S® = (A +6;)(1 + ﬂ’/\—‘sl)
(i.e. ¥ = 0) we have a pair of complex eigenvalues with Re(r12) = 0 and

Im(ry2) = il/A\/(ml —1}(A+6,)8; > 0. Using S° as the bifurcation pa-

rameter we have

Re(r12(S°)) = _% ’
which implies
d )= —
F(Re(rl,z(s ) = 2ma(A + &) 0

Thus E3. undergoes a Hopf bifurcation with critical bifurcation value S0 =

(A+6)(1 + l‘jé‘-) Figure 3.3 depicts a periodic orbit which emerged from
a Hopf bifurcation about E2.. The periodic orbit appears to be stable with

respect to initial conditions z10,Z20 > 0 and z30 = 0.
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Figure 3.3 : A limit cycle in the z,z2—plane for A= 0.2, §; = 0.3,
82 = 0.96, m; = 2.5, my = 3.0 and S® = 3.0. The limit cycle appears
to be stable with respect to the z;zg-plane.

Next consider the real eigenvalue r3. At S® = (A + 6;)(1 + é2/6y) (i.e.

x5 = &) we have r3 = 0 and E3. = (6,,62,0). Moreover, the interior fixed
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points E5} = (253,64, 25;) are given by

xﬁ =& :1:{3‘2 =0
and
Fay A m
T3 =0 3’32=52("1+mﬁ%)

where § = (&, +62){% —(my—1)}— A. Hence at S° = (A +8,)(1+82/61), E3-
and EZ coalesce. As SO increases past the critical value (A+8,)(1482/61), E3.
increases the dimension of its unstable manifold by one while simultaneously,
E% increases the dimension of its stable manifold by one. This exchange of
stability occurs via a transcritical bifurcation. Whether EZ, enters or exits
the positive cone depends on the value of 3. We examine this statement more
carefully below.

From (3.12) it is clear that we may have none, one, or two fixed points
ES in intR3, depending on the sign of u?—4v, and u. Moreover, a saddle-node

bifurcation involving the fixed points E:ﬁ may occur.

Example 2: Let A = §; = 0.2, §; = 0.1, m; = 1.1 and m; = 2.0. For
S0 — 0.81, the fixed points Ej; do not exist in R®. At approximately S° =
0.818900967 we have ES = E% = (0.1945,0.2,0.0092) with associated eigen-
values 0.0371 & 0.3593; and 0. For S° = 0.82, we have two fixed points
ES = (0.21,0.2,0.01) and E%, = (0.18,0.2,0.0084). Hence the interior fixed

points E5 emerge through a saddle-node bifurcation.

For the parameter values given in Example 2, the Hopf bifurcation in
the z,z,—plane occurs at 5% = (0.4650 and the transcritical bifurcation in the
z122—plane occurs at S® = 0.9. Notice that the saddle-node bifurcation in
Example 2 occurs in intR3, and moreover it occurs after the planar Hopf

bifurcation but prior to the planar transcritical bifurcation. This observation



is true in general for system (3.15). That is to say, if a saddle-node bifurcation
occurs in intR‘_?;_, then it occurs in the above order. This can be deduced from
the following two observations.

First, consider what is required for both fixed points E%; to exist simul-
taneously in intR3. From (3.12) we see that it is necessary that z9), 273 >
§;. Thus we must have at least > —4v > 0 and u < 0, which implies
5 > . If z% > &, then by simple algebraic manipulation we have
SO < (A + 8)(1 + 83/61). As a result, if a saddle-node bifurcation of ES
occurs in the positive cone, it must occur before the planar transcritical bifur-
cation. As S° increases past (A + d;)(1 + 82/4,), one of ES5; exits the positive
cone through the planar transcritical bifurcation. Conversely, if the saddle-
node bifurcation of E:ﬁf occurs outside the positive cone, then one of the fixed
points E:,ﬁ-‘ enters the positive cone via the planar transcritical bifurcation.

Secondly, assume that a saddle-node bifurcation of ES; occurs inintR3.
For this to occur we require at least u? — 4v = 0 and —u > 24;. Note that
—u> 26, & S° > (A+68;) +mi(8; + 62). If the saddle-node bifurcation in the

positive cone is to occur before the planar Hopf bifurcation then we need

m151 6?
3 )4=>52< 3

A +80) +mi(dy + &) < SO < (A +8)(1+

however, this would imply

A+ 81+ g—j) <46+ (614 82) < (Mt 8y) +ma(6 +6).

Hence if the saddle-node bifurcation in the positive cone occurs before the
planar Hopf bifurcation, then it must also occur after the planar transcritical
bifurcation. A contradiction.

In summary, system (3.15) can undergo both a Hopf and transcritical

bifurcation about Es.. There is a saddle-node bifurcation of the fixed points
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EZ; that may occur in the positive cone. This is not the complete local bifur-
cation description of system (3.15). In the following subsection we consider
several numerical simulations of (3.15) that illustrate several other bifurcation
phenomena of the model.

We conclude this section with a persistence result for model (3.11).
Notice that the condition for persistence given in the proposition below is not

a necessary and sufficient one, but simply a sufficient condition.

Proposition 3.9 Let v(t) = (S(t), z1(t), z2(t), z3(t)) be a solution of system
(3.11). Then

(2) liminfe S(2) > 0,

(13) if A < S° and x10 > O then liminf, o 21(2) > 0,

(333) if A+ 8 < S and zi0 > 0 fori = 1,2, then lim infi_o0 z2(¢) >0,

(1v) if (A+8,)(14+82/81) < S° < (A+8)(14+m161/A) and 2y > 0 fori = 1,2,3,

then lim inf, oo z3(t) > 0, and hence system (3.11) is uniformly persistent.

Proof : (i) By an argument similar to that given in Proposition 3.6, it follows
that any point in the omega limit set of v(t) must satisfy liminf, S(t) > 0.

(1) + (4i1) Notice that in these two cases we may have S > (A +
§)(1 + my8,/X). If this is the case, then there exists a periodic orbit on the
Sz,zo-face. However, the periodic orbit is not contained in the stable manifold
of Eg or E\. Hence, by an argument similar to that given in Proposition 3.6
it follows that liminf,e z1(¢) > 0 and liminfyeo z2(t) > 0.

(4v) Since (A+8;)(1+382/81) < S® < (A+61)(1+m161/A), then again by
an argument similar to that given in Proposition 3.6, we have lim inf; o0 z3(t) >

0. O
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Figure 3.4 : An interior limit cycle for A = 0.2, 6; = 0.3, §2 = 0.96,
my = 2.5, mp = 3.0 and S® = 4.0. The limit cycle appears to be stable
with respect to initial conditions ;o > 0.

3.3.1 Numerical Simulations of System (3.15)

In this section we present several observations based on numerical simulations,
for different parameter values and initial conditions, for system (3.15). Recall
from the previous section that we computed a condition for a Hopf bifurca-
tion to occur in the z;z,—plane. Figure 3.3 depicts such a limit cycle in the
z,22—plane which emerged from E2.. For this pa,rticﬁlar choice of parameters,
the limit cycle seems to be stable with respect to initial conditions x 0, 220 > 0
and z39 = 0.

Any one of the five parameters S° X, 4;,68; and m; can be used as a
bifurcation parameter. However, we use the operating parameter S0 as the
bifurcation parameter, since it is the most accessible parameter to the exper-
imenter. In all of the simulations A = 0.2,6; = 0.3,8, = 0.96,m; = 2.5 and

A a . . .
my = 3. As aresult, B3, = (xﬁ, 62, 3,) remains outside the nonnegative cone.



Figure 3.5 : A period 2 limit cycle for A = 0.2, §; = 0.3, 8, = 0.96,
my = 2.5, mp = 3.0.and S° = 5.0.

Near S° = 2.0, E2. is a sink. As S° increases, E3. undergoes a trans-
critical bifurcation at S° = 2.1 giving rise to the interior fixed point ES,. For
S0 e (2.1,2.375), ES is a sink and E3. is a saddle with the z;z;—plane as
its stable manifold. As a result, there is a saddle connection between E3. and
E5. At S° = 2.375, E3. undergoes a Hopf bifurcation giving rise to a limit
cycle in the z;z,—plane. As S° increases a little further, the radius of the limit
cycle grows resulting in an attracting cone in the interior on which trajectories
spiral away from the z,z,—plane and up to E5,. Next, as S° increases further
E% appears to undergo a Hopf bifurcation. The resulting interior limit cycle
seems to be stable with respect to initial conditions Tio > 0, fori = 1,2,3
(Figure 3.4). At this point a further increase in S° results in a cascade of
period doubling limit cycles. At each stage of the period doubling the result-
ing higher period limit cycle appears to be stable (Figures 3.5 and 3.6). The

period doubling continues until eventually we reach the attractor in Figure

3.7.
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Figure 3.6 : A period 4 limit cycle for A = 0.2, &, = 0.3, §; = 0.96,
my = 2.5, mo = 3.0 and SO = 5.2,

Figure 3.8 depicts the attractor for a set of parameter values different
from the ones in Figure 3.7. The attractor in Figure 3.8 is reminiscent of the
“tea-cup” attractor of Hastings and Powell ([18]). In fact, most of the above
observations were also made by Hastings and Powell ([18]) for their food chain
model. In related work by Klebanoff ([26]) some numerical evidence of a second
route to chaos in the Hastings’ model was presented, namely a Sil’nikov type
bifurcation of limit cycles. In the following chapter, we shall see that the
normal form analysis predicts this type of bifurcation for system (3.15) and

we present some numerical evidence to support the existence of this bifurcation

phenomenon for the model in (3.15).
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Figure 3.7 : An attractor for the chemostat in (3.15) for A = 0.2,
8 = 0.3, 62 = 0.96, m; = 2.5, mg = 3.0 and S° = 6.0.

1.27

x2 x1

Figure 3.8 : An attractor for the chemostat model in (3.15) with
A=0.2 6 =0.3,6; =02, m; =25, my=3.0and 5°=3.12.



Chapter 4

Norimal Form

Our model of a food chain in the chemostat given in (3.15) is similar to a three

species food chain of the form

r, = filz,z2),
z, = fa(z1,22,23) , (4.1)
3 = fa(z2,23),

where f; is the per-capita growth rate of species i. One of the defining prop-
erties for such a food chain (4.1) is the absence of direct interaction between
species £, and z3, that is 8f1/8z3 = 8f3/0z, = 0. This is not the case for our
model. However, the two models do share other characteristic traits.
Typically in food chains of the type given by (4.1) there are coupled
predator-prey ’oscillations with higher trophic level species oscillating at lower
amplitudes than the bottom trophic level species. This is also the case for
our model (see Figure 3.2 for example). Furthermore, systems like the one in
(4.1) exhibit persistence of species at the bottom trophic levels in the absence
of higher trophic level species. This holds true for our model as well ([7D-
Hence in both systems (3.15) and (4.1) one expects a fixed point of the form

(Ty,Te,0), with (T1,T2,0) having an unstable eigenspace transverse to the

56



z,72—plane. Motivated by these similarities of the models, we adopt a normal

form approach to our model, similar to the one used by Klebanoff ([26]).

4.1 Normal Form Computation

In this section we compute a normal form for system (3.15) expanded about

the fixed point E3.. Under the conditions

S —(A+8)(1+3) 0,
(4.2)

SO—(A+&)(1+mdy = 0,

E3. is a nonhyperbolic fixed point with associated eigenvalues

: Y
Ti2 = i%\/(/\ + 51)5511\62 8) = 4w and r3 = 0.

Notice that under the conditions in (4.2) we must have m; = (Adz)/é, and
this gives a condition for which system (3.15) undergoes a bifurcation of codi-
mension two or greater. It is under the conditions in (4.2) that we wish to
compute a normal form for system (3.15), since this is where the linear part of
the vector field is most degenerate. That is, the linear part of the vector field

in (3.15) at bifurcation is

0 w 0
—w 0 0 . (43)
0 0 0

Next, consider a vector field with Taylor expansion (up to third order)



Riad

given by

22 \
. 1T
T 0 w 0 Ty ay; @12 Qaz2 G23 433 413 2
T
. 2
I2 = —w 0 0 za |+] b b2 baz b2z bas b3
. T2Z3
Z; 0 00 T3 Cj1 C12 €2 C23 C33 C13 2
T
3

a1 @iz Qi G222 G223 G233 @333 (113 @133 G123
+ | bin bz bz baza bazz basz bazz biiz bias by2s

€111 Ci1z Ci22 €222 €223 C233 C333 €113 C133 €123

2

m,z%

TyT2X3
In general, the normal form (up to third order) of any vector field with Taylor

expansion as above is of the form ([26])

T, = wTy+ C1T2T3+ T1T3 + cszy(z? 4 z2) — caza(a? + )
—es22z + ceziz + O(4) ,

Ty = —wzTp 4 Ty — 17123 + caza(a} + z3) + caszo(x? + 23) (4.4)
+ceTar + szl + 0(4) ,

vy = ci(z? + 22) + csz} + cos(z} + 23) + cr023 + O(4) .

In cylindrical coordinates (r? = z} + z3 and 0 = tan~!(z2/z1)), the



normal form in (4.4) is

P = eorxs+ cerzi +car® +0(4) ,
0 = —w-—ciz3+car?+cszi+0(3), (4.5)
&3 = cr? 4 g2 + cor’zs + crory + O(4) ,
where
C1 — agagbm ,
C; = < 2b 3
—  38ajiita1224b1y2+3b222 a11a12 alzazz “ ;2
C3 8 8w + +
__ 3azacyy _ 3biac ” 3a]3 12 baacy2
+ 16w 16 + + 16w
a23c22 biacae
16w 16w °
_ __ajj2+3az22—-3b111 —bi22 5a1 , a2 50222
€4 = 8 + 5k + 34 + + T2
_ebyy 4 S0 Sanbin _ azbiz 4 Ba _ Sawbr | Sbibn
24w lZw 24w 24w 24w 24w 12w
+_21 + — gtz 3bjaci2 _ 3ajacoz 3boaco2
6w 16w le 16w 16w 16w 16w °
=b
c; = _2332_133. + + + 222_03.1 _33_1.2 + +

—euba 4 B M+M+M+M suen 4 baacu

dw ’
. a b ajza
6 = _ma_-zt_zu - _Lszaa _33_22 + __u_a;t + _:.2_33.
__baacia 4 @aacos _ a23caz blacaa
w w 4w 4w ?
—  cante22
Cr = o) 5
cg = Casz,
co = euaema oemen g buen _ enen 4 buds

_22_1.3. — 811623 EZLCZB.
+ 1€ + ezen

bszcia a33C23

Clo = €333 +
w



Next, for the vector field in (3.15), we begin by shifting E3. = (é1,42,0)

to the origin and then calculating the Taylor expansion up to third order to

obtain
. A6 ) 52 62-28,-8,52 1 .,
T, = - (—j:\—") Iy — —/\LIL';; - ﬁ’gdf% + (-“_————,\6162 T1T2 — 3 T123
Aoy —62 3 Ay —82 2
=8 (%) 2 + () adee + 0(4)
. A82—52l /\82—62] 2 '\62_621 2_1
T2 = ( ¥ )‘”‘ I3 ( 725, )‘”1 + ( 26152 )“’IT'? - (?zmz)zﬂ?'

+4, (%‘i) z3 — (1\%%5-’2-) iz, + (%2:21-) zizs + O(4) ,

2 2™2

T3 = (ml) ToTz — (%3%31_) z2z3 + O(4).

Somap

Applying the similarity transformation

] Uy
) =T up
T3 Uus
where
283-87
T = _A—df 4.6
1 0 A(A+61) ( )
ASp—62
< 1
0 0 NG,

to the vector field above we get

2
Ul
. UiUg
Uq 0 w O Uy 0 a2 az a3 asz a3 2
u
. 2
Uy = —w 0 0 Ug + 0 b12 b22 b23 b33 b13
. UaU3
Uz 0 00 us 0 0 0 0 C33z Ci13
u%




+

where

0 0 a2 agp az23 QG233 0333 G113 @133 @123
0 0 bizgz bz byzs byzz bazz buz bizs bizs

0 0 0 0 0 0 €333 C113 €133 0

__\F + 51)(/\52—52)

\/(,\ + 51)(,\52 — 52)

(A + 61)81
X2,

azz = —

az3 = —

A6y — 87 (‘ml TIDY A 53)
5O+ 1) 326, :

(A2 — 82) {62 — 87 + Simg(X + &2 +261)}

azz = —

)\6152m2(/\ + 51)2

(/\52 - 6%)(/\ + 51m2)
/\61527712(/\ + 51) ’

a3 =

Aoz — 82 + 6,6
N6y

bz = —

)




b o |8+ &
2= Ao, — 62 \ N2, )7

b 58T+ 226 + A6y)
B A28,(A + 6;)

ban = /\52 - 6? {(/\52 - 512)(77’&2 - 1) - 517722(51 + 52)}
B =N\ 86N+ 6) Ao;ma(A+ 61) ’
bin = — A(Sg - 6% {mz()\(Sg - 5?) + /\51(m2 - 1) + 5152777.2}
BTN &GO+ &) A8,8,m, ’

(ma2 — 1)(Ad2 — 67)

¥ e S AN
_ mo — 1
13 = 62m2 ?
(A +61)6:
G2 = =" yasy
&+ a) (A + 6,
“RT NN -2 \ B )’
81(26% + Aoz + 3)é1)
a223 = X352 )
| A8 — 8% [8i(8] + 2X62 + 3X6y)
9233 =\ §,(A + 61) X282 :

(A82-82) { (my — 1)(A282 + 6% + 2X626,m3)

@333 = 375, 6Zm2 (A 51)°

FAS162(AmE + Aym2 + 26;) + m383(8, + &2 + 2xmy) |,

a = (m2 - 1)()\62 - 6?)
3= T 82mE( A+ 6,)

A6y—682
@133 = vy { 2\(ma = 1)(A6; + 6ma)

+6m3(A® + 62) + 2082 },



\/51(A + 8,)(\6, — 82)

(123 = X252 ’
V(A + 61)(A6; — &)
6122 = )\26% 3
(A + 6,)82
b2z2 = RERS TR
R . 61(262 + A8, + 3A6))
228 (A + &) X382 ’
b — P2 = S8 + 200, + 30dy)
= A362(N + &) ’

bszz = — (s?filfs%))w (AW 2) { (A82 - 63)

+8m(A + &) + &(my — 1)(dmz + 1) },

b _ /\(52 - 6% mq — 1
BZA G+ 6,) \ 82m32

b = (D=8 2 [ §im2(A + &;) + 228: (1 — m2)
BT \6(M +6)) A262m3 ’

A, — 62
bz = QW,

(28 (ma—1
GR=TA\ TNt 4 X263m2

m2—1

Ci13 = — )

&3m3
(/\52 - 52)(7712 - 1)
NZmE(\ + 1)

Normal form calculations in general are not unique. It is by a deliberate

Ciaz3 = 2

choice of transformations that (4.5) is independent of 6. In fact, (4.5) can be
made independent of @ up to any degree ([49]). Hence we may ignore the

f-equation in (4.5) and restrict the analysis of the vector field in (4.5) to the



rzz—plane. Also, since we will be considering only local arguments, we ignore
the higher order terms in (4.5). Thus the normal form that we will consider
is given by
T = CoTZ3+ cﬁr:z?3 + ¢ar? (A7)
i3 = cgTi+ cor’z3+ 1073 ,

where
(A6 — (A +madi)  &i(A6z + 2281 + 62)
2/\61627712(/\ + 51) 2/\252(A + 61) ’

Co =

o {60 - 82) + Ad2(61 + 2)0)}
3 8A382(A6, — 62) ’
(A8 — 62)2(4X + 38ym3) | (A2 — 8%) {S2 + mady + 4(my — 1)}

4226,82mi(A + 8,)? 4N2ma(N + 6,)?
_ (XS5 — 82) {82m2(3mz — 2) + 56y (m2 —~ 1)%} _
48,862mi() + 6,)?
82(A82 — 83)(3X + 24,) _ 63 + 206,82 + 26,82m; + 4X83mg + 2828,m,
4X383(\ + 6,)? 4283 ma (X + 61)2 ’
c7 =0,

(m2 - 1)(/\52 - 6%)
A52m2(A + 51) ’

Cg = —

(m2 — 1) { MMz — 8}) + m2dT}

o= INSImI(N62 — 02 :
_ o ma—l _ g2 L Sl 8%
Cio = 6%m%(A + (51)2 [(’\62 51) {(m2 1) +>\2} + Y

mg — 1
_m [m262 + 62(mady + 83)] .

Notice that ¢z, cs and cg < 0, but the signs of the remaining coefficients
are difficult to determine without further constraints. The biological constraint
that the zz = 0 face is invariant for system (3.15) forces ¢; = 0. The z3-

equation in (4.7) is still analogous to the zz-equation in (3.15). The r-equation



in (4.7) is a scaled measure of the square root of the sum of the squares of the
lower trophic species z; and z,. Hence the study of (4.7) is restricted to the
positive quadrant of the rzs-plane.

To further simplify the study of (4.7) we reduce the number of cases
that need to be considered by rescaling. Letting 7 = ar and Tz = fz3 ([14])

system (4.7) becomes

T = 2713+ BTTi+ 47,

c2
B B
Ty = ST 4 277 + YT
3 - B3 a2 3 52 3 -

Letting a = v/—¢3, 8 = ¢; (assuming ¢; # 0) and omitting the bars we obtain

r = rzz+arzi-r’
. ’ (4.8)
&3 = bz — crizy —dz3,

with a = cg/cZ, b = cg/cz, and d = —cy0/c} arbitrary scalars and ¢ = co/c3 > 0,

a positive scalar.

Notice that the sign of the rescaling constant § is unknown. If
3 > 0 then b < 0 and the first quadrant of the rzs-plane of system (4.7) is
mapped to the first quadrant of system (4.8). If 3 < 0 then b > 0 and the first
quadrant of the rzs-plane of system (4.7) is mapped to the fourth quadrant of
system (4.8). In either case b # 0.

Klebanoff ([26]) has done an unfolding analysis for a food chain with
Jacobian matrix as in (4.3). His analysis required that ¢; # 0 and ¢7 = ¢cg =0
in (4.5). In our case, although c; # 0 and ¢z = 0, cg < 0. The conditions
c; # 0 and ¢; = 0 stem from the same reasons for both models. Namely, ¢, # 0
is due to the choice of rescaling, while ¢; = 0 is a result of the fact that if the
top predator becomes extinct, it remains extinct. In the Klebanoft model,
cs = 0 is a result of the lack of interaction between the highest and lowest

trophic level species. As mentioned before, this is not the case for our model



and thus cg < 0. Despite the different constraint, we follow the analysis given
in Klebanoff ([26]), making the appropriate changes to account for cg # 0.

There are three possible fixed points for (4.8). There is the trivial fixed
point (0,0), which corresponds to the fixed point E3., and there is a second
fixed point (0,b/d). Recall that under the conditions in (4.2), one of the interior
fixed points EZ; of (3.15) coalesces with E3.. Hence, (0,b/d) must correspond
to the remaining interior fixed point of (3.15). Finally, let Z = (b—c)/(ac+d)
and R =7 +aZ2 If Z+ aZ? > 0, then there is a third fixed point (R, Z)
that resides in the either the first or fourth quadrant of the rzz—plane. This
would correspond to a limit cycle for the original system (3.15).

We now proceed to determine an unfolding for (4.8). Note that due to
the biological constraints of the model we do not attempt to determine a uni-
versal unfolding. First, since z3 = 0 must remain invariant for the unfolding,
we cannot introduce any perturbation terms in the zz—equation independent
of z3. Second, recall that the vector field in (3.15) was restricted by the bi-
furcation conditions in (4.2). Ignoring these conditions for the moment, the

Jacobian of (3.15) in real Jordan canonical form would be given by

g1 w 0
—w w 0
0 0 H2

Hence we introduce the following two parameter unfolding ([27]) of (4.8)

o= wr+rzs+arzi—r®,

(4.9)

(}33 = HU2Z3 “+ b.’l)% - C7”2.'L'3 - d:l:g .

Finally, note that the normal form in (4.5) was computed for an ar-
bitrary vector field with linear part similar to (4.3). The terms that most

influence the local dynamics of a vector field with linear part as in (4.3) are
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present in (4.5). Comparing terms in (4.5) and (4.9), we see that the 7% term in
the z3—equation could be another possible perturbation term for (4.9). How-
ever, since z3 = 0 must remain invariant for the zz—equation, the perturbation
term psr? is not acceptable. Hence the unfolding that we will consider is the
two parameter unfolding in (4.9).

In the subsequent unfolding analysis we will consider the coefficients
a,b,c, and d in (4.9) as constants. We do so in order to study the roles of
the perturbation terms p;r and pozs. The parameters p; and p; move the
system through the various bifurcation phenomena. We will see that this two
parameter unfolding is sufficient for displaying global bifurcations that are

associated with horseshoe dynamics and chaos.

4.2 Isoclines and Fixed Points

We begin by considering the nullclines of (4.9). There are four possible null-
clines. There are two trivial nullclines r = 0 and z3 = 0 of 7= 0 and 3= 0
respectively. In addition there are two nontrivial nullclines. First, for 7= 0

and a # 0 there is the nullcline given by the curve

py + 3 +azi—r? =0, (4.10)
or equivalently,
4a? 1., 4a 9

= 2 2 =1 i -4 4.11
T~ danm, (z3+ 2a) T 4aﬂ1r if 1—4ap #0, (4.11)

or the pair of lines

1 1 .

$3=—§Zi"‘\/‘;r if 1—4ap; =0 a>0. (4.12)

If @ = 0, the nullcline is a parabola given by

T3 =1% — U, (4.13)



For a > 0 the curvein (4.11) is a hyperbola with vertical symmetry if 1—4ap; <
0. For a > 0 and 1—4au; > 0, the curve in (4.11) is a hyperbola with horizontal
symmetry. For a < 0 and 1 — 4ay, > 0, the curve in (4.11) is an ellipse. The
curve in (4.11) has no solution set for ¢ < 0 and 1 — 4au; < 0. The curve in
(4.10) has only the point (0, —1/(2a)) for a solution when 1 —4au; = 0 and
a<0.

Secondly, there is a nontrivial nullcline corresponding to 3= 0, given
by the curve

p2 + brs — d:zg —ecr® =0,

or equivalently,

m‘l—d;d—m(zs - %)2 + 3%;2’"2 =1 if b®+4du, #0. (4.14)
Recall that d is an arbitrary scalar. First assume d > 0. For b% + 4du; > 0,
the curve in (4.14) is an ellipse. For b + 4du2 < 0, the curve in (4.14) has no
solution set, and for b% + 4du, = 0, the curve has only the point (0,b/(2d)) as
a solution.

Next assume d < 0. For b*4+4du, > 0, the curve in (4.14) is a hyperbola
with horizontal symmetry, and for b2 +4du, < 0, it is a hyperbola with vertical

symmetry. For b® + 4du, = 0, the zz—nullcline is a pair of lines given by

b /

Lastly, for d = 0, the zz—nullcline is a parabola given by

c 2
ca_#

b b’

T3 =

(4.16)

We now proceed to describe the direction of the flow of the r and z3

components separately. The description is done for the first quadrant only.



The description for the fourth quadrant is similar, but the direction of the flow
for the T3 component is reversed.

For a # 0 and 1 —4ay,; # 0, the nontrivial r—nullcline can be described

by three different conic sections. Let
Ni(r,z3) = p + 23 + az3 — . (4.17)

Since (4.17) is continuous and equal to zero only on the conic section, it can
change signs only by crossing through the conic section. Thus it is enough
to sample a point inside and a point outside the conic section to determine
the sign of (4.17). Inside the conic section choose the point (0,—1/(2a)) and
outside choose the point (£ R, —1/(2a)) for R > 0 sufficiently large. Then

4(1#1 -1

Nl(O’_l/(za)) = 4a )

and

Ni(£R,—-1/(2a)) < 0 for R > 0 sufficiently large.

Define the interior (i.e. inside) of a hyperbola to be the region between
the branches and define the exterior (i.e. outside) to be the complement of the
interior. Thus the r—nullcline ellipse or the hyperbola with vertical symmetry
has r—components of trajectories increasing when iﬁside these two conic sec-
tions and decreasing when outside. Conversely, r—components of trajectories
decrease inside the hyperbola with horizontal symmetry and increase outside.

In the special case when the nullclines are lines (i.e. a > 0, 1 —4ap; =
0), the r—components of trajectories decrease in the region to the right of
the point (0,—1/(2a)) and increase in the regions directly above and below
(0, —1/(2a)). For the case when the nullcline is a parabola (i.e. a = 0),
r—components of trajectories increase in the convex region of the parabola

and decrease otherwise. Figure 4.1 summarizes these observations.



Consider next the nontrivial zz—nullcline. Arguing as above, for d > 0
and 8% + 4du; > 0 the zz—nullcline is an ellipse. The zz—components of
trajectories increase inside the ellipse and decrease outside. For b% +4du, = 0,

the lengths of the axes of the ellipse have shrunk to zero.

X3 X3 X3
-— -—— ( —
a>0,1-4ap,; <0 a>0,1-4ap,>0 a<0,1-4ap, >0
X3 X3
— -
—
-——
-—
—
a>0,1-4ay, =0 a=0

Figure 4.1 : The r—nullclines are symmetric about the z3—axis.
Arrows indicate direction of the flow and are assumed to lie in the
positive quadrant.

Next, for d < 0 and b% + 4du, # 0 the z3—nullcline is a hyperbola with
horizontal symmetry if 2 + 4du; > 0 and vertical symmetry if b° + 4du, <
0. The x3—components of solutions decrease (increase) inside the hyperbola
with horizontal symmetry (vertical symmetry) and increase (decrease) when
outside. In the special case when the nullclines are lines (i.e. d < 0, b%+4du, =
0), the zz—components of solutions decrease in the region to the right of

the point (0,5/(2d)) and increase in the regions directly above and below

(0, b/(2d)).
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Finally, for d = 0, the nullcline is a parabola with zz—components
of solutions increasing in the convex region of the parabola and decreasing

otherwise. Figure 4.2 summarizes these observations.

- By
rl T\1 1§

d>0,b% 4dy, >0 d<0, 4 4dp, >0 d<0, '+ adu, <0

X3

N

o) A
/11 %(T

d<0,b% ddp,=0 d=0,b>0 d=0.b<0

-

Figure 4.2 : The za—nullclines are symmetric about the zz—axis.
Arrows indicate direction of the flow and are assumed to lie in the
positive quadrant.

Intersections of © and z3— nullclines correspond to fixed points of (4.9).
There are six possible fixed points for (4.9) given by (0,0), (v, 0), (0,5\631-)

and (7;, %3:), where for i = 1,2, we have

A bt (=1 T Adps

and,
7=/ + Tai + a(Fa)?, (4.19)
—(¢ — b) + (—=1)*! c—b)? —4(ac+ d)(cuy —
. (c—b) + (=1)*!/( )2 —4( )(epa uz). (4.20)

2(ac+ d)




The origin is always a fixed point of (4.9). The Jacobian of (4.9) evaluated at

(0,0) is
J(0,0) = (’“ 0 )
0 H2

Thus (0,0) is locally asymptotically stable provided py,p2 < 0. For py > 0,
(\/ii1,0) is another fixed point of (4.9). The Jacobian of (4.9) evaluated at

(y/#1,0) is
J0) = ( DG )

U2 — Cily
The associated eigenvalues of (/p1,0) are —2u; and py — cyy. Provided
(V#1,0) exists (i.e. p1 > 0), it is locally asymptotically stable if and only
if o — cpy < 0. Similarly, (0, :’1}3,-) exists provided 5% + 4du; > 0. The Jacobian
of (4.9) evaluated at (0, Z3;) is

A A 2
1+ T3 +a ($3i> 0

J(Ov‘%&') = A A 2
0 pz +2bz3; —3d (3«‘31‘)

2
Hence, (0, :’23,~) is locally asymptotically stable provided pu;+ 5,1\«‘31' +a (9:31') <0

and po +2b 9"31' —3d (:’23,-)2 < 0.

Existence of limit cycles for the model in (3.15) requires that at least
one of the fixed points (7;, Z3;) resides in the first or fouth quadrant depending
on the sign of the rescaling constant 8. Hence, instead of providing conditions
for the existence of (7;, Z3;), we provide an example of a set of conditions that
ensures that at least one of (7;,Za;) is in the first quadrant for 8 > 0 (i.e.
b < 0). For example, if p1,a > 0 then 7; >0 if Z3; > 0. For Z3; > 0, we may
choose (ac+ d) < 0 and 0 < pg — cpy < € for arbitrary € > 0. Thus we have
two positive distinct values for Z3; > 0. One can also choose values such that

either one fixed point is in the first quadrant or there are no fixed points in
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the first quadrant. Similarly, if 8 < 0, one can choose values such that none
or one or two fixed points are in the fourth quadrant.

Then the Jacobian of (4.9) evaluated at (7;, Z3;) is
. py + Fazi + a(Fa1)® — 3(7:)? 7 (1 + 2aZs;)
J(Tz‘, .’I)3i) = 2 _ 2 .
—26?;53; H2 + 2bi3,‘ - C(T‘,’) - 3d(.’l§3,)

The associated eigenvalues are given by

_ tr(J(FBa) & Vitr(J (7, 73:))]2 — 4 det(J(F, Fa:))

1,2 3 (4.21)
where
tr (J (7 Fai)) = =21 + (b — 2)Fai — 2(a + d) (Fa:)?, (4.22)
and
det (J (7, Fai)) = —2 () {emr — 2 — (ac+ d) (:)*} - (4.23)

Thus if (7;, F3;) exists, it is locally asymptotically stable if Re(81,2) < 0.

4.3 Local Bifurcations

In this section we examine the local bifurcation behavior of the unfolded nor-
mal form in (4.9). Due to the complexity of the coefficients ¢; in (4.9), a
complete bifurcation analysis is difficult. Where possible we compute the rel-
evant bifurcation curves. Otherwise, we give numerical examples of the local
bifurcation plienomena in question. In any case, the bifurcation analysis is

restricted to the first or fourth quadrant of the rzz—plane.

4.3.1 Bifurcations of the Origin

Recall that the fixed point (0,0) of (4.9) corresponds to the fixed point E%. of

system (3.15). We have already seen that E3. can undergo both a transcritical



and a Hopf bifurcation. Thus, we expect the origin to undergo a transcritical

bifurcation and a pitchfork bifurcation.
First, the origin undergoes a transcritical bifurcation at p» = 0. This

follows from setting r = 0 in (4.9) and considering the resulting equation
(i:3= G(.’l!3,[12) = W2T3 + b:ltg bt d.’Bg

For p2 = 0 a transcritical bifurcation occurs at z3 =0 provided the following

conditions hold ([49]) :

G(0,0) = a (o 0) = aa (0 0) =0,
82G 892G
22 ——(0,0)#0a maam(o,O) # 0.

The first three conditions are easily checked. Moreover,

0’G
axsauz ($37 #2) - 1

and
9*G
ox2
Hence, 3 8#2(0 0) # 0 and 826 (O 0) = 2b # 0 since b # 0. Thus, a transcriti-

cal bifurcation occurs at ($3,/1,2) = (0, 0).

(.’L‘3,[1.2) =2b— 6d.’1:3

Next, the origin undergoes a pitchfork bifurcation at py = 0. This

follows immediately from setting 3 = 0 in (4.9) and considering the equation
F= F(r,pm) = r(p —r?). (4.24)

For p; < 0,7 = 0 is the only fixed point of (4.24) and is locally asymptotically
stable. For p; > 0, there are three fixed points r = 0 and r = £./u1. The fixed
point 7 = 0 is now unstable and r = &,/u1 are stable (i.e. -?f(:i:\/fﬁ,,ul) =
—2u1). Hence, a pitchfork bifurcation occurs at (r, p1) = (0,0).



4.3.2 Bifurcations on the Axes

There are three possible fixed points on the r and z3 axes. There is the pair
of fixed points (0,:/1\:3,') and for p; > 0, we have the fixed point (,/1,0). The
fixed points (0, :/1\:3,-) correspond to the interior fixed points E%; of system (3.15)
and (y/f1,0) corresponds to the limit cycle in the z,z,—plane.

For d # 0, the fixed points (0, 9:3;) can arise and split via a saddle-node
bifurcation. For p; = —b%/(4d) we have Ta1=Tap= b/(2d). Since the fixed
points (0, :/1\:3;) remain on the z3—axis, which is invariant for the flow generated

by (4.9), we set r = 0 and consider again the equation
t3= G(z3, p2) = paT3 + bzl — dz3.

For a saddle-node bifurcation to occur at Tz= b/(2d) for p, = —b?/(4d), we
require the following conditions to hold ([49]) :
b b G b b
53 " ad) = Tm(ﬁ’_@) =0,
oG, b B PG, b b
FATY 44)?60 and 57 (59~ 2g) 70
The first two conditions can be easily checked, and since b # 0 we have

96 b B _ b
Ops 2d’ 4d’ ~ 2d

892G, b b? b
3G 1d =B 6d(2d>_—b5£0.

Hence, a saddle-node bifurcation occurs at (r,z3) = (0,b/(2d)) with critical

G(

and

value p; = —b?/(4d). Depending on the signs of b and d, the saddle-node
bifurcation can occur outside or inside the first (fourth) quadrant. Thus one

of the fixed points (0, :’23,-) can enter or exit the first (fourth) quadrant via the

transcritical bifurcation at the origin.



Next, the fixed points (0, 9?3,'), provided b? +4du; > 0, can also undergo
a pitchfork bifurcation giving birth to the interior fixed points (7, Z3;). This
corresponds to the Hopf bifurcation about the interior fixed point Eﬁ for the
original system (3.15). This can be easily seen by performing a center manifold

reduction. Moving (0, :/1\:3,-) to the origin, the system in (4.9) becomes

o= pur+(1+2a 9:3,')7‘.’1,‘3 +arzl -1,
3 = (p2+2b T3 —3d(T3)?)zs + (b —3d Z3;)z2 — ¢ Ta; v — crizg — dzd
po= 0,

where p = p;+ :’1}3; +a($\:3,~)2. The bifurcation value is u = 0. By the center
manifold theorem, the center manifold of (0, §3,~) is locally represented by z3 =

g(r, i) with g(0,0) = Dg(0,0) = 0. Let
xz3 =g(r,pu) = arr?® + arp + azp’ + O(3),
then g(r, #) must satisfy the quasi linear partial differential equation given by
Dyg(r, ) { i + (1 + 20 g, ) + ag?(ry )y — 1%}
~(p2 + 2b B3; —3d(Z5:)?)g(r, 1)
—(b— 3d Z3,)g2(r, ) — € T3; 7% — erg(r,p) — dg*(r,n) = 0 .

Substituting g(r,u) = ayr? + aorp + asp® + O(3) in the above equation and

equating coeflicients of like powers we obtain

A

al — C.'Z?al
- A A
p2+2bz3; —3d(z3,)? k
a; = 0,
az = 0,

provided po + 2b 1/1\331‘ —3(1!(:/1}3,-)2 # 0. Hence on the center manifold of (0, :'2'3,-)
the dynamics of (4.9) are governed by the equation

F= pr + {(1 + 2a T3;)a® — 1} r + O(4).



Thus a pitchfork bifurcation occurs at (0,:’23;) with critical value g = 0, pro-
vided a; # 0 (i.e. Z5% 0).

Finally, for g, > 0 the fixed point (,/f1,0) can undergo a transcritical
bifurcation. This corresponds to a transcritical bifurcation of limit cycles off
the z,z,—plane for the original system (3.15). Recall that for y; > 0, (\/£1,0)
is a sink if and only if cuy — p2 > 0, otherwise it is a saddle type fixed point.

If 8 < 0, assume —(c —b) > 0 and ac+ d > 0 in equation (4.20). The
remaining three possible cases (for 8 < 0) are treated in a similar fashion. If
cpy —p2 = 0, then from (4.20) we have (72, Z32) = (1/H1,0). When ¢y —p2 = ¢,
for £ > 0 sufficiently small, the fixed point (72, Z32) is in the first quadrant
above the point (\/p1,0). When cpuy — p2 = —¢, (¥2,%32) is in the fourth
quadrant just below (y/f1,0). Hence, at cyy — p2 = 0, the fixed point (\/k1, 0)
undergoes a transcritical bifurcation. A similar argument holds for the case

8> 0.

4.3.3 Bifurcations in the Interior

There are two possible interior fixed points (7;, Z3:) of (4.9). They correspond
to interior limit cycles for the original system (3.15).

First, the fixed points (7;,%3;) can arise and split via a saddle-node
bifurcation. For a saddle-node bifurcation to occur we must have exactly
one associated eigenvalue zero. From equation (4.21), this implies that we
must have det(J (7, Za;)) = 0 and tr(J(7:, T3:)) # 0, where tr(J(7:, Z3;)) and
det(J(7:,Z3;)) are given by (4.22) and (4.23) respectively. Let

e c—b)?
H = ch = e 4(ac+d)
then at © = 0 we have, from (4.20), T3; = F32 = —(c — b)/2(ac+d) = 7.

Moreover, det(J(7;,Z3)) = 0 if and only if o = 0 (since 7¥; > 0). Then



at p = 0 we have det(J(7;, %3;)) = 0 and tr(J(¥i, Tz)) # 0 provided py #
ib—;a?{: — (a+ d)%2. Taking into consideration that we have at most two interior
fixed points for system (4.9), and noting that small perturbations from y =0
result in either no value or two distinct positive values for Z3;, then a saddle-
node bifurcation occurs at g = 0. This of course corresponds to a saddle-node
bifurcation of limit cycles in the interior for system (3.15).

Next, the fixed points (7;,Z3;) can undergo a Hopf bifurcation. In gen-
eral for a Hopf bifurcation to occur about one of the fixed points (7;, Za;) we
must have at least a pair of pure imaginary associated eigenvalues. This would
imply tr(J(7i,%3;)) = 0 and det(J(F;, Z3:)) > 0. However due to the complexity
of the expressions in (4.22) and (4.23), it is difficult to show a Hopf bifurca-
tion occurs in general. Instead we provide two numerical examples of a Hopf
bifurcation. The first is an example of a subcritical Hopf bifurcation and the
second is an example of a supercritical bifurcation.

First assumea =c=1, b =d = —2 and p2 = 1. Thus from equations
(4.19) and (4.20) we have
—3+ 9+ 4 - 1)

D) and 7, = \/,Ul + T3 + (531)2-

<

T3 =

In addition,

tT‘(J(Fl, 531)) = —2;1,1 - 4531 + 2 (.’531)2 5
det(J (71, Fa1)) = =272 {in — 1 + (Fa1)°} .

At Kl = —1, we have (F1,531) = (1, 1) and tT‘J(('Fl, 531)) = 0 with det(J(Fl, 531)) =
2 > 0. Thus the associated eigenvalues at u; = —1 are 12 = +iv/2. Ina
neighborhood of u; = —1, the real parts of the eigenvalues are

tT(J(’Fl ) 531 ))

Re(ﬁl,z) = 9



Hence the transversality condition evaluated at p; = —1 is

T (Re() = § -2 ~ 45 @) + 4 (@) B}

with
1

VO +4(u —1)

d _
E;;l'(wsx(#l)) = —

Thus at p; = —1, we have

diﬂl(Re(ﬁl,z)) = %{—2 —4(=1)+4(-1)}=—-1#0.

Hence a Hopf bifurcation occurs about (7, Z3;) = (1,1) with bifurcation value
K1 = —1.
To determine the stability of the emerging limit cycle, we shift (1,1)

to the origin subject to the bifurcation condition p; = —1, and obtain the

following vector field

r)y [ -2 3 A 3rzs+ 22— 3r2 +ra -1
I -2 2 z3 —2rzs + 4z3 — r? — rlz3 + 223 '

Applying the similarity transformation

()-(22)()

to the vector field above, we obtain

(u _ 0 V14 u + flu,v)
b Vi 0 v glu,v) |

where
flu,v) = —2u?+ 4v/2uv + v? + 4ud — 4v2u%v — 2uo?,
g(u,v) = —(2v2 - %)u2 — 2uv + 2v20% + (2V2 — %)u3

—4/2uv? — 208.



Using the vague attractor condition ([14]),

a = '11—6{fuuu + fuvu + Guuy + Guuv + %((fuv(fuu + fuv) - guu(guu + gvu)
—fuuguu + fuugvv)}

evaluated at (u,v) = (0,0), we obtain a = V2 > 0. Thus we have a subcritical
Hopf bifurcation about (1,1) at gy = —1.

The resulting Hopf bifurcation about (7;,Zs;) can be supercritical as
well. For example, assume @ = 3, b= 2, c=1,d = —2 and g = 1. Then
at gy = —1, there is a Hopf bifurcation at (71,%a) = (1,—1). Proceeding as
above, we obtain & = —5/6 < 0, and the transversality is equal to —7/3. Thus
we have a supercritical Hopf bifurcation.

A Hopf bifurcation in the rz3—plane, for system (4.9), implies the exis-
tence of invariant tori and quasi periodic motion for the original system (3.15).
We will discuss this phenomenon in more detail in the following section on

global bifurcations of the normal form (4.9).

4.4 Global Bifurcations

We begin this section by initially ignoring the problém of the undetermined
sign of the rescaling constant §. That is, we assume a, b, d are arbitrary
scalars, ¢ a positive scalar and restrict our analysis to the positive quadrant
of rzs-plane. After determining what global bifurcations are possible under
these conditions, we then consider the rescaling constant § and how. it eflects
these global bifurcations.

There are two types of global bifurcations that are of interest to us.
The first type is the homoclinic bifurcation. This type of global bifurcation

occurs when the stable and unstable manifolds of a saddle type fixed point



intersect. Since we are considering a smooth vector field, and since initial
value problems have unique solutions, it follows that the stable and unstable
manifolds of the saddle point must not only intersect at a single point but
rather along a smooth closed curve. The r—axis and rz—axis are invariant
for (4.9) and thus if a homoclinic bifurcation is to occur it must occur in the
interior of the positive quadrant. Existence of a homoclinic bifurcation for the
planar system (4.9) implies that there is a fixed point inside the homoclinic
loop. Since there are at most two interior fixed points for (4.9), the homoclinic
bifurcation must involve both of them. One is a saddle type fixed point and

the other a sink or source contained inside the loop.

) | .

r h r
Hp =-1.41 R r By =-1.35

Figure 4.3 : Let g, be the bifurcation parameter with y; = —0.41,
a=04,b=4.0,c=15and d=1.0. A homoclinic bifurcation occurs
for pp between —1.41 and —1.35.

We demonstrate the occurrence of a homoclinic bifurcation for (4.9) by
considering the possible intersections of nuliclines of (4.9) and then determin-
ing how the separatices change due to the bifurcation. Figure 4.3 illustrates
a homoclinic bifurcation for (4.9). Figures 4.4 and 4.5 depict the same type
of homoclinic bifurcation but in different parameter ranges. In both of these
examples the fixed point (,/k1,0) exists in the positive quadrant and in one
case the transcritical bifurcation at the origin has not yet occurred while in

the other case the origin has undergone a transcritical bifurcation.
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For the full system (3.15), the homoclinic loop manifests itself as a
pinched torus in three-space. Due to the presence of the saddle type limit cycle
the flow is not toroidal. Under small perturbations we expect the homoclinic
connection to break and the stable and unstable manifolds of the saddle to

intersect transversely, giving rise to horseshoe dynamics near the saddle type

limit cycle.
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Figure 4.4 : Let pu; be the bifurcation parameter with py, = -1.0,
a = -0.25,b=10.0, ¢ = 5.0 and d = 4.0. A homoclinic bifurcation
occurs for u) between 0.24 and 0.247.
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Figure 4.5 : Let u; be the bifurcation parameter with uz = 0.5,

a=—0.25,b=7.0, c=5.0 and d = 2.5. A homoclinic bifurcation
occurs for u; between 0.24 and 0.249.

The second type of global bifurcation that we are interested in is the
heteroclinic bifurcation. The simplest heteroclinic loop occurs when the stable
and unstable manifolds of a fixed point coincide with the unstable and stable
manifolds, respectively, of another fixed point. A heteroclinic loop can only

occur for (4.9) if it involves the fixed points on the r—axis or z3—axis since



one of (7;,Z3;) is always a sink or source and thus must be contained inside
the loop. Again, by examining the possible intersections of nullclines and then
determining how the separatices change via the bifurcation, we demonstrate
the occurrence of a heteroclinic loop for (4.9).

First, notice that if the fixed point (,/1,0) is to be a part of a hetero-
clinic loop then we must have cu; —p2 < 0. When (/p1,0) exists (i.e. y; > 0)
it always has the r—axis as part of its stable manifold, hence if it is to be a
part of a heteroclinic loop, it must be a saddle which implies cu; — g2 < 0.
Moreover, under these conditions, the flow on the z3—axis must decrease near
the origin. Thus p2 < 0. However, since ¢ > 0, then cu; — u; > 0. Therefore
the fixed point (,/f1,0) cannot be a part of a heteroclinic loop. If we allow ¢
to be negative, then we could have a heteroclinic cycle as depicted in Figure
4.6. However, even with ¢ < 0, the heteroclinic bifurcation depicted in Figure

4.6 is still not possible for the original system (3.15) since solutions must be

bounded.

O B

r ’ r ° T
By =1.6 By =R B, =18

Figure 4.6 : Fix yo = —-1.0,a= -1.0,b=0.4,c= —1.0 and d = 0.0.
Let p; be the bifurcation parameter, then a heteroclinic bifurcation
occurs for u; between —1.6 and —1.8.

Taking the above observation into consideration, if a heteroclinic loop
is to occur for system (4.9) for realistic parameter values, it must involve the
two fixed points on the zz—axis. Figure 4.7 depicts such a heteroclinic cycle.

For the full system (3.15), this type of heteroclinic cycle manifests itself as an



invariant sphere. Under small perturbations the sphere breaks up resulting in
horseshoe dynamics.

Note that a heteroclinic loop similar to Figure 4.7 but with the direction
of the flow reversed is not possible for system (3.15) since solutions must be
bounded. Also, a heteroclinic loop similar to Figure 4.7 but involving both
fixed points (7;, Z3;) is not possible. This would require the r-nullcline to cross
the z3-axis once between the saddle-type fixed points (0, :/1}3i) but yet intersect
the z3-nullcline twice in the interior. Consideration of the nullclines in Figures
4.1 and 4.2 shows this to be impossible.

We now consider the rescaling constant 3 and the effect it has on these
global bifurcations. Note that regardless of the sign of 3, the heteroclinic
bifurcation of Figure 4.6 is not possible.

First assume 8 > 0. Thus our analysis is confined to the first quadrant
of the rzs-plane and b < 0. In the global bifurcations depicted in Figures 4.3,
4.4 and 4.7 there are two saddle type fixed points on the zs-axis and p; < 0.
From equation (4.18), it is clear for both fixed points (0,:%3,-) to reside in the
positive quadrant we require at least d < 0. But then this forces py > 0.
Hence these global bifurcations are not possible for 8 > 0. '

Next, consider the homoclinic bifurcation depicted in Figure 4.5. For
this bifurcation to occur we require at least both fixed points (7, Ts;) to reside
in the first quadrant and ¢y — p2 > 0. From equation (4.20), since b < 0 then
—(c—b) < 0 dnd thus (ac+ d) < 0. But then this forces cuy — p2 < 0. Hence,
this homoclinic bifurcation is not possible for 3 > 0.

Assume 3 < 0. Our analysis is now restricted to the fourth quadrant
of the rza-plane and b > 0. By an argument similar to the one used in the

case when 3 > 0, the global bifurcations depicted in Figures 4.3, 4.4 and 4.7

are not possible.
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Whether or not the homoclinic bifurcation of Figure 4.5 is possible for
B < 0 remains an open question. Although there is no simple immediate
reason why this bifurcation cannot happen for system (4.9), we have not been
able to find a viable set of parameters for this bifurcation to occur.
Remark : Guckenheimer and Holmes ([14]) found a heteroclinic orbit of the
type shown in Figure 4.7 for this particular type of codimension ‘two’ bifur-
cation. The truncated normal form they considered had two saddle-type fixed
points on the z3- axis, ;1 and 32. The fixed point —7;1 had a two dimensional
stable manifold, Ws(;;l), and a one dimensional unstable manifold, W"(;,),
while ;2 had a one dimensional stable manifold and a two dimensional unsta-
ble manifold. W’(;l) coincided with W"(;z) to form an invariant sphere in

three-space as was also the case for Figure 4.7.

] =
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Figure 4.7 : Fix g, = —1.0,a=0.0,b=4.0, c=6.0 and d = 1.0.
Let p; be the bifurcation parameter, then a heteroclinic bifurcation
occurs for pu; between —1.0 and —1.1.

X3 X3

Generically, one would not expect the one dimensional unstable mani-
fold W“(;l) and the one dimensional stable manifold Ws(—ﬁg) to intersect in
three-space. Similarly, one would expect the two dimensional unstable man-
ifold W“(};g) and the two dimensional stable manifold Ws(;;l) to intersect
along one dimensional curves in three-space. One also expects that higher
order terms of the normal form to affect this structure. The fact that this

is indeed the case was shown by Broer and Vegter ([3]). They showed that



when this structure breaks up, the branch of W“(;l) inside the sphere falls
into W’(;;), or, similarly the branch of WS(BQ) inside the sphere falls into
W“(;g), producing a Sil’nikov bifurcation about one of the fixed points 51,
Po.

Taking this into consideration, it is not unreasonable to hypothesize
that a similar scenario may occur for the homoclinic bifurcations in Figures
4.3, 4.4, and 4.5. That is, when higher order terms are considered in the
normal form (4.9), the homoclinic structure breaks giving rise to a Sil’nikov
phenomenon about one of the fixed points (7, Z3;). For the original system
this would imply a Sil’nikov bifurcation about a limit cycle in the interior of
the positive octant. This of course remains an open question which we plan

to investigate further.

4.5 Parameter Comparison

In the previous two sections we described the dynamical behavior of the normal
form near bifurcation. Now we would like to determine how the parameters of
the unfolded normal form in (4.9) are related to the parameters of the original
system in (3.15). This would enable us to determine how the dynamical behav-
jor of the unfolding can be obtained in the original model. However, this task
can be rather complicated and quite often impossible to accomplish. These
complications and difficulties are common to all such normal form calculations
and are discussed in [50] and [14], for example. For the sake of completeness,
we include a similar discussion here.

Consider the system of differential equations given by
x= fu(x)forxe R", peR?, p>1. (4.1)

Assume Xg is a fixed point of (4.1) and that there is a finite codimension m



bifurcation at (Xo, to). For the purpose of this discussion, let f,(x) be analytic
at (Xo, o). The normal form theorem tells us that we can always compute a
normal form for f,, about (Xo, to), to any degree d > 2. The first thing we do
in order to compute a normal form for f,, is to Taylor expand. f,, about the
fixed point Xo. After translating Xo to the origin and truncating at degree d

we obtain the sum g(x), called a d—jet of f,, about Xo, given by

d
9(x) = kE_: 9k (%)

where g € P.

Next, we apply the linear transformation T; to g(x), which puts the
Jacobian into real Jordan canonical form. We then apply d — 1 near linear
transformations T; (: = 2,...d) which take the degree i terms into ‘normal’
form. Recall that the choice of near linear transformations T; are not unique
in general and each near linear transformation is chosen in such a way as to
not change the lower degree terms that have already been ‘normalized’. Define

VI to be the set of all d—jets in R™ about x = 0. Then there is 2 map
T:V} >V}

givenby T = Ty0Ty_;0...0T;. Hence, T is a transformation which takes our
d—jet, g(x), into a normal form T'(g(x)).

For any fi(x) € PP, we may write fi(x) = pxbr, where p; denotes fi’s
coefficient matrix and b, is the column vector consisting of the standard basis
for PP. If we let pu = (i1,..., #ta)T denote the vector of coefficient matrices ux
for f(x) € VJ, then we may define the parameter space, 7, of the d—jets in
R" (about x = 0) to be the set

d
i= {# = (1ser pia)” 2 S(X) = D pabe € V] py € R‘“‘}
k=1



n+k-—1
where g = n . Notice that, by construction, Q7 is isomorphic
k
to R? where p = Y%, Gk-
Next, we define the homeomorphism
h . Vdn — QZ
by

RGO = hOE pebi) 1= (s i)

where f(x) = S, uxbe € V. Thus, the study of the vector field f(x) € V'
can be reduce to the study of its coefficients in 7 via the homeomorphism .
Similarly, the corresponding normal form T(f(x)) can be reduced to the study
of its coefficients via the same homeomorphism. Our goal is to compare the
parameters of the original vector field g(x) to the parameters of the normal

form T(g(x)). To accomplish this, we define the map
T : QF — Qy
by T* = h o T o h~!. Hence the following diagram commutes.
vp Lovp
R ni
o Ioap
The transformation T~ takes the parameters po € 7 of the original d—jet to
the coefficients vy € Q7 of the d—jet in normal form. That is, T o = vo.
As mentioned above, the study of the original d—jet, g(x), can now be

reduced to considering its corresponding coefficients. We must now consider

small perturbations in the vector of coefficient matrices and thus need to define

a norm on . Define

d
|l — pol| = ; ik = (1o) k| lmat



where ||...||ma: is the standard matrix norm given by
[ Allme: = maxfaijl, A= (as;).

Consider p such that ||z — gol| is small and let v = T"u. Since T is a C*

transformation, by definition, 7 is continuous and we may write
T'u=v=vy+e

where ¢ — 0 as u — po. Hence vp + € represents the unfolding of the normal
form. That is to say, 1o is the coefficient vector of the d—jet in normal form (at
bifurcation) and the non-zero entries in & (whose corresponding entries in 1o

are zero) give rise to the unfolding which describes the behavior of the original

vector field f,.

Caution :

Let o + &, for ||8]| small, represent another unfolding of the normal form.

1) Assume & # e. That is to say, § has at least one nonzero entry in a position
where ¢ has a zero entry. In this case, it may be impossible to obtain the
unfolding vo + 6 from the original model. There may be no transformation T

that takes the original model into a normal form that has v + & as its vector

of coefficient matrices.

2) If 1o + & can be obtained from a different normal form transformation,

then one would expect the unfolding 1o + & to exhibit topologically distinct

dynamical behavior from v + €.

In a neighborhood of a bifurcation there may be unfoldings that can

not be obtained by varying the parameters in the original model. In general,



a model of a real system is only an approximation and hence it is reasonable

to assume that the model itself undergoes a bifurcation. In this case, all small

perturbations from bifurcation (which are reasonable for the model) could be

possible and thus must be considered.

Example 3: Consider the following system of linear differential equations

given by
.’lfl = —b.’l)2

T, = cry+dzs

(4.2)

where b, ¢ are positive scalars and d is an arbitrary scalar. The origin is the

only fixed point of (4.2), with associated eigenvalues

d + Vd?* — 4bc
Cl.‘l = _—'2_—

At d = 0 there is a bifurcation. Let x = (z,,z2) and

f(x) = (fl(xhz?) ) _ ( —bas ) )
fa(zy, z2) cz1 + dzo

then, using the notation of this section, we may write f(x) = p1b where

0 -b I
ul(zp)=( ) andb1=( )
c d Z2

Thus there is a bifurcation at

0 -b
to = , L.e. ,u(l‘” =d=0.
c 0

For system (4.2), the 1—jet about (0, 0) (at bifurcation) is given by

0 -b Iy
C 0 T2



and the normal form is given by

T(g(x)) = F(x) = A” poAx = ( —i)/b_c \Cb—c) (zl ) ,

0 /%
A= c 1.
1 0

The parameter transformation, 7%, is defined by the equation

. 0 b
TF’O:VO: )
—vbe 0

T‘=(—;/%— _Oé).

c

where

and hence

Thus in general we have

e, | TVE O O—b_O\/E_V
o 0—\/§ cd_—\/b—c—d\/g—’

or equivalently,

T u = 0 \/b—é+0 0 =vy+€
S Y/~ 0 -4t )

Thus ¢ represents a choice of unfolding parameters for F(x).
One could have chosen an unfolding of F'(x) that was not representative

of the original system (4.2). For example, one could choose the unfolding F'(x)

Fl(x)= ( —j/l_)E \/Ob_c) (:) = ygX + 0X,

given by



where

a 0
00

§ =

Clearly T*u can not equal vo+6, and hence the unfolding is not representative
of (4.2). It is still however an unfolding of F(x), and in fact it does not
introduce any dynamical behavior different from 1o + €.

On the other hand, if we had chosen an unfolding of the form

0 \/b_c I
—\/b_c a T2 ,

then we could compare coefficients in F2(x) with the original parameters. Let

F*(x) =

'U§2) I

vgs) U&” T2 ’

iV
F(x) =vx =

then we have v{") =0, 0¥ = Ve, v{® = —v/be and WW=a= —d\/g.

What does all this mean for our choice of normal form and subsequent
unfolding? First, we were unable to compare parameters as we did in the ex-
ample above. Second, we do not know if our choice of unfolding is topologically
equivalent to an unfolding for which one could compare parameters. Third, we
are not sure whether or not the unfolding captures all possible dynamical be-
havior produced by the original model, or conversely, if the unfolding predicts
more behavior than the original model is capable of producing. Fourth, this
particular Hopf-transcritical bifurcation may be a codimension oo bifurcation
(this is an open question for this particular bifurcation), and thus it may be

impossible to compare parameters.



4.6 Comparing Bifurcation Behavior

In the previous section we saw that we could not determine how the parameters
of the unfolded normal form in (4.9) were related to the parameters of the
original system in (3.15). However, we can attempt to identify the bifurcation
behavior of the normal form in the original system. In order to accomplish this
(at least numerically) we use the bifurcation software package AUTO ([11]).
Below are two bifurcation diagrams for the original system (3.15). In
both bifurcation diagrams, solid curves denote curves of fixed points while
dashed curves denote curves of limit cycles. Moreover, circles mark Hopf bi-
furcation points, squares denote transcritical bifurcation points, triangles rep-
resent saddle-node bifurcation points and diamonds indicate period doubling
bifurcation points. For both diagrams, S° is used as the bifurcation parameter.
First, consider Diagram 4.8. The line K represents the planar fixed
point E3.. At §° = 1, E3. is stable and remains stable until we reach the Hopf
bifurcation at S° = 1.625. As S° increases past 1.625, we have the emergence
of a limit cycle in the z,z,—plane and E3. is a saddle type fixed point with a
two dimensional unstable manifold. At S° = 2.5, E3. undergoes a transcritical
bifurcation and for $° > 2.5, E3. is completely unstable. Curve K represents
the interior fixed points ES. The fixed points Eﬁ are born via a saddle-
node bifurcation at S° = 2.45. The saddle-node bifurcation occurs outside
the positive octant (i.e. z3; < 0). As S° increases, one of the interior fixed
points E;ﬁ‘ enters the positive octant via the planar transcritical bifurcation.
Increasing S° past 2.5, Es; undergoes a Hopf bifurcation at S0 = 2.61075
followed by a second Hopf bifurcation at S° = 3.59524. For S50 € (2.5,2.61075),
EQ is a saddle type equilibrium point with a one dimensional stable manifold.

EZ is stable for S° € (2.61075,3.59524) and for S° € (3.59524, 5] it is again a



saddle type fixed point with a one dimensional stable manifold.

Curve K5 denotes the planar limit cycle born via the Hopf bifurcation
about E3.. For S° € (1.625, 3.68224), the limit cycle is stable. At S° = 3.68224
there is a transcritical bifurcation of limit cycles. For S° > 3.68224, the
planar limit cycle is unstable with the z,z,—plane as its stable manifold. Next
consider curve K, from top to bottom. At S° = 3.3 there is a saddle type
limit cycle just below the z,z,—plane in the negative cone. As S° increases,
the limit cycle enters the positive octant via the transcritical bifurcation at
5° = 3.68224. For S° € (3.68224,3.72069) this interior limit cycle is stable. At
50 = 3.72069, there is a saddle-node bifurcation of limit cycles. Along curve
K4 for S° € (2.61075,3.72069) we have an interior saddle type limit cycle.

3.5

TT T T 1T
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.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4. 5.0 5.5 6.0 8.5
SO
Diagram 4.8 : Parameter values are A = 0.2, §; = 0.3, 62 = 1.2,
my = 1.5 and m, = 3.0.

Finally, curve K represents an interior stable limit cycle. We refrain



from discussing curve Ks until the following chapter where we consider an
intermediate case for model (2.3).

Diagram 4.8 encompasses all of the local bifurcations witnessed in the
normal form (4.9) with one exception. There is no bifurcation to a torus in
Diagram 4.8, which would correspond to a Hopf bifurcation about (7;, Z3;) for
the normal form. In all our numerical simulations of the original system (3.15)
and subsequent bifurcation analysis using AUTO we have not seen anything
that would indicate this type of bifurcation. Thus, with respect to the original
system (3.15), we speculate that a bifurcation to a torus is either not possible
or if it is possible, it occurs for a relatively small parameter region. What
does this mean in terms of our normal form in (4.9)? Our choice of normal
form has a §—independence which probably is not possessed by the original
system. As a result, we have probably introduced bifurcation behavior in the
normal form that is not present for the original system. If this is the case,
then not all of the global bifurcations described for the normal form occur in
the original system (3.15). The normal form global bifurcations all involve a
Hopf bifurcation in the positive quadrant of the rzz—plane.

Recall the concluding remark to Section 4.4. The heteroclinic bifurca-
tion in Figure 4.7 is affected by the addition of higher order terms in such a
way as to produce a Sil'nikov bifurcation about one of the fixed points (0, Z3;).
If the homoclinic bifurcations depicted in Figures 4.3, 4.4 and 4.5 are affected
in a similar fashion, then they would represent a Sil’nikov bifurcation about
a limit cycle for the original system (3.15). Note that neither the heteroclinic
nor the homoclinic bifurcations in this case would require the presence of the
Hopf bifurcation about (i, Z3;). Thus the homoclinic bifurcation depicted in

Figure 4.5 may still be possible for the original system according to the normal

form analysis.



Diagram 4.9 lends some support to this notion. Curve K; denotes
the fixed point E3.. As was the case in Diagram 4.8, E3. undergoes a Hopf
bifurcation (S° = 0.465) and a transcritical bifurcation (S° = 0.9) and the
stability description of E3. is the same. That is, as S° increases, E3. changes
from locally asymptotically stable to a saddle type fixed point with a two
dimensional unstable manifold, and eventually, to completely unstable. Curve
K3 represents the planar limit cycle born via the Hopf bifurcation about EZ.,

and is at least locally asymptotically stable for S0 € (0.465,1.1).

.9
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= F ,
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.4 5 6 7 8 .9 1.0 1.1 1.2

SO
Diagram 4.9 : Parameter values are A = 0.2, 8, =0.1, 6, =0.2,
m; = 1.1 and mg = 1.5.

Curve K, denotes the interior equilibria E%. At S° =10.818901, there
is a saddle-node bifurcation in the positive octant giving rise to two branches
of interior fixed points. One branch of fixed points is initially of saddle type

with a two dimensional unstable manifold. The other, initially, is completely



unstable. As S° increases, the completely unstable interior fixed point es-
capes the positive octant via the planar transcritical bifurcation. The sad-
dle type fixed point undergoes a Hopf bifurcation at S9 = 0.819363 and at
5% = 0.877366. For S° € (0.819363,0.877366) this interior fixed point is stable
and for S° € (0.877366,1.1) it is again a saddle type fixed point with a two
dimensional unstable manifold.

Curve K represents the interior limit cycle born via the Hopf bifur-
cation at S° = 0.877366. For S° € (0.877366,0.91592), the limit cycle is
asymptotically stable. At S° = 0.91592, there is a period doubling bifurcation
and the limit cycle is now of saddle type until we reach the saddle-node bifur-
cation at S° = 0.980338. Curve K, is the other interior limit cycle and is of
saddle type for S° € (0.819363,0.980338).
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Diagram 4.9a : A closer look at the region about the period
doubling bifurcation on curve Ks.



Diagram 4.9a is a blow up of the region about the period doubling
bifurcation on curve Ks. Curve K denotes the period 2 limit cycle. The
period 2 limit cycle is stable until we reach another period doubling bifurcation
at S° = 0.920424. For S° > 0.920424, it is of saddle type and undergoes a
saddle-node and reverse saddle-node bifurcation respectively at 5% = 0.924593
and S° = 0.934524. One could continue now to follow the period 4 limit cycle,
however, the diagram quickly becomes complicated and AUTO’s limitations
are tested. Instead, we take a test value of S° = 0.922 and numerically simulate
system (3.15). Figure 4.10 depicts what appears to be a locally asymptotically
stable attractor for system (3.15) for S° = 0.922. This attractor could be the

result of a Sil’nikov bifurcation about an interior limit as described above.

X2 0.16 . 0.5

025 08

x1

Figure 4.10 : A locally asymptotically stable attractor at S° = 0.922.
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Remark : Recall the Sil’nikov bifurcation about a saddle-focus fixed point
in R® ([39]). Near the homoclinic connection there is a countable infinity
of periodic orbits of saddle type. Moreover, from the subsequent bifurcation

analysis of Glendinning and Sparrow ({13]), these periodic orbits are born in



pairs via saddle-node bifurcations. Reconsider the AUTO bifurcation Diagram
4.9a. The period 2 limit cycle (curve Kg) is of saddle type for S% > 0.929424.
The branches of period 2 limit cycles created via the subsequent saddle-node
bifurcations are of saddle type. As S° approaches the value 0.980338 (the
saddle-node bifurcation value of the interior limit cycles Ky and A35), AUTO
indicates several more saddle-node bifurcations that occur relatively close to
one another. These new branches are again of saddle type. That is, AUTO
seems to suggest the possibility of a countable infinity of period 2 limit cycles
of saddle type. If in fact this is a Sil'nikov bifurcation of a limit cycle in
this neighborhood, then there seems to be analogous bifurcation behavior to

a Sil'nikov bifurcation about a fixed point.



Chapter 5

Case 4: The Intermediate Case

There are several cases of model (2.3), consisting of various combinations of
prototype response functions, that we have not considered yet. In particular,
there is one that provides additional insight into the ‘exotic’ behavior witnessed
in system (3.15). This case is described by h(S) and p2(2) being linear uptake
functions while p1(z,) is a Michaelis-Menten response function. We will refer

to this case of model (2.3) as the intermediate case, and consider it below.

5.1 Stability Analysis

The intermediate case of model (2.3) is given by the following system of dif-

ferential equations

S = SO—S—IIH%

. s

gy = @i(=1+9) - s (5.1)
T, = za(—1+ 51(m"11—-ai)+1‘1) —:ES%’

I3 = .’113(—1 + %‘22)7
where m; > 1. As was the case with system (3.11), system (5.1) has five fixed

points that may exist in the nonnegative cone. Eg, Ey and Eg. are as in case

100



4 WL

3 and the two interior fixed points are given by
Ef = (SB, 28, 65,25) for i = 1,2,

where S2, =% and z5; are as in (3.12).

The local stability description of Es. = (S*, 1, x3,0) is identical to case
3 with the obvious changes. Namely, E) and Es. coalesce at S® = X + 6, and
E) loses stability via a transcritical bifurcation as SO increases past A +6;. At

the same time Es. enters the nonnegative cone. The associated eigenvalues of

Eg. are

] 0 _ _ —
——1,—1-+-3:—21 and l{—7j:\/72_4(5 A =) (mu 1)}’

62 2 /\ml

with v given in (3.13). Thus, Es. € intR} and is locally asymptotically stable
provided

(A+8)(1+ 8) ie 75 < &,
A+ <8<
A +8)(1+ ™) ie v> 0.
Notice that the condition above is identical to the condition in (3.14). Pro-

ceeding as we did for the model in case 3, we can consider the following three

dimensional system

. SO—zy—xo—x myz
Iy = :131(-—1 + l/\ 2 3) - mzﬁl(mltll)+1'|’
- _ Ty . E2 92
Ty = 122( 1+ 51(m1—1)+-‘51) .’12362, (5...)
[
Ty = :123(—1 + %22)

As was the case for system (3.15), the fixed point E3. of system (5.2)
undergoes a Hopf bifurcation at S® = (A + 8;)(1 + m161/A) (i.e. v = 0) and a
transcritical bifurcation at S® = (A + &)(1 + 82/8) (i.e. x5 = d2). Hence, the

two systemns (3.15) and (5.2) share the same local bifurcations, and bifurcation

values, about E32..



T

Moreover, a saddle-node bifurcation involving the interior fixed points,
Ezﬁ, occurs and it may occur in the positive octant. In fact, if a saddle-node
bifurcation of E5 occurs in intR3, it occurs in the same manner as in case 3.
That is it must occur after the planar Hopf bifurcation but before the planar
transcritical bifurcation about E2.. The parameter values given in Example 2
(with the exception of m;) provide an example of this bifurcation for this case
as well.

The Jacobian of ( 5.2) evaluated at E3. is similar to the matrix in (4.3)
via the same similarity transformation 7' given in (4.6). Thus, as did system
(3.15), system (5.2) lends itself to the same normal form computation and
analysis of the previous chapter.

Proceeding as we did in the previous chapter, we compute a normal form
for (5.2) expanded about the fixed point E3. subject to the same constraints
given in (4.2). Note that the normal form calculation here is the same as in
(4.4) except the corresponding Taylor coefficients are different. Truncating the
normal form up to third order and ignoring the 6—equation, the normal form

in cylindrical coordinates is given by

A I {67'1:% + €313,
i3 = Egx2 + Lorixzs+ 1023,
where
£ = Ay — &2 B §1( A&y — 63) 3 82
2T oA+ 8) 2X25,(A48)  A(A+46)

o8 st
8T TBA382 T 8A2,
¢ = 50— 83 (A — 82)(3A8 + 267 + 3X8; + 54%4,)
T UNE(N+6,)? 4038183(X + 61)?
(8, + 82) {8182 — 2X(81 — 83)}
2X62() + 6,)2 ’




(A& =4}

M2(A +61)’

o = J

0T ToA2(AG; — 62)’
£10 = Aoy — &2 _ 8,(61 + &2)
0T S2(A+61)? A+ 6)%

Notice that &3, £s and & < 0. Performing the same rescaling by letting 7 = ar,
T3 = Bza with a = V=&, B = & (assuming &, # 0) and omitting the bars we

obtain

€s =

7 = rzz-+arzl—r’,

(5.3)
i3 = bzl —crizs —dz3,

where a = £/&2, b = &s/€2, and d = —£10/€&2 are arbitrary scalars and ¢ =
€o/€3 > 0. Reasoning in the same manner as we did for the normal form in

(4.8), we choose the same two parameter unfolding of (5.3)

r = mwmr+rrz+ arz3 — 3,

(5.4)
&3 = pox3+ bzi— crlzs — dal.

Fixed points of (5.4) are identical to the fixed points of (4.9). The
normal form analysis (i.e. local and global bifurcations) for (4.8) carries over
to (5.4) without any changes. Thus, the normal form analysis would suggest
that system (5.2) has the same dynamical behavior as system (3.15). That is,
system (5.2) can exhibit ‘chaotic’ behavior.

As we will see below, although the two systems (3.15) and (5.2) do
share similar local bifurcation behavior, system (5.2) does not seem to possess
(at least numerically) the global bifurcation behavior of system (3.15). This
does not necessarily mean that the choice of normal form for system (5.2) is
inadequate. The normal form coefficients, &;, are comparatively simpler than
their counterparts ¢; for system (3.15). They are still complicated enough to

prevent anything but a superficial treatment. However, unlike the normal form

~



coefficients ¢; of system (3.15), here it is possible to deduce a few relationships

among the coefficients ;. For instance,

b= — L6 +6 i
2= 57192 1)510—/\52 )

which gives the relationship, that if {10 < 0 then €2 < 0. Also,

BRYCAY 1
o= (3) {e- )

and since &5 < 0 then A2y > &s. Even with the knowledge of these additional
relationships we can only deduce one extra constraint on the coefficients a, b,
¢ and d of the unfolding in (5.4). Namely, if {10 < 0, then b, d > 0. However,
even with this additional constraint it is not obvious whether the homoclinic
bifurcation depicted in Figure 4.5 can or cannot occur. It is clear that the
normal form coefficients &; are more restrictive and thus it may be the case
that we never achieve a viable set of values for a, b, ¢ and d such that this
homoclinic bifurcation can occur.

Direct comparison of the normal form parameters with the original pa-
rameters is again not possible. Thus we resort to AUTO bifurcation diagrams
to illustrate the above observations. We will use the same descriptive legend
as before. Namely, solid curves denote curves of fixed points, dashed curves
are curves of limit cycles, and we use the same symbols to denote the various
bifurcation points. S° is again the bifurcation parameter.

First consider Diagram 5.1. With the exception of curve K’s in Diagram
4.8, the two bifurcation Diagrams 5.1 and 4.8 are similar. In fact, the bifur-
cation behavior and stability description of the fixed points and limit cycles,
represented by curves K through K4, are identical to that of Diagram 4.8.
The only difference is that some of the bifurcation values have changed. In

particular, the transcritical bifurcation of limit cycles (intersection of curves



K3 and Kj4) occurs at S0 = 3.38427, the saddle-node bifurcation of limit cy-
cles along curve K is at S0 = 3.38615 and the Hopf bifurcation on curve K
happens at S° = 2.60898. Hence, (with the noted exception of a bifurcation

to a torus) Diagram 5.1 captures all the local bifurcations of the normal form

in (5.4).
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Diagram 5.1 : Parameter values are A = 0.2, 8, =0.3, 6, =12,
and m; = 1.5.

Next consider Diagram 5.2, which is the analog of Diagram 4.9. Once
again, the two AUTO bifurcation diagrams are similar with the exception curve
Ks of Diagram 4.9. The bifurcation behavior and stability description of the
fixed points and limit cycles along curves K through Ky are agaiﬂ identical
to Diagram 4.9. The only difference is the Hopf bifurcation value on A%,
which is now S° = 0.81914. The absence of curve K5 here seems to prevent

the occurrence of a period doubling bifurcation and any other complicated
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dynamical behavior. The most complicated behavior here is that of bystability
in the positive octant. Both the planar limit cycle and ES5; are asymptotically

stable for S° € (0.81914,1.1) and the saddle-type interior limit cycle (Ky)

serves as a separatrix.
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Diagram 5.2 : Parameter values are A = 0.2, §, = 0.1, 8, = 0.2,
and m; = 1.1.

In all the parameter regions that we tested we could not produce a
curve of limit cycles analogous to curve K for system (5.2). In fact, we could
not produce any other bifurcation phenomena other than what is depicted in
Diagrams 5.1 and 5.2. Also of note is, that if the planar transcritical bifurcation
of E%. occurs before the planar Hopf bifurcation, then the interior fixed point
E:ﬁ that enters the positive octant (via the transcritical bifurcation) appears
to be always asympfotically stable with respect to initial conditions z; > 0. In

this case there seems to be no interior limit cycles born via Hopf bifurcations



in the interior. The curve of limit cycles, K5, appears to play an integral role in
the ‘exotic’ dynamically behavior of system (3.15), and it’s apparent absence

in system (5.2) seems to prevent any ‘exotic’ dynamics from occurring.

6.0

Diagram 5.3 : Parameter values are A = 0.9, &, =0.9, 6, =023,
and mq, = 1.74.

5.2 Cases 2 and 3 Revisited

In the previous section we saw that curve K5 played an instrumental role in the
dynamical behavior of systems (5.2) and (3.15). The absence of curve Kj for
system (5.2) seems to inhibit any complex dynamical behavior from arising.
If the ‘codimension two’ bifurcation in the z;z,—plane is solely responsible
for the ‘chaotic’ behavior of model (3.15), then the intermediate case of the

model in (5.2) should also exhibit this behavior. We can not show analytically



that model (5.2) is not ‘chaotic’, but there is good numerically evidence that
this is the case. So, what can account for this difference? The two systems
(5.2) and (3.15) differ in the structure of the uptake function py(z2). What are
the dynamical effects of changing pz(z;) from a linear to a Michaelis-Menten
response function?

Recall case 1 of the model described by the system of equations in
(3.1). In this case all uptake functions were linear and we had a complete
global description of the dynamics. The food chain in (3.1) was characterized
by an orderly transfer of global stability from one fixed point to another via
transcritical bifurcations. At each stage of this transfer, conditions became
favorable such that a new species survived.

We then moved on to consider case 2 of the model which consisted of
changing p;(z2) from a linear response function to a Michaelis-Menten response
function. Example 1 illustrated that the change in py(z2) now at least allowed
the birth of an interior limit cycle via a Hopf bifurcation about ES;. However,
this is not the only bifurcation that the change in p2(x2) produces. Consider
the AUTO bifurcation Diagram 5.3. The parameter values used here are from
Example 1, and instead of using m as the bifurcation parameter (as we did in
Example 1) we use S°. At S° = 2.4 there is a transcritical bifurcation about
E3. and as S° increases, EL (curve K3) enters the positive octant and is
initially stable. At S° = 3.45106, E% undergoes a Hopf bifurcation (Example
1) producing the branch of limit cycles K. The limit cycle is stable for S° €
(3.45106,4.28297). At S° = 4.28297, there is a period doubling bifurcation
and the limit cycle is of saddle type for S° € (4.28297,5.43488). The period
2 limit cycle is stable in this range of 59. There is a second period doubling
bifurcation at S° = 5.43488 on curve K, and for S° € (5.43488,5.92155) the

limit cycle is again stable. At S° = 5.92155, there is a reverse saddle-node



bifurcation producing a saddle type branch of limit cycles (curve A7). Finally,
at S° = 5.59079, there is a saddle-node bifurcation with a new stable branch

of limit cycles (K3). Hence the change in pz(z2) is capable of producing more

than a simple branch of interior limit cycles.

5.0

Xy

Diagram 5.4 : Parameter values are n; = —1.0, SO0 =5.0, A =0.2,
&, = 0.3 and m; = 3.0.

Case 3 of the model consisted of now changing both p;(z,) and py(22)
from linear to Michaelis-Menten response functions. The bifurcation structure
of case 2, depicted in Diagram 5.3, should also be present for case 3. Recall

the local bifurcation conditions, about E3. for case 3, given in (4.2). Let

*

ny = Az
= "

Y

—m,, and ny, = z3 — d2.

Then at n; = 0 there is a Hopf bifurcation about E3. and at n; = 0 there is a

transcritical bifurcation. Using n; and ny we can move system (3.15) through



the Hopf and transcritical bifurcations independently. Fix n; = —1 (i.e. no
Hopf bifurcation) and let ng be the bifurcation parameter. Diagram 5.4 is
an AUTO bifurcation diagram for system (3.15). Notice that the bifurcation
structure of Diagram 5.3 is present here in Diagram 5.4. The intermediate case
given by (5.2) does not seem to posses this type of bifurcation structure. Using
n, as the bifurcation parameter to now move system (5.2) through the planar

transcritical bifurcation produces only a stable branch of interior equilibria

A
EX.
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Diagram 5.5 : Parameter values are A = 0.2, é; = 0.3, 62 = 0.96,
my = 2.5 and my = 3.0.
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SO
Diagram 5.5a : A closer look at the region about the period
doubling bifurcations of Diagram 5.5.

Up to this point we have avoided discussing the attractors depicted
in Figures 3.7 and 3.8. In both of the numerical simulations that produced
these attractors, the planar transcritical bifurcation occurred before the pla-
nar Hopf bifurcation. Thus, already the sequence of bifurcations that leads
to these attractors is different from the sequence that produced the locally
asymptotically stable attractor in Figure 4.10. As a result the normal form
analysis is somewhat inadequate to explain the attractors in Figures 3.7 and
3.8. Instead, consider Diagram 5.5 which is an AUTO simulation using the
parameter values of Figure 3.7. There is a transcritical bifurcation at S0 =21
and a Hopf bifurcation at S° = 2.375 about E3. (curve K). Curve K3 repre-
sents the planar limit cycle and it is of saddle type. Eﬁ (curve L) enters the

positive octant via the planar transcritical bifurcation and is at least initially



stable until it loses stability via the Hopf bifurcation at S° = 3.93797. The

interior limit cycle, created by this Hopf bifurcation, is initially stable and at

S° = 4.85950 it undergoes a period doubling bifurcation losing it’s stability.

At this point a further increase in S° results in a cascade of period doubling

limit cycles. At each stage of the period doubling the resulting higher period

limit cycle is stable. This cascade results in the attractor seen in Figure 3.7.

One way of thinking about this attractor is in terms of an addition of

a planar Hopf bifurcation to the bifurcation structure of Diagram 5.4. That

is, adding a Hopf bifurcation about E3. results in the destruction of curve Ky

in Diagram 5.4, producing a period doubling cascade.
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Diagram 5.6 : Parameter values are A = 0.2, 6; = 0.3, &, = 0.2,
my = 2.5 and myg = 3.0.

Next, consider Diagram 5.6, which is an AUTO simulation using the

parameter values of Figure 3.8. Once again the transcritical bifurcation (S° =



0.83333) in the z;z,—plane occurs before the planar Hopf bifurcation (8° =
2.375). The planar limit cycle is again of saddle type. EZ; enters the positive
octant via the transcritical bifurcation about E2. and is initially stable until
the Hopf bifurcation at S° = 1.38630, at which point it loses stability. Curve
K5 denotes the branch of limit cycles born from this Hopf bifurcation. Diagram
5.6 depicts the bifurcation phenomena along curve Ks. Initially the limit
cycle is stable until it reaches the reverse saddle-node bifurcation value S50 =
3.13518. The branch K7 of limit cycles, produced by this bifurcation, is of
saddle type. Following curve K, (S° is now decreasing) we reach another
saddle-node bifurcation at S° = 2.71984. The new branch of limit cycles
(Kg) created now is initially stable and loses stability_as it passes through the
period doubling bifurcation at S = 2.89611. At this point a further increase in
59 results in another period doubling bifurcation along the branch of period 2
limit cycles (Ky), producing a branch of period 4 limit cycles. Thus, it appears
that we have the beginning of a period doubling cascade. Unfortunately, at
this point AUTO’s limitations are tested when we try to follow the branch of
period 4 limit cycles. However, it does appear that a saddle-node bifurcation
occurs before a period doubling bifurcation along this branch of period 4 limit
cycles. Also, in a neighborhood of S° = 4.0, curve K5 undergoes several saddle-
node bifurcations. Hence, this does not appear to be a cascade like the one
previous. For S € (2.71984,3.13518) there are three limit cycles (a behavior
not reflected by the normal form) in the positive octant. More importantly,
for SO € (2.89611,3.13518) two of these limit cycles (A7 and As) are of saddle
type and thus allow for the possibility of a Sil’nikov type bifurcation about
one of these limit cycles.

At S° = 2.8, there are two stable limit cycles in the interior (A5 and

Is) and one saddle type limit cycle (A'7). The saddle type limit cycle serves as



a separatrix in the interior, and depending on the initial conditions, solutions
tend to one of the stable limit cycles. At S° = 2.91, the limit cycle denoted
by curve Ky has lost it’s stability to a period 2 limit cycle. Once again, the
saddle type limit cycle (K7) serves as a separatrix and depending on initial
conditions, solutions either tend to the stable limit cycle or the stable period 2
limit cycle. This behavior seems to continue through to the attractor of Figure
3.8. That is, at S° = 3.12, the saddle type limit cycle (K7) is still acting as
a separatrix and drawing solutions to either the stable limit cycle (Kg) or the
attractor. This saddle type limit cycle seems to be located below the bottom
of the attractor (just above the z,z2_plane) and the stable limit cycle is just
below it. Hence, the attractor in this case seems to be a result of a Sil’'nikov
bifurcation about a limit cycle.

In terms of the bifurcation structure of Diagram 5.3, one can think of
the addition of the planar Hopf bifurcation in this case as moving the period
doubling bifurcation value along curve Kg down the curve to reside between
the two saddle-node bifurcation values. Thus allowing for the possibility of a

Sil’nikov type bifurcation about one of the saddle type limit cycles.



Chapter 6

Summary and Discussion

Our work on the three species chemostat food chain was motivated by re-
cent comparable work ([18], [26]) on the three species food chain of the type
in (4.1). These models share several characteristic traits. First, they both
display persistence of species at the bottom trophic levels in the absence of
higher trophic level species. Secondly, there are coupled predator-prey oscil-
lations with higher trophic level species oscillating at lower amplitudes than
the bottom trophic level species. Lastly, both models have a fixed point of
the form (Z,,Z2,0), with (Z1,T2,0) having an unstable manifold transverse to
the z,z,—plane and this fixed point may undergo a codimension two bifur-
cation. Much of the work done on the food chain (4.1) has centered around
the case when the response functions are Michaelis-Menten, partly because
this is a biologically reasonable scenario but also because the food chain in
this case can exhibit chaotic dynamics ([18], [26]). From a mathematical point
of view, the Michaelis-Menten case can prove to be quite challenging. As a
result, our approach to the study of the three species chemostat food chain
was slightly different. We first considered the linear response function case.

Then, by changing the response functions one at a time, we built towards the

115



Michaelis-Menten case with chaos. Nonetheless, we profited greatly from the
work done on the three species food chain.

The periodically forced two species predator-prey chemostat has been
shown to be chaotic ([37]) using AUTO. As well, there is numerical evidence to
indicate that the perodically operated chemostat with two or three competi-
tor populations can have chaotic dynamics for certain parameter ranges ([30],
[31]). In all cases, it was shown that if the periodicities were sufficiently strong,
then chaotic dynamics were possible. Our results show that chaos is possible
in the chemostat without any imposed periodicities in the model. Chaos in
the three species chemostat food chain is a result of species interactions. Non-
linearities in the response functions, p;(z;), can generate chaos. Thus it is
important to understand the role of the structure of the uptake functions with
respect to the dynamics of the model.

Recall that for general monotone uptake functions, the fixed point Eq
was globally asymptotically stable for S§° < ). Next, restricting pi(z1) to
being one of the three prototype response functions in (2.4), we were able to
show that E) is globally asymptotically stable for A < 5% < A+ 4,. Thus
the condition S > A ensured the survivability of population z;. At this
point we were forced to consider only prototype response functions due to the
mathematical difficulties presented by general monotone response functions.
The first case we considered was when all response functions were linear. In
this case, we had two additional fixed points Eg. and E2. The model was
characterized by an orderly transfer of global stability from one fixed point to
another via transcritical bifurcations. At each stage of the transfer, conditions
became sufficient for a new population to survive. The condition SO > (A +

§.)(1 + 6,/6;) provided coexistence of the three populations in terms of fixed
point stability.



Next, we considered case 2. The only difference between case 1 and case
2 is that in case 2, p2(z2) is of Michaelis-Menten form rather than of linear
form. Once again, we had two additional fixed points Eg. and E2, and there
was an orderly transfer of global stability from Eo to Ej to Es. via transcritical
bifurcations. The transfer of global stability from Eg. to E® was interrupted.
Although the condition S° > (A + &;)(1 + 62/8,) was not sufficient to show
global asymptotic stability of E®, it was however a necessary and sufficient
condition for uniform persistence in this case. Unlike case 1, here coexistence
of the three populations could be attained in terms of several different types
of invariant sets. Coexistence of the three species could take the form of fixed
point stability (E4), limit cycle stability and period 2 limit cycle stability
(Diagram 5.3). This case of the model also provided us with an example of
coexistence in the form of multiple invariant sets. From Diagram 5.3 we see
that it is possible to have a saddle interior limit cycle which acts as a separatrix
in the positive cone. Depending on initial conditions, trajectories tended to
one of two stable interior limit cycles. Hence the change in pz(z2) was at least
responsible for the creation of a Hopf bifurcation about E2, as well as period
doubling and saddle-node bifurcations of limit cycles in the positive cone. Case
2 however, did fall short in terms of exhibiting chaotic behavior.

Next, we considered case 3. The only difference between case 2 and
case 3 is that in case 3, pi(z;) is of Michaelis-Menten form rather than of
linear form. Once again, Es. was a fixed point. However, now it was possible
to have none, one or two interior fixed points Ef. The orderly transfer of
global stability from on fixed point to another of case 1, was now interrupted
at an earlier stage than case 2. Specifically, it was interrupted between E\
and Es., due to the planar limit cycle born via a Hopf bifurcation about

Es.. We now had a codimension two bifurcation about Es-., and adopted a
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normal form approach (similar to [26]) to further facilitate the understanding
of the dynamics of this case. As mentioned above, the three species chemostat
food chain and the three species food chain (4.1) share certain characteristic
traits, but they do differ. Namely, there is an absence of direct interaction
between prey and superpredator in the food chain (4.1). This is not the case
for the food chain in the chemostat. This difference manifested itself in the
choice of unfolding for the normal form computed about Es.. Our choice was
a two parameter unfolding as opposed to the three parameter unfolding in
([26]). Despite this difference, we were able to reproduce the local and global
bifurcations found in ([26]) for the three species chemostat food chain, with
the exception of the pitchfork bifurcation about (r,z3) = (0,0).

The unfolded normal form reflected the behavior of the original model
relatively well when the planar Hopf bifurcation occurred before the planar
transcritical bifurcation. However, the unfolded normal form was inadequate
in reflecting the original model’s behavior when the order of the planar bifur-
cations were reversed. Why this is the case is still an open question. Perhaps
we need to consider higher order terms in the normal form. At least the con-
sideration of fourth order terms would allow for the possibility of three interior
fixed points, and thus reflect the possibility of three interior limit cycles for
the original system (Diagram 5.6). Or, it could be the case that our some-
what ‘artificial’ choice of normal form is not an appropriate one. Nonetheless,
the consideration of this particular third order normal form did motivate us
to search for and locate the locally asymptotically chaotic attractor in Figure
4.10. Also, we were able to compare the chaotic dynamics of case 3 to the
underlying bifurcation structure of case 2.

In an attempt to better understand the role of the codimension two

bifurcation about Es., we then considered the intermediate case of the model.



This case consisted of changing pz(z2) back to a linear response function in
case 3. We still had the codimension two bifurcation about Es- in this case.
The unfolded normal form for this case did reflect all of the local bifurcation
behavior of the original system. However, in the case of global bifurcations,
the unfolded normal form predicted more behavior than the original system
was capable of displaying (probably due to the lack of information regarding
the normal form coefficients, i.e. sign, magnitude etc..). The intermediate case
did not display any chaotic behavior. The presence of only the codimension
two bifurcation in the z,z,—plane is not sufficient for chaos to occur in the
three species food chain.

Hence we concluded that it is the nonlinearities in both p1(z;) and
p2(z3) that are responsible for the chaotic dynamics of the three species chemo-
stat food chain. In determining whether or not the three species food chain
in the chemostat is capable of chaotic dynamics, it is enough to consider the
structure of the uptake functions pi(z) and pa(z2).

The reader might have already noted that the Hopf and saddle-node
bifurcation values on curve K, in Diagrams 4.9 and 5.2 occur relatively close
to each other. Thus it is reasonable to consider whether or not these two
bifurcations can occur simultaneously. That is, is it possible to have a second
codimension two bifurcation that occurs in the positive cone? By considering
the associated characteristic equation of E, it is clear that the intermediate
case cannot undergo such a bifurcation inside or outside the positive cone.
Similarly, case 3 cannot undergo a bifurcation of this type in the positive
cone. However, this codimension two bifurcation can occur outside the positive
cone for case 3. In fact, it is possible for this bifurcation to occur just below
the z,22—plane. To what extent this bifurcation affects the dynamics in the

positive cone is unclear. The z,;z,—plane is invariant with respect to the flow,



hence it is unclear how this codimension two bifurcation affects the dynamics
in the positive cone or, if it affects them at all. For the three species food
chain, consideration of whether or not this bifurcation can occur in R* may
be a good indication if there are sufficient nonlinearities in pi(x;) and p2(z2)
to produce chaos in certain parameter regions.

Like the work of [18], [30], [31], [35], [37], and [38], our results tend to
question the conventional thinking that chaos in nature is rare. Qur work sug-
gests that for reasonable parameter values chaos is possible. From a biological
point of view, if information of long term behavior is required then the role
of chaos becomes crucial. Over a short time period chaos can appear to be
regular oscillatory motion. However, over longer time periods the effects of
sensitivity to initial conditions become more pronounced and chaos plays an
important role. From a mathematical point of view, (as pointed out in [18])
if a model can exhibit chaotic behavior then one has to be cautious about
conclusions drawn from linear stability analyses of fixed points. For example,
conclusions made on the bases of return time arguments ([36]).

We conclude this chapter with a few remarks on two open questions.
First, the two species predator-prey chemostat model has been shown (numer-
ically) to have the same bifurcation behavior (with the exception of the case
of washout of both populations) as the classical two species food chain ([38]).
Similarly, the periodically forced two species predator-prey chemostat model
has been shown to have the same bifurcation structure as its periodic food
chain counter part ([37]). Although we have seen a lot of shared bifurcation
behavior between our model and the three species food chain, it is still an
open question of whether or not they have the same bifurcation structure.

Secondly, the periodically forced two species predator-prey chemostat

has been shown to be chaotic ([35], [37]). Chaos for this model can occur via



a period doubling cascade of limit cycles or through torus destruction. What
effect does the addition of periodically forced terms to our model, and the three
species food chain in (4.1), have on the existing chaotic behavior? Do we now
have three routes to chaos, a period doubling cascade, a Sil’'nikov bifurcation

of a limit cycle and torus destruction?



Appendix A

Maplé Program For Calculation
Of Third Order Normal Form

The following is a Maple V (version 3.0) program for the computation of a

normal form of a vector field of the form

T 0 w O z
i/ = —w 0 0 Yy +f2($7yvz)+f3(xayaz)’ (Al)
2 0 00 z

where f;, for i = 1,2, are power series terms about the point (0,0,0) of degree
2 and 3 respectively, and are given in lines 8 and 9 below. Before running
the program, the Maple linear algebra package should be opened first. Maple
commands are proceeded by the symbol >. All other text below is inserted

comment for the benefit of the reader, and all notation is from the introductory

chapter.

> with(linalg):
> jac := [[0,w, 0], [—w,0,0],[0,0, 0]}:



> f2cof := [[all,al2, a22,a23,a33,al3], [b11,512,522, 523, b33, b13],
[e11,c12,c22, 23, 33, cl3]]:

> f3cof := [[alll,a112,a122,a222,a223,a233,a333,a113,a133,a123],
[b111,5112,5122, 5222, 5223, 5233, 333, b113, 5133, 5123],
[e111,c112,c122, c222, ¢223, 233, c333, 113, c133,c123]]:

> X :=[z,y,2]:

>TH2 :=[2"2,z %Y,y 2,y * 2,22,z * 2]:

>TH3 := [a:‘3,:c“2*y,a:*yA2,y‘3,y“2*z,y*z“2,z'3,m“2*z,m*z"2,m*y*z]:

> f2 := multiply(matriz(f2cof), TH2):

> 3 := multiply(matriz(f3cof), TH3):

First put the second order terms in normal form. We do this by choosing
ha(y) such that the transformation x =y + ha(y), applied to (A.1), eliminates
all ‘nonessential’ second order terms. First, we need to represent H; (vector
space of vector-valued monomials of degree 2) as H, = Lj(H;) & G2, where
G- is a space complementary to Lj(Hz). Secondly, we need to find bases for

Lj(H) and G,. We then decompose f2cof to obtain f2res € Ga. Finally, we
solve for ha(y).

> quadb := [[z"2,0,0], [z * y,0,0],[y"2,0,0], [y * 2,0,0],{z"2,0, 0}, [z * 2,0,0],
[0,2°2,0], [0,z * y,0],[0,y"2,0], [0,y * z,0],[0,2°2,0], 0,2 x 2,01,
[0,0,2"2],[0,0,z *y],[0,0, y"2],[0,0,y * z},[0,0,2"2},[0,0,z * z]]:

> dqb := [seq([[diff(quadbli][1], z),diff(quadb[:][1], y),diff(quadb[][1], 2)],

[diff(quadb:}[2], z),diff(quadb(z)[2}, y),diff (quadb[s] [2], 2)},

[diff(quadb(i)[3], z),diff(quadbfi][3], y),diff(quadb[i][3], z)]],i = 1..18)]:
> for i from 1 to 18 do LQ[i] := multiply(matriz(dqbli]), matriz(jac)); od:
> glie := expand([seq(add(multiply(matirz(jac), quadb[i)),



scalarmul (multiply(LQ[i), X ), —1)),i = 1..18)]):

We want to compute Lj(H;). We do this by determining the action of Lj(*)
on each basis element in quadb (i.e. glie), and then determine a matrix repre-

sentation of Lj(*), m2, with respect to the basis quadb.

> m2 := transpose(matriz([seq([coeff(qlie[i][1],z"2),

coeff(coeff(glie[i][1], z), y),coeff(qlie[i][1],y"2),
coeff(coeff(glieli][1], y), z),coeff(qlie[][1], 27 2),
coeff(coeff(glieli][1], ), z),coefl(qlie[i][2], 2" 2),
coeff(coeff(qlie[i][2], z), y),coeff(glie[i][2], y " 2),
coeff(coeff(qglie[i][2], y), z),coeff(qlie[][2], 2°2),
coeff(coeff(qlie[i][2], z), z),coeff(qlie[i][3], z " 2),
coeff(coeff(qlie[i](3], z),y).coeff(qlie[i)[3],y"2),
coeff(coeff(qlie[i][3],y), z),coeff(qlie[d](3], 2" 2),
coeff(coeff(qlie[i)[3], z),2)],7 = 1..18)])):

Compute G;. We do this by finding the space of vectors orthogonal to each
column of m2 or equivalently the nullspace of the transpose of m2. Columns

of gns form a basis for Gs.

> gqnsl := nullspace(transpose(m2)):
> qns2 := convert(qnsl, list):

> gqns := transpose(matriz(qns2)):

Compute the range of L;(*). This is the column space of m2. Columns of

qespb form a basis for the range of Lj(*).



> gcspbl := colspace(m2):

> gespb2 := convert(qespbl, list):

> gespb := transpose(matriz(qespb2)):
> rq := rank(m?2):

Concatenate the two bases, gns and gespb, to form a new basis of Hy. Then

decompose f2cof, such that f2cof = qinrang + f2res, where ginrang is in
Lj(H,) and f2res € Ga.

> gbasis := concat(qcspb, gns):
> F2:=[all,al2,a22,a23,a33,al3,bl1, b12, 522, 523,33, b13,
cll,cl2, ¢22,¢23, ¢33, c13):
> geoefs := linsolve(qbasis, F2):
> gtempl := [seq(scalarmul(col(gbasis, j),qcoefs[j]), j = 1..rq)}:
> ginrang = evalm(sum(qtempl[k],k = 1..rq)):
> gtemp? := [seq(scalarmul(col(gbasis, 7), qcoefs[j]),j = rq+ 1..18)]:
> f2res := evalm(sum(qtemp2[k],k = 1..18 — rq)):
> f2resl := [seq(f2res[i],7 = 1..6)):
> fores2 := [seq(f2res[i],i = 7..12)}:
> f2res3 = [seq(f2res[i],: = 13..18)}:
(

> negrang := scalarmul(ginrang, —1):
Determine hy(y) by solving m2 * h2 = —qinrang.

> H H?2 := linsolve(m2,negrang, dd, v):
> H?2 := [seq(expand(HH2[1]),i = 1..18)]:



> for i from 1 to 4 do v[i} := 0; od:

> h21 := [seq(H2[i],i = 1..6)}:

> h22 := [seq(H2[¢],i = 7..12)}:

> h23 := [seq(H2[:],7 = 13..18)]:

> h2cof := [h21, h22, h23]:

> h2 := multiply(matriz(h2cof), T H2):

Next, determine the third order terms now that they have changed due to the

second order near identity transformation x =y + h2(y).

> df2 := [seq([diff( f2[3], z),diff(f2[i], y),diff(f2[z], 2)],7 = 1..3)}:

> dh2 := [seq([diff(h2[i), z),diff(h2[3], y),diff(h2[¢], 2)], % = 1..3)]:

> termll := multiply(matriz(df2), matriz(dh2)):

> term12 := multiply(jac, X):

> TERMI(1] := multiply(termll, terml2):

> term?21 := multiply(matriz(dh2), matriz(jac)):

> term?22 := multiply(term?21, h2):

> TERM|2) := scalarmul(term22,—1):

> term31 := multiply(matriz(dh2), f2):

> TERM][3] := scalarmul(term31,—1):

> T ERMI[4)] := multiply(matriz(df2), h2):

> new f3 :=[0,0,0]:

> for 7 from 1 to 2 do newf3 := add(add(T ERM[:), TERM|[5 — i}),new f3);
od:

> newl f3 := expand(new f3{1]):

> new2f3 := expand(newf3[2]):

> new3 f3 := expand(new f3[3)):



A -t b

> NF3 := [coeff(newlf3, 2"3),coeff( coeff(newl 3, 2"2),y),
coeff(coeff(newl f3, z), y " 2),coeff(newl f3,y"3),
coeff(coeff(newl f3,y"2), z),coeff(coeff(newl f3,y), 2°2),
coeff(newl f3, 2" 3),coefl(coeff(newl f3, z°2), z),
coeff(coeff(newl f3, 2" 2), y),coefl( coeff( coeff(newl £3, z), y), z),
coeff(new2f3, z"3),coeff(coeff(new2 3, z"2),y),
coeff(coeff(new2 3, z), y"2),coefl(new2 f3,y"3),
coeff(coeff(new2f3,y"2), z),coeff(coeff(new2 f3, y), 2"2),
coeff(new2f3, 2" 3),coeff(coeff(new2 f3, z°2), z),
coeff(coeff(new2f3, z"2), y),coeff(coeff( coeff(new2 f3, z), y), z),
coeff(new3 f3, z*3),coeff(coeff(newd f3, z*2), y),
coef(coeff(new3 f3, z), y~2),coeff(new3 f3,y"3),
coef(coeff(new3 f3,y"2), z),coeff(coeff(newd 3, y), 2" 2),
coeff(new3 f3, 2" 3),coeff(coeff(newd 3, 2°2), z),
coeff(coeff(new3 £3, z"2), y),coeff(coeff(coeff(newd f3, z), y), z)]:

Put the third order terms in normal form. First, we need to represent Hs
(vector space of vector-valued monomials of degree 3) as Hz = L;(H3) & Gs,
where Gj is a space complementary to Lj(Hs). Secondly, we need to find bases

for L;(H3) and G3. We then decompose f3cof to obtain f3res € Gs.

> cubb := [[2°3,0,0],[z"2 * y,0,0], [z *y"2,0,0],[y"3,0,0], [y 2 * z,0,0],
[y *2°2,0,0],[2°3,0,0], [z°2 * 2,0,0], [z * 272,0,0], [z * y * ,0,0},
[0,2°3,0], (0,22 % y], [0,z * 42,00, [0,5°3,0], [0, 5”2 % z,0],
[0,y % 2°2,0],[0,2°3,0], [0, 2"2 % 2,0}, [0, 2 % 2°2,0], [0,z  y * z,0],
[0,0,2"3],{0,0,2"2 xy],[0,0,z * y"2],[0,0,y"3], [0,0,y"2 * z],
0,0,y * 2], [0,0,2°3],[0,0,2"2 * 2}, (0,0, % 2°2], 0,0,z * y * 2]}:



> deb := [seq([[diff(cubb[i][1], z),diff(cubbl:][1],y), diff(cubb[d][1], 2)],
[diff(cubbli][2], =),diff(cubbli][2], y) dif(cubb(i](2], )],
[diff(cubb[z)(3], z),diff(cubb[i][3], y),diff(cubb[i][3], 2)]},2 = 1..30)]:

> for i from 1 to 30 do LC[i] := multiply(matriz(dcb[i]), matriz(jac)); od:

> clie := expand([seq(add(multiply(matriz(jac), cubb[i]),
scalarmul(multiply(LC[3), X), —1)),% = 1..30)}):

We want to compute Ls(Hs). We do this by determining the action of L J(*)
on each basis element in cubb (i.e. clie), and then determine a matrix repre-

sentation of Lj(*), m3, with respect to the basis cubb.

> m3 := transpose(matriz([seq([coeff(clie[i][1],z"3),
coeff(coeff(clie[i][l],a:”2),y),coeff(coeff(clie[i][l],Ev),y“.‘l),
coeff(clie[i][1], y " 3),coeff(coeff(clie[i][1],y"2), 2),
coeff(coeff(clie[][1], y), 2" 2),coefl(cliefi][1], 2°3),
coef(coeff(clie[][1], z°2), z),coeff(coeff(clie[i][1], z), =" 2),
coeff(coeff(coeff(clie[i][1], x), y), z) coeff(clie[:][2], z"3),
coeff(coeff(clie[i][2], £ °2), y),coeff(coeff(clie[i])[2], x),y " 2),
coeff(clie[i][2], y " 3),coeff(coeft(clie[i][2], y " 2), 2),
coeff(coeff(clieli][2], y), z"2),coeff(clie[i][2], ="3),
coeff(coeff(clie[i][2], z*2), z),coeff(coeff(clie[i)[2], z), 2" 2),
coeff(coeff(coeff(clie[i)[2], x), y), z),coeff(cliel:][3], 2" 3),
coeff( coeff(clie[4][3], z"2), y),coeff(coeff(clie[i][3], z), ¥ 2),
coeff(clie[i](3],y"3),coeff(coefl(clie[][3],y"2), z),
coeff(coefl(clieli)[3],y), z"2),coeff(clie[i][3], =" 3),
coeff(coeff(clie[][3], z°2), z),coeff(coeff(clie[i](3], ), 27 2),
coeff(coeff(coeff(clieli][3], z), y), z)],7 = 1..30)])):



Compute G3. We do this by finding the space of vectors orthogonal to each
column of m3 or equivalently the nullspace of the transpose of m3. However,
here we do not use the nullspace of the transpose of m3, instead we use a
similar set of vectors ,cns, which retains the # independence of the normal

form equations in cylindrical coordinates. Columns of cns form a basis for Gs.

> cnsl = nullspace(transﬁose(m3)):

> cns2 := convert(cnsl, list):

> for k from 1 to 6 do for 7 from 1 to 30 do if abs(cns2{k][i]) = 3 then
cns2[k][7] := cns2(k][z]/3 fi; od; od:

Compute the range of Lj(*). This is the column space of m3. Columns of

ccspb form a basis for the range of Lj(*).

> cns := transpose(matriz(cns2)):

> ccspbl := colspace(m3):

> cespb2 := convert(ccspbl, list):

> cespb := transpose(matriz(ccspb)):

> rc := rank(m3):

Concatenate the two bases, cns and ccspb, to form a new basis of Hz. Then

decompose f3cof, such that f3cof = cinrang + f3res, where cinrang is in

L,(H3) and f3res € Gs.

> cbasis := concat(ccspb, cns):

> ccoefs := linsolve(cbasis, N F'3):



> ctempl := [seq(scalarmul(col(cbasts, j), ccoefs[j]), ] = 1..rc)l:

> cinrang = evalm(sum(ctemplin],n = l..rc)):

> ctemp? := [seq(scalarmul(col(cbasis, j),ccoefs[j}),j =rc+ 1..30)):

> f3res := evalm(sum(ctemp2[n],n = 1..30 — rc)):

> f3resl := [seq(f3res[j],7 = 1..10)]:

> f3res2 := [seq( f3res[j],j = 11..20)]:

> f3res3 := [seq( f3res[j],j = 21..30)):

> f:=(z,y,z) = dotprod(jac[l], X) + dotprod(f2resl, TH2)
+dotprod(f3resl, TH3):

> g := (z,y, z) — dotprod(jac[2], X) + dotprod( f2res2, T H2)
+dotprod(f3res2, T H3):

> h = (z,y, z) — dotprod(jac(3], X) + dotprod(f2res3, T H2)
+dotprod(f3res3, TH3):

Change to cylindrical coordinates and get the normal form coefficients c;.

> polar f 1= subs(z = r * cos(t),y = r * sin(t),z = z, f(z,y,2)):
> polarg := subs(z = r * cos(t),y = r * sin(t), z = 2,9(2,y, 2)):
> polarh := subs(z = r * cos(t),y = r * sin(t),z = z,h(z,y,2)):
> rdot := expand(cos(t) * polar f + sin(t) * polarg):

> thetadot := expand((cos(t)/r) * polar f — (sin(t)/r) * polarg)):
> zdot := ezpand(polarh):

> cl :=coeff(thetadot, z):

> ¢2 :=coeff(coeff(rdot, 1), z):

> ¢3 :=coeff(rdot,r"3):

> ¢4 :=coeff(thetadot,r"2):

> ¢5 :=coeff(thetadot, z"2):



> ¢6 :=coeff(coeff(rdot,r),2"2):

> ¢7 :=coeff(zdot,r"2):
> ¢8 :=coeff(zdot, z"2):

> ¢9 :=coeff(coeff(zdot,r"2), z):

> €10 :=coefl(zdot, z"3):

sl




Appendix B

Maple Program For Calculation
Of 3-Jet

The following is a Maple V (version 3.0) program for the computation of
the coefficients of a 3—jet of the vector field in (3.15) about the fixed point
E3.. Before running the program, the Maple linear algebra package should be
opened first. Maple commands are proceeded by the symbol >. All other text
below is inserted comment for the benefit of the reader. Note that the same
program can be run for the calculation of the 3—jet for the intermediate case

of the model in Chapter 5. Simply make the appropriate changes in lines 3
and 4 below.

> with(linalg):
> fi=(z,y,2) > —z+z*(S—z—y—2z)/L-—y*smlxz/(dl*(ml—1)+a)
> g:=(z,y,2) > y*(—=1+mlxz/(dl * (ml—1)+z))
—zxm2x*y/(d2* (m2 —1)4y):
> h=(z,y,2) = 2% (=1 + m2 % y/(d2* (m2 — 1) +y)):
> linf := [diff( f(z, y, 2), 2),diff(f (2, y, 2), y),diff(f(z,y, 2), 2)):
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> ling := [diff(g(z, y, 2), z) diff(g(z, y, 2), y),diff(g(z, ¥, 2), 2)}:
> linh := [diff(h(z, y, 2), 2),diff(h(z,y, 2),y),diff(h(z, y, 2), 2)]:
> JAC := [linf,ling, linh]:

Apply the bifurcation conditions in (4.2).

> ml := L * d2/(d1"2):

> u:= sqrt((dl/L + 1) * d2 x (m1 — 1)/(d1 * m1)):

> jac := simplify(subs(z = dl,y = d2,z = 0,JAC)):

> jach := subs(jac[l][1] = 0, jac):

> T := matriz([[0,u * m1 * d1/(d2 x (m1 — 1)),1],
(1,0, —(d2 *x (m1 = 1)/(m1 * (d1 + L))],
[0,0,d2 * (ml — 1)/(dl * m1)])):

> Tinv := inverse(T):

> jord := multiply(Tinv, mulltiply(matriz(jacb), T)):
Second and third order terms to be transformed.

> quadf := simpli fy(subs(z = dl,y = d2, z = 0, [diff( f(z,y, ), z$2),
diff(f(z,y, 2), z,y),diff(f (2, y, 2),¥$2),diff(f (=, ¥, 2), ¥, 2),
diff( f(z,y, 2), 2$2),diff( f(z, y, 2), =, 2)])):

> quadg := simpli fy(subs(z = dl,y = d2,z = 0, [diff(g(z,y, 2), z$2),
difi(g(z,y, 2), z,y).diff(g(z, y, 2), ¥82) diff(g(2, y, 2), ¥, 2),
diff(g(z,y, 2), 282),diff(g(z, y, 2), z, 2)])):

> quadh := simpli fy(subs(z = dl,y = d2, z = 0, [diff(h(z,y, z), 2$2),
diff(h(z, vy, 2), z,y),diff(h(z, y, 2),y$2),diff(h(z, y, 2),y, 2),
diff(h(z,y, 2), 282),difl(h(z,y, 2), z, 2)])):



> cubf := simplify(subs(z = dl,y = d2,z =0, [diff(f(z,y, 2), 83),
diff( f(z,y, 2), 82, y),diff(f(z, y,2), 7, y$2),diff(f(z,y, z),y$3),
dif(f(z,vy, 2), y$2, 2),diff(f(z, y,2), ¥, 2$2),diff( f(z,y, 2), 2$3),
diff( f(z,y, z), ©82, 2),diff(f(z, y, 2), z, 282),diff(f (=, ¥, z),z,y,2)])):

> cubg = simplify(subs(z = dl,y = d2,z = 0, [diff(¢(=, y, z), z83),
diff(g(z, y, 2), z82, y),diff(9(z, y, 2), T, y$2),diff(g(z, y, =), y$3),
diff(g(z, y, 2), y$2, 2),diff(g(z, y,2),y, 2$2),diff(g(z, y,2), 283),
diff(g(z, v, z), £$2, 2),diff(g(z, y, 2), z, 282),diff(9(z, y, 2), z, y, 2)))):

> cubh := simpli fy(subs(z = dl,y = d2,z = 0, [diff(h(z,y, z),z3$3),
diff(h(z,y, 2), 2$2, y) diff(h(z, y, 2), z, y$2),diff(h(z, y, 2),y$3),
dif(h(z, vy, ), y$2, 2),diff(h(z, y,2), ¥, 2$2),diff(h(z, y, z), 283),
diff(h(z,y, ), 2$2, ) diff(h(z, y, 2), z, 2$2),diff(h(z, y, 2), 2, ¥, 2)])):

> X = [z,y,2]:

>T2:=[2°2/2,z*y,y 2/2,y*2,2"2/z,z * z]:

>T3:=[2"3/6,2"2+y/2,z*y 2/2,y"3/6,y 2 * z/2,y * z°2/2,
2°3/6,2°2% z/2,x*2"2[2,x *y*z|:

> zlin := (z,y, z) — dotprod(jacb[l], X):

> ylin := (z,y,z) — dotprod(jacb[2], X):

> zlin := (z,y, z) — dotprod(jacb[3], X):

> zquad := (x,y,z) — dotprod(quadf, T2):

> yquad := (z,y, z) = dotprod(quadg, T2):

> zquad := (z,y, z) = dotprod(quadh, T2):

> zeub:= (z,y,z) — dotprod(cubf,T3):

> yeub := (z,y,2) — dotprod(cubg, T3):

> zcub:= (z,y,z) — dotprod(cubh,T3):

> w = multiply(T,[a, b, c]):



A A8
Transformed second order terms.

> nquadvec := maultiply(Tinv, [subs(z = w[l], y = w[2], z = w[3], zquad(z, y, z)),
subs(z = w(l],y = w[2], 2 = w(3],yquad(z,y, 2)),
subs(z = w(l],y = w[2], z = w[3], zquad(z, y, 2))]):

> nzdotquad := expand(nquadvec|l)):

> all := simpli fy(coeff(nzdotquad, a"2)):

> al2 := simpli fy(coeff(coeff(nzdotquad, a), b)):

> a22 := simpli fy(coeff(nzdotquad, b"2)):

> a23 := simpli fy(coeff(coeff(nzdotquad, b), c)):

> a33 := simpli fy(coeff(nzdotquad, c*2)):

> al3 := simpli fy(coeff(coeff(nzdotquad, a), c)):

> nydotquad := expand(nquadvec(2]):

> bl1 := simpli fy(coefl(nydotquad, a”2)):

> b12 := simpli fy(coeff(coeff(nydotquad, a), b)):

> 522 := simpli fy(coeff(nydotquad, b"2)):

> 523 := simpli fy(coeff( coeff(nydotquad, b), c)):

> b33 := simpli fy(coeff(nydotquad, ¢"2)):

> b13 := simpli fy(coeff(coeff(nydotquad, a), c)):

> nzdotquad := expand(nquadvec(3}):

> cl1 := simpli fy(coeff(nzdotquad, a”2)):

> 12 := simpli fy(coeff(coefl(nzdotquad, a), b)):

> ¢22 := simpli fy(coefl(nzdotquad, b"2)):

> ¢23 := simpli fy(coeff(coeff(nzdotquad, b), c)):

> ¢33 := simpli fy(coeff(nzdotquad, ¢"2)):

> ¢13 := simpli fy(coeff(coeff(nzdotquad, a), c)):



Transformed third order terms.

> ncubvec := multiply(Tinv, [subs(z = w(l],y = w[2], z = w(3], zcub(z, y, 2)),
subs(z = w(l],y = w2}, z = w[3], ycub(z, y, 2)),
subs(z = w[l], y = w[2], z = w[3], zeub(z, y, 2))]):

> nzdotcub := expand(ncubvec(l]):

> alll := simpli fy(coeff(nxdotcub,a”3)):

> al12 := simpli fy(coeff(coeff(nzdotcub,a"2),b)):

> al122 := simpli fy(coeff(coeff(nzdotcub, a),b"2)):

> a222 := simpli fy(coeff(nzdotcub,b"3)):

> a223 := simpli fy(coeff(coeff(nzdotcud, b"2), c)):

> a233 := simpli fy(coeff(coeff(nzdotcub,b), c"2)):

> 4333 := simpli fy(coeff(nzdotcub, c*3)):

> a113 := simpli fy(coeff(coeff(nzdotcub,a2),c)):

> a133 := simpli fy(coeff(coeff(nzdotcud, a), c*2)):

> a123 := simpli fy(coeff(coeff(coeff(nzdotcub, a), b), c)):

> nydotcub := expand(ncubvec(2]):

> bl111 := simpli fy(coeff(nydotcud,a’3)):

> b112 := simpli fy(coeff(coeff(nydotcub,a"2),b)):

> b122 := simpli fy(coeff(coeff(nydotcub,a),b"2)):

> 222 := simpli fy(coeff(nydotcud, b 3)):

> 5223 := simpli fy(coeff(coeff(nydotcub, b"2), c)):

> 5233 := simpli fy(coeff(coeff(nydotcubd, b), c"2)):

> b333 := simpli fy(coeff(nydotcub, c"3)):

(
> b113 := simpli fy(coeff(coeff(nydotcub, a"2), c)):
> b133 := simpli fy(coeff(coeff(nydotcub, a),c"2)):
(

> b123 := simpli fy(coeff(coeff(coeff(nydotcud, a), b), c)):



> nzdotcub := expand(ncubvec(3]):

> cl11 := simpli fy(coeff(nzdotcub,a”3)):

> ¢112 := simpli fy(coeff(coeff(nzdotcub, a"2), b)):
> ¢122 := simpli fy(coeff(coeff(nzdotcub, a),b"2)):
> ¢222 := simpli fy(coeff(nzdotcub,b"3)):

> 223 := simpli fy(coeff(coeff(nzdotcub, b"2), c)):
> ¢233 := simpli fy(coeff(coeff(nzdotcub, b), c"2)):
> ¢333 := simpli fy(coefi(nzdotcub, c3)):

> ¢113 := simpli fy(coeff(coeff(nzdotcub,a"2), c)):
> ¢133 := simpli fy(coeff(coeff(nzdotcub, a),c"2)):
> ¢123 := simpli fy(coeff(coeff(coeff(nzdotcub, a), b), ¢)):

Coefficients of the new transformed linear, second order and third order terms.

> zdotlin := row(jord, 1):

> ydotlin := row(jord, 2):

> zdotlin := row(jord, 3):

> zdotquad := [all,al2,a22,a23,a33,al3}:

> ydotquad := [b11,512,522, 523, b33, b13]:

> zdotquad := [cl11, c12,¢22, 23, ¢33, c13):

> zdotcub := [alll,a112,al22,a222, a223,a233,a333, all3,al33, al23):
> ydoteub := [b111,b112, b122, 5222, 223,5233, 5333, b113, 5133, b123]:
> zdotcub := [cl11, €112, 122, ¢222, €223, ¢233, 333, c113, c133, c123]:

The normal form coefficients (computed in Appendix A) of the r—equation

and z3—equation.



L

> 2 := simplify((al3 + b23)/2):

> ¢3 := simpli fy((3al1l + a122 + b112 + 3b222)/8 — all *al2/(8 * u)—
al2 * a22/(8 * u) + all * b11/(4 x u) + b1l * b12/(8 * u)—
a22 * b22/(4 * u) + b12 % b22/(8 * u) — 3 * a23 * c11/(16 * u)—
3+ b13 % cl1/(16 *u) + 3 * al3 + c12/(16 * u) + b23 * ¢12/(16 % u)—
a23 * ¢22/(16 x u) — b13 * c22/(16 * u)):

> 6 := simpli fy((a133 + b233)/2 — al2 x a33/(2 * u) — a33 * b22/u+
all * b33/u + b12 % b33/u — b33 * c13/u + a33 * c23/u—
a23 * c33/(4 * u) — b13 * 33/(4 * u)):

> ¢7 := simplify((cll + ¢22)/2):

> ¢8 :=c33:

> €9 := simpli fy((c113 + ¢223)/2 + a23 * c11/(2 % u) 4+ b13 * c11/(2 * u)—
ald * c12/(2* u) + b1l x c13/(2 * u) + b22 * c13/(2 * u)—
all * c23/(2 * u) — a22 * c23/(2 * u) + €12 * c33/(2 * u)):

> €10 := simpli fy(c333 + b33 * c13/u — a33 * c23/u):
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