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ABSTRACT

This thesis presents a theoretical and experimental study of the temperature

characteristics of 1.3tJ.m strained layer multiple quantum well (MQW) lasers over a

wide temperature range. A number of achievements have been made toward

understanding the temperature sensitivity ofthe performance ofthe lasers.

Under assumptions that the deterioration of optical gain with temperature

dominates the temperature sensitivity of the laser performance and that the differential

gain coefficient decreases linearly with temperature, two formulae, which include a

maximum operating temperature, were derived to describe the threshold current, Ith,

and the external quantum efficiency, lld, as functions of temperature. The formulae

produce a very good fit to the experimental data that were extracted from the short­

pulse L-I characteristics of 1.3J,1D1 0.7% compressive strained layer MQW lasers

containing varying number of wells. The maximum operating temperatures obtained

from fitting the formulae to Ith vs. T and Tld vs. T data are consistent with each other,

which experimentally supports the theory and the underlying assumptions. Based on

the same assumptions, the conventional method of determining the intemal quantum

efficiency and intemalloss from a set of lasers with different length was scrutinized. It

was concluded that the internal quantum efficiency is a function of temperature, even if

the true intemal quantum efficiency is independent of temperature, and that the

internal loss is a sublinear function of temperature around room temperature, as

available experimental results show. The experimental results from 1.3tJ.m ten 0.7%
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compressively strained wells lasers with varying cavity length support the theoretical

conclusions.

The experimental observation of the far-field patterns for 1.3J.1m 1.2% tensile

strained layer MQW lasers containing 3 wells with varying ridge width over a wide

temperature range indicated that the injected carriers exert little effect on the refractive

index, and that the change in the far field distribution with temperature is the result of

spatial hole-burning.

The final part of this thesis presents a technique to determine the temperature

rise of the lasers during CW operation, which was then used to calculate the thermal

impedances of different ridge width lasers. It was concluded that a wider ridge laser

has a smaller thermal impedance and a lower available CW maximum operating

temperature.
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Chapter 1

INTRODUCTION

1.1 Background

Semiconductor laser diodes are the key components at the heart of many new

high-volume products such as compact disc players, laser printers, and fiber optic

communication links. The laser diode has evolved from a simple p-n junction to

strained layer multiple quantum well(SL-MQw) structure, which has resulted in the

threshold current, which is a major parameter for characterizing the laser diode, being

reduced by orders of magnitude. However, the expected improvement of the

temperature sensitivity of the laser performance by the introduction of quantum well

structures, or even strained-layer quantum well structures, has not been delivered yet

[Temkin, 1993], despite occasionally reported successes [Agrawal, 1986].

Consequently, attempts to understand the high-temperature sensitivity ot: especially,

loP-based long wavelength lasers has attracted considerable research effort [Temkin,

1993] [Evans, 1995].

A low threshold current is desirable in practical applications, such as high

power operation and direct modulation. With the improvement of crystal growth

technology, the introduction ofthe quantum well structure, and strained quantum well
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structures, the threshold current has been reduced dramatically [Henry, 1993]

[Coleman, 1993] [O'Reilly, 1994]. The high-temperature characteristics of long

wavelength lasers, however, have not been improved as much as expected [Seld,

1995] [Temkin, 1993]. Considerable efforts have been made to understand the origin

of the high temperature-sensitivity of the threshold current in long-wavelength

semiconductor lasers. Various mechanisms have been proposed to explain the

temperature sensitivity, among which are temperature dependence of the optical gain

[O'Gorman, 1992] [Zou, 1993] [Temkin.. 1993], temperature dependence of optical

absorption loss [Mikhaelashvili, 1994] [Seki, 1995], and leakage of injected carriers

into confinement layers due to Auger recombination induced energetic carriers

(Yano, 1980, 1981] [Asada, 1983] [Dutta, 1991] [Lui, 1993] [ L~ 1995]. All these

mechanisms may playa role, but it is not clear which is dominant. For example, recent

experimental results [Smowton, 1995] [Hazell, 1996] have shown that higher barrier

energy gaps, which should eliminate leakage of the injected carriers into the

confinement layer due to thermionic emission, do not improve the high temperature

performance.

The first formula to describe the relationship between the threshold current, ~,

and temperature, T,

1th =10 exp(T I To) (1.1.1)

was proposed by Pankove [pankove, 1968]. Since then, the constant To has been

widely accepted as a parameter to characterize the temperature sensitivity of the

threshold current. Due to this wide acceptance, much of the work concerning the

temperature dependence of semiconductor lasers has centered on finding a physical




























































































































































































































































































