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ABSTRACT

. ’ R .

. A . =
- Equipment can be mounted on rigid. floors by *placing the

equipment "freely on the floor without fastening, fixing it tightly to

the floor, or partially fixing it to the floor. . This study investigates™

the rocking response of equipment resting freely on rigig floors and
also the effect’ of restrainéd rocking on the response of partfal!y fixed
equipment under sei smic-’exc'ftations. |
) °Eqﬁipmént which rests freely on rigid floors is simulated és_a
rigid rectangular block. The overturning of rigid blocks is studf;q
under the effect of three t?ﬁes of base motion, namely, pulsive,.
critical, and harmonic excitations. \\
wWhen ‘the effect of pulse snapés on the overturning potential of
rigid blocks under pulsive excitations is examined, it is found that the
réctangulaf puise will require the least peak acceiérat{on for a
specified duration. Under critical excitations, it is found that the
extent of responqe-amplification depends on.the coefficient of

-

restitution and the initial angle of rotation in addition to the peak

acceleration of the puises. To amplify the motion by a specified ratio,

puilses with lower peak accelerations are required for cases o? large
initial angles and for cases with large values of the coefficient of
restitition. Under harmonic excitation, the conditions for steady-state
pericdic motion are derived. It is aiso found that as the coefficient
of restitution decreases, the system becomes more stable against

overturning and can withstand higher accelerations.
iii
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Also in this research, the response of partially'foed equipment

resting on rigid floors under the eFFe‘Tt of harmonic and earthguake
excitations is investigatedﬁyste As restrained by non-yielding
boits, it is found that the existence of\gaps has the effect of

"'-.,-_ .
decreasing the deformation of ‘the mounted equipmeﬁfjrelative to the base

compared to the case of complete fixation. The e%istence of gaps also
decreases the natural frequency of the system. In system$ with yielding

-bolts, the presence of the gaps affects the deformation of -the equipment

-~

more than in %.ystems with non=yielding bng:S. In the latter, the total
L . '
rocking angle after all stretching takes place is not sensitive to the

-

initial gap size, and depends cnly on the level of Ae){citation.
) Based on tl':‘j'sS study, it s r?com'nended tha$t L(&g‘l.z-‘r'rsrnent systems be
al lowed to rock t.'c:;rr.v.f!:heir' bases by providing gaps in their anchorage
systems. This knr;d of mountin as the advantage of allowing the
equipment to rock without the risk of overturhing. Ai 50, I\Brger gaps

are recommended for higher floor acceleration levels,s

iv
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] ' CHAPTER 1

[ g P

INTRODUCTION

;-

1.] _Genera)

Leneral
il Equipment can be mounted on rigid floors by placing the.
equipment freely on the floor without Fastening._Fixing it tightly to
the floor, or partially fixing it. If equipment is fastened rigidly to
the floor, it can be ideal ized as a structure which s fixed to its
foundation. At the other extreme, equ%pment can be placed on tﬁe floor
without fastening. In this case, the equipment may siide on the floor
under the effect bF seismic excitation if friction between the equipment
base and the floor is relatively low. This behaviour is most probable
- for squat bodies. I{f the equipment is slender, the sliding response is
less probable gnd the equipment may start to rock on its edges when the
base acceleration exceeds a certain Ievé}. The amplitude of the rocking
angle depends on the excitation leve!, the equipment geometry, and the
conditions of contact between the equipment base and the floor. If the
rocking angle amplitude exceeds a certain level, the equipment may
overturn, During the rocking oFlunattached equipment; the
characteristic response parameter is the angle of tilt, with the major
concern being overturning. In general, the part of the laterai
displacement caused by the rigid body motion is larger than that caused

by the equipment’s elastic deformation. Thus, to study the problem of

overturning, the equipment mode! is often approximated as a rigid block.

-



Ouring tde rocking rESdesE:'some of the system’s kinetic energy is
dissipated through the impact with the fioor. This portiod of energy
lost is small for siender Systems and -large for squat ones.

‘ If equipment is Faétened to the floor loosely, it is. able to

rock without overturning. 1In thijs case, the ampl itude of the nockung
angle depends on how loose the system is. Also, the displacement
components corresponding to the riyidg body motion may be of the same
order as those produced by the elastic deFormatlon of the equipment.
Hence, it becomes necessary to take into account the deformation of the .
System when model)ing the Partial ly fixed equipment.

The phenomena of Focking attrédted the attention of researchers
in the' latter part of the 19th century. They attempted to define
criteria for oJerturning of equipment and furniture inside buildingsl
during earthquakes. Tombstones and monumental columns overturned by
earthquakes had bedn used to estimate the peak ground acceleration of
the earthquakes. Formulas were derived to calculate the ground
acceleration sufficient to overturn rigid bodies. The formulas were

~—
applied in the sefsmological observatories to determine the peak ground
acceleration during earthquakes. R

Despite the availability of modern strong-motion accel erographs
in many places, there are-wide;gaps in present-day sensm:c contour maps
because strong earthquakes are rare and may occur in unidstrumented
areas. Thus it is stil] desirable to make d;e oF the idformation
provided by the overturning of slender monument colbmns'éo estimate the

~

ground motion intensity for the old and recent earthquakes where no

instrument recordings are availabie.



Ancther reason for the study of rocking behaviour in earthquake
engiﬁeering arises from observations that apparently unstéble structures
had survived mé}or eartngquakes after the entiée structures had rocked on-
"their base foundations. Tall petroleum towers survived major
earthguakes by rocking on their foundaéions,aﬁd stretching their anchor
bolts. Several golf-ball-on-a-tee types of elevated reinforced concrete
water tanks incurred minimal damage during the Chilean earthquakes of
1960 by' rocking on their Foundat-ions and stretching their anchor bolts.
On the other hand, more statical ly-stable grouhd-supported reinforced
eoncrete tanks were severely damaged. These obser;ations wou 1 d” suggest
that making use of rocking to dissipate the kinetic energy of the

‘Eystems during earthquakes may decrease the deformations of such

systems, and therefore can be used to advantage in seismic design.

‘\_\
1.2 Literature Survey

The research work done to investigate the rocking behaviour‘of
systems un&ér dynamic excitation can be classified into the fQl lowing
FﬁU? categories according to the rigidity of the rocking systems and the
base condition: ‘

a) rigid blocks rocking on rigid floors,

b) flexible systems rocking on rigid floors,

c) rigid systems rocking on flexible foundations, and

d) flexible systems rocking on flexible foundations.

In this section, the work done for each of these problems will be

presented.
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{.2.1 Rigid Blocks Rocking on Rigid Floors-

A fundamenta! study of the problem was made by Housner (1963},
who showed that the impact of a rocking body with a rigid flcoor plays a
role in dissipating the kinetic energy of the system. He derived the

egpressions governing the free vibration of a block rocking on a rigid

floor and showed that the period of free vibration depends on the'

rocking amp! itude. Housner deve loped a theory to incorporate the energy
lost by impact with the F1o§r. assuming that the angular momentum of fhe
system about the edge of impéct was conserved during the impact with the
floor. Assuming that the rigid block would not bounce after the impact,
he defined a restitution coefficient for the angulér velocity which
coﬁld be expressed in terms of the geometric parameters of the rigid
rectangular block. finally, he considered the overturning of rigid
blocks subjec€ed to Dase-excitations in the form of a rectangulaf pulse,
a half-sine pulse and white noise excitation. An important conclusion
from his study was that a scale effect exists in rocking whfch makes a
large block more difficult to overturn by base motion than a small
block, assuming that both blocks have the same aspect ratio.

Yim, Chopra and Penzien {1980) adopted a probabilistic approach
and utilized tﬁe results-obtainéd from the rocking of rigid blocks to
estiﬁate the intensity of ground shaking from its observed effects on
tombstones, monumental.columns and other similar objects. The study was
made, using 20‘diFFerent artificial Earthduake records created from the
same spectfum and with the same peak acceleration. They concluded that

+he response of a rigid block is very sensitive to small changes in its

-

sjze and slenderness ratio and to the details of ground motion. No.



consistent trend is apparent, i.e., the overturning Eétential of rigid
#

blocks does not change monotonically -with the parameters. ~The

pﬁbbability of overturning, hdwever.‘§hows some consistent trend.

Aslam (198B0) did a theoretical and experimenta\ anaiysis to
study the sensitivity of the response of rigid blocks rocking on rigid
floors, using harmonic ang earthquake excitations. He concluded that
the response is very sensitive to the contact conditions between the
block and the floor. The experimental results on harmonic excitation
agreéd\wjth the théﬁretical work for motions of low frequencies and
Iarée,amé}itudesv- For.earthquake‘excitatioh. there existed tittle
correlation ;étween thé\experimental and the calculated results, as the
experimental response was not repeatable because of a limitation in the
shaking table used. Parametric study showed the sensitivity of the
response to the aspect ratio, the block size, and the restitution

coefficient. Aslam concluded that the tendency for rigid blocks to

A

overturn is smaller with a lower restitution coefficient, a smaller
aspect ratio, and larger blocks. There were, however, exceptions for
all cases.
.‘Ogawa (1980) studied the periodic response of rigid blocks
ubjected to sinusoidal excitation. Using the Iinesrized differential
Attons of motion; and assuming the impact with the floor to be
impulsive, he derived approximate response expressions for the steady-
state periodic motion. He derived the conditions of existence for the

steady-state periodic motion and_investigated the stability of such

motion. Further, he carried out shaking table experimental work to



verify his theoretical findings..

Spanos and Koh (1984L.used the |inearized eguations of rocking
motion to derive the response equations for thef%teady-state periodic‘
motion of rigid blocks under the e#feét of harmonic excitation. Thgy
caltculated the corresponding frequency-response curves aﬁd investigated
the stability of the obtained ' response. They also indicated that a
periodic motion with non-zero méan is likely to occur. Using a trial
method, they divided the frequency-acceleration domain intg normotion.

safe and unsafe regions, the latter referring to the overturn1ng of

rigid blocks durtng the transient response stage for initially qufescent

’

blocks.

Ishiyama (1982) suggested a criterion for the rocking and
0verturn1ng of rng:d blocks SubJected to earthquake excitations. The
crrterlon is based on the peak ground acceleration and velocity. He
verified his theory by an analytical study, in which he used a "general

‘ ‘w
motion” model for the rigid blocks that al lowed siliding and jumping
responses. He also defined a horizontal restitution coefficient and
introduced the concept of a tangent impulse at the moment of impéct. He
examined cases with different resi;;ution coefficients and concluded
that the coefficient of friction between the rigid block and the ground
must be greater than the breadth-height ratio s¢ that the block can
rock. Aléo. taking into account the peak values of bdth the velocity

X J
and acceleration of the ground improves the description of the ground

motion which will cause overturning of the blocks.



\“1_.2.2 Flgxible Systems Rocking on Rigid Floors.-

Beck.and‘Skinner (1974)‘gxémined the.response of aﬂéimple mode |
of a 200-foot high‘stepping pier, uﬁder earthquaké excitation. They
conéidered two states. &f vibration, ile., no uplift axial oscillation§
and rocking vibrations. They found that if damping were not taken‘fnto
acecount in the model..stepping with large amp!itudes would occur.
Introducing some structural damping wdﬁld marginal 1y reduce éhé
stepping of the pier. When energy absorbing devices were introduced
iété the mathematical model, however, bofh the-aﬁplitude and the number
of stepping cycles were decreased!

Meek f!975) developed a theory for a singie degree of Freeddm
{SDOF) system attached to a rigid ﬁoundatiﬁn which is allowed to rock on
the ground. He applied the theory.to the analysis of ﬁhe rockiné of a

‘Vslender building. He found that the laterél deFIeétiéh of the system,
relative to the;base..and the base shear Qere considerably réduced.
relative to the case of a-Figed base where the baée Qas not al lowed fo
uwlift. In the case of a squat structure, however, the decrease was not

'Iarge. Hg concluded that the effect o? rocking in reducing the
str@cturé response can be considered in structures whose heights are
significantly Qreater than their widths;

Sexton (1976),. in his discussion of Meek’s paper, indicated that
the reduction of frequency in the response of the rockfng structure‘does
not necessitafe a decrease in the response ampl jtude or the state of
stress.’

Meek (1978) suggested a simplified model for the analysis of

multi-storey buildings supported lateral ly by cores which are al lowed to



rock on‘their foundations. He assumgd'the foundation to be rigid. The
core was assumed'to déform,in a prescribed triangular mode.- He assuéed
that, at the rnstént of impact-. .the vertical momentum was.dissipated
completely while the. lateral momentuﬁ remaineaiﬁnchanged. This
assumption implies that the cores stop rotating after each impact. The

response spectra of the cores subjected to earthquake excitétion
}ndfcaped that thg cores with small natural frequencies did not uplift.
At intermediéte frequencies, the o§Eﬁa3j_respon§e waé reduced by the
uplift. For cores with high negggéT'?;equencies. however.lﬁhe response
of the cores for the up!lift cases was higher than that of the cores on
Fiied bases. Also.rslendér structures showed larger reductions in tﬁe
response thaﬁ squat ones.

Huckelibridge (1977) pe(Formed shaking table tests on a nine-
storey steelrframe.- The columns of fhe three-bay frame weré allowed to
uplift under the effect of strong moéion in some tests and were fixed in
other tests. The resul£5 showed an increase in the latéral relative

displacement for the uplift cases relative to the cases of complete

fixation and a redistribution of the axial forces between columns.

1.2.3 . Rigid Systems Rocking on Flexibles Foundations

Evison (1977) carried out experimental work to verify the

natural decay of rocking motions'analysed by Housner, - Eviso? also
. ‘ .

investigated the rocking response caused by sinusoidal and earthquake

excitations. He suggested an iterative method using the response
spectrum of 1inear SDOF systems to estimate the structure’s peak rockfng

displacement. The design approach was based on an analogy between the
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Qiscous-SDOF system and the roéking bliock in the réte oF:energy loss
dufing.fthfree varation. Codputéﬁ analysis indicated that a
significant reduction in design acc)eration cou{& be achieved when
.rocking was al lowed on a Fﬁexible fbundation-but such a reguction could
not be qchieved with a3 rigid Foﬁndation. |
. Hoff (1976—77) used tﬁe Finite‘eiement_technique to study the
effect of upliFf on atomic reactors subjected to ﬁravellin§ shear waves.
His results fnﬁicated that the uplift may lead to reductions in the
total horizontal acceleration, the latéral dispiacehent. and the
0verturni;g_m§ment of the structure, pompargd to the resuits of standard
'sqil—structurngnteraction in which uplift is not permitted.
Accordingly; he conclqded'that there is no need to ;revent uplift in
structures. | |
Psycharis (1981), fn_his analytical work, investigated the
effect of uplift on the dynamic résponse of both rigid and_Flexible
superstructures; rThe foundation was considered to be elastic.with
viscous das;potsf' Then, the Winkler foundation was approximated by an
equivalent two-spring model. Constant soil coefficients were'assume&.
He set the problem in two states, the full-contact state (no-uplift) and
the uplift state. In the second state, because the contact length of
the base with the grouﬁd varies with time;/an equivalent contact length
was used in éhe analysis. The modef was subjected ‘to impulsive
ekcitations. He also assumed no slipping between the base and the

ground. He concluded that upliift reduces the apparent fundamental

~
resonance frequency to & value below that of the no-uplift model and
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that, of the superstructure. Uplrft also decreases the cr1t:ca1 damping -

of- the apparent fundamental mode with the amount of Up‘l?}ﬁﬁ However, no

clear trend in the response values For the flexible system was Found. .

l.2.4 Flexible Systems Rock:nq on Frexlble Foundatrons

Yim and Chopra [1983) studied the rockrng of structures on
flexible foundations. They model led the supers?ructure as a SDOF system
attached to a rigid mat. Two models ?or the Féundation system were
used. The first was ; two-spring damper foundation. The second was the
Winkier foundation. The whole system, which was prevented from sliding,
had tpree degrees of freedom, namely, the deformationApF the SDOF
‘gystem. relative to the base mat, the base mat rotation, and the
vertical diéplacement of the centre of the base mat. They eliminated
the effect of the third mode (wprtical displacement) on fhe response,
however, as it was found to have & relatively high frequency. .They
concluded that for structures with a small natural frequency the base
" shear was less than the static value at incipient uplift and the
Foundation_mat did not uplift. For structures with a high naturatl
frequency, however, uplift took place and the base shear was reduced
relative to the bonded case. As a result, they recommended that it

would be desirabﬂé to permit uplift in structures.

1.3 Objectives and Scope of Research

The previously mentioned research work indicates that permitting
the equipment to rock on the mounting surface may be desirable for the
following reasons. Allowing the equipment to rock may be better than

designing it to withstand larger overturning moments. The equipment

.



“\\ 7' . o ;..
S 11

. frames, fnstead gf gping'desfgne&“as %qfiy ductiie, ;an‘be designed to
reﬁaih'elastic du;?hg earthquakes. This will Eeduce the post-earthquake
repair cost relatlve toMhe case of ductile frames which may suFFer‘
large permanent deFSrmatlons under some.earthguakes. Thus. allowing the -
equipment to rock may increase the survival probability;gf_equipment
under seismic excitation. |

As wag_indicated earlier, equipment can be mounted on the floor
‘in 6ne of three ways, namely, free resting, compiete Fixatiogl or
partiail fixation. ‘Ih the case‘éf free-resting eduipment. the benefit of
rocking can be achieved, but the risk of the system pverturning exists.
If the rocking is restrained, as in the case of partial fixation, the
risk of overturning is el Iminated while the benefit of rocking can sfill
be gained. The aim of this research, is td study the svéfturning
potential of equipment free to rock, and the effect of restrained
rocking on its-respéﬁse. The overturning boteatial of unrestrained
rocking of equipment will be studied under the effect of:

- I. pulsive excitations (chapter 2)

2. series of pulsive excitations {critical excitations)(chapter 3)
3. harmonic excitation (chapter 4). )

The response of partially fixed equipment under the effect of harmonic-
and earthquake excitations is studied in chapters 5 and 6. In chapter

5, the system is considered to rock w%th constant maximum rocking 
amplitudes. In chapter 6, the effects of possible ;}eldTﬁg‘and failure

r
of the festrainers are taken into account.

The main objectives of this research are to define criteria for
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the overturning of equi pment which is free to rock under the elFF_ects 9{-
pulsive, harmonic, and critical excitations and to investi'gate the
effect of restrair;ed rocking on the -response of mounted equipment, * when

it is subjected to harmonic and earthdu’ake 'excitation's.

1.

A

-—
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CHAPTER 2

OVERTURNING OF FREELY RESTING EQUIPMENT

BY

... PULSIVE EXCITATIONS

2.1 lntroduction

]

v

As was mentioned in the previous chapter, equipment can be
mounted on.rigid floors by placing the equipment freely on the floor
without fastening, fixing—it—tightiy to the floor, or partiai 1y fixing
it. In Chapters 2, 3 and 4, the first case, where the equipment is free
to rock on the floor, will be studied. -

Eéuipment that is free fo rock oﬁ-thé floor !s not usually of
great height because the main engineering problem in this case is the

possibi 1ity of the equipment overturning under seismic excitation. When

such equipment is subjected to static loads, the overturning problem can

weights about the edge of overturning is greater than the overturning
moment of the appiied loads. In the case of dynamic excitation. the
system will‘overturn if its total energy (potential and kinetic) is
suFFlcient.to cause it to tilt, so that the effect of the system’'s
weight will no longer provide a resisting moment. The problem Is
comp | icated because the bufld-up of energy in the system {s dependent on
the excitation time history and the system characteristics. [f the
system is rocking under the effect of perfodic or earthquake

excitations, the work done by the effective force Is positive during

13
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be solved by assuring that the sum of moments of the counter—actingk\”,
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.some time intervals and neéat{v'e during others. I[n Chapters 2 and 3.‘
the problem arssoci'ated with the rocking of equjipn;ent subJected tO'.
particular types of excitation will be studied. The eFFectfve forces
consiUeredlwfi 11 always exert positive work on the system Two types of
dynamic excitation will be 'consid_ered. name I)y pulsive excit‘étioﬁs
{Chapter 2) and critical exc-itatiﬁns {Chapter 3}. In the cése of
pulsive excitations, the base acceleration"is unidirectional. Critical
excitations, however, arevcornp_osed of successive'pulses of alternate
'dfre\ctfon with variablte durations. These kinds of dynatgic excitation
present some of the most Favor{ablé condit-:ions Fof over‘turning. This
study will provide information on the lbwer bound of dynamic excitations
which will overturn equipment.

- In this chapter, the minimum conéitionsr for the overturning of
equipment free to rock on rigid filioors and excited by di ;-'f-'erent types of
pulsive excitation are studied. A comparison is made, \-rl'wa-r:eve}1

—

Py
applicable, with results in the existig_g/i’iterature.

2.2 Mathematical Model ling of Equipment Free to Rock on Rigid Floors

The fol lowing assumptions are made in this analysis. It is
assumed that the ampl ftudes/of deformations of equipment rocking freely
on a rigid fioor are much less than the amplitudes of displacements
resulting from the rigld body motion taking place. Therefore, the

equipment deformations can be ignored and the equl’gnent can be assumed

~ to be a rigid bedy. Also, it is assumed that the system rocks without

slidingonarigid floor. As aresult, the system has only cne degree

of freedom, which is denoted by 8, the angle of rotation of the system

- . n
== . - —

-
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relativélto theArest position. Because the rocking of a rigid body is
governed by the Basé width énd the location of the center of gravity,
thé rigid block can be repr;sented by a rigid rectangular block of wigth
2b and héight 2h, where h is the neight of the equipment mass center ~
above the rigid floor, as shown in Fig. {2.1). The block base wil1l be
éssumed to be slightly eoncave such that rocking tages place on only one
_edge of the base. Accordingly, at-thg instant of impacg of the rocking
system with the floor, the center of rotation is changed instantaneously
from one edge‘to the othe%. |
The difFerentié? equations of motion caﬁ be derived by usiqé the
principle of dynamic equiiibrium. If the rectangular block is excited
by a total floor acceleration x. as shown in Fig. (2.2), the sum of

moments of all forces about the center of rotation "o" should vanish.

Mathematically, this condition can be expressed as

M x R cos(a=8) - 18 - WRsin(ae =0 80 (2.1.a)

where

M is the.equipment mass

R s the agistance between the center of mass and the Eenter of
rotation -~ .

a is the angle between the diagonal of the rectangular block and
its vertical edges.

IO is the mass moment of ine#tia about the center ;F trotation "o"

W s the equipment weight -

and the dots represent differentiation with respect to time t.
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Fig. (2.1) . Block geometry
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Fig. (2.2) Forces acting on the rigid block
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Equation (2.1.a) appiies when the angle of rotation 8 is

pogi;ive. i;e.ffor anticlockwise rotations. If the angle of rotation is
negative and the block i's rocking about the edge o', the equation of

motion becomes:

M x R cos(a+8) = I 8 + W R sin(a+8) = 0 8¢0 (2.1.b)

-

Equations (2.1.a) and (2.1.b) can be expressed and combined i; the *

following form:

2 : ‘ : _
X cos(@3a) + p° sin(esa). - 830 - (2.1.¢)

¢
L)
II_
lOl'D

where

g is the acceleration due to gravity

and
2

p” = W R/Io : {2.2)

For rectangular blocks, equation (2.2} has.the following simpler form:
p? = 39 : co(2.3)

The coefflicient p expressed by equation (2.3) is a measure of the block
size irrespective of the aspect ratioc defined by thg_angle a. Large
values of p correspond to blocks with small sizes.

When the block is at rest and 1s then subjected to a pase

4

acceleration, it will not rock unti! the overturning moment about one of
the base edges exceeds the welight resisting moment. This condition may
be expressed as fol lows: |

-

lexnl>wo



. which can be reduced to the form:
| x | > g tan{a) o (2.4)
if the rigid block is slender, it is possible to approximate the

trigonometric functions {n-the equations of motfon'as.Follows:

sin(8sa) = B83a

cos(8%a) = 1 (2.5)
These épproximations will linearize the diFFefentiaI:equation (2.1.c})y
which takes the form: ’ ' .
- p2 - . p
6 - p29 = e x ¥ ;::2 a i 9%0 {2.6)

Equation (2.6) was derived by Housner(l953). A!thpugp equa;ioﬁ(z.s)

is liﬁear. the change of.fhe diFFerential equation governing the system

after each impact with the floor is one of the main sources of
“nonlinearity. - |

.!n this s%udy. it is aﬁsumed ghat the impact of the plock with

the kioor is comp}etely plastic and bouncing does not happen‘after the

impact. At the instant of impact with the Floor.‘some‘oflthe kinetic

- energy of the system is lost and the angd}ar velocity of the system is

reduced according to the reigtion:

82.= § 8, N o (2.7}

where . \ . , :
él and 6z are the angular velocities of the system just

” before and just after the impact respectively
4 is a fraction which is less than unity, defined as

the coefficient of restitution.
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The coeff'lc'?ent of resﬁitution can be determined either
analytically(HousnerJ963)or experimentally (Evison, 1977). Housner
(1963) derived an expression for ¢, assuming that during the tmpact with

‘the floor, the angular momentum oF the rocking system about the edge of
impact fs conserved. Conservation of the angular momentum is expressed
as "

Io 62 = 15 8; -~ 2 MR? B; sin’(a) @

1

When equation (2.7) is substituted into equation (2.8), the coefficient

- of restitution can be expressed as foi lows:

_ ZHRzisinZ{a)

2.9
7 (2.9)

o)
In the following sections, the overturning of tﬁe rigid block caused by
puisive excitatfon s considered. This represents the simplest type of

dynamic excitation and there is no rocking of the block in this case.

2.3 Overturning of Riqid Blocks Sub jected to Pulsive Excitations

2.3.1 Type 1-Triangular Pulse with Decreasing Intensity

Ftgure (2.3.a) illustrates a single decreasing triangular pulse
with méximum intensity at the beginning of the pulse. The maximum
intersity of the pulse is greater than the min{mum value specified in
equatlon (2.4) to cause the tilting of the. block. The base acceleration

at time t can be expressed as

X = a- at/t, (2.10)
where .

t); is the pulse duration



and .
. a is the pesk base acceleration

The linearized differential equation (2.6) is now expressed as:

2
8 - pe = g_ all - t/t) - p2 a (2.11)
) Subjected to the initial conditions:

At t =0, 8(0) =0 and  &(0) = 0 (2.12)

the respohse of the system is given by the following équation:

" B(t) = (~a + 2) cosh(pt) - —— sinh(pt) + a -2 (1 - =)
e gpt, . g t2

(2.13)

The effective force Mx will exert work on the rocking systein until the

énd of the pulse at time t,. At the end of the pulse, the total work
done is just sufficient to let the system overturn. In other words, the

work done is equal to the potential energy of a system which s moved

such that the center of mass is- just above the center of rotation.

Mathematical ly, this condition of-overturning is expressed as

~

t, . - :
J Mxh&dt=WR{]l - cosa) (2.14)

When equation (2.13) is differentiated, and is substituted, together
with equation (2.10), into equation (2.14), and the integration fis

calculated, the fol lowing equation results:
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Whaa [ sinh{pt;) 1 - K .k -cosh(pt,) | WRa*:
‘ plk=1) > e . 3 - =
=] [»] tl P 2 tlh- P t]_‘ pzt1 2
(2.158) -
where K= —
ga
l' ’ V ’ . l' . . 7
Equation '(2.15) can be rearranged to the folilowing form:
2K -c,K-1=0 - (2.16)
where
Ci = 2 sinh(pt;)/(pt;) - 2
and ’ : : ,
2 sinhipt;) 2 -2 cosh({pt;) :
C2 = - -+ 2 2 i I

ptl . ’ P tl

Equation (2. !6) is a second order algebraic equatlon wh:ch can be so! ved

to give two values for.K as follows:

cy t[c,®+ 40, i .
K = , C2an

Numerical values indicéte that one of the roots-given by equation (2.17)
is positive. while the other is negative. The positive root re!ates the

peak base acceleration "a" to the pulse duration tl.

2.3.2 Type 2-Trianquiar Pulse with Increasing Intensity

Figur‘eA (2.3.5) shows a single triangular pulse with zero
intensfty at the beginning and with intensity increasir_'lg Hrie‘arly to a
max imum b-ase acceleration "a" at time ti. The block wil r remain. at rest

until the base acce]eration has the- value 9. tan(a) at time t,, wher;é
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.‘ ti = g tan(a) t1/2
Feor .slendgrl blocks, a is small and the above ex‘pressi‘on ‘can’ be
‘simp)ified to _ |
T ti=g9eti/a

For simplicity, gﬁe time origin, for the purpose of analysis, will be
shifted such that at t=fl. §q(£)=ga._ -With the new time or.ig_in. the base
éccelgra‘t ion can be expressed as |

X =ga+ at/t : (2.18)
'Hhen equation (2.18) is substituted Into the differential equation of

motion, (2.6)., it takes the form: )

t

§-p6=

x
29 P34
)

P

-— 2 - . r
Trglfle ‘ (2.19)

The general solution of equation (2.19), with Initial conditions of zero

rotation and zero angular vel__ocity. fs given by:

S a sirhipt,) t 7-
et = | ——— . — (2.20)
9 p.tl t, .

The overturning conditioen of the bllock. caused by the pulsive

excitation, is the ‘same condition described earlier in section (2.3.1).

The total work done by the effective force at the pulse end shoulid be
equal to the potential energy of the rigidblock at a tilting angle 8
equal to a, which can be expressed as

nt, -

;' Mxhédt=WR(l - cose) ' (2.21)
0 ) ’

"where n is equal to (1 - 1/K).

When the integration of eguation (2.21) is calculated and the resulting
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equation is simplified, the fol lowing condition is obtained:

1"
o

n 1 sinh({npty) coshinpt;) - 1
- ntl -t - + - + 2

: - ‘ (2.22) |
2 K P Pty Pt , '

If the angle a 'is_assumed to be smal i, equation (2.22) can be reduced

hlo . : -
2 pt, sinh(npt,) - 2 cosh(npty) - p-t;~ +2 = 0 ' (2.23)

Equation (2.23) relates the acceleration term n to the duration term

pt;. It is a nonlinear algeb'raic equation and it can be solved.
numerical ty at discrete values of pt. -

-

) o , \
2.3.3 Half-5ine Pulse - -

Using the same technique described in sections (2.3.1) and

(2.3.2), the analysis of overturning for the rigid block caused by the
i P B »

half-sine ‘pulse shown In Fig. (2.3.c) is Car'ried out. The base

acceleration is expressed as

x .= a sin n(t/t;+é) ' - £2.24)

where . & = (l/1) sin" (1/K)

which wil ! ensure that x(0)=ga . The differential equation of motion-
(2.6). subjected to the initial conditions (2.12), has the fol lowing

- solution: - . ' e

cos(ne) sinhipt) + e [ | - KJ sin m(—+) ]
1

KJ
8(t) = a(J-1) cosh(pt) + o

t
1 t

(2.25)
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Fig. (2.3.3)
Triangular pulse, type 1 .1_
Fig. (2.3.b)
2 v
ol

- Trianéular:ﬁulse. type 2

i
- i
. tl \
. ¥ 4
Fig. (2.3.c)
tHalf-sine pulse .
L } 1
‘ - | |
T o
I =t
rtl

e
Fig. (2.3) Pulsive excitations
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p3t,
where J = Er—— .
. ."2 + p2tl . 4 ° . ) '
The same overturning c@ndition can be written as’ o .
oty - o ' ~
f Mxhbéot=WR (] - cosa) (2.26)-
o ' . .
where g = | - ¢ L o o ' ¢

When the fntegration of equation (2.26) is calculated and the resulting

equation is simplified, the fol lowing equation is obtained:

By 1+ Bz 12 - oK I3 = gj- [secta) - 13 (2.27)
where
Bx‘ = al{J-1)
B, = aKJr cos(wé)/(pt;)’
I = — s}nh( t)) - =
VoY Ty, CMHeRRl Ty
“ N .
Iz = —— { cosh(opt,) + cos(md) ] B
. pt, : .
and *
L .
Iy = - y { I - cos(2n¢) ]

o

tquation (2.27) represents the overturning condition. It relates the

acceleration terms K and ¢ to the duration term pt;. A

2.4 Numerical Results

, ®
Equations (2.17), (2.23), and (2.27) express K, the maximum base

acceleration normal ized to ge in terms of the pulse duration pt;. either

- ekptﬁcitly.like equation {2.17) or implicitly like equations (2.23) and

R
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(2.27). The imp] n::t ‘equations are solved numerlcai 1y at dlscrete

values of the pulse duration variable ptl. ranging From . DI to 10.0, /
e

using the Regula Falsi 1teration‘ method. F:gure (z~4) shows the

«
Ay
reiations derived for the three cases considered. Also, th_e cases of

. ’_/ .
the rectangular and\__h_ilff-sine pulses, analysed by Housner . (1963), are

shown for comparison. It should be noted that the hal f- 51ne Pulse .
owerturnlng condition descr:bed by equat:on(z 27) Is diFFerent from
that used by Housner The overturning conqut:on used here implies that
when' the pulse ends. the block has not yet overtgrhed. but 8 continues
to increase_until overturning occurs. Theoretically. it takes inFinite
time before G.is eqﬁaI to a, when all the kinetic energy of the biock is
turned to potentia! energy.. Under a diFFerent assumption. Housner
Imposed 8 condition that forces the block to overturn at the end of ‘the

half-sine puise at time t,. In ot'her words, the angle of rotation @
reaches g value of c at time t,. -Obviously, to attain this requirement, )
& larger acceleration is required for the _same‘du.ration t1. as is
evident from Fig.q (2.4). To rate tHe severity of exr;'itations. excluding
Housne_r's half-sine pulse, the other cases ‘can be ar;rahged -in a
descending order as fol iows:

l. rectangular pulse,

2. haif=-sine pulse,

3. triangular pulse with maxirm.tn acceleration at the be inning, ang

4. triangular pulse with zero acceleration at tHe beginning. A
For"‘e given pulse duration, the rectangular pu‘!se requires the Teest‘ X

peak acceleration value to cause overturning, Figure (2.4) shows that

for short du'rat{ons. very large acceleration values are required to
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Fig. (2.4} Peak acceleration of pulﬁive excitations versus the
overturning pulse duration
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DR
overtufn tﬁé block.‘_The hg}malizéd acceleratiqn K‘has.neér{y'cbnstant'
vqiues Fdr durations Iargef than 4/p and asymptoticatlly épproachés
uniE?. : ' ‘ -

‘For durattons less than 0.1/p the puises can be approxlma£ed by
i%pu!ses. The area of the impulse base acceleratjon-time: diagram can be
expressed as. )
| Inbulé_g::;—c §oxer (228
Table (2!) shows the lmpulsé associafed wlth each shape of pu!s{wq

\

excitation at short durat!ons calgulated by equation (2.28). It can be

"proved(Appendix A) that the IunH:oF the normal ized impulse values,

‘when the durations approach zero, is unity. Also. |t should be nated

that, In calcutating the areas of the base acceleration-duration

. diagrams; the area of the part located before the block starts to move

was inciuded. = _

As'wés mentioned earlier, the biocks rill overturn after an

‘tnflinite time under the excitations which will satisfy the derived

. .
fFormuldas. 1f at a specified duration pt;. two values of the

-~

acceleration K are chosen, such that one is slightly higher and the
other is slightly lower than the theoretical crjtical value, the b +&Ek
will overturn in a finite tlmé under fhé first cholce of K and will just
rock under the second choice. This witl prov1de a verification for the
curves shown in Fig. {2.4)}. To verify the curves, therefore, a pulse.
auration pt, is chosen and the corresponding theoretical maximum base
acceleration is calculated. Two values of acceleration‘ one higher and

the other lower than the theoretibal value, are applied to a riglid *
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: s Table (2.1)
¥ ‘ . .._Normalizec‘l Imoulses -
. Normaif.zed impuise (kptl) . -
A Duration ’
(Dt;)- A. - Half-;—sine Triangular-1 Triang'ulér-2~
0.05 Coer 1.01 1.03
0.06 - , 107 Loz 1.03
0.07 _ - 1.08 - 1.02 1.05
0.08 1.09 1.02 1.05
0.09 109 02 - 7 108
0.1 1.1 1.03 1.06

ey



- \ ; ) )
~rectangular block with the fol lowing properties:

=50 ™ . | - .

2h

1200 . mm' S .
R =65 mm T

3.364 sec”t

- p. =
a = 0.3948 rad
& =0.778

Figures (2.5) to (2.7) Drese‘ni: fhe respoﬁ_s'e time-histories f-‘lor‘ each of
the"_i:hree pulse shapes considered. The coordinafes reptESeﬁt the angle
of rot_ati_on of “the -rigid block normalized to a. The data for each case
and the correspondiné résponse are summarized in table (2.2). ° It_ig
§hown that the trial values verify well with the theoretical vaiues of
accélerat'ion. Also, the time histories presented in Figs. (2.5) to
(2.7) indicate that the rocking of the rigid biock is sensitive to small
changes in the input parameter K. The small differences l;étween t'he.
trial acg:eleration values anq the tneoretical’values lead the b‘lor;k. to
overturn quickly in one tase and rock with a maximum angie of rotation
equal to 0.8¢ in ahothér. In other words, an accelerétion below the
critical value by less than 1 1 results in a decrease of about 20 % lﬂn

the angle of rotatfon.
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Table ;2.52

_Pulsive Excitations

- _ C Dverturning Acceleration

- -

Theoretical versus Trial Values

b

34

-
X : . -
Type of i Acceleratton K
. Duration -
Pulse Theoretical Lower Upper pt
‘ values values values
- -
Triangular- 1.1664 - 1.1662 | 1.1668 7.
; :
Rocking Overturning
Trianguiar- 1.52 1.5 1.53 5.%
2 .
4= "Rocking Overturning
Sinusoid 1.855 1.85 1.86 1.48
{energy) Rocking Overturning
2.32 ' .
{Housner)
\




CHAPTER i 7 o .

- ) ~ OVERTURNING OF.RIGID B BLOCKS

SUBJECTED 0 e

CRITICAL EXCITATIONS

.

.

3.1 -Introductiecn o - i W ' "

!h the previohs chapter, a s:ngle pulse was,used as the source
_of excitation and the conditlons under whlch\such a-pulse will overturn
_the rigid block were studied. In thws_chapter. the condlt:ons Fcr
overturning are studied when the rigid block is gxcited by sgccesslve
pulses of alternate directions. These successive pulses are se{ected té
represent the most severe pulse excltat:on with regard to the‘
owerturntng ‘of the rigid Diock. -

[f the.rigid.block is excited_by base aqcélérétio?.~ it wiil not
start to tilt unti] the base acceleration exqéeds the minimum va[de
equal to g.tan(a). After the threshold of the base acce!;ration is
exceeded.'the_rigid block rocks and the amplitude of the angle oF‘
rotation may increase or decrease, depending on the excitation time
Aistory.- 1% the base acceleration reverses its directiqn at the instant
the engular velocify of the rigiclblock reverses Its sign, energy Jill
continue to be fed into the system. Therefore, the amplituge of the
rockifng angle will tend to grow randly until the block overturns., This
type of base excitation will constitute the most critical oscillétory
motion to cause thé biock to overturn,

A rigid block can be overturned by such.a critical excltatlon,

35



“which may have a peak’ acceleration less than g. tan(c). if the r1g|d

block is g1ven an fnlmial angle oF tflt 9. From the physncal po:nt of-

- view; the motion will be. amplif1ed when the rate of energy supply—to the

system exceeds he rate of energy dissapation caused by impact w:th the

F!oor. For suc? a condition to exlst, a suftable combination of the

.-1 restltut1on_coeFFFc{ent $, the initial angle 91 and the normaiized

. acceleratlon amplftude K is requlred. The conditions that geﬁern'these_

‘comb1nations are derived mathemat{cally for two cases of crit}cal
alternate,pu]s1ve excntatlon._namely. ‘ . -

I. rectangular shaped pulses, and

2. triangular shaped pulses.

3.2 Critical Excitation Consisting of Alternate Rectangular Pulses’

Ih‘this seetion. ﬁhe condit}oﬁs,required to oyérturn the block.
when ft is subjecéed to a critical ekcitat}on compesed of a series of
. rectangular pu}seeenare sthdied; As iqdicéted in the preyious section,
the bese acceleration .changes its direction at the Instent‘the angular
velocfty_oF the rocking b;ock changes-its sign. This 1mp}fes that the
duration\of each base acceleration pulse qorrespoﬁds to a haif-cycle of
the rocking response of the rigid block. Within .each half-cycle of the
response, the -base accelefation‘remains_constant and the anéle of
rotation has two peaks, one at the beginning and the other at the end of
the half-cycle, as shown h\?ig.{3.La). _ '

Consider the typical time interval shown in Fig. (3.1.b) which

corresponds to one half-cycle of the rocking response. The base

acceleration has a constant value "-a". The block starts motion with
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zero-anéular velocity and with an initial angle of rotation -e‘;.- The
}igidhblock.moves under the forée of graviﬁy and tﬁe‘eFFective forcé.
The angle decreases undéf these .Forceé_uﬁgil the impéct.wifn_tﬁg
Flooé occurs. Then the angle of rotation cnanées sién while the angular
velocity has the same sign; The angle of rotation then increases in the
reverse-direction until it atfains a mailmum value 8,. . If lggl is,
‘greater fﬁan 18,1, then the gesponse amp! itude has increased within this:
half=cycle. Hitﬁ the response grpwing‘in each hafF—cyqlé. it will
ultimately EeSult in the block overturning. Therefore, the prop{em of
overturning in the limit reduces to the condition (8.=-8,). To arrive
at the Iimitin..g condition For ovérturnin\g. the problem is divided Into’
ltwo stages. before and after tne impact respectively. The equations of
motion of the two Stages are solved conéecuthgly. Tne”Fihal conditions
of motion aé the first stage ére_considered,tne inftial conditions of

—

" motion for the second s{ege. A comparison of. the states.of motion at

the beginning of the Firsf\sgigf\and at the end of the second stage

provides a relation between the™acceleration "a", the restitution

coefficient § and the initial.-and final angles of rotation eland B,. .

.

The condition of {e“=-ei) will give the threshold of excitation which

will overturn the block.

3.2.1 Derivation
Stage !

-

The equation of motion of a rigid block excited by a.base
acceleration x ==a, tor a positive angle of rotation, is obtained from

equation (2.6} as fol iows:

IO
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P -—p8=-pai{} + K_) " 80 (3.1)

The general solution of the above differential equation, subjected to

be

the Initial conditions at t=0

e =8, a0 =0 (3.2)
can be expressed as - \ .
v(f) = vy - (1+R) ] cﬁsh(pt) +.(1+K) {3.3)
where - '
v = 8/a ‘
and =
Vi =_Bi/cx v 1=y 24 ...
The angular velocity of the block during this stage is given by:
V(t) =p [ v - (1+K) ] Slnh(pt) : " (3.4)

Stagé 1 ends at the anstant oF impact, at tlme the which cén‘be

determined by setting v=0 in equation'(B.g). Thus. the tihe of impact

-

~t, is found to satisfy:

. . ) .
| COSh(Dtn},.'—' 1=F (3.5)
where . ' ' . -
f = —
1+K

The angular veloc{ty'just before impact, Gz.'is obtained by substituting

the value oF"ptn gliven by equation {3.5), in the angular velocity

expression {(3.4), namely, <
V2 = Vitg) = - p (14K) [F(2-F)]*7? (3-6)
Stage 1

This stage starts just after the impact of the block with the

fioor. The angular velocity of the block just after impact. G3, is
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related to that .-just before impact, Gz. by equation (2.7),. giving:
- - ) . 1/2 A . LA
vy = v(0) = - sp(l+K) [F(2-F)] (3.7.a)
_The inltial angle of rotation for this stage is zero, namely,
v(0)=0 | L (3.7

The response of the rigid block In stage 11 should satisfy the
differential equation (2.6) with negative angle of rotation e when

{§=-a) is substiteted into equation (2.6), the following results:

8§ - p%8 = - pfa (-1 + K ) _ <0 (3.8)
The general solution of equation {3.8). subjected to thé initial -

conditions given by equations (3.7), becomes:
. ‘ Vi
v(t) = {1-K} [cosh{pt) - 1} + — sinh(pt} {3.9)
P o -

and the angular velocity at stage 11 is given by:’

v(t) = p(1-K) sinh(pt) + Vicosh{pt) S (3.10)

At the ena of stage llI, t=tj\.. the displacement §s maximum while the

-

angulefr ‘velocity ts zero. Mathematically., this is expressed as

G(tj) =0
CoovlEg) = v (3.11)

The time tj of zero angular velocity is obtained by equating the

veloclty in equation {(3.10) to zero, giving:

Vi B
tanh(ptj) z - — (3.12)
| p(1-K)
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"Equation-{3.12) has a solution only if the folliowing inequallity Is
- \

sa‘tisf-‘i‘ed:r | _ ' ol o s _

"0 < tanh(ptj) <1 . {3.-13)
-1F the fnequa I‘.ity (3.13) is.‘ satlisfied, the angle of r'ot'ation reaches a
peak value at the instant of zero a.rigula'r velocify. If':expre'ssion
(3.13) is not sa.tis:f‘ied. the angle of rotation will not have a- peak and
will continue to graw until the biock overturns. The value of '.tr.anh(_pt.j)
is always greater than zero because the é:?pr;.'ssion' given by equation
“(3.12) is always positive for vaiues of K less than uni'ty. The upper
limit of the Inequality is analysed by substituting expressions (3.12)
and {(3.7) into expression _(3.13);' and solving for K. The following

’

equation results:

o

2 2).1/2 ‘(3.14)

K = (146°v,) — € (dv, + &°v " - v,

_Eq_uation {3.14) defines the upper limit beyond which the angle of
rotation continues to grow withodt a sign change in‘ the angular
velocity. In the fol lowing, the case for which equation (3.12) has.a
solution is consigred.

The angle of rotation v,. at the end of stage [l. is obtained by
substituting the time expression (3.12} of t; into tl'}e response equatfon

1

{3.9). The result, after simplification, is written as

H2 (3.15)

vy = (K-1) {1 -(1- tanhz(ptj) )
Equation (3.15) can be expressec in terms of the initial angle vy, using

expressions (3.12) and (3.7}, giving:

v© * 2 voll=K) = = 2 8%vy (i+K) + 87,7 (3.16)



43

If the initial angle QF rotation v, isfasSumeq to Qgﬂamplifigd'by a

factor r, such that:

-

vl =T ow , <0 . ; (3.1

then equation (3.16} becomes:

PPy i T 20 V(1K) = = 2 6%V, (1+K) + §3v,2 T - (3.18)

Sclving equation (3.18) for K gives:

K =

1 [vl(az—er

- - ( re« 8% )] , (3.19)
3°-r 2 F . i

A special case is the one of periodic motion which is obtained by

substitutiné {r=—=1J into equation (3.19), giving:

. 1'_62 v, . .
K = [ I = e _ ' (3.20)

1+6° 2
. -
Equation (3.18) can also be solved for r, giving:
K-1 [ (1-K)* (2-6) 1'%
- Fe— + [ — - &% ] C (3.2
‘ vy vy F : .

-

Equation {3.21) imp] ie§ that; for a given §et of normalized
base agceleration K. restitution coelfficient 4 and normalized initial
angle v,, an amplification factor r can be found reiating the respon'_;'.e
amplitudes at the beginning and .end of the half-cycle. If the absolute
valge of r is gr.eater than unity, the amgl itude of the angle of rotation
increasés. If it is tess than unity, the response an'p.l_itude dgcreases.
A critical value for r equél to (-1) indicates that the response is in a

. . .
steady-state periodic motion. Alternatively, equation (3.19) gives the



acceleration ampl itude K necessary to ampl Tfy the angle o‘F‘.rrotatJ.o'n r

times mthm 3 halF-cycle. The value of acceleratton K obtained From'

 equation (3.20) ,causes the system to vibrate with a constant ampl 1tude.

- -

It should be. noted that nelther the response period nor the

puise duration is an 1ndependent parameter The durati'on Q‘.F a halF-’ '
cycle, which will be denoted by T/2, is the sum of the {ng/ervais of
stages [ and 11 described in equations (3 5) and (3.12), respectwely.

‘Thus.

s

- PT/Z = Pty ¢ ptj_

=

= cosh™*{ 1 ) + tanh';l( M ) :
- i-f piK=1) e
= pT/2 {v1.K,é}
or - .
= pT/2 {vy.T8) - : (3.22)

. . g .
as K and r are related by equation (3.19). There is also a phase angle

between the e_xcitation and the response, which is given by:
-

2n -1 l iy
= —t_ = — h —_— . )
& th = o7 cos —F _ (3 ?3)

The period calculated by equation (3.22) is dependent on the response
amplitude v;. 1t increases as Vi increases. Therefore, to overturn a
- block using an alternate pulse excitation, the duratioh of the pulses

must increase gradual ly as the response grows.

3.2.2 Numertcal Resul ts

The relationship between the normal ized ampl itude K of the

critica) acceteration and the normal ized amplitude v, of the steady-

state periodic motion, as expressed by equation (3.20). is shown in Fig.
? ‘



A,

N P ' Y

. 77(3.2). The figure stows that ‘for-a conétadtﬂréstitutjoh coefficient &, _
.. the acté‘elgr'ation' amp i itude det’:r'eases"as the'—‘r_espons_e amp 1 itude

increases. Hith}ria hatf-cycle, the'woék'done by the_eFFéctivg force

b -

can be expresséd oy:

CUTr2 L.
. Work =~ {  Mxng@ dt
o " ‘

—_—
- -~

At the steady-state response, 'tr-'xfs' work is equa-l"to ‘the gneréy
dissipateq by t_he impact with the floor. For‘a'l fixed vallue of: fhe work
7.'re_qui—redr to‘- sustain steady-state vibration, a larger value of 8 implies’
a smaller value of x, as"eviden't Fr-o;ri fhe "work»done_" ;xpre“ssion. As
'tﬁe ampfl itude vll__i._-ncreases. the a;-agular_- velt;acity é. also ir_:creases.
This explains the relétior_wsh'ip between th-e acceleration énbl itude K and

the response amplitude shown in Fig. (3.2). The !imit of applicability

i

de‘?_ineq by equation,_ (3.14) is also shown ‘in the sa;ne figure. Beyond
that 1imit, the response will continue to grow w‘ithout sig}n ‘change'in
- the angular veiocity.' - e ; - ‘ : . |
Figﬁre (3.3)--shows the variation of the normal.ilzed écceleration.
amplitude K with the }‘estitultion coeFFicienf &, for a given reéponse
amp 1 itude and for an ampl iFicat_icfn ‘Fa‘ctor r equal to (=1). It shows
that lower values of § reguire higher accelerations to sustain steady-
state response. This is a diréct consequence of the fact that low
restitution coefficients imply high rates of enérgy dissipation during®
. impact.

Figure (3.4) shows the variation of the amplification factor r

‘with the normaltzea initial angle v;. The coefficient of restitution &
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.- s taken to beé equal to 0 778 and anFerent values of accelerat:on

i amplltude are used. The.results reaffirms that when |rl>1, there are

R N

destabll:z1ng consequences Hlth |rl>1 the amplltude of the subsequent

. : ' haIF~cycIe oF the- response w1|l be ampllfred by [r] ThlS ampllfled

halF—cycle response wlll in turn be ampl:Fued by a Iarger value of Irl.

f SIncz_jr1 15 an :ncreas:ng varlable with, V. ThereFore. the system
response wlll\ngw rapldly and will Iead o the block 0verturnang in a
short time. .\ L _ . -

Figure'(lS) pnesents the Variation'of the nornaijzed critical-
acceleratxon amplitude with the normalxzed initial angle Vl for
different. vaiues oF the ampinFrcat10n factor . The envelope given by

- equat:on (3.14) is also shown in the same-Flgure. It deﬁinesfthe limit
}\\\ _ B of applrcability of equation (3.19). Figure (3.5) shows'that the

acceleration amplitude K changes more rapid1y‘uith-the response
amp 1 itude v] as the amplification factor increases;_. b ; ,""t .

To verify the theoretical results; numerical tests\were carried
out on the response ot arigid rectangular block‘oF siee O.Sn;by l.2m
subjected to criticaf prulse excitations with constant'absolute
accelerations. Thirteen cases, using different initial angles aqnd
different base acceleration amplitudes, were-studied. Tabile (3.1) shoys
the combinations of the parameters of the cases studied.” To facilitate
the dicussion, a case is denoted as C-J when thewqarameters used.in that
case can be found in row C and column J in table (3.1). The Fxrst row,
row A. consists of cases hav1ng an acceleratlon ampl:tude greater than_
the minimum acceieratlon required to start &%S:ttltxng of the block

The case in the iast row, I, has an acceleratfon amplitude below that
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- . ;Table {3.1) .

Critical Rectanquiar,Excitation

Effect of Initial Angle and Base’Acce]eration
- T \
e e 1 2 3 4
Initial Angle 8/a
K .
0.0005 0.005 _  0.05 0.5
A 1.46 g N N N . N
B .74 - 0 0 N N
C .37 0 8] 6] N
“D .194 . o .
: . Decay
Ko . . 0.246 U.2455  0.232 0.18¢

\ A

Ko Critical normaiizec acceleration for steady-state motion
0 Oscillatory.case

N Non-oscillatory case



requireg for the steady-state periodic motion. Figures(B.S)to(B;S)
present the response time histories for these cases. . In all cases

snown the r1gid block.elther overturned or the response decayed. |f

the response reverses its sign several times, the case is denoted as .

oscillatory "0": otherwise it “is designated non-oscillatory"N?. The

~ response of the case denoted D-3 is shown to decay because _the -

acceleration amplitude is less thén the critical value necessary for the
the sﬁeady—state response, as exp}gssed by equation'(B.ZOL Cases A-1
to A-4 have an acceleration amplftude larger than the value required to
initiate tilting of the block and the block is 0vérpurneq rapidiy in the
F{Est half-cycie of the response. In cases B-1 tq-B-a and C;l to C-4,
the acceleration amplitudes are less than g.tan{a), but greéter than the
valueﬁ‘necessary for the steady-state response, [f the initial angle v,
is smali, it is aﬁgliFied several times until the block overturns, as
shown Dy the responses in cases B-1 and B-2 and C-1 to C-3. If the
initial angie is large, such that tpé ampl ified rotation [rv,| is
greater tHan unity, the block overturné in the first naif-cyclie, as
shown’'in cases B-3, B-4, and, C—d)

In the cases presenteg. the excitations are made to act until
the total energy of the rigid block is just sufficient to overturn it.
Then the excitations cease and the block continues to rotate‘under
gravity until it overturns. The total duration of the excitation

decreases with the increase of either the base acceieration ampl itude or
n >

the initial angle. All the oscillatory cases have similar responses.

Detailed investigations of case C-2 are presented in Figs. (3.10.a) and
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(3.10.b). Flgure (3 10.8) shows' the varfat!on of the response halF—

57

period versus the halF-cycle number The response ha!F-perlod is

catculated ‘as the timé between two successive lmpacts. Frgure {(3.10.b)

Dresents the variation of the response amplltude versus the haiF—cycle"

number. [t is- shown that as the halF—cyc!e number lncreases. both the

period and the amplitude of the angle of rotation grow more rapidly -

until overturning occurs.

3.3 Series of Triangular Pulses
In this sectlion, a critical excitation composed of a series of

triangular puises will be studied. As was done in the case of

rectangular pulses, a fime interval which corresponds to a half-cycle of

the response is consfdered. as shown in Frg. (3.11). As In the case of

rectangular pu!ses, the block starts to move with an initial angle of
rotation 8; and.with zero angular velocity. The block impacts uith thé
floor after a tlma th. After impact, the angle 8 changes sign and
t;!ting inareases inlthe reverse direction. The pulse Tntensfty starts
to'decrease after a time interval t -ty where 2t; is the total duration

of the pulse. Meanwhile, the block continues to rotate in the reverse

(negative 0) direction unti! a peak is reached exactiy at the end of the

Pulse. The problem is soived by dividing the response into these three

stages. The equations of motion for the three stages are sol ved
consecutlvelg and the end conditions of one stagé€ are consfdered the
initial canditlons of the following stage. The aondition of zero
angular velocity at the end of ﬁhe pulse is imposed on tha solution, as

in the previous study of rocking caused by rectanguliar puises.
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' 3.3.1 Qerivation”

e e

Sfage I

The rigid block is assumed to start tilting with zero velocity

under the effect of base acceleration, which is expressed as

x=at/ty . ' {3.24)
- 'Then, the equation of motion (2-.6). for positive angles of rotation,
_ . o .
takes the form:  _ 2 2
' © - B-pfe=-plat o+ Kt/ 6>0 (3.25)

The arbitrary constants of the general solution of equation (3.25) are

determined using the initial congitions at t=0:

. : 8(0) = 8, . -8{0) =0 . . (3.26)

Thus the normalized response .of the rigid block-in stage | can be

. )
expresseg as

3 N K Kt
v(t) = olt) = {v)-1} coshi(pt) - — sinh{pt} + — + | (3.27)
a Ptg , - tg
and the angular velocity v takes the form: ‘
. . - . ) K K
vit) = plv;-1) sinh(pt) - — coshipt) + — {3.28)
tg tg

Stage 1 ends at the instant the block impacts with the floor at time t,.

The time tnh €an be obtained by setting v=0 in the response equation

-{3.27), leading to:

K Ktm
(vi-1) coshipty) - — sinh(pty) + — + 1 = 0 (3.29)
Pty tg

The angular velocity of the block just before impact \'/2 is expressed as



- Stage 11 - -

P

Vo = vity) = p(vy=1) sinh(pty) - — cosh(pty} + —. - (3.30)
. ’ . ts . tS .

-

‘Thi's stage starts just after the impact with the floor. The

inftial conditfons for this stage are denoted by v, and v3. The initial

angular ve]ocity'53 is related to the angular velocity va just before

impact by equation (2.7), ‘'giving: ’

< ~

. ' . K K

vy = & |p{vy-1) sinh(pty,) - — coshipt) + — {3.31.3)
- , ts ts - '

and

va=0 : . (3.31.b)

The response of the rigid block in stage Il should satlisfy the

differential equatfon (2.6) for negative angles of rotation. The
variation of excitation with time measured from the beginning of stage

Il now Has the form:

. alt +t) o
X = - —— {3.32 -
tg .
which, when substituted in equation (2.6), gives:
- 2 c Kitptt)
8-p6=-pa -1+ —m— 8>0 (3.3
ts

The equation of motion (3.33), when subjected to the initial conditions

{3.31), has e fol lowing solution:

| Kt v K K(tmtt)
Tow{t) =| 1 - _n cosh({pt) + _3 - |sinh(pt) + p —  _ _ 1 ]
ts - P pts tS
- : (3.34.a7

and the angular veloclity is given by:

—



Kt
' vi{t) = p[l -'-_Eq sinh(pt) + [03 L ]cosh(pt) + &
y : -ty ts 5 (3.34.0)

e

Stage. il ends at time t=ts-tm when the excitation expression changes.
The conditions of rotation and angular velocity at that instant are
described by v, and V., which are obtained by settikg t=tg-tyin

"equations (3.34), thus giving:

- . ‘ : * ‘
. thn . \:'3 K )
vizv(te-to)=|1 = —| cosh p{t-tp)+|— — —] sinh p(t-ty) + K-
’ h s m [ t | = ‘st em b Pts sTm .
. ' . .. ' $3.35.2a)
The angular velocity is given by: .
Cmet et Ktm . K - TR
- U= tg-t)Epll - — ) sinh pltg=ty) + vy - — coshp(tg~ty) + —
‘ : - g ts tg
(3.35.0)
Staqe [11
’ . For this stage. the excitation |s expressed by:
- : ) . alt-ty)
. X T ——Ta— {3.36)
ts .

-
- -
- -

When equation {3.36) is substituted into equation (2.6) Tor negative

rotations and the following initial conditions are used:

\ ' e
v{0) = Ku . v(0} = v¢

the response expressions of stage 11l are found to be given by:

.

2 V(t)= [ v =K +1 ] cosh(pt) + — | o + K| sinnept) .— Le k(-5
) - e P tg T tg
‘ ’ - (3.37.a)

- . . e




o

- . ! -

- K K
v(ti=p[ vi -K +1 ] sinh(pt) + [vu. + ..t_]cosn(pt) i J(3.37.b)
- S : S

The state of response at the end of the pulse can be-de%ined py

-

substitutiné {t=t.) - in equations (3.37) to get the aﬁgle of rofation Vs

and the angular velocity \'15. Two end conditions must be satisfied at

- t=tg. First, the response must have a peak at the end of the pulse,

i.e., o
< Vitg) = Vs = 0 (3.38)

Second, the response mu§t ‘be amplified by a factor r, such that:

. : Vg =.F V) S o d 1 - (3.39)

[

Substituting the response expressions (3.37) at t=tg in the' end

conditions given by'éqdations (3.38) and (3.39), results in the .

fol lowing equations: -.

o~ :
J "D, coshiptg) + G sinhiptg) = 1 =1 vy C(3.4D)
\ . . g K -
Do sinh{pty) + G coshiptg) - BE =0 {3.41)
where
DO = Vi + 1 - K \

1

Kt )
| R — cosh p(ts-tm) + Cy sinh pl{tg-=tq)

Ktm ) 2K
= 1 = — | sinh p(tg-ty) + Cg cosh p(ts-tm) + _t_ Y,
. . Pts

\



. ':’3 K
C T e ™ em—
© p Pt -

& [(vy-1] sinh(pty,) + — [ 6- & cosh(pty) -1)]
pts .

Equations (3.29), (3.40) and (3.41) are three nonl!inear aiger:araic
equations which cbntain_six parameters, namely.i(.pts. Ptm: §,-v, anq
r, three of which may be considered as'independent paramefers. If the
values of three parameters are assumed to be known, the equations can be
;o!ved for the remaining parameters.r In the present analysis, thé
amplification factor r is assumed to be equal to (-1) for steady-state
response. QDiscrete values of the restitutién coefficient § and the
normalized response ampl itude v; are assumed and £he non! inear eduations
are solved for tﬁe nprﬁaliied pése acceleration K, the normalized hal f-
Pulse aguration pt. and the normal ized impact time Pty using a technigue

Dased on Newton method (Berezin, Zhidkov, 1965).

3.3.2 Numerical Results

Figure, (3.12) presents the variation of the normal ized critical
triangular acceleration K versus the normalized response ampl itude vl;
for éhe case of steady-state periodic motion. This corresponds to an
amplification factor r equal to (-1). 1In this case, the response-
acceleration relationship is similar to that of the rectangular pulse
excitation. The base critical! acceleration decreases as the response.
ampl itude increases. A higher restftution coefficient, which implies a
lower damping fn the system, requires a lower acceleration to sustain

the steady-state response, as expected! The comparison of Figs. (3.12)
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and (3.2) indicqtes that a critical excitation of a rectangular pulse
sﬁape is more evere than thét cf a‘triangular shape? To sustain
steady-state responses of the. same amplitude: the acceleration amplltude
assoc1ated with the triangular pul;es should be approximately three-
times that associated with the rectangular pulses. Figure (3.13) shows
the normalized pulse duration as a function of the normal ized response
amplitude. The excitation period increases as the angle of rotation
fncreases. To sustain the steady-state responsg with a given a;;litude.
a lower restitution coefficient will require long durations associated
with each triangular puise. Figure (3.13) also illustrates the
relationship between the norma! ized impact Fime Dt“,and the response

amplitude. It can be seen that the impact occurs before the trianguiar

pulse reaches its peak, but fairly close to it as shown in Fig. (3.12).

3.4 Linear Response Spectra

A linear response spectrum i{s a common representation for time-
history effects on single degrée of freedom {SDOF} systéﬁs. Time
histqries of similar effects on SDOF systems wiil have the same response
spectrum.  Although the rocking of b]ocks can be éépresented by a single
degree of freedom (angle of rotation), time histories which have equa!
effects on 1inear SDOF systems can have different effects on the rocking
response of rigid blocks. Aiso, time histories which have equal
potential to overturn rigid blocks can lead to different r§3999§g§ for
linear SDOF systems. In this section, it will be shQHn that time
histories wrth widely different response spectra caQ\have equal

potential for overturnnng rigid blocks.
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ln-section (3.2.2), a parametric study*@as done on ‘the

overturning of a rigid block using different leVqu of base accelgratiQn

and different values of the initial angle 6? tilting: A set of base
excitations was used. All of them (except that in the case D-3) caused

the rigid block to overturn. 1f the set of excitations is divided into

subgroups, such that each subgroup corresponds to a ¢ n itnitial angle

of rotatién, then all the time histries within one subgroup can be
considered equivalent because tHey have eqﬁal potential for overturning
rigid blocks. Hithin.the same subgroup, all the blocks ha& starteg
from the same initial anglg and at the end they had all just overturned.

The response spectrum is calculated for each excitation and the

spectra oF‘eaéh subgroup are compared. Figures (3.14.a) to (3.14.4)
present the spectra calculated for each subgroup. 'They show that
although the excitations of each 5u§group are equivalen;'in fheir
effects on the rocking block, they have diFFerent_eFFects on linear SDOF_
systems as described by the,responsé spectra. It is showﬁ that time
histories with widely diFFeFent résponse spectra can lead to the
o@efturning of rigid Blocks. In their research, Yim et al {1980)
applied several artificial earthquakes with neérly eqqsl spectra to
rigid blocks and found that the ea;thquakes differed in their effects on
thé rigid blocks. 'The results presented herein and the results of Yim
et al (1980) indicate that‘an equivalence between excitations, based on
either the response of 1inear SDOF systems or the overturning of rigid
blocks, may not result in equal! effects on the other systeT. In other
words, the overturning potemtial of excitations dannot be-estimated by

using the wusual |inear response spectrum.
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oL . . CHAPTER 4 ° : Loeem
OVERTURNING OF RIGID BLOCKS

BY

HARMONIC EXCITATION

~

4.] Introduction -
’ V4
In the previous chapter, the overturning of rigid blocks caused
by a series of pulsive excitations w3s studied. There was a certain
phase angle between the respohse of the rigid‘biock and the excitation,
such that the work done by the effective force throughout the time
history was positive.. A more general case for the periodic response of

the rigid block is studied in:this chapter. In this case, the work done

by the eFFéctive-Force‘is.not 2lways positive. .A basic important

excitation in the study of any dynamic system is the harmonic

excitation. The-rocking response of rigid blocks subjected to harmonic

excitation'tiFers from the response of linear SDOF systems in two ways.

First, the blocks may overturn if the angle of rotation exceeds the:

P <
angle a during the transient response before the steady state is

reached. Second, if the periodic motion is not stable, the rocking
response will not attain a steady state.

In this analysis, a rectanguiar rigid plock capable o% rocking

is subjected to a sinusoidal base excita;ion and a steady-state period?c

response solutfon is sought. The conditions under which a steady-state

response is possible are obtained, and the stability of the resuiting

steady-state solution is ifnvestigated. The approach to the steady-state

S .
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‘2 rocking probiem follows the one used by Ogawa (1980). The work
preSented hérein is-an extension of the work done by Ogawa. For
completeness. the relevant part of his work will be summar i zed in

. sections (4.2) and {4.3). . ) -

4.2 Steady-State Response

For harmonic excitation, the tota! base acceleration x X can be
expressed as )
;=asin(ﬁt)-'- _ ’ (4.1)
- /.
where a and @ are the acceleratlon amp | itude and the angular Frequency
respectively. If the contact conditions between the rigid block and the

- N\
- Flodr. assumed in Chapter 2, are valid and the angle a is small, then
the response oF the rocking systgm is governed by the diFFerentlar

equation (2.6). Substﬂtutlog the base acceleratlon expression (4.1)

into the equation of motion {2.6) results in the following equation:

. 8 - p%g = —- sin@t) 3 ap? - 80 (4.2)

and B=p/Q . where Q/p is defined as the frequency ratio,

equation (4.2) can be-written as

- ) ' "\
e - 8% =B._Z_ sin(x} 7 ag? 820 (4.3)

where the dots represent differentiation with respect to the normal { zea

- time <.
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.

The arbttrary constants corresoonding to the general solution of
5

the drfferentlal equation of motion (43) ‘are determined using the

initial cond:tions after each impact-thure (41) iilggyrates.the

assumed behaviour of the steady—state response in relation Eo,fhe

harmonic excitation. It is assumed that the steady-state response is

pEFIOGPC with a -period equa) to 27/0Q and that onIy twd impacts.with the

floor occur within this period. The response is also assumed to- have a
méah value equal to zero, or “

- 8(t} = - 8{t+m)

The time origin }s chosen in the steady state, ,such théé e;qati;nlde)

48" satisfied. The impacts which follow the time origin will be numbéred

as 0, 1, 2, and so on. The times at which these impacts occur are Tas

Ti» 12, and so on. The time of zero impact 1o is denoted as the phase

angle. It is assumed that the zero impact is followed by positive

. rotation of the biock. The state of response between the nth and the

{n+1)th impacts is denoted as 8n(1). If this rotation is normalized to

-

the angle @, it is termed valt). The arbitrary constants of the generai

solution for the diFFerenﬁiaI equation\(4;3)' corresponding to the state

of résponse Ve are termed A, and Bn Therefore, the nth haif- cycle

response for the steady-state period:c motion can be expressed by

Valt) = 8p(1)/a = A, EXP[B(r-tn)'J + 8 EXP[-B8T1-14))] - C sin(t) = 1|

, . 820 - . (4.4

where ' '
C=8%K/(1+82)

K=a/{ga) - -
‘and

Tn( T < Tn-H
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As the response of the rocking system is assumed to be periodic, the

arpbitrary constants of the reéponse expression (4.4) should be related
L}

-

by+?
An=An+2

- -

Bn=Bna2 ' (4.5)
‘ | 4
The relaticonship between the arDitréry constants of the nth and (n+l)th

haif-cycles can a]so be established by relating their initial conditions

as fol lows:

Vnltn)= Vagi{tpe1)=0 (4.6)

Gn(‘n)='én+l(fn;1) (4.7)

|
#+

The expressions of the rotation and the angular velocity of the
{(nt1)th half-cycle are readily obtained by substituting (n+l) ?och in
the corresponding expressions. Eguations (4.6) and fd.?) can be so]JEd
for A, and B, to give:

’

AI'I:_AFH‘I-
Equations(d.S)and {4.8) indicate that the arbitrary constants of the

response expression (4.4) only” reverse sign after each impact. Thus it

is possible to express them as

—¢—13N
An_( 1) Ao ¥
Bn=(=1)78, (4.9}
../ = i *
where A, and 8, are constants. In this case, the response parameters
are reduced to three constants, namely, Ao, By 3nd 14. They can be

ocbtained as follows. For the nth half-cycle, the angle of rotation is



zero at the beginning and at the end. These coriditions are expressed

-

as

il
o

Valtn) (4.10)

I
o

Vn("n-}l) = (4-_11)

At the instant of impact with the floor, according to equation (2.7),
the anguiar velocity of the rigid block after impact is &§ times the

anguiar velocity before impact. At the (n+!)th impact, therefore, this

can be expressed as-

. : o .
Vari{Ta+td = & vpl{tner) {4,12)

-

Since the response is assume&?ﬁo have a period T=2r/Q, during which two
. - ’

impacts occur, the time of the nth impact is related to the phase angle

by:

Th= 1ot N n=0, 1, 2,... (4.13)

-

By substituting the response expressions of the angle of rotation and
the angulaF veldblty in the three conditions expressed in equations
(4.10) to (4.12) and using equation (4.13), the fol lowing equations are

obtained. Eduation (4.10Q) givés:

-

- ' Ag + Bg = C sin{tg) + | = 0 (4.14)
and equation (4.11) gives: -~
Ay EXP(Bm) + B, EXP(-8m) + C.sin(1y) + 1 = 0
(4.15)

The third condition (4.12) gives:
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. C .
AL [+ & EXP(BT)] - B (1 + & EXP(-8n)] - {(I-6) cos(t,} = O
o ° D B o ta.i6) ¢

The unknown barameters in the general solution for the steady-state

response A, By ana 1o Can now be obtained using equations (4.14) to

-

-

{(4.16)., Thne three algebraic equations can be solved for Ags B

o and
sin{ro). ieading to:
a-1 [C{ X * H (1+H2-X2)1/2;
Ay = - + 1
2 al I+H®),
g o ot [c (X2 Husm-xH/2y : ]
. ° 2 Q(1+H?) s
2 2,172
X * H +HT =X
sin(to) = - (12 ) (4.17)
(1+H7)
where T
4""
g=tanh(B8n/2} he _ )
. v -
H=Dq/8 - e
X=Dq® /¢ |
and . ’
D=(1-8)/(1+8) (4.18)

The variable D represents the damping in the system. Large values for D
indicate high damping. The variable q is a frequency parameter and it
decreases as the excitation frequency increases. The variable H dgpends
on the damping in the system and the excitation frequency. The.variabie
X depends on the damping, the excitation frequency and the inpgt

acceleration.
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Now it is possible to express the steady-state response in terms.

of ::the parameters A,, B, ang, 15°as
t

*

T

q-1

+

—_—

He (1+H2-%%) 112 .

. C[x
valt) = (-1 + (-n" EXP( B{t-tn)] — [ !

+
+ (=1)" EXP{-B(1-1.)] T2 [ cLX
—C sin(1) N
- n=0' .l| 2'.--:

-

¢

114

/s
q(l+H2)'\ .
\

H (1+H2-x2)112)

qUi+H?)

Tn<t<Tney

-1

{4.19)

Equation (4.19) expresses the normal ized rotation of the block during

the steady state and is valid between two impacts which occur at times

Tn 3Nd (Tny)-

-

Ay

L

%

There are two solutions for the probleni“.. corresponding to two

possible phase angles as shown in equation (4.17). Numerical values for

the phase angles show that one of them is nearly zero, indicating that

the corresponding response is almost in phase with the excitation. On

the other hand, the other phase angle is slightly less than m, denoting

that the corresponding steady-state response is out of phase with the

’

base motion. The negative sign in front of the square root in equations

(4.17) and (4.19) corresponds to the in-phase solution, while the

positive sign corresponds to fh&out-of"-phase solution.

4.3 Boundaries of the Periodic Solution

lnvestigation’ of equation” (4.17) shows that real values for the

phase angle can exist only if tige quantity under the sqQquare root is

positive, nameliy,
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the acceleration caiculated by express:on {4.21)..9s less than unity

i»

. . ‘ . 81

1+H3-Xx2 > ¢ . —: (4.20)

Substrtutmg the expressions of H and X, given by equation (4 18). into -~

tHe condition (4.20) ang solving for K results in the Fo.Llowmg-

o

T Dq2(1+32)

2,.2 2. 1/,2 (4.21)
. S 8(8+p3q*%)}/ N\
For acceteration ampiitudes less than the valye specified b{ expression

(4.21), no perlqduc motlon can OCcur. Numerieal vaiues ind:cate that

which :s the minimum value required to initiate the rocking motion From
rest. Thus, for the range of- excitation amplitude K tess than unity but
greater than the value given by express:on (4.21), some init:al ttltnpg

of the rectangutlar block is necess‘ary -to achieve the steady state

response, - "

)

In the derivation of the Beriodic response expressfon (4‘.19}-.—-“—*"——
e\onditions at the beginning and at the end of the response haIF-cyc le
were Imposed such that the angie of rotation was zero at those lnstants. .
No constrarnts were set on the response between the two ends. Thus,
there is no guarantee- that the angle of rotation caiculated by equation
{4.19) wili not change sign at fotermedaiate points between the two ends

oF the half-cycle considered. From numerical examples, it appears that
for the out-of-phase solution, this thange of sign does nOt occur.  For
the in-phase solution, however, this’change of sign is quite probabte, | -
particublarly for large input acceleration. The occurrence of such =

impacts wili contradict the assumption that there are no frntermediate.

impacts within the half-cycle of interest.’ Accordingly, the response
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expression (4.4) does not govern the response of the rocking block
within the half-cycle considered. An exact way to find the condition
required for no intermediate impacts is t I set -the' response expression

{4.19) greater than zero at the time >§~\Because the resulting

~

inequalitw _is difficult to solve, an approgfmate solution can be
: .

obtained by satisfying the inequality at a speciFled time tp=1,+0/2,
- / L i
i.e., at the mid=-point of the half-cycle to which the response peak is

- very close. Thus, for the in-phase solution'we set

3

-

Vaig=vn(tntt/2r> 0 . (4.22)

when the response equation (4.19) is used'to express E;p response at the

time Tqr and the resulting expression is then su‘stituted'into the
’-—

§nequality (4.22), tﬁé$¥ollowing expression is obtained:
r“ -
-t
Valiptn/2) = 1 - .sech(Bn/2) - C cos(ty) > 0 (4.23)

/ Y -

+

Inequality (4.23) represents an upper 1imit for the range of the input
accqleratton in the frequency-acceleration domain, above which no in-
;-

phase solution can exist.

-
4.4_Stabilitxfof the Periodic Motion

« In the previous sections, the expressions which calculate the
reséonse corresponding to the assumed periodic motion were derived. In
additions, some bounds were found for the range of input parameters
théh can produce this periodic motion. However, as will be seen latar,

the response calculated which satisfies these limits may only be

conditional ly stable, depending on the input and system parameters. To

i+
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study the stabi | ity of the solution gliven by equati;:n (4.19), small
deviations are'.-gl“ven to the parameters of tle solution (A, Bg and o).
The growth, or-decéy of szv.:ch smal i disturbances will determine the
stabi ity of the solution obtained. vl

Ty 3 .
+ "f".
I . the parameters of the nth hal¥-Cycle are disturbed such that:

=,

. An = (=1PA + aA,
- © By = (-1)78g + a8,
Tn=‘T°+ﬂ‘H’+ATn. .
Thle distgrbancef wil ]l change (efther decay or grow} in the next rgl'f'-
cycle. Thus, tr:f\disturbed parameters in t;we next half-cycle bgcome:
: Angr = DA+ AL
/ | o Bnts = ('”{H‘lso + 8841
Tnil 3 %g *+ (Atl)m £ Aty . " (4.24)

where aA., AB,, and Aty and: AAns1s 8By and A1y are ti'le devi‘ati_ons
" associated with the nth and (n+l)th half-cycles, respectively. ﬂhlow.
substituting the disturbed parameters in the-conditions described by
equations (4.10) to (4.12), we obtain the conditions reiati:g the
disturbances in successive half-cycles. Substituting equations (4.24)
into equation (4.10), then reducing we have:

8An + 8By - (-1)" C cosltg) Atp= O (4.25)

The second condition is obtained by substituting equations (4.24) into

equation (4.11). After this is reduced, the fol lowing expression is

N



=N

#btained:

[

o

-r

(=17 AgB(Atper - Aty) EXP(BE) = (=1)7 BuB(Atney - Atp) EXP(-87)

4 BAn EXP(BT) + 8B, EXP(-B7) + (-1)7 C coslty) Atpe1 = O (4.26)

When equations (4.24) are substituted Inte the third condition given by

. expression. is obtained:

-

BAA,, - BAB,, - (~1)" € sinlty) Az,

»

-

equation (4.12). and the resulting equatioQ.is reduced, the fol lowing

§[ (-1)M A8? EXP(B®W) (Btn41 - Atn) + (=17 Bo8® EXP(-87) (Atny; = AtQ)
>

+ B EXP(BM) AA, - B8 EXP(-8m) AB; - (~1)7 C sin(to) Atnp 1 . (4.27)

The conditions described by equations (4.25) to (4.27) relate the

disturbances which occur in the ntﬁ'and the (n+]1)th successive half-

cyc les.

If the disturbances are assumed to vary with time in an

exponent form, the disturbances at the nth half-cyclie can be expressed

in terms of a parameter X as

8An
ag,

Atn

An
n\-
Ap A

(1) 4 a7

(4.28)

where Aa. Bb_and Ay are the disturbances in the system parameters at the

zero half-cycle. The variéﬁle X defines the growth or the decay of the

disturbances according to its modulus value.

If it is larger than

unity, the disturbances will grow after gaéh.impact with the filoor and

the periodig motion is not stabte. If it is less tﬁga’:;T;y:\fﬁé

disturbances will diminish gradually and the periodic motion is

oy
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considered stable. Equations (4.25) to (4.27), retlating the

3 .

disturbances at successive half-cycles, can be reduced using equation

(4.28) and ére expressed in a matrix form as

- :
- i ! - cos(ty,) 8,
A= EXP(Bm) A~ EXP(-8m) T q, =0
4 .
A- SEXP(B®) -+ SEXP(-gnm) Q- Ay , (4.29)
where
@y = B(MI1) [ A, EXP(BW) - By EXP(-Bm) 1 -
and )
Q2 = 8B(A+1) [ Aj EXP(BT) + By EXP(-Bw) ] + (C/B) A (1-&) sin(ty)

-~

¥
Equatfons (4.19), (4.21) and (4.29}) afe the same equations derived by
’ ->

Ogawa (1980). Ogawa, however, obtained an expansion for the determinant
o _
of equation (4.29) which is different from the one obtained in this

research, as will be shown 'later.

-

The characteristic equation of the system, obtained by equating

the determinant of equation (4.29) to zero, can be written as

a2 3"+ a2 +a, =0 (4.30)
where *
8 =~ ZC & cos(ty) +28 ¢ (Aq = Bg)
31 = 2 C (1+8) cos(ty) cosh(fm) - 2T g (1-g) sin(ty) sinh(Bm)
= 2B [ Ay EXP(B®) - By EXP(-B1) ] + 2 8 & (Ag=Bg) A

and

az 2C cos(ty) - 28 [ Ao EXP(B®) - B, EXP(-8w) ]

1]
I

For stable periedic motion, both roots of the characteristic equation

(4.30) must have absolute values less than unity, namely,
: "

-



or, ' ’ o

L2 172
-3, * (a;%-4a3za4)"’

<1 ‘ (4.31)
232

-~

Exﬁression {4.31) defines an upper limit in the Fr;quency-acceleration
dgomain for the Input parameters required for stable perfodic motion. If
the disturbance is imposed on. a periodic motion excited by an
acceleration and a frequency which are represented by a point in the
stable region, the disturbance will decay gradual ly. Later, a
comparison of the résults obtained by equation (4.31) and the results of

~
Ogawa will be presented. It must be noted that equation (4.31) is valid

==
for both the in-phase and out-of-phase types of periodic motion. The
type of motion is accounted for by substituting the corresponding phase
angle, found by using equation (4.17), in the coefficients of equation

(4.31).

]
4.5' Numerical Results

Figure (4.2) shows the different regions of the frequency-
accelieration domain characterizing the periodic response caused by
harmonic excitatfon. The input frequency is reéresented by the quantity
Q}p, while the acceleration ahplitude is represented by K. Different
curves are presented in Fig. (4.2). The N curve represents the min!mum
acceleration required to start the rocking motion. In this case, K=1.
The Z CUrvé is given by equation {4.21) and represents the minimum

conditions for the periodic motion caused by harmonic excitation. The |
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curve is given by equation (4.23) and represents the upper limit for the
range of input parameters which produce the in-phase periodic motion.
The S curve is given by equation (4.3}) and represents the upper |imit

~

for the range of stability of the out-of-phase periodic motion. The

~

curves shown are calculated for a restitution coeFchaent.& equal to
-
(0. 9)

If a block is to have a steady-sfate periodic motion under qpé
effect of a harmonic excitation which.has'a normal ized acceleration
amplitude less than unity, some non=-zero initia! conditions for the

.angle of rotation are necessary. As the 7 curve répresents the minimum
cenditions for the periodic motfon. no such motion is p0551ble with the
combinations of frequency and acceleratron represented by points below
this curve. The periodic motion resuiting from excitations represented
by the Points below the | curve has a period equal to 2n/f} anad there
are two impacts within this period. Above the ! curve, this assumption
does not hold and more than two impacts can occur within one period, As
for stability._it is found that the in-phase solution is always
unstable. The out-of-phase sSlutfcn is stable for the range of input
parameters below the S curve. The results for the S curve obtained by
Ogawa are also shown in Fig. (4.2). The gifférence between the results
presented here and Ogawa’s resultggfs not large in the range shown of

»

the frequency-acceleration domain for §=0.9 . Larger differences are

observed. however, for |ower values of &, as shown in Fig. {4.3). These

istic equation obtained by Ogawa. The differences increase as
>

Xution coefficient decreases.
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Fig. (4.3) Upper limit for stability of the out-of-phase periodic
motion . . ;



The effect of t%e ;estitution coefficient on each of the
1imiting cases shown in Fig. (4.2) is described in Figs.(d.B)tO'(d.QL
Figure (4.4) shows that Iower-restitution coefficients require higher
ievels of the minimum acceleration for the steady-state response
preseq}ed by the Z curve. This is expiained by the fact that Iqwer
restitution coefFic}ents cause more energy to dissipate from the system
through impact and, accordingly, higher accelerations are reqguired to
increase the energy supply to the system. For frequency ratios Q/p
'I;rger than three, the function representing the minimum conditions for
the periodic motion has nearly a constant vaiue depending on the
restitution ceefficient.

The restitugion coefficient has the same effect on the | curve
as on the Z curve. Figure (4.5) shows that the restitution coefficient
has in this case !eﬁs effect on this limit and the function has nearly a
constant value even for different values of 6.<

Figure (4.3) demonstrates the effect of the coefficient of
restitution on the upper limit of stability of %he out-of-phase periodic
motion represented by the S curve. The increase of & lowers the upper
limit of stability for the out-of-phase periodic motion. This is
explalned by fact that increasing the restitution coefficient decréases
the rate_of energy dissipation from the system. Accordingly, large
input acceleration can feed mdre energy into the system than can be
dissipated by impact and overturning can occur. Ogawa’s results,

however, indicate that an increase in the restitution coefficient causes

an increase in the acceleration upper !imit.

~
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In summary, it is found” that decreasing the restitution

coefficient will raise the uppefr limit of the stabile out-of-phase

" periodic motion and also w!l | raise the lower limit of existence of the

periodic motion. The increase in the upper 1imit, however, is lérgér
than the increase in the lower limit. Accordingly, the range of
possible stableperiodic motion increases as the restitutign factor

decreases.

4.6 Response Curves of Periodic Mation

Figure (4.6} shows the response curves for the out-—oF—phasélb

periodic motion of the blocks. The system was assumed to have a
‘restitution coefficient equal to 0.925 . The Figure shows the response

-Curves that correspond to different acceleration amp!) itudes. The

vertical axis represents the max imum angle of rotation normal ized to the

‘angle a. For a constant acceleration K, the amplitude of the periodic

motion has its maximum value at a low frequency. As the frequency

increases, the response amp!itude decreases less rapidly. . At a constant

-

frequency, larger accelerations induce higher response amp!litudes,

although the increase is not Proportional to the increase of the input
. .

acceTeration. The:response curves are bounded by‘upper and lower
: e .

envelope curves. The upper envelope curve corresponds to the response

of the cases excited by ‘base motions with input parameters. represented-

by the points on the S curve. This envelope limits the maximum response

in the low frequency range. The lower envelope curve corresponds to the

_Points located on the Z curve. The curves marked by circles "eo"

represent the results obtained by Spanos (1984).

N\
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Figure (4.7) il lustrates .'tpe D.ariation of the p;aase ang'te Fdr
‘deFer’ent values of the normalized acceleration amplitude K as a
Funct"ipn of the exciting frequency, for the out-of-pWion. The
same Figure also shows the envelopes correspondi:\g to the‘ Z ana‘ theys
curves. The values of the phase angle presented in Fig. (4.7) are
normalized to n. The phase aAQIe attains nearly constant values through’
most of the frequency range shown. Although larger acceleration vatues
lead to siightiy higher phase agpgles, the phase angle can be consic_:lered

almost independent of the exciting acceleration and frequency in most of

the frequency range shown.

4.7 Transri-ent Response

in the previous analysis, it was assumed that the rigid block
will reach the steady state, and _the derived formulas gave the steady-
state response \oF the system. The ability,of the system to reagqh tiﬂe
steady stafe will depend on the initial conditions. "1t may happen tha‘E
“the .rigid block will overturn during the transient respoﬁse before 1t
reaches the steady state. Figure (4.8} shows, as examples, two cases
with the same frequency and wifh: small difference i'f'\ the'acéeleration
amplitude. Both motions started from rest. In the first case, the
steady st;ate was r;eached. but in thre sec.ond case, the system was
overturned during the tfansient-phase of the response. In these cases,
‘;P.\e frequency and acceleration are far enough from the boundary of
stability for the out-of-phase motion rep:;esented by. the Sscurve. The

first case shows that the maiimum angle of tilting during the transient

response 1s consi‘derab'ly larger than the steady-state response
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amplitude.‘ As a result, when the acceleration amplitude is increased
by a sma'lt amount, the system o#erturnéﬁ. as shown in the second case.
< The purpose of th!s section is to infroduce another boundary
for stability of rigid blocks in the frequency-acceleration domain.
This boundary will aeFine the range of input parameters (K and Q/p)
which wil ]l cause the rigid block to-overturn during the transient
response before reaching the steady SEate. A trial and error method is
adopted to defihe'such a boundary. At a constant frequency, small
accelerations are tried at the beginning, then increased gradua]ly untii
the system overturns.. This value of acceleration is defined as the_
reguired overturning acceleration for fhis Frequeq#y. The process is
repeated at discrete pofnts‘covering the frequency range of interest.
Figure (4.9) shows the results obtained for different values of the
restitution coefficient. It is shown that fhe overturting acceleration
in;reases as tﬂe'Frequency ingfeases énd as the restitution coefficient
decreases. The increase in the overfurning acééieration with the
decrease of & is egplained by the fact that the decrease of & causes
higher rates of energy dissipation from thé-ﬁystem. In other words,
decreasing 6 increases the stability of rigid blocks against
overturning. . |

Spanos (i1984), in a'recently publ ished research work, analysed
the probliem of periodic focking un&er the effect of harmonic excitation.
He caliculated the corresponding Frequency;reéponse curves. He also
investigated the overturning of initially quiescent rigid blocks in the
frequency-acgeleration domain and examined the stabiliity of the periodic

solution cobtained.
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A comparison of Spanos’ results.and the results obtained in this
research is presented ‘in Figs. (4.6), (4.9) and (4.10). The response
curves shown' in Fig. {4.6) indicate agreement between the two sets of
results. Figure (4.9) compares the lower limit of overturning for
blocks start:ng from rest. It should be noted that each set of resuits
was calcuiated using different values of the restitution coeFFucrent.
The comparison leads to the Foilou:ng observatrons. In generai, both
studies found the effect of & on the block stabiility to be the same,
i.e., decreasing & increases the stability of the block against
overturning. Spanos’ boundaries, hoﬁever. intersect with the boundaries
found by thié,study in some zones in the Freduency—acceleration domain.
This behaviour ean perhaps be explained as follows. First, Spanos
represented the stability regions by stepped boundaries, which are'not
accurate except at discrete pofngs. lSecond. the infervel‘of
acceleration between the points checked by Spanos is relatively large.
Third, although the stabitity of the rigid block mcreases in general by

the decrease of 3§, exceptions may be found, as can be seen in Spanos’

results. where the curves of diFFerent'restitution coefficients

' coincided in some parts. Figure (4.10) presents the comparison for the

upper and lower limits for stable steady-state Periodic motion. The
lower limits of existence of fhe periodic motjon agree with the results
of Spancs. . However, the effect of the restitution coefficient on the
upper 1imit of stabl.lity for the Qut-of-phase periedic motion found by
Spanos is different from the.effect found in this research. Spanos

stated that decreasing the restitution coefficient of the system wili
®
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lower the upper 1imit of stability region for the out-of-phase motion.

This is different Ffom the Findings of-this research which indicate that

'decreasing the restitution coefficient raises the stability limit.

4.8 Approximate Formulas ' v

As was shown in Figs. (4.4), (4.5) and (4.8), several response

Y

functions have an asymptoﬁic behaviour, or they have nearly a constant

value with the frequency ratio n}ﬁ. Such-behaviour is seen in the
minimum condition of existence for the periodic motion represented by
the Z curve, the upper 1imit of existencelfor the in-phase periodic
motion represented by the 1 curve, or the phase angle. As a first
apprbximation. it.is possible to el iminate the freguency aé;endeﬁéemﬁgom
these curves. This simplification will leave & as the only independent
variable. In case & also is not an important parémeteri such as in the
case of the ! curve, a constant value for the curve can be obtained.

In the following, the limits of certain functions, used in this

Ve
analysis, are calculated. The function g can be expanded in the form:

g = tanh{Bn/2)} = Bn/2 - 8%n3/4 + .....

E .

Therefore
. a/8 = n/2 - B*n3r4 + ... 5
and
Limit (a/B) = =n/2 (4.32)
B=+0 N .

Also 2 2 2,.2. 2,

Limit @ (1+1/8%) = Limit {q"/B") = n"/4 (4.33)

g-+0 A0

The function sech{Bn/2) is also expanded %to:
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sech(8n/2) = | - 8x%/8 + ...,
-This }éads to the following exprégsion:

‘Limit (1+1/8%) [i-sech(8n/2)] = Limit (1/8%) (8%%%/8) = 7278
g+o _ B0 (4.34)

v

Using equations (4.32), (4.33) and (4.34), the Z, I and sin(tq)"

functions, given by equations (4.21), (4.23), and (4.17) respectively,
can be approximated at large frequencies as fol lows. For the minimum
condition of periodic motion represented by fhe Z curve, we obtain:

n2D

K > (4.35)
i (16 + 4y2p%)*/2 '

-

-

For the upper timit of existence of the in-phase periodic motion

represented by the | curve, equation (4.23) can be rearranéed as

follows:

1

K cos(ty) ¢ ( 1+ 1/8% ) [ 1| - sech(ug/2) ] (4.36)

Since the phase ang'l e.corresponding to'the in-phase type of motionh is
small, it can ?be assuméd that cos(t°)=1.0 . Therefore, using the limit

given by equation (4.34); equation {4.23) can be reduced to the form:

K < n2/8 ' - (4.37)

'The phase angle is expressed using the variables H and X, which

[N

‘can be reduced, using the ]l imits obtained at high frequencies, to the

-

fol lowing forms:
H

wD/2

X = 72D/ (4K) (4.38)

When the simplified expressions (4.38) are substituted into the phase

3®
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'angle expression given by equation (4. 17). .the fol lowing equation
results: . L a
<410 + 27 D [ 16 K? + 7302 ( 4 K2 4 n?) 32

sunjro) = : - ‘ - T “202 . | (4.39)

The snmpluF:ed expressions given by equatrons (4. 35)tC)(4 39)'
were calculated for large Frequency values. for sms)] frequency values,
other approximations can be made to simplify the expressions'of rhe z
and | curves.- At smal] Frequencies. the parameter q is nearly equal to
unity. Therefore, For the minimum’ condltlon of perlod:c motton given by

~the Z curve, equatlon (4.21) is reduced to:

| O I OF - S . 2
K> . - (4.40)
+ D?

For the upper iimit of existence for-the in-phase periodic motien given
Y

by the | curve, equation (4.23) is reduced to:

K<1+1/8%2 o (4.41)

The results obtained using the approxjmate rélatipns for large
and small frequencies are compared with the exact results in Figs.
(4.2), (4.4), and (4.5). It is shown that the results of the
approximate formulas for iarge FrequenC|es are acceptable for frequency
ratlos Q/p greater than two. However, for smaj | frequencies, the
results of the approximate reletions are acceptable for frequency ratios

less than nearly (0.7).



© 4.9 Sumhgry,and Conc lusions

" Under thele#FecthF harmohib ex&ftation._tﬁe rigidZQIoc; may
vibrate periodically. overturn, or remain stétionary. Considering the
frequency—-accelieration domaiﬁ for the excftatioﬁ. st?ady—;faté periodic
motion 'is possible within a wedée in the domain. As the restitution
© coefficient dEcreases‘ the upper.énd.lower limits Fbr this wédge gﬁift
‘upwards. For a specified acceleration ampfitud;} the maifmum steady-
state response amﬁliﬁude occurs'!i a low.Frequency énd.thé response
amplitude &ecreases monotonicgllx as thé excitation frequency increases.
If thelperiodic motion is unstablg. ovgrturning of the rigid block can
occur. For situafiqns wfth stable steady-state periodic métion.
overturning can stil) occuf if the:transjent phase of the response
exhibits excessive rotations. . From the results obtained, it is found
that, as the festitution coefficient décreases; the system Secomes more

stable against overturning and can withstand higher accelerations. In

this study, éimpler approximate reiations governing the existence of the

steady~-state periodic motion are derived and applied. The approximate

relations are found to be accurate for practice.
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CHAPTER 5
| S — _OF PARTIALLY FIXED EQUIPMENT

i

" WITH

RIGID BOLTS

5J' introduction

" It has been shown peFore by many researchers that gystems thch
are al lowed to rock'on their FoundationS may have a betten chance of
suLviVing a severe earthquake than systems with Fixed bases, because.
there can be cons:derab?e reductions in the deformations of the systems
al lowed to rock. compared to those whose bases are leed. This is‘due.
to the energy dissipation between the foundation and the ground during
rocking. Uanrtunater.Lrocking involves the risk of ovérturning ff the

response buf!t ub_exceeds a‘'certain level. Furthermore, everturning
_potentiaj is a h;?hly comp lex phenomenon which depends to a great extent
on the time history of the base excitation. If the system is‘Fasteneq
loosely to the foundation, hdwever. the advantages of rocking can be
gained without the risk of overturning. In this case, the sfstém is
al iowed to'rock up to a maximum anglie, but is restrained from rocking
beyond the ailowable anéle of tiit by an anchor system. A system
foosely mounted on the floor cannot overturn unless.the anchor system
fails. qutially fixed systems belong to an intermediate category‘r

between the two extremes for mounting'eQUfpment on floors, f{.e.,

complete fixation and no attachment at all.

106
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In this chapté?. the behavrour of partr;TT§>Fixed systéms
subjected to harmonlc excrtatlon and earthquake-lnduced floor motions is
lnvestfgated. It is intended in this research to provide a clear
understandlng oF the behavrour of these syst;%s -under base excitItions.
The response witll pe presented in the form of either Frequency-nesponse
curves or respohsg time historiés. for each of fhe parameters governing

the response.

5.2 Model andg Assumptions

In this analysis, ~the model considered- is assumed to be

_constrarned 50 that only displacements in the plane parallel to the

direction of Floor exCItat:on are possible. Also, it is assumed that
the deFormat:ons of the. equipment Frame are smalij. The equipment .

represented by a continUOUS linear system which has distributed

parameters for mass, damping and cross-sectional area; m, ¢ and A,

respectiveily, To simplify the analysis, the continuous system is
assumed to respond .in a single prescribed mode,  Thus, the tota} number
of deformation degrees of freedom is reduced to one. The system isg

considered non-deformabie in the direction normal to the base and the

-mode of response corresponds to the first Iateral—vibration mode of a

shear beam. The system is assumed to be welded to a rigig massiess
rectangular plate of wigth 2b, as 1Ilustrated in Fig. (5.1). The rigid
plate is fastened to a rigid floor by an ancher system represented in
the mode! by two identical bolts Placed at equai distances from the
edges of the base plate. The boits are not Fastened tightly to the base

rlate, ang 99Ps are left between their heads and the base plate sp that.

.
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the base platE cén Lift above the r1gﬁd Floor. allowing the entire
sys‘tem to rock. ﬁ"\ force-dispiacement relat1onshlp of the boltks is

-
assumed to be of a rigiq-plastic type. The coeFFicieqt oF ‘friction
between the base platé and the rigjd Ffoor is asgumed to be sdfficiently'
iérgg’Eg prevent the system‘sliding alﬁng the F!gorf Figure (5.2)
illustrates fhe Force-disp?acement relationship-bf one of the bolts. The
displacement Ap., represented by the horizontal axjs.-is the
d1splacement of point p* on the p!ate in the axial dlrectlon of the
‘bolt. The initial gap size is termed g, while the gap size af;er the
sﬁretching éf bolts occurs .is £ermeq gt. It is assumeq that the bolts

are subjecteq'only to teqsile forces, produced when the base plate
' uplifts with a su?Ficient amplitude to touch the bolts. At any ins£;nt.
the configuration is determined by the fol lowing Fwo degrees of freedom:
the‘rotation of the base plate relative to the floor 8(t), and the
lateral deformation &F the continu&us system felaﬁi#e'to the base pléte.
The lateral deformation is measured by a d?splacement function u(y,t),
Qhere'u is the lateral dispiacement of the equipment system parallel to
the base p!aEE*Ef height y and time t._ The system is assumed to be
excited by a horizgntal total floor acceleration . During such an
excitation, five stages of résponse can occur. These stages, shown in
Fig. '-{S.B.a)-.. are described below.

Stage 1 .
. At the beginning, the Dase plate is at rest. The equipment

o

t

system vibrates laterally under the effect of the lateral floor

acceleration. The deFormat:on of the continuous system, relative to the
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base plate, is expressed by a srngl e prescrlbed mode. The'ref'ore, the
_system vibrates as a single degree of‘ Freedw (SDOF) system on a leed
base. This stage will continue as long as the cond!tions of upl iFt'aré-

not sgtisfied.” Once these conditions are FulFil.led.' stage 1 wil.l end,

>

L:pl ift will occur and stage 2 will start.
"Stage 2 o g
: -

In this stage, the base plate is upl :Fted from the I“'lgld fioor.
The system has two degrees of ﬂ'eedom These degrees of freedom are the

rotation of the base plate relative to -the floor 8(t) and the-
- ’ ”~ N .

o

deformation u{y.t) of the continuous system relative. to the base plate.
In this stage, no bolt forces are apel ied to the base-p_late. because the
. \ - oo
axial displacement of _poiﬁt pt is less t_han the total gap g4 at that
_point. The total éep ¢ 'may heve 3 constant or an increasing Va.]"'e
dependihg on the respohse of the system.' If the bolt’ is non-yielding.
the total gap will remam the same as the mitial 93P g,. If it yields,
the total gap wi 1 1 be e_qual to the sum of the :nftial gap plus 'the
permanent deformation of the bolt:: ~Stage 2 will continue as long as the
axial displacement of point p"’-does not exceed the total gap arid will,
end in either of two ways;, If the axial diselacement of point p°
: -
exceeds the total gap ggr -the system will enter stage 3 of t‘tlg_;_gsponse

behaviour. If the rocking amplitude of the base plate decays. rocking

will stop after a number of high-frequency impacts with the floor and

L d

“w the response will return to stage I.

Stage 3

This stage represents the impact between the :-t_:ase plate and the

- .
- W e~ .
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bolt.h?ad. The impact\fs assumed to be lnstantaneous and the impact
force is represented by a Dirac del ta-function, & (t). It is assumed
that the dynamic stresses during the impact with the bolt will-not cause
the bolt to yield or break. It is also assumed that the impact will™>
~ stop the angular velocity 8 of the bas'e plate instanténeously. and the

velocity component of the equrpment elements in the dlrection normal to

the base plate will become zero. - After the impact, the responsekwill

enter stage 4.

Stage 4
In this stage, the base plate is supported’at tuu points..u and

P'. The reaction at o is upward while the reaction at p* is dounwaru.
‘restraining further rotational motion of the plate. During shis stage,
the restraining bolt is in tension: The system again responds as a SDOF
system. Assuming that the reaction in fhe boit at this stage is less
than its yield strength, the rigid-plastic bolt wiil not stretéh. This
stage will end in one of two ways. If the bolt force exceeds its yield
strength, the response wili enter stage 5. If the bolt reaction reduces

to Zero, then the base plate separates From'the bolt head and the

response will return to stage 2. '

Stage 5

In this stage, the system has two degrees of freedom again.

These degrees of freedom are the rotation of the base plate and the
4

lateral deformation of the continuous system. The base plate is acted

—_—

upon by a tensile force equal to the bolt’s yield strength. Yielding
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causes the bolt to elongate and to absorb some energy. This stage will

end in one of two ways. If the tensi te-force in the bolt 'decreases to

below the boit’s yreld strength then the response wi 1y return to stage

4, If the crlterlon of f’a:lure is satlsfred. the boit will break, the o

base plate‘ will no Ionger be. restrcjlined by the bolt force, and the

response will return to stage 2.

The second half of the rocking cycie starts when the base plate

impacts with the Fl oor, and thg rockhl ng of the system will take place
about o' mstead of o. ‘Then the angle of rotation 8 changes sign and a
similar set oF_ the five response stage's are fol lowed, with the left Dorlt
‘providing the res“craining force. Figure (5. B.a) shows the d:FFerent
stages of response d1scussed above. Figure {5.3.b) presents a Flcu-

" chart which describes the response transition from one stage to_another.

- 5.3 Failure Criterion

In this study, the bolts are subjected to repeated loading-

causing uniaxial tension forces. Figure (5.4) i1lustrates the possible

bolt force-deformation paths. |f the number of repetitions is large,

fatigue of the bolts can be a problem. In earthquake engineering,

however, where the duration of excit-ation is generaliy limited, fatigue
failure may not be a serious problem. Therefore, fatigue fallure of the
bolts is not considered in ﬁhis investigation. Excessive yielding of
the bolts, however, can lead to failure. A simple failure criterion is
used herein by assuming that a beit will fail in the same way it fails
under a uniaxial monotonic increasing static te.nsion test. This

criterion is based on either of two concepts: a) the bolt will fail

-
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when the energ‘y absorbed through yielding reaches a maximum 1 im@ or

b} it will fail at a maximum strain. In this analysis, if the

accumulated absorbed energy of the bolt exceeds the toughness of the

material multipliied by its volume, the bolt is assumed to break. Also,
if e1ther the ieft or the right anchor bolt breaks, the equipment system

is considered to have failed (overturnedL

-

‘5.4 Egquations of Motion

The differential equations governing the system motion are
obtained by considering the dynamic equilibrium of:
a) the forces acting on the system in the lateral direction paralle]
- to the base plate, and
b) the moment of forces about the center of rotation of the base
plate, - .

In the following subsections, the equations of motion for each stage are

derived.

5.4.1 Equations of Motion for Stage |

- LS

Figure {5.5) shows the forces acting on a differential mass
element during stage 1. The system response is governed, in this stage.

by the differential equation of a damped shear beam,
32u dzx azu au
m —_——— - GA — +¢c— =20 {5.1)

at?  at? 3y at

where u is the lateral displacement of the shear beam parallel! to the
base plate at height y and time t, x is the total floor displacement in

the horizontal direction and m, G and A are, respectively, the beam mass

d
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per unit iength, the shear modulus and the shear cross-sectional’ area.

- 1f the beam is assumed to deform in a prescribed mode #{y), such
that '
Uly.t) = UCE) . ely) o o . (5.2)

the differential equation (5.1) is reduced to

L * e

M" G+ C™0+ K U=N X : : (5.3.a)

. ” . .
The dots, in the above equation, represent ordinary differentiation with

- - P - - - - . -

_ *h
N o= ome gy - <
0 -
2h .
L 2 .
c = J c ¢ ay 3
0 .
L] Zh
K =- GA ¢.¢" dy
0
and -
2R
-
N = I m ¢ dy
0

~

2h s the total length of the shear beam, and the dashes represent

_ordinary differentiation with respect to the spatial variable y.
' Equétion (5.3.2) . can be written in the standard form

. N .
2 Ewl+0 U=z —x. {(5.3.¢c)

ci

where w is the natural frequency of the system on a fixed base and £ is



the percéntage of critical damping. = - : -
When an assumed mode shape identified with the first free

vibration mode of a uniform shear beam is used, i.e.,

* {y) = sin [

C omly
J'K

| S

-

the general-ized coordinate U{t) then has the physicai interprétation 3s -

the Iaﬁeral_disp!acement atithg top of the equipment frame, or

U(t) = u(2h,t)"

5.4.2 Condition for Uplift

As stated previously.Athe system will rem3ain in stage | unti!

hd -

the condition of uplift is satisfied. Mathematically, uplift occurs
when the overturhjng moment abdut the base plate edge exceeds the -
cdunteracting moment due to the weight of the system, namely

2h ¢*x 3l
goml - —1yay
Q

at*  at?

> Wb : U (5.3.4)

-

where'W is the weight of the equipment and b is the half-width of the

basg piatea

5.4.3 Eguations of Motion for Stage 2
In this stage, tHE'equfpment is vibrating while the base plate
isuplifting from the floor, 3as shown in Fig.(S.SL The bolts are not

-y A : '
stressed. Two conditions of dynamic equilibrium are considered, name ly,.

. the equilibrium of forces in the lateral direction of a differential
Y .



.

Fig.

{5.6)
|

Forces equilibrium guring stage 2



- : . ' .- ’ . -. . . "V ' B . . 121

mass element, and the equi 1 nbrnum of moments about xhe center oF..
rotation o. It shoulg be noted that durlng,the .rotation of the base .
»-plate.' two add:tuonal conponents of accelerat:on should be taken mto_
account ‘when cons:derlng the eqm 1 rbrium conditions For the differentia)

. mass element. The Flrst component is radial and equal to. 59—. where s
 is.the radial distance between the” drf-‘Ferent:al e lement and “the cenfer :
of rotation. The second component is tangent:al and equal to s6. tThe
equilibrium condition in the lateral direction, p_aral'lel to the base

plate..can be expressed as
by

v d%e o’ g8t . % ay
m_——2-+my—3=m—2cos(9)—nb[ -GA—-c-—+mgsin(e)
at at dt ay? -
(5.4)
b

The transformation given by equation (5 .2) can then be used to account
- for the spatlal var!at:on of Forces. By substrtutmg equatton {5 2)
into .equation (5.4). multrplyrng the resultmg equat:on by 4 and

'mtegratmg over the beam Iength the following equation is obtamed.

x
c
+
-n
@
1]

N[ X cos(g) - pd2 + g sin(8) ] - K'Uu - ¢c"0 (5.5}

‘where N°, K", c" and N" are defined in equation (5.3.b)

and . .
. ] 2h R - L
A my¢ dy
: 0
Equating the moment of all forces about the center of rotation o
to zero gives the fol lowing equation: r Vi

- .-

Io 8 + WR sin(a-8) - MR x cos(a-8) = —¢"(] ‘ . (5.6)
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. a _—
' where l is the eau1pment mass moment of inertia about ponnt o. W is the

equ1pment wElght and M is its mass. R is the distance between the -

center of mass and éhe center of rotation of the system o. The angle a

is the angle between the-line connecting the center of mass and.point o,

and the norrnal to the base plate._‘ ' ) ' ?
The :nitlal conditions oF any (stage J) depend on the

1mmed|ately precedlng (stage 1) as ‘shown in th. (5.3.b). Define

- Baj as the angle of rotation at the end.of stage i.-

esj.“ as the angle'of rotation at the start of ;tage'j.
Uei as the generalized displacement of the equipment at the.end of

stage i.'and

Usj as the generatized displacement of the equipment at the start of

stage Jj.

P b
In general,
Bgj = Bei
ésj = Bej
Usj = Uei
and . L
where stage j follows stage i. There are special cases, however, which |

[

will be mentioned. For the case of transition from stage '] to stage 2,

i) =9

Bgz = 852 = 0 o — (5.8)

For the case of.transitiOn from stage 4 to stage 2.

_v__‘.; - 52. — eo

652 = 0 . _ . (5.9.a) .
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v

where 8, is the angle of rotation at which the base plate is 3ust in

touch with the bolt and is deFined by =~ . I ‘_'
8 ) _/ . .
- g ' . . . , .
sin -0 = =% | < : (5.9.b)
: 2 2. .
4
S

" where 9+ is the total gap size and 1 'is the distance between the point

p* -and the center of rotation o. ) o : C T~
S.4.4 'Stage 3 (Base Plate-Boit !mgg t) .

v .This stage occurs instantaneously, and can be considered a

transition stage between two stages of mogion. In this stage, the base

piate hits the bolt and is acted. upon by an impulsive force'e*bressed'by

a Diqéc delta-Funétion. It is assumed that, at the end of this stage,

the velocity of the system elements in the direction normal to the base

'plate vanlshes. and the angular veloc:ty of the base pIate becomes zero. -

ﬂ N ‘ . ~

-

- 5.4.% Equations of Motion for Stage 4

A

_This stage 1§ similar to stage | with the difference that the

system ’S now offset by an angle B, with the rest positiBn, as shown in

——v. -

Fig. (5. 7) The angtle 84 is deFtned by equatlon {5.9.b}. Therefore,
the equation of motion obtained from the equ! 1 ibrium of a differential

element {n the lateral direction has the form:

a u a?x a u Ju-

m— = m-— cos(8y) - GA — +Cc — -mg 51n(9°) 1) _ (5.10)

at2 dt at? at

-
~

Using the transformation Q[Ven by equation (5.2), equation (5.10) can be

e
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put in the form: .

CONT N L
J+2600+wU=—=Xx cos(g,) +— g sinle,) (5.11)
: M : “ ’

- This stage will continue as l'ong as the bolt force (the reaction) is

tension andiis'less than its yield strength. MHathematically, this

condition can be expressed as K

M - ’ . - - ~
i 0K FacFy, N ‘_ (5.12)

where F5 is the tension force in the right bolt and Fy is its yield

strength. The bolt force can be defined from the moment equation

8, - a’x # 2 A%
Fz 1 cos — =#R — cos(a=8,) - [ my — dy - WR sin(c—sb)
2 at” - 0 ats . ,
' = . (5.13)
4 &
For the initial conditions, if stage 4 follows stage 3,
Gs,, = Bq N
-eS" = 0 -
and - ' P
au |t au )t ae It . C
- =— | ty—- .k : {5.14.a)
at Iy 8t lgz ot R

where the derivatives of u and 6 are calculated at the time t, of impact
between the base plate and the bolt. The subscripts s* and e2 refer to
thé éorrespondlng variables at the start oF‘stage 4 and the end of
stage 2, respectively. The last condition of equatioﬁ (5.14.3) should

be satisfied at every point through the entire height of the system..
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1) .

However.ftne single mode'reprbsentatfon of the field displacement u

-cahnot satisfy this condition. An approximate way to satisfy it ls by

' integrating the equatlon over the whole system helight, giving

ty - ' ' ' it
2h du b 2h Ju o . . 2h ds b
J _t dy = J vy dy + S -y —= gy -
0 a L 0 ' 3 o2 -0 ot -

i

(5.14.b)

-

Equation (5.14.0) implies that the tota] momentum in the lateral

directlon is kept constant during the impact Detween thg base plate and

\
the bolt. Using the transformation grven by equatron (5. 2). equatlon

(5. ld.b) can be expressed as

. ﬂh -
Oge = Upa2 + o § . - {5.14.¢)
For the case of transition from stage 5 to stage 4,

Sgu = O . |  (5.14.4)

5.4.6 Equations of Motion for Stage 5

-

The response behaviour in stage 5 is simi lar to that in stage 2,

i.e., the system is \}Ibratfng taterally while the base plate is

rotating, as shown in Fig. (5.8). ~The difference betweeﬁ these two

stages ts that, while the boit is not stressed in 'stage 2, the bolt is
stressed at the yleld level in stage 5, and some energy of the system is
absorbed due to the yielding of the bolt. The two conditions of dynamic
equi ibrlum applied for-stage 2, will be applied again for stage. Sr

First, there is the equilibrium of Forces fn the lateral direction of a

differential eiement of mass., and the resulting equation is th\e same as



3
. Total equilibrium
ar
.ms3” idy

. 4
mx dy Mmoo o-

Element equilibrium

Fig. (5.8) Forces equilibrium during stage S

1
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-

- . ’ / ) ’
gquétibn (5.4L._Second. there is the equ:l:briunnoF moments about the

center of rotation o, aha, this gtves s T

. — . . - ~-9- - '
'of - MR x cos(a-8) + WR sin(a-8) + Fyl cos(z) = -F" U - (5005)

The Initial conditions of stégé 5 are

-~ . - . -

ABSS; = 90 . o ’
and .= o . S .
855 = 0 . L. L : N (5 16)
It is noted that equation (5.6), derived For stage 2, a

specia) _case oF equation {5.15) and can be obta:ned by omrttlng the bolt,

force terrn From equat:on .(5. !5)-

5.4.7 E equations oF Hotlon For Neqative Rotations

Equatrons (5.5,.5.6, 5.11 and 5.15) were derived For posntwe
angles of rotat:on. i.e., the base plate rotates asbout the ieFt edge o. -
Sim:lar equations can be derived when the base piate rotates about the

right edge o, In this case. the correspondmg equations are as

follows.

Stage 2

Equation (5.5) becomes

MU+ F* B = N[ % cosie) + b 8% + g sin(e) J-K" U -c" 0

' (5.5)"
and equatiofi (5.6) takes the form:
lq 8 ~ WR Sin(a+e) - MR % cos(atg) - - Fo 0 , C(5.6)"

Stage 4

Equation (5.11) becomes
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- . 2 Nl N o : . ow

U+ 28ul+a°lU=z— x cos(B,) - — g sin(g,) - - . (5.11)
- - . ' e
M M : e .

‘Stage 5 ’ -

E{:iuation (5.15) blecomesv . - ) : -

- - o k [: ..
lo 8 - MR 'X.COS(G'PB) + WR sin(c+_8') + Fy[ cos 2 .= —F'_U

508"

-

It is noted that, For_,heg.;ativ_e rotation_of _the base plate, the following -

terms change signs: N . B 0 ® N

1.

(e-8) - - : becomes {at8)

- 8 becomes +b &7 -
" and . _ T

+9 sin(eo) . becomes - -9 sin(eo)

5.4.8 Impact Between the Base Plate and the Floor
\

At the Instant of impact with the floor, the kinetic energy

_reduction 1s accounted for by assuming that the angular velocity 8(t) is

reduced from 8y (Jjust before impact) to 85 (just after inﬁ_acIt) such that
a——-“'\

b= . 0 . (5.17)
’ ' ‘ .

For rigid blocks rocking on _r'fgid floors, a restitution coefficient &
could: be estimated (Housner;$963) by assuming that the angular momentum
about the ecge of _i'mpact with the Floor Is conserved during the impact.
In this analysis, if it is assumea tha.t thg angular momentum is also

gonserved for the flexible system, and if the transformation given by

equation (5.2) is used, the fol lowing equation is obtained:

-

i



. . . . 2h,
lg8g + 0y o méy dy = 1,0y - 2Mb? B + Ub.of mfy dy - (5.18)

where Up and uy are, respectively, the velocities of the differentiail -~

‘mass element just before and after the impact. If it is assumed that

the restitution coefficient has the same expression derived by Housner.

' (1963) for rocking-of rigid biocks, & wil} be expressed as
hd lo - anz '
- s —_— . {5.19)
-
\ o
o ) _
If equations (5.17) and (5.19) are substituted into equation (5.18),

then solving leads to -

-

Uy = 0, | (5.20)

In other words, after the impact with the fioor, there is a reduction in
the angular velocity of the base plate, but there is no reduction-in the

lateratl relative velocity_ of the system.

5.4.9 Eguations of Motion for Small Angle of Rotation

Equations of motion for stéggs 2, 3, 4 and 5 were derived for a
larée angle of rotation. Simplification is possible if the angles 8, 8y
and « are assumed to be small. In this case, the equ-ations of motion

for these stages will be as fol lows.

Stage 2

Equations (5.5} and (5.5)' become

-



and eﬁuation (5.23) takes the standafd form

. 5.5 Floor Hotion

and equations (5.6) and (5.6)" take the form:

I, & - WR (8 3 o) - MR x=-F" 0 ' 820 . (5.22)
Stage_ 4 g -

Equations (5.11) and (5.11)" become  _ T

- . N -

U+t 2t 0+ U= — x2S g8, « 030 (5.23)
o M :

Stage 5 _- : '

Equations -(5.15) and (5.15)" are reduced to

I8 = MRX + WR{® % &) + F 1 = —F" § | 820 . (5.24)

v

N

- “Further reduction i5 also possible-if the horizontal floor .

acceleration x is considerably larger than g8. -In this case, equation

-~

{(5.21} is simplified to i

MU+ F N[ Xsb8 ] ~K U-C O 050
: Sy o ‘ (5.25)

Y

A

- . , N . _
U+ 28w U + m2 Us=s— x / (5.26)
| Mmoo ' . ‘

" / -
In generail, equipment--installed inside a structure is fixed to a

1

A
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"floor which .vibrates when the structurg is subjected fq an:earthduake

ground motion. If. it is assumed that the mass of the equipment is small .'

‘relative to the mass of the structure, #hen the equipment wilL:be_

subJécted to an excf;atfoﬁ wh}ch_is equivaient to t;e motjén of the
floor to which it is mounted, as shown in'Fig.‘(S.S). The #ﬁequenc&
content of the f1oor motion uilihbe different from that of the_actuai_
earthquake ground mot ion inrfpat the frequencies which differ from tq?_
natural FFeduéncy of tﬁe structure tend tdfge Fi!tefedloqu In phfs
‘stidy., the response.oF'the eqbiﬁmeht suhjected to floor moticns causea
by the occurrence of earthquakes is ‘investigated.

To ‘generate these F!oob motionﬁ. two_différent eéfthQUakei
excitations are examined, the Ei-E;ntro {1940) N-S component and the
Taft (1952) S69E component. .éach SF these componenps'is appliea to a
symmefric single—storey-structure witﬁ a rigid floor. The.structure is
assuﬁéd to have & damping ratio equal to 0.05, and a.natural frequency
equal to fhevnaéurai frequency of the equipment on a fixed base. This
situation would proQide a severe éxc{tation_to the equipment piaced on
the floor. In the present case, the equipment (as will be‘shown later)
has a natural frequency of 5 Hz when it-i; mounted on a fixed base.
Therefore, the structure is assumed to have a gatural Frequéncy of‘s Hz.

If the structure is assumed to be linear, the eguation of motion

will be

-

XM+ 2Bgug XU+ wg® XM = - Xy L (5.27)

S

where x" is the gisplacement of the floor relative to the foundation

system in the horizontal direction, wg and £, are the natural frequency
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Fig. (5.9) Equipment mougited on a SDOF structure
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and’ the' percentage of cr|t1cal damp‘ng of the strugture.‘regpectively.

; and Xg is the grOund acceleratwon. “ - :'. ; . o \
The total F]oor eccelerat!on'i-fé expressed as
o §=§"+§'g L | o (5.28)
,To Find out the response of the equipment system to the transient F1oor

-motion. the totel Floor acceleratton X is calcu!ated F:rst us1ng

eeuetion(s.ZBL Then'it is substituted in the'governing‘equations'of

rocking (5.1) to (5.26). Figures {5.10) and.(S.ll)'present the floor -

response (tota!l acceleration) calculated by equataons (527) and (528)

‘For the two earthguake components. . -

5.6 Verification of the Comouter Program

-The mathematical model which describes the equipment response

'was coded ina Fortranllv program called BOLT. This computer program is‘

-

used to compute the response of the system 5ubjected to harmonic snd
transient floor motion exc:tatlons. The.diFFerentiel equations of
motion are integrated using Newmark-8 method (Newmark‘ Rosenblueth,
1971) witn a variable time step. -

Figure (5.fis shows the dimensions of a typical cabinet housing
telecommunication electronic equipment. The cabinet has a mass of 454

kg and 1s fastened to the floor by four half-inch diameter bolts. The

mass is assumed to be evenly dlstrubuted throughout the cabinet. Based '’

v

on dynamic testing, the cabinet has ‘a fundamentai frequency’ equal to 5
- This value of Frequency Is used to estlmate an equivelent GA For

the shear beam model. From the free vibration analysis of,a shear beam

on a fixed base, it is found that

<y
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The boits are assumed to be made of carbon steel which has the Following

properties:

yield stress 248 MP

toughness

82,700  KN.m/m?
resi| ience = |52 KN.m/m?> '

.It !s.shbwn that the resiiience fs much smalier than the toughness., The
bolts are assumed to be Fastened such that thelr deFormab!e length is
100 mm. Therefore. the maximum elastrc deformation of the bolts jUstu
before yielding, Dy, is equal to 4. 11 mm. The sum of the statice
st1FFness oF two bolts under uniaxial tension Forces is equal to 520
HN/mL This hrgh strFFness the smali resilience and the negligible
elastic deFormatlon JustIFy the assumpt:on that the bolts deForm in a
r:g;d—plestrc manner. If it is assumed thet the system is acted upon by
é Static load-of value MA" at the center of mass, the vaiue of the
acceleration A" which will just cause one row of the boits (two bolts)
to yield in tension can be calculated by taking the moment of forces
about:the center of rotation. In\this study, the value of the

acceleration is Found‘to be

-

L

A" = 1l.7g=114.77 m/sec?

This value will provide a convenient normal ization factor for other base
motions used in this study.
Figure (5.13)'shows the behaviour of the System under the effect

. of a harmonic base excitation, which has an acceleration ampl{tude of
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0.64" and a frequency of 4 Hz. An initial gap g, equal to''7.8 mm'is,
assumed, * IFf we define the gap ratio 9 8s-
9

o ) | gr':‘,—

the lnrtnal gap corresponds to a gap ratio of 0. O F:gure (513).
shows the diFFere;t stages of response. At the. start (stage 1), the
system responds as a8 SDOF system with the base plate 3t rest unti)

UPIIFt starts. Then the system starts to upl:Ft (stage 2). but there is
no force in the Doits. At 8=8, , impact between the base plate and the -
bolt takes place and an impulse is produced _(stage 3). Afeer that the
angle €@ remains constant while the bolt tensron lncreases (stage 4).
When the tension force reaches the yield strength, stage 5 begins and
the bolt is stretched Accordingly. the angle of rotat:on :ncreases
during this stage. Hhen the force starts to decrease. ‘the system
returns to stage 4. As a resuit, the stretching stops and the angle of
rotation remains constant. Stege 4 ends when the bolt tens1on becomes
Zero. At . that instaqt. the.plate separates from the bo;t and the
response enters stage 2, Then the ahgle € continues to decrease until
the base plate impacts with‘the rigid Flooe. After the impact. the
angle of rotation changes sfgn From positive to negative and the
response is described again by stages 2, 3, 4 and S . This time,
lhoweverl the stressed bolt is the one on the left hang side of the
equipment and the system is pivoted 3t the right edge of the base plate.
During stage 5. the left boit breaks. This.time. stage-5 is fo)iowed by

stage 2 and the aﬁgle of rotation increases without eny restraint. The



0verall response For 2.5 seconds of excntatuon is shown in F:g. (5.14).
A!n th:s case. the base plate rotates with a large angle. -It impacts
lwlth the Floor several ‘times unti] overturning occurs at 2.5 seconds
) aFter the’ beg:nn:ng of the exc:tatron.. R

In the time histories shown for the subseQUent cases, the
response parameters are normal ized to diFfergﬁi Physical Quantities.
The anglé of rofétioh 8 {slnormalized\to the angle a. The.magnification
Factor'is obtained by normaltizing the deFormatiaq at the'tqp‘oF the
'ilsystém.ru. to the static displacement caused at the same point If the
system is subjected to 8 §tatic 10ad, uanormly dlstributed oﬁer'the
height, with loading intensity per uhit_leng;h equal to m;timés ther
maximum_sgse acce}ération Tat.: The‘bqlt forces are normal ized to the
yvield strengéh of the bolts. The negative and positive forces ip the
piot correspond to tension Forces in the,leFt-and right bolits,
respectively., The base shear of the SDQF syétem is norﬁalizéd to the
weight W of the equipment. The energy ab;orbed by ; bolt is normalized
to the bolt material toughness ;imes its volume.. The negative ang
positive values of energy correspond to. the energy absorbed by the le#x
and the.right Ddlts. respectively, The excitation is presénéed as an
acceleration time history expressed in g's.fthe gravitational
acceleration,
T; veri%; the éomputer program, the case of a system with very
small gaps is considered under both harmonic and transient floor motion
excitations. The response of these cases should approach the response
of the linear SDOF system on a fixed base. -To ensure compliete

equivalence between the two cases., no energy loss is‘permitted fn the
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- anchorage or durrng the impact Hlth the floor. in_other ;brﬁs. the

- e

-

bolts are considered rigid and non yielding, and the restitution

cneFFIcient 6 between the base plate and the F}oor is set equal to

unrty. Flgure (5!5) shows the response of the system when ‘the last two'

£

tondlttons are FulFllled.-‘The small gaps provrded correspond té

\ _—

. (gr=0§0001), The bolt’s yield strength 13 :ncreased ten times ‘in the

computatjoﬁ to,SImulate~thefr|gid bolts. The response shown in F1g.
(5. LSJcan be compared with the response of .a 1inear SDOF system on a

fixed base with a natural Frequency Fo_s Hz and damping £=0.01, for the

same excitation, as shown in Fig. (5. 16).~ The excitatnon is a

‘sinusoidal base motion with a Frequency of 5 Hz*and an acceleratron

amplrtude of 29. The comparxson of Flgs. (5 15) and (5.16) "indicates

-

the equ:vaience between the two cases cons:dered and provides a check on

the accuracy of the program. o | '.u -

“ A similar comparison is made for a transient Floor motaon
excitation. Flgure {5.17) shows the response oF the system when the gaps
are very small (g.=0.0001). The bolts are rigid ana have.a yield
strength equal tqleF . and the restitution‘toeFFicient is set equa! to
u;?ty. The system s subjected to the floor motion caused by the ground
accereratlon of the Ei Centro (1940) N-S componment shown in Fig. (5.10).
The Floor motion is normalized sucn that the peak ?Ioor acceleration has
a value equal to-0.4A° F:gure (5.18) shows the response of g llnear
SDOF system on a foed base (Fo_s Hz , £=0.01) subjected to the same

floor motion. The comparison between the two systems indicates

agreement, as expected.
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S. 7 Rigi d—Plasttc Bolts Versus E!asto—Plastlc Bo?ts

In the previous descrlption. the bolts. in the mathematical

'model were assumed to be rigid—plastic The vallchty of this -

.assmwption is lnvestlgatecl by comparing the corresponding results with )

those obtained |f-' the bo!ts are assumed to be elasto-plastic. In the

Iatter case, the rngad support assumed in stage 4 should be replaced by
e

'an-ela_sto-plast-fc spring, as shown in th. (5.19). 'The'spring has the

force-displacement relationship shown in Fig. (5.20). ' The stiffness of

the spring in the axial direction has a value of 520 MN/m. The response

of this model, subjected to a harmonic excitation with an acceleration:

amplitude equal to 0.2A4° and a frequency of 4 Hz, is shown in 'Fjg.

(5.21). When the ‘overal!l response shown in Fig. (5.21) iS compared with

the corresponding response of the rigid-plastic bolt model, shown in.

Fig. (5.22), the levels of the response for the base rotation énd the .

equipment deformation are found to be approximately the same. There

exist, however, very high frequency oscillations in the bolt forces:

during stage 4, In the case of the é_lasto-plast i\c bolts. . This higﬁ
frequency response oscil I'ates around that of the rigid-plastic bolt
model. This behaviour is due to t-he eiastic nature c}F_the springs which
introduce an additional degree of freedom td tﬁe complete system in
sfage 4.. This added degree of freedom has a very high nafural frequency
of 116 Hz. Due to the nature of the impact between the base plate and
the bolts, this degree of freedom is also excited, causing "rjngin.g"

arocund the mean of the bolt response. The calculated details of this

"ringing" force pattern and the corresponding changes in the angle of
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Fig. (5.20) Stress loops' in elasto—plastic bolts
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-

rotation depegd on the integration time step used. . Because fhe beriod-
of this stiff systeﬁ is about 0.008 seconds, a much finer integrétidn

. . - -
time step {say, less than 0.0001 seconds), s needed to obtain the fine

etai s of the force varfation in the 'bolts. However, since the overal.l

response of the system is affected l.ttle by the high frequency

.fluctuations of the bolt €orces, it is believed that the overs] | dynamic

response of the equipment can 'be studied and realistic results obtained
using the simpler rigiag-plastic bolt model.

-

Next, a deta]led.study Is done to fnvestigate the behaviour of
the equipment-anchor system under base excitation. A variablé_ﬁ;me step
is usedzfor the integration of the equations of motion. The largest
time steﬁ applied is 0.001 seéonds; Through each stage, an initial time
step of 0.001 seconds is started with.. At the transition fntervals
betyeen fhe different stages, the time step is divided many times, if
necessar?.‘until the instant of transition between the two stages fs
defined accurately. The techn}que of Qariable time step i§ used to

achieve accurate results at optimum computation effort. The accuracy of

gefinition of the transition'instants between the different stages is

=

determined by satisfying different thresholds of accuracy. -in general,
they are taken to be f0'3otimes the corresponding shormaiizing
quanfities. For example, a force estimation in ége‘bolt within a
tolerance of O.OOIFy is taken to be acceptable. An uplift displacement
of point p* of the base piaFe within O.ODIDy from the bolt head is

cons idered accurate enough for the contact condftion.
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5.8 ‘Numerica! Results

"The main_+hferest in t%is investigation ls'tq study the .

‘seismic behaviour of equipment partial ly fixed on rigfd floors. As

shown in the previous section, even when a simpletmathematical model'is_
uséd. the problem is very complex and involQes a.numbeé of.parametérs.

Among these pérametgfs are the size of the.g;;. the bolt’s strength and
Fhe Ievel';Fmexcltation. For a low level of extitatibﬁ; the

accelergtion wfl!fnot be suFFicignt to cause the base plate to uplift on

its edges and the response will be identical to that of a system on a

fixed base. For a higher level of 'excitation, tilting of the base plate

and rocking of the system occur. Depending on the tevel and

characteristics of the input base motion, the rocking amplitude may be

small so that unrestrained rocking results. On the other hadd. the

rocking‘reSponse may be suFFIciently high that restrained-rocking
occurs. - If fhe forces Induced in the.bofﬁs remain below the yieid
strength. then the gap size w[thin which rocking of the base plate is
possible will remain the same as the initial gap size. If the-
excitation is sufficiently strong, however. the induced bolt forces wil |
reach the bolt’s yield strength and yielding uillltake place. The
ytelding of the bolts produces two significant changes to the system.
First, it acts as an additiona! source of energy dissipation. Second,
the gap between the bolt head and the base plate widens, Fina;Iy. the
bolts may break because of excessive straining. Both rocking aﬁd
yielding are highly nonl{near processes and they fnteract in a complex

way to produce the various responses described.

-

To Identify the effects of the various parameters on the dynamic
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' behavjﬁur o%_thé partially Fixéd'equipment._the study‘will'be'diviﬁed
into two parts. In the first part, the gap size is assumed to remain
consﬁant througPout the .excitation. This: situation cén.be achieved‘by
using boits with strength far inrexcessrof what: is ﬁecessary for the
giQen level of base excitation. The purpoge‘oF this part is fo'study
the effect of restrained-base fockjng on the dynamic response of the
equipment. In the second part of the study, the boits are'alléwgd to
yield..causfng th; gapS to increase In siienuntil the bolts fail. ln'
each part of the study, the dynamic response is st&dled Qndér two‘types
oFAbase;excitation.‘naﬁely. harmonic base motion and two examples of -
floor motion caused by earthquake ground motions.

V'In‘th!s chapter, the gap size is assumed to be constant and the
bolts'ig be non-yielding. The following parameters will be
investigated: ’

1. gap size,

2. level of input acceleéa;ion.

3. type of excitaﬁlon (harmonic or earthquake floor motions), and

4. “frequency of excitation (in the case of harmonic excitation).

The ?FFect of each of these parameters on the response wtli be
discussed in detail. In the case of harmonic excitation, the results
are presented in the form of fregquency-response curves. The horizontal
axls of those curves represents Q., the ratio between the input
frequency 2 to the shear beam natural frequency on a fixed base w . The

vertical axis represents the steady-state response U at the top of the

equipment, normal ized to the static displacement of the corresponding
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pojnt caused by a static Force. equal to mxlmax per unit Iength. actmg

uniForrnIy over the height 2h .
For the cases excited by earthquake floor motions, the results

are presented in the form OF time histories and tables which ‘contain the

maximum values of the response parameters.

5.8.! Harmonic ‘Excitation

5.8.1.1 Gap Effect
| The effect of the gap size is'investi—gé-ted by choosing three
di-FFerenf gap ratios, name‘ly. |
!. a large'gap‘. ge= 0.03
2, a small gap., g,.= 0.0'71
3.7 no gap ( SDOF_system' on a fixed base), 9= 0 ‘. or a very small
gap,s 9= b.'oel
Figure (5.23) shows tt\e Fréquency—response curves of the system
with non-yielding bolts Forl theseA three' cases. The sinusoidal
.excitation applied has an acceleration ampi {tude equal to 0.4A" . At
\resonance (Qr=l.0). the ca'se of no .gap.has a value- for the magnification
, factor equa 1 ﬁo 56. In general, the deformations of the systems with
gaps decrease conside;abxl‘y as the gap size increases, as long as the
Frec‘auency ratio is'greater than or equal to unity. Below a frequency
ratio equal approximately to (0.8), the systems with large gaps hav;a a
slightiy higher response than the systems with small gaps.
It is‘a 1so shown that the frequency ratio at whi'ch the maximum

steady-state response occurs is less than unity for the systems with

gaps. The shift of the natural frequency increases as the gap size is
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increased. ~. . . :- i

ln genera I, the deformatton of a SDOF system mounted on a base

that lS al Ioweu to’ rock IS ‘Iess than that of a system on a fixed base.

. -‘This is because part of the energy 5upol led to the system is transFerred

to. the rockmg system as "kinetic energy correspond:ng to the r:gid body. -
velocities: Also, during rocking, some.energy is d1ss1pated through the

impact of the base with the floor. . -7 E

5.8.1.2 Effect of the Input Accelerat?on Le-v‘e-l‘

| | The input a'ccelerathn .leve‘l is, in genera'l. an irﬁborfanﬁl
: narameter\ in the non—-rl-ine_ar probiem. ‘This effect is examined by k‘eeping
the gap ratio fixed at U.l‘._)_l and_different.level s of acceleration are
appl_fed -'to the systen\ wit‘fn‘non—yielding Delts. Figure (5.24) shows the
freguency-response curves corresponding to four different levels of
R:E amp! {tuge. - The defornxaﬂion fn the system increases as the input
acceleration -i_ncr'eases ;then _,the‘f'requency ratio tis greater than nearly
{0.8). The increase in the response, however, is not proportional to
the increase in__tne__eggikt_ajc__il_o_n level. For frequency ratios less tnan
nearly G.S.I hi-gner accelerations lead to slightly lower responses.

A comparison of Fig. {5.24) and ‘Fi;;.. (5.23).. indicates similar
behaviour. In other words, the variation of the response with the
frequency for diFFerent' gap ratids. at‘ a constant acceleration level,
has the same generalrlbehaviour as the.response with the frequency for
different acceleration levels at a constant gap size. The similarity

indicates the equivalent effects of increasing the acceleration and

decreasing the gap size on the systefn deformation.
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-The shift of the natural Frequency of the system with gaps can

‘also be seen in Fig. (5.24). The shift] increases as the input

—

acceleration decreases. . -

[ -—

5.8.2 Earthguake Fioo? Motion

The effect of tﬁe gap size on the respor{se of the system, when

it is subJected to Floor moticons resultmg From earthquake excrtatlons.
v'

IS studied in this section. The input time history used is the floor

_motion ‘induced by theN-§ componenf of the £i Centro (i1940) earthquake

¢

record. Two levels of excitation are fnvestigated with .peak

acce!eratipns of 0.4A" and 0.085A", _respectively. Three gap sizes are

W - % -

¥ .
chosen. corr‘espondmg to gap ratlos of 9p-=0. 001 , 0.91 and 0.03 . The.

responses of the cases studied are presented in time history plots. The
response of t‘he system For an acceleration level with a peak equal to
g. AA and a gap ratio of 0.00] has been shown Qalready in Flg. {5.17).

-

The responses of the system for the same excitation corresponding to the

gap ratios 9,-=0.01 and 0.03 are shown Gn Figs. (5. 25) and (5.26),

respectively. The_ response time histories illustrate that for the case
of g.=0.0!, the base plate rocks with the full amplitude throughout the
time h!story_ shown. For the case of g=0.03, the' base plate rocks with
theﬂ;l 1 amplitude main?y during the time of strang shak ing..

The bolt forces, when the 9ap is very small, are considerably

large withirka significant part of the time history shown'. For the

"large gap"” case. the boits are stres&ed only at the time-of strong

e <
shaking and the bolt forces are re]at: vely smal l. The forces in the

‘case of 9,=0.01 represent an'-interm,ediate condition betwgen the other

- ' o

/U—‘
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Fig.-(S.ZG) Response of the system with non-yielding bolts to E Centro

floor motion (fy=5 Hz, £=0.01, g,=0.03, a=0.4A")
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_cases oF-gr=&ﬂUl“and gr=0035

The equipment deFormation, as measured by the Tesponse parameter

;U. is Iarge when' the gap is very small for a relat:yely leng- duration.
On the other hand, the deFormation is decreased conSiderabi}rahen the
Agap isi\arge. The respoase is significant enly'duriné the smail
interva[ eF’strong shak{ng. decaying to -2 small amplitude for the rest
of the time histo}y.' Tae equipment response for the case of g.=0.01
represents an intermediate case. v .

The base shear, varies with time in arway similar to the
equipment response U. Also, the base shear is hfgh for g,.=0.001 , less
for Sp=0.0! and smati Forqgr=0.03 ;

Comparison among these three cases shows that tﬁe equipment
response i's. substantially reduced as the gap size increases. This trend
is conStstent with that observed For the steady—state response when the -
base motion is harmonic.

The_peak values of the responses corresponding to an
acceleration teve! with a peak of 0.085A" are summarized in table (5.1).
It can be seen that there is a considerable difference in.the response”
amp! itudes between the cases of very small gap and the other cases.

-However. the difference in the respoases of the three cases of different
’gap size is very little. This behaviour can be explainea as fol lows.
. For such a small levei of excitation, the rocking amplitude is small and
the response of the system is close to the state of unrestrained
rocking, even For the case where the gap size corresponds to 9,-=0.01 .
As a result. further increases in the gap size will.not aFFeet the

response to any great. extent.



Table (5.1) -

Response to £1 Centro Floor Motion

ﬁonéyieldinq bolts

o .. 183,

(a=0.085A")

Initiail = 0.001 0.01 0.02 0.03
Final 9r 0.001 .ol 6.02 0.03
Max. Fi/F, 1.25 0.117 0.0876 0.1

i=]l or 2 g d

Max. U/U-Static 14.02 1.737 1.403 1.58
Max. shear/w 10.8 - 3.6 3.72 3.79
Energy absorbed/ 0.0 0.0 0.0 0.0

max. energy

o~
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The invest:gat:on oF the-response For the systems with non-

-y:eldung bolts led to the Follownng conciu51cns.

- -

for systems exc:ted by harmonic exC1tattons . the exfstence of the

\

gaps decreases the response-when the Frequency ratio is-greater

than unity. the Iarger the GaPs, the greater the reductton of the

&

response.

The gaps alsofshiFt'the natuna] Freeuency of the system to valles
below unity. Larger gaps ltead to bigger shiFts..

For the case of transient floor motions, the existence of tne gaps’
also decreases the response oF the mounted equipment relative to

o
the case of complete Fixataon .Larger gaps lead to targer

reductions ith the response. The maximum reduction in the

equipment response is obtained if the size of the'gap is large

‘enough to al low for a free-rocking situation.

.‘.&‘ b 2



CHAPTER 6

" RESPONSE_OF \PARTIALLY FIXED EQUIPMENT

b

WITH - *

YIELDING BOLTS

-~

6.1 Introduction

The bolts model led as rigid-plastic members are characterizéd by
two parameters; the yield}ng'Force Fy,and'fhe material toughness (the
maximum energy that can be absorbed). [f the excitation is strong
- enough to cause the bolts to yield. elongation of the boits willrresuit.
If the elongation reaches the maximum limit, the bolts will break.
During the eiongation, the gaﬁ size increaées and the system is allowed

-

to rock with a larger angle of rotation. After yielding, there is no

guarantee that the gaps on both sides wil} be equal. In fact, the
elongation of the bolts is unequal in most cases, resulting in rocking

with unequal gap sizes, even under harmonic excitations. If one bolt
+ ~ * )
breaks, 'the second bolt may or may not break. If one or both bolts

break, the system may or ﬁay not overturn, depending on the detaflis of
the transient response. Therefore, the response of the equipment system
becomes much .more compiex if the inelastic behaviour of the bolts is

taken into account.
]

In the following analysis, two simplif{cations are made.

a) The bolts are allowed to stretch ingefinitely without

.

breaking. This will provide information on the effect of an

ever-eniarging gap on the system’s response.

165
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b} Although real bolts will fail if the elongation exceed$ the

maximum strain Jimit, i; is assumed, in this analysis, that
. V ) V N ! ’
the complete system witt fail if at -least one bolt fails.
- - - -

In the results presented, the failure points are marked by "X™ and the

points which represent yielding without breaking are marked by "o".

-

Similar to the cases studied in Chapter 5, this study will
examine the effects of the paftial fixation on the response of the
equipment system. Both the_ harmonic ?xcitation and the earthquéke floor
motion wi'l 1 be used as inpgfs; Also, a comparison will be made betweeﬁ'
the response of the systems with nonéyieldiqg bolts and Fpat of the

systems with yfeldfng_bolts;

6.2 Harmonic Excitation

6.2.1 Goap Effect on Yielding Systems

-1t should be pointed out that yielding of the'bolts does not
take place in the whole frequency range considered. The points where
yielding of the bolts occurs -and tﬁ;se where yielding does‘not occur
should be distinguished, during the interpretation of the steady-state
response results. Figuré (6.1) shows the response curves for cases of
different initial gaps {g-=0.001 , 0.01 ana 0.03) sub_iec‘:‘ted to harmonic
excitations with an acceleration amplitude equaf“to 0.aA". For
comparison, the response curves of the SDOF system on a fixed base are
also shown, Figure {6.1) illustrates that, in the frequency range 6ear
to Q,.=1, the responses of the systems uith small initial gaps are less
than those of the systems with large initial gaps. This is because the

bolts of the former systems stretch more than those of the latter. As a
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result, by the time the steady state- has been reached. the systems with
small initial geps have large final gaps, These large gaps allow the

systems to rock with targe angular ampl itudes and conSequent!y lower

structural response U. In other words, yielding of bolts causés the gap
]

size to vary with tfme and. therefore, tﬁe initial gap size is not
sufficient Eo'predict tae system response during the dynamie
- excitations. |

At hléh frequencies., the systems with larger initial gaps héve
‘lov}rer.- response U than the systems with smaller initial gaps. " The
reverse is obs:erved. however, at low f-‘requency' ratios,_ i.e_.. ‘ l_arger'
initiat gaps I;ad to higher 'r'espo;\se u. “In fact, at both the low and
high frequency ratios (relative to the frequency ratio "unity™), the
bolts do'not yvield and the response is stin]_i lar to the cases with non-
yielding bolts discussed in Chapter 5. .

6.2.2 Effect of the Input Accelération Leve! -
s
. <

For a range of acceleration ampl itudés'\‘f)érying from 0.1A" to

0.4A',‘ Figs. {6.2) and (6.3) i1 lustrate t.:he' response curves for thel
systems with ylelding bolits of different Initfal gap ratios. It should
be reallized that the final gap sizes at the steady state are different,
in general, from the initial gap sizes. 'I:wo differences can be seen
when the steady-state response curves of the sysltems with yiélding bolts
are compared tco those of the -systems with nonéyielding bolts. First,
the stretching of the bolts increases the gap size progressively and

decreases the final steady-state Tesponse. Second, a lower level of

3
T

excitation may lead to a higher response, as shown in Fig. (6.4). This
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V.i.S‘Partic.qlar_l-y evident when ﬂ,.. is near to unity. This behaviour can be
explalned by the fact that although the initial gap sizes for all levels
of excitatidq are identical. a higher level oF excitation causes more

. extensive yielding of the bolts in the transient phase of tﬁ.e.llre'sponSe.-'

7_ This resufts in 2 large gap through which the s}stem_dan rock eventuatiy

) during the steady-state respﬁhse; Because large gaps'tend to-decréase_

the structural response, the steady-state response ampl itude for a

‘nigher level of excitation is observed to be less than that for a lower

level of excitation.

T Ex&’eetions to that behaviour occur when then-'f’.orces induced in
the bolts are less than»'their: yield streagth. Then, the responses of
both the yielding and non-yie!ding sysrt'ems are fdentical. This

-behaviour occurs in two cases, first when the input accelefation is not
high enough, and secbnd when the frequency r_a}:io is far From'unit__y;
_ E-:igure (6.4) summarizes the_var;atiOn of the Freql:ency-respon-s‘e peaks as

a function of the _inp'ut accel-ération, ampl itude for the systems with

vielding and n_on-yreldmg bolts.

6.2.3 Comparison Between Systems With Yielding Boiés.and Systems With

Non-yie!dinq Bolts

- -

'lq the fol lpwing.__ the st@ady-stat_e responses' of cases with
; different gap ratios are compared'over a range of 1nput“acc‘elerhation_
amplitudes varying from 0.1A" to 0.4A". The results are shown” in Figs.
(6.5) to (6.7). o

In g;en_e_ra_l-. the Frequency—t"esponse curves of the systems with

yielding bolts can be discussed by subdividing the curves into three-

-

¢l
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"

" ranges of the frequency ratio Q,., namery, iow frequency ratios (less
than 1.0),. high frequency ratios (greater than !.0). and 1'ntermediate

. - __—_-/
frequency ratios (in the neighbourhood of [.0). For frequency ratios

far from unitx. the response is not high, and the tensijle force in tl’;e
boits is generaliy. less than the yiel# strength. The response is,
therefore, identical to that of the systems with 'r_non-yielcling bolts.
For frequency ratios in the neighbourhood of .=1.0, the response of tHe
systems with yielding bolts s different '#ran that of the sysi‘.ems with
non-—yiglding bolts, 'This 'd_ifference becomes greater as the'input
acceleration increases and the initial‘ gap decreases. Hith:;n that range. :
of frequency, the Dblts yleld, and as a resuit, the gaps are enlarged.,"
In many caseic.. the stretching exceeds the maximum limit and the fai Iur‘-e‘--'
of .bolts is registered. The three 2Zones of response c_an be recognized
in Figs. (6.5.3) and f6.7_)§ Figuresu(S.S.b) and (6.6.b}) show thaf
yieiding of bolts can occur over a wide frequency range. This yielding i

zone disappears in the cases shown inFig. (6.6.a).

An increase in the gap size has the same effect on the response

[}
8s a decrease in the input acceleration. Accordingiy, the definition of

small or large gaps should take into consideration the input
acceleration level. For example, a gap ratio equal to 0.0! can be
considered relatively small for a=0.2A" because it will cause the bolts

to yield. However, the same gap ratio can be considered relatfvely
large for a=0.]a" becaﬁse the bolt forces in this case are below the
boits’ yield strength. Table (6.1) summarizes the bolts’ behaviour in

the various cases of steady-state response studied and shown in Flgs.
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Table (6.1)
S, B kS
Behaviour of Yielding Bolts . /
. [ J
Under Harmonic Excitation - - \
* - . t
Gap ratio Input acceleration Bolts behaviour
. (gr} '~ (A}
0.001 0.1 . Yield
~ F) h
0.001 . 0.2 Yield
0.001 0.4 Break
0.01 0.1 No yield
0.01 0.2 . Yield
0.01 .0.3 _ Break
0.01 . 0.4 . Break
*
0.03 0.4 .- Break T
-~ - A
- i -
»
?
- -4
¢
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(6.5) to (6.7). :

6.3 Response to .Eartr;guake F .loor Mot ion

- In the. fol lowing sectfons. the response of the sy?tg\s with gaps
ls- studied under the effect oF transient floor motions resuiting from
the: -S component of the €1 Centro (1940}, earthquake.

If the bolts are\aI\ lowed to stretch, they wil 1 absorb energy
during the extens-ion.' The amount of stretching depends 0;1 the initiai
gap size, the mput level and the time history of the input. There is a

,
major difference between the response caused by transient excitation,
such as f-‘Ioor motions I{nduced by earthquakes, and that c'aused_- by
harmonic excl tation. In the l-qtter case, the steady—state response that
will be investigated takes place after the transient response and the
stretching of bolits have been comp l\ted. In the case of transient
excitation, it'is only the peak valuds, which may take pilace at the same
fnstant the bolts yield, that art.e of concern. During the calculation of
the response of the equipment system, the. bolts are ‘al towed to stretch
beyond the maximum limit, as they are assumed to b.e made of a material
with uniimited toughness. Accordr:ngly. the bolts will not bre:ak when

the amount of energy absorbed exceeds the value corresponding to the

toughness| of the material in a redl system. Once the actual toughness

of the bo\ts ifs exceeded, however, it should be realized that fdilure

-

w
would have occurred in a real system.

-

6.3.1 Gap Effect on Systems with Yielding Bolts

The responses of yieldmg systems with different- -gap ratios

(9,.=0.001, 0.01 and 0.03) under the effect of the E! Centro induced

L
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floor motion are presented in Figs. (6.8) to (6.10}, respec.tivel'y-. "i'he
floor motion is norfnélized.to have a peal:\'é_ccel'eration equal to 0.4A".
Froﬁ the response time hisfories of thg three cases, the fol low-ing
observations are found.
~

In the case “of the very smatl gap (gr=o.omthe left and right
bolts are sftretched by different amounts, and the strétching takes place
early, during the time -;'F strong shaking. This is fol lowed by rocking
of the system with unequal amp! 1tudes for the angle of rotation to the
left and right. The energy absorbed by the left bolt exceeds the

v

maximum limit defined by the toughness of the material, whjch Indicates

" -that a real bolt will Fai | and that the system may bverturn. In the
)case of the small gapa tgr =0.0t), only one Dolt yieids, bu:he extension
is larger than that(o‘P the case when g.=0.00! Therefore, a real bolt
will fail in tms case also. In the case of the large gap (§r=0'03)'
only one boit ylelds and the amount of energy absorbed is much less ‘than
the critical value for bolt fai iure. Thus the final gaps on the left
and right sides of the base pla'ge are near I.y equal In this case. For
all the cases considered, the yielding of the bolts (transition from
stage 4l to stage 5) ta‘kes place early during ti’re time of strong shaking.

A comparison- of these three cases indicafes that the lateral
deformations U, for the cases of gap T‘athS equal to 0.001 and 0.01, are
nearly equai, whereas there s a smal ler response for the case of the
large gap (g,.=0.03). The same behaviour applies alse to the base shee{u:.(

The final gaps for the three cases, however, are complietely different.

Table (6.2)'smmarizes the .behaviour of the three cases considered and

i’

ALY
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Table {6.2)

Response to El Centro Fleor Motion

Yielding versus Non-vielding Bolts

(a=0.4A")

Non-yielding Bolts Yieiding Bolts:

Imitial g,

0.60! 0.0 ¢.03 ¢.c01 0.0l 8.03

')
. -

Final gr(]eft&p

Final gp{right)

Hax.uFi/Fy

i=l or 2

Max. U/U-Static
.Hax. shear /W
Energy abscrbed/

max. energy(left)

Energy absorbed/
max. energy(right)

Failure

0.001 0.0l 0.03 0.054 D.088 0.0377

0.001  0.01 0.03 0.023- 0.01 0.03
5.9 2.83 1.1 1.0 1.0 1.0
(14.02 6.9 2.73 - 2.96  2.97  2.53
51,0 _41.0  20.3  21.0  21.1 19.1
0.0 0;0 0.0 1.13 1.24 0.16
0.0 0.0 0.0  -0.47 0.0 0.0

No No No Yes Yes No
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presents the peak, vé l,Ués of the response time histories. N

Thg‘ resultts in Table (6.2) show two physical 'q;an'tities worth;:
of discussion. ‘The first quantity is the sum of the energy absorbed by
* the left and right bolts, which &an also be measured by the sum of the

-

extensions in both bolts. The second quantify is the sum-of the final
sizes of the gaps at the left and right sides of the base plate., which
is nearly proportional! to the sum oF-fhe absolute values of the
ampl itudes of the positive and negative angles of rotation. Later, this —
sum of absoliute angles will be referred to as the “total ro::king angie”.

It is found that tRe sum of bolt extensior:\s or the sum of the ]
energy absor"beq by the two bolts i'ncreases as ;:he initiél gap decreases.
The sum is small #or the case with the large gap.-(gr=0.03) » greater

for the case with the small gap, (g.=0.01), and maximum for the case

with the very small gap, (9,.=0.001) . This quantity can"ﬂe’\considered a

- - ‘_/ -
measure of the severity of excitation for the systems with gaps.

The sum of the final gap sizes is nearly equal for ail cases,
although the initial gap sizes are unequail. This indicates that, for a

certain fevel of excitation applied to the system, the bolts will extend

by different amounts, but the final total rocking angles will be nearly
equal. [f acritical gap size Is defined for a specific Input, such
that the bolt(s) will yield fully until it is just about to break, the

“critical gap ratio, for the case of a=0.4A", is somewhere between 0.0]

and 0.03. . ' o~
. ”~

6.3.2 Effect of the Input Acceleration Level

In the following, the initial gap ratic is fixed to 0.0! , and

L’-n-.-——"

N
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the acgeleration level of the floor motions is varied éetween 0.2a" én?
0.4A". Figures (6.11) and (6.12) present the }egﬁonse time histories
when the system is subjected to the £1 Centro iﬁduced flcor motion,
norma!iied to have acceleration pe;ks equal to 0.2A" and 0.3A",
respectively. The response of the case with a=D.§A' is shown in Fig.
{6.9). A comparison of the response time histo;ies of the three cases
lead; to the following observations. .Higher input accelerations lead to

& -
more stretching of the bolts and, cohsequently, larger valyes for the

total rocking angle. In the case of iow—leyel'excitation. a:D.ZA'.-the
bolts do not yield. In the case of 3=0.3A", one bolt yields byt the
extension Eaes‘not exceed the maximum extension |imit of a real boit.
For the case of high excitation le?el. 3=0.4A", one boit yields and the
extension exceeds the maximum |imit of a rea! bolt, ihdicating thet.
failure occurs. In the last two cases, the yielding of the boits
(transition from stage 4 to stage 5) takes place only once during the
time of strong shaking. Table (6.3) shows the peak values of the
different cases consideréd. The base shear increases less rapidly as
the input’ acceleration is increased. As for the lateral deformation of '
the system U, Fig. (6.13) illustrates t;é‘variation of the response
peaks as a functibn of the peak floor acceleration "a", in absolute andg
normal ized units. It is shown that_the'deformation of the system
increases less rapidly as the floor Siééieration is increased. When the

response is normailized to the corresponding static displacement,

however, the magnification factor decreases as the input: increases.
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Table (6.3)

N N Response to El Centro Floor Motion

Yielding Bolts

Effect of Input Acceleration Level

(g=0.01)

Peak floor acceleration 0.2A" G.3A" 0.4A"
s ! ;
h %
Y
initial 9r 0.0! 0.01 06.01
Final gr(left) 0.01 0.047 0.068
Final gr(right) G6.01 0.011 g.01
Max. Fi/F,, 0.88 1.0 1.0
=]l or 2
"Max. U/U-Static 4.138 3.838 2.97
Max. shear/W 13.8 19.9 21.1
Energy absorbed/ 0.0 0.8 1.24
max. energy(left)
Energy absorbed/ 0.0 0.03 0.0
max. energy(right)
Failure No No . Yes
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base acceleration amplitude (Floor motion excitation)
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6.3.3 Comparison Between Systems with Yielding Boits and S stems with
Non-yielding Bolts . ) ‘

In this_section, the comparison is carried out for different gap

-
- .

ratios., Ffigures (5.173, (5.25) and (5.26) have already shown the

-3

responses of systems with rigfd bolts‘For the cases of gap ratios equa i

te 0.0000!), 0.0} and 0.03, respectivety, when -the rocking systems are

subjected to the E! Centro induced floor motion. Figures {6.8) to -

(6.10) present the responses of the corresponding cases when the boits
are allowed to yield. A1} the cases have a peak Floo:' acceleration
equal to 0.4A". The Peak values o’F the corresponding response time
histories are presented in Table (6.2). When each case with yielding
bolts i{s compared to the corresponding case of the same initial gap

ratio with non-yielding boits, the fol lowing observations are found

-
< .

There are considerable reductions in the laters) deFo_rmation U and In

the base shear in the cases with yielding bolts codpared to those with

non-yieiding boits. The reductions are large for the case with the very

small gap ratio, smalier for the case with 9r-=0.01 and minor for the

case of the large gap ratio.

6.4 Effect of Earthguake Type (Numerical Results of Taft Induced Floor

-%tion! - .

"‘Since ea‘rthquake motions differ in shape and frequency content,
their effects on systems may al-s’é'diFFer- even if their peaks are equal.
In the previous sections, the N-5 componest of the E! Centro (1940)
earthquake record was used to study the effects of earthquakes on the

partially fixed systems. The Purpose of this section is to examine how

v
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ge'neréi the conclusions are, based on the EI Centro earthquake’

—

excitation alone. In this part, the ficor motion caused by the Taft

(1952) S69E component, 'sh;awn in Fig. (5.11), 1s Gsed aé input to the
equipment. The floor motion ot_sfaingd -i—s normai ized to hav,_é a peak
acceleration equal t.:o‘ a=0.2A" , 0..3A' or 0.4A7, respe?:tively. .Each
floor motion Ys then applied to a system with yielding bolts of a gap
ratio equal“to 0.0 . Figur‘es (6.14) _to {6.16) ‘present the
corresponding ti}ne histories of these cases, respectiv;ly. .These
Figures show that, when the floor motion has a peak acéeleration

-

2=0.2A", neither bolt yields and the base plate rocks with amp]| itudes
corresponding to tive initial gap ratio. When the peak acceleration is
equal to 0.3A", both boits yieid equally. VYieiding of the bolts

(transition from stage 4 to stage 5) tokes place only once at the time

of strong shaking. Accordingly, the rocking amplitudes of the base

piate increase more than the initiat amplitudes before vielding. In the
case of _the largest input with a=0.4A", one of the bolts yields at the
time of strong shaking. The yielding extends beyond the maximum 1imit
for failure of real bolts, and is fol lowed by asymmetric rocking.

The base shear increases when the input acceleration’ is raised
from a=0.2A" to 0.3A". It is not affected, lhowever. by further increase
in acceleration. Th; same behaviour is alse noticed for the lateral

A
deformation U with small differences in the magnification factor among
the three cases, as shown in Fig. (6.13}.

Table (6.4) compares the response peaks for the three cases

considered. A conpariso\:;—-;F Table (6.3) and Table (6.4) indicates that

the responses of both groups fol low the same trend with respect to the
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Iable (6.4)

Response to Taft Floor Motion

Yielding Bolts

Effect of Input Acceleration Level

max. energy(right)

Failure

- (8r=0.01)
[
Peak floor acceleration 0.2a" 0.3A" 0.4A"
a
initial g_ - 0.01 0.0! 0.01
Final g-(left) ) 0.01 0.015 0.067
Final gr(right) 0.01 0.014 0.0l
) -
Max. Fi/Fy 0.99 1.0 1.0
i=1 or 2
Max. U/U-Static 2.71 3.35 . 3.01
Max. shear/w 9.61 21.1 21.9
Energy absorbed/ 0.0 0.1 1.23
max. energy(left) :
Energy absorbed/ 0.0 g.08 . 0.0

No No Yes
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effect of the gap size and the level of excitation: All the other
{

features of response explained In Sect}on (6.3.2) for the £1 Cenhtro

- o

i nduced f[oor 6otion apply for the Taft induced floor motion. The
behaviour of the yielding system subjected to the Taft fioor motion is
also compared in Fig. (6.13) with that of t!:ae system _subjécted to the E1
Centro floor motion. It can 59 seen that when fhe floor motions are
normalized to have ngal peak floor accelerations, the responses of the
rocking systems a}e of the same order of magnitude. Tﬁe d{FFerences in
the lateral deformation U or the magnification factor are maximum at a
low level of excitation, decrease gradual ly as the input level increases
and disappear at a=0.4A".

In general, the comparison between the responses of the systems

subjected to the El Centro and the Taft induced f)oor motions indicates

that the response l1éevel for the partially fixed systems does not appear

to be highly dependent on the earthquake motion source if all other

parameters are kept the same (floor naturai frequency and damping).

—

6.5 Shift of Natural Frequency

As was shown in the case of harmonic excitation, both yielding
and non-yielding systems have natuvgl frequencies shifted from the
natural Freduency of the Iinear sy%tem on a fixed base. Larger gaps
cause larger shifts. To 1nvestigate the equfpm&nt response to
earthquake excrtations. it was assumed that both thejéquipment }on a
fixed base) and the supportfng structure have the same naEDra+’Frequency

(5Hz). In facty the effect of the frequency shift, an effect which may

be significant to the response, was ignored. To investigate the effect
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of the frequency shift, the response of the equipment is studfed in a
r 3
case where the supporting structure has a natural frequency of 4 Hz and
. [N .

a gap ratio of 0.01 is assumed. Figure (6.17) shows the floor motion
reSuIting from the'response of a SDOF system with a. natural Freqdency of
4.Hz and a damping ratio equal to 0.05, subjected t;:: the Taft (1952)
SG9§ component. Figure (6.18} shows the‘re'spp‘nse of the equipment
system subjected t:.o this resulting ficor motion, normalized to have a
peak acceieration "a" equal to 0.4A".

Figure (.6.18) shows that one bolt yields (il.e.. goes from stage
4 to stage 5) twice and the energy Aabsorbed exceeds the maximum 1 imit:.
for failure of real bolts. After yielding., asymmetric rocking response
occurs. When thew_rgsuiting response is 'Corméred with the ’response shown
in Fig. (6.16), which corresponds to the case when the effect of the
frequency shift is ilgnored. it is found that the latera! deformation U
and the base shear are not affected by the frequency shift. However,
the bolt strei‘:ching and the energy absorption increase by about 12%.
which indicates thét the excifation becomes rrnor;_e severe if the structure
has a natura-l‘ frequency equal to 4 Hz. Table (6.5) summarizes’ the

4

compar ison between the two cases considered in-Figs. (6.16) and (6.18).

6.6 Design Considerations

The parametric study using the E1 Centro induced £lcor motion
showed that %the ma%nif-' fcation factor corresponding to the system on a

fixed base is nearly equal to 14 . This value drops to a range between

©".2.5 and 6 forthe partiai ly fixed systems, the value depending on the

input level, the initial gap ratio and the rigidity of the 'bolts. This
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Tabie {6.5)
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Response to Taft Floor Motion:

-

Yielding bolts .

(2=0.4A", gr-=0.01, Equipment frequency=>5 Hz)

‘Structure frequency (Hz) 4.0 5.0
Initial g, _ 0.01 0.01
Final g-{left) 0.01 0.067
Final S (right) 0.074 0.01
T Max. F,/Fy 1.0 1.0
i=] or 2
Max. U/U-Static 2.94 3.01
- :
Max. shear/w 20.6 21.9
Energy -absorbed; 0.0 1.23
max. energy({left)
Energy absorbed; 1.37. 0.0 :
max. energy(right) .
Failure Yes Yes

s



201

considerable-reduction in response shows the benefit to be'gained by

allowing the equipment to upl ift.

The acceleration level that can be used for the design of the

polts is dependent on the gap size and the criterion required for the
bolt behaviour, I[f the Do{ts are not aliowed to yield, the system
should not be exposed to an acceleration greater than D.OQSA' when no
gap s provided. A design factor éan be defined as the ra.tio between
the design floor acceleration used in the static approach and the
corresponding peak acceleration‘used in the dynamic approach which will
have an equivalent effect on the equipment. In the previous case,
therefore, the design factor is equal to i4. If the gap ratio.is equal

to 0.01, however, the system will resist up to 2 maximum acceleration of

0.2A"., which corresponds to a design factor equal to 5. For a system”

with a gép ratio equal to 0.03, the design factor is reduced to (3.3).
In éther words, for a given'bolt size._a gap, deliberately provided in
the-system, will render it capable of withstanding a higher level of
floor excitation.

If the bolts are allowed to yield but not to break, the maximum
floor acceleration, the anchorage system can withstand, is gbout 0.3A.
and 0.4A" for systems with gap ratios equal to 0.00! and 0.03,
reséectiveiy. Accordingly. the corresponding design factors are egual
£b 3.3 and 2.5, respectively.

On the other hand, the final gap ratios tel | us approximately

how large a gap is required for a certain input to keep the bolt forces

below the yield level. For floor motions with peak accelerations equal
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to 0.2A", 0.3A" angd 0.4A", ié is recommended that gaps with ratios
equal to 0.0l , 0.015 and 0.04, respectively, be provided.

Tr;e design of the equipment frame is governed by the maximum
base shear that would occur during the excitation. The design base
shear depends on the size of the gap provided and on” the criterion
required Fot the bolts’ begaviour. In the case where no gap is
provided, the maximum base shear that would occur to the system is équal
© to 10.8V,, where Vo is the static base shear and is equal to Ma. If the
system is anchored such that a gap is a‘! lowed, the design base shear
~drops to 6V, and 4V,, with gap ratios equal! to 0.0! and 0:03.:
respectively, while the tensile forces in the bolts are always less than
the yield strength. Ho;ever. iF\the anchor system is 3l lowed to yield
but not.to break, the design base shear is approximately equal to 5.6V§.

In general, it is recom:nended that equipment be al lowed to rock
on its base by providing gaps in the fastening system. Partial fixstion
has two advantages over complete fixation. First, it reduces the

deformation of the mounted system and, consequently, the design base

shear. Second, it decreases the required yield strengfﬁ for the bolts, -

;i‘/,

It is also recommended that bolts with retatively large material
toughness be used. This will 3l low the 93ps, if they are relatively
small, to increase to the required size during the excitation, before
the bolts fail. The bolt§ can be fastened in such a way that a
sufficient deformable length for the bolts will be provided. This wil]l
increase their abil ity to absorb energy without changing their yield
s‘t;rength. It is more practical, however, to increase the gap size t;:

the required value, Larger gaps are recommended for higher floor
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acceleration levels.
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: .. CHAPTER 7

SUMMARY AND CONCLLUSIONS

Tnis study investigates the rocking response of equipmeﬁi
resting freely on a rigid floor and also the effect of restrained
rocking on the response of paréiai!y fixed equipment under the effect of-
seismic excitations. The equipment which’ rests freely is modelled as a
rigid rectanguiar block. Whereas the partial ly fixed gauipment is
model led as a shear beam attached to a rigid rocking base plate which in
turn is fastened to the Floorlbi two bolts. The boits are model?ed as
rigid-plastic members. The overturning of the rigid’vectangular block
?s studied under the effect of three types of base’motion. namely,
pulsive, critical and harmonic excitations, whereas the response of the
partial ly fixed equipment is studied under the effect of harmonic and
earthquake excitations.

The minimum conditions for overturning of the rigld rectangular
block are derived., using an energQ approach., for three different cases
of éxcftatﬁon composed of a single pulse of base acceleration. namely, a

,f?iangufar pulse with deﬁ}easing acceleration, a triangular Pulse with
increasing acceleration, and a half-sine puise. The results obtat+red
lead to the following conclusions.

1= The minimum peak acceleration required for overturning has large

vaiues for smal t pulse durations and monotonical ly decreases as

the pulse durat!pn increases.

(%]
o
I~
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2- The most,seugf<:pdlse which will require the least peak

acceleration for a specified duration is the rectangular type. ° o

3- Independent of the sﬁ3pe of the puise, a very short duration

pulse can be approximated as an impulse with a normal ized area

3

equa+¢to‘unity.

In this study., critical excitations composed-of rectangular and
triangﬁlar pulses are investigated. Conditions Jeading-to the
amplification of the response of the rigid block during the excitation
are deriéed. The investigation lead to the following conclusions.

1- fhe extent- of resbonse ampl ification depends on the restitution
coefficient, the fnitial angle of rotation, and the peak

acceleration of the pulses. T~
A .

2= - The critical acceleration required to amplify the motion by a

specified ratio decreases monotonical ly as the-initial angle and -
v -
the restitution coefficient Increase.

-3- Critical excitations whichfére equivaient in the context of

»

‘overturning 1ead to completely different responses of the

conventional - tinear SDOF systems. Actordingly, linear elastic

spectra &o nrot appear to be an adequate repre;entation for

measuring the severit&_of base motions insofar as the overturning
of;fhe rigid blocks is concerned.

Under the effect of harmonic excitation, the rigid block may

vibrate periodically, overturn, or remafn_stationary. Considering the

Frequency—acceleratiqn domain for the excitation, steady-state periodic

motion is possible within a wedge in the domain.. As the restitution

coefficient decreases, the upper and iower 1limits for this wedge shift
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uUpwards. For a specif-‘ied acceleration amp} itude. the maximum steaty—
state response amplitude occurs at a low frequency and the response

amp | itude decreases monotonica) Iy as the excitation frequency increases.

If the periodic motion fis unstabie, overturning of the rigid block can

) \
occur, For situations with stable steady-state periodic motion,

overturning can sti}l occur if the transient pPhase of the response
exhibits excessive rotations. From the results obtained, it is feund
that, as the restitution coefficient decreases, the system becomes more
stable against overturmng and can withstand hlgher accelerations. In
tms study. simpler approx:mte relations governing the exrstence oF the
st‘eady—state periodic motion are derived and appiied. The approximate
relations are found to be accurate for practice.

’:-\.. In th>|:; study, the effect of uplift on the response of partially
leed systems is investigated. The parameters of interest are: a) the
gap size, b) the bolts’ rigidity, and c) the excitation parameters. The
results obtafned lead to the' fol lowing concliusions,

1= For systems restrained by non-yielding bolts, the existence of
92pPs decrease the deformation of the mounted equipment relative

to the base as compared to the case of complete fixation. The
maximum reductfon in the deformation of the equipment is obtained

when the size of the gaps is large enough to al low free rockrng.

- 2- F:or harmonic excitations with Jow frequency ratios, the

Introduction oF 9aps does not affect the deformation of equipment

restrained by non-yfelding boits.

3= Exlistence of gaps also decreases the natural frequency of the

al
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'Bystem. This effect is enhanced at iow excitation levels for the
systems restrained by non-yielding bolts and is decreased_Fop the
systems with yleiding bolts.

-

" 4~ In the systems with yielding bolts, the presence of the gaps
affects the deformation of tne equfpmeqt more tﬁanoin the systems
with non-yielding bolts,

5~ The total rocki;g angle after all stretching tékes place is not

sensitfve to the initial gap size, and depends on the level of

excitation. lk |

6- For a specified excitation level, the holts in the systems with
smaller initial gaps experience more stretching. Accordingty,
more ductility demand is placed on the bolts in such ;ystems;

7- Because of the shift in the 'natural Fre;:tuency of the partially
fixed equipment, the case of equipment mounted on a Stfucture the
natural frequency of which is less than that of the mounted
equipment (on a fixed base), can be more critical than that where

both natural frequencies are identical.

/

In general, from the results obtaiﬁed by the énalysls of _ _

restrained rocking of equipment., the fol lowing: recommendations are made:
I- It is recommended that equipment be allowed to rock on its base
by providing gaps in the fastening system. Partially fixed

‘equipment systems have two advantages over completely fixed

systems. First, the deformation of the mounted system and the

design base shear are reduced. Second, the design bolt’s yield
strength is decreased, especially, when the boilts are required to

remain elastic. bt
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It is useful to des;gn the bolts to yield but q?t to break. This
will reduce the equiﬁment deFormationlconsiaer;bly. This deslgn.
will be difficult to achleve in practice, however, unless the
hness of the bolt’s material is sufficiently large.

>

recommended that a ductile kind of material be used for the

This will accommodate the stretching in the bolts wéen
the fo ces‘induced in“them reach their yieid strength.

The bolts can be Fa:;eneﬁ in such a way that a sufficient
deformable ltength for the bolts will be pfovided. This will
Inqrea§e their ability to ég§orb energy without changing thelr

yield strength. It is more practical, however, to increase the

"gap size to tﬁe required value. Larger gaps are recommended for

higher floor acceleration ievels. In general, a gap ratio equal
to 0.03 is found to be sufficiently large for the case
cons ldered.

In'tﬁis study, it is assumed that the equipment is not deformable
in the vertical direction. In fact, the columns of the equipment
frame are usual ly stiff in the vertical direction and the natural
frequency of equipment due to the axial deformation is relatively
high. I1f the beamSJ’Tgside the  equipment, are relatively
flexible, however, their lateral vibration should be considered.

It s also assumed, in this study, that the impact forces occur
instantaneously. Therefore, their effect 1§:considered as a
sudden change fn the momenta. For future research, however, the

effect about impact shoulid be studied in more detail, taking into
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consideration the effect of wave propagation in the eqdipment
/ o .

frame column.

b
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APPENDIX A

AREA OF ACCELERATION-TIME D]AGRAM

) ' FOR

IMPULSIVE EXCITATIONS

The area of pulsive acceleration-time diagram Ay is expressed

as . -
- 2 .
h At = OI x dt \ . {A.1 }

~

To overturn the rigid block, by an initial angular velocity, the initial
kinetic energy of the block must equa! the potential energy of the block
at the position of oveﬁturnfng. Therefore, using small angle

approximation, we have: . -

A, 8% = WR =— (A.2)

LAS I

f  Mxnhat=138 (A.3)

or

o @  (A.2)

Substituting the expression of the angular velocity given by equation

(A.2} into equation (A.4) and soiving for Aps We get:

g_c {A.5)
jul

A =

219
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Thus the érea of the normalized acceleration time diagram .be

to: o
.‘“‘t_l
ge

comes equal

3
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