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SCOPE AND CONTENTS :

~

This thesis presents a unified treatment Pf circuit and system
design methods embodying centering, tolerancing and tuning. The
approach incorporates the nominal parameter values, the corresponding
tolerances and tuning variables siﬁultaneously into an
optimization procedure designea to obtain the best values for all of
them in an effort to reduce cost, or make an otherwise impractically
toleranced design more attractive. Intuitively, the aim i§ to
produce the best nominal point to permit the largest tolerances and
the smallest tuning ranges (preférably zero) such that one can
guarantee, in advance, that in the worst case, the design will meet
all the constraints and specifications. '

Reduced problems are formulated for digital computer
implementatfon. Interpretations are given. Implications of
biquadratic functions in the circuit tolérance problems are
investigated. Practical imﬁlementation in circgit design problems
in the frequency domain 1is treated. The thesis -also includes

+

illustrative examples and two realistic problems.
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CHAPTER 1

INTRODUCTION

With readily available and ever increasing computing power at
hand, computer—aided\designers are now venturing to deal with more
realistic proﬁlems. Useful and important material in computer-aided
circuit design may be found, for example, in the collection of reprints
in éOMPUTER—AIDED CIRCUIT DESIGN, edited. by Directer (1973), in
COMPUTER-AIDED FILTER DESIGN3 edited by Szentirmai (1973), in MODERN
FILTER THEORY AND DESIGN, edited by Temes and Mitra (1973), in the 1971
Special Issue on Computer;Aided Circuit Design of the IEEE
TRANSACTIONé ON CIRCUIT THEORY and also in thé 1974 Special Issue on
Computer—~Oriented Microwave Practices of the IEEE TRANSACTIONé ON
MICROWAVE THEORY AND TECHNIQUES.

The folerance probfem, which 1s also known as the design
centering and tolerénce assignment problem, has attracted deep
interest among designers. Bggides ‘books by Géher (1971) and Calahan
(1972) which deal briefly with this subject, some relevant papers
are also contained in Szentirmai's selection. A short list of recent
publications in this area .is included in the Additional Bibliography
to give an indication qf current efforts.

-

The twd objectives in the tolerance problem are:

3
P L -

(l)n-Some strict tolerance limits may be met- by placing the

ﬁ

nqminal‘vakues of a design at a suitable 'center' (called

1



area of

design centerding) and distributing the corresponding,
tolerances (called tulenance assignment).
(2) A more economical design may be obtained by min}miziﬂg

a function which describes the cost-tolerance relationship.

Four recent, relevant approaches have been proposed in the

circuit design.

(1) One approach is based on the concept of Large-change
sensitivity as described by Butler (197la, 1971b) to center
a design. It involves performance contours and deals with
pairwise parameter interaction to specify tolerances. The
centering and tolerancing are sepafate procedures, See Butler
(1971) and also Karafin (1971).

(2) A second approach is based on the concept of
statistical moments which are parameters describing a
distribution of values. It finds the maximum possible
moments of each component value distribution given the
constraints on the second moment of the circult or syséem
response. See, for example, Seth and Roe (1971) and Seth
(1972). |

(3) Another approach is based on a sensitivity modef.

Multivariafé‘Taylor series approximations of the circuit

.responses evaluated at the nominal point are used in the

formulation of constraints for a nonlinear program. It is,



essentially, an exteansion to the f{nsf-onder sens{tlvity
method. Computation may be saved by evaluating some well-
chosen first- or second-order derivatives. See Pinel and
Réberts (197é). By introaucing extra variables which represent
changes in nominal values, Pinel (1973) reported that the
approach can 3155 deal with centering and tolerancing
simultaneously with some success.
'(a) The last approach is based on containing the foferance
negion (a set of all possible outcomes of a design) in a
constraint region (a set of points in the parameter space
with perforﬁance specifications and design constraints
satisfied). To save some computational effort, a well-chosen
. set of points from the tolerance region should be used. An
' appropriate cost function and a set of transformed constraints
are employed in the opgimizatio{. See Bandler (1972,\1Q74)
and Bandler and Liu (1973; 1974a). Both centering and
toleraneihg are treated simultaneously for the benefits of
increased tolerances by pérmitting the -nominal point to move.
No approximation is used by this approach. &he idea of a
floating and expandi;g polytope may give some intuitive
insight into the method.
Excepé for the second approach, all the'otherlt;ree are
deterministic in nature. These are commonly known as worndfi-case

design methods. .



In the worst-case approach, the aim is to meet the
ﬁerformance specifications in all possible cases, even in the "worst"
cases. Thus, it is also sometimes called the 100% ydleld design. For
th; small-change sensitivity model, the worst case always occurs at a
vertex of the tolerance region indicated by signs opposite to those of
the corresponding partial derivatives. This is also true if the
response of the circuit or system varies monotonically with respect
to the variations in the component values taken one at a timé. For
large~change variations, however, this is not always true.
Assumptions to predict the worst points have to be made and,
subsequently, these assumptions have to be tested.

Another important practical consideration in design is the
tuning problem. A design often requires tuning or alignment as a
post;manufacturigg process (Pinel 1971). ’

The work described in this thesis provides a theory of
optimal wonst-case design embodying all the centernding, folferancing
and funing problems in a unified manner at the design stage. The
approach incorporétes the nominal design parameter values, the
corresponding tolerances and tuning variables simultaneously into
an optimization proced;;e so as to obtain the best values for all of
them in an effort to reduce cost, or make an otherwise
impractically toleranced design more attractive. Intuitively, khe
aim is to produce the best nominal point to permit the 1argest‘

tolerances and the smallest tuning ranges (preferably zero) such that

we can guarantee, in advance and in the worst case, the design



satisfies all the constraints and meets all the performance
specifications. See Bandler and Liu (1974c, 1974d), Bandler, Liu
and Chen (1974a, 1974b, 1975), Bandler, Liu and Tromp (1975a, 1975b).

The foymulation is general such that the worst-case purely
toleranced problem and the purely tuned problem fall out as special
cages. Any of the nominal values, tolerances or tuning (relative or
absolute) can be fixed or varied. Solutions can be continuous or
discrete. Variable specifications such as tuned circuits can be
extended without any additional theoretical difficulty.

The general formulation is presented in Chapter 2. Reduced
problems to simplify computation are also treated and conditions of
validity are stated in appropriate theorems. A geometric
interpretation using concepts of projection and slack variables is
discussed. Simple examples are studied to illustrate the effects of
tuning and the interdependency of tolerancing, tuning and centering.

Chapter 3 deals with constraints arising from certain circuit
applications. Implications of biquadratic functions in the circuit
tolerance problem are studied deriving some necessary conditions to
have the worst case occurring at the boundary of an interval. A - .

one-dimgnsional case is studied. See Bandler and iiu (1974b, 1975).

hapter 4 suggests practical implementation which may lead to

the development of user~oriented design optimization packages. Part 1
ses topics such as verntex sefection schemes, desdign symmeiny and
i¢s implications, perfo:médca specifications and parameter conatrtiutﬁ.

Implementatién of the tolerance problem is demonstrated. Part 2 deals



with tuning problems. Cases with separated as well as mixed
tolerancing and tuning components are treated. Part 3 presents the
results for two real problems reported by industry (Karafin 1971,
Pinel and Roberts 1972, Pinel 1974, and Roberts 1974).

Circuit examples throughout the thesis ;re confined to lumped
or distributed, linear, time-invariant networks in the frequency
domain. The optimization in the minimax sense of the 2-section 10:1
quarter-wave transmission-line transformer has been previously
studied by Matthaei, Young and Jones (1964), Bandler and Macdonald
(1969), Bandler and Charalambous (1972a), and Bandler, Srinivasgn and
Charalambous (1972). The study of the 5-section transmission-line
filter has been reported by Brancher, Maffioli and Premoli (1970),
Bandler and Cﬁaralambous (1972a), and Bandler, Srinivasan and
Charalambous (1972). The adjoint network approach for evaluatiﬁé the
gradients of the response function with respect to network parameters
was used (Director and Rohrer 1969, Bandler and Seviora 1970).

For the sake of conciseness and continuity, related material
is presented in the Appendices including mathematical concepts,
nonlinear (continuous and discrete) programming, a basic theorem
concerning convexity and a proposal for a user-oriented tolerance

optimization package.

-

R

The major contributioms claimed for this thesis are;

(1) A unified aﬁproach to the theory of optimal worst-case

design embodying centering, tolerancing and tuning.



(2) The statement and formulation of reduced problems
adaptable to computer implementation.

(3) A geometric interpretation of tuning and tolerancing.
(4) Necessary conditions for a biquadratic function of a
s;ingle variable to be pseudoconcave or pseudoconvex, and some
implications of these conditions in the circuit tolerance
problem.

(5) Special algorithms to exploit symmetry and monotonicity

of the response functions.



CHAPTER 2

OPTIMAL WORST-CASE DESIGN
2.1 Introduction

Component tolerance assignment is now considered to be an
integral part of the design process. The optimal worst-case
tolerance problem with variable nominal point has benefitted in
terms of increased tolerances (Baqdler and Liu 1974a). Tuning, on
the other hand, does not.Seem to have been given its proper place
in thé design process. This work, therefore, brings in tuning of
one or more éomponenCS basically to further increase toleré;;;; to
reduce cost or to make unrealistically toleranced solutions more

P

attractive. In this chapter, the mathematical formulation of an
approach which embodies centering, tolerancing and tuning’in a
unified manner is presented (Bandler and Liu 1974c, 1974d).
Simplified problems and appropriate geometric interpretations are
discussed. The worst-case purely toleranced problem and pufely
tuned problem fall out as special cases, as is to be expected.

Numerical examples involving some simple functions illustrate the

concepts.

2.2 Fundamental Concepts and Definitions

k-4
A design consists of design data of the nominal point ¢O, the

tolerance vector e and the tuning vector t, where
- 8 '
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¢1 €y tl
o
P €2 £,
éo é . , €4 . and t A . . (2.1)
0 »
_@k__ "Ek" Lth

k i{s the number, for example, of network parameters which may be’

indexed by

1. 811, 2, ..., k). (2.2)

We will assume that (1) the parameters can bé varied continuously,

and (2) the parameters can be chosen independently. Extra conditipns
such as discretization and imposed parameter bounds may be treated as
constraints. See Bandler, Liu and Chen (1974a, 1974b, 1975). Some of

the parameters can be set to zero or held constant.

LY

An ocutcome {¢0,£,u} of a des«gn {¢0,c,t} implies a point in the

parameter space given by

0

¢ = ¢ + Eu, ) (2.3)
where i
[—El N
€
2

E 4 , (2.4).
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and ucRu. Ru is a set of multipliers determined from realistic

situations of the tolerance spread. For example,

- < < . < <
Ru ) {Yl 1< ug S-a,a Sy 2, icI¢},

where

The most commonly used continuous range is obtained by setting a

(2.5)

(2.6)

i to

zero.” A commercial stock will probably have the better toleranced

components taken out, thus 0 < a, £ 1. Unless otherwise stated,

i

case

A o1 < <7 .
R, = {gl 1w <1, ieI¢}

Cj‘fris considered (Bandler and Liu 1974a).

the

2.n

The toferance region R, as described by Butler (1971) and

Bandler (1972, 1974), is a set of points defined by (2.3) for al

-1 < <
EERu' In the case of -1 £ uy 2 1, isI¢,

0
R, 4 {?|¢1 = ¢ tegug, -1 Suy <1, ie1¢},

N

which 1s a convex regularn pofytope of k dimensions with sides of

1

(2.8)

length Zci, ieI¢, and centered at ¢O. The extreme points of Re are

10
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obtained by setting uy o= *1. Thus, the set of veat«ccs may be defined

as

R 2 (¢le, = ¢0 + £,u u,e{-1 ;‘ icl } (2.9)

v = I i S G | v ¢

k 2
The number of points in Rv is 2, Let each of these points be indexed
i
by ¢, ielv. where -
A K 2
Iv 8 {1, 2, ..., 27}, (2.10)
\ .
1 2~ &

Thus, Rv = {¢, ¢2, ey &0 h

The funing %egion Rt(p) is defined as the set of points (see

Bandler and Liu 1974c, 1974d)

¢ = ¢O * Eu + Tp, (2,.11)

for all peRD, where

%

]
ne

(2.12) ~

3

ke

Some of the common examples of Rp are
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R 2 {(p] -12p, 21, 151¢}, o ' (2.13)

p L

il

-

or in the case of one-way tuning or {nmrevernsible truimming,

R = {pl0 =

< 2.14)
5 <1, 1EI¢}, ( )

Py

= — < y < - 0 -
Rp {gl 1 2 Py = 0, icI¢} (2.15)

Unless otherwise indicated, the case given by (2.13) 1is considered.
The constraint neglon R, is defined as (Butler 1971, Bandler

1972, 1974);
A > .
R, & (¢]g (9) 20, tel ), 0 (2.16)
where
1, 811, 2, .., me}. ‘ . (2.7)

is the index 'set for the performance ;pecifieations and parameter
constréinqﬁﬁ Rc is assumed to'be not empt&. Other conditiong and
 .;ssumption8 will be imposed on Rc as the thqory is developed further.
The definitiens are illﬁ?trateé in Fig.'z.l.by a two-dimensional

example.
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- A tunable constraint negion is denoted by Bc(?)' where %
represents other independent variables. Figure 2.2 depicts three
diffe%ent regions of an exam?le of Rc(?). Overlapping of these
régions is allowable. The value of ¢y may be continuous or discrete.
Rc(?) = RC in the Qrdinary sense 1if ? is a constant.

2.3 The Original Probleém Py

. The problem may be stated as follows: obtain a set of optimal
design values {¢0,e,t} such that any outcome”{¢0.e,u}, ueRu, may be

tuned into Rb‘for some peRp.

It is formulated as the nonlinear programming problem:

P, i minimize C (¢0,e;t),

subject to ¢ ¢ Rc’

where

¢ = o0 + Ep + Tp ( (2.18)

-~

and constraint§'¢o, €, t 20, for all ueRu and some peRQ. C is an

appropriate function chosen to represent a reasonable approximation to

-~

known component cost data. ’

Stated in an abstract sense, the Worst-case sofution of the

1 4

problem must .satisfy

14

/



Fig. 2.2

tuning region

An example of three different settings of

the tunable constraint regions.

15



ROMAR #6, - (2.19)

for all ueRu, where § denotes a null set.

-

2.4 The Reduced Problem Pl

The original problem PO of the preceding section can be
reduced by separating the components into effectively tuned and

effectively toleranced parameters., Let

IR {ifef > ¢, ieI¢}, (2.20)
I, 4 {1|ti 2 e, Lel,}, (2.21)
€] & ey ~t,, eI, (2.22)
and
\ .
ti = Ly~ €4, ie It' ’ . (2.23)

It is obvious that ft and I_ are disjoint and I Q) i - I¢

Now, consider the problem

Pl : minimize C (¢0,e,t),

subject to ¢ € Rc’

16



where

€. U for iel

RS
[
n
=g

1 ?
tipi for ielI

for all -1

N

2.4.1 Theorem 2.1

17

(2.24)

u; S 1, iel_, and for some -1 < oy 1, 1eI .

A feasible solution to the reduced probfem P, is a feasible

solution to the original problem PO.

Proof Given ¢0, €, t we will show that

1

¢9) equy t Lo, = siui , 1¢ Ie, (2.25)

(2) eguy ¥ ey = tipi , 1 ¢ It’ (2.26)
under the restrictions on His 0y and p{.

(1) Since py can be %reely chosen from -1 % oy <1, we can

let Py = THy giving

(ei - ti)u1 = eiui. (2.27)

(2) For any -1 £ pi <1 and all‘—l S.ui % 1, we can choose

“



- = < . -
1< o, S1, g 40, (2.28)

T@us, any point with components represented by (2.24) of the
reduced problem can be represented by (2.18) of the original
problem. See Bandler and Liu (1974d).

Intuitively, this theorem states the fact that a feasible
solution to a restrictive problem 15 also a feasible solution to an
appropriate less restrictive problem. The variable transformation
equations (2.22) and (2.23) may be considered as extraneéus

constraints to be satisfied.

2.4.2 Concept of One-Dimensional Convexity

The concept of one-dimensional convexity is important in this

study. A region R 18 said to be convex if

£ R

13-4
-
16

implies that
o= ¢ + 20" - 4P e R (2.29)

for all 0 £ XA = 1., See Mangasarian (1969). We .define a region R to be

one-dimensionally convex (see Bandler 1972) 1if, for all je1¢,

18
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@a‘ ¢b(j) A ¢a + uej £ R, o (2.30)

-~ ~

where a is a constant and e, is the jth unit vector, implies that

|

‘ o= 6% +20°D) - 43 ey, (2.31)

-~

for all 0 £ A £ 1. See Fig. 2.3 for some illustrations. Rl is both
convex and one-dimensionally convex whereas R2 is one—dimensionéily
convex only. R3 is neither. Since convexity implies one-dimensional

convexity, the latter is less restrictive.

2.4,3 Theorem 2.2 /

A feasible solution to the original problem PO implies a

feasible solution to the reduced problem P, if Rc is one—~dimensionally

1

convex.

Proof Consider the following.

o

(1> We note, for ieIE, that

7

0 _ Ty < 0L < .0 _ )
bg meg T egp (L) Doy Geg oty Do+ (eg-tduy
v Coe < ¢0 +eg, =t, S ¢0 ; e, + t,p, (1) (2.32)
=P T B TRy =9 T T Py .

’ . 7 .
where pi(-l) corresponds to uy o= -1 and pzfl)-corfeeponds to



Fig' 2'3

—¢

1
I1llustrations of convex, one-dimensionally convex

and nonconvex regions.

20



“Hy o= 1. If Rc is one~dimensionally convex, thE/}ollowing

assumption

0
+ tipi(-l) , ¢i +eg * tipi(l) € Rc
. . (2.33)

implies that

0 , )
¢y + (€i - ti)ui € R, . (2.34)

where we consider changes in the ith component only and impose
the required restrictions on My and Py

P
(2) On the other hand, for ieIt,'giQen feasible pi(-l) and
pi(l) such that ,
00 =g, + t.p, (1) 2 0 + e, + t,0, (1) . (2.35)
i i iri -1 i 1743 ) -
there éx;sts a feasible pi such théb

-

0 . < ,0 _ v < 40 '

o ‘ . - (2.36)

v

21
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This is true for ti = Ei and can be seen fo; ti > ei by

rewriting this inequality as

e, + t.p, (1)
<o)< 1 . f: ) (2.37)
1 1

Heﬁce, if RC is one~dimensionally convex, the assumption

implies that

¢‘1 + (e, -e0l | R (2.38)

Thus, a feasible solution to the original problem can be
transformed to a feasible solution of the reduced problem Pl‘ See

Bandler and Liu (1974c, 1974d). ’ ’

-

" 2.5 A Geometric Interpretation )

Let us define a profection mainix P as a diagonal matrix such -

! (p ]

<§a ' : 1 . 5

"V‘ » pz .

A 3 ¢ h ' )

_} ‘8 o ", O (2.39)
- i ~ .pk-. .



23

where

Py = (2.40)

In general, a projection operator P is defined as a linear operat;r

such that p2 = p. P obviously obeys such a property. See Fiﬁkbginer
(1960), Yale(1968) and Lancaster(1969), for some properties of a projection
operator.

The projection of a point ¢ may be dedoted as ¢p = P¢, It may
b
s &)

-

be noted that the projections of two points ¢a,

-~ -

= ¢a + aej, for
cht, and some constant a, coincide. The projection concept and the

introduction of slack variables provide a key to understanding the

~

tuning concept.

Let

’

< 0 ]

A 0 - o1 < . )
R, 2 {?|¢1 eg S o5 S 6, el ieIe}, (2.41)
and .
rR_ & {¢l¢° -t! ¢, S ¢0 + t! iel } (2.42)
te ™ 'ItYe RS SR i e’? *

denote the regions defined by the effectively toleranced and

effectively tuned parameters. Then consider the following regions

\
- 1
Retp & {?pl?p Po . ¢eR .1, (2,43)



¢ 2
4 2.44
cte © Rcm Rte‘ k : . ( )
and
A = . 2.45)
ctep = (9514, = Po , ¢eR ) (2.45)

Figure 2.4 il%g§£rates the definition of the regions. Any point

‘whose components are given by (2.24) lies in the intersection of Ret

and Rts' Suppose the projection of Rc onto the subspace spanned by

te

¢

the effectively toleraﬁced parameters includes the projection of that

point., Then it may be tuned into Rc e by adjusting the value of pi,

t
ieI .
t
The reduced problem Pl.may be stated as: solve a pure
tolerance problem ({.e., no tuning) in the subspace spanned by the
toleranced variables with Re

Al

the constraint region.

as the tolerance region and R as

tp ctep

In other words, the regions defined by a feasible solution must

satisfy the condition that -

c . 46
Rct:p = Rctep‘ @ )

*

Figure 2.5 illustrates a case where Rctpg: R An outcome
°

ctep’
at ¢q cannot be tumed to Rc within the effective tuning rangze. N

!

However, there exists a solution to the original formulation by

tuning both components. Rc is.not one-dimensionally convex in this

case.



L

S

A geometric interpretation of the reduced

Fig. 2.4

) problem PI‘

25

L v}



11/,

'}‘_—"—\ b R
, N v X 1 \
NN 777725~ 222 2222
IR 1 N | Y
NS
LU I\ I

] | e

R 7777777

Iy

- Fig. 2.5 An example of Retpg Rctep'

—




2.5.1 Special Cases

.

Case 1l:

Case 2:

We will consider two special cases.

I = §, the pure tuning probfem.
In this'case, Ret is the entire space and P is a zero matrix.

Regé is a single point at the origin. The problem has a

solution if

\“

# 9. . (2.47)

RCtE

I = @, the pure taﬂenanéa problem.

In this case, R_,_ is the entire space and P 1s a unlt matrix,

te

Retp =‘R€t and Rctép = Rcts = Rc. The problem has a solution

if , .

SR ' ‘ o (2.48)

From a toleramce-tuning point of view, the first case is a

N '.Erivial cagse theoretically. Except when there is only one single

point Rc, the puré tuning groblemris equivalent to an optimization

of the nominal parameter values. On the other hand, the pure

tolerance problem is very dimportant from a pracEical point of view.

s

o "

-

£



2.6 Extension of P1 for Tunable Constraint Region

Three typeé of components can be identified when the constraint
region 1s considered té be tunable. They are:

(a) Toleranced components,

(b) Components tuned‘by the manufacturer, énd

(¢) Components tunable by the customer.

In this case,
¢ e R (W)
where

] -
siui for i1el
0
by = 9yt tipi for 1e1 _ (2.49)
tipi(w) for 1ie¢1

where Itm identifies;components (b) and Itc identifies components (c).
Setting the @ to a particular value will control the setting

of pi, ie Itc’ such that ¢ will be in that particular constraint

region Rc(?)' v -

2.7 The Reduced Problem Pz

to, be in R

It is impossible to test all the points in Retp

ctep
gh order to make the ﬁfoblem tractable a number of simplifying

assumptions could be made to obtain an acceptable solution to the

[

28 -
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-~
~ v e

problem with reasonable computational effort.
To this end we replace the continuous range -1 5'“1 <£1bya
- /
discrete set uie{—l,l}, el _.

Now, consider the problem

P : minimize C (¢O,e,t).

subject to ¢ € RC,

.. where

elu for 1 el
6, =00+ T ¢ (2.50)
r L]
tiPy for 1ec It’

for all uie{—l,l},aiels, and some -1 £~pi <1, islt.
Let us define the set of projected vertices '(or the vertices of
% . ) T

the projected region) by
Ryp = (g, = P2 ¢ € Ry, @.51)

vp

‘The condition may be now stade as

R & R .
vp ctep
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2.7.1" Theorem 2.3

A feasible solution to neduced problem P, implies a
feasible solution to reduced problem P1 i%\Rctep is one-dimensionally
convex,

This is a pure tolerance problem in the subspace spanned by
the effectively toleranced parameters. For a proof in the tolerance

parameter space, see Appendix B which describes the proof by Bandler

¥
»

(1972, 1974).

2.8 The Objective Function

Several obfective functions (or co“s.t gunctions) have been
proposed by Bandler (1972, 1974), Pinel and Roberts (1972) and Bandler
an? Liu §&973- 1974a). In practice, a suitable modelling problem would
have to bg gsolved to determine the cost-tolerance relationship. Here,
-it is assumed ;hat the tolérances and tuning ranges (either absolute
or relative) are the main variables and_that the tobal'cos: of the
design is the sum of the cost of the 1ﬁdividual components.

The objective function should have the following properties,

0.
C(4 sest) » ¢ a8 € + ®

C(¢0,e.t) + @ for any.e, + 0,
, - i (2.52)

c6%iest) » €6%e) a8 Lt +0

t

C(??.S.E)'* ® ' for any ty v
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Suitable objective functions will be, for example, of the form

% ¢y E .

C = —  + cly,, / : (2.53)
=1 *1 g PR

where Xy and i denote the and tuning ranges, respectively.

x, = —=x 100, (2.54)
oy -
&

y, = —§ x 100, (2.55)
¢i

[

to zero if tuning is considered either

7

free, or fixed or is not required. c  may be set to zero if the ’

corresponding tolerance is fixed.

2.9 A Tolerance Example &

3
|3

|
Consider the constraints

(2.56)

1v
o

¢2-¢1_2

2
T 4y + 166 2

v
(o]

(2.57)

A convex region RC is defined by these constraints.

We will take Ru as an infinite set of discrete points

]
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u(), 1+ =1, 2, ..., where -1 £ ul(i) <1 and -1 5,“2(1) < 1. Thus_ a

relevant problem may be formulated as follows. Minimize

C =?1.+§_ ‘ (2.58)
N 1 2

with respect to €1 €g» ¢2 and ¢g, and subject to

0 0

g8, = & 20, g = €, 20, g8y = & z 0, g, = ¢, 20,

' (2.59)
' 0 0 5.
g5(1) = (¢, + e,u,(1)) - (¢1 + elul(i)) -220,41i= 1,}2, .o

, w (2.60)
0 (2 0 > :

g (1) = - (¢2 + ezuz(i)) + 16(¢1 + slul(i)) 20,1i=1, 2, ...
, o : (2.61)
where -1 = p;(1) 21 and -1 2 u,(4) =1,

The Kuhn-Tucker (1951) necessary conditions for a

constrained minimum require that (see .also Bandler 1973)

- 1 7] [— . o - 9 - ' =
€ .
1. .
1 0, .
2 : .
- 4+ Ju (i) + u (i)
b | i
0 Uy -1 , 16 -
0 u : 1] “2(40%e 1 (1))
8 R | 4 ] s R 5 Y2 2720 A

. ¢
- . ~

(2.62) |
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wWg = ... = U, = us(i)gs(i) = u6(1)g6(i) =0,
' 1=1,2, ... (2.63)
Uy voen Uy us(i), u6(i) >0, 1=1, 2, ... (2.64)
where u denotes a mu;tiplier. To solve the above equations, assume
0 0
that al, €95 ¢1 and ¢2 are not zero, therefore, set Uyps Uy, Ug and u,
to zero. Minimize gs(i) of (2,60) and ge(i) of (2.61) with respect

to u(i). This leads, respectively, to
(¢° - €,) - (¢° +€e)-220 (2.65)
2 2 1 1 -
. T
using u(i) = [1 -1]" and

i
0, (2.66)

tv

- (¢g + 62)2 + 16(¢$ - €)

[
)
“using u(1) = [~1 l]T: The optimality conditions (2.62) - (2.64) are

correspondingly reduced yielding the solution

0o .-
L = 0.5, e, = 0.5, 80 = 4.5, 49 = 7.5,

=2, - ‘ ' (2.67)

LSRN SRR
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with respect to ti, €9s ¢g, ¢g and pl(i), and subject to

" ) 0
g, =ty 20,, 8, =¢€,20,, 83~ ¢g 20,, 8 =9¢,20, (2.68)
tl
gs = (0.1 -.—% 2 0’ (2-69)
2

g (1) = (¢g+€2u2(i))-(¢$+tipi(i))-2 20,1=1,2, ... (2.70)

’ 0. 2 0, + - ’
g, (1) = —(¢2+e2§2(1)) +16(¢1+tlpl(i)) 20,1 =1, 2, ... (2.71)
gg(1) = 1L -pj(1) 20,1 =1, 2, ... : (2.72) -
go(1) = 1+p;(1) 20,4 =1,2, ... . - = (2.73)

and -1 < uy(1) £ 1.

Here, e, is consideréd fixed at 0.5 and there is a maximum effective

1
tuning range of 10%. Hence, the first component does not contribute to the

cost. The effective tuning range ci =t - 0.5 is used as a varlable. .

The optimality conditions require that .

- ~ p - _ -}—. - . ’ p - '. 7‘-
, ' 1 L
1 .
g u, 0 u, (1) .
t2
ti :
0 = | ug +”u5 57 f {‘u6(i) -1
2 i
0 u, 0 1




_ ' - _ .
16p, (1) 0
0 )
*2(¢2f€2u2(1))u2(i) 0
+ ¥ u, (1) 16 + g ug (1) 0
i 0 '
'2(¢2+€2U2(1)) 0 !‘
s (16tey . ey
ro -
0
+ ] ug() [0 |, (2.74)
i .
0
ey | I

U8y .= ov. = UgBs = u6(i)gﬁ(i) = L .. o= u9(i)g9(i) =0,
1=1,2, ... (2.75)

< Uy eee, Ug, u6(i), Ceen ug(i) 20,1i=1, 2, ,.. (2.76)

o
Minimize 36(1) of (2.70) anqggy(i) of‘(2-71) with respect to

uz(i). - We use u;(i) = -1 in (2.70) and uz(i) = 1 in (2.71) for this
purpose. The correéponding Di(i) = -1 and pi(i) = 1, respectively, are

. obtained by ma&imizing gb(i) and g7(1) with respect to pi(i). This

yilelds tBe solution ' , "
. ‘

toe
.

. 1.444 , ¢?.- 5.4321 , ° ¢g = 8.3333.

t! = 0.5432, " €,

1

. " ¢ N N
As expected, the inclusion of tunable eleménts can increase

a
~

- the tolerance on the components. ' The tolerance of the second parameter

-

-
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increases from €y = 0.5 to €, = 1.444 when the first component is

allpwed to have a maximum effective tuning range of 10Z. This means

' that an actual absolute tuning of 1.0432 and a tolerance of 0.5 are

designedAfor ¢l. The result can only be accomplished by allowing the
nominal point to move. For example, the first component moved from

3.5 to 5.4321, a shift of 55%.

2.11 Summary

N
- In this chapter, the problem of design centering, tole;ancing
and tuning has been presented in a unified manner. Definitions of
constraint, tolerance and tuning reglons are given. The concept of a

tunable constraint region that allows variable specifications as set f

36

by the customer has also been treated. Reduced problems and conditions

of validity are stated and proved in'appropriate theorems. A geometric

interpretation is discussed. Two simple examples have been studied to

give some insight.



CHAPTER 3

SOME IMPLICATIONS OF BIQUADRATIC FUNCTIONS
3.1 Introduction

It has been stated in Chapter 2 that the constraint region Rc
may be defined by a set of constraint functions. However, Chapter 2
is primarily concerned with the région itself rathéé than the
functions. Conditions for the worst cases to occur at the vertices
of the tolerance regidn will be studied in this chapter. 1In
practice, two kinds of constraint fugctions may be identified. The
first kind which determines the 6eaA£bLCité of a design is denoted as
%f(?)' The second kind which determines the acceptability of a design
is denoted as ga(?). %f(?) is usgally derived from physical
considerations sﬁch as nonnegativity of parameter values, component
bounds or any other physical restrictions in manufacturing. %a(?)’
on the other hand, is derived from performéncé specifications. We
shall be concerned mainly with the latter kind of constraint
functions. 1In particular, this chapter is motivated by'those
electrical circuit responses which can be expressed as biquadratic
functions of the parameter of interest. A one-dimensional case is
presented. See Fidler and Nightingale (1972) for some biquadratic
relationships; Parker, Peskin and Chirlian (1965) and Géher (1971) for

some circuit properties; Mangasarian (1969) and Zangwill (1969) for a

S
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discussion of functions more general than concave and convex

functions. See also Bandler and Liu (1974b, 1975).
We elaborate in this chapter on an underlying assumption made

in a theorem proposed by Bandler (1972, 1974). See Appendix B,

3.2 The Biquadratic Functions

3.2.1 General Properties

Consider the biquadratic function

F($) = N($) c¢ + 2d3 + e

(3.1)
M(¢) ¢ + 23¢ + b .
The first derivative of F(¢) is
< o .
P (¢) = 2 (C¢ )H(_Q) - (¢+8)N(¢) . (3.2)

u? (¢

It may bé npted thg§§the numerator of (3.2) is a quadratic function of
¢ which implies that the derivative has.at most two changes of sign
for finite values of ¢. Furthermore, the funétion value approaches
the §alue of c ag ¢ + £ w,

‘ ~ Take any CHijoint; ¢r agd‘§s and let A¢ = ¢a - ¢r. F(QB)
' may be expressed in terms of'¢r,lA¢ and the coefficients of N(¢) and

M(¢) as follows:

CB(®) = N(s%) _ N(oT) + 286(co"Hd) + chs
M%) M(¢ ) + 2044 ta) + bg°

3.3

38



The Large change sensifivity wo

AF 4 F(6°) - F(¢")

X3 ¢s _ ¢r N

(3.4)

may be related to the first differential sensitivity F'(¢r). We have

F(6%) - F(oT) = 2081(ct CHIM(eT) - (o “+a)N(s") 1-a0° (N (o" )—cM<¢ )}
M(¢ MM(6%)

r

M(¢ y T MG

39

therefore,
AF L ey
M%) g = FUOMGT) - 8e(F(eD) - o). (3.5)
"

A !

Given a fixed value ¢r, we can find uniquely one other point ¢S such
that F(¢s) = F(¢r), except when the function F(¢r) =c, F'(¢r) =0,

or M(3¥) = 0. The point ¢° is given, using (3.5) with 4F = Q, by

: ) ¢ s.T r .
6% = oT + .P:._(ir_)_’l(_ﬁ_.). . ' (3.6)
F(¢) - c

0

For the case F'(¢r) = 0, the point ¢r is either at the maximum or at-

the minimum of the function. There is only one finite point ¢ such
that P(¢°) = c¢. The other points with the same value can only be at

infinity. See, for example, Fig.‘3.l.
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i 3.2,2 Assulptions

¥ ) In the following discussion, we shall assume that M(¢) does
not change sign on [¢r,¢s]. We shall also exclude points where

. B M(¢) = 0 since the derivative of F(¢) 1s not defined at such points.

\5--\‘

3.3 Some Lemmas and Theorems

3.3.1 Lemma 3.1

P

FGT + 2% - ¢™)) > m%n[F(¢r), F($°)] for all A satisfying

oy A

0 < A <1 provided that

L

- AF dF

<

i
¥ — § e > 0 - (307)
) . A d M ?
| . LR P :
i AF - r s Y i
. where % is given in (3.4), ¢ 1is ¢ or ¢ whichever cprredbonds to
k] .
E , the lower function value. * : .
R Figyre 3.2 illustrates this lemma. .
. ‘ ) S
Proof' The case F(¢B) > F(¢r).wili be considered first.© From -
(3.5, we have . ‘ . -

’

o |
u(p) HOLZE ) w b (g ynT) - AT - o, (3.8)

6= ¢" +2a0° -85, 0 <A<, . (3.9)

=3
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Fig. 3.2

-

Illustration of pseudoconcavity on an imterval.
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If condition (3.7) 1is satisfied, F' (¢r) = %E' > 0, then
¢=¢ L

—L— [ (M%) ~ 26(F ) - )] > 0 (3.10)

M(¢7)
implies, since M(4) must not change sign, that

L ~

ity [F1@OMET - 280 (") - )] > 0. . (3.11)

Therefore,
|
F(¢) - F(s") > 0. (3.12)

Similarly, for the case when F(4") > F(4°), it is required from

(3.7) that F' (¢>s) = —}E- s < 0. The equations corresponding to
’ ¢=¢
(3.5) and (3.8) are,,respectively,

S r
mpT) HOLZECD _pouee®) + 6% - o) . (3.1)
.
and
F(o%) = F() _ ci.8 8 YW Sy _ : ,‘
ne) FO = P eIHOT + A-DREEH -0 6.4
Since % <0,

1
r

M(s)

[F' (4°)M(6®) + 84(F(6%) - )] < 0 o 3as
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implies, since M(¢) must not chapgé sign, that

1 1748 8 - By _
ﬁ333-£F (6 M($°) + (1-N)Aa¢(F(p ) - c)] < 0. (3.16)’

/

and hence that
F(¢) - F($%) > 0. | ' (3.17)

Inequalities (3.12) and (3.17) are true for all 0 < ) < l; hence the

&
lemma is proved.

*
Corollary: F(¢r + A(¢8 - ¢r)) < mAx[F(¢r), F(¢8)], where 0 < A < 1

provided that
AF  4F >0, (3.18)

where @ is Br or ¢8 whichever corresponds to the higher function

value.
The corollary may be proved by defining a new function
G(¢) = - F(¢) and applying Lemma 3.1. See Fig. 3.3 for an

illustration. PFigure 3.4 shows. an’ example wﬁére both the lemma and

/

its cor;llary apJ&y.

»

'

3.3.2 Lemma 3.2

The function F(¢) 1a‘pbeudoconcaﬁe (see Appendix A) on the



Fig. 3.3

Illustration of pseudoconvexity on an interval.



- Fig. 3.4
®

Illustration of monotonicity on an interval.

\
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interval [¢r,¢s] except where M(¢) = 0 if the cbnditions of Lemﬁa 3.1

are satisfied.

Proof Consider the c;se F(¢si'> F(¢r). The other case follow; a

* similar argument. Let Qs ?ssume th;t thé function has more than one
turning‘point in the interval. By the nature of the biguadratic
function, .there are‘at most two turning points. -If we assume that
there are two turning points On,[¢r,¢s], there exist two points?

¢a = ¢r + add and ¢B = ¢r + BA¢, where 0 < a < B < 1 such that the

folloﬁing inequalities hold:

Fo% > F($D) ’ (3.19) -
and . |

F' (%) > o. S ' (3.20)

As a direct consequence of Lemma 3,1 and inequality (3.20), the
following inequalities can be made to hold: |

F(4°) > F(4P). Co (3.21)
and

F(QB) > F($7). : (3.22)
Rewriting the function values in terms of F‘(¢B); F(¢B) and»M(¢B) as

' in'(3.5), we obtain

g 4

e
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—L— [r OG5 + (-mae ko) - 03] < o, (3.23)
M(6%) ' |
=T BMe®) + 808 r 6B - 001 > o, (3.24)
M(¢") - \
and
(15) [ ey - 1-m)aer(6®) - )1 > 0. (3.25)
M(s

Multiply (3.23) by M(¢%), (3.24) by M(¢¥) and (3.25) by M($%).

Subtracting appropriatelﬁ, we have

8 >0 for
aAP(E($") - c) {
<0 for
\

and .
8 >0

- (1-a)Ad(F($") - ¢) {

V< 0.

M>0
: (3.26)
M<oO, \ ’
for M>0" .
(3.27)

for M < o. -

The last two pairs of inequalities are inconsistent, therefore, the

assumption that there are two turning points on_the intervsl is false.

F ), ¢e[¢ N } is unimodal with a positive derivatiVe at ¢ .

Given any two. points ¢% and éb, such that'F(¢ ) > F(¢ ), we
. .

will consider the foilowing:

w rre® > 6, then 8 > 6% because F 18 an increasing -

functiOn between ¢r and éa}

s,

function between ¢% and ¢ .

@) ¥ (4®) < 0, then ¢ < ¢ ‘because F is a decreasing

Therefore, in both casmes F(¢ ) > F($%) impliea F!(¢® )(é ~¢a) >0,

which proves the lemma.
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Corollary: . The function F(¢) is ﬁéeudoconuex (see Appendix A) on

» interval [¢r,¢s] except Where M(¢) = 0 if the conditions of the

» Ld

corollary to Lemma 3.1 aré satisfied.

. s »

3.3.3 Theorem 3.1

minimum

The
maximum

interval if one of the followiﬁg conditions is satisfied.

F'(¢") 20 and F'(4°) 50

F'(4") > 0, F1(4°) >0 and F($") < F(4®)
or . fl .

F'(s) <0, (%) <0 and  F@T) > FG°).

See, for example, Figs. 3.2 -~ 3.4.

Proof We will prove the case for the minimum of F($) to be on

the boundary of an'interval for the conditions of (3.28a), (3.29)
(3.30). A
(1) Take § = ¢", then F(4®) > F(s") and §T> 0. Using

Lemma 3.1, F(¢* + 2 (¢°-6)) > min[F ("), F(%)],

0 <A <1, will hold 4f F'(4") > 0. This is satisfied in

(3.28a) and (3.29). : "
(2) Take $ = ¢8, then F(¢r)’> F(¢s) and %§~< 6. ﬁsihg

Lemma 3.1 again, the requirement that F'(¢8) <0

L
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thg

of F(¢), selo”,0%1, lies on the bounﬁary of the

(3.28a)
(3.28b)

(3.29)

(3.30)

and
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will be met in (3.28a) and (3.30). .
(3) suppose F(¢r) = F(¢s) and ﬁence %%-» 0. We can fknd one
&
point ¢a such that F(¢8) > F(¢r) = F(¢s). Two subinteévgls
are thus obtained, each of which may be considered undér %ﬁ
" cases (1) and (2) above. -
It should be noted that, from Lemma 3.2, (3.28a), (3.29) and
(3.30) imply pseudoconcavity. From its corollary, (3.28b), (3.29)
and (3.30) imply pseudoconvexity.
3.3.4 Theorem 3.2
An acceptable interval denoted by I as
A i - > - > .
I, 8 (s[5, -~ Fy(4) 20, Ll , Fi() - S5y 20, Jel, ), (3.31)
where Sui, ie;u, and 521, 1512, are the upper and lower
specifications, respeétively, and where Iu and Izlare disjoint
index sets, is convex if the condition (3.28a), (3.2@) or (3.30) is-
satisfied by Fi(¢), for all ielﬁ, and condition (3.28b), {3.29) or '
(3.30) is satisfied by Fi(¢), for all ieIu.
Proof ,Conside'r the case 1el, and let ' \ o T T

2' . *

I8 (o]Fy(e) - 8y 20k L v (3.32)



Take two different points ¢r, ¢s el If the condition (?.28a),

i
(3.29) or (3.30) 1is satisfied, then from Theorem 3.1

Y { .
F (0 = Fy 6™+ 2 (6%-0") > minlF, (60, 7, 6%)], (3.33)
0<x«<1,
thus
F (4% - s, > min[F, (%) - §,., F, (6% - 5,1, (3.34)
i STt 1 21 1 gids .
0 <A<,
. .
Since
r s
.$ b € Ii’
“ F.(6") -5 . >0 (3.35)
i 24 . .
Therefore,

o =T+ A%T) e 1 (3.36)

i!
7

Hence Ii’ iéIz, is & tonyvex interval by definition of a convex set.

Similarly, for the case ieIu, 1f the condition (3.28b), (3.29) or (3.30)

) ) i is satisfied, using Theorem 3.1, we may prove that Ii’ ieIu, is—convex.

The intersection of convex sets 1s convex, and since by



I =) 1

a
ieI2
iel

u

. (3.37)

I 1is convex.
a

If any F(4) has both upper and lower specifications, the
required conditions for a convex acceptable interval are restricted

to (3.29) and (3.30).

3.4 The Network Tolerance Problem

We consider a bilinear netwonk function of the form
(A + ¢B)/(C + ¢D) where A, B, C, and D are, in general, complex and
frequency dependent. For a discussion on bilinear network
functions, see Parker, Peskin and Chirlian (1965) and Géher (19715.

Thus, we assume a2 function of the. form

2
- | At ¢B - N(¢)
F(¢) l C + ¢D ' M(o) " (3.38)

In this case N, M > 0. The coefficients of (3.1) are related to the

bilinear function as follows:

¢ D, +CD, c?
ax= 7 ’ b=-—7
- |o] ]
2 AB_ +A.B

T i1 - " (3.39)
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where the subscripts 1 and r denote the imaginary and real parts of
b
the complex number.

3.4.1 Filter Example

~

We have studiled the behaviour of Iolz, the modulus squared of
the reflection coefficient p, for the LC lowpass filter (Fig. 3.5) with
respect to the variations of L, ¢, and C3, respectively., Figure 3.6
shows some of the curves for different values of frequency. The
three vertical lines on each drawing represent the nominal values and
the extreme values of $257 relative tolerance. The nominal values for

L, C2 and C3 are 2, ,125 and 1, respectively. C1 = C3 for reasons of

symmetry.
The curves for L and C2 have two turning points each. For

example, at w = 1, (w denotes frequency in rad/sec.)

81L% - 144L + 64

lowy|? = 2L :
82L" - 160L + 128

(3.40)

The turning points are at L = ,889 and L = 8.0 corresponding to the
minimum of lp]z = 0 and the maximum of Iplz = 1, respectively.
Setting Iplz = %%—* c, we can solve for one unique point L = 4.44 at
which the curve is divided into two parts: Iptz > .988 for

L 2 4.44 and Iplz < .988 for L € 4.44. The maximum and aininum
function values occur separately in the two parts. The derivatives

at the boundary of the tolerance region are both positive,

indicating that the curve is monotonic in the region (both

—

fe o m———— f®



= .
U]
[
3]
C2

Fig. 3.5

|

An LC elliptic lowpass filter example.
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pseudoconvex and pseudoconcave).

For parameter C2 at w = 1

2
Io(Cz)l =

The maximum and minimum occur at values of .5 and -.5, At C

the curve is again

4c? +4c, + 1

2 > 2 . . (3.41)
8ck + 2

2 =0

divided :into two parts for lqlz > .5 and |p|2 <.5

T

for positive or negative 02 values, respectively.

The curves

function is of the
2
locyd|” =

The minimum occurs
for frequencies in
For the worst case

of an interval, it
e

for C3 have only one turning point. The biquadratic

form

C. + 2aC, + e

3 N

N (3.562)

w N N

C, + 2aC, + b

3

at C, = -a. The curves are psehdggii:ex on (~w,®)
both the passband (0 £ w £ 1) and stopband (v 2 2).
at stopband frequencies to occur at the boundary

is required that the curves corresponding to these

frequencies also be pseudoconcave on the interval, i.e., th€ curves

should be monotonic on the interval.

A situation which violates the conditions may be-feund, for

example, by studying the w = 2.0 curve of Fig. 3.6(a) for L hegween

0 and -1.
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3.5 Conclusions

Conditions for the worst case to occur at the boundary of an
interval have been presented. The conditions may be used at least to
partially justify the usual assumption that the worst case occurs at
a vertex of the tolerance region. The present chapter deals with a
one-dimensional case. Bandler (1972, 1974) has already related a
one~dimensional convexity assumption for the acceptable interval to
that of the k-dimensional case. Thus, Theorem 3.1 involves necessary

conditions for the vertices of a k-dimensional region.
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CHAPTER 4

IMPLEMENTATION IN NETWORK DESIGN
4,1 Introduction

In this chapter, it 1s ghown how to implement the ideas of
Chapters 2 and 3 on a digital computer. Objective functions,
performance specifications and parameter constraints are handled in
a manner such that any ofxthe mdminal values, tolerances or tuning
parameters can be fixed or varied. Time-saving techniques for
choosing constraints (vertices selzction) are discussed in detail.
Schemes based on the assumptions. of generalized convexity and
monotonicity'properties of the constraint functions are proposed.

The schemes also check the conditions listed in Chapter 3 gnd perform a
worst~case analysis. The schemes suggest the development of a general
user-oriented computer program package called TOLOPT (TOLerance
OPTimization) described in Appendi% D. See also Bandler, Liu and

Chen (1974b, 1975). '

This chapter contains a brief discussion of network symmetry
and how it may be‘implemented to further reduce the number of
constraints.

The optimal worst~case tolerance problem which 1s véry

important in its own right is treated in Part 1. Part 2 brings in the

tuning of one or more circuit components basically in order to further
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increase tolerances on all the components. The implementation of
tolerance~tuning problems is similar to the implémentation of the
tolerance problem. See Bandler, Liu and Tromp (19755, 1975b).

The nonlinear programming problem takes the general form:

minimize  £(x)
subject to gi(¥) 20, i=1, 2, ..., o

f is the chosen objective function. The vector X represents a set of
design variables which include the nominal values, the relative and/or
absolute tolerances or tuning variables of the network componéntS’and
all the slack variableségssociated with each distinct outcome, The
constraint funct}ons gl(f)’ g;(f), ceey gm(¥)’ comprise the selected
response specifications: component bounds, slack variable bounds and
any other constraints. The constraints are numbered from 1 to m for
simplicity.
. Unless otherwise. indicated, the examples in this chapter are
solved by the foliowing ﬁethods; The nonlinear programming problem
is transformed into  an unconstrained minimax problem by the
Bandler~Charaiaﬁboué technique (1972a, 1974). T£e solution of the
_ reéulting minimax proﬂleﬁ is found by least pth approximation.
algorithms alsq proposed by Bandler and Charalamb&us (1972b, 1972¢).
Fletcher's minimizétion methods (1970, 1972) are used to minimize

the transf;rmed unconstrained function. The soiution of discréte

t

problems in this thesis are obtained. by the branch and bound

61
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approach (Dakin 1966, Garfinkel and Nemhauser 1972). These
ﬁethods are .featured in a user-oriented computer program called
DISOPT (see Bandler and Chen 1974, Chen 1974) which is described
in Appendix C so as not ta interrupt the flow of the phapteru

Part 3 deals with two realistic circuit design problems.
The bandpass filter was studied by Butler (1971), Karafin (1971) and
Pincl and Roberts (1972). Substagtial improvement is obtained by
our method. The highpass filter was suggested by Pinel (1974) and
Roberts (1974). They did not exploit the advantages of tuning. We

have, however, expiored the effects of tuning in this example,.



PART 1

TOLERANCE OPTIMIZATION

4.2 Numbering Scheme for Vertices -

The set of vertices of a tolerance region RV is given by (2.9).

We will label each vertex by an integer from the index set Iv such

that
¢r2¢0+5ur
where u; ¢ {-1, 1} and satisfies the relation
k ur +1
r=1+ ] [-s—]297 . ,
2
i=1
Thus, B
(-1 ] [ +1 ] [ -1
-1 -1 +1
1 2 3
RS B RS B RS B R
"- - . v
[ -1 | =y L -1
A
~—

(4.1)

(4.2)

r"+l

+1

L+1

(4.3)

(4.4)

e

e s s e e
g

o . ha o
o T S

([
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This notation will be used throughout this chapter unless otherwise

indicated.

4.3 One-Dimensional Quasiconcave Functions

A function g(¢) 1s said to be quas«concave in a reglon if, for

all ¢, ¢° in the region,
g (62 + A(6°-6%)) 2 min{g(4?), g(?b)], (4.5)

for all 0 £ X 2 1. See Mangasarian (1969) and Appendix A for some
"other definitions and some properties of the functioﬁ. An

immediate consequence of (4.5) is that the region defined as

{?lg(?) > 0} is convex. It can be proved that the interse;tion of
convex regibns is also convex. Now, the convexity condition implies
the one-dimensional convexity Fondition necessary for Theorem 2.2

and Theorem 2.3. We have given the term one-dimensional quasiconcave

function to a function which satisfies (4.5) when ¢b is given by

¥ = 62 847 4 qe

4.6
o= b+ a2y, “.6)

for some constant a. The region defineq by such fun;tions is called a
one-dimensional convex negion. Pseudoconcavity implies quasiconcavity.
The conditions for concavity and monotonicity with reéspect to each
variable discussed in Chapter 3 certainly apply to the case of

one~dimensional quasiconcave functions.

v



4.4 Conditions for Monotonicity

Given a differentiable one~dimensional quasiconcave function
g(¢) (here we consider one variable denoted by ¢ for convenience),
the function is monofonic with respect to ¢ on an interval [¢a,¢b] if
sgn(g'(¢af) = sgn(g'(¢b)), where g' 1s the first derivative of g with

. .

respect to ¢, and sgn(-) denotes the sign of the function.

Furthermore, the minimum of g(¢) is at

6 =3 06 + 0" - sgng' (4™ (00-6H]. T (4.7
~ »

.

This may be proved as follows.
Consider the case sgn(g'(¢a)) = sgn(g'(¢b)) > 0. Suppose

g(¢) 1s not monotonic. Then there exist two points

o', o8 e (6%, D), ' (4.8)
where

oF > ol - (4.9)
such that g'(¢1) <'0 and

g > g, (4.10)

Thus, for some 0'< X < 1
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1 2
g(o" + 2o - o' < geh, Y (.11)
which.contradicts the definition of quasiconcavity., The assumption
that g(¢) 18 not monotonic is wrong, hence, g(¢) is monotonic.

Furthermore, it is nondecreasing on [¢a, ¢b]. The minimum is at

$% = -21- (62 + ¢° - sgn(g' G2 (6> - 3] (4.12)

in this case.
Similarly, it may be proved that the case
sgn(g' (%)) = sgn(g'(¢b)) < 0 implies monotonicity with g(¢)

nonincreasing on [¢2, ¢b]. The minimum is at ¢b.

4.5 Implications of Monotonicity

Suppose By is monotonic in the same direction with respect to

¢j throughout Re' Then the minimum of By is on the hyperplane
g :
63 = ¢? - Ej sgn(sgl). Hence, only those vertices which lie on that
J

hyperplane need to be constrained. In general, gﬁ_there are &

f
variables with respect to which the function By is monotonic in this
way, the Zk—g vertices lying on the intersection of the hyperplanes

are constrained. In the case where £ = k, the vertex of minimum g

L4
Py

r
occurs at ¢ , where

r 38

0 i
¢j ¢j £ sgn(z—), for all j € I

3¢j 6 (4.13)
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4.6 The Vertices Elimination Scheme

Various schemes may be developed to identify or to predict the
most critical vertices that are likely to give rise to active
constraints. Any scheme proposed should eliminate all but one vertex
for each constraint function in the most favourable conditions. When
monotonicity assumptions are not sufficient to describe the function
behaviour, the schemes should increase the number of vertices until,
at worst, all the Zk vertices are included.

In principle, our schemes may be stated as follows:

Step (1): Systematic generation, for a > @, sets of points

b(3)

o2, ¢ = ¢2 + qe,. (4.14)

Step (2): Evaluation of the function valueé and the partial

derivatives at these points.

g, %8y
Step (3): If sgn(z— ) = %8nlgy b($)
: 3 le=¢

~ -

¢=¢
eliminate the vertices ¢r '3 Rv on the hyperplane

g

- 40 e
It g ) <0 and sgnl ). > 0
sgn (= < and sgn(z~— -> 0 , note

that the quasiconcavity assumption is violated.



‘\‘ * t
The different schemes depend on the different ways of
; implementiqg Step (1). Three methods of increasing complexity can be
described as follows: '
b 0
Co@ ¢t = =g,
' a 0 - b 0
b = - < and = + e.e for all j e I
R TR At $etp
e ‘ (c) the vertices of Re"' )
~ )
- < .
- «
Methed (a) 1s a gpecial case for which the first paré of (3) is
applicable. For method (c), a worst-case check can be accomplished as
a by-product of the vertices elimination scheme since function values
are computed at ‘each vertex. . )
‘ R .
It is possible to further eliminate some vertices.by ranking
! the values of g(¢r), where ¢r are the gelected vertices, in ascending
“ order and rejecting those having sufficiently large values.
‘ 1

Since the schemes are based on local information, the vertices
chosen should be updated at suitable intervals. |
YN
4,7 Symmetry Congiderations
A designer should‘exbioic symmetry to reduce computation7time.
The following is an example of)how it may be done in the tolerance-

»

problem,

~



b

A function is said to be symmetrical with respect to S in a

region if
g(s ¢) = g(¢), (4.16)

where S 1s a matrix obtained by ‘interchanging suitable rows of a unit
matrix. It has exactly one entry of 1 in each row and in each column,
éll other entries being b.

A common physical .symmetry configuration is a mi{tron~-{mage

3

égmmetag with'reapect to a center line. The S matrix in this case is

“[o 1
g 1 :
S = . . : (4.17)
1 0

Postmultiplication of a matrix A by any S simply pérmutes the
columns of A and premultiplication of A permutes the'rows of A.
ssT = 1 and S'DS = D_» where D is a diaébnal matrix and D, is also a

diagonal matrix with diagonal entries permuted.

Consider symmetrical S, ¢0 and €. By this we imply

-— -
.

S(S A) = A, ) . ' (4.18)

§ ? = ¢ ' . ' (4.19)
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and

r N
[ <o)

S=E. (4.20)

Let us premultiply the rth vertex ¢r by 5, giving, from (4.1)

T aseles@EV), re I

TN
16
"

o0 + st E s W)

~

=4 +ESu. p (4.21)

Now, S<ur‘is anothéf vector with +1 and -1 entries. Let it be

: 8
denoted by us, seIV. In some cases ur is identical to u , if the

vector is symmetrical. In other cases, ur # us. In all cases,

s¢f = o2, ' (4.22)

-~ o~ -~

Making use of the symmetrical property of g,

b

8(597) = g(3") = g(4%). e (s23)

X

=

3
Let .the number of gymmetrical vectors ur and the number of pairs of

x{onsymxhetrical.ur and pa be denoted by N{r=s) and N(r#s), respectively.

Then '

B
¥

”e‘



N(r=s) = 257%g, 2% <k, (4.24)

and
N(rds) = (25 - 2% 7Kgy 0, 2% <k (4.25)

where ks is the number of pairs of symmetrical components. There are,

therefore, N(r=s) + N(r#s) effective vertices as compared to 2k

topological vertices. Take, for example, k = 6 and k, = 3. Only 36
function evaluations are required for all the 64 vertices. For more
details about sympetry, see, for example, Yale (1968).

The above discussion and results may be used to reéuce
computation time. In general, however, it is not certain that a
nominal design without tolerances yielding a symmetrical solution will
imply a symmetrical optimal solucion’with tolerances; either in the

3

continuous or in the discrete cases,

4.8 Formulation of Constraints . .
éﬁ - . L

After eliminating potentially inactive vertices, each chosen

i
vertex is associated with a datfa vector a , which has the form
/ . ° -~ . ‘

"

i - . ,
a Q ,. i-l"z, -'.’ml. ’ (4.26)

£ W0 1T
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where ¢ is an independent parameter denoting frequency or any number

to identify a particular function for which the vertex ?r is chosen,

u 1s the vector associated with ¢r. ma is the total number of distinct
vectors ai. §S 1s a specification and w a welghting factor associated

with each ¢. In our present work,

+1 1f S is an upper specification
w o= ‘ (4.27)
-1 1if S is a2 lower specification.

The peaformance constraints may now be formulated in the form

of

g =w(sS~-F) 20, ” ' (4.28)
with appropriate subscripts. F is the circult response function
evaluated dt the appropriate vertex and 9.

The parameter constrhaints that define the feasibility of a

»

design are
0 - -6 20 (4.29)
h| k| 23 .
qnd.
6 . ~e0 €. 20 . (4.30)
uj 3 i .-
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where ¢uj and ¢£j’ jel , are the user supplied upper and lower

9
bounds, respectively. Let m be the total number of constraints,
including both the specifications énd the parameter bounds.

/

4,9 Examples

4.9.1 Two-Section 10:1 Quarter-Wave Transformer v

To illustrate the basic i&eas of different c¢ost functions,
variable nominal point, continuous and discrete solutions, a two-
section 10:1 quarter-wave transformer is considered. See Bandler and
Macdonald (1969), Bandler and Liu (1973, 1974a). Table 4.1 shows the
spécification of the design and the result of‘a minimax solution

without tolerances. Figure 4.1 shows the contours of max Ipil with .
: 1 )

respect to the characteristic impedances Z Py denotes the

and Z

1 2°

‘reflection coefficient at the ith sample point, The unshaded region

is Rc which satisfies all the assumptions of convexity.

Two cases are presented here,

Case 1: Optimization of relative tolerances

The.cbgt function 18 of thé form

1 1 ‘ . . )
R S (4.30)
1 X, % .
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N

1
¢ {128,128} %

q
a
o

n 7

ys's y/&@ // /
45 59 . 6 5 .8

pryiy,

. o . R <
Fig. 4.1 Contours of max ]pi] with respect to Z? and 22 for the

2- section transformer example, indicating a fiumber of'

relevant ‘solution points (see text).
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Case 2:

0
X, = ¢y = 2y

76

(4.32)

The optimal solution of C, with respect to variables x; and

X, and a fixed nominal point at a yields a continuous

tolerance set of {8.3, 7.7}%. For the same function with a
\

variable nominal point, the set is {12.8, 12.8}% with

optimal nominal solution at b, d and e correspond to the

two discrete solutions with tolerances 102 and 15%. The

allowable discrete tolerance set is {1, 2, 5, 10, 15, 20}Z.

Optimization of absolute tolerances

The cost function is of the form

)
A

1 1
C n-—-—-+ —
2 xl Xy

where

*3

(4.33)
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Xl = El
27 %
(4.34)

T 0 N Y
X3= 4 =% \

0 ‘\

0 \
Xy =4 =2 \
\\\
# _ The optimal solution of C2 with respect to xl,\gz, Xq and X,

.
PN

yields a tolerance set of {15.0, 9.1}% with nominal solution

at C.

~

.

It may bé noted from this example that an optimal discrete
solution cannot always be obtained by rounding or truncating the-
continuous tolerances to the discrete values. The nominal points
must be allowed to move.

)

¥ PSS

e
4.9,2 Three~Component LC Lowpass Filter

/
. .
A three-component LC lowpass filter 'is studied to illustrate \\\-~\
some discrete solutions., The circuit is shown in Fig. 4.2. Table 4.2

summarizes the specifications. The objective function is

1.1, 1 L
C ‘;{'—"l""-'--f';c-—, (4.35)



L, L,
1 : = 1
)

vk \
- T

Fig. 4.2 The circuit™for the LC lc{wpass fi]’-tT example.
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where

Table 4.3

solutions.

™
st

|

x 100

-
— O
a\

- ™
N O N

x 100

o™
\ 73

R
b

100

-

(4.36)

]

©-

O WO
<o

=¢3=L

lists the results for hoth the continuous and discrete

It may be noted that one of the discrete solutions as

well as the continuous solution yield symmetrical results although

symmetry is not assumed in the formulation of the problem.

: -
4.9.3 Five-Section Cascaded Transmission-Line Lowpass Filter

Cohsider a five-section cescaded lossless transmission-line

. lowpass filter with characteristic impedances fixed at the values

0
8!

Z

0 .0
= Z3 = ZS = 0.2,

(4.37)

= Z =5‘O
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and terminated in unity resistances.

{1972¢) for a minimax solution without tolerance considerations and

See Bandler and Charalambou§

_see Table 4.4 for the specifications. The length units are

normalized with respect to zq = c/bfo, where f0 = 1 GHz.

Two problems are presented here.

Problem 1: Optimization of lehgth toleranges

Problem 2:

A uniform 1% relative tolerance 1is allowed for each

impedance. Maximize the absolute tolerances on the section

lengths and find the corresponding nominal lengths. Let

the cost function be

5
c= 7 2
1=1 %4

where

X, = ¢, i=1,2, ..., 5,
i Li ‘
Q

Optimization of impedance tolerances

A uniform absolute length tolerance of .00l 1s giwen,

]

(4.38)

(4.39)

Maximize the relative tolerances on the impedances and

obtain the corresponding nominal lengths. Let -the cos&

function be

WAt g T Y N F
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5 |
Ce J = . , 14.40)
,x >
. i=1 7
. where
Ez1L .
x, = =—5x 100, i=1,2,..,5,
% Z '
, i (4.41)
x = £0 i=1,2, ..., 5.

. The filter has 10 circuit parameters which may be arranged in
“the order Zl’ 22, caey ZS’ ll’ 22, ceey msm To'simﬁlify the problem,
- symmetry with respect to a center line through the circuit is assumed.

The matrix S is given by

(4.42)

which also implies that zg = Lg and lg = 22. The same kind of

equalities are applied to the tolerances.

The second vertices elimination scheme ig~applied with values
at the optimal nominal values without tolerances and the relative
impedance toi;?ance add the absolute length tolerances at 2Z and .002,
reabectivély.A A total of 46 vertices corresponding to all the
frequency points were selected from a possibfe set of 9 x 210, 14

were furthetr eliminated by symmetry. A final total of 15 const*ain;s

were chosen after comparing relative magnitudes. These 15 constraints

- - b
R

- P gl

-

e b i,

i
fag

. “9&»'; -




R “
P

were useduzﬁfméggﬁﬁb the optimization. The continuous and discrete

solutions to the two problems are shown in Tables 4.5 and 4.6.

4.10 Discussion

The schemes discussed could be started, theoretically, from
any arbitrary initial acceptable or unacteptable design to obtain
continuous and/or discrete optimal nominal parameter values and
tolerances simultaneously. Optimization of nominal values without
tolerances should, however, preferably bs done fifst to obtain a
suitable starting point, The effort is small compared with the
complete tolerance p}oblem when a small value of p greater thgn
unity, e.g., 5 = 2, is used in‘the least pth optimization. An exact
minimax solution is not needed. See Charalambous (1974). This also
serves as a feasibility‘check. If Rc 18 indicated to be empty, the'
designer has'to relax some specifications or change his circuit.

_ The solution process may also provide valuable information to the l
&esigner, e.g., parameter or frequency symmetry.

With a reasonable starting point, a prediction of the critical
vertices.could be more accurately done, The last example presented
isua %;rge problem from the'tolerance optimization point of view. Out
of a possible 9216 constraints, only 15 Qere chosen. The .ability to
choose the minimal number of constraints is vgry%}qportant for the.
branch and bound discrete optimization since each branching step

involves a complete continuous optimizar. in.
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process

88

Several properties of the.centering and tolerance assignment

were demonstrated by the examples. In particular,

(1) Any circuit parameter can be fixed or varied, toleranced
or otherwise, continuous or discrete,

(2) An optimal nominal poing without tolerances may not be
optimal whe; the components are toleranced. By allowing it

to vary; tolerances may be enhénced. "

(3) The best discrete solution canriot always be obtained by

- S S

rounding or truncating the optimal continuous solution,
(4) A éymmet;ical continuous solution does not necessarily ’

imply a symmetrical discrete solutionm.

Y-
<

o



PART 2

TOLERANCE-TUNING OPTIMIZATION

,
4.11 Formulation of Constraiﬁts ' -

Consideg the constraints of the form
g =w(S - F) 20, (4.43)

with appropriate subscripts. ‘F is the circuit response function

evaluated at sample point ¢ and point ¢ which is given by

$=Pp" + (¢? telpl(e. : C4.44)
T e -

Information required for (4.44) is contained in the vectors

4

-

|
!
I
f

=

1=1,2, 0y m. (6.45)

t
o
e
" b=
-

w

— -

.

The projection matrix P and the index sets It and IE are fixed- -

for' a particular problem. They are determined before optimization

takes place. ) ..

g

o
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The vector of variables x consists of qpe variable nominal

»

values, tolerances, tuning variables and all the appropriate slack

<

; t
yariables pj(r), jeIt, rer.

Each of the slack variables is assoclated with two extra

-

parameter constraints,

L-pjm20 (4.46)

and

1v

1o+ pyr) 20, . (4.47)

for apprOprﬂzte J and r, These two constraints, however, may be

combineh to form
1 - (pj'cr))2 2 0. (4.48)

Let m be the totafjnumher‘of constraints which include the

performance specific?tions‘giggtrby (4.43), slack variable bounds
given by (4.k§) and (4.47), parameter bounds given by (4.29) and
(4.30); and any other extra constraints not considered above. In

general, for linear network design.in the frequency domain

"n = ko + ks + kt(l + nv) (4.49)

o el iy g 1t o
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and

n

N ¥ .
m= [ 121 n, (1] + 2kn + ... (4.50)

where ko, ke and kt are the number of variable nominal parameters,
k
toleranced and tuned parameters, respectively; n, <2 % i{s the number

of distinct vertices chosen; n, is the number of frequency points

¥

considered; nv(i) is the number of vertices chosen at the ith

frequency point and 2ktnv is the number of slack variable bounds.

4.12 Three-Component LC Lowpass Filter Examples

The LC lowpass filter presented in Section 4.9.2 is considered.
For each frequency sample point 23 = 8 vertices for the tolerance
region can be obtained. The criticai vertices selected are ¢6 at

Yy = wl, ¢2, ¢3; ¢8 at ¥ = w& and ?1 at ¢ = ws, where

~

¢=1C | (4.51)

For this problem, the vectors ai, i=1, 2, ..., 5, are

¥

-




6 6 6
+1 +1 +1
-1 -1 -1
a1 = | +1 R a2 - | +] R 33 = [ +1 ,
0.45 0.50 0.55
1.5 1.5 1.5
L1 1 1
[ 8 T 1]
+1 -1
+1 -1
a4 = | +1 , a5 = | =1
1.0 2.5
1.5 25
1 -1

Three problems are presented here. See Bandler, Liu and

Tromp (1975a).

4.12.1 Effective/'Tuning for One Component

~

Case 1: L, tuned, C and L, toleranced.
Wg consider an objective function based on the relative

tolerances of C and L2 in the form

ol

Urh4h>
A

arsJu:

C =

92

(4.52)

(4.53)

e
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where, assuming t. = t. = 0, and some fixed value'of ¢

C L L,’

2 1

(4.54)

The cost of element L. is assumed fixed. It, therefore, is

1
not included in {(4.53).

The last three transformations are chosen to avoid changes

of sign. There are three distinct projected vertices: ¢6{”1 i
¢§ and ¢;- The projection matrix in this case is

0
P o B ‘ (4.55)

Therefore, the other variables may be identified as
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-
X; = 01(6),  xg=01(8), x5 =oi(D), (4.56)

I4

Substituting the numerical values from (4.52) into (4.44) we

.

have the féllowing.

e R R

2 \\\ 7
Xl + X4x7 Pt ‘
2
= | %y = xg , (4.57)
2
x3 + x6 Qg
-//
4 '
2" > 4 = Pg0 4 (0] + t1pl(B))e,
2 Fd
xl + x&xa ]
2
= | x4 x5 |, (4.58)
(a s Xy + xz
a> = ¢ = Pl + (0] + tioT (e,
) .
x) + X;Xg ) ) .
2
AR . (4.59)
X3 =~ Xg

The performance specifications By» i=1,2, ..., 5, nay now

be formed., Additional constraints are given by '

s el s S =




) 95
—
. . .
Bopoio1l - bV Xguy .
1=1, 2,3, (4.60)
Boypy = 1 7 ¥euy .
e 4
2 S
819 =t - xb/xl. '

The last constraint 812 is designed to limit the tuning range
to t.. Table 4.7 shows results for three values of t.- Fhe
same res;lts are obtained replacing the term X, + xei by

xl(l + trxi)' i i’?, 8, 9, allowing 812 to be removed, and %

!

reducing the number of variables by oéne, since 212 is active, %

N {

o

!

C tuned, L, and L, toleranced }

We consider an objective function based on the relative }

. !

tolerances of L1 and Lz in the form ’ 1
x x

= L2423 . (4.61) 4

2 2 , ]

X, X . ‘

. 1
X, = ¢ =g,
4 1 L ]
(4.62) E
2 _ . - !
¥g = by = to T Eey

”
P 4

Qith tl =ty = 0, and some fixed ¢ In this casé

c*

L
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and there are only two distinct projected vertices ¢6 =

and ¢:. The slack variables are
= ' = v

We have now,

4 0,
al, af, 2%, 2" = ¢ = % 4 (0 + 02 (B))e,

-

Additional consérainéa are. given by

97

(4.63)

8

%

(4.64)

(4.65)

(4.66)




4.12.2

&

98

Bs42i-1 = 1 ¥ Koy

i=1,2, L D)
Bsppg =1 - Xy \

2
810 = tr - xS/xz’
Table 4.8 shows results for three values of t.. The same
results are obtained replacing the term X, + xgxi by
xz(l + trxi)’ i=17, 8, removigg constraint 810 and reducing
the number of variables by one. We note that larger

tolerances are obtained than before for corresponding

-

tuning ranges.

Tolerancing and Tuning for One Component

We consider t to be both toleranced and tuned and min}mize’

s . (4.68)

c S | (4.69)

.
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and tl =t, = 0. The cost of tuning is assumed fixed. It is,

therefore, not included in (4.68). The slack variables are
x7 =. 92(6)‘ x8 = 02(8)' X9 = 02(1)' (4‘70)
Here, :
3

?1: 529 e => ¢ = 4’6 + t292(6)32

2
4
2
i = | X = %Xg Fr XX, ’ (4.71)
2
6

-

4 .
a => ¢ = ¢8 + t202(8)e2

2
4
2 ‘ - .
= x, + Xg + t XoXg s (4.72)
2
6
5

@ 2 4= 47+ 0py e

+ trxzx9 { — ” (4.73)

100
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with t, = trco. Constraints B to 8y, are as in (4.60).

The results are shown in Table 4.9 where we note that for 5%
and 10% tuning we have an effective tolerance problem, whereas for
20% tuning we have an effective tuning problem. Rerunning the same
problem with tr J‘O.OS and X, = 1, Xg = -1, Xg = 1, which imply
effective tolerances, the same solutlon as for the 57 tuﬁing range is
obtained.

%

4.12,3 Optimal Tuning

In this example we include the tuning range in the objective

function. Two cases are presented.

Case 1: Tolerancing and tuning for one component

-

We take a similar formulation to the last example except that

o
»
"

leNlN
~ o

+
[e]
hfl »

(4.74)

& l

rof -
I

[+ 9 SN 1 T X ]

where ¢ 1s a weighting factor and the term t.x, is replaced by
2 . 2

Xqs Xy by X440 i=7,8, 9. This implies that ty = Xy The

constraints remain the same except for 8¢ to in with Xy

updated by Xig1®
Table 4.10 shows results for different values of c. Note thpc

h‘ghfeshold value of c seems to occur somewhere between 10 and

20. Below that threshold, the solution in terms of an

effective tuning and tolerance problem is unaffected. Note

b e e .

T e
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also the transition for ¢ = 50 from effective tuning to
effective tolerancing. When ¢ is very large we obtailn the

tolerance solution presented in Table 4.3.

Case 2! Tolerancing and tuning for three components

The objective function considered 1s of the form

3 0
¢i t

c=] |Z+c—t ~ (4.75)
i1=1 ei ¢i .

We consider one additional vertex ¢3 in order to bound the
solu;ion during oétimization.//7

We omit details of the constraints, and summarize the final
results in Table 4.11 for different c. The results are the
same as in Table 4.10, but the computational effort has
substantially increased. This formulation, howéver, has
verified that ¢2 = C should be effectively tuned for < less
than 50, and the other parameters effectively toleranced.
The values of p(6), 8(8)’ p(1) and p(3) confirm these

observations.

4,13 Discussion

The formulation™Nof the constraints for the tolerance-tuning
problem has bken treated. By its very nature the problem is a large
one, even for debddgns with a relatively small number of parameters.

Practical implementaf\ion depends heavily on one's ability to select

104



TABLE 4.11
RESULTS FOR THE LC LOWPASS FILTER

(OPTIMAL TUNING, CASE 2)

B@rameters . c =10 c =20 c = 50
Lg\- L) 1.8440  1.9221 2.0492
c® 1.1730 1.0486 0.9069
100 /LY = 100 e4/L)  31.62%  23.84 7 16.15 %
100 ¢,/c” q;}@z % 2236 % 14.14 %
100 ¢, /12 = 100 £,/ 2.54 % 0.00 % 0.00 %
100 ¢,/c’ 54.31 % 35.89 % 14.14 %
046 -1.0000  -0.7165 0.9743
0, (6) 0.1645 0.2466 1.0000
04(6) ~1.0000  -0.9992  -0.9846
Py (8) ) ~1.0000 -1.0000 -0.8813
p,(8) ~1.0000 ~1.0000 ~1.0000
04(8) -1.0000  -1,0000  -0.9876
o, (1) 1.0000 0.9887 0.9933
o, (1) 1.0000 1.0000 1.0000
p5(1) 1.0000 0.9989 0.9029
p1(3) ~1.0000 0.8433 -0.6051
0, (3) ~0.1645  -0.1468 0.6434
p4(3) 1.0000 0.8944 0.6441
100 e}/L] =100 €3/L)  29.08 % 23.84 % 14.14 x
100 t3/c’ 2269 % 13.53 % 0.00 X

n-= 21 m= 36

105
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a sufficiently small number of relevant vertices or critical points

and constraints likely to be active, as well as meaningfui variables,
Several properties of the centeriné. tolerancing and tuning

process that have been noted previoﬁsly were very much in evidence %n

~ !

the examples studied. In particular,

(1) Tuning one or more components enhances the overall
tolerances significantly. The results presented could not
have been obtained without considering centering, tolerancing
and tuning in an integrated manner.

(2) Tuning of C cogserves the symmetrical properties of the
filter and a set of larger tolerances is obtained than by
tuning Ll'

(3) When the tuning range does not appear in the objective
function, a bound 1is needed.

{(4) The results of the investigation seem to justify the
reduction of the general tuning problem into one containing
effectively toleranced and effectively tuned components,
where appropriate. If the separation of the components is
not decided in advance, the general problem as demonstrated
in Section 4.12.3 with the cost function reflecting both
tolerances and tuning ranges is appropriate, aince an
optimization program tequireé an explicit number of
variables and constraints in advance. Compare the results

of Tables 4.10 and 4.11.
o




107

(5) Zero tunigghis indicated when the cost becomes too high.
(6) Except for the last problem considered, all the slack
variables assume either the value of 1 or -1. This

observation may indicate ways of simplifying constraints

and eliminating some slack variables.

%
1
{
£




- 7\ PART 3

REALISTIC DESIGN PROBLEMS
4.14 Introduction

Two realistic circult design problems are now studied. The
circuits under investigation have been repérted to be in production
in the telephone industry. The first circuit is a bandpass filter
which 1s subjected to tolerance optimization. It has been séudied by
Butler (1971), Karafin (1971) and later by Pinelé;nd Roberts (1972).
The other circuit is a highpass filter for a digital receiver. It

was suggested by Pinel (1974) and Roberts (1974). We have investigated

it as a tolerance-tuning problem. ’

4.15 Tolerance Optimization of a Bandpass Filter

The circuit schematic is shown in Fig. 4.3. Specifications of
insertion loss are shown in Table 4.12 and a frequency response at the
nominal values obtainéd from Rarafin's result is shown in Fig. 4.4.

" The reference frequency 1s at 420 Hz., Six greﬂﬂency pointse are taken,
two for the passband. A constant Q is asgumed for the four inductors.
and, therefore, the four corresp?nding resiqtances are dependent -
variables. Parameter values are scaled by‘normalizing with respect

to the central frequency and the load resistance such that the
inductors and capacitors will have thé-game order of magnitude to

avoid ill-conditioning during optimization.

We have considered three different objective functions
108



109

&

1200

Fig. 4.3 'ﬂ*é circuit for Karafin's bandpass filter.
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- § b
= T
Vogs &
8
1
c,- 7 L,
2 =1 5
and \
2
e § ren,
= log  —,
3 i=1 e Ei
where
[ 0] r T
L L
o 1
C, . ¢,
v 0 s
Ly L
5 3
¢0.. Clp ’ € = EC
¢ 0 € 4
Lg L
5 5
Ce €c
0 .8
L7 EL
0 7
C £
| 3] | %

Initially, components L, and Ca are assumed equal to L1 and CZ’

3

(4.76)

4.77)

(4.78)

(4.79)

respectively, reducing the number of variables to 6 and the number of

6
vertices to 2 . Because of some violations, symmetry is mot assumed

for the objective function C,-

The SUMT method (Fiacco and McCormick 1968) is used for this

particular problem with starting nominal values used by Pinel and

- %

i1l

. A st e
* .  —
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Roberts and a %% tolerance for each compoﬁent. The penalty parameter ;
r (see Appendix C) is set to 1 and is made successively smaller by a
factor of 10, Table 4.13 shows some results and Fig. 4.4 shows the

optimized nominal regponse using Cl. Note that the cost listed in

8 ¢ {
Table 4.13 1s z Ei-x .01. There are no violations observed for .
i=1 71

both the Monte Carlo and worst-case analysis at the specified

frequencies assuming 28 vertices, The relative insertion loss,

however, becomes negative in some instances at other uncontrolled i

%
frequencies in the passband. ?
4.16 Tolerance-Tuning Optimization of a Highpdss Filter 1

The circuilt diagram 1is shown in Fig. 4.5 and the basic

gpecifications for the design are listed in Table 4.14, The insertion

g

loas relative to tﬁe loss at 990 Hz is to be constrained as

indicated with resistances R5 and R7 related to Lg and Lg with

constant Q. The terminations are fixed, the designable parameters

being Cl, CZ; C3, C&’ LS’ C6 and L7.

The objective function throughout was takén as

]

7 ¢g « .
¢ = 121 -, . (4.80)
= i .

where




TABLE 4.13

RESULTS FOR KARAFIN'S BANDPASS FILTER

(TOLERANCE OPTIMIZATION)

113

Karafin, .
Parameters Pinel and C1 C2 C3
Roberts
¢g 1.824x10°  3.0142x10° 2.3206x10°  2.7682x10° g
¢ 7.870x107°0  4.9750x107°  6.3694x10°  5.2611x10° ;
49 1.824x10°  2.9020x10° 2.3206x10°  2.7682x10° i
o5 7.870x10"8  5.0729x107%  6.3694x107%  s5.2611x1078 %
45 4.272x1070  8.2836x10"1  6.0517x107F  7.7895x107% f
49 9.880x10"7  5.5531x1077  7.7708x1077  5.8726x10” j
4 1.437x107%  3.0319x107Y  2.1677x107%  2.5438x107t ;
™ 3.400x1077  1.6377x1077  2.2630x1077  1.8981x10”’ i
100 €,/¢] 3, 3.32 6.9 2.29 7.67
100 €,/69 5, 2.41  6.52 11.26 6.53 i
100 €,/40 5, 330 6.97 2.29 767 '
100 €, /60 3, 241 6.55 11.26 6.53
100 e5[¢g 2 5 114 4.36 . 3.30 4,33
100 e/¢] 2, 1.89  5.69 3.02 8.10
100 €,/¢3 3, 7.80  6.80 6.61 5.85

100c::£ﬁ8f 5 , 2.07 5.25 4.40 2.71
t 2.60, 3.45 1.34 2.06 . "L.46
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Q
A
¢ /(/\
€ Ca Cs
o3>
Cy Ce
Ls Lz
Ry R,

Fig. 4.5 The circuit for the highpass filter example.
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TABLE 4.14

SPECIFICATIONS FOR THE HIGHPASS FILTER

Frequency Basic Relative Weight
Range Sample Points Insertion Loss w
(Hz) (Hz) (dB)
170 170 45, -1
360 360 49, -1
440 440 42, -1
630 - 680 630 4, +1
680 o
710
680 - 1800 725 1.75 +1
740
630
650
680
630 - 1800 860 -0.05 -1
910
930
1050

Reference Frequency: 990 Hz

o 0 2n990Lg 2v990Lg
RS’ R7 ?elated to L5 and L7 through Q = R - R7 = 1456,

5
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o _ -
€1 €
0 1
C £
2 C
0 2
C €
3 C
0 L0 3
¢ = 4 £ = €C . (4.81)
. 5 - 4
L £
5 L
0 5
C €
6 c
0 6
L €
- 7 = . L? -

»

Verification of the designs to be described was carried out
‘wusing all 27 vertices plus the nominal point at 1?0, 360, 440, 630-680
and 680-1800 Hz. Forty-two logarithmically spaced points were taken
for the latter interval, dnd eight for the former interval.

€
Four cases are presented here.

Case 1l: No tuning :
Table 4.15 summarizes the particular frequencies, i
specifications and the particular vertex number employed to g
obtain the final tolerances listed in Table 4.16. The total é
number of variables and constraints are indicated in Table
4,15. Table 4.16 also lists the shifts in nominal parameter

values with respect to those of an uncentered design by Pinel

)

and Roberts.

H
H
|1
}
N

Case 2: 3Z tuning for L5

Results corresponding to the ones for Case 1 are tabulated in

Tables 4.15 and 4.16. Note that all the tolerances have ' }
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TABLE 4.16

RESULTS FOR THE HIGHPASS FILTER

121

Parameters Case 1 Case 2 Case 3 Case &
No Tuning L5 Tuned L5 and L7 Tuned L7 Tuned
tolerance (%) 5.71 6.77 7.90 6.63
nom. shift (%) +18.1 +17.8 +18.3 +17.6
o
tolerance (%) 4.33 4,97 5.32 4.77
nom. shift(X) +16.2 +15.2 +14.4 +15.3
tolerance (%) 4.72 5.81 7.23 5.83
nomn. shift(X) +16.6 +18.0 +18.8 +17.8
tolerance () 4.54 5.03 * 5.15 4,78
nom. shift (%) - 3.8 - 2.2 - 1.2 - 3.1
tolerance (2) 3.29 3.95 4.44 3.82
nom. shift(X) - 3.0 - 3.0 - 4.3 - 4.1
tolerance (%) 6,32 7,05 7.27 6.66
nom. shift(X) - 7.3 - 5.1 - 3.6 - 6.0
tolerance (%) 3.64 4,34 5.04 4.32
nom., shift(X) - 6.4 - 7.9 - 7.9 - 6.3
Cost 157 135 121 138*

*Violation of specifications.

Relative Loss = -0.052 dB at 658 Hz.
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increagsed over the results of Case 1. Figure 4.6 shows the
nominal response as well as the worst upper and lower
outcomes based on all 27 vertices.

A more detalled verification of the rgsults was made. Sixty
logarithmically spaced points were taken from the critical
regioq~630—680 Hz as well as forty from 600-630 Hz. All the

vertices were checked plus the nominal point, followed by

“ 4000 Monte Carlo simulations uniformly distributed in the

) effective tolerance region. No violations were detected, and

thé upper and lower limits of respounse given by the vertices
bounded thé‘results from the Monte Carlo analysis egcept at
638.2 Hz, where the lowest relative loss obtained from the
;ertices was -0.0243 4B, wheré;s the Monte Carlo analysis

ylelded -0.0246 dB.

As a further check on the optimality of these results, L5

was allowed to be both toleranced and tuned as distinct from '

being effectively toleranced from the point of view of

. optimization. The same vertices, an additional 25 p

variables and 50 additional constraints on the p variables

were used without any significant improvement in the results,

The values 0f the p variables confirhed the assumption that

Case 3:

L shoiuld be effectively toleranced for 3% tuning.

3% tuning for Lg and L, -

As indicated by Table 4,16, a further improvement in all’

tolerances has been obtained.
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Filg. 4.6 Passband details of the optimized highpass filter

' (Cames 2),



124

90-

80

70-
2  60-
w
[<2]
(o]
= 50-
- [y
o
®» 40
£

nominal
[+
sponse

% 30- respon
®

20-

10-

o) T T T T T T T T T T :

100 300 500 700

frequency Hz

- Fig. 4.7 Stopband details of the optimized highpass filter
1 2).




125°

Case 4: 3% tuning for L7

The results for this case are, as shown by Table 4.16, slightly

worse than those for Case 2, A slight violation of the

-

specifications at 658 Hz was detected. We conclude that 1if -

only one inductor is to be tuned, L. should be chosen.

5

4,17 Discussion

The problems studied are large from a computational point of
view. The following comments regarding them can be made.

(1) Sometimes seve;al preliminary runs are required to

establish a reasonable choice of relevant vertices and

constraints before a full optimization is attempted.

(2) Both problems demonst;até that the choice of sampling

frequency points is very'important in practical cases.

Violations may occur at uncontrolled frequencies. This

ill~conditio$ing property may be due to the formulation of

relative insertion loss in the passband, noting that it is

the difference of two responses of similar magnitudes.

(3) The Monte Carlo technique may be employed to test the

assumptions of convexity after the final optimization.

Besides the comments made above, other pertinent remarks on
advantages and observations presented in Part 1 and Part 2 also apply.

For some more results and illustrations not included in this thesis,
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see Bandler, Liu and Tromp (1975b).

]

4,18 Conclusions

The advantages of the integrated approach to circuit design
embodying centering, tolerancing a;d tuning have been shown and the
sucessful implementations have been demonstrated by numerous e;amples.
Tge introduction of tuning variables and allowing the nominal point
to méve have enhanced tolerances and subsequently reduced the cost of
eventual fabrication. Time-saving techniques including vertices
selection strategies and symmetry considerations have been presented
and shown to be indispensible for an efficient automated algorithm.
Two realistic problems have been studied. Typically, 1e§s than 2
minutes of CDC 6400'compﬁter time is sufficilent to oétimize small

* .
problems and 5 to 10 minutes is sufficient for larger problernis.
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CHAPTER 5

CONCLUSIONS

In this thesis we have considered the problem of design
centering, tolerancing and tuning in a unified manner. The concept of
a tunable constraint region that allows variable specifications as set
b§ the customer has also been incorporated. This may find-
application, for example, in tunable filters. Rgauced problems
~adaptablé~for computer implementation have been treated. The purely
toleranced and purely tuned problems turn out to be speéial cases,

The examples we have studied seem to justify the reduction of the
general tolerance-~tuning problem into one contalning gffectively
toleranced and effectively tuned components, where appropriate., If

the sep;rétion~;f the components is not decided in advance, the general
probléms as in Section 4.12 with a cost function reflecting both
tolerances and tuning ranges is appropriate, since an optimization
prograﬁ requires an explicit number of variables and constraints in
advance.

A cost function tending to maximize tolerances and minimize
tuning has been implemented successfully in this context. Zero tuning
" ranges were indicated when the cost became too high.

As far as the author is aware, this formulation seems to be

"the most general to date dealing with the centering, tolerancing and

127
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tuning problem at the design stage. Tunlng uncertainties can also be
taken care of in the formulation by associating tolerances with the
tuning.

On the computational side the concept of one-dimensional
convexity ié essential. The application of this generalized convexity
enables us to reduce an infinite number of constraints and variables
to a manageable number. A class of functions that, under certain
conditions, will give rise to such a region, in particular, the class of
one-dimensional biquadratic functiohs, was investigated. These
functions include the frequency response magnitudes of common linear,
lumped, .time-invariant circuits. Further reduction has been
demonstrated by exploiting monotonicity and symhetrical properties of

the network functions.

Reduction of computation time remains a Ehallenging hurdle to

. ¥
overcome, particularly for discrete problems.

This work has revealed promising directions conceptually and

'
algorithmically for future investigation. )///ﬂ\

{1) Extension of the formulation to correlated parameters.

The deviation from the nominal of one component is often a

’

function of another. This tracking problem is common in
integrated circuit fabricationm.

(2) A two-dimensional equivalent of (3.1) is

NG .6,) X AY .

-~
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t
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sauh e e
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A Y

and )
|T T ]
VB 0 A
3 M2
where
1

i}
01 » Y - ¢2 *

2
% ¢,

AN
and A and B are 3x3 matrices of the coefficients of N and M,

respectively.

of the vertices of the tolerance region can be investigated.
(3) 1Instead of considering exact 100% yield problemé, bounds

on the magnitudes of the constraint function may be obtained,

2¢2

_2¢1

1 2
2
S
2
_¢1 0

Conditions for the worst case to occur at one

say, from a multi-dimensional extension of equations (3.5)

and (3.6) to predict the yield of a given design without a

Monte Carlo simulation,

(4) Practical applications of tolerance~tuning ideas to

/optimize circuits subjected to parasitic loss effects (Temes '

1962), stray elements and uncertainties in modelling. See,

for éxample, some efforts by Bandler, Liu and Tromp (1975b).
(5) A special purpose optimization method which will choose
and update constraints in the optimization process.

preliminary thought is as follows. Piecewise linearize all

A

F
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the constraints, out of which choose the active ones and
solve the subproblems in an iterative manner,.

(6) The idea of generalized concave functions an; the
implications of signs of derivatives over a region could be

applied to speed up some gtatistical methods that require

repeated evaluation of function values.

e A S .




APPENDIX A

GENERALIZATION OF CONCAVE/CONVEX FUNCTIONS

There 1s a vast volume of literature on generalized concave/
convex functions. See, for example, relevant papers by Ponstein (1967),
Greenberg and Pierskalla (1971) and books by Mangasarian (1969),
Zangwill (1969), and by Roberts and Varbarg (1973). Unless otherwise

indicated, we will follow definitions used by Zangwill.

PN

Definition A.1 : A set R SE® is convex if ¢°, ¢° ¢ R implies

1
E

62 +2(° - 6 e R : (A.1)
for any 0 2 A £ 1,
Lemma A.1l: Let Ri‘ i=1, ..., m, be convex sets. Then the set
m
RE& M R (A.2)
i=1

is also convex.

L]

Definition A.2 : A function g on a convex set R is a concavé function

-

1f ¢%, ¢° € R implies

131




Definition A.3 :

Lemma A.2:

Lemma A.3:

Lemma A.4:

132

867 + A(874™) 2 (M) + 2G4 - g4 (A.3)

for any 0 2 x < 1,

-

A function g on a convex set R is & convex function

if -g 18 concave.

Let By» i=1,2, ..., m, each be concave on a convex

set R, If a, z20,1i=1, ..., m, the function

o
g(0) £ & asg () ‘ (A.4)
¥ = ?

is concave on R.

Let g be differentiable on a convex open set R. Then

g 18 concave if and only if
8" < 8(6%) +vg (41 (474, 4.5)

for any ¢a, ¢b € R.

Let g be a concave function on a convex set R. Then

for any fixed scalar y the set

H & (¢lae) 2 v} (A.6)

i

N

.
& e e e
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Definition A.4 :

Definition A.D5 :

Definition A.6 :

Definition A.7 :

Lemma A.5:

133

is convex.

¢
A differentiable function g : E® ~E is

pseudoconecave on a convex set R if for all

+2, 4° ¢ R,
e (e T P-4 o : (a.7)
“ %~ ¢
implies
b, < a
g8(60) < g4, (A.8)

A function g is pseudoconvex if -g is pseudoconcave.

1 .
A function g : E* + E 1is called quasiconcave on a

convex set R if given ?a’ ?b e R

842 + 2(6°®) 2 winla(s®), (s™), 4.9
for any 0 £ ) Sf.

A function g is quasiconvex if -g is quasiconcave.

A function g is quasiconcave 1f and only if the set °

"B A (sle®) 2 v) - (A.10)

-
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is convex for any scalar v.

Definition A.8 : A set RS E" is onc-dimensconal convex if given any

?a’ ?b(j) ce Ry, =1, 2, ..., n, where :
?b(j) 8o% + ae, (A.11)

for some scalar a, implies o ;
6% + ‘(?b(j) - 9" e R (A.12) RN

for all 0 £ ) £ 1.

Definition A9 : A differentiable function g : e+ el &

one-dimensional pseudoconcave on a convex set R if

b(3) eR, §=1, 2, .:., n, ¢b(j) as

-~

given any ¢a, ¢

in (A.11), for some a -

%&~ (6 -a <0 (A.13) )
¢, -
j ,
implies
g(4° )y < g%, (A.14)
< ™~
The logical equivalent statement of (A.13) and .

(A.14) 18 as follows:
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g@*)) > 20 (A.15)
implies

%&ﬂ %o > 0, (A.16)
¢j -

Definition A.10: A function g is one~dimensional pseudoconvex if =-g
is one~dimensional pseudoconcave,

Definition A.1l:‘ A function g : E® + E!

1s one-dimens<onal quas<concave
on a convex set R if for some a and for all

j=1,2, ...y n, ‘t'an ¢'b(j) € R

86 +26°Y) - ¢) 2 mtalg4®), 56>,
(A.17)

for any O £ X 2 1.

Definition A.12: A function g is8 one-dimensional quasiconvex if -g is

one~dimensional quasiconcave.

Lemma A.6: A function g is one-~dimensional quasiconcave if and

only 1f the set

H, 4 {galg(g) 2 v} : (A.18)
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is one-dimensional convex for any scalar y.

Maﬁgasarian and Ponstein have related quasiconvex functions to
pseudoconvex function® and convex functions, with the conclusion that
the class of quasiconvex functions is the largest class considered and
the strictly convex class is the smallest. Similar statements can be
made for quasiconcave functions, etc.

With the introduction of one-dimensional generalized concave/
convex functions, a larger class of functions is added to the list.
The class of one-dimensional generaliéed fun;tions is less resatrictive
than the multi-dimensional Fountér-part. This can be demonstrated bf
the function

7

8(?) = 14y

which {s convex over él‘(for any fixed ¢2) and over ¢2 (for any fixed

?l) but fails the defining inequality (A.3) of convexity for
a2

1 1 2 b 1
i I S H RS S -
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APPENDIX B
A BASIC THEOREM (Bandler 1972, 1874)
Theorem
If the vertices of R_are in R , then R, EERC if, for all
i=1, 2, sk

?a, PLIS DR ae, ¢ R_ : (B.1)

-~ e 4

Y
where a is a scalar and € is the jth uanit vector, implies that
¢ = ¢a + Aﬂ¢b(j) - ¢8$ e R ‘ (B.2)
for all X satisfying 0 I X 2 1.

Proof . -

Let ¢£ denote some point, in general, {n an f£-dimensional
linear manifold generated by the first 22 vertices as

*

L
c ¥t 2] ] e e '
R TN Rt . 33

&

with Py satisfying
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N

22
Dopg=1  p 20, £=1,2, ...,2 (B.4)
1=1 .

where ua(i)s{O, 1}, 3 =1, 2, ..., 2 and Ej 2 0 is the tolerance of the

jth component. The index 1 denotes the vertex number and must satisfy

N

’

=14+ J w2l (B.5)
=1 3

Assume that ¢2 € Rc for all ¢i € Rc. Now consider

o 2% ] .
= - t
bpp = ¢ - €t 2121 ) bj(ege,) (8.6)
= j'l
with 9y satisfying
L2+l '
* X 9 = 1, 9 >0, I=1,2, ..., 2£+1. (B.7)
i-}
After some manipulation, we find that
L3
NS ¥ ) ]
$op1 =% -+ 2 (g, +q , ) JuilDee
+
Rt R PR U R
2£+}
+2( 22 9)€ 0418041 (3.8)
1=27+]
Let N
I ,
RUCIED) q, (8.9)

gm2¥41
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and

P, =q, +q., , 4i1=1,2, ..., 2" (B.10)
S L%

Hence (B.8) becomes

¢, t 2\e (B.11)

Pot1 = 9 o+1%041°

With A= 0, ¢ ¢L ¢ R by assumption. If A=l

bopr = ¢ e » bor1 = 4t 2,

+1 S+’

which repregents a translation of the R-dimensional manifold. Thus,
?2+1€ Rc. For 0 < A < 1 we note ?£+1€ Rc if (B.1) and (B.2) hold for

§ = 241,

It is easy to verify that ¢1E:RC and, furthermore, that ¢2 € Rc

if (B.1) and (B.2) hold for j=1 and j=2, respectively, It follows by

the foregoing inductive reasoning that ¢k = ¢, as defined by

-

k
2
p=¢0-c+2) (py Z uy(ege), . (B.12)
S = B T= SR R
where
L . .
} py =1, p; 20, 1=1,2,..,2, (8.13)
1=1 ‘

is in Rc under the conditiows of the theorem.



' APPENDIX C

OPTIMIZATION METHODS

A brief review of the techniques used for this work 1is

presented here. Most of the algorithms described in this appendix have

been incorporated in a user-oriented computer program called DISOPT.

See Bandler and Chen (1974), and Chen (1974).

C.1 The Nonlinear Program

v
The nonlinear programming problem can be stated as
minimize £(x) (C.1)
. | ~
subject to
»t
gi(§) >0, i=1,2, ..., m (Cc.2)

.

where f is the general nonlinear objective function of n parameters X,
and gl(f)’ gz(f), cues gm(f) are, ;n general, nonlinear functions of
the parameters. We will assume that all the functions are continuous
with continuous partial derivatives.

The nonlinear piogram can be solved by methods such as the

barrier-function method of Fiacco and McCormick (1968). We define,
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for example, the unconstrained function *

-

m
B(x,x) = £(x) + ] (c.3)

I _
fc1 8% 7
and minimize 1t with respect to x for appropriately decreasing values
of the parameter r.

Recently, Bandler and Charalambous (1972a, 1974) proposed a

minimax approach which involves minimizing

R 'V(x,a) = max [f(x), f(x) - agi(x)]. (C.4)
- 18ism = ~ -

L4

where

A sufficiently large value of a must be chosen to satisfy the

inequality
1 @
= I u <1, - ’ (C.5)
i=1 ’

»

where the ui's are the Kuhn-Tucker multipliers at the optimum.,

’
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C.2 Least pth Optimization “ (\
Several least pth optimization algorithms are available for

obtaining minimax or near minimax solutions. The unconstrained

function to be minimized, in the present context, can be of the form

1
e, (x) -~ € \q\ =
U(x) « (M(x) - e)( l ( ”&TJTT) ) 5 (€.6)
jeJ -
\
where
0 for M(x) # 0 .
£ < - (C-T)
small positive number for M(x) = 0
q * p sgn(M(x) - €)
p>1,
and {
>0, 3« {jle,(x) >0, 3 =1,2, ..., wl}
i1f M(x) . (C.8)

<0, J+« {1, 2, ..,, mFl}.

The definition of the e,'s, the appropriate value(s) of p and the

3

convergence features of suitable algorithms are summarized in Table

C.1l. For the algorithm with large value of p, see Bandler and
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Charalambous (1972c¢), and Charalambous and Bandler (1973) for the
degcription of Algorithm 4. See Chu (1974) for extrapolation

technique used in Algorithm 3,

C.3 Existence of a Feasible Solution

The existence of a feasible solution can be detected by

minimizing (C.6) when

84> J=1,2, ..., m
o <« (c.9)
£ - F, 1 =m+ 1,

where f 1is an upper bound on £f. A nonpositive value of M at the
minimum or even before the minimum is reached indicates that a
feasible solution exists. Otherwise, no feasible solution satisfying
the current set of constraints and the upper bound on the objective
function value is perceivable. Only one single optimization with a

small value of p greater than unlty is required.

C.4 Unconstrained Minimization Method

Gradient unconstrained minimization methods have become very
popular because of their reported efficiency. Qne such program is the
Fortran subroutine, which utilizes first derivatives, implemented by

Fletcher (1972). The method used beloﬁgs to the class of quasi-Newton

rg

methods. The direction of search sj at the jth iteration is calculated
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by solving the set of equations

pled « - vuwd), (C.10)

-~ o~

3

where B is an approximation to the Hessian matrix G of U, VU is the

gradient vector and xj is the estimate of the solution at the jth
iteration.
As proposed by Gill and Murray (1972), the matrix Bl 1s

factorized as

T ,
gd w1 pd 13, 1 (C.11)
where L is a lower unit triangular matrix and D a diagonal matrix.

It is important that Bj must always be kept positive definite and,
with the above factorization, it is easy to guarantee this by

enguring d,, > 0 for all {1,

ii
A modification of the earlier switching stfategy of Fletcher

(1970) is used to determine the choice of the correction formula for

the approximate Hesslan matrix. The Davidon~Fletcher-Powell (DFP)

formula is used if
T Lol § < s (wwed™ - wedy, ’ (c.12)

-

where

- X% Lt (0013)
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Otherwise, the complementary DFP formula is used.
The minimization will be terminated when lxi+l - xi| is less

than a prescribed small quantity, for all i,

C.5 Discrete Optimization

A general strategy for solving a nonlinear discrete programming
problem due to Dakin (1966) is describea as follows.

Dakin's integer tree-search algorithm first finds a solution to
the continuous-problem. If this solution happens to be integral, the
integer problem is solved. If it is not, then at least one of the
integer variables, -e.g., Xgs is non-integral and assumes a value x;,

say, in this solution. The range
* *
[xi] < xy o< [xi] +.1, (C.14)

where [x;] is the largest ihteger value included in xi, is
inadmissible and consequently we may divide all solutions to the
given problem into two. non-overlapping groups, namely,

(1) solutions in which

Xy < [XI], and

(2) solutions in which

x, > [x3] + 1.



Each of the constraints is added to the continuous problem
sequentially and the corresponding augmented problems are solved. The
procedure is repe;ted for each of thg two solutions so obtained. Each
resulting nonlinear programming problem thus constitutes a node and
from each node two branches may emanate. A node will be fathomed if
the following happens:

(1) the solution is integral,

(2) no feasible solution for the current set of constraints

is achievable, and

(3) the current optimum solution is worse than the best

integer solution obtained so far.
The'search stops ;hen all the nodes are fathomed.

_ It seems, then, that the most efficient way of searching would
be to branch, at each stage, from the node with the lowest f(f) value,
This would minimize the searching of unlikely subtrees. To do this,
all information about a node has to be retained for comparison and
this may require cumbersome housekeeping and excessive storage for
compu£er implementation. One way of compromising is to search the
tree in an orderly manner; each branch is followed until it is
fathomed.

The tree is ﬁot, in general, unique for a given problem. The
tree structure depends on the order of partitioning on the integer
variables used. The amount of computation may be vastly different
for different trees.

For the case of discrete programming problems subject to -

uniform quantization'step sizes, the Dakin algorithm is modifie@ as
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follows. Let x1 be the discrete variable which assumes a non-discrete

solution x?, and qy be the corresponding quantization step, then the

two variable constraints added sequentially after each node become

v

[x’;/qi]qi + qq . (C.15)

and

[

g < Dxp/agdey. (C.16)

The integer problem is thus a speclal case of the discrete problem with

q = 1, i=1, 2, ..., n, whete n is the number of discrete variables.

If, however, a finite sebk of discrete values given by

D, = {d

{ d

» d ey diu}, i = 1, 2’ “eoy n

117 9420 <000 Y40 didyenye -

(C.17)
is imposed upon each of the discrete variables, the variable
constraints are then added according to the following rules:

(1) 1f 4,, < x* <d ,«nhen add the two constraints

ij i(j+l)
xg < d1j o {(C.18)
i
and ‘
&
X Zrdi(j+1) . (C.19).
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sequentially,

(2) 1if x; < dil’ only add the constraint

x, 2 dg - (C.20) .\

3y (f xt > diu’ only add the constraint

. (c.21)
iu
The resulting nonlinear programming problem at each node is
solved by one of the algorithms described earlier. The feasibility - i
check is particularly useful here since the additional variable )
constraints teay conflict with the original constraints on the ]
continuous problem. An upper bound, f, on f(x), if not specified, :

may be taken as the current best discrete solution. For a discrete

problem, the best solution among all the discrete solutions given by'

letting variables assume combinations of the nearest upper and lower

discrete values (if théy exist) may Qe tgken as gbe initial upper
bound on f(x).

The‘néw variable constraint addif}at each node excludes the
pFeceding optimum point from the current solution space and the
constraint i{s therefore active if the function is locally unimodal.
Thus ‘the value of the variable ugder the new constraint Q&y be
optionally‘fixed on the constraint boundary during the next
optimization, See Fig.’C.l for illustrations of the search procedure

and a tree structure,
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APPENDIX D
PROPOSED STRUCTURE OF A

TOLERANCE OPTIMIZATION PROGRAM

A proposal based on the techniques described in Appendix C for
a TOLerance OPTimization program called TOLOPT is given here.‘ Figufe
D.1 displays a block diagram of the principal subprograms comprising
the program. TOLOPT is the subroutine called by the user, It
organizes input data and coordinates other subprograms. Susrdutine
DISOP2 is a general program for continuous and discrete nonlinear
proé%amming problems. See Appendix C, Suﬁroutine VERTST eliminates
the inactive vertices of the tolerance region. Subroutine CONSTR
sets up the constraint functions based on the response specifications,
component bounds and other constraints supplied in the user ;ubroutine
USERCN. @&ubroutine COSTFN compu%es the cost function. The user
supplied subroutine NETWRK returns the network responses and the
partial derivatives,

Table D.1 18 a summary of the features and éptions which may

be incorporated into TOLOPT. See Bandler, Liu and Chen (1975).
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—={ DISOP2 |———4 COSTFN
}m

TOLOPT { | CONSTR | USERCN
——

L—=! VERTST NETWRK
e

Fig. D.1 The overall structyre of proposed TOLOPT. The user
will be pesponsipde for NETWRK and USERCN,
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SUBJECT INDEX

Adjoint network,. 6
Acceptable interval, 50
Bilinear networks, 52

Biquadratic function, 37f
definition, 38
properties, 38f

Branch and bound; see

optimization methods

-Constraints, 3,12,37,50,72,90f
performance, 72,90

parameter, 72,90 .

Concave/convex functions, 131f
generalized, 44,49,55,64,133
one~dimension generalized, 64,134-136

Convex reglon, 18f,64,131
one-dimensional, 18-20,134

Cost function; see

objective function

Design, 8
centering, 2
feasibility of, 72
outcome of, 9,14

worst-case (100X yield), 3-4,14-16
DISOPT, 60,140

Effectively
toleranced, 16,28,92f
tuned, 16,28,92f
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Monotonicity, 65f

Nonlinear programming; see

optimization methods

Objective function, 30-31
examples of, 32,33,73,76,77,82,
92,95,98,101,111

One-way tuning, 12
Optimization methods, 140-151
Performance contour, 2
Polytope, 10

Projection, 22-30,
examples of, 93f

Pseudoconcave functions; see

generalized concave functions
Pure tolerance problem, 27
Pure tuning problem, 27

Quasiconcave functions; see

generalized concave functions

Regions,
constralint, 3,12
projected, 23-24
tolerance, 3,10
tunable constraint, 14,28

tuning, 11

Sensitivity,.g
first-order,3
large-change,.2,39
model, 2
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Slack variables, 90f

Statistical moments, 2
Symmetry, 068-71,84,88
Tolerance assigment, 2

Tolerance-tuning problem
original problem PO’ 14
reduced problem P 16-18
reduced problem P2, 28-30

TOLOPT, 60,163
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=

Vector,

data, 71,89

e

pa3

s

3

nominal, 94
¥
tolerance,ﬁ%ks
L,
tuning, 9 N,
Vertices,

definition, Il
numbering scheme, 63
projected, 29

selection scheme, 67f

-,
N

SN e el s

et o s e’ o VAN o NI el erg Gl I SRS B Pttt e N e B e
P




