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ABSTRACT

Principal Components Analysis (PCA) and Partial Least Squares (PLS, or

Projection to Latent Structures) were used to evaluate the process history of a fluidized

catalytic cracking unit (FCCU). Specifically, the goals of the work were to identify

interesting periods in the process history, identify relationships amongst process

variables, develop a predictive model of the product yields and selectivities, and to create

a monitoring space to detect process changes and disturbances.

Major process changes of feed rate, feed quality and production modes were

easily modelled by the first few latent variables (LVs) in both the PCA and PLS analyses.

Later LVs highlighted transients obvious to operations. Plots of the process behaviour in

the space of these latent variables were able to clearly reveal where major changes

occurred in the process, implying that this approach is useful for the post analysis of

historical data bases. Diagnosing the reasons for changes, however, was much more

difficult.

PLS was quite successful in obtaining predictive models for the product yields

and selectivities. A linear model of eleven dimensions was able to predict 81 .3% of the

cross-validated sum of squares in the Y space and 78.3% of the sum of squares in the X

space. The hierarchical PLS approach of Wold et al. (1987) was also applied to the data

set and generated results of similar predictive ability and interpretation.

m





The development of multivariate SPC monitoring procedures was less

successful, due to the FCCU's continually shifting process operations. This latter use of

PCA and PLS would be much more amenable to processes with a stable operating point

(such as would be found in a quality control situation).
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CHAPTER 1: INTRODUCTION

1.1 Overview

If one has ever had the opportunity to walk through a modem control room of a

typical petrochemical process, one cannot help but be awestruck by the vast amount of

data being collected, stored and displayed from process sensors on a minute, hourly and

daily basis. The sheer volume of these observations means that only a small percentage

of them is ever actually examined by an operator or engineer, with little or no analysis

being performed. Intuitively, it is felt that this data should provide some insight about the

process since it is the closest "picture" one can get, but little, as yet, has been done with

such data and this situation is typical of many process industries.

The work of this thesis is a first attempt at testing the applicability of Principal

Components Analysis (PCA) and Partial Least Squares or Projections to Latent

Structures (PLS) for analysis and modelling of a large steady-state industrial data set.

PCA and PLS appear to have many advantages over traditional multivariate techniques

for analyzing process data in that they are capable of dealing with noisy, highly correlated

data sets where the number of variables may greatly outweigh the number of samples

available. They are also straightforward to use and build distribution-free empirical

models where causality is based on correlation (Geladi 1988). Dimensionality reduction is

a key aspect of both PCA and PLS; "patterns" or models of the data can be viewed in

easy-to-comprehend two dimensional plots or "windows".

1
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The specific goals of the thesis are: i) identification of interesting time periods in

the process history or interesting relationships amongst the process variables being

collected, ii) development of predictive models of some desirable output or phenomena

(i.e., product yields, quality variables) from the operating conditions, and iii) development

of a fault detection or monitoring system which provides an indication of process

performance (e.g., normal, abnormal), by signalling undesirable changes (faults) in the

process and which might aid in assigning a cause or causes to such changes.

1.2 PCA and PLS

PCA is a pattern recognition technique that works with a single data matrix and

searches for a small number of latent variables (LVs), linear combinations of the

measured variables, which correspond to the directions of greatest variability in the data

set.

PLS is a calibration technique used to build models between two blocks of data.

Its latent variables are partly summarizing and partly correlation maximizing as they

attempt to not only describe variations within the individual blocks but also the correlation

structure between the two blocks.

Hierarchical PLS is an extension of the PLS method which allows for more than

two blocks of data to be used in the analysis. All three techniques are discussed in detail

in Chapter 4.

The latent variables have attractive orthogonality and eigenvector properties

which ensure convergence and allow one to summarize the LVs into biased regression

models (Wold et al., 1987b). They are used to form low (two and three) dimensional

spaces for viewing the relationships amongst samples and variables. They summarize

the dominating trends in the data and act as the model for predicting process states.
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1.3 Research Approach

The industrial process selected for study was a fluidized catalytic cracking unit

(FCCU) located at a Shell Canada Limited petroleum refinery. Originally, it was felt that

due to the complexity and high product value of this unit, analyses which might even

slightly increase the knowledge-base of the FCCU would be of benefit.

After studying the results, it was found that the operational policies were such

that the FCC process never operated long at any one condition, and hence it was difficult

to isolate special events or detect faults in such a changing environment. However, some

benefits did arise from the PCA and PLS analyses.

An initial data set of approximately three and one half months' worth of hourly

averages from over 300 variables was collected. Due to computational restrictions,

however, this was pared down to 142 variables and approximately 1400 samples from

which specific subsets were used, based on the purpose of the analyses. Table 1 .1

outlines the objectives of this thesis.

Data covering the range of operating conditions and time history was used for the

first PC analysis, followed by analysis of a subset of data covering approximately eleven

days, to illustrate how the samples and variables group in the model space. Predictive

models of percentage volume yields and selectivities for the products were built using

PLS on the full range of operating data. The statistical process control (SPC) monitoring

space was also built using PLS but required a subset of reference data representing

"normal" operating data from which to develop the detection "rules" and an additional set

of data containing abnormalities with which to test the model. The hierarchical PLS

algorithm was tested on the PLS prediction data to examine how the model resolution

and results differed when the X space was split into a number of blocks.
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Table 1.1--Analyses Performed on Industrial Data

Purpose Goal Data Set Technique

Preliminary
Analysis

Find interesting periods in the

samples and relationships amongst
variables in the data.

Use the whole data to

illustrate this concept

PCA separately on
XandY

Examine a smaller segment of data
for further details.

Use a subset of the above

data.

Same as above

Predictive

Model

Predict percentage volume yields
and selectivities from operating
conditions.

Cover as wide a range of

operating conditions as

possible (same data set
as used for first PCA

analysis).

PLS

Multivariate

SPC

Monitoring

Build a monitoring space able to
differentiate between "normal" and

"abnormal" operations and if

possible, identify the cause(s) of
abnormalities.

Reference set represents
"normal" operations.
Test data contains known

faults or process changes
to be detected.

PLS

Effect of

sub-dividing
data

Answer the question: how do the

model resolution and results differ

when data is analyzed using the
hierarchical approach?

Use data from PLS

(prediction) case; break X

data up into six blocks

treated as independent of
each other.

Hierarchical PLS

1.4 Summary of Chapters to Follow

The remaining body of the thesis is broken down as follows.

Chapter 2 provides a brief literature review of other methods used to handle

analysis, modelling and monitoring of industrial processes (with particular attention to

FCC units) in order to illustrate how PCA and PLS augment these fields of study. Chapter

3 describes the fluidized catalytic cracking (FCC) process and the typical constraints,

disturbances and operational strategies to which it is subjected. The chapter also

provides a brief review of FCCU models available and their limitations. Chapter 4 outlines

the algorithms for PCA, PLS and hierarchical PLS followed by sections on data

pretreatment issues and interpretation tools. Chapters 5, 6, 7 and 8 contain the results
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from industrial cases involving preliminary analysis, prediction model building, statistical

process monitoring, and the hierarchical case, respectively. Chapter 9 summarizes the

conclusions and areas for further work.





CHAPTER 2: LITERATURE REVIEW

This chapter provides a literature review of work done in the areas of analysis,

modelling and monitoring of industrial processes (with particular attention to FCC units,

where warranted). This should help to illustrate how PCA and PLS augment these fields

of study.

2.1 Preliminary Analysis of Process Data

Current on-line software used in industrial data acquisition computers is typically

limited in the types of analysis options they make available to the operator or engineer.

Most provide trend (or time series) plots indicating the desired set point, mean, minimum

or maximum value or perhaps confidence intervals of a variable. Due to the large number

of sensors available, these plots are usually reserved for those variables known to have a

significant effect on the process and which are probably part of a control strategy or have

specifications which warrant monitoring. This part of a data acquisition system is limited

not only by the amount of screen display space available but also by the CPU time

available for keeping it updated.

More sophisticated approaches to identifying interesting periods in the data have

arisen from the discrete parts manufacturing industries. These include the Shewhart,

cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts.

7
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Although these were designed as part of control monitoring strategies (which involve

looking for assignable causes to deviations or changes and correction of the process to

minimize reoccurrence) they are used, as a first step, to detect process changes.

All three involve collection of a sample (or group of samples), calculation of an

appropriate statistic and then plotting of that statistic on a chart as a function of the

sampling sequence or time. The Shewhart chart consists of plotting a mean value and an

estimated standard deviation (called a range value), while the CUSUM chart plots

information about the distribution of the variable being monitored (usually the sum of its

deviations from a target value). The EWMA chart uses information from past samples

togetherwith the most recent measurement to determine a smoothed sample mean.

Hypothesis tests on the samples are performed, by means of confidence limits

or "masks", to determine whether or not a significant process change has occurred. They

also provide an estimate of times in the past when changes occurred, as well as an

estimate of the size of the change (and thus the size of corrective action required), and a

measure of the quality of an output for classification (Himmelblau 1978).

These graphical means of analysis are easy to implement (no deterministic

process model is required) and are simple to maintain and use under plant operating

conditions. However, each involves making some assumptions about the statistics of the

variable(s) being monitored, namely, that they can be represented as having some fixed

target value with constant variance and are independent and identically distributed unless

a non-random change has occurred.

Most variables in process industries are being monitored at a much higher

frequency than these charts were initially intended. Samples or observations of the

process variables are highly correlated in time and this is a direct violation of the

independence and identically distributed assumptions. It means that the hypothesis

boundaries (in the lorm of confidence limits or masks) do not have a statistically sound
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foundation and can lead to erroneous and/or long delays in detection of process

changes. This issue is discussed in papers by MacGregor (1988), Harris and Ross

(1991), Johnson and Bagshaw (1974), Kemp (1967) and the text by Himmelblau (1978).

A second issue is that these univariate methods do not use any information

about the relationships amongst the variables being charted. Process data can be

expected to be highly correlated (due to the large number of redundant variables

available for monitoring and the relatively few underlying phenomena taking place in a

process at any given time). Pooling and drawing conclusions from the results of

individually monitored variables can be dubious.

Some adaptations to statistical tests have been made to accommodate the

multivariate case and should be noted.

The Hotelling T2 test is an extension of the Student t test which takes into

account the joint normal distributions of the variables being monitored. Its use is

discussed in detail in Hotelling (1947) using the example of quality testing of airplane

bombsights, and more recently in Anderson (1984). A multivariate CUSUM chart is also

described by Healy (1987).

However, even the use of these methods to data sets containing tens or

hundreds of variables can be quite cumbersome and impractical. This spurred the

development of multivariate pattern recognition techniques.

2.2 Multivariate Techniques

Pattern recognition techniques are applied to multivariate data sets containing

specific classes of samples to find the "typical data pattern" of each class. These

"patterns" become classification rules which are then used to assign new samples

(subject to the same series of measurements) to one of the known classes (Wold et al.
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1983). Many different types of pattern recognition techniques exist and selection of the

method to use depends heavily upon the type of data being analyzed, the problem being

assessed and the objectives of the analysis.

Cluster analysis is used to check for the existence of groupings in the samples

or groupings in the variables. Factor analysis finds the linear combinations of variables

that describe the directions of greatest variability in the data. If one wishes to search for

the systematic differences between known classes of samples, there are the

classification techniques of linear discriminant analysis, K nearest neighbour, and the

probability density function (Bayesian) method. Although these techniques appear to offer

a wide range of analysis options, several are hampered by restrictions on the number of

variables allowed (i.e., must be much less than the number of samples) and the inability

to cope with outliers. Details on these techniques are found in Chatfield and Collins

(1980), Mardia, Kent and Bibby (1979), Martens, Wold and Martens (1983) and, Wold et

al. (1984).

2.3 Predictive Models

The approaches available for predictive model development span from those

built on the theoretical principles of conservation and continuity (e.g., mass, energy and

momentum equations) to development of regression models based simply on data

collected from the process. Each comes with its own set of advantages and limitations.

Several theoretical models have been developed for the catalytic cracking

process and these are discussed further in Chapter 3. Their basis in fundamental

engineering concepts makes them easy to understand and interpret, allows for a

relatively extensive prediction range and they generally yield robust parameters.

However, they require long development times and assumptions must be made to

simplify the model and cut down on the solution time requirements. If the model is to
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represent a real-life process, its parameters will have to be fitted to match plant

characteristics (which may require plant experimentation and further assumptions).

Non-linear models pose a greater solution challenge than linear ones and as the desired

operating range to be modelled increases, so does the complexity of the model (and

hence the above problems).

Regression analysis is a quick way to develop a process model from a handful

of knowingly important variables. The simplest model structure used is the linear

equation. Available data is used to estimate the parameters of the fitted equation. The

predictions are then gauged against some criterion and a check of the underlying

assumptions is made.

Many methods exist for solving the parameters of such equations (such as the

methods of least squares, weighted least squares, maximum likelihood and Bayes), each

with its own criterion and requirements concerning a priori information. For model

equations linear in the coefficients, the least squares method will yield coefficient

estimates which are unbiased if the predicted errors are uncorrelated and have the same

probability distribution (Himmelblau 1978). However, if the process variables are highly

correlated (as is always the case with undesigned process data) the least squares

estimates will have very large variances.

Violations of the assumptions underlying the solution method can generate

misleading results. The least squares method assumes the model form is appropriate

and that the errors are independent, normally distributed random variables with zero

mean and constant variance. Models using variables straight from an industrial process

rarely pass these requirements unless the data has been specifically designed to

overcome this. Box, Hunter and Hunter (1978) discuss this issue in depth.
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Other problems in fitting equations to such data sets include inconsistencies

amongst data, presence of controlled variables, serially correlated errors and dynamic

relationships, not to mention the danger of drawing causal conclusions from correlational

relationships (Box, Hunter and Hunter 1978).

An important class of stochastic models for describing dynamic systems are the

autoregressive-moving average processes (ARIMA processes) discussed by Box and

Jenkins (1976). No prior information about the model structure is needed; this is checked

as the model is built. This method can provide a good representation of a process

although the form of the model may be hard to interpret in terms of fundamental process

principles.

Neural networks are another class of empirical models. An initial structure

(consisting of layers of nodes) is selected and data is used to "train" or build the

input-output relationships. Neural networks can accommodate non-linear relationships,

but they are also sensitive to data pretreatment methods, selection of appropriate

exemplars and inner nodes, long training times and defining adequate training sets.

Clearly, the most important consideration for selection of a predictive model type

is the purpose for which the model will be used. Simple empirical models are useful when

passive prediction of process outputs is all that is required, while sophisticated

mechanistic models are used in many optimization projects (Ramesh and Davis 1989;

Dhurjati, Lamb and Chester 1987). The limitations of each type must be respected

otherwise their results can be misleading.

2.4 Fault Detection or Process Monitoring

Fault detection combines elements of multivariate modelling and prediction as

well as diagnosing the cause (or causes) of changes or faults in a process. It utilizes

knowledge about the process (either through some type of process model, statistical
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characteristics or heuristics) for the monitoring and detection aspect, and the

establishment of boundaries that act as decision rules to indicate that a malfunction or

change has occurred and that diagnosis is needed. A further challenge is the updating of

the process model or knowledge to adapt to acceptable changes in the process. Process

monitoring methods are discussed in Himmelblau (1978) and Willsky (1976). Basseville

(1988) provides a survey focusing on likelihood ratio approaches. Some general aspects

of the topic are discussed below.

Regardless of the type of fault detection method used, the key issues used for

assessment are: i) the types of failure modes that can be considered, ii) the complexity in

implementation of the method, iii) its performance, as measured by the frequency of false

alarms and delays in detection, and iv) the robustness in the presence of modelling error

(Willsky 1976).

The trade-off is between complexity (e.g., expense as measured by

implementation, cost of false alarms, etc.) versus performance and is obviously quite

specific to the process being studied.

Problems in dealing with process data for fault diagnosis include: i) validating

readings given by the measurement instruments, ii) compensation for time lags, iii)

elimination of noise in instruments, iv) high interaction amongst process components

making isolation of cause difficult in complex systems, and v) drifts in parameters

(Himmelblau 1978).

Difficulties in early detection of dangerous states arise from: i) inability to

monitor the entire "process state" as one is often limited to just temperature, pressure ,

flow and concentration readings, ii) the complexity and non-linearities of the process, and

iii) the need to incorporate historical information about the process along with current

measurements (King 1986).
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As was the case for prediction models, fault detection methods form a spectrum

stretching from all-theory mechanistic models to all-data statistical hypothesis testing.

One example of a mechanistic model approach is the use of a kalman filter to obtain the

minimum variance estimates of state variables of a mechanistic model consisting of

ordinary differential equations. The state variables may describe system behavior that

cannot be directly measured such as compositions in a reacting system. After comparing

the available measured outputs with its model prediction, the Kalman filter uses the

discrepancy between these two values to update its state estimates.

King (1986) gives an example of a direct method for fault detection using a

Kalman filter where several "failure states" or filters are incorporated into the dynamic

process model. When the estimates for these states deviate markedly from their normal

values, a failure is detected. Since the Kalman filter predicts the location of the process at

some future time, it allows for early detection of undesirable states.

The all-data statistical hypothesis testing approach brings us back to the control

charts (Shewhart, CUSUM and EWMA) discussed earlier. Process variations are divided

into two sources; random fluctuations (due to such phenomena as external environmental

changes in temperature and pressure, internal mixing conditions or natural variations in

raw materials), and non-random changes (which could be the result of operational

moves, faulty instrumentation, off-specification raw materials, catalyst deterioration and

so on). The statistical control approach assumes that the process will remain on-target "in

a state of statistical control" unless a special event occurs. Hypothesis tests (in the form

of limits or masks) are used to detect such events and this is followed by a search for an

assignable cause (or causes) and correction of the process by removal of the cause or

applying compensation for it.
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In addition to the problems of colinearity amongst monitored variables and serial

correlation (augmented by the presence of inertial elements, recycle and reactors in

industrial processes) other difficulties have hampered the widespread use of control

charts in process industries. Diagnosis and assignment of causes is very difficult except

in the cases of gross abnormalities (e.g., equipment failures and improperly set control

variables). It is also hard to assign causes to cyclical or level changes. Further, the goal

of many process industries is not controlling an output to within a given range (as it is in

parts manufacturing) but to maximize a variable (e.g., yield), thus the target values for the

monitored variables can shift regularly as the point of optimum operation moves.

In the middle of this spectrum lie expert systems. These use both theoretical and

empirical models in their fault detection and diagnosis schemes. Expert systems are

often motivated by a desire to combine the diagnostic expertise of process experts with

the high computational speeds of process computers to provide a quick and efficient way

of diagnosing process problems. Not only are there cost and time savings associated

with their use, but expert systems can also provide a fast transfer of expertise to new

operating personnel and thus have potential as a training tool.

Expert systems require large amounts of knowledge coupled with an appropriate

problem-solving method. Of course, these are dependent upon the types of faults one

wishes to detect, the complexity of the process and the frequency at which assessments

are to be made. The knowledge base is formed from continuity equations and

physiochemical principles as well as heuristic knowledge or "rules" gleaned from process

experts. Many different strategies have been developed for the problem-solving task and

Shum et al. (1988) provides a list of recent work in this area.

Two expert system projects, the CATCRACKER and the FALCON, were

developed specifically for fluidized catalytic cracking processes and are briefly discussed

below.



16

The framework of the CATCRACKER expert system (Ramesh and Davis 1989)

consists of three tasks; classification (deciding which of a number of fault hypotheses

apply to the process when a change is detected), abductive assembly (finding a reason

for an observed change based on abnormal deviations in variables known to create such

a change), and data abstraction (abstracting high level information from raw data

measurements). It employs a hierarchical structure of fault categories to speed up

isolation of the problem and elimination of hypotheses with a possible 103 root causes

forming the base. Detailed tests are performed and past data is used in the assessments

as well as current data. Such complexity limits the speed at which diagnosis can be

made. In fact, the CATCRACKER system is only capable of diagnosing slow response

problems (time scales on the order of hours, shifts, or days).

The FALCON expert system (Dhurjati, Lamb and Chester 1987) starts with a set

of 39 faults which are to be detected. The project was meant to demonstrate the utility of

expert system technology in a commercial scale process and also to identify the resource

requirements of the technology. Being smaller in scope and less complex in structure

than the CATCRACKER system allows the FALCON system to make assessments every

15 seconds.

One very important issue which arose after testing the FALCON system with

plant data was that

... the number, placement and precision of the sensors on the plant
determine to a large extent the magnitude of the fault that can be detected. A

sensitivity analysis based on the methodology for fault detection can be used to
specify limits on the maximum magnitude of faults that can be detected.
Conversely, one can specify sensor placement and precision needed to diagnose
faults of a prespecified magnitude. (Dhurjati, Lamb and Chester 1987)

Issues that have yet to be addressed with these two projects are validation of

sensor data and the ability to handle interacting, multiple malfunctions.
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Thus, the challenge in analyzing, modelling and monitoring large process data

sets lies in going beyond the univariate approaches of control charts and traditional

regression fitting but without having to resort to the sophisticated and time consuming

approaches of theoretical models. PCA and PLS appear suitable for this challenge as

they have demonstrated their ability to reduce large matrices of complicated data into low

dimensional and easily understandable models despite being subjected to complications

such as high colinearity amongst measurements (as many readings reflect the same

underlying change in the process), presence of noise, and many more measurements

than samples.





CHAPTER 3: THE FLUIDIZED CATALYTIC CRACKING PROCESS

This chapter introduces the fluidized catalytic cracking unit (FCCU). A

description of the process is followed by an explanation of typical constraints and

disturbances which define its operating window and the policies and control strategies

which determine its operation. A brief literature survey of FCCU models is also included

to illustrate what inadequacies still exist in this field.

3.1 Process Description

Fluidized catalytic cracking units are one of the most important units in

petroleum refinery operations. They are used to convert the heaviest mid-third of the

crude oil cuts into gasoline and diesel blends and other light products. A typical industrial

FCCU consisting of a reactor and two-stage regenerator is shown in figure 3.1 .

Atomized feed (after having been pre-heated by a fired furnace or exchanging

with product slurry) is injected into a hot stream of regenerated catalyst at the base of the

reactor riser. It immediately vaporizes and the cracking reactions take place as the

catalyst-feed mixture travels up the riser (residence time typically being only a few

seconds). The resulting degree of conversion and coke production are a complex

function of feed quality and catalyst activity, as well as carbon level and metals content

on the regenerated catalyst. In addition to thermal cracking of long hydrocarbon chains,

many secondary reactions take place; isomerization of olefins, dehydrogenation of

napthenes, and polymerization of aromatics which can stay on the catalyst and convert to

coke. The reactions are endothermic, with most of the necessary thermal energy being

provided by the hot regenerated catalyst.

19
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Figure 3.1 : A FCC unit with a two-stage regenerator.
(Dean, Mauleon and Letzsch 1982)
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Above the riser in the reactor vessel, the product gases are separated from the

catalyst by cyclones and sent to a fractionation section, as illustrated in figure 3.2. The

spent catalyst is steam-stripped of any remaining hydrocarbons in the reactor bed before

flowing to the regenerators where the coke is burned off and catalyst activity rejuvenated.

Although many FCC units only have a single regenerator, as depicted in figure

3.2, the unit studied in this work has a two-stage regeneration process, as shown in

figure 3.1 . The first stage operates at a relatively low temperature and is responsible for

the burning off of hydrogen and removal of steam carried over from the stripping section,

as well as partial conversion of the coke (C) on the catalyst (about 50%) to carbon

monoxide and carbon dioxide (CO and C02, respectively). The complete conversion of C

to C02 (known as "afterburning") is highly exothermic, releasing about three times as

much thermal energy as the partial conversion of C to CO. The high temperatures

accompanied by afterburning must be avoided in the first stage due to the presence of

water (i.e., steam carried over from the reactor side); this can lead to hydrothermal

degradation of the catalyst. Flue gases from the first stage regenerator are passed

through a series of cyclones to remove any entrained catalyst and are then fed to a CO

boiler where supplemental fuel and air are used to complete the CO oxidation and

recover thermal energy via production of steam. The single regenerator of the FCCU in

figure 3.2 is operated in the same manner as this first stage.

Catalyst from the first stage bed is transported to the second stage through a lift

pipe with supplemental air. The second stage is constructed of high-strength

high-temperature resistant alloys. This allows air to be supplied to ensure complete

combustion of C and CO, and a thorough regeneration of the catalyst. Complete

combustion in the second stage also prevents possible afterburning in downstream flue

gas lines. Air supplied for combustion to both regenerators and for transport of catalyst

from the first to the second stage is generally supplied by a single blower (compressor).
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The downstream fractionation section typically consists of a main fractionation

column where the most heavy products (cycle and slurry oils) are separated. The

fractionator overhead gas is compressed and then flows to a series of distillation columns

which split it into fuel (dry) gas, propane, butane and gasoline product streams.

The complexity of the unit's operation arises from the heat, carbon and pressure

balances which must be maintained to ensure safe operation. For stable reactor and

regenerator temperatures, the quantity of heat generated by the exothermic combustion

of coke in the regenerators must balance the amount required in the reactor to vaporize

and crack the feed. This coupling of endothermic and exothermic reactions creates a high

degree of dependence amongst the process variables.

To maintain the catalyst activity level, the carbon laid down during the cracking

reactions must be burned off in the regenerators. Catalyst losses to flue gas are balanced

by daily additions of fresh catalyst to the system. The pressure balance between the

vessels ensures proper directional flow of the catalyst so that hydrogen-rich reactor

gases do not combine with the air-rich regenerator gases. The pressure drops across the

slide valves determine the actual catalyst flow rate.

3.2 FCCU Operating Window

Each FCCU has its own set of process constraints which define its operating

window and is subject to numerous disturbances which can alter the ideal operating point

in the window or the shape of the window itself. Discussion of theses issues and typical

values for operating points can be found in Brice and Krikorian (1983) and Venuto and

Habib (1978).
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3.2.1 Constraints

Riser outlet temperature (ROT) is the key variable used to control conversion

and thus has upper and lower constraints. If the temperature is too high, over-cracking

causing increased light gas production takes place and could lead to flooding of the

downstream fractionation unit. Too low a temperature generates little conversion and

may cause fouling of the catalyst.

Feed quality plays an important role in defining the operating window. Heavy

components or residues present in the feed require more energy to crack and lay down

more coke on the catalyst. This can drive the ROT to its upper limit as well as pushing

the unit to the mechanical constraints of its air blower(s) and fractionation unit. Arkun and

Stephanopoulos (1980) show how the steady-state operating region of a (simulated)

FCCU changes with feed quality; Palazoglu and Khambanonda (1987) do the same for

both feed quality and changing feed rate.

Capacity of the air blower is limited by the maximum power that its motor drive

can deliver. The power requirement at any time is influenced by the amount of coke to be

burned in the regenerators, pressure in the regenerators and the ambient air

temperature.

The wet gas compressor, located upstream of the product separation columns,

is also limited by the power of its motor drive and affected by the production of light gases

(or reactor pressure).

Maximum feed temperature is limited by the amount of heat which the

pre-heater or exchangers can deliver, and by the minimum catalyst-to-oil ratio set by

operations. If the feed is too hot, catalyst circulation must be reduced, which leads to

poor conversion.
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Bed temperatures in the two regenerators are limited by the metallurgy of their

internals. The first regenerator limit is quite low, since it is operated to avoid afterburning.

The second regenerator limit is much higher, since it is made of more heat-resistant

alloys which allow afterburning to safely take place.

The concentration of carbon on the catalyst needs to be maintained at as low a

level as possible to ensure adequate catalyst activity. This is influenced by the qualify of

the feed and is limited by the amount of air available for burning off the carbon.

3.2.2 Disturbances

The two most common and serious disturbances affecting FCCU operations are

also the hardest ones to monitor and control; feed quality and catalyst activity.

Typical catalytic cracking feed comes from not one but several upstream

processing units in a refinery. The feed stocks contain a mixture of hydrocarbon species

that have a wide range of cracking rates. Several supply streams flow directly to the

FCCU feed tanks and thus the composition of the FCCU feed varies with the operating

policies or disturbances at these upstream units. The components of most concern are

the heavy residues, known as "pitch", originating from the crude unit. Not only is pitch

harder to crack, but it generally contains the most catalyst poisons of all the feed stocks.

Since it is expensive and time-consuming to characterize the feed stock, only infrequent

analyses are performed on it, leaving operations personnel to run the FCCU with only a

rough guess of the feed quality.

Catalyst quality is also a crucial but complex and difficult variable to quantify.

Catalyst activity is a function of the amount of carbon laid down during cracking and the

amount removed in the regenerators, addition of fresh catalyst to the beds, and the

degree of metals poisoning and hydrothermal degradation that may have taken place.
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The effect of catalyst (separate from process or feed effects) on unit conversion

and performance is evaluated by the micro-activity test (MAT). This measures the

conversion obtained at standard conditions in a laboratory from a de-coked sample of

catalyst. Changes in the MAT value can then be attributed to the catalyst alone and

should also be reflected in the unit's conversion (providing all other variables remain

constant).

Activity is not monitored on-line in FCC units and its impact on yield is not

immediately evident (it may require several days to show any effect). Yet high activity is

crucial for high conversion and the selectivity of the catalyst influences the product slate.

FCCU catalysts are particularly sensitive to metals poisoning. Deposits of nickel,

vanadium, and to a lesser extent iron and copper, cause increased hydrogen and coke

production. Sodium, lithium, calcium and potassium diminish the thermal stability of the

catalyst and cause increased propane and butane production (Upson 1981).

Other disturbances include feed temperature (caused by a sudden change of

feed source such as pulling from storage if an upstream unit reduces output), and

ambient temperatures (which affect air blower capacities and cooling water

temperatures).

3.3 Operational Policies

Unlike other industrial processes where production of a single product of

consistent quality requires a single steady-state operating point, the FCCU is subject to a

continually changing operating policy which means the FCCU is run in numerous

operating regions. Two of the most typical operational changes are due to the seasonal

shifts between gasoline and light cycle oil production, and unit feed rate changes, both of

which are functions of market demand. For refineries which also produce asphalt on an

irregular basis, the larger-than-normal swings in crude feed quality have an added impact
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on FCCU feed quality and thus its operating point. Lee and Weekman (1976) show how

the operating point of an FCCU jumps around its operating window, depending upon the

constraints placed on the unit.

Hence, the FCCU must have a flexible and relatively large operating window to

accommodate these operational demands. It makes defining a set of conditions which

represent "normal" operations difficult as this is heavily dependent upon a number of

conditions (market demands, feed stock, product slate, catalyst quality).

3.4 Control Objectives and Strategy

The control policy of an FCCU must be flexible enough to accommodate

changing unit feed rates and disturbances in feed quality while maintaining relatively

steady-state operation, so as not to upset other downstream units in the refinery. The

most important objectives are to ensure safe operation (e.g., reverse flow protection on

the catalyst circuit to prevent explosion of hydrocarbon-rich gases in the oxygen-rich

regenerator), maintaining the heat and carbon balances within the reactor-regenerator

circuit, maximizing conversion (subject to economics and unit constraints), overcoming

the process variables' interaction to ensure smooth control, and to work as close as

possible to unit constraints to maximize profitability (Brice and Krikorian 1983).

The control strategies in place determine which key variables move and why;

this is important when trying to interpret the latent variables of PCA and PLS models.

The independent variables typically regulated are: riser outlet temperature, feed

rate, feed pre-heat temperature, reactor pressure and catalyst activity (Venuto and Habib

1978). Changes in these variables reflect changes in operating policy or disturbances

which are not controllable.
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Controllable disturbances entering the process are signalled by fluctuations in

the control loops' manipulated variables. In a conventional FCCU control strategy

(Kurihara 1967) these are i) regenerated catalyst slide valve (controlling riser outlet

temperature), ii) spent catalyst slide valve (controlling catalyst level in reactor), iii) wet

gas compressor suction pressure (influencing reactor pressure), iv) second regenerator

flue gas slide valve (controlling the pressure difference between reactor and regenerator)

and v) air rate (controlling the percent excess oxygen in the flue gas).

Dependent variables (which respond to changes in the independent variables)

include catalyst circulation rate, regenerator temperature, conversion and the air rate

required to support combustion of coke deposits (Venuto and Habib 1978).

Unit operation is further complicated by a mixture of variables which respond

very quickly to control and operational moves (e.g., catalyst circulation, heat balance,

riser outlet and regenerator temperatures), and those which respond very slowly (e.g.,

catalyst activity, heavy oil quality which if recycled affects feed quality) (Brice and

Krikorian 1983). Monge and Georgakis (1987) were able to show this through simulations

of an FCCU.

Thus, the FCCU is a highly complex, highly coupled process which poses a

great challenge for simple monitoring, modelling and analysis techniques. Its key

disturbances are hard to measure and monitor. The most important process variables

(gasoline octane number, catalyst activity, carbon on catalyst concentration) cannot be

measured on-line but must be inferred. The unit's operating policy is continually changing

with market forces, and constraints imposed by feed catalyst quality and mechanical

limitations cause the process to move around its operating window. A mixture of fast and

slow response modes add to the complication in defining stable, steady-state normal
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operating conditions. Although these issues may complicate the analyses, they are

typical of the types of problems posed by industrial data sets and PCA and PLS should

be better at accommodating them than traditional multivariate techniques.

3.5 FCCU Models

In this section, complete FCCU models will be discussed to illustrate what is

currently available in the literature and what inadequacies still exist in this area. Kinetic

models of catalytic cracking will not be covered since the literature is too expansive and

detailed in this area to be reviewed here.

Modelling a process like an FCCU requires trade-offs between complexity and

reliability, fundamental process knowledge and empiricism, and involves problems in

scaling from pilot to commercial scale units. A high degree of sophistication and detail

requires a high level of expertise (at an equally great expense) while too simple a model

may not be reliable or serve its purpose well. Although every model contains some

degree of empiricism, the less there is of this, the greater will be the generality of the

model. This reduction comes about through increased understanding of the process

fundamentals. It is also generally difficult to get reliable quantitative information on

commercial units. Since process performance is equipment sensitive, scaling up pilot

plant data to match commercial scale units can be difficult (McDonald and Harkins 1987).

Elnashaie and Elshishini (1990) recently reviewed the following eight FCCU

models developed over a span of twenty-seven years; Luyben and Lamb (1963),

Kurihara (1967), Iscol (1970), Lee and Kugelman (1973), Elnashaie and El-Hennawi

(1979), Farag and Tsai (1987), Edwards and Kim (1988) and Elshishini and Elnashaie

(1990).
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The first four models are variations on CSTR representations of the reactor and

regenerator. The Luyben and Lamb, and Kurihara models involve only three component

species (typically gas oil, gasoline and other products and coke) while Iscol and Lee and

Kugelman do not use any reaction network. Elnashaie and El-Hennawi take into account

the two-phase nature of the reactor and regenerator by modelling the bubble phase and

dense phase of each separately. They also use a three component reaction model. Farag

and Tsai developed a correlation model which predicts the trends of operating variables

on reactor product yields (fuel gas, propane, butane, gasoline, light gas oil and coke).

Their paper also notes other empirical models. The Edwards and Kim model is a

proprietary one. Elshishini and Elnashaie's model is a modification of the Elnashaie and

El-Hennawi one and includes empirical calculations for light hydrocarbons (i.e., separates

light gases from the single coke and gas term) and heavy cycle oil recycled as feed.

Some additional models not covered by the review are discussed below.

McGreavy and Smith (1984) use a three lump model for reaction in their

quasi-steady state riser. It includes a model for the stripper (a lumped capacitance

model) and catalyst circulation. The regenerator is modelled as a two-phase fluidized bed

and includes afterburning, catalyst entrainment and recirculation effects. Lee and Groves

(1985) combine the adiabatic plug flow reactor model of Shah et al. (1977) and perfectly

mixed tank regenerator model of Errazu, de Lasa and Sarti (1979) along with a three

lump model for the reaction network.

The riser portion of the model by McFarlane et al. (1990) allows for varying feed

quality (i.e., tendency to produce coke) but only predicts two products; yield of wet gas

(hexane and lighter) and the amount of coke deposited on the catalyst. The regenerator

is a two-phase model, and simple models for lift air and combustion air blowers, catalyst

circulation, main fractionator and wet gas compressor are included.
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Many of the above works using reaction models define their products so widely

that only limited information is available on how process variables affect gasoline yield

and the other six to seven products of a commercial FCCU. Kraemer, Sedran and de

Lasa (1990) have developed an eight lump model (dividing the products up as: gasoline,

butane and lighter plus coke, and light (220C
-

343C) and heavy (343C +) cuts of each

of paraffins, napthenes and aromatics), but it has yet to be incorporated into a published

FCCU model.

Only some models allow study of the effects of feed and catalyst quality on

process operations and products and since many models are fitted to specific industrial

units, they are only valid in narrow operating ranges and only for their respective unit. No

model for a two-stage regenerator has yet been published in the literature.





CHAPTER 4: PCA, PLS AND HIERARCHICAL PLS - DESCRIPTIONS

AND ISSUES

In this chapter the methods of PCA, PLS and hierarchical PLS are briefly

outlined along with recent examples of their implementation in analysis, modelling and

monitoring roles. This is followed by a discussion on appropriate model dimensionality,

data pretreatment issues which affect the outcome of these analyses (scaling, dynamic

data, time delays, drifts in the data set, normalization, reference set selection, outliers,

and hazards of modelling with historical data) and a set of tools available for analyzing

the results.

4.1 Introduction

PCA and PLS are from the family of pattern recognition techniques which build

distribution-free empirical models where causality is based on correlation (Geladi 1988).

The goal is to create a low dimensional representation of a high dimensional matrix (or

matrices) by finding a small number of latent variables (LVs), linear combinations of the

measured variables, which correspond to the directions of greatest variation in the data

set.

Latent variables can be thought of as new "meters" or measurement instruments

which monitor the dominant variations or changes taking place in the process. They may

be more directly related to physical or chemical phenomena than single process variables

collected. Attractive features of LV models are the orthogonality in the LVs (which allows

for easy interpretation, display and subsequent analysis of the results) and eigenvector

33
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properties which assure computational convergence (Wold et al. 1987b). Latent variables

can be plotted against each other to form two-dimensional planes or "windows" which

help to visualize the relationships amongst the variables and samples.

The strength of PCA, PLS and hierarchical PLS lie in their capacity to deal with

highly colinear data sets, cases where the number of measurements made is greater

than the number of samples available, and sets where data is missing or may contain

outliers. The NIPALS algorithm (Wold et al. 1984) was used for all three methods. It is the

basis of the software SIMCA and was run from a MATLAB 386 version written by

Skagerberg (1990). Complete details on all the calculations can be found in Wold et al.

(1984).

The following sections briefly discuss the mathematics of each method, and

highlight recent applications.

4.2 Principal Component Analysis

PCA, (also known as singular value decomposition, eigenvector analysis,

characteristic root analysis, characteristic root analysis, latent vector analysis and

Karhunen-Leuwe transformation) works with a single data block and yields latent

variables which purely summarize the variance information amongst the variables. Figure

4.1 shows a latent variable fitted to an X block consisting of three variables and n

samples. The latent variable lies in the direction of greatest variation in the three

dimension space that the variables span.

Mathematically, PCA decomposes the data matrix X into a set of vectors p and t

called loadings and scores:
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Figure 4.1: Visual representation of fitting a latent variable (LV) to a data block

(containing three variables).

X = t1pl+t2pl+...tApl+EA (4j)

ta = vector of scores (or values) for each sample for dimension a

pa
= vector of loadings (orweights) of each process variable for dimension a

Ea = residual matrix after extraction of "a" latent variables

or principal components

A = number of latent variables in the model

The contribution of each process variable to the latent variable is represented

through the loadings in vector p. Each sample has a score, t, associated with it which

simply represents the value of the latent variable for that set of measurements.

The NIPALS algorithm (illustrated in figure 4.2) starts by selecting the column

with the largest variance in X as an initial guess of t, then using the X data, calculates p:

(4.1)
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(normalize p to unit length)

A new t vector is then calculated from p and X and compared to the old one.

,=2- (4.2)
P P

If t has not converged, one returns to equation 4.1 and repeats the calculations.

Once convergence is reached, the original data matrix can be described in terms of the

score vector t, loading vector p and residual block E as shown in figure 4.3:

X = tpT+E (4.3)

The PCA latent variables are also known as "principal components" (PCs). The

first PC describes the direction of greatest variability in X. NIPALS then makes E the new

data matrix (since it represents all the information left unmodelled) and repeats the

calculations for the next dimension.

Dimensionality reduction is achieved by selecting the value of A in equation 4.i

to be much smaller than the number of variables present in X and such that no significant

process information remains in the matrix EA (i.e., EA only represents random noise).

For data scaled to unit variance (discussed in section 4.6.1) the PC analysis is

essentially finding the eigenvectors of the correlation matrix (Chatfield and Collins 1980).

Wold, Esbensen and Geladi (1987c) also show how PCA is directly related to singular

value decomposition.



37

Figure 4.2: One dimension of the NIPALS PCA algorithm.
The numbers represent the order of the calculations.

Figure 4.3: Vector representation of the X data block after calculation of one latent

variable.
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The analysis is not an end in itself, but a way to reduce the dimensionality of a

problem before carrying out further analyses. Thus, the objectives of PCA encompass

simplification, data reduction, outlier detection, variable selection, classification,

prediction and modelling (Wold, Esbensen and Geladi 1987c).

Wold et al. (1984) give several examples and references to work using PCA for

such purposes. Typical applications in the field of chemistry include classification of

compounds according to their type of biological activity, chemical reactivity and structure.

Non-chemical applications include classification of ecological systems, economical

systems and accounting tables.

Modelling and analysis of data sets collected from industrial processes has thus

far been limited. Wise et al. (1988) used PCA to model a monitoring space for a liquid fed

ceramic melter. The system was designed to warn operators of process upsets,

off-specification operating conditions and to help in the identification of failing sensors.

Piovoso, Kosanovich and Yuk (1991) built a similar monitoring space for the solution area

of a polymer yarn fabrication process, with much the same objectives in mind.

4.3 Partial Least Squares or Projection to Latent Structures

When one has two sets of variables (X and Y) and wishes to predict one set of

variables (Y) from the other (X), PLS is an approach to use. Latent variables for each

block are selected simultaneously and rotated so that they compromise between

explaining the variance in X and predicting Y.



39

1 2 3

1

2

3

X

n

1 2

X and Y data blocks

/ PC Y>\lLV.

Three-dimensional representation of data

Figure 4.4: Fitting a LV to an X and Y data block using PLS.

Figure 4.5: One dimension of the NIPALS PLS algorithm.
The numbers represent the order of the calculations.
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Figure 4.4 illustrates this for a data set composed of three x variables and two y

variables. The principal component in the X space (labelled as PC) represents the vector

which describes a maximum amount of variance, however, it must be rotated to maximize

its correlation power with the Y space resulting in the LV, fit shown.

The NIPALS PLS algorithm is outlined in figure 4.5 and the reader is directed to

the paper by Wold et al. (1984) for complete details of the calculations. Briefly, the

column of maximum variance in the Y block is selected as an initial guess for the vector

u, and vectors wT, and qT are then calculated in series followed by an update of u:

wT~ (4.4)
u u

(normalize w to unit length)

/--^ (4-5)
WW

tTY

qT = -i- (4.6)
tTt

(normalize q to unit length)

u=Y4- (4.7)

If t has not converged, one returns to equation 4.4 and repeats the sequence.

Once convergence of t has been reached, the X loadings pT and regression coefficients b

are determined:

/ = (4.8)

uTt

6=V (4.9)
tTt

The X and Y blocks can now be predicted from:
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X = tpT +E (4.10)

Y = btqT+F (4.11)

where

uTt
b= (4.12)

= biased regression coefficients for one dimension

(if q is not normalized, b equals unity).

For a given model dimensionality, overall biased regression coefficients, B, can

be calculated as follows (Wold et al. 1987a):

W

pTw
B=^r- (4.13)

oft;'
v '

where

W = block containing all w vectors

P = block containing all p vectors

The residuals left over from fitting these models, E and F, are used as the X and

Y spaces for the next LV extraction.

A very important feature of the results is that the t and w vectors are orthogonal.

This allows one to form planes or windows which illustrate the reduced space as

modelled by PLS.

Application of the PLS method first started in the fields of organic and analytical

chemistry where multivariate data was abundant but working physical models were

scarce. Its main role involved calibrating output from data-rich analysis techniques such

as NIR, spectroscopy and chromatography to the properties or responses of samples

being studied. PLS soon spread to the related fields of biology, clinical chemistry,

medicine, food research, biotechnology, quantitative-structure activity relationships, and
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pharmacology. Today, it is being applied in such diverse fields as education, psychology,

management science, economics, political science and environmental science (Geladi

1988).

Kresta, Marlin and MacGregor (1991b) used PLS to develop an inferential

control scheme for a simulated multicomponent distillation column. PLS has also been

combined with PCA to build an industrial multivariate monitoring space. In the yarn

fabrication example (mentioned under PCA) PLS was first applied to the data set to

remove the known dominant effects of feed rate on process variability. PCAwas then

applied to the residuals of the PLS model to develop the "fingerprint" or portrait of the

normal operating region (Piovoso, Kosanovich and Yuk 1991). However, as with PCA,

little work involving PLS analysis of industrial data has been reported.

4.4 Hierarchical PLS

Hierarchical PLS, as the name suggests, is a modification of the PLS method

where the number of blocks used for either the X or Y space (or both) is greater than one.

The original algorithm developed by Wold et al. (1987b) can be thought of as an

expansion of PLS where single measured variables in the X and Y spaces are replaced

by blocks of measured variables. In the case of "a" X blocks and "b" Y blocks, as shown

in figure 4.6, for each dimension the algorithm iterates on finding the score and loading

vectors most descriptive of each block, collecting the score vectors ta and ub from X and Y

spaces into two composite matrices T and U, and performing a NIPALS-PLS round on

these two blocks to update the consensus vectors t and u:
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Figure 4.6: One dimension of the NIPALS hierarchical PLS algorithm.
The numbers represent the order of the calculations.

Initial guesses of the consensus t and u vectors are made, for instance, by

selecting the column with the largest variance in any Xa matrix for t and any Yb matrix for

u.
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For each X block, the following vectors are calculated:

Xlt

P'=7i

t JPa
m

(4.14)

(4.15)

where

m
= number of columns in block a

The / vectors are collected into the consensus matrix T.

For each Y block:

Ylu
qb
=

-T- (4-16)
u u

ub=^ (4.17)
mb

where

m
= number of columns in block b

The ub vectors are collected into the consensus matrix U.

A PLS round with T as X and U as Y is made to update the consensus vectors t

and u, and calculate the block weight vectors v and w:

TTu
v= (4.18)

u u

(normalize v to unit length)

7v
t= (4.19)

v v

UTt

w=77 (4.20)



45

(normalize w to unit length)

Uw
u= (4.21)

WW

Convergence is checked on all ta vectors as well as the consensus vector t. If

this has not been achieved, the steps are repeated from equation 4.14.

One should note that the individual ta vectors are not orthogonal and cannot be

used to form monitoring planes.

The final consensus vector t plays an important role not only in the prediction of

Y but also in the modelling of all the X blocks. The predictions for individual blocks are

calculated, as follows:

Xa = tpTa+Ea (4.22)

Y> =+Fb (4-23)

A modified approach of the above algorithm by Wangen and Kowalski (1988)

allows for more complicated relationships amongst the blocks. Their approach is

discused in greater detail in section 8.3.

As yet, no applications of the hierarchical PLS algorithm have been published.

4.5 Determining Model Dimensionality

An important issue in model building is determining the number of latent

variables or components to use, as this has a significant effect on a model's resolution

and predictive power. If the underlying relationship between the X and Y spaces in PLS

(or within the X space in the case of PCA) is a linear one, the number of LVs needed to

describe this should represent the number of independent phenomena taking place within

the data set: non-linear phenomena will require extra LVs to describe their non-linearities

(Geladi and Kowalski 1986).
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The maximum possible dimensionality of a model is equal to the maximum

number of columns or rows in X. However, since most process data sets contain

colinearities, PCA and PLS are able to describe the significant variations in a data set

using fewer latent variables.

If the precision of the measurements are known, one could calculate as many

LVs as needed to reduce the matrix standard deviation to correspond with the precision

standard deviation (Wold et al. 1984). However, this presumes that all the systematic

chemical and physical phenomena in the data matrices can be modeled by a set of

latent variables, and such an assumption can be quite questionable (Wold, Esbensen

and Geladi 1987c). If there is unknown model error involved as well, then the above

approach might lead to overfitting. Clearly, some other (and more rigorous) criteria is

needed, such as cross-validation.

4.5.1 Cross-Validation

Cross-validation was developed to answer the question of what is an

appropriate rank for a PCA or PLS model. It tries to estimate how much of the data is

"signal" and how much is "noise" and to maximize the predictive power of the model

(Wold 1978). For each LV calculated in an analysis, a random portion of the samples

(say, J) is excluded from the X block along with their corresponding rows from the Y

block; the LV is calculated from the remaining samples. Using the excluded X data and

the LV, values for the excluded Ys are predicted and the predicted sum of squares,

PRESSi, is calculated:

PRESSi = SS(F
- Yf (4.24)

where
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n = number of samples (rows) in the Y matrix

m = number of variables (columns) in the Y matrix

These steps are repeated i times, leaving out a different portion of the data each

time until all data has been omitted once. The values of the PRESS; from all i repetitions

are summed to yield the total PRESS for this LV. This value is then compared to the

predicted value of the Y space, Ym, using all previous latent variables:

SS = XWltm-Ym)2 (4.25)

where

Ym = measured Y value

f
m

= predicted Y value using previous LVs

An intuitive criterion is applied to the following ratio:

CSV/SD V
'PRESS

(4.26)
SS

If the value of CSV/SD is less than 1 .0, the LV has significantly reduced the

sum of squares (SS) in the Y space to warrant its use in the model. The paper by Wold

(1978) describes the cross-validation process in detail.

Cross-validation is slightly conservative (i.e., it often leads to too few dimensions

in terms of statistical significance) which is a positive attribute because the data are not

over-fitted (Wold, Esbensen and Geladi 1987c).

4.6 Major Issues

Due to the nature of the soft modelling methods and their application in this work

to a historical process data set, there are several key issues which need to be considered

before carrying out the analyses. These are discussed in the following subsections.
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4.6.1 Scaling

Since the LV models are fitted to the data using the criterion of least-squares,

variables with a large variance will dominate the models. When process measurements

span several orders of magnitude, large changes in relatively unimportant variables (e.g.,

cooling water flow rate) can swamp out smaller yet more significant changes in important

variables (e.g., riser outlet temperature). Hence, some type of scaling of the data is

necessary.

Since scaling directly affects a variable's relative variance, it also indirectly

influences the nature of the LVs, resulting in the LVs not being a unique characteristic of

the data (Chatfield and Collins 1980). There are numerous ways in which scaling can be

done, such as i) scaling to give each variable equal variance (auto-scaling), ii) scaling by

importance, or iii) scaling by product quality or controller ranges, to name a few.

Auto-scaling is typically used when one does not have a clear idea which

variables are most important. It essentially scales each variable to equal importance (or

influence) in the model by subtracting the column mean from each variable and then

dividing by the standard deviation of the column. This also moves the coordinate system

of the analysis to the center of the data (Wold, Esbensen and Geladi 1987c).

The main concern with this approach is that nearly constant variables with small

variance will be scaled up in importance. However, if their variance is due mostly to

noise, these variables should not contribute heavily to the model, only add to the

variability which must be explained in the X (or Y) matrix.

Scaling variables by importance can reduce the risk of having meaningless,

noisy variables dominate a model. However, the investigator must have a good idea of

which variables are or may be important and this destroys some of the beauty of LV

analyses, namely, extraction of information from the data without first imposing a
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structure (in this case, through scaling) upon it. Scaling by product quality or controller

ranges requires a more in-depth knowledge about the process and instrumentation in

place but should yield a model which is easier to interpret.

This idea could also be approached from another angle, that is, to scale down

variables whose variance is known to be mostly noise. A rule of thumb suggested by

Wold, Esbensen and Geladi (1987c) is that

... if the standard deviation of a variable over the data set is smaller than

about four times its error of measurement, leave that variable unsealed. The other
variables may still be variance-scaled if so desired.

In some cases, it may make more engineering sense to scale blocks of variables

in the same way in order to retain the information about the relationship amongst them.

The temperature profile of a distillation column is an excellent example (see Kresta,

MacGregor and Marlin 1991a). Or, to give each variable in a block of similar type the

same total variance, divide each variable by its standard deviation times the square root

of the number of variables of that type in the block (Wold, Esbensen and Geladi 1987c).

Clearly, the scaling method used should be consistent with the aims of the data

analysis and each case will have to be assessed individually for the most suitable

approach.

4.6.2 Effects of Dynamics and Time Delay in the Data Set

Since dynamic data may introduce non-linearities into a data set (particularly in

the case of multivariate systems) a latent variable model will need more dimensions to

model this behaviour than the true dimensionality of the problem. Performing

auto-correlations on the data can give the investigator a feel for the magnitude of the time

constants for each variable if lags exist. However, the absence of significant

auto-correlation lags does not ensure the data is steady-state, only that one has
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snap-shot data. If the dynamics amongst variables are significantly different enough, they

could also disrupt the correlation structure being modelled and this can have a serious

effect on the model resolution and predictive power.

a

Time

Figure 4.7: Effects of dynamics and time delay on the relationship between an x and y
variable: a) same dynamics for both the x and y variable

- relationship remains the same
throughout dynamic period, b) different dynamics -

relationship between x and y
constantly changing, c) effect of time delay

-

(i) and (iii) show same relationship, while (iii)
contains a different relationship.



51

Two possible dynamic situations are illustrated in figure 4.7a and b. If the y

variable and a correlated x variable have the same dynamics (figure 4.74a) such that the

relationship between the two variables remains the same throughout the dynamic period,

then a LV model built from either steady-state or dynamic data should give the same

result. The presence of the dynamic data does not have a detrimental effect on the

model.

However, if the two variables have different dynamics, such as different time

constants or response curves (as shown in figure 4.7b) such that the relationship to be

modelled is constantly changing throughout the time series data, this leads to a complex

model. A large number of components will be required to fit it and it may also be difficult

to interpret the meaning of individual LVs. If the dynamics are very different over a given

period, and the length of this period is significant relative to the amount of steady-state

data present, then the presence of such dynamics in the data set can have serious

effects on the resultant model.

A third effect to be considered is that of time delay. Figure 4.7c shows a fictitious

time series plot of an x and y variable correlated in time but exhibiting a delay. For the

time periods (i) and (iii), the data exhibit the same relationship, but in period (ii) a new

relationship is introduced. This "transition" period can have serious effects on the

steady-state model if the delay is large relative to the lengths of the steady-state periods.

Cross-correlation calculations between the x and y variables can be used to check for

such relationships, and if found, parts of the data can be shifted to align it and eliminate

the time delays. Data can also be replicated then shifted so that there are no gaps in the

time history, although this increases substantially the amount of data to be processed,

and may not be a viable alternative for all analyses.
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4.6.3 Drifts in the Data Set

Another important consideration is the presence of drifts in the data set. When

data is collected in a class-wise fashion and measuring instruments or other sampling

conditions slowly change over each class period, the samples will produce a class

difference which is, in part, due to the drift and attempts to separate the contribution of

the drift from the class differences will be difficult (Wold et al. 1984).

Ideally, the data collection should be designed, thus avoiding confounding with

time trends, but when working with straight process data, one does not have this luxury.

One possible way of reducing this problem would be to ensure that each class or event in

the reference set contains samples from both the beginning and end of the set, although

this is may not always be possible.

4.6.4 Normalization

Often the investigator knows that some mathematical relationship should hold

for a set of measurements (such as a material balance), but due to measurement error or

losses, the information does not fit exactly. One might then be tempted to normalize

(weight) the data to make it fit, or to calculate a missing value from the others to fit the

desired relationship. This forces a correlation upon the data and may mask information

that would otherwise give some insight to the process.

Such procedures should be avoided as independent measurements of all

variables lead to better parameter estimates and also provide information about the

suitability of the model being entertained. This issue is discussed further by Box et al.

(1973), Holly, Cook and Crowe (1989), and Wold et al. (1984). No normalization

calculations are performed on the industrial data studied in this thesis.
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4.6.5 Reference Set Selection

A set of data used to build a classification model is called the reference or

training set. It is important that the reference set be selected such that the characteristics

or classes one wishes to model are clearly defined and that one can get a pattern into

which future values can be fitted (Wold et al. 1983).

Some necessary assumptions which apply to the reference set in order to

achieve reasonable results are as follows:

*

there are no strong outliers or subgroups present

"

data homogeneity exists within a class (i.e., samples within a

particular class must be similar in some way)

*

the variables are monotonically related to the degree of similarity

(i.e., the majority of the data measured on the samples must in some

way be related to this similarity) (Wold et al. 1983)

*

data should not be highly non-linear (variables can be transformed

before performing the analysis to achieve a more linear data matrix

(Geladi 1988; Martens, Wold and Martens 1983)

*

when using process data, the data must properly span the operating

space

To develop a model suitable for monitoring the operating behaviour of a

process, as in multivariate SPC applications, the reference set must represent all those

events or changes in the process which one considers normal. If the range of acceptable

operations is too narrowly defined, the abnormality flag will be triggered too frequently

and perhaps without due cause. If the range is too broadly defined by the data, little

information will be provided about the process state and only gross changes from the

process "norm" will be flagged.
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Each class should contain at least five representative reference samples, and

preferably up to ten or twenty (Wold et al. 1984). Keep in mind, however, that the idea of

"classes" is a man-made construct, a type of structure imposed on the data, whereas the

samples have a real existence. If it is found later that the resolution of the monitoring

space is poor, one should consider whether or not the proposed classification (e.g.,

normal versus abnormal) is a good one or not in addition to questioning the information

content of the measurements selected (Wold et al. 1984).

For developing prediction models, the reference set data should be collected

according to a statistical design. Industrial processes, however, pose many problems for

this strategy. The multivariate nature of processes such as the FCCU make it difficult to

change only one variable at a time while holding the others constant. A factor believed to

influence the output may not be easily isolated and changed (such as catalyst quality

which can have a long time constant and is heavily influenced by feed quality), and the

variables available to the investigator for manipulation in a designed experiment may not

be those which are believed to influence the system (Wold et al. 1986).

If statistically designed data collection is not possible, then, at the very least, the

reference set must span the process region expected to be found in the test data. The

variance (and hence the error) of predictions arising from passive models grows as one

moves further away from the centre of the reference set (Draper and Smith 1981). Thus,

extrapolation can be expected to yield poor results.

4.6.6 Outliers

Sometimes a reference set can contain a sample which is an outlier; it does not

truly represent any of the classes or events being modeled. Determining whether or not

an observation is an outlier is very tricky. One does not want to automatically discard any

singular point which appears to deviate from some preconceived trend because the
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deviation may actually contain valuable information about the process. The deviation may

also suggest that the preconceived model is wrong, a situation which is quite possible

(Himmelblau 1970) particularly with undesigned data sets.

Due to the least-squares property of PCA and PLS, outliers severely influence

the model by pulling it in such a way as to fit them closely (Wold et al. 1984). Thus,

checking the residuals of fitted samples (e.g., performing an F-test on a sample's

standard deviation of error compared to the total standard deviation) may not reveal the

true outliers. In fact, they may have a smaller residual than samples which truly belong in

the reference set (Wold et al. 1984).

Fortunately, such outliers can usually be detected in the T score plots. One can

then use knowledge about what happened with the process during the sample periods to

verify whether or not the sample is a legitimate part of the reference set.

The Mahalanobis distance is another tool which has been used (Piovoso,

Kosanovich, and Yuk 1991 ) to determine whether a sample is a member of a reference

class. It assumes the class population has a multivariate normal distribution, which thus

imposes an ellipsoid shape onto the reference model (with the population mean sitting at

its centroid). The size of the ellipse is defined by a chi-squared value for a user-specified

confidence level and appropriate degrees of freedom and the distance measured is

between its centroid and the sample location in the reduced subspace (Nilesh and

Gemperline 1989). Due to the assumptions which must be made about the data, the

Mahalanobis distance is not used in this work.

If the number of latent variables used in the model is greater than three, Martens

(1985) suggests calculating a sample's leverage. Leverage indicates the degree of

dominance of a sample in a model (but not whether that dominance is good or bad).
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Once again, the retention of a "hypothetical" outlier depends upon the model usage and

each sample which has a high leverage should be evaluated on this basis rather than

being discarded automatically.

4.6.7 Hazards of Modeling with Historical Data

Models built from historical data are valid only within the range of the data used

in the reference set. Extrapolation of a passive model is extremely dangerous due to the

increase in prediction error that occurs as one moves away from the centre of the

reference data (Draper and Smith 1981). Such models are also only valid as long as the

process remains physically the same and the operational strategies do not change. Thus,

the data set used for modeling must reflect the same process situation(s) which will exist

when the model is used.

Complications can arise from the presence of inconsistencies in the data set

over time, the presence of control loops, semi-confounding of effects, and attempts to

draw causal relationships from the regression models. These issues apply to any

regression equations fitted to undesigned data sets (Box, Hunter and Hunter 1978) and

are briefly discussed below.

4.6.7.1 Inconsistent Data

A long historical data set can contain many inconsistencies due to small

changes over time in instrument errors, calibration drifts, operator changes and so on.

Although some of these changes can be accounted for (and are recorded in operating

records) many are not. By introducing inconsistent structures into the data set, such

samples can greatly dilute the resolution and power of the model.
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4.6.7.2 Presence of Control Loops

Controlled variables pose an interesting problem for models built by regression

methods. The variance of their movement is typically limited because these variables

often have a significant effect on the process. With limited range, however, they may

appear to have no effect on the output space and thus will typically not have large

coefficients in the regression model. One has essentially modeled not the relationship

between the variable and the output, but rather, the controller strategy in place. Since the

model does not represent the underlying process phenomena, it is immediately invalid

once the structure of the sampled process changes (either through physical or

operational changes). This problem is similar to the one encountered in identifying

non-parametric dynamic models from data generated under feedback control using

open-loop methods and assumptions (Box and MacGregor 1974) and was more recently

demonstrated by Kresta, MacGregor and Marlin (1991a) for the case of a simulated

extraction column.

4.6.7.3 Semi-Confounding of Effects

Colinearity amongst variables works advantageously with PCA and PLS to

stabilize the latent variables. However, as with the case of controlled variables, it makes

determination of an individual variable's effect on the Y space (based on its regression

coefficients) difficult. This is known as semi-confounding of effects. The only conclusion

that one can safely draw from the loadings on the variables or biased regression

coefficients is that large values indicate the corresponding variable plays an important

role (rightly or wrongly) in the model, or is highly correlated with another variable which is

important. This issue is discussed in greater detail in section 4.9.
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4.6.7.4 Drawing False Causal Relationships

One also has to be careful not to draw direct conclusions as to causality in a

model simply because of correlation between certain x variables and the Y space. It is

possible that another factor or "underlying" variable which was not collected in the data

set may have caused the changes in both the X and Y spaces, leading to the high

correlation. Caution must always be applied if one attempts to interpret a variable's

loading.

Despite all these drawbacks, a biased regression model developed from

historical data can be used for prediction provided that the system modeled does not

change physically and continues to be operated in the same fashion as when the data

were collected.

4.7 Model Validation and Interpretation Tools

The first two tools used to analyze the results focus on determining the statistical

significance of the LVs extracted.

4.7.1 Overall CSV/SD

This value arises from the cross-validation process (as discussed in section

4.5.1) and indicates the statistical significance of each LV. If the value of CSV/SD is less

than unity, the latent variable or component has modeled some of the variability in the

data set, and has reduced the sum of squared error remaining. Thus, it is considered

significant and one proceeds in calculating the next dimension. If, however, the value of

CSV/SD is greater than one, the latent variable has modeled more variability than is

actually present; it is not significant and the extraction process is stopped. This statistic is

used as part of the model dimension cut-off criteria.
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Individual CSV/SD values are also calculated for each variable in the data block

for PCA and in the Y space for PLS. They indicate which variables are most strongly

predicted by the latent variables.

4.7.2 Percentage Variance Explained by Model

For each LV extracted, the percentage variance explained in each block with

and without cross-validation is also calculated. Since cross-validation involves actually

predicting a portion of the data, it provides a more realistic indication of model fit than the

non-cross-validated statistics (i.e., it is conservative and more representative of the

prediction power of the LV than the ordinary case).

^.^r,o %ordinarySSX-%cross-validatedSSX .,nn ,A x

%D(ffSSX = - 77^ *100 (4.27)w
%cross-validatedSSX

Monitoring the difference between the percentage variance explained using

cross-validation and the variance explained for the un-validated procedure draws

attention to the percentage of error being predicted. As the difference between these two

values becomes greater, the amount of error being modelled is increasing.

4.7.3 Predictive Model Statistics {R2, Confidence

Intervals)

Two statistics were calculated for the predictive models to check for their fit; the

correlation coefficient R2, and 95% confidence limits.

The correlation coefficient value, calculated as

R2= (4.28)
ZUM-Y)2

where
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Y-, = predicted value of Y for sample i

7 = mean value for Y

Y; = observed value of Y for sample i

n = number of samples

measures the proportion of total variation about the mean 7 explained by the

regression model. A high value does not necessarily imply causation but does indicate a

good fit. Conversely, a low correlation does not necessarily mean no relationship exists;

strong non-linear relationships between Y and X are likely to yield poor R2 values

because of the linear nature of this test.

The confidence intervals for the models were determined from the standard

deviations of the fitted prediction errors. Since the expected value of the error mean is

zero, the variance of the fitted prediction error can be calculated as follows:

, z?=1(yl-y1.)2 z?=1(e)2
s2=

' '

=

' '

(4.29)
n-1 n-1

where

s2 = variance of the fitted prediction error

e = model error

For 2o limits, the confidence intervals are calculated simply as

CJ.= -2*yf? (4.30)
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4.8 Interpreting the Low Dimensional Spaces and SPC Models

Statistical significance, however, does not ensure chemical significance. As the

size of a data set is increased (through the addition of samples or measured x or y

variables) minute regularities may cause the number of significant latent variables to

increase (Wold et al. 1984). Also, as the signal-to-noise ratio decreases, it is hard for

PCA and PLS to differentiate between non-linearities in the process and noise. The

contribution of later LVs to the model resolution may be so unimportant that leaving them

out does not change the results or conclusions drawn from the model. (Wold et al. 1984).

Chemical validation is important to ensure that the model indeed makes sense

and to detect possible shortcomings or limitations (Kvalheim and Karstang 1989). PCA

and PLS do not assume anything about the information content in the data and can only

recognize what is actually in the data. It is quite possible that an analysis would yield no

valuable information about the process at all which is merely a reflection of the

information content of the data.

An important assumption in these analyses is that the first LVs or dimensions

generated (corresponding to the largest eigenvalues of the data set) contain the most

useful information relating to the problem and that later LVs describe mostly noise. This

must be critically examined in light of the purpose of the analysis.

The latent variables are not always easy to interpret beyond the first or second

because each is constrained to be perpendicular to the preceding ones and the process

changes and events do not necessarily behave in this manner. However, PCA and PLS

may yield good predictive models even though physical interpretations cannot be found

for all the LVs.
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4.8.1 Inspection of Plots

A key assumption in pattern recognition techniques is that closeness of samples

in the pattern space and similarity are related. The distance between samples of a

similar class is much smaller when compared to the distance between samples that

belong to different classes (Wold et al. 1983). Samples can be visually sorted as

belonging to one of the modelled classes (or not belonging to any class). It is also quite

possible that one class is easily defined and modeled whereas the other does not appear

to be homogeneous with any inherent similarity. Such a class structure is referred to as

"asymmetric".

One of the most valuable aspects of the PCA and PLS analyses is the ability to

display their results in low dimensional spaces (mostly as two dimensional plots) where a

wide range of relationships can be displayed.

Knowledge about what happened during data collection is invaluable for the

interpretation of these plots and can be used in two ways. One can list events of interest

(such as feed temperature, feed rate and feed quality changes) and locate these on the

plots, or one can identify groups of samples at opposing ends of a latent variable's

direction and try to determine why they are oppositely related. The sooner the inspection

and analysis of the data is performed, the more likely plausible relationships and causes

can be identified.

T versus T Plots

Plotting the scores or values of the LVs for each sample can reveal subgroups

or classes within the data set and also identify outliers or dynamic periods. These plots

indicate what events the latent variables are modeling. Tight clusters suggest major

differences between groups are being modeled while loosely packed points suggest

smaller continuous variations are being modelled.
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P versus P Plots

For PCA data sets with a small number of variables, the P versus P plots reveal

the relationship amongst the variables and indicate which ones are most strongly

modelled. A variable which dominates a vector may have a large portion of its variation

being explained, but if its individual CSV/SD value is near 1 .0 (indicating small

predictability of this variation) it may indicate modelling of noise.

For data sets with a large number of variables, the P plots become difficult to

interpret and other means for analyzing loadings must be used. This issue is addressed

under "Normal Plots" below.

W versus W Plots

For PLS analyses, these plots reveal the relationship amongst the X process

variables much like the P plots do for PCA. The w vectors, however, are orthogonal,

whereas the p vectors are not. If the number of process variables is large, W plots are

difficult to interpret and other means of examining the loadings are necessary. See the

discussion of normal plots below.

Q versus Q Plots

Q vectors are the loading vectors of the Y space which indicate those Y

variables that the LVs are modelling. They help relate changes in the T planes with

production changes which are most easily seen in these Q plots.

For data sets with few process variables in the X and Y spaces, the Q plots can

be overlaid with W versus W plots to yield one plane where the dominant X process

variables and modelled Y variables of each LV can be observed at once.

T versus U Plots

Plotting these two vectors against each other describes the inner relationship

being modeled between the X and Y spaces. These plots also show if the relationship is

a linear or non-linear one (and therefore how adequately the dimension is able to
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describe the relationship) and can also indicate if either the X or Y space is being

predominantly modeled. As the slope of the inner relationship line increases, the

influence of the X space drops off and the variance in the Y space dominates the model.

This suggests that emphasis for interpretation should be placed on the Q plane rather

then the T plane. Samples which have a strong influence on the direction of the latent

variables are also easily seen in this type of plot.

Normal Plots

Plotting the elements of the vectors for each latent variable on normal paper can

provide a visual sorting of the large positive and large negative loadings and thus which

variables are dominating the LV model. The shape of the plots can also suggest

information about the distribution and relative size of change modelled by the LV. When

loadings greater than their mean plot above the normal distribution line and loadings less

than the mean plot below the normal distribution line, this suggests that two clusters or

distributions exist in the loadings, probably the result of a large change in the process.

Caution must be advised if these plots are used, though, because the plots

assume the loading values are independent and identically distributed with fixed mean

and variance. For a highly colinear data set, these conditions will not be true. This idea is

illustrated in the first PCA analysis in section 5.2.1 for vector px but it not pursued further.

4.8.2 Sum of Squared Prediction Error (SPE) Values

To gauge the modelling error in a monitoring application, the LVs selected for

monitoring are used to predict the reference data. The squares of the prediction error for

each Y product of a single sample are summed to give the SPE value (sum of squared

prediction error).

Since the SPE values should be random in magnitude and independently

distributed, samples with abnormally large SPE values warrant further examination.
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Only the vectors selected for the monitoring space are used to calculate the

SPE values; using more LVs will mean disturbances affecting the unmonitored LVs will

not be observable in the SPE plot (Kresta, MacGregor and Marlin 1991a). When test data

is introduced to the monitoring space, their SPE values are compared to the 95%

confidence level of the reference data to aid in detection of abnormalities.

4.9 Analysis of Loading Vectors and Regression Coefficients

Since the latent variables summarize the variance of the data being studied, it

would be beneficial to find out which measured variables play a key role in determining

the direction and modelling power of the latent variables. One's first inclination might be

to study the loadings or coefficients (in the case of regression models) applied to each

variable and assume that large weights indicate important variables and small weights

indicate the opposite. There is, however, a problem with this approach.

With PCA and PLS, X variables which are highly correlated amongst themselves

and which are all valid predictors of Y will have to "share the weight" of their loadings in

the analysis. MacGregor, Marlin, and Kresta (1991b) illustrate this point with the following

example:

Given one y variable and five x variables which are perfectly colinear and all

equal predictors of y such that the true underlying model is

y = l.Qx,. (4.31)

where

1=1,2,3,4 or 5,

if all five x variables are used in the PLS analysis, the resultant model will be:

y
= 0.2*! + 0.2xj+ 0.2*3 + 0.2x4+ 0-2*5 (4.32)
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Despite the fact that any one x may perfectly predict the y variable, the size of

their individual coefficients in the model imply that none of them are extremely important.

A key operating variable whose measurement is replicated or highly correlated to other

measurements in the process data set (e.g., a regenerator temperature which is

measured at different locations in a bed) may not yield a significantly large weight or

coefficient despite the well known theoretical and practical importance of such a variable.

Although process variables will not be perfectly colinear, they often contain a

high degree of correlation and, as the example shows, attempting to draw conclusions

about the importance of variables simply from their loadings or coefficients can be very

dubious.

The only conclusion that can be drawn is that variables with large loadings or

coefficients play an important role in the model or are correlated to another variable (or

variables) which are important. The only way to draw relationships between cause and

effect in regression equations is to use designed experiments for data collection or to use

mechanistic models (MacGregor, Marlin, and Kresta 1991b).

The issues discussed in this chapter are addressed specifically with respect to

the industrial data in chapter 5.



CHAPTER 5: DATA PRETREATMENT AND PRELIMINARY PCA

This chapter outlines the data collection, variable selection, scaling and

pretreatment performed on the process data before any analyses were conducted. It also

contains the results of the preliminary analysis using PCA on the X and Y spaces

(separately) of the full data set (1 170 samples), followed by a second PC analysis using a

subset of data (approximately eleven days' worth of hourly averages).

5.1 Data Collection and Pretreatment

5.1.1 Collection of Process Data

The data used in the following analyses were downloaded directly from the

FCCU process computerized database to LOTUS 1-2-3 spreadsheets. The aim was to

collect informative yet steady-state data; since the residence time of the products in the

unit is one hour or less, the process engineers felt that hourly data would best represent

steady-state operations. Data of a shorter time interval (a few minutes) was also available

but this was expected to be highly dynamic, requiring many latent variables for proper

modelling and making it difficult to interpret the model. Daily averages were also

available, but these values were expected to show little of the type of behaviour that

could potentially be unveiled (feed quality changes, mechanical problems, short upsets,

etc.). The data collection took place over a three and a half month period during the

67
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autumn of 1990.

Additional off-line information available included; product analyses done at the

unit site twice daily, lab analyses on feed and product streams daily, and catalyst

analyses done several times a week. Due to the large amounts of missing data in these

sets (compared to the hourly readings available for the process conditions) they were not

used directly in the PCA or PLS analyses. They were, however, retained for their

usefulness in interpreting the types of events taking place within sample clusters (unit

operational moves, feed quality changes, disturbances, etc.)

5.1.2 Variable Selection: What is X and What is Y?

The most important consideration for selection of process variables for the X

and Y spaces was the purpose of the model. Eleven volume yields and selectivity values

were selected to form the Y space and are listed in table 5.1 .

The percent volume yields are based on the unit feed rate; products 9, 10 and

1 1 are functions of some of the other eight, generating a somewhat correlated Y space.

Using all available x variables (over 300) for the analyses posed a substantial

computational problem, requiring far too much time for model building or prediction.

Although using only a subset prejudges a variable's importance, using fewer than 300 x

variables reduces the noise in the data set and allows all 1400 plus samples to be run at

once for the initial look at the plant data. The set was thus pared down to 136 X variables

by having the process engineers select key variables and by including any extra

manipulated or controlled variables in the set. The product flow rates (upon which the

volume yields are based) were not included in the X space because they would have

correlated very strongly with the percent volume yields and, in so doing, might have

masked subtler effects of other x variables.
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Table 5.1-Y Space Product Variables

Number Product Units

1 Fuel (dry) gas yield % volume gas/volume feed

2 Propane yield % volume

3 Butane yield % volume

4 Gasoline yield % volume

5 Light Cycle Oil yield
(LGO)

% volume

6 Intermediate Cycle Oil

yield (IGO)

% volume

7 Heavy Cycle Oil yield
(CO.]

% volume

8 Coke yield weight of coke per
volume of feed

9 Liquid products yield
(a function of 2,3,4,5,6
and 7).

% volume

10 Gasoline selectivity
(a function of 4)

volume/volume

11 Coke selectivity
(a function of 8)

volume/volume

Selection of the sample space was dependent upon the purpose of the analysis

(as shown in table 1 .1 in Chapter 1) and is discussed in the introduction of each analysis.

5.1.3 Assumptions about the Data

Several assumptions were made concerning the data collected. Since PCA and

PLS are modelling the correlational structure of the data, a key assumption was that this

structure does not change over the time history being studied and will be the same in any

future data used with the model. If the plant was operated in different fashions at different
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times then this will not be the case and the percentage of cross-validated sum of squares

explained by many latent variables will be much lower than their percentage of fitted sum

of squares.

Another assumption was that changes in the process variables caused by

disturbances or operational moves were much larger than instrument error (or noise).

This was not tested directly, however, PCA and PLS should sort these types of variables

out. If the noise of a variable is much larger than its effect on a process output, that

process variable should not contribute heavily to the latent variables. The noise, however,

will contribute to the overall variability in the data matrix (or matrices), thus slow down the

explanation of matrix variance. Scaling plays an important role with respect to this issue.

It was also assumed that the hourly averages represent steady-state. Auto- and

cross-correlations were performed on all the variables to test how close the data fit this

assumption and whether or not data shifting would be necessary. Details of this are

contained in Appendix A. The light gas products did not show any significant lags while

the heaviest liquid products appeared to be correlated to samples two hours earlier.

Intermediate products showed a scattering of correlations lying between these two

ranges.

This suggested that time shifting of the data might be necessary, so to test this,

samples from the feed, reactor, regenerators, air blower and desuperheaterwere

replicated and shifted back in time by one hour. This matrix was then added onto the

original X space of 136 variables to form an augmented X block of 221 variables, as

shown in figure 5.1. Two PLS runs were then conducted; one using the original X (1469

samples by 136 variables) and Y spaces (1469 samples by 1 1 variables), the second

using the augmented X space (1450 x 221) and original Y space (1450 x 1 1).
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Figure 5.1: Building a time-shifted X data matrix: a) original data block, b) a portion of the
X data is replicated and shifted back one time unit to represent the previous time period,
c) new augmented X data block.

It was expected that, if time shifting of the data was beneficial, the second PLS

run should describe more of the Y space within the first few latent variables than the first

run. in fact, both runs showed similar descriptive power in the first ten latent variables.

This suggested that the time shifted (n-1) data points were highly correlated to the
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present n samples and that few radical dynamic events were occurring (where the

predictive power of the n-1 samples should be evident in boosting the percent variance

explained in the Y space).

Since no real improvement in the modelling of Y was found with the augmented

X matrix, it was felt that time shifting of the data sets would not be necessary.

A high degree of confounding was also expected within the data set amongst

key operating variables due to the manner in which the FCCU was run. For instance,

asphalt production mode (referred to as a "boomer" run) is characterized by cooler ,

higher quality FCCU feeds. Feed and catalyst qualities, which are not measured directly,

are known to change substantially throughout the data set, and there was a known drift in

the operations which was confounded with time.

5.1.4 Scaling

As pointed out in Chapter 4, scaling plays a key role in the PCA and PLS

analyses. Auto-scaling was used for all the analyses so as not to impose a pre-conceived

structure on the data. Section 6.5 considers how the results of the analyses could be

examined for effects of scaling.

5.1.5 Extreme Outliers

In the first run through, 1469 samples were used. Examination of both the PCA

results on the X space and the PLS results (namely the T versus T plots and U versus T

plots) quickly revealed the presence of transient data (i.e., samples which were part of

transitions between different operating modes and hourly averages leading into or out of

unit shutdowns). These were dominating the later latent variables (from the seventh
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onwards) and might have been masking smaller changes in the data. Transient data was

verified from operating records then removed from the data set, leaving 1 1 70 sample

periods, for the subsequent analyses.

5.2 Preliminary Analysis Using PCA

Since the purpose of the preliminary analyses was to inspect the data set, all

1 170 hourly average readings on 136 x variables and 1 1 y variables were used. Table

5.2 lists the process events known to have occurred during the time period presented by

this data and table 5.3 notes when breaks in the time history occurred. This information

was used later to help interpret sample clusters, abrupt changes and the meaning of the

latent variables.

Note that the terms latent variable and principal component can both be (and

are) used for PCA.
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Table 5.2-Process Events In PCA and PLS In X and Y Spaces (X=1170 x 136) (Y=1170 x11)

Event Sample Number Event Sample Number

Low Ni and V 1-7,
389-482,
767-801

Low catalyst MAT ...460-642...

...696-777...

High Ni and V 556-578... High unit feed rate 1-388

389-762

767-936

Moderate Ni and High V 824-857 Medium unit feed rate 937-1111

High Ni and Moderate V 1112-1170 Low unit feed rate 1112-1170

Boomer (asphalt-producing
mode)

1-7

389-427

767-823

High feed temperature 179-184

430-510

Non-boomer (normal
refinery feed)

8-388

428-766

824-1111

1112-1170

Low feed temperature 1-7

398-427

767-823

860-981

1033-1066

1071-1170

High catalyst MAT ....66

...670-695

Legend: ...# = the period starts leading up to this sample number
#... = the period dies out near this sample number
Ni = nickel

V = vanadium

MAT = (catalyst) micro-activity test
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Table 5.3-Tlme Breaks in the PCA and PLS Data Set

Sample Dates Break Between

Sets Sets (Hours)

1-7 Oct 1 8:00 -Oct 115:00 7

8-160 Oct 1 22:00 -Oct 10 9*0 3

161-277 Oct 10 12:00 -Oct 15 8:00 5

278-322 Oct 15 13X10 -Oct 17 9:00 48

323-388 Oct 19 9:00 -Oct 22 3:00 41

389-427 Oct 24 20:00 -Oct 26 1050 12

428-556 Oct 26 22:00 - Nov 1 8:00 25

557-642 Nov 2 9:00 - Nov 5 22:00 3

643-695 Nov 6 1:00 - Nov 8 8X30 26

696-766 Nov 9 10:00 -Nov 12 8:00 60

767-803 Nov 14 20:00 -Nov 16 8:00 8

804-823 Nov 16 16:00 -Nov 17 11:00 35

824-857 Nov 18 22:00 - Nov 20 8:00 241

858-1025 Nov 30 9:00 - Dec 7 8:00 32

1026-1066 Dec 8 16:00 -Dec 10 8:00 124

1067-1111 Dec 15 12:00 -Dec 17 8:00 657

1112-1170 Jan 14 17:00 -Jan 17 3:00

5.2.1 PCA Analysis of X

The goals of the X PCA analysis were to identify: interesting periods in the data

such as specific clusters or subgroups, abrupt changes in the "location" of the operations,

and subtle changes in the data (expected to be revealed by smaller or later latent

variables). The analysis would also give an estimate of the number of dimensions needed

to describe the X space (for PLS work). Table 5.4 contains the statistical results of the

analysis.
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Table 5.4--StatlstJcal Results from PCA of X (X=1170 x 136)

Ordinary
Cumul.

Cross- validated

Cumul.

%SS %SS %SS % SS % Difff Overall

LV X X X X SSX' CSV/SD

1 27.6 27.6 20.0 20.0 38.0 0.894

2 13.8 41.4 9.7 29.7 42.3 .930

3 12.3 53.7 8.9 38.6 38.2 .920

4 5.9 59.6 3.7 42.3 59.5 .959

5 5.0 64.6 3.4 45.7 47.1 .956

6 4.1 68.7 2.6 48.3 57.7 .963

7 3.0 71.7 1.7 50.0 76.5 .972

8 2.6 74.3 1.6 51.6 62.5 .971

9 2.2 76.5 1.2 52.8 83.3 .977

10 2.0 78.5 1.0 53.8 100.0 .977

11 1.8 80.3 0.7 54.5 157.1 .983

12 1.4 81.7 0.3 54.8 366.7 .992

13 1.4 83.1 0.7 55.5 100.0 .980

14 1.3 84.4 0.6 56.1 116.7 .981

15 1.2 85.6 0.6 56.7 100.0 0.980

(VoordinarySSXexplained
- Wocross - validatedSSXexplained) ^

(%cross -validatedSSXexplained)

Table 5.4 shows that the difference between cross-validated and ordinary sum

of squares (SS) explained in Xwas quite large for most vectors and indicated that the

predictive model fit was not tight. This may be due to the presence of substantial

non-linearities amongst and within sample clusters and the large number of clusters (or

sub-groups) present which make fitting to a linear model difficult. Confounding amongst

the samples (i.e., having a sample belong to more than one group) may have also

contributed to this.

Although all the CSV/SD values for the first fifteen latent variables were

significant, their modelling power (exemplified by the cross-validated percentage variance

explained) was quite small by the eleventh LV. The first ten LVs accounted for 53.8% of

the cross-validated SS in X while LVs eleven to fifteen modelled only an additional 2.9%.
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The gap between the ordinary and cross-validated results also widened for these later

LVs. Thus, the percentage difference SS in X value can aid in making a subjective

decision on what LVs to leave out of the model.

Next, the T plots of figure 5.2a-g were examined for trends and clusters in the

samples. Note that in these figures, the T vectors were plotted against T1 ,
the first and

most explanatory vector, for the reason of simplicity. In many cases, however, it may be

more meaningful to use different combinations of the vectors to provide more

interpretable planes. This will depend upon the purpose of the analysis and is considered

in more detail in the monitoring space section 7.1.3. Table 5.5 provides details on the

sample clusters which were revealed by the PCA analysis.

Due to the large number of process variables present in the X block, the P

planes pose a more challenging interpretation problem. Figure 5.3, where P1 and P2 are

plotted against each other, illustrates this. The variables' loadings fill a single region on

the plane and cannot be easily sorted visually to identify the most influential for the

individual vectors. The plane does, however, nicely display to what extent a variable

contributes to the explanation of both directions at the same time.

An easier way to examine the loadings would be to display them as a bar graph

or use a normal plot. Figure 5.4 shows the normal plot for vector P1 . The shape of the

points on the plot suggest a non-normal (i.e., a multimodal) distribution for the loadings.

This could be interpreted as meaning that the change in operations being described by

the first LV is so great, there really exist several different modes of operation.
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Due to the underlying assumptions involved in using the normal plot, caution is

advised when applying this technique to the loadings. A bar graph of the loadings would

provide much the same information about which variables have very large absolute

loading values without assuming an underlying distribution. This latter approach was

used to pinpoint some of the variables which contribute heavily to each LV in the models

and which are discussed in table 5.5.

Table 5.5-Analysls of T and P Rots from PCA of X

Sample Space Variable Space

Tl:

A = 1-388: Non-boomer, fairly
typical operations,
high feed rate.

B = 398427,767-823: Boomer, high
feed rate, and low

metals.

C = 1 1 1 2-1 1 70: Non-boomer, low feed

rate, and high nickel

content.

There is a distinct time trend which is confounded

with a known drift in operations plus a production
throughput decrease.

The four distinct groups with no real outliers

suggest that the vector is describing major
changes within the data set

PI:

Several controlled variables (CVs) have large

loadings, suggesting that T1 is describing some

operational moves. These are:
- feed flow to the nozzles,
- excess oxygen in the flue gas,
- second regenerator pressure,
-

duty and bottom temperature of
the desuperheater,

- total duty of LGO, and
- debutanizer feed flow.

Manipulated variables (MVs) with large loadings may
simply reflect moves made to maintain CV set points
but could also indicate that disturbances in the system
are being modeled.
- flow of stripping steam,
-

pressure difference across

lift air valve
-

liquid flow to the rectified absorber
-

gasoline flow to the rectified absorber

T2:

This vector differentiates group B from C. B

represents low gravity, low metal feed quality at a

high throughput rate while C represents high
gravity, high nickel content feed at a low

throughput.

P2:

The largest loadings are for the first and second

regenerator temperatures and the C/O ratio based on

the second regenerator flue gas composition.
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Table 5.5- Continued

Sample Space Variable Space

T3:

D = 1-9: Low vanadium metal feed,
tail end of a boomer mode.

E = 556-570, 800-823, 824-858:

Moderate to high vanadium
content in feed.

Samples 10-858 were originally in one group (see
T1 versus T2 plot) but here are split up into about
six subgroups.

Latent variable appears to distinguish between
low and high vanadium feed quality in samples (D
versus E respectively).

P3:

Large loadings are found for:
- flow of stripping steam,
- first regenerator dense and dilute bed

temperatures,
- flow of the main fractionator top
reflux, and

-

temperature of stream exiting the
debutanizer reboiler

T4:

F = 936-1066

G = 1067-1111

Samples 1066 and 1067 are five days apart;
groups F and G represent the change in operating
point over this time, which may be due to a
decrease in total feed flow.

Samples 1-858 (A,B,D and E) are less distinct in
their groupings.

P4:

Large loadings appear for mostly MVs based at the

desuperheater and fractionator.

T5:

H 804-806: Transition out of

a unit shutdown.

1 = 934-936: Dec 3rd 13-15:00

Feed rate dropped
by 8%.

The latent vector is modeling smaller but
significant events, a transition from a shutdown

(H) back to normal operations and a drop in feed

rate (I).

P5:

Variables with large loadings are a mixture of MVs

and CVs at the desuperheater and MVs at the debut
and depropanizer.

T6:

Latent variable very strongly separates the
combined group of F+G from C (the most recent
data). There is a one month lag between these
two groups. Interpretation is questionable but
suspect it to be operational changes.

P6:

Key variables are a mix of minor flows at the feed
manifold, and indicators of feed quality, plus a handful
from desuperheater to the rectified absorber.
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Table 5.5- Continued

Sample Space Variable Space

T7:

J = 762-766: Preparation for boomer.

Major dynamics (moving towards and out of a
boomer operating mode) are being modeled; most

points cluster around the zero axis (i.e., within a
score of +-6).

P7:

-fractionation variables

T8:

More transient moves are being modeled
while remaining data is centered at zero point on
axis.

P8:
- feed temperature,
- riser outlet temperature,
-

temperature of air to both regenerators
- lower and intermediate section

temperatures and flows at main
fractionator

- rectified absorber sponge oil circuit

T9: (not shown)
The transition out of a unit shutdown is

distinguished from the rest of the data samples.

P9: (not shown)
- runback and HFD from crude unit
- air temperatures exiting blower and to

both regenerators
- second regenerator main air flow and

catalyst level

T10: (not shown)
K = 672-676: Unknown transient

Modeling unknown variation.

P10: (not shown)
- runback flows,
-

dispersion steam total and to each

nozzle (which are a function of feed

quality and thus highly correlated to

runback flow)
-

catalyst levels in both regenerators
- fractionator IGO and upper circulating refluxes

Latent variables eleven to fifteen appeared to model only a handful of radical points and

thus were not shown.
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5.2.1.1 Summary of PCA of X

In general, PCA illustrated that the FCCU during the time period studied had

many operating "windows" or many different areas in the T planes where the process

operated. The process was not operated stably at a fixed point, but was moving

continually. In a quality control situation, this would not occur.

Latent variable decomposition did not provide components that related directly

or clearly to key variables or known phenomena. Such a result cannot be expected,

however, unless the data collection has been designed to yield an orthogonal separation

of phenomena. By using information about what occurred with the process during data

collection, some rough interpretations were made.

The difference between the variance explained by cross-validation and that by

ordinary means suggested that only the first ten dimensions modeled significant process

variability in the X space. These LVs accounted for 53.8% of the cross-validated sum of

squares (SS) in X. Nearly half of the process variance was not accounted for in the

model.

The first few latent variables described major steady-state locations or operating

windows of the FCCU, while later vectors accounted for dynamic changes. The first and

second latent variables separated the samples into four distinct groups. The first latent

variable appeared to be describing throughput effect, however, this was also confounded

with time and a known drift in the operations.

Latent variables two and three appeared to be related to feed quality

(specifically metals content) which has a poisoning effect on catalyst and again, there

was confounding of feed quality with catalyst quality (although the time constant of one

can be quite different from the other). Without having designed the data collection

though, it was difficult to say with certainty that these were the only phenomena that
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these two LVs described.

The roles of latent variables four and six could not be determined, although

distinct group separations were evident in the T plots. The fifth vector appeared to model

two distinct transients in the data. More dynamics, transients and other abnormal

operations (e.g., start-up) were modeled by the later dimensions seven to ten; this was

quite evident from the T plane plots.

The remaining LVs eleven to fifteen had poor model prediction statistics and

their T plane plots suggested that they were describing noise. Together, they only

explained 2.9% of the sum of squares X so in all likelihood, they could be dropped from

the model without loss of predictive power.

One point discovered after running the PLS case was that in some cases,

sub-group separations were a result of changes in the Y space but without this extra

information, making this interpretation strictly from the PCA results was next to

impossible. This point is discussed in detail under the PLS results analysis section 6.4.

PCAwas able to pull the data apart into clear sub-groups and highlight major

transients, but due to the great amount of variance still to be explained after ten

dimensions, it appeared that the data set may have contained too many deliberate

process changes to allow for adequate modelling in a small number of latent variables.

Using a sub-set of the data may be more fruitful in this respect.

From the above analysis, one would expect that a PLS analysis performed on

the same X space (with an accompanying Y space) would require at least ten vectors to

explain major components of the X space.



86

5.2.2 PCA of Y

The purpose of performing PCA on the Y space alone was to examine the

structure within this space for information which would be useful in interpreting the PLS

case later. Tables 5.6 and 5.7 list the statistical results of this analysis.

Table 5.6-Statlstlcal Results from PCA of Y (Y=1170 x 11)

Ordinary
Cumul.

Cross- validated

Cumul.

%SS %SS %SS %SS % DIff Overall

LV Y Y Y Y SSY* CSV/SD

1 40.5 40.5 26.7 26.7 51.7 0.856

2 20.1 60.6 3.4 30.1 491.2 .971

3 14.0 74.6 7.7 37.8 81.8 .896

4 8.6 83.2 0.8 38.6 975.0 .983

5 7.8 91.0 3.1 41.7 151.6 .904

6 4.7 95.7 0.7 42.4 571.4 .959

7 2.8 98.5 0.8 43.2 250.0 .896

8 1.5 100.0 1.0 44.2 50.0 .559

9 0.0 100.0 0.0 44.2 100.0 .817

10 0.0 100.0 0.0 44.2 -41.2 .505

11 0.0 100.0 0.0 44.2 n/a 0.516

(%ordinarySSYexplained
- %cross - validatedSSYexplained) ^

(%cross
- validatedSSYexplained)

The first eight LVs described 44.2% of the cross-validated SS in Y and although

later LVs had significant CSV/SD values, the amount of cross-validated variance they

explained was nil. The large discrepancy between ordinary and cross-validated results

suggests a high degree of inconsistency in the data.
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Table 5.7-Y Product CSV/SD Values from PCA of Y

LV Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

1 0.84 0.95 1.00 0.60 0.75 0.96 1.00 0.76 0.90 0.87 0.69

2 1.02 0.94 0.95 0.92 0.97 0.99 0.99 0.99 0.93 0.99 0.98

3 0.89 0.98 0.88 0.95 0.98 1.00 0.88 0.98 0.78 0.56 0.90

4 1.00 1.00 1.00 0.99 0.98 0.96 1.00 1.00 0.98 1.00 0.79

5 0.95 0.88 0.98 0.94 0.70 1.00 1.00 0.89 0.41 0.94 0.72

6 0.96 1.00 1.00 0.94 1.00 0.86 0.95 1.00 0.99 0.62 0.99

7 1.02 0.75 0.87 0.82 0.56 1.08 0.98 0.97 0.90 1.00 0.94

8 0.61 0.43 0.61 0.54 0.95 0.42 0.61 0.42 0.78 0.58 0.80

9 0.74 1.00 0.98 0.60 0.83 0.44 0.84 0.38 0.98 0.94 0.79

10 0.54 0.47 0.54 0.47 0.54 0.47 0.54 0.47 0.54 0.47 0.54

11 0.57 0.44 0.57 0.44 0.57 0.44 0.57 0.44 0.57 0.44 0.57

This Is quite possible for the Y space studied here since several of the yields

and selectivity values are functions of other y variables. Liquid product yield 9, for

instance, could conceivably have a consistent value even if the volumetric yields

2,3,4,5,6 and 7 (of which it is a function) changed. In this way, inconsistencies in the

relationship amongst the y variables are introduced and make modelling of the data

space difficult.

Figures 5.5a-g and 5.6a-g show the T and P planes, respectively, generated

from the analysis. Table 5.8 summarizes the major trends observed per component.
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Figures 5.5g: T (sample) plane
from PCA of Y.

Figures 5.6g: P (process variable)
plane from PCA of Y.

Table 5.8-Analysis of T and P Plane Plots from PCA of Y

T Plane P Plane

T1.T2:
Points in the T1-T2 plane appear to form three

elliptical regions in succession lying parallel to the
T1-T2 diagonal, but they are so close together that
overall, the points form a singular cloud; this

suggests that the vectors are describing variation
common to all samples.

P1.P2:
The P1 vector models gasoline (4) versus LGO (5)
and coke (8 and 1 1 ). This is substantiated by the
individual CSV/SD values in table 5.7.

P2 appears to model undesirables (7) versus
desirables (2,3, and 9) although all CSV/SD values

for this component are high indicating that modelling
power is low and that the component probably
represents noise.
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Table 5.8--Continued

T Plane P Plane

T3:

This dimension has a few outlying points affecting
its direction:

844-846: Cause unknown

849-857: Might be due to air blower

problems

995-1001 : May represent adjustments to the
fractionator top temperature, rectified absorber

(RA) temperature, and lean oil rate to the RA

P3:

The P1-P3 space shows no striking pattern, yet the
CSV/SD values suggest that P3 is modeling liquid,

gasoline and butane yields (9,10 and 3) and to a
lesser extent fuel gas (1).

T4:

This vector pulls start-up points 1 to 9 out slightly
from the rest of the data.

P4:

Interestingly, the P4 direction appears to be heavily
influenced by IGO yield (6). However, the PC's
overall modelling power is low. The lowest CSV/SD
value amongst the Y products (and thus the largest
% explainedfor a Y) is for coke selectivity (11).

A smaller component of variance is explained for 1 1
,

but it is highly predictable whereas more variation in

6 is being removed although the component may not
be as highly predictable.

T5:

Separates samples 1 1 1 3 to 1 1 28 (which coincide
with the start up of a feed cooler).

It also highlights the start up points 804 to 806.

P5:

Here, the CSV/SD values and the plot coincide; P5
models LGO, liquid, and propane yields (5,9 and 2)
and coke selectivity (11).

T6:

This LV is influenced by the very dynamic samples
841 to 847 and 995 to 1001.

P6:

Here again, the CSV/SD values suggest LGO and

gasoline (6 and 10) are being modeled while the plot
separates CO. (7) and fuel gas (1) from the rest.

T7 and onwards:

These plots show no distinguishing features in the

sample space.

P7 and onwards:

P7 appears to be modeling the relationship between
the light and medium weight products (2 and 3
versus 4 and 5). Remaining dimensions don't appear
to describe much structure in the Y space.
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5.2.2.1 Summary of PCA of Y

The first component focused on differentiating between the gasoline yield and

selectivity (4 and 10) and the undesirable products of dry gas and coke (1 ,8 and 1 1); it

also focused on modelling the relationship between gasoline yield (4) and LGO yield (5).

The second PC appeared to fit the difference between the light and heavy products. The

third PC modelled butane yield and gasoline selectivity (which decreased as the butane

yield increased). Principal component four appeared to model noise and the IGO yield

appeared to contribute significantly to this. Principal component five modeled propane at

one end and light cycle oil, coke selectivity and liquid yield at the other; the modelling

power for the remaining components was questionable.

The T plane plots showed that despite whatever was happening with the actual

process unit, for the most part, the product yields lay within a single cluster in the latent

variable space. This contrasted sharply with what was seen in the X space PC analysis

where several operating points or regions could be clearly defined. Carry over of these

operating point changes from region to region in the X space was not seen to cause

several different Y output regions (except in the cases of start-up and major moves).

Alone, the Y analysis was not that informative. The eight basic products required

around six to eight dimensions to explain their variance, although leaving a substantial

amount of the Y space unexplained. However, the analysis did reveal that the plant was

producing its products within a consistent and single output window.

5.2.3 PCA of a Subset of the FCCU Data

The purpose of this analysis was to see if by examining a shorter period of time
,

one could isolate events which occurred in the process and thereby learn about special

causes.
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The portion of data selected for further PC analysis was the sample set 428-695

in which significant catalyst poisoning (and corrective action to counter it) took place. In

the original PCA work, these samples sat in a region bounded by 0 and +5.0 on the T1

axis and -5 to +5 on the T2 axis; no clear separations amongst these samples were

obvious.

Both the X and Y spaces were analyzed using PCA. Known changes in key

process variables are listed in tables 5.9 and 5.1 0. The statistical results are presented in

tables 5.1 1 and 5.12 and the T and P planes for each case are described below.

Table 5.9-Key Process Changes in Subset of FCCU Data

Event Sample No.

Low Ni and V 1-55

High Ni and V 129-151

Low MAT 33-213

High MAT 243 - 268

High Feed Temperature 1-80

Low Feed Temperature 130 onwards

Table 5.10-Crude Diet for Subset of FCCU Data

Start of Diet Light Heavy" Other

(Sample No.) (%vol) (%vol) (%vol)

1 96.0 2.0 2.0
51 41.1 57.6 1.3
85 97.9 0.2 1.9
107 75.2 23.8 1.0

136 81.0 18.0 1.0
199 82.7 17.3 0.0

*

High metals content typically accompanies the heavier feed stocks.
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5.2.3.1 PCA of the X Subset

Table 5.1 1 contains the statistical results of the PC analysis on the short X data

set. Although the first twelve principal components had acceptable CSV/SD values, the

first four vectors described 53.3% of the cross-validated sum of squares (SS) in the

reduced data set and showed the most distinct groupings. Later PCs described

decreasing amounts of the SS which focused on distinguishing small handfuls of points

from the rest of the samples. Many of the shifts in the samples coincided with changes in

the content of the refinery crude unit diet.

Table 5.11 -Statistical Results from PCA of X Subset (X=268 x 136)

Ordinary Cross- validated

Cumul. Cumul. % Dlff Overall

LV %SSX %SSX %SSX %SSX SSX CSV/SD

1 24.6 24.6 22.6 22.6 8.8 0.879

2 14.9 39.5 13.6 36.2 9.6 0.905

3 12.1 51.6 11.0 47.2 10.0 0.904

4 7.0 58.6 6.1 53.3 14.7 0.934

5 4.7 63.3 3.9 57.2 13.1 0.952

6 3.7 67.0 2.7 59.9 37.0 0.962

7 3.1 70.1 2.3 62.2 34.8 0.964

8 2.8 72.9 1.9 64.1 47.4 0.967

9 2.5 75.4 1.7 65.8 47.0 0.968

10 2.1 77.5 1.3 67.1 61.5 0.972

11 1.7 79.2 0.3 67.4 466.7 0.992

12 1.5 80.7 0.3 67.7 400.0 0.993
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In figure 5.7a, the sample time trend forms a half-loop from right to left across

the T1-T2 plane, with compact groups of the samples 1 to 57 at the rightmost end of T1

and 144 to 198 at the other end. At around the sample 57, several process changes

occurred, i.e., a crude diet change, and the crude unit was known to upset the FCCU

several times. The FCCU was running at a high feed temperature from about 1 to 80, and

at a low feed temperature from about sample 130 onwards.

The second PC separated samples 203 to 268 from the rest. Operational

changes made to handle the contaminated catalyst may have been the reason these

samples were separated from the rest.

The plane formed by T1 and T3 provided a good separation of samples 1 to 62

and 80 to 107 from the rest of the data. This latter change appeared to be strongly

correlated to the crude diet of the refinery. The crude diet made big swings from an initial

light diet to a heavy one at samples 51 and then back to light crude at sample 85. A

smaller swing to a heavier diet also took place at sample 107. The remainder of the

samples sat left of center in the plane and travelled in a clock-wise fashion with time,

probably representing operational action taken to minimize the contaminated catalyst

problem on yields and the process.

The remainder of the T plots did not separate out distinct large groups, only

small portions of the data, as exemplified by the T1-T4 plane.

This further analysis revealed three operating regions within the subset, these

being (approximately) 1 to 62, 80 to 107, and 203 to 268 which appeared to be

confounded with crude diet changes. Such a relationship was not evident when the large

data set was analyzed and suggests positive benefits in looking at smaller sections of the

data.
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5.2.3.2 PCA of the Y Subset

Table 5.12 summarizes the statistical results from the analysis. The first three

PCs described 62.4% of the cross-validated SS in Y; later PCs had relatively low

modelling power and did not reveal further subgroups in the sample space.

Table 5.12-Statistical Results from PCA of Y Subset (Y=268 x 11)

Ordinary Cross- validated

Cumul. Cumul. % Dlff Overall

LV %SSY %SSY %SSY %SSY SSY CSV/SD

1 41.8 41.8 27.4 27.4 52.6 0.851

2 29.5 71.3 24.4 51.8 20.9 0.761

3 14.5 85.8 10.6 62.4 36.8 0.792

4 5.3 91.1 2.7 65.1 96.3 0.897

5 3.8 94.9 2.6 67.7 46.1 0.841

6 2.4 97.3 1.3 69.0 84.6 0.857

7 1.8 99.1 1.2 70.2 50.0 0.732

8 0.8 99.9 0.6 70.8 33.3 0.512

9 0.02 99.9 0.02 70.8 0.0 0.678

10 0.007 99.9 0.006 70.8 16.7 0.459

11 0.0 99.9 0.0 70.8 n/a 0.542

The T1-T2 plane of Y subset clearly revealed two distinct groupings in the

samples; 1 to 62 and the remainder of the data. The accompanying P1 -P2 plane

suggested that this separation may be related to a distinction between the desirable

products propane, butane and gasoline (2,3, and 4) from the undesirable dry gas, heavy

cycle oil, and coke (1 ,7,8 and 11). This change followed a significant shift to heavy crude

feed as revealed by the PC analysis of the X space. This sequence of samples showed

the plant moving towards production of undesirables.
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5.2.3.3 Summary of PCA of the Subset of FCCU Data

Examining a subset of initial PCA data revealed further distinct groupings in both

the variable space X and the Y product space. In particular, a change in product yields

appeared to coincide with the on-set of known feed quality change at the crude unit which

was later followed by catalyst contamination and a shift away from production of

desirable products to undesirables.

The X space showed three distinct operating regions, which roughly coincided

with crude diet changes. As the number of operating points in the data setwas reduced
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(by examining only a fraction of the original data set) PCA was able to model subtler, and

more interesting aspects of the data. With more timely analysis of the data, clearer

interpretations of the groupings and changes in the plant should be possible.



CHAPTER 6: PREDICTIVE MODELS AND INTERPRETATION USING

PLS

This chapter contains the results of the PLS analysis; building a predictive model

of the Y space (product yields and selectivities), further analysis of the data from the PLS

plots, and a brief comparison of the results with those of PCA. It also looks at the

appropriateness of auto-scaling used in these analyses.

6.1 Development of Predictive Models Using PLS

The primary goal of the PLS analysis was to build a predictive model of the Y

space. Since the process data used did not come from a designed experiment the set

had to cover as wide a range of operations as would likely be encountered when the

model is later used. A secondary goal of the analysis was to gain further insight into the

process and the relationship between the X and Y spaces in addition to what was

revealed by PCA. Similarities and differences between the PCA and PLS results were

also examined.

Tables 6.1 and 6.2 contain the statistical results from the PLS analyses of 136 x

variables, 11 y variables arid 1170 samples (hourly averages).

101
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Table 6.1-StatlstJcal Results from PLS of X and Y (X=1170 x 136) (Y=1170 x 11)

Ordinary
Cumul. Cumul.

Cross- validated

Cumul.

%SS %SS %SS %SS %SS %SS % Diff Overall

LV X X Y Y Y Y SSY CSV/SD

1 26.5 26.5 30.4 30.4 30.3 30.3 0.3 0.835

2 13.0 39.5 14.3 44.7 14.2 44.5 0.7 .892

3 13.4 52.9 8.7 53.4 8.7 53.2 0.0 .918

4 5.6 58.5 8.7 62.1 8.5 61.7 2.4 .904

5 4.2 62.7 6.7 68.8 6.4 68.1 4.7 .911

6 4.0 66.7 4.5 73.3 4.4 72.5 2.3 .927

7 3.9 70.6 2.5 75.8 2.5 75.0 0.0 .953

8 1.6 72.2 3.5 79.3 3.2 78.2 9.4 .931

9 2.8 75.0 1.2 80.5 1.2 79.4 0.0 .971

10 1.8 76.8 1.1 81.6 1.0 80.4 10.0 .973

11 1.5 78.3 1.1 82.7 0.9 81.3 22.2 .975

12 1.1 79.4 1.2 83.9 0.7 82.0 71.4 .978

13 1.5 80.9 0.7 84.6 0.5 82.5 40.0 .983

14 1.0 81.9 0.9 85.5 0.7 83.2 28.6 .977

15 0.9 82.8 0.7 86.2 0.4 83.6 75.0 0.987

Table 6.2-Y Product CSV/SD Values from PLS of X and Y

LV Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

1 0.84 0.99 0.97 0.53 0.68 0.98 1.00 0.66 0.96 0.76 0.60

2 0.62 1.00 0.64 0.99 1.00 0.97 0.80 0.95 0.95 1.00 0.98

3 0.92 1.00 0.98 0.89 0.53 0.94 0.99 1.00 0.89 0.94 0.76

4 0.97 0.76 0.67 0.99 1.00 0.87 0.97 1.00 0.96 1.00 0.97

5 1.00 0.84 0.99 0.90 0.90 0.76 1.00 0.91 0.92 0.94 1.00

6 0.99 0.95 0.82 0.77 0.92 1.00 0.99 0.79 0.98 0.90 0.82
7 0.72 0.97 0.98 0.81 0.86 0.92 1.00 1.00 1.00 0.99 0.87

8 1.00 0.89 0.95 0.90 0.98 0.93 1.00 0.87 0.88 0.91 0.95

9 0.95 0.96 1.00 1.00 0.98 0.98 0.96 0.86 1.00 1.00 0.95

10 0.75 0.99 0.99 0.97 1.00 0.98 1.00 0.97 0.96 0.97 1.00

11 1.00 1.00 1.00 0.97 1.00 0.98 0.98 0.96 0.96 0.94 0.96
12 0.99 1.00 1.00 0.98 1.00 0.99 0.94 0.95 1.00 1.00 0.96
13 1.00 0.97 1.00 0.98 0.98 0.99 0.99 0.83 1.00 1.00 0.99

14 0.92 0.94 0.96 0.98 0.99 1.00 1.00 0.98 0.95 0.98 1.00
15 0.99 0.97 0.99 0.95 0.98 0.98 1.00 1.00 0.99 0.98 1.00
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The overall CSV/SD values for the first fifteen dimensions were all less than 1 .0

so that all LVs were acceptable for use in the model. The difference between

cross-validated and ordinary SS explained per dimension was also very small suggesting

that the amount of noise being modeled was relatively small.

For the first nine latent variables, the ordinary percentage sum of squares (SS)

explained in Y was very close to the cross-validated percentage SS (see the column "%

Diff SS Y" in table 6.1) indicating the strong predictive power of these vectors. The

amount of cross-validated percentage SS in Y explained by individual LVs dropped to the

1% level by the tenth latent variable, whereas for the X space it did not reach this level

until the fourteenth latent variable. Remember, though, that the ordinary percentage SS

in X value would be somewhat inflated compared to the statistic calculated under

cross-validation.

Individual CSV/SD values for each y product are also listed in table 6.2. For

each vector, the smaller the value is, the greater the amount of variance of that particular

y was being explained. For example, the first latent variable explained a substantial

amount of variation in the gasoline, LGO and coke yields and selectivities (4,5,8,10 and

11) and to a lesser extent dry gas (1). For the eleventh vector, though, the CSV/SD ratios

were no less than 0.94, showing the smaller modeling power of this dimension compared

to the earlier ones.

Without looking further to the model plots, determining an appropriate number of

vectors for use in the Y space model was not clear-cut from the above information.

However, since the emphasis for this PLS model was on the Y space, an initial cut-off

was selected at latent variable eleven, making the output space fully dimensional (i.e.,

there were eleven different yield and selectivity values in the Y space). From these latent

variables, a biased regression model for the Y space was built and tested for its fit.
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The correlational coefficient R2, and 95% confidence interval (CI) calculations for

this model were compared to two extra cases; using fewer LVs (the first seven) to

calculate the regression equations, and using fifteen LVs for the regression development.

The results are presented in table 6.3.

Table 6.3-Blased Regression Model Statistics from PLS Analysis

Model 1

(LVs 1-7)

Model 2

(LVS 1-11)

Model 3

(LVs 1-15)

Y Yave Y Range R2 95%CI R1 95% CI R2 95%CI

1

2

3

4

5

6

7

8

9

10

11

337.0

8.91

11.8

48.1

26.0

2.69

9.77

6.37

107.0

78.1

0.104

241-420

4.78-11.2

7.84 -153

35.4-59.2

17.3-34.8

0.0-5.51

.662 - 15.1

5.91-6.96

93.0-117

58.9-91.0

.085-0.13

0.888

.671

.896

.935

.934

.709

.420

.798

.530

.657

0.904

22.6

0.824

0.858

2.71

2.53

0.860

2.13

0.171

4.37

5.46

0.0063

0.944

.773

.908

.956

.941

.778

.493

.904

.708

.776

0.930

16.0

0.684

0.808

2.24

2.39

0.751

1.99

0.118

3.44

4.40

0.0054

0.956

.833

.918

.967

.949

.802

.618

.946

.759

.810

0.938

14.2

0.587

0.763

1.93

2.22

0.710

1.73

0.088

3.13

4.05

0.0051

SO: 0.5581

DF(inside):126.1
DF(outside):127
CF: 1.0034

SO: 0.4875

DF(inside):121.7
DF(outside):123
CF: 1.0052

SO:0.4419

DF(inside):117.3
DF(outside):119
CF: 1.0069

Notes: Yave = Average Y value

SO = standard deviation of X residuals

DF(inside)= degrees of freedom inside training set
DF(outside)= degrees of freedom in test data set

CF = correction factor for training set

Due to the large number of samples, the values of R2 for all the Y products and

all three models were significant at the 95% confidence level. The confidence intervals for
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the eleven LV model were from 9 - 14% of the respective y variable ranges, indicating

reasonable fits. For most y variables, the fit of the models improved as the number of

latent variables used increased. The relative magnitude of the statistics for the individual

models also allowed one to rank each y regression equation on the basis of fit from best

to worst.

Table 6.4-Relative Order of

Biased Regression Model Fits

Model 1 Model 2 Model 3

4 4 4

5 1 1

11 5 5

3 11 8

1 3 11

8 8 3

6 6 2

2 10 10

10 2 6

9 9 9

7 7 7

Table 6.4 shows that the relative fit of the Y variables changed somewhat depending

upon the number of LVs used for the model. For instance, the 95% confidence interval for

gasoline yield (4) dropped from 2.71 volumetric yield percent when seven vectors were

used to 1 .93 volumetric yield percent when fifteen vectors were used (this represents a

40% reduction in the size of the confidence interval). The same changes in the

confidence interval for heavy cycle oil (7) yielded only a 23% reduction, indicating a much

smaller improvement with the extra vectors. The rankings, in general, only changed

slightly as the number of vectors used for modeling increased.
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Figures 6.1 a-k, which show the plots of the observed versus the predicted y

values for all eleven products, revealed the same general trend. Product 4 predictions fit

very tightly to the best fit regression line over the entire range covered, while the

predictions for product 7 were quite poor. This may be due in part to the fact that the

range spanned by product 7was relatively small yielding little distinctive directionality

which is needed for regression modeling.

Since the data used to build these regression models was passively collected

(i.e., the process was not perturbed in a designed fashion) there are certain limitations on

the use of the regression expressions. First, the models are only valid as long as the

process remains physically the same and the control and operational strategies used do

not change radically. Any of these changes would disrupt the correlational structure

amongst the variables and thus make the model invalid. Secondly, extrapolation of linear

passive models beyond the range spanned by their reference data set is dangerous as

the variance (and hence, the error) of the predicted responses increases monotonically

as one moves away from the centre of the reference set (Draper and Smith 1981).
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6.2 Analysis of PLS Plots

Table 6.5 lists the findings from examining the T plots (representing the sample

or X space), Q plots (representing the product Y relationships) and inner relationship

plots of T versus U (representing the X and Y spaces, respectively). These plots are

presented in figures 6.2a-k, 6.3a-k and 6.4a-l.

Table 6.5-Analysls of Plots Resulting from PLS Analysis of X and Y

X Space Y Space Inner Relationship Between X

andY

Tl:

Strongly confounded with time

trend, change in feed rate, and a
known drift in operations.

1-762: High feed rate. 1112-1170:

Low feed rate.

Q1 :

Differentiates between gasoline
yield and its selectivity (4 and 10)
at high feed rates and LGO (5),
and coke (8 and 1 1 ) at low feed

rates. This vector is similar to the

PCA of Y results but with clearer

separation amongst product
groups.

T1 versus U1:

Many clusters span the full range
of these vectors, suggesting that
this dimension models strong and

contrasting phenomena.

T2:

Separates samples based on metal
content of feed.

1-7,398-427,767-823:
Low metal feed, and

boomer (asphalt)
operation versus

550-560: High Ni and V,
824-860: Moderate Ni and

highV

Q2:

Separates the low quality
undesirables fuel gas and CO. (1
and 7) from butane yield (3). Low

quality products predominate
when feed metal content is high.

T2 versus U2:

Fairly linear relationship between
the X and Y space as exemplified
by reasonable fit of samples to
the straight line slope.
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Table 6.5-Continued

X Space Y Space Inner Relationship Between X

andY

T3:

Modeling a slow but major shift in
the plant, first moving negatively
along vector from a score of +8.0

down to -10.0 then returning and

surpassing its original position.

Interpretation is difficult to make

although the Q plot suggests focus
is on the top part of the
fractionator.

Q3:

Yields with the largest loadings
are gasoline (4), LGO (5), IGO

(6), liquid (9) and coke selectivity
(11). This suggests that vector is

describing partially the top portion
of the fractionator (where the 4/5

split is made and 5 and 6 are

withdrawn) all of which influence
the yield 9. The individual
CSV/SD value for 6 is greater
than for 4 (therefore less variance
in 6 is being explained); its
location in the plot suggests the
SS modelled in 6 is probably
noise.

T3 versus U3:

Fairly linear relationship; also see

the far right cluster in the T space

(samples 1112-11 70) split into
two distinct groups (1112-11 29,
and 1130-1170) by the vector U.

Suggests that a change in the Y

space may have occurred.

T4:

This LV is modeling samples
approaching a unit shutdown and
the start-up afterwards.

767-803: Shutdown

804-840: Start-up

These points are separated from

the rest of the samples.

Q4:

Propane and butane yields (2 and

3) are modeled in the positive
direction while IGO (6) dominates
the negative direction coinciding
with the start-up period.

T4 versus U4:

Reasonably linear relationship
between X and Y with the start-up
data dominating at the lower end
of the plot

T5:

Samples are clustering around the
zero point of the axis. Since there
are no clear outliers, the vector

may be describing some overall

variability common to all samples.

Q5:

IGO (6) and proane (2) yields
have the strongest influence on
the Q vector, followed by
products gasoline (4), LGO (5)
and coke yields (8) (based on
their CSV/SD values).

T5 versus U5:

Relationship between X and Y is

not spanning as large a range as
in previous vectors.

T6:

Much like T5 in that no cluster is

being distinguished from the rest.

Q6:

Vector separates the desirable

product gasoline (4 and 10) from
undesirable coke (8 and 1 1) and
from butane yield stock (3). This

emphasizes the split between 3

and 4.

T6 versus U6:

Much like the above plots; little

interpretable information.
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Table 6.5-Continued

X Space Y Space Inner Relationship Between X

andY

T7:

Sample group 937-1 1 1 2 previously
unmodelled is split into two groups:

937-1066, and

1068-1112.

They represent two different

operating points with a five day gap
between them. A similar split was
seen in the PCA case and it may
be due to a decrease in total feed

rate.

Q7:

Fuel gas yield (1) is separated
from the rest.

T7 versus U7:

Not much interpretable
information available.

T8:

Much like T5 and T6; tighter
clustering of the samples.

Q8:

Propane (2), coke (8), liquid (9)
yields and gasoline selectivity
(10) separated from IGO (6). Note
that 2, 9 and 10 are coupled
through selectivity and yield
calculations).

T8 versus U8:

Range of relationship is

narrowing further; only a few

points are influencing the
direction of the vector.

T9:

804-805: Start-up
Dynamic start-up samples are

separated from the rest.

Q9:

CO. (7) and coke(8) yields, to
some extent, dominate the vector.

T9 versus U9:

A handful of samples are playing
a strong role in determining the
vector fit: 804-805, 841-846, and

1000-1001. The last two

sub-groups are buried in the T

plane.

T10:

Like T5.T6 and T8, the samples
cluster tightly around the zero mark

of the vector.

Q10:

Fuel gas yield (1) is strongly
separated from the rest

T10 versus U10:

More of the Y space is being
modeled, as shown by the wider

range covered by the U axis.

Til:

UkeTIO.

Q11:

Distinguishing which product(s)
dominate the LV is becoming
difficult; separation amongst Y
variables is weaker.

T11 versus U11:

Can see points that are

influencing modeling of the Y

space. Not much of the X space
is being described by the vector.

T12-15:

It appears that these LVs are fitting
variability common to most

samples.

Q12-Q15:

The products tend to cluster

around the zero of the axes.

T12-U12toT15-U5:

As the number of vectors

increases, the amount of either

space being explained drops off
and the linear model becomes

less powerful.
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6.3 Evaluation of the W loadings

In the PLS algorithm, the w weights insure that the vectors t and u will maximize

the correlation between the X and Y blocks, whereas the p loadings are calculated so as

to keep the t vectors orthogonal. Thus, the w weights provide information about the

correlational structure between X and Y, and variables with large weights may be able to

give meaning to the latent variables. Due to the sheer number of x variables and vectors

used in the model, this evaluation looked at only the first few dimensions. Key process

variables (i.e., those with large positive or negative w loadings) were examined to see if

changes in their values would correlate to what the vectors appeared to be modelling. A

cautionary note: a variable may be highly relevant to the model but due to the fact that it

is correlated with many other variables, may have a small loading. Such a variable is

hard to distinguish from other variables which have small loadings because they are not

highly relevant to the model. This hampers interpreting the LV but actually aids in

modelling the data.

By the very nature of the PLS analysis, x variables with large loadings (positive

or negative) do have a strong influence on the model. An examination of five of the first

six latent variables follows below.

Latent Variable 1 :

The Q space differentiated between gasoline mode and light cycle oil (LGO)

mode while the T space focused on high versus low feed rate and a known drift in

the operations. Some key x variables (with large absolute w loading values) were:
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LFD flow from crude unit

Feed rates to both nozzles and the total

Flow of stripping steam

Feed temperature to reactor

Slurry flows at the desuperheater

LGO draw temperature

Temperature of vapor at top of fractionator

The feed rate, feed temperature and stripping steam rate changes reflect the

production rate changes, while the draw temperature for LGO (product 5) and

end-point temperature for gasoline (4) reflect changes in the product mode.

Latent Variable 2:

This LV distinguished high feed metal content from low; it also separated the

lightest and heaviest products (1 and 7) from butane (3). Some key x variables

were:

Riser outlet temperature

Regenerator 1 dilute and dense bed temperatures

Regenerator 2 dilute and dense bed temperatures

Catalyst-to-oil ratios

Top temperature and reboiler duty at debutanizer

Feed and reflux flows at depropanizer

Changes in these variables would be expected when moving between light and

heavy feeds, and thus, indirectly support the interpretation since higher metals

content typically accompanies heavier feed stocks.
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Latent Variable 3:

This LV correlated with a slow but major shift in operations over the time span of

the data set. The Q space concentrated on the top portion of the fractionator.

Some key x variables were:

Dispersion vapor flow

Power to air blower

Air flow rate to regenerator 1

Heat released due to coke combustion

Temperature difference in regenerator 2 gases (dilute
- dense)

Upper circulating reflux at fractionator

Reflux rates at top and upper part of fractionator

Temperature of vapor at top of fractionator

Fractionator accumulator pressure

Many of the heavily weighted variables came from the fractionation unit.

Latent Variable 4:

Process operations in this dimension moved towards shutdown and also moved

out of start-up phase. Some key x variables were:

Pitch content of crude feed

LFD flow from crude unit

Flow and temperature of LGO reflux at desuperheater

Vapor generation at slurry exchanger

Feed, reflux and reboiler duty of debutanizer and

depropanizer

The change in feed rates created by these disturbances would cause changes in

some of the key variables listed.
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Latent Variable 6:

The Q space separated desirable products from undesirables. Some key x

variables were:

Runback flow from crude unit

Dispersion vapor flow

Aeration steam flow

Feed temperature to reactor

Excess oxygen in second regenerator flue gas

Temperature of gas exiting second regenerator

Feed, reflux rate, top and bottom temperature

at debutanizer

Changes in the runback content in the feed and feed temperature support this

interpretation; the steam rates could possibly contribute but testing would be

needed to verify this.

6.4 Comparing PCA and PLS Results

Since both the PCA and PLS cases described in sections 5.2 and 6.2,

respectively, used the same X data set for analysis, it is possible to compare the

modeling power and type of information revealed by these two multivariate techniques.

From the statistics tables 5.4 and 6.1 , one sees that slightly less of the X space

was modelled per PLS dimension than with PCA. This was expected since PLS must

compromise by finding a latent variable which explains both the X and Y spaces. The

difference, however, in this case was not great. After the first eleven vectors, PCA

explained 78.2% of the (ordinary) SS in the X space, while PLS described 76.2% of the X

space in addition to 81 .3% of the cross-validated Y sum of squares.
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The first latent variables extracted by both PCA and PLS analyses appeared to

be confounded with the time trend, unit feed rate and production mode changes and

general drift in operations. The second and third LVs of PCA appeared to describe feed

metals content (or heavier feed in general, the latter LV concentrating on vanadium

content) while only the second latent variable from PLS appeared to describe this

phenomena.

However, the shapes of the PCA and PLS T1-T3 plane are strikingly similar. If

the PCA T1-T3 plot is flipped along the Y axis and tilted slightly to the left, it provides a

close fit to the PLS plot, as shown in figure 6.5. This exemplifies the rotation of the X

space that takes place as PLS compromises between modeling Y and explaining X. One

might then use information from the Q space of PLS to interpret the cluster separations in

the PCA space. Thus, the rotation gives the variance in the X space of PLS more

meaning.

On the other hand, figure 6.5 suggests that the single third latent variable in PLS

describes what the combination of the first and third latent variables in the PCA space

appear to model: vanadium metal content of the feed plus some of the confounded

process changes dominating the first LV.

For the later dimensions, PCA was free to describe characteristics separating

large clusters of points whereas PLS (due to the influence of the Y space) concentrated

on modeling the process changes which influence the product outputs. This means that

PCA could reveal more subtle changes in the X space, while the advantage of PLS was

the availability of the Q space to help explain changes in the T planes. For instance,

PCA's latent variable four broke apart groups F (936 to 1 065) and G (1 066 to 1 1 1 1 ) but

identifying a plausible cause for this splitting was difficult. In the PLS analysis, however,
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the same separation was modelled by the seventh latent variable. Added information

from the Q plane suggested this may be due to a product yield shift away from product 1

and towards product 6.

Such an interpretation was checked by studying the yield values for products 1

and 6 during these time intervals. Figures 6.6 and 6.7 show that these two products

exhibited distinct changes in yield at the sample interval 1065 to 1066.

PCA T1-T3 Plane

-20 10

1

1170

10 -20

PLS T1-T3 Plane

1

1170

-20 20

Figure 6.5: Rotation of PCA T1-T3 plane to match PLS T1-T3 plane.
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Thus, one can see that PCA and PLS reveal different pieces of information

about the process. PCA is free to reveal subtle changes or clusters in the operating data,

which may, however, have little relevance to the Y space. On the other hand, PLS must

compromise between explaining the X and Y spaces at the same time but the extra

information provided by the Y space can aid in the interpretation of the operational shifts.

It also does not reveal subtle operational changes as easily (or as early on in the

analysis) as PCA.
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Figure 6.6: Time series plot of product 1 .
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Figure 6.7: Time series plot of product 6.
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This brief comparison shows that it is important to have a clear idea as to the

purpose of the multivariate analysis before selecting which approach (PCA or PLS, or

both) to use.

6.5 Re-Scaled Case

The appropriateness of auto-scaling is a more important issue in PCA than PLS

because PCA only has the variance structure of the single block to work with, whereas

PLS focuses on maximizing the inner relationship between two blocks.

The main concern in using auto-scaling for these analyses is the scaling up of

variance for variables which are almost constant. If these variables dominate the PCA or

PLS models and their small variance represents noise, then the model is being

dominated by noise. Auto-scaling is not beneficial in this case as it is only inflating the

amount of sum of squares (SS) to be explained and probably swamping out more

important process information. Such variables should not be scaled at all and the

analyses re-run.

If these variables dominate the models, but their variance represents natural

process variability, then this information should aid in interpreting the model. The problem

then lies in distinguishing between noise variance and normal process variance.

Of course, if these variables do not dominate the PCA or PLS models, then

there should not be a problem with using the auto-scaling approach.

Loadings from the three models (PCA on X, PLS predictive model and SPC

monitoring reference data) were examined along with their auto-scaled weights to see if

variables which were scaled-up due to auto-scaling dominated the latent variables. In the

case of PCA, some scaled-up variables contribute heavily to the principal components.

This is expected since PCA works solely with the variance structure of the single data

block.
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In the case of PLS, feed rates (which have a large auto-scaled weight) dominate

the first vector. The data set for this analysis spans a large operating region and since the

feed rate has a strong influence on unit operations, such domination is expected.

Auto-scaled up variables for the other PLS dimensions and the SPC models do not

dominate the models. In these cases, the inner relationships between the blocks is

important and influences the w loadings and the direction of the latent variables in

general.

Thus, by giving all variables equal variance, auto-scaling will probably inflate the

noise component of some variables, in these analyses, auto-scaling appears to have a

stronger influence on PCA results, due to its focus on the variance structure, and less so

on PLS analyses, where the inner relation between two blocks is being maximized. The

appropriateness of the type of scaling used is heavily dependent on the data being

studied and the analysis to be used, and must be considered in this light. For a first look

at the FCCU process data, auto-scaling does not appear to unduly influence the model in

a negative manner.

6.6 Summary of Observations from PLS analysis

Despite the undesigned nature of the data set and the number of process

changes taking place within it, PLS was able to generate a good predictive model for

most of the y variables. The first eleven LVs captured 81 .3% of the cross-validated SS of

the Y space; this was significantly better than the maximum fit of only 44.2% of the

cross-validated SS of Y generated by PCA. It appeared that the "randomness" in the Y

space left unmodeled by PCA actually correlated strongly with the operating conditions of

the X space, thus yielding a better fit with the PLS analysis.
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Cause and effect interpretation of the LVs was much more difficult. Major

process changes in production rate and production mode, feed quality, a known drift in

the process operations, and large transients were explained in the first six to seven LVs;

later dimensions modelled smaller, sporadic process changes.

The similarities in the first few LVs of both PCA and PLS revealed that the

dominant variations in the data set were also the dominant operational changes. The

differences in modelling objectives was also illustrated by comparison of the T1-T3

planes from both analyses.

The appropriateness of auto-scaling for all analyses (PCA, PLS and SPC) was

considered. For a first look at this FCCU, it did not appear to unduly influence the model

in a negative manner.





CHAPTER 7: MULTIVARIATE SPC MONITORING SPACE

This chapter investigates the development of multivariate statistical process

control (SPC) charts for monitoring the behaviour of the FCCU over time. A monitoring

space representing "normal operations" is built using PLS from a select set of samples

called the reference data. A second set of samples representing abnormal operations is

used to test the resolution of this monitoring space and to show how different

combinations of latent variables can be combined to form meaningful monitoring planes.

A method for uncovering the possible causes of abnormal process changes is also

proposed and discussed.

7.1 Overview

The purpose of developing a monitoring space was to build a low dimensional

Shewart-type chart in which the process could be constantly monitored for abnormal

behaviour or events. As seen in the last two chapters, the FCCU was not operated at one

steady-state condition during the data collection but rather was in a constant state of

transition. Therefore, the appropriateness of an SPC monitoring approach would be

questionable. However, the approach was developed anyway, and its abilities and

limitations discussed.

The process data set offered a wide range of operating "windows" from which to

select a "normal" or reference data set. Selection of the final reference set was heavily

129
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dependent upon what events or changes were considered "abnormal". For this analysis,

only non-boomer (regular production) data was selected. This should eliminate large feed

quality and production mode changes. Samples were restricted to the month of October

when plant operations were considered relatively smooth. Data saved for the test set (to

later verify the model) included abnormal periods of high and low catalyst activity, high

and low nickel (Ni) and vanadium (V) metals content in the FCCU feed, plant moves into

and out of boomer (or asphalt, B) and non-boomer (regular, NB) operations and a period

where the upstream crude unit created disturbances in the FCCU. Tables 7.1 and 7.2

provide a complete listing of the normal and abnormal data used for the SPC evaluation.

Table 7.1 -Multivariate SPC Normal Data Reference Set

Sample
Number

Date Sample
Number

Date

1

44

Oct 02 3:00

Oct 03 22:00

144

214

Oct 12 10:00

Oct 15 8:00

2 \ days later... 5 hours later...

45

136

Oct 06 13:00

Oct 10 9:00

215

257

Oct 15 13:00

Oct 17 7:00

9 hours later... 2^ days later...

137

143

Oct 10 18:00

Oct 10 24:00

258

290

Oct 19 16:00

Oct 20 24:00

1 1 days later...
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Table 7.2-Multivariate SPC Test (Abnormal) Data Set

Date Event Sample No.

Sep 21 16:00

Sep 24 8:00
Start-up and move into boomer

operation.

1

65

Oct 1 16:00

Oct 2 2:00

Transition into non-boomer mode. 66

76

Oct 3 23:00

Oct 4 8:00
High catalyst MAT (64). 77

86

Oct 11 1.-00

Oct 12 9:00

3:00 Product 2 off-specification, too
much gas, air blower limited.

20:00 High product 7 yield.

87

119

Oct 21 1:00

Oct 22 3:00
Cooling water temperature trouble. 120

145

Oct 22 4:00

Oct 22 10:00

Transition into boomer mode. 146

152

Oct 26 11:00

Oct 26 20:00

Transition into non-boomer mode. 153

162

Oct 26 21:00

Oct 28 24:00

Normal data, but later than the

reference data.

163

212

Oct 29 1:00

Oct 29 11:00

Crude unit upset FCCU several

times.

213

223

Oct 29 12:00

Oct 30 24:00

Normal data, but later than the

reference data.

224

260

Oct 31 1:00

Nov 424:00
High metals (V and Ni) in feed. 261

356

Nov 5 1:00

Nov 714:00

Normal data, but later than the

reference data.

357

414

Nov 7 16:00

Nov 8 8:00
High catalyst MAT. 415

431

Nov 9 10:00

Nov 12 8:00

Low catalyst MAT. 432

502

Nov 18 22:00

Nov 19 23:00
High vanadium content in feed. 503

528

Nov 20 1:00

Nov 20 8:00
High vanadium content in feed. 529

536

Nov 30 9:00 Normal data, but later than the

reference data.

537
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If no Y data is available, PCA can be used to form a monitoring space that would

detect changes which disturb the relationships amongst the x process variables.

However, the variables with the largest variances may not necessarily be the most

informative. If Y data is available, it can be used with PLS to create a more

knowledgeable monitoring space where changes in the X planes can be related to

changes in the Y space. This was the approach selected for the analysis. (If Y data is not

available but can be inferred from specific x variables, then one could also build a model

using X versus the inferential, now "Y" data.) For this analysis, all eleven measured y

variables were used.

The approach to be followed in defining the normal operating region is that of

Kresta, MacGregor and Marlin (1991a) where the boundary of acceptable behaviour is

determined such that it encompasses a certain percentage of the reference samples. The

sum of the prediction errors (SPE), plotted as a function of sample number, act as a

guide for detecting gross deviations of the test data from the reference set. Since these

values should be random in magnitude and independently distributed, reference samples

with abnormally large SPE values should be examined for appropriateness in the building

of the monitoring space.

The T plane monitors the structure amongst process variables while the SPE

values signal a poor model fit. The individual focus of these two types of plots should help

unveil the causes of process deviations. For instance, if a process change causes a large

move in one or more of the process variables but which does not change the basic

relationship with the Y space, then one will see a shift in the T space without a large SPE

value being generated. If, however, the change is caused by an event not captured in the

reference data set, then it may show up not only as a shift in the T planes but also

generate a significantly large SPE value indicating a change in the Y space (Kresta,

MacGregor and Marlin 1991a).
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7.1.1 Determining the Dimensionality of the Reference Model

The statistical results for the reference data using PLS are provided in tables 7.3

and 7.4. The statistical significance of the overall CSV/SD values for all fifteen latent

variables would allow all of them to be considered for the model. The value for the

percentage difference between the ordinary and cross-validated percentage SS in Y,

however, suggests that LV twelve and onwards may have been modelling process noise

and could be dropped from the model. This is also suggested by the individual CSV/SD

values for the y variables in table 7.4, where values near unity for the later dimensions

imply that little predictable process variability was modelled.

Table 7.3-Statlstical Results from PLS Analysis of Reference Data (X=537 x 136) (Y= 537 x 11)

Ordinary Cross- validated

%SS %SS %SS Cumul. % Diff Overall

LV X Y Y %SSY %SSY CSV/SD

1 23.1 31.0 30.8 30.8 0.6 0.832

2 16.9 31.6 31.2 62.0 1.3 .740

3 12.0 5.6 5.2 67.2 7.7 .927

4 6.2 6.6 5.7 72.9 15.8 .906

5 6.8 3.1 2.3 75.2 32.6 .953

6 4.6 2.5 1.8 77.0 37.2 .959

7 3.6 2.1 1.7 78.7 21.8 .955

8 1.8 3.5 2.8 81.5 25.0 .915

9 1.6 1.9 1.3 82.8 46.2 .954

10 2.6 0.7 0.4 83.2 75.0 .982

11 1.5 0.9 0.5 83.7 80.0 .978

12 1.2 0.7 0.2 83.9 250.0 .988

13 1.0 0.9 0.1 84.0 1451.7 .997

14 1.2 0.5 0.3 84.3 100.0 .986

15 0.7 0.7 0.1 84.4 775.0 0.995
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Table 7.4-Y Product CSV/SD Values from PLS of Reference Data

LV Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

1 0.99 1.00 0.69 0.67 0.28 0.66 1.00 0.98 0.95 0.90 0.71

2 0.37 0.96 0.58 0.67 0.77 0.96 0.65 0.67 0.86 0.92 0.46

3 0.83 1.00 0.96 0.83 0.89 0.86 0.92 0.99 0.94 0.85 0.92

4 0.98 0.87 0.88 0.85 1.00 0.85 0.92 0.87 0.93 0.98 0.98

5 1.00 0.98 1.00 0.90 0.98 0.97 1.00 0.84 0.94 0.94 0.99

6 1.00 0.96 0.98 0.98 0.93 0.98 0.78 0.98 1.01 1.00 0.84

7 0.98 1.00 1.00 0.99 0.98 0.96 0.77 1.00 0.94 0.94 0.94

8 1.00 0.82 1.01 0.80 0.97 0.99 1.00 0.98 0.90 0.89 1.00

9 0.97 0.99 0.96 0.96 1.00 0.99 0.99 0.93 0.89 0.93 1.00

10 0.86 1.01 0.94 1.00 0.95 0.97 1.00 1.00 0.96 0.99 1.00

11 0.99 0.99 1.00 1.00 0.99 1.02 1.00 0.92 0.95 0.97 0.94

12 1.00 0.98 0.99 0.94 0.97 1.00 0.99 1.00 1.00 0.98 0.98

13 0.96 1.00 1.02 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.99

14 0.87 0.99 1.00 1.00 0.99 0.99 0.95 1.00 1.00 0.99 0.99

15 0.99 1.01 1.02 0.96 0.96 1.00 1.01 0.96 0.99 0.99 1.00

A compromise must be made between low dimensionality and high resolution in

selecting the final dimension for the reference model. All dimensions of the reference

model must be monitored, and thus, it is best to restrict this number to a reasonable size

(appropriate to the specific monitoring case). However, if the reference data is somewhat

complex and non-linear, a large number of latent variables may be needed to model it

sufficiently. Inadequacies in this balance can be expected to show up as poor resolution

of the abnormal samples from the normal operating regions.

For this study, the first eight LVs were selected for use in the reference model.

Pairs of latent variables were plotted against each other (rather than all against the first

latent variable) to yield four monitoring planes plus one SPE plot as shown in figures

7.1 a-d and 7.3, respectively.

The reference SPE plot, figure 7.3 was generated by fitting the reference data

samples to the PLS model using the first eight LVs and summing up the squares of the
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prediction errors for each y variable, per sample. For a 95% confidence level, the cut-off

value (so that 5% of the reference SPE values would be greater than the cut-off) would

be approximately 50. Test sample SPE values greater than this would be considered

abnormal.

The region spanned by the reference data in the T1-T2 plane was the largest of

any monitoring planes created and explained 40% of the ordinary SS in X and 62.0% of

the cross-validated SS in Y. It contained two distinct clusters which complicated defining

the "normal" region. The small cluster of reference points in the lower left quadrant of

figure 7.1a represents samples 258-290 which are two and a half days later than sample

257. One could accept these two clusters as separate yet legitimate regions for

operation, but it is more likely that the reference data set did not contain enough samples

to properly model the normal region in this part of the plane. Figure 7.3 showed that the

SPE values for the left most data group in the reference set were not abnormally larger

than those of the earlier data.

The T3-T4 and T5-T6 planes also appeared to contain more than one reference

cluster which made determining a boundary for normal operations tenuous. Due to the

process changes which are typical of this unit, it is not known whether further samples

would aid in filling the gaps between these reference clusters or if more data would

merely extend the reference space into a new direction. The reference planes were thus

used without boundary limits.
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Figure 7.4: Test data SPE values.

7.1.2 Evaluation of the SPC Monitoring Space

The test (abnormal) datawas fitted to the SPC reference model and the

resulting T scores were plotted in figures 7.2a-d. The T scores for samples 1 to 65
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(representing a start-up phase and move into boomer operation) were so large, they lay

off the portions of all four planes shown. In the T1 -T2 plane, samples 66 to 72 lay directly

above the normal operating region. Samples 1 to 76 precede the time period selected for

the reference set, and essentially all the test samples following the time period selected

for the reference set resided in the lower left quadrant of the plot, suggesting that the first

two latent variables were heavily confounded with the time trend observed in the data.

Thus, this first plane did not prove to be of much value in terms of monitoring (although

the vectors themselves played an important role in the modeling of the reference space).

In the T3-T4 plane, the test data generally lay within the region defined by the

reference data, indicating that latent variables 3 and 4 still explained variation common to

most samples.

In the T5-T6 plane, samples 432-497 representing low catalyst MAT activity

clustered at the coordinates (10,5) which is clearly outside the normal operating region.

Samples 498-502 representing preparation for a boomer run and samples 159-160 (part

of a transition into a non-boomer operation) lay between +7 and +15 in the T6 direction.

In the T7-T8 plane, feed metals as well as major process moves were

distinguished from the normal reference region. Samples 503 to 537, representing high

vanadium content in the FCCU feed lay furthest from the normal region, in the lower left

quadrant. Although more difficult to see in these plots, samples 261 to 356 representing

high vanadium and nickel in the feed clustered in the area of coordinates (-7,-2) to (-3,-2)

which just borders on the normal operating region. Samples 357 to 414, which represent

normal but later data than the reference set, clustered in the region of (-5,5). Samples 1

to 65, 147 to 152, and 498 to 502 all representing major transitions into or out of boomer

operations (or start-ups) had T scores too large to lie in the region of normal operation.
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SPE values for the test data were calculated and plotted as a function of sample

number in figure 7.4. Clearly, samples 1 to 75 and 145 to 152 do not belong to the

reference region, as was also indicated in the T plane plots. Although test samples 1 63 to

212 represent normal operations, they represent samples approximately six days after

the reference data and showed significantly large SPE values compared to the reference

SPE value. This showed that perhaps the reference set did not contain a large enough

sampling of data from normal operations. As the sample times moved further away from

the reference data, SPE values increased accordingly, showing that the process

operating conditions were continually shifting. Samples 230 to 498 had SPE values

around 2000, while samples after 500 had SPE values of approximately 4000.

Continuously high SPE values for "normal" samples might act as a good indicator of

when model updating would be needed.

Table 7.5 summarizes the abnormal periods flagged either through their location

in the monitoring planes or their SPE values. The periods of start-up and major

transitions lay far from the normal operating regions defined in all four planes and were

accompanied by extremely large SPE values.

The first four vectors of the monitoring space appeared to describe variation

which was common to both normal and abnormal data. This made the plane formed by

these vectors a difficult space to monitor and its only use might be to detect radically

large changes in the process (however, operators are sure to be aware of such changes).

Subtler changes affecting the unit, such as feed quality and catalyst activity were

better distinguished by later vectors. These abnormalities broke out in asymmetrical

patterns, i.e., the normal operating region was modeled as a distinctive cluster in the

monitoring plane and the abnormalities were found to lie somewhere outside of this

region.
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Table 7.5--Abnormal Events Flagged by the SPC Monitoring Procedure

Sample Large SPE
value

T1-T2 T3-T4 T5-T6 T7-T8 Abnormality
Plane Plane Plane Plane

1-65
* * * * *

Start-up of unit
66-76

*

to 72
* * *

Move into NB operation
77-86 High catalyst MAT

87-119 100 Y2 off-specification, etc.
120-145 135 Cooling water T trouble

146-152
* * * *

Move into B operation
153-162

*

159-160 Move into NB operation
163-212 up to 199 Later than reference data

213-223
.

Crude unit upset FCCU
224-260 228+ Later than reference data

261-356
* *

High Ni and V in feed

357414
# *

Later than reference data

415-431
*

High catalyst MAT

432-502
* *

Low catalyst MAT

503-528
* *

High V in feed

529-536
* *

High V in feed

537
* *

High V in feed

Note:
*

- indicates that all samples in the group were flagged as abnormal.

The planes also suggested the degree of change taking place in the test data;

from radical changes evident in the first three dimensions, to subtler changes in the

process only revealed by the later latent variables.

The fact that some abnormal events were not well distinguished from the

reference model may be due to these reasons: i) the measurement set of process

variables used did not contain enough information on these types of abnormal events,

and ii) the normal operating region was not defined well enough due to a) inadequate

sampling of representative operations in the reference set or b) the presence of some

mis-classified samples in the reference set, or c) that there really appears to be no stable

steady-state reference set.
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The SPE plot used in conjunction with the T planes not only helped to signal

abnormal operations but it also gave an indication of continuous model mismatch and the

need to update the reference data set and model.

7.1.3 Creating Meaningful SPC Planes

As noted earlier, different combinations of T score plots might yield more

meaningful monitoring planes. For instance, figures 7.5 and 7.6 show that vectors T3 and

T5 yield a valuable plane in which the samples 432-502 (representing low catalyst

activity) can be easily spotted.
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Figure 7.5: Reference SPC T3-T5
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Figure 7.6: Test data plotted in
SPC T3-T5 monitoring plane.
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In figure 7.6, the sample group of low catalyst activity lie distinctly in the upper

left-hand region of the plane, separated from the remainder of the test data (shown in

figure 7.5). This exemplifies the power of combining different vectors to yield more

meaningful visual monitoring spaces.

7.1.4 Searching for the Cause(s) of Abnormalities

As with a Shewart chart, once an abnormally large SPE value or t score has

been flagged, a search for an assignable cause (or causes) should be undertaken.

Although it is best to conduct this evaluation as soon after detection as possible, a

suggested procedure for evaluating this data set is discussed below.

With PLS, the t score of a sample arises from the product of the value of the

process variable x and its appropriate w loading. Thus, there are three ways from which a

large change in a t score can arise: i) a large change in a process variable whose w

loading is relatively small, ii) a small change in a process variable whose w loading is

very large, and iii) a somewhat large change in a process variable whose w loading is

also relatively large.

Once a large change in a t score is found, the individual products

(dx value)*(w loading) could be searched to find those which contribute most strongly to

the change in the t score. These x variables would form a subset which would be

examined to find a possible cause for the change in the process. For the FCCU data, the

following steps were taken.

1 ) The t scores for each dimension were plotted as a function of time to identify

pairs of samples where the change in t was large.

Changes caused by large breaks in time were not looked at because it was

felt that due to the drifting nature of the process operating point, the value of

too many variables could change over a large break in the time history.
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2) The individual products (dx value)*(w loading) from step 1 were sorted from

greatest to least to identify which process variables had moved. Process

variables which were either manipulated (MV) or controlled variables (CV)

were noted. A large change in a controlled variable should indicate an

operational move or deliberate change. A large change in a MV could

represent a common disturbance (if the CV for the loop remains relatively

constant) or could be indicative of an operational move if the CV changes

significantly as well.

3) The process variables' values at the start and end of the interval (and their

difference) were examined to see if they substantiated the process change

thought to have taken place. The auto-scaled weights of these x variables

were also checked to see if their variance had been scaled up during data

pretreatment.

Four sets of process moves from the FCCU abnormal data set were examined:

72-73, 158-159, 160-161 and 499-500. Due to the proprietary nature of the process

information, it is not detailed here. However, some general observations are discussed

below.

All four changes occurred during process transients. Although initially it was felt

that the small time lapse of these intervals would help in the identification of key process

variables responsible for the moves, it was later realized that a large number of the

process variables were probably in a state of change and not yet at new steady-state

values. This complicated the interpretation of the dx values. Although some dx values

concurred with the process changes known to be taking place, other process variable

changes were directionally opposite to expectation, or insignificant or hard to draw any
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conclusion from. It would have been better to look at changes from the last stable point of

one group to the first stable point of the next group, such as the intervals 70-73 or

497-500.

7.2 Summary of SPC Monitoring Results

The multiple operating points of the FCCU violated the single steady-state

assumption of SPC and contributed greatly to the difficulties in defining a normal

operating region and in searching for causes of process changes. The analysis showed

that the first few latent variables characterized changes and time variations in the process

which were common to both the test and reference data. Later LVs were more useful for

monitoring the process and were able to flag start-up, process mode changes, high

metals content in the feed and catalyst activity changes. The SPE values, indicating

model mismatch suggested how quickly the FCCU reference data might have to be

updated to reflect the constantly changing operating point.

If the process had a singular operating point, one might have been able to

extend the interpretative value of the manipulated (MVs) and controlled variables (CVs)

by building reference models using only the MVs in the X space and CVs in the Y space.

Checking for large changes in the CVs would allow one to keep an eye on the model fit

and monitoring the MVs would indicate the presence of disturbances (which may or may

not be compensated for by the control strategy in place, depending upon whether or not

the Y space is disrupted as well). The MV and CV data could also have been split into

two separate X blocks and analyzed using hierarchical PLS, as discussed in chapter 8.





CHAPTER 8: HIERARCHICAL PLS ANALYSIS

This chapter contains the results from a hierarchical PLS analysis of the large

(1 170 sample) data set. It also discusses some differences between the algorithm of

Wold et al. (1987b) and the one proposed by Wangen and Kowalski (1988) and how the

latter might apply to the FCCU.

8.1 Hierarchical PLS (HPLS)

For the hierarchical (HPLS) case, the Wold et al. approach (1987b) was applied

to the data used in the PLS analysis. The X space was broken up into six blocks

according to the structure of the unit: i) feed, ii) reactor, regenerator and air blower (called

'RR'), iii) desuperheater and main fractionator ('Frac'), iv) rectified absorber ('RA"), v)

debutanizer, and vi) depropanizer. In order to compare the effect of breaking up the X

data on the model, a single Y space was maintained for this analysis. Auto-scaling was

applied to all variables, consistent with the PLS analysis.

Table 8.1 lists the percentage sum of squares (%SS) explained for each block

per model dimension; cross-validation has not yet been implemented for hierarchical

PLS, so CSV/SD values are not available. Table 8.2 contains the consensus loadings (v

and w vectors) which represent the relative contributions of individual ta and ub vectors to

the consensus vectors t and u respectively. A relatively large loading means that a

block's t vector dominates the consensus vector, causing the model to explain a

147
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relatively large portion of that block's variation. The consensus loadings provide basically

the same information as the %SS explained values. Both are difficult to interpret directly

as each block contains a different amount of the initial SS in X, however, the Wold et al.

algorithm adjusts for this by dividing each block by the number of variables contained in

it. This gives each ta vector the same importance in the consensus matrix T although a Xa

block may contain only one process variable and others may contain several. The same

holds true for the u vectors collected in the consensus matrix U.

Table 8.1--HPLS %SS Explained Per Block for Each Latent Variable (X=1170 x 136 total) (Y=1170 x11)

Feed RR Frac RA Debut Deprop Y

Y

Cumul.

Initial SS

per block

19873 54943 52605 12859 8183 8183 12859

X Variables

per block 17 48 46 11 7 7 11

LV:1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

33.5

2.8

9.9

4.2

0.8

1.8

1.9

1.4

4.6

0.6

6.1

5.7

0.4

0.5

5.4

21.3

10.8

9.5

12.7

0.5

2.3

1.0

2.0

1.6

1.0

3.7

1.0

4.5

0.6

0.7

25.0

7.0

17.1

7.7

0.5

3.1

2.1

11.5

6.4

1.8

0.4

0.4

0.7

0.5

0.4

40.1

6.4

12.4

6.8

1.0

7.5

1.5

2.8

1.1

11.8

0.6

0.6

0.1

0.7

0.2

24.6

43.7

17.6

1.8

0.4

3.2

1.8

0.6

0.4

0.3

0.2

0.0

0.1

0.5

0.0

26.7

16.9

7.4

3.4

15.8

8.1

8.4

0.4

0.7

0.2

0.4

0.1

0.1

6.3

0.0

25.8

12.6

12.2

6.9

0.3

10.0

2.2

3.8

1.1

1.0

0.9

0.4

0.3

0.4

0.3

25.8

38.4

50.6

57.5

57.8

67.8

70.0

73.8

74.9

75.9

76.8

77.2

77.5

77.9

78.2
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Table 8.2-HPLS Consensus Loadings Per Block (v and w values)

LV Feed RR Frac RA Debut Deprop Y

1 246.4 136.5 216.3 265.7 232.3 213.2 302.1

2 21.4 101.6 54.4 60.8 356.0 162.3 147.4

3 75.8 71.2 143.0 122.5 148.4 61.7 142.1

4 28.5 97.2 60.7 54.7 13.6 22.4 80.5

5 -0.1 0.0 -0.2 0.6 0.0 4.5 3.2

6 16.5 14.2 18.1 61.3 36.0 60.5 116.5

7 7.6 6.7 13.1 1.8 10.5 23.2 26.2

8 9.5 15.5 69.8 12.9 3.5 2.4 44.4

9 8.3 6.8 18.5 3.9 1.1 2.1 13.3

10 2.8 5.8 6.4 33.0 1.8 -0.1 12.0

11 18.3 16.0 1.6 2.3 1.2 1.0 11.0

12 4.5 0.7 0.1 0.4 0.0 0.0 5.0

13 0.4 5.6 1.6 0.4 0.4 0.3 4.0

14 2.4 4.0 2.2 2.6 1.1 17.9 4.8

15 2.0 1.0 0.4 0.1 0.1 0.0 3.4

To overcome this interpretation problem, the values of the %SS explained for

each block in table 8.1 were multiplied by the fraction of total initial SS that each block

contributed to X. These new values were called the "%SS explained of the total X

variation", and are presented in table 8.3. This allows one to clearly see from which block

the SS in X are being explained per latent variable; it also allows summation of the total

%SS of X explained per dimension. The hierarchical results were then compared to the

PLS statistics, with which they are listed in table 8.4.
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Table 8.3--HPLS %SS Explained of Total X Per Latent Variable

% of Initial Feed RR Frac RA Debut Depro Cumul.

Total SS Total Total

12.7 35.1 33.6 8.2 5.2 5.2 %SSX %SSX

LV:1 4.3 7.5 8.4 3.3 1.3 1.4 26.1 26.1

2 0.4 3.8 2.4 0.5 2.3 0.9 10.2 36.3

3 1.3 3.3 5.7 1.0 0.9 0.4 12.7 48.9

4 0.5 4.5 2.6 0.6 0.1 0.2 8.4 57.3

5 0.1 0.2 0.2 0.1 0.0 0.8 1.4 58.7

6 0.2 0.8 1.0 0.6 0.2 0.4 3.3 62.0

7 0.2 0.4 0.7 0.1 0.1 0.4 2.0 63.9

8 0.2 0.7 3.9 0.2 0.0 0.0 5.0 69.0

9 0.6 0.6 2.1 0.1 0.0 0.0 3.4 72.4

10 0.1 0.4 0.6 1.0 0.0 0.0 2.0 74.4

11 0.8 1.3 0.1 0.0 0.0 0.0 2.3 76.7

12 0.7 0.4 0.1 0.0 0.0 0.0 1.3 78.0

13 0.1 1.6 0.2 0.0 0.0 0.0 1.9 79.9

14 0.1 0.2 0.2 0.1 0.0 0.3 0.9 80.7

15 0.7 0.2 0.1 0.0 0.0 0.0 1.1 81.8

Table 8.4: Comparison of PLS and HPLS Statistical Results (Not cross-validated)

PLS: HPLS:

LV

Cumul.

% SS % SS

X X

Cumul.

% SS % SS

Y Y

Cumul.

%SS %ss

X X

Cumul.

%ss %ss

Y Y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

26.5

13.0

13.4

5.6

4.2

4.0

3.9

1.6

2.8

1.8

1.5

1.1

1.5

1.0

0.9

26.5

39.5

52.9

58.5

62.7

66.7

70.6

72.2

75.0

76.8

78.3

79.4

80.9

81.9

82.8

30.4

14.3

8.7

8.7

6.7

4.5

2.5

3.5

1.2

1.1

1.1

1.2

0.7

0.9

0.7

30.4

44.7

53.4

62.1

68.8

73.3

75.8

79.3

80.5

81.6

82.7

83.9

84.6

85.5

86.2

26.1

10.2

12.7

8.4

1.4

3.3

2.0

5.0

3.4

2.0

2.3

1.3

1.9

0.9

1.1

26.1

36.3

48.9

57.3

58.7

62.0

63.9

69.0

72.4

74.4

76.7

78.0

79.9

80.7

81.8

25.8

12.6

12.2

6.9

0.3

10.0

2.2

3.8

1.1

1.0

0.9

0.4

0.3

0.4

0.3

25.8

38.4

50.6

57.5

57.8

67.8

70.0

73.8

74.9

75.9

76.8

77.2

77.5

77.9

78.2
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Figure 8.1 : Total percentage SS of X explained by PLS and HPLS.
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Figure 8.2: Total percentage SS of Y explained by PLS and HPLS.

Figures 8.1 and 8.2 show the percentage of total SS explained of X and Y for

both the PLS and HPLS cases. The HPLS case consistently explained slightly less of the

Y space while modelling almost the same amount of the X data as the PLS case. Plots of
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the consensus vectors t and q vectors are shown in figures 8.3a-g and 8.4a-g,

repectively. They are also described below in table 8.5. Since no CSV/SD values were

available, the Q plots provided the only other information to aid in determining what each

LV or dimension was modelling. As was found in the previous analyses, caution must be

used here since a noisy product can dominate a q vector although its variation may not

be well predicted (normally indicated by a high CSV/SD value).

Table 8.5-Analysis of X Space Consensus T Vectors and Y Space Q Vectors

X Space Y Space

Tl:

Breaks the process samples up into three distinct

groups:
763-766 and 936-1111,
11 12-1 170, and the rest

It also appears confounded with the time trend.

Q1:

The plot of the Y products in the Q1-Q2 plane is
almost identical to that from the PLS analysis.

Q1 separates the desirable gasoline product (4 and

10) from the undesirables fuel gas (1) and coke (8
and11),aswellasLGO(5).

T2:

No distinct groupings are modelled, thus the vector is

probably describing process variation common to
most samples.

Q2:

The lightest and heaviest low quality products fuel

gas (1) and CO. (7) dominate one end, while
butane yield (3) dominates the other. It is similar to
the Q2 vector from the PLS analysis.

T3:

1 -277, 1 1 1 2-1 1 70: Are separated from

the rest of the data.

The layout of the samples in the T1-T3 plane is very
similar to the layout in the PLS T1-T3 plane.

Q3:

Q3 is pretty much a negative version of Q3 from the

PLS analysis. Gasoline (4), LGO (5) and IGO (6)
dominate the vector, suggesting that the LV is

modelling changes at the fractionation unit
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Table 8.5--Continued

X Space

T4:

Further separation of the samples takes place:
1-7, 767-823: Low metal feed and

boomer (asphalt)
operation.

11 12-1 170: Most recent samples.
_

The scattering of samples along the T5 vector
reflects its low modelling contribution.

T6:

This vector draws apart samples 936-1066 and
1067-1111.

T7:

The sample group 416-429 lies at one end of the

vector while a mixed collection of other samples
stretch in the opposite direction.

T8:

No new separation of points is revealed by this
consensus vector.

Y Space

Q4:

Although IGO (6) dominates one end of 04, it is
known to be a noisy variable and may not be highly
predictable.

Q5:

The marginal modelling power of LV 5 is reflected

in the Q5 vector where all products lie within a tight
range about the zero axis point.

Q6:

Although the distinction is not clear, Q6 appears to

separate the desirable products propane (2) and

gasoline (4)4 (along with the desirable yields 9 and

10) from the undesirable products fuel gas (1), CO.

(7) and coke (8 and 11).

Q7:

The low predictive power of this dimension is

reflected in the flat plot of the Y products in this

plane.

Q8:

IGO (6) dominates the Q8 vector; the dimension

explains predominantly the SS lying in the

fractionation block.
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8.2 Discussion of HPLS Results

The fact that the HPLS approach was slightly less powerful than ordinary PLS in

predicting the X and Y spaces for this data and that no one block tended to dominate the

first few LVs was probably a reflection of the highly coupled nature of the process. If the ta

vectors of a particular dimension described process changes that affected all parts of the

unit, the consensus vector would give almost equal weight to each block. This was the
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case for the first dimension where five of the six blocks had a consensus loading between

216 and 265. The plots revealed that this dimension was heavily confounded with the

time trend and a slowly decreasing unit feed rate.

The second dimension showed more contrast with consensus loadings ranging

from 21 to 356. The debutanizer block dominated this dimension, followed by the

depropanizer and reactor-regenerator blocks. As the process changes that affected many

parts of the process were modelled and removed from the data blocks, the later

dimensions focused on subtler changes and modelled SS from predominantly one or two

blocks, as happened with the fourth dimension (which described a large portion of the SS

in the reactor-regenerator and fractionation blocks). The eighth and ninth dimensions

explained mostly SS of X from the fractionation block.

The Wold et al. algorithm assumed that the individual blocks were independent

of each other but this was not true for the process data. Although the data was split up in

a logical manner according to the process structure, there was still a high degree of

correlation amongst the data, most prominently in the direction of the unit flows.

Upstream units would be expected to have a significant effect on the downstream

portions of the unit.

8.3 Alternate HPLS Approach

Thus, the data from the FCCU was not well suited for this particular algorithm.

However, Wangen and Kowalski (1988) modified the Wold et al. algorithm to

accommodate more complicated arrangements of blocks, such as cascading structures

where some blocks are both predictors and predicted. Such flexibility would allow a more

appropriate model structure for the FCCU data, such as the one shown in figure 8.5.
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A key issue with this algorithm involves how the correlational information from

successive X blocks is carried through to predict the Y space. It appears that block Xa_x

must be strongly correlated to the next block Xa, in order that information about the

correlation between Xm.x and the Y space be passed through. Otherwise, this information

is lost. Also, since Wangen and Kowalski do not give proof of the vector properties,

orthogonality of the intermediate vectors is not clear. The reader is referred to the paper

for a detailed discussion of the algorithm.
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Figure 8.5: Alternative structure for HPLS analysis (using Wangen
and Kowalski algorithm) of the FCC Unit.
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To illustrate the difference between the two approaches, calculations for one

latent variable from a data set consisting of two X blocks and one Y block are shown in

figures 8.6 and 8.7.

\ 3

Figure 8.6: Wold et al. HPLS algorithm for a single dimension.
The numbers represent the order of the calculations.

The Wold et al. algorithm (figure 8.6) uses the consensus vector t to calculate

the individual block t, score vectors and then performs a NIPALS-PLS round between the

X space consensus block T and the Y space consensus block U (which, for the single Y

block, is also the ub vector of the Y block). Predictions for each block are calculated as

follows:
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Ett=Xa-tpTa (8

F = Y-uqT (8

=Y-btqT (8

(when q is not normalized, b equals unity)

Note that i2 represents the estimate of the u vector and is equivalent to bt.

Figure 8.7: Wangen and Kowalski HPLS algorithm for a single dimension.
The numbers represent the order of the calculations.
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The Wangen and Kowalski approach (figure 8.7) performs regular PLS between

the Y space and each X block to get the individual ta score vectors. These are then

collected into the T matrix where the ub vector from the Y space is used in a PLS round to

calculate a consensus score vector t, followed by an update of u. The predictions for

each block are calculated as follows:

Ea=Xa-tpl (8.4)

F = Y-t2qT (8.5)

F = Y-(b1tl + b2t7)qT (8.6)

Here, the coefficients ba act as weights which determine the contribution of their

respective ta vectors in the model of the Y space.

The ta vectors of the Wangen and Kowalski approach are calculated so that they

correlate strongly to the Y space whereas the Wold et al. ta vectors are calculated to

describe their individual blocks most prominently. Also, since theWangen and Kowalski ta

vectors remain orthogonal (when there are no intermediate blocks in the X space), they

would be suitable for building monitoring planes for all or parts of the process unit.



CHAPTER 9: CONCLUSIONS

The goals of this work were to attempt to use the techniques of PCA and PLS to

study the process history of a fluidized catalytic cracking process. Specifically, it was

hoped the analyses would reveal interesting periods in the process history, identify

interesting relationships amongst the process variables being collected, provide a

predictive model of the product space based on operating variables, and provide a fault

detection or monitoring space from which process changes and disturbances could be

detected.

Both the PCA and PLS analyses revealed periods of process operation

characterized by high and low feed rates, high and low feed metal contents, and swings

between boomer (asphalt) and non-boomer (regular) operations. These events correlated

strongly to the first few latent variables (LVs) extracted. Later LVs highlighted transients

which would be obvious to operations personnel (e.g., unit start-ups, intermittent drops in

feed rate, preparation for operational changes). The analyses confirmed that the plant

was slowly shifting during the time period studied and that process conditions at the start

of the time history were distinctly different from those at the end of the time history.

PC analysis of the product space, however, showed that despite these regular

process shifts, the plant was producing its products within the same output "window" or

plane.

163



164

Interpretation of the T, Q and T-U plots from PLS was complicated by the

undesigned nature of the process history. Many significant process changes occurred at

once (e.g., feed quality, feed rate and temperature changes during moves into or out of

boomer operations). Thus, individual phenomena could not be observed. Although the

first or second LV correlated strongly with key process changes or events, later LVs could

not be expected to do so since they were forced to be perpendicular to each other

whereas the process events were not.

The search for causes of detected changes and evaluation of individual process

variables' contributions to the models was difficult due to several factors: the large

number of process changes that occurred at once, the highly coupled nature of the

process, the number of acceptable operating points for the FCCU, non-linearities of the

process which made accurate modelling difficult, and the undesigned nature of the data.

Product yield and selectivity models were developed using PLS on as wide a

range of operating conditions as possible. The confidence intervals for the eleven LV

model (calculated from the fitted prediction errors) were 9-14% of the individual y

variables' ranges, and predicted 81 .3% (cross-validated) of the sum of squares (SS) in

the Y space. This indicated that the numerous operating points of the FCCU were easily

captured by the linear PLS model.

In developing an SPC monitoring space, it was found that the first four latent

variables of the reference model described process variation common to both the

reference and test samples. These dimensions characterized deliberate changes and

time variations in the process and so were not practical for monitoring purposes.

However, the later latent variables were more sensitive to the differences presented by

the test samples. Abnormal events flagged by the T planes or SPE values (or both)
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included start-up and process preparation for boomer and non-boomer operations (which

caused feed rate and feed quality changes), high metals content in the feed, and catalyst

activity changes.

Success of the SPC monitoring space was hampered by the fact that the FCC

process did not operate near one set of steady-state conditions, but rather was

continuously changing over time. This application of PLS (or PCA) would be much more

amenable to processes with a stable operating point (such as would be found in a quality

control situation).

For the HPLS analysis, little difference was found between its predictive abilities

and interpretation and those of PLS. Statistically, the HPLS analysis modeled slightly less

of the X and Y spaces than PLS and the plots revealed fewer subtle changes in the data.

The opportunity to gain further insight by seeing which portions of the X data contributed

to each dimension in HPLS was limited by the high correlation amongst the blocks.

Some minor conclusions and recommendations for further work are outlined

below.

The appropriateness of auto-scaling the data sets was also considered.

Variables which, due to their very small variation were scaled up in importance by

auto-scaling, did not unduly dominate the models and thus it was felt that the auto-scaling

approach was suitable for a first look at this industrial data set.

Unresolved issues specific to the FCCU were: the inability to directly monitor the

key process variables of feed quality and catalyst quality on a timely basis, the presence

of both fast responding and slow responding process variables in the unit, the high

correlation amongst key process changes which made isolation of causes difficult, and

having y product variables exiting the unit in the middle of the X data set (i.e.,

complications imposed by the physical structure of the process).
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A performance evaluation of the SPC monitoring space (e.g., number of false

alarms and delays in detection) was not undertaken due to the timely nature required for

verification. This would require a good model and implementation of the technique on

site. Validation of sample classification would also be important for interpretation and for

selecting reference data for monitoring spaces.

Robustness to sensor failure should also be considered. Obviously, the model

prediction would be sensitive to failure of sensors which are heavily weighted in a PCA or

PLS model. Kresta, Marlin and MacGregor (1991c) showed how PLS could easily handle

sensor failures.

Overall, it was very apparent that the quality of the data used and the purpose of

the analyses were paramount to the successful application of PCA and PLS. Post

analysis of the FCCU data revealed interesting changes in the process history but

diagnosis of the causes for these changes requires information not provided by the

techniques. PLS was quite successful in modelling product yields and selectivities

spanning a wide range of operating conditions. The development of multivariate SPC

monitoring procedures was less successful, due mostly to the FCCU's continually

changing process state. This latter use of PCA and PLS would be much more amenable

to processes with a stable operating point (such as would be found in a quality control

situation).







APPENDIX A: CHECKING FOR THE NEED TO TIME SHIFT DATA

A.1 Purpose

The main problem with the presence of time delay in a PLS or PCA data set was

discussed in section 4.6.2. To re-iterate, when a process is at steady-state, the

relationship amongst the process variables and the product qualities should remain

relatively constant. However, when disturbances enter the process or operational moves

are made, the steady-state relationships are disrupted adding additional but dynamic

information to the data set. Such transition periods can have a serious effect on a

steady-state model if the time lag is large and the amount of dynamic data relative to

steady-state data is great.

If the Y space is shown to be dependent upon past as well as present values of

X, then the X block data may have to be replicated and time shifted back one hour (or as

many replicates and shifts as needed to fill in the lag period). It is also possible that only

certain blocks of the X space need to be replicated. One does not want to shift more X

data than necessary because PCA and PLS will "share the wealth" or distribute the

loadings amongst all correlated variables used, yielding smaller loadings per correlated

variable as the number of variables in the data set increases. This issue was discussed in

section 4.9.
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A.2 Auto- and Cross-Correlation Check

The auto-correlation of each variable was first examined to see if there were

correlations in time. It is also important to do this before any cross-correlation work since

highly auto-correlated series will show much more of a pattern than truly exists. The

existence of delayed relationships between the process variables and the outputs (i.e.,

due to recycle, inventory) was checked by cross-correlating each of the 136 x variables

with each of the 1 1 y variables of interest. All variables were differenced before-hand to

remove the effects of non-stationarity from the data (since the correlation functions are

only applicable to stationary data).

Since the data set contained fifteen natural breaks in the time series, this

translated into approximately 2,200 auto- and 22,400 cross-correlation plots. Very few

variables (either X or Y) showed significant auto-correlations for time shifted periods of

two lags or more (i.e., two hours or more). Many showed a strong correlation to their

previous hour's average, and some y variables showed no significant auto-correlation at

all.

The case for cross-correlations was more difficult to assess, due in part to the

sheer number of plots to be examined. The analysis involved looking for:

I) groups of x or y variables which consistently showed significant lags for time

periods of one hour or greater,

ii) consistency in the relationship between x and y variables, throughout the

fifteen sub-groups of the time history (e.g., feed variables consistently showing

a strong correlation to particular y variables), and
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HI) consistency amongst the data which show significant lags in relation to the

physical structure of the unit (e.g., if the propane yield is correlated to the

reactor conditions of two time periods before, the butane product would be

expected to be related to the same time period since it is the next heavier

product and exits the FCCU from the same distillation column as the propane ).

The results of an informal survey of these plots is given in table A.1 .

Table A.1: Cross-Correlation Results (by Product)

Product Cross-Correlation Observations

Fuel (dry) gas (1) This lightest component did not show any significant non-zero lags. Its
residence time in the FCCU is very short and thus past values of the

process variables are not needed to model this product.

Propane (2) and
Butane (3)

Both showed some strong lags to past data from the reactor and both

regenerators. The consistency in the lags shown by these two products was

expected since they exit the FCCU at the same column (depropanizer) and
are similar in nature (both light gases).

Light (5) and Heavy
(7) Cycle Oil

Both showed positive lags with data from the reactor and the two

regenerators. Product 7, the heaviest of the products, showed some strong
correlation to data from two hours previous.

Intermediate Cycle
Oil (6)

This product showed no strong correlation with any x variables. This was

expected since this product stream is allowed to fluctuate quite widely
compared to the others.

Coke Yield (8) and

Selectivity (11)

These showed no consistent lags; perhaps the time periods being studied
were not long enough to reveal any correlation.

Liquid (9) and
Gasoline (4)
Yield, and
Gasoline

Selectivity
(10)

The two yields correlated strongly to a scattering of data from the

fractionator and downstream columns, but definitely not with the upstream
reactor or regenerator as did the light gas products.
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A.3 Testing a Time-Shifted Data Set

Based on the above results, it was decided that X data from the feed, reactor,

regenerators, air blower and desuperheater would be replicated and shifted back one

time period (one hour). This alone increased the size of the X block by 62.5%. If this

augmented data set is beneficial for modelling purposes, it is expected that a greater

percentage of the Y space will be explained per component (or within the first few

components) than with the normal data set.

To test this, two runs were conducted; the first using the normal PLS data set of X

(1469 samples by 136 variables) and Y (1469 samples and 1 1 yields), the second using

the augmented X space (1450 samples by 136 variables plus 85 time-shifted variables)

and the corresponding Y space (1450 by 1 1).

A.4 Results

Tables A.2 and A.3 contain the statistical results from the PLS analyses of the

normal and augmented data sets, respectively.

The augmented data set actually explained slightly less of the Y space than the

normal data set. Comparison of sample space plots (T versus T) and product space plots

(Q versus Q) revealed little difference between the two models for the first six

components. The closeness of the above results suggested that the time shifted data (t-1

points) were highly correlated to the present t points and that few radical dynamic events
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were occurring (where the predictive power of the t-1 data would be evident in boosting

the percentage sum of squares explained in the Y space). Expansion of the X space lead

to no real improvement in the modelling of Y.

Table A.2: Normal PLS Run Statistics (X=1469 x 136) (Y=1469 x 11)

Ordinary Cross- validated

Cumul.

%SS %SS %SS %SS Overall

LV X Y Y Y CSV/SD

1 22.0 35.8 35.8 35.8 0.801

2 15.8 12.6 12.5 48.3 0.897

3 13.7 7.3 7.2 55.5 0.928

4 4.7 8.6 8.4 63.9 0.900

5 3.6 6.0 5.6 69.5 0.918

6 3.2 4.8 4.6 74.1 0.920

7 4.9 1.7 1.5 75.6 0.970

8 3.3 1.6 1.3 76.9 0.972

9 2.0 2.1 1.5 78.4 0.965

10 1.8 1.7 1.4 79.8 0.962

Table A.3: Augmented PLS Run Statistics (X=1450 x 221) (Y=1450 x 11)

Ordinary Cross- validated

Cumul.

%ss %SS %ss %ss Overall

LV X Y Y Y CSV/SD

1 21.1 35.3 35.3 35.3 0.804

2 17.3 12.0 12.0 47.3 0.903

3 14.3 6.9 6.9 54.2 0.932

4 4.1 8.9 8.8 63.0 0.898

5 4.1 5.1 4.8 67.8 0.933

6 2.8 5.6 5.4 73.2 0.911

7 4.6 1.6 1.4 74.6 0.972

8 3.3 1.7 1.5 76.1 0.969

9 1.6 2.5 1.8 77.9 0.959

10 1.9 1.6 1.1 79.0 0.972
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Although this was a crude way to test for the principle, it was feft that the results

were clear enough to justify continuing the PCA and PLS work without using shifted data.



REFERENCES

Aastveit A.H., H. Martens, "ANOVA Interactions Interpreted by Partial Least Squares
Regression," Biometrics 42,829-844 (Dec,1986)

Anderson T.W., "An Introduction to Multivariate StatisticalAnalysis", 2nd edition, Wiley,
New York (1984).

Arkun Y and G. Stephanopoulos, "Studies in the Synthesis of Control Structures for
Chemical Processes: Part IV. Design of Steady-State Optimizing Structures for
Chemical Process Units", AlChE Journal, 26(6),975-991(1980).

Bacon D., "Collection and Interpretation of Industrial Data," Queen's University,
Kingston, Ontario.

Basseville M., "Detecting Changes in Signals and Systems-A Survey",
Automatica, 24(3) ,309-326(1 988).

Box G.E.P., W.G. Hunter and J.S. Hunter, "Statistics for Experimenters. An
Introduction to Design, Data Analysis, andModel Building!', Wiley,
New York (1978).

Box G.E.P., W.G. Hunter, J.F. MacGregor and J. Erjavec, "Some Problems with the

Analysis of Multiresponse Data", TechnometricsA 5(1 ),33-51 (1973).

Box G.E.P., J.F. MacGregor, "The Analysis of Closed-loop Dynamic-Stochastic
Systems," Technometrics 16(3),391-398(1974).

Box G.E.P. and G.M. Jenkins, Time Series Analysis Forecasting and Control',

Holden-Day, Oakland CA (1976).

Brice J.C. and K.V. Krikorian, "Improve FCC Profitability with Better Control",

Hydrocarbon Processing, 83-87 (May 1983).

Chatfield C. and A.J. Collins, "Introduction to Multivariate Analysis", Chapman
and Hall, New York (1980).

Dean R.R., J.L. Mauleon and W.S. Letzsch, "Resid Puts FCC Process in New

Perspective", Oil and Gas Journal, 80(40),75-80 (4 Oct 1982).

175



176

Dhurjati P., D.E. Lamb and D. Chester, "Experience in the Development of an Expert

System for Fault Diagnosis in a Commercial Scale Chemical Process",

Proceedings of the First International Conference on Foundations of

Computer Aided Process Operations, Park City, Utah, 5-10 July (1987)
589-625.

Draper N.R. and H. Smith, Applied Regression Analysis, 2nd edition, Wiley,
New York (1981).

Elnashaie S.S.E.H. and S.S. Elshishini, "Industrial Fluid Catalytic Cracking.
A Mathematical Modelling Approach", 73rd Cdn. Conference and Exhibition/

40th Cdn. Chem. Engineering Conference and Exhibition/ 1990 CIC Congress,
Halifax 15-20 July 1990.

Errazu A.F., H.I. de Lasa and F. Sarti, "A Fluidized Bed Catalytic Cracking Regenerator
Model. Grid Effects", Cdn. J. of Chem. Eng., 57, 191-197(1979).

Geladi P. and B. Kowalski, "Partial Least Squares Regression: A Tutorial", Analytics
Chim

Acta 185,1-17(1986).

Geladi P., "Notes on the History and Nature of Partial Least Squares (PLS) Modelling",
J. Chemometrics,2,23-\ -246(1 988).

Harris T.J. and W.H. Ross, "Statistical Process Control Procedures for Correlated

Observations", Cdn. J. Chem. Eng., 69, 48-57(1991).

Healy J.D., "A Note on Multivariate CUSUM Procedures", Technometrics,

29,409-412(1987).

Himmelblau D.M., Fault Detection andDiagnosis in Chemical and Petrochemical

Processes, Elsevier Scientific Publishing Co., New York (1978).

Himmelblau D. M., Process Analysis by StatisticalMethods, Wiley, New York (1970).

Holly W., R. Cook, and CM. Crowe, "Reconciliation of Mass Flow Rate Measurements

in a Chemical Extraction Plant," Cdn. J. Chem Eng 67,595-601 (Aug. 1989).

Hoskuldsson A., "PLS Regression Methods," J. Chemometrics 2,21 1-228(1988).

Hotelling H., "Multivariate Quality Control" in Techniques of StatisticalAnalysis,
eds. Eisenhart C, M.W. Hastay and W.A. Wallis, McGraw Hill,
New York (1947) 111-184.

Jackson J.E., "Quality Control Methods for Several Related Variables",
Technometrics,! (4)359-377(1 959) .



177

Johnson R.A. and M. Bagshaw, "The Effect of Serial Correlation on the Performance of

CUSUM Tests", 7ec/7/io/77efr/cs,1 6,1 03-1 12(1974).

Kemp K.W., "An Example of Errors Incurred by Erroneously Assuming Normality for
CUSUM Schemes", recAinomefr7'cs,9,457-464(1967).

King R., "Early Detection of Hazardous States in Chemical Reactors", Preprints
of IFAC Symposium, Bournemouth, UK 8-10 December (1986) 93-97.

Kraemer D.W., U. Sedran and H.I. de Lasa, "Catalytic Cracking Kinetics in a Novel Riser

Simulator", Chem. Engng. Sci., 45(8),2447-2452(1990).

Kresta J.V., T. Marlin and J.F. MacGregor, "Choosing Inferential Variables Using
Projection

to Latent Structures with Application to Multicomponent Distillation", paper 23F,
AlChE Annual Meeting Chicago II., (Nov.,1990).

Kresta J.V., J.F. MacGregor and T.E. Marlin, "Multivariate Statistical Monitoring of

Process Performance", Cdn. J. of Chem Eng 69(1) ,35-47(1 991a).

Kresta J.V., T.E. Marlin and J.F. MacGregor, "A General Method for the Development
of Inferential Control Schemes Using PLS", Proceedings of the Fourth
International Symposium on Process Systems Engineering (PSE), Montebello,
Quebec, Aug 5-9 (1991b).

Kresta J.V., T.E. Marlin and J.F. MacGregor, "Development of Inferential Process
Models

Using PLS", submitted to Computers and Chemical Engineering, (1991c).

Kvalheim O.M., "A Partial Least-Squares Approach to Interpretative Analysis of
Multivariate Data", Chemo&ILS, 3, 189-197(1988).

Kvalheim O. M. and T.V. Karstang, "Interpretation of LV Regression Models," Chemo &

ILS 7,39-51 (1989).

Lee E. and F.R. Groves Jr., "Mathematical Model of the Fluidized Bed Catalytic Cracking
Plant", Trans. Soc. Comput. Simil. 2(3), 219-236(1985).

Lee W. and V.W. Weekman Jr., "Advanced Control Practice in the Chemical Process

Industry: A View from Industry", AlChE Journal, 22(1), 27-38 (1976).

Lorber A. and B. Kowalski, "A Note on the Use of the Partial Least-Squares Method for

Multivariate Calibration", Appl. Spectroscopy 42(8) 1572-1574 (1988).

McDonald G.W.G. and B.L. Harkins, "Maximizing FCC Profits by Process Optimization",
presented at the National Petroleum Refiners Association Annual Meeting,
San Antonio, Texas. 29-31 March (1987).



178

McFarlane R.C. and D.W. Bacon, "Empirical Strategies for Open-Loop On-line
Optimization", Cdn. J. Chem. Eng., 67,665-677(1989).

McFarlane R.C, R.C. Reineman, J.F. Bailee and C. Georgakis, "Dynamic Simulator
for a Model IV Fluid Catalytic Cracking Unit", Prepared for AlChE Annual

Meeting, Chicago, III. 14 November (1990).

McGreavy C and P.C Smith, "Dynamic Characteristics of the Fluid Catalytic
Cracking Process", ISCRE 8, The Eighth International Symposium on

Chemical Reaction Engineering, Institute of Chemical Engineers,
Edinburgh, Scotland. 10-13 September (1984). Symposium Series No. 87,

Pergamon Press.

MacGregor J.F., "On-line Statistical Process Control", Chem. Eng. Progress,
21-31(Oct.,1988).

MacGregor J.F., T.E. Marlin, J.V.Kresta and B. Skagerberg, "Multivariate

Statistical Methods in Process Analysis and Control", CPC-IV Proceedings
of the Fourth International Conference on Chemical Process Control, South
Padre Island, Texas, 18-22 February (1991a).

MacGregor J.F., T.E. Marlin and J.V. Kresta, "Some Comments on Neural Networks
and Other Empirical Modelling Methods", CPC-IV Proceedings of the Fourth
International Conference on Chemical Process Control, South Padre Island,
Texas, 18-22 February (1991b).

Mardia K.V., J.T. Kent and J.M. Bibby, Multivariate Analysis, Academic Press,
Toronto (1979).

Martens H., S. Wold and M. Martens, "A Layman's Guide to Multivariate Data

Analysis",in Food Research and Data Analysis, eds. Martens H. and H.
Russwurm Jr., Applied Science Publ., London (1983).

Martens H., "Multivariate Calibration", PhD Thesis, Technical Univ. Norway,
Trondheim (1985).

Martens M., and H. Martens, "NIR Reflectance Determination of Sensory Quality
of Peas," >4pp//eo'Specfroscopy,40(3),303-310(1986).

Monge J.J. and C. Georgakis, "The Effect of Operating Variables on the Dynamics
of Catalytic Cracking Processes", Chem. Eng. Comm., 60,1-26 (1987).

Moseholm L, "Analysis of Air Pollution Plant Exposure Data: The Soft
Independent Modelling of Class Analogy (SIMCA) and Partial Least Squares
Modelling with Latent Variables (PLS) Approaches," Environmental
Pollution 53(1988) pp.31 3-331



179

Nilesh S.K. and P.J. Gemperline,
"

A Program for Calculating Mahalanobis

Distances Using Principal Components Analysis", TRAC, Trends in

Analytical Chemistry, 8(10), 357-361(1989).

Palazoglu A. and T. Khambanonda, "Dynamic Operability Analysis of a Fluidized

Catalytic Cracker, AlChE Journal, 33(6), 1037-1040(1987).

Piovoso M.J., K.A. Kosanovich and J.P. Yuk, "Process Data Chemometrics", paper
presented to Chemical Engineering Department, McMaster University,
Hamilton, Ontario. 10 May (1991).

Ramesh T.S. and J.F. Davis, "CATCRACKER: An Expert System for Process and

Malfunction Diagnosis in Fluid Catalytic Cracking Units", AlChE Annual

Meeting, San Francisco, CA, (Nov., 1989).

Shah Y.T., G.P. Huling, J.A. Parakos and J.D. McKinney, "A Kinematic Model for

an Adiabatic Transfer Line Catalytic Cracking Reactor", Ind. Eng. Chem.,
Process Des. Dev., 16(1),89-94 (1977).

Shum S.K., J.F. Davis, W.F. Punch III and B. Chandrasekaran, "An Expert System
Approach to Malfunction Diagnosis in Chemical Plants", Comput. Chem.

Eno77Q,12(1),27-36(1988).

Skagerberg B., "SIMCA", MATLAB 386 Version, McMaster Advanced Control

Consortium, Department of Chem. Eng., McMaster University, Hamilton,
Ontario (1990).

Upson L.L., "What FCC Catalyst Tests Show", Hydrocarbon Processing, 60,253-258
(Nov., 1981).

Venuto P.B. and E.T. Habib, "Catalyst-Feedstock-Engineering Interactions in

Fluid Catalytic Cracking", Catal. Rev.-Sci. Eng., 18(1)1-150(1978).

Wangen L.E. and B. Kowalski, "A Mutliblock Partial Least Squares Algorithm for

Investigating Complex Chemical Systems", J. Chemometrics,3,3-20(\QQ8).

Willsky A.S., "A Survey of Design Methods for Failure Detection in Dynamic
Systems", Automatica, 12, 601-611(1976).

Wise B.M. and N.L. Ricker, "Feedback Strategies in Multiple Sensor Systems,"
AlChE Symposium Series, Vol. 85, No. 267, 19-23(1989).

Wise B.M., D.J. Veltkamp, B. Davis, N.L. Ricker and B.R. Kowalski, "Principal
Components Analysis for Monitoring the West Valley Liquid Fed Ceramic
Melter", Waste Management 1988 Proceedings. Tucson AZ Feb 28-Mar 3 1988

811-818.



180

Wold S., "Cross-Validatory Estimation of the Number of Components in Factor and

Principal Components Models," Technometrics, 20(4), 397-405 (1978).

Wold S., P. Geladi, K. Esbensen and J. Ohman,"Multi-way Principal Components-
and PLS-Analysis", J. Chemometrics 1,41 -56(1 987a).

Wold S., Hellberg S., T. Lundstedt, M. Sjostrom and H. Wold, "PLS Modeling with
Latent Variables in Two of More Dimensions", Version 2.1

, Frankfurt

PLS-Meeting (Sept., 1987b).

Wold S., K. Esbensen and P. Geladi, "Principal Components Analysis," Chemo & ILS

2 37-52 (1987c).

Wold S., M. Sjostrom, R. Carlson, T. Lundstedt, S. Hellberg, B. Skagerberg,
C. Wikstrom and J. Ohman, "Multivariate Design," Analytica Chimica Acta,
191,17-32(1986).

Wold S., C. Albano, W.J. Dunn III, K. Esbensen, S. Hellberg, E. Johansson,
M. Sjostrom, "Pattern Recognition: Finding and Using Regularities in
Multivariate Data", in Food Research and Data Analysis, eds. Martens H.

and H. Russwurm Jr., Applied Science Publ., London (1983).

Wold S., C. Albano, J. Dunn III, U. Edlund, K. Esbensen, P. Geladi,
S. Hellberg, E. Johansson, W.Lindberg and M. Sjostrom, "Multivariate Data

Analysis in Chemistry", in Chemometrics - Mathematics and Statistics in

Chemistry, B. Kowalski, Ed., Reidel Publishing Co., Dordrecht, NL(1984).





wMmm

ZRHI
JBESr &' '-: "2

MmmB HSU I :> vi'Vi

WmramMMiliBHl
9HnRp -

1 : -vJHK

m|to

sss SI 1

re*


	Multivariate Statistical Analysis of Data
	Cover
	Front Matter
	Page 
	Page 
	Page 
	Title Page
	Page 
	Page 
	Page 
	Page III 
	Page 
	Page IV 
	Page 
	Page V 
	Page 
	Page 
	Page VI 
	Contents
	CHAPTER 1: INTRODUCTION
	Research Approach
	CHAPTER 2: LITERATURE REVIEW
	CHAPTER 3: THE FLUIDIZED CATALYTIC CRACKING PROCESS
	Constraints
	fccu Models
	CHAPTER 4: PCA, PLS AND HIERARCHICAL PLS - DESCRIPTIONS AND
	Scaling
	Drifts in the Data Set
	Reference Set Selection
	Hazards of Modeling with Historical Data
	Presence of Control Loops
	Drawing False Causal Relationships
	Percentage Variance Explained by Model
	Interpreting the Low Dimensional Spaces and SPC Models
	Inspection of Plots
	CHAPTER 5: DATA PRETREATMENT AND PRELIMINARY PCA
	Preliminary Analysis Using PCA
	Summary of Chapters to Follow
	PCA of Y
	PCA of the X Subset
	CHAPTER 6: PREDICTIVE MODELS AND INTERPRETATION USING PLS
	Analysis of PLS  Plots
	Re-Scaled Case
	CHAPTER 7: MULTIVARIATE SPC MONITORING SPACE
	Determining Model Dimensionality
	Creating Meaningful SPC Planes
	Summary of SPC Monitoring Results
	CHAPTER 8: HIERARCHICAL PLS ANALYSIS
	CHAPTER 9: CONCLUSIONS
	APPENDIX A: CHECKING FOR THE NEED TO TIME SHIFT DATA
	REFERENCES

	Illustrations

	Body
	CHAPTER 1
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	CHAPTER 2
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

	CHAPTER 3
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

	CHAPTER 4
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66

	CHAPTER 5
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100

	CHAPTER 6
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128

	CHAPTER 7
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146

	CHAPTER 8
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162

	CHAPTER 9
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168


	Back Matter
	Appendix
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174

	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 

	Cover


