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ABSTRACT

Several methods have been proposed and tested for calculating lower bounds on the
objective function of facilities problems. These methods contribute to the efficiency of

iterative solutio:{v methods by allowing the user to terminate the computation process when

- the objective function comes within a predetermined fraction of the Bpt,iinal solution. Two of
the existing bounding methods have been presented only for single facility location models

with E}Jélideazi (straight-line) distances. One of these methods uses thie dual of the singie _

facility location model to compute a lower bound. This“-thesis. introduces a method for

generating a feasible dual solution from any primal solution by means of a projection matrix. .

r

The projection matrix method is applied to single and multi-facility modeis. The second

bounding methed, which involves the solution of a rectilinear distance model to obtain a lower

bound, is extended in this thesis to include a generalized distance function and the multi-
facility situation. Computation results for the two new bounding ﬁeth’ods are.compargd \wikth
several ‘existing boui:ding methods. . These résu}lts, shoul@ aid practitioners in selecting a‘n
appropriate boundmg method -fof an "i'tei'qti\.r'e solution method to a.’ﬁic‘ilties location problér-x{.
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CHAPTER 1

INTRODUCTION !

»

1.1 Single and Muiti-Facility Location Models

Facilities location probléms are concerned with finding an optimal location for an
object or objects which interact with other objects whoge locations are known. The first knoﬁn
formulation of a location problem dates back to the early 17th century. Fermat posed the
problem in terms of finding a fourth point in the plane such that the sum of the disf.:lnces to
'three fixed points was a minimum. By 1.640 Torricelli had solved the three poiﬁt px.'t;tlem_ by
means of a geometric construction. His procedure was to draw circles circumscribing the
equilateral triangles constructed on the sides of the triangle formed by the three fixed points
as vertices. The intersection point of the circles provided the location of the fourth point,
called the T;mcelll point. In 1647 Cavalieri showed that the angle formed by j Jjoining any of
the two fixed points to the Torricelli pomt (as vertex) was 120°. In 1834, F. Heinen proved
.that if the triangle formed with the three fixed points as vertices had one angle greater than
or equal to 120°, then the location of the fourth point was at the vertex of t'i'le greatest angle.
The first generahzat:on of the Fermat. problem appeared as ap exercise given by Simpson
(1750), in which he asked for a minimum we:ghted sum of dlstances from three points. Weber
(1909) used the three point problem to find the best Iocatlon for a central facility to ﬁ"oauce a
single product for a market point while receiving raw materials from two given distinet
points. Over the last three hundred years the Fermat problem has also been known as the
"Steiner Problem” and "Weber Problem”. A more detailed history of this problen; is pfovided
by Kuhn (1967).



Ina Mathematical Appendix to Weber’s book, G. Pick suggested a solution method
using weights and strings. This was the Varignon Frame, a mechani::al analog for
determining an optimal solution to the single facility straight-line weighted-distance
problem. Using a board with heles drilled in it to represent the location of existimg facilities, a
string is passed through each hole and a weight corresponding to the transportation cost is
attached to the lower end of each string. On the top of the board, all the strings are attached
at a common knot. When the knot is released it will rest at the optimal location (assuming
the absen.ce of friction).\

Each weight or (%emand in the lo?tion m?del can be used to represent a traffic flow
_or a monetary value for-converting the dist’ance travelled between a new ar}d existing facility
into a cost. The weigfit must be taken per unit distance per unit time, e.¢’ the number of trips
per week from various departments to'a central storage area or the daily cost of operating a
truck per kilometer. An application of the single facilty medel which includes detailed
calculations of trucking costs from a truck terminal to various customers is gi_ven by Love,
Truscott and Walker (1985). )

Weiszfeld (1937) introduced an iterative method for solving the continuo;xé 'space
single facility weighted Euclidean (straight-line) distance location model. The Weiszfeld
method remained in relative obscurity for many years until it was re-discovered
independently by Miehle (1958), Kuhn and Kuenne (1962) and Cooper (1963). About this
same time the single facility location model with rectilinear distances was formulated by
Bindschedler and Moore (1961) and Francis (1963). The rectilinear (rectangular) distance
measure occurs when travel is restricted to routes which are parallel or orthogonal to each
other. Streets which form a rectangular grid and factory floor plans with aisles aloﬁg
rectangular bays may give rise to rect,angula:; or rectilinear distances. If there are one-way

streets in a city or obstacles on a rectilinear floor layout, the actual distances travelled in



moving from one point to another can be even greater than the rectangular distance between
the two points. By having travel distance represented by a distance function rather than
actual distances in the location model, the distance function can be fitted for the appropriate

situation using distances ranging from Euclidean to rectangular. The multi-facility

‘ o

rectilinear distance problem was introduced by- Francis (1964), but the proposed solution

method was limited to describing a region where the new facilities could be located.

-

If two or more new facilities are to be located simultaneously among a set of
existing facilities, then this is an example of a multi-facility problem. Each new facility can
interact with the existing facilities and Ehe other new facilities. If there is no interaction
"between pairs of new facilities then this is a special case of the multi-facility problem, which
can be solved as a series of separate single facility models. A‘more complex multi-facility
situation occurs when the interactions between new facilities and existing facilities are not
specified. As an example of this location-allocation situdtion, consider the problem of locating
several new warehouses to serve a set of retail outlets where the stores have not been pre-
assigned toa ».\['_arehouse. The idea is to simultaneously locate the new facilities and to assign
the outlets to the appropriate warehouse so that the total cost of serving the warehouses is
minimized. |

In the past 25 years there has been considerable effort expended on solving facility
location problems. If rectilinear distances are used then exact solutions can be determined for
the single and multi-facility models. Linear programming was applied to solve rectilinear
distance models by Cabot, Francis and Stary (1970) and Wesolowéky and Love (1971a) but the

~number of constraints and variables increases considerably with the problem size. Lineaf
4

programming is essentially confined to solving location problems when there are linear

constraints on the .';,it,es for new facilities, provided that the constrained region for locating the

‘new sites is convex. An example of this would be locating a new machine on a plant floor
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where access to overhead cranes would require that certain region§ be considered as
unsuitable for the new location.

For single and multi-facility models there exists a corresponding dual problem
which can be solved independently to obtain identical solutions to the original (primal) model.
The dual is a maximization problem and the primal and dual problems are equalized at the
optimal solution for either problem given there is no "duality gap”. The dual for the single
facility Euclidean distance model was formulated by Kuhn and Kuenne (1962) and Bellman
(1965). A multi-facility dual has been developed by Francis and Cabot (1970), Love and
Kraemer (1973) and Love (1974). Kuhn and Kuenne refer to the lengthy history of the single
fatility Euclidean distance dual, and Kuhn (1967) provides a more detailed description dating
back to the 19th century. The special case for three fixed points and unit weights was
published by Fasbender (1846). By constructing an equilateral triangle with maximum
hieight which circumseribed the three fixed points, Fasbender showed that the altitude was
equal to the minimum distance sum from the Torricelli point to the three fixed points. The
dual models for the single and multi-facility problems do not contain any of the primal
variables and can provide alternate computational possibilities in solving for the optimal

locations. i

v

/

1.2 User Decisions in Applying a Location Model

\

When a location model is used, a number of decisions must be made concerning the

number of new facilities to be located, the choice of a distance function, the solution method
used to solve for the optimal location or locations, and when to stop the solution procedure if
an iterative computational techni.que is used.

If the number of new facilities‘has not been specified, the location and minimum

cost for a single new facility can be determined. A multi-facility model can then be used to



solve for the optimal locations and minimum cost for two, three, four or more new facilities.
By combining the fixed cost for new facilities with their respective variable (transportation)
costs, the total cost for locating one or more new facilities is obtained. The lowest total cost
will then identify the appfopriate number of new facilities that are required.

When calculating the transportation cost, a distance function is used to estimate
the travel distance between a new and existing facility. Various functions for modelling
travel distances have been suggested by Love and Morris (1972, 1979), Ward and Wendell
(1980, 1982), Berens and Korling (1984), Love and Dowling (1985) and Juel and Love (1985).
The usual procedure is to take a random sample of actual distar;;es t:;-avelled bc:tween fixed
points and use these distances to estimate the parameters in the distance function chosen for
that particular application. The distances between any two points can then be calculated as a
function of the co-erdinates of the two points and the estimated parameters. .

When the number of new facilities to be located, the distance rrnodel, and the
demands or weights needed to convert distance into cost have been specified, then a solution
method can be considered. A closed form solution to the single facility Euclidean distance
problem has not been developed, but it is poessible to solve the problem using an iterative
method. Iterative techniques have been proposed by Weiszfeld (1937), Miehle (1958), Kuhn
and Kuenne {1962), Cooper (1963}, Katz (1969), Kuhn (1973), Cordelier and Fiorat (1978),

Drezner and Wesolowsk_y (1978b), Ostresh (1978a), Calamai and Conn (1980) and Overton
| (1983). In contrast to this, an exact solution can easily be fouﬁd for the single facility
rectilinear medei. The location-allocation models require the solution of a large number of
individual location problems, so that a sin.gle computer run can take considerable time.

Iterative procedures which are guaranteed to converge still leave the practitioner
with the decision as to when the computation process should be stopped. One of the arbitrary

. !
. procedures utilized has been to stop when the reduction in the cost at some iteration reaches a



’
*gmail” value. This could mean that the solution valué is proceeding on a long shallow
descent, and the precess could be stopped when the current location is 2 considerable
geographical distance from an optimal one. Another technique that has been used involves
the derivatives (slope} of the cost function at the current solution point. The procedure is
stopped when the derivatives are "close” to zero. A method for determining a lower bound on
the objective function for a stepwise location-allocation problem with Euclidean distances was

‘ gfveri by Ostresh (1978a). Juel (1978, 1984) and Love and Yeong (1981) provided lower
bounds to the optimal solution which could be used to terminate the computation procedure
when the maximum percentage improvement that could be made in the current cost reached a
preset value. Both of these; bounds could be applied to single or multi-facility models with a
generalized distance function. Drezner (1984) developed a bound for the single-fz;cility
Euclidean distance model, and Wendell and Pet(.:rson (1984) have outlined a dual approach for
obtaining a lower bound to the single facility model with a generalized distance function.

1.3 The Importance of Bounding Methods for Location Models

The knowledge of how close the current location is to an optimal solution is one
which is eritical in stopping an iterative procedure. There are three reasons why it is advan-
tageous to compute a lower bound on the optimal cost of a location problem; considerable
computer time savings may be achieve&, consistency can be obtained in comparing costs when
several different problems have to be solved, and user satisfaction can be increased knowing
that a solution is as close to optimality as desired.

When usir;g an iterative technique to solve a facility location model, a bounding
method allows the user to stop the procedure when the current solution is witf\in a preset

percentage error difference of an optimal solution.



Computation time can be considerable when solving 2 large \ocation—ullocat.ion
type problem. In some situations an exact solution can be determined. Love (1976) provides
an efficient colution for the on¢ dimensional location-allocation problem using dynamic
progmmming: where examples with 150 custothers and seven new facilities can be solved in
gix or seven minutes on ul ‘Un'wnc' 1108. Ku.enne and Soland (1972), and Love and Morris
(1975b) provide spi‘utions to the two dimensional locntion-allocation problems with
rectangular distances. However, in many casesa heuristic algorithm i3 required to provide a
solution for the jocation-allocation medel, and these do not necessarily‘provide an optimal
solution. Some of the heuristics given by Love and Juel (1982) involve 8 series of allocation
changes, where each change requires the golution of & single facility 1ocation model for each
new facility in grder to determine the optimal locations with respect to 8 given set of
allocgtions. Using rectangular distance measure in the single facility location model allows
an exact solution to be calculated for each new facility 1ocatio:1. Then, the total cost for the
current set of allocations can be compai'ed w‘i.th the lowest total cost obtained from all
previous allocation changes. 1f a cost re&u‘ct.ion occurs, the best allocation and its cost are
updated. A bounding method would allow the use of distance measures other than
rectangular in the location model. Each facility location solution from an iterative procedure
can be calculated within a preset tolerance of an optimal solution, allowing 8 consistent basis
of comparison between total costs for two different sets of allocations.

If a single facility model with & generalized distance function is selected, the user
has a choice of the Juel (1984), Love and Yeong (1981), or Wendell and Peterson (1984) bound
in terminating an iterative golution technique. For the Euclidean distance model, the choice
can be expanded to include the Ostresh (1978a) and Drezner (1984) bounding methods. When
a multi-facility model is chosen, only the Juel, and Love and Yeong bounds are applicnble.

Since the Ostresh bound is a special case of the Love and Yeong bound, only the Juel, Love



ungl Yeong, Drezner, und’t‘he Wendell and Peterlson bounding methods will be considered in
this thesis. Both Juel (1984) and Elzinga and Hearn (1983) have proven that the Juel bound
is always as good or better than the Love and Yeong bound. These have been the only
theoretical comparisons that have been published to date. The dual lower bound for the single
facility Euclidean distance model has been compared with the Juel, and the Love and Yeong
bounds by Wendell and Peterson (1984) but only four small test problems with special
structures were given. [norder to use the dual as a lower bound, a feasible dual solution must
be obtained from the current primal solution and a method for obtaining this dugl,feﬁjsi’ble
solution has not been published for the multi-facility case. No comparison has been made
_ between the Drezner bound and the other three bounds, and the single facility Euclidean
distance Drezner bound has not been extended to encompass multi-facility models or
generalized distances. Some preliminary work by the author has indicated that the Love and
Yeong bound may, in most cases, provide a better bound than the dual. This is the rationale
for proceeding with a comprehensive comparison of the Love and Yeong bound and the dual

s

since the Juel bound is always as good or better than the Love and Yeong bound.

14 Objectives ofthe Thesis ' 4

The purposes of this thesis are as follows.

1. Given a single or multi-facility location model with a generalized distance
function and the current location or locations for the new facilities as deter-
mined by some iterative procedure, develop a mathematical method to
caleulate a feasible solution to the dual so that the value of the dual objective

function can be used as alower bound to the optimal solution.



(e

Write computer programs to implement this technique and provide
cornputationul results for the single and multi-facility cases in order to
provide a comprehensive comparison of the dual and Love-Yeong bounds.’
Extend the Drezner bound for the single facility Euclidean distances model to
include a generalized distance function and develop a bound for the muiti-
facility model with a generalized distance function.

Provide computational and, where possible, theoretical comparisons of the

four bounding methods for single and multi-facility location models.

.



CHAPTER 2
SIGNIFICANT PRIOR RESEARCH = —

In this chapter, mathematical models for the single facility location problem will be
discussed along with Properties and solution methods for these models. The dua problem will
be given for the single facility Euclidean distance model. Four bounding metheds will then be
described that can be used with single facility location methods. Mathematical models for the
multi-facility location problem will be introduced, and properties and solution -methods dis-

. cussed. The duais for the multi-facility models will be presented and the two bounding

methods that are available for use with multi-facility iterative solution techniques will be

described.

3

2.1 Single Facility Lication Models

The single facility t, distance location problem is given as:

-

n .
... _ (2.1}
minimize Wp(x) = Zl wj Cp(x,aj) | .
j= .

{ A
where nisthe numbgr of existing facilities (or "demand points"),

wjtohverts tl{e distance between the new facility and exis ing facility j into cost,
x"=(x1,x2) is the location of the new facility on the plane,
aj'= (aj1,8j2) is the location of existing facility j,
€5(x,8;) is the distance between the new facility and existing facility j where
Cp(x, aj) = (]x] -~ ajl]p + Ix2 - aj,l_,lp)u'p .
and the prime denotes transpose.
We will use the notation D(x,aj) to represent a generalized distance function, for which Ep(x,aj)

is a special case and dg(x,aj) or €3(x,8;) will be used to denote Euclidean distances. This
g

10

=3
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chapter will focus on models where the new and existing facilities are treated as points in the

plane, demands and costs are known, and tranaportation costs are assumed to be proportional

to distance travelled.

[f p=1, the rectilinear distance problem is given by:
S 2.2)
minimize W, (x) = > willx, — oyl +1x, —a,D. :
i=1 -
Since W (x) is separable, it can be written as the sum of two functions, Wyy(x1) and Wyo(x9)

where
. ¢
n
W, (x) = > wle, —a,l
i=1
for k=1,2. Minimizing W1(x) is equivalent to minimizing Wj1(x;) and W;2(x7) separately as:
min W (x) = min W (x ) + min W (x;) . (2.3)
X Il X.2
Each problem involvﬁ‘xg
, min W, (x,)
X

can be easily scolved, as shown by Francis (1963), to yield an exact optimal solution
x™ = (x)°,x2"). Forp > 1, no such exact solution method for (2.1) has been found to date.

For p=2, the Euclidean distance model becormes

.

minimize W(x) = i w e, — )7+ (x, —a )% 2.4

j=1
As mentioned pr;eviously in the introduction, Weiszfeld (1937) proposed an iterative solution
to problem (2.4) and several others rediscovered it independently in the late 1950's and early
1960's, Weiszfeld (1937), Katz (1969), Kuhn (1963), Kuhn and Keunne (1962), Ostresh
(1978b) and others have discussed the convergence p'roperties of the iteratiw; method. While

other iterative procedures exist for solving problem (2.4), the Weiszfeld technique is so well-

. known that a generalized version of it i3 used to provide solutions for all test problems used in
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this thesis. The iterative technique was developed by equating the two partial derivatives of
Wa(x) in (2.4) to zero, and isolating an x| or xg term on one side of cach equation te obtain an
expression that could be used in a recursive manner. At iteration k, a point xk' = (x1k, x9k)} is
gcﬁemted by

W,

n n
2.
E /E : , fort=12. - (@5)
=1 dalx val o dox, aj)

This procedure assumes that the optimal location for the new facility does not coincide with
an existing location aj, j=1,...,n. it has been'shown by Kuhn (1962} that each existing fuciiity
location can be checked to determine if it is the optimal locatien for the new facility. Kuhn
proved that the rth existing location (a,, a,2) is optimal ifand only if

((z w(a a ) 2+[ o wj(arz—njz) 2
d(a

a. ) dz(ar ) aj) r

172
) cw (2.6)

i=1
j:r j*r

If none of the existing facility locations satisfies condition (2.6), ther'\ the iterativ'e procedure
can be used to determine the optimal loc;ation of the new facility'.

An upper and lower bound for the Euclidean distance optimal solution was given by
Pritsker and Ghare (1970, 1972), who discovered a relationship between the rectilinear and
Euclidean distance solution vagues. If Walxy"), Wii(x1r") and Wyo{xor®) represent the objec-
tive function values for the op '\mal Euclidean -distance and rectangular distance solution”
) Jalues, then

1

W) = W) 2 (W (o DF + (W 0?1 @D

When the optimal location for a new facility occurs at an existing facility location, discon-
tinuities occur in the derivatives of Wy(x), as noted by Love (1967, 1968). For 1 < p < 2, Love
and Morris (1972) show that the €, distance function has convexity and derivative

discontinuity properties similar to the Euclidean distance function.
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In order to solve the problem of discontinuities in the &:rivutives of W,(x)in(2.1),a
uniformly convergent fitted function with continuous derivatives was developed by Love
(1969). A hyperbolic approximation was suggested by Wesolowsky and Love (1972) and
Eyster, White and Wierville (1973). The hyperbolic approximation to problem (2.1),
formulated by Eyster, White and Wierville for P=2, was adapted by Love and Morris (1975a)

by replacing the €, distance function with

N . vp
Z |at— btl + eJ ,
t=1

where 2 and b are two points in N-dimension space. Verdini {1976) has shown that the

Eph(a,b) =

hyperbolié approximation using €y, is not appropriate when using the Weiszfeld procedure for

the general situation of p = 1. Morris and Verdini (1979) replace the £p distance function with

ij.(x):[zl[(xt—njt) +e), p=le>0
t=

where x and a are N-dimensional vectors, and show that Ly; is differentiable and strictly

convex. Using the hyperbolic approximation suggested by Verdini and Morris (1979),

problem (2\.‘1) can be written as

n \ Lp
L _ 2., 2 2 p2 (2.8)
minimize th(x) = z w, ([(xl - 8jl) +e) + [(x2 _'ajz) + g ) ,
j=l . .
The approximation function th‘(x) always gives valqes greater than the true objective
function Wp(x); the maximum diﬂ'erence is given by

n
- = gl 172 (2.9}
max(W_ (x) - W )] = 2P ¢ ( gl wj) : .
This difference was given by Love and Yeong (1981) using a concept and property developed

by Love {1969) in establishing the uniform convergence of his fitted function. Woni(x) has the

prof)erties that it is strictly convex and all orders of derivatives are continuous at all points.
-

The practitioner can come very close to minimizing Wp(x) by choosing a small value for e

when minimizing Won(x).



14

Under certain conditions an iterative procedure is not required to solve for the
optimal solution. The optimality condition (2.6) for a.fixed point in the single facility
Euclidean distance model has been extended to include generalized distances which include
£, distances as a special case. Juel and Love (1981a) have proved that the rth existing facility
2 = (ar),a,2) is optimal if and only if . '

[erllp’tp- 1) + erzip/(p— UI(p—pr < wr

where

o wsign(a, —a —a,k|p_1 . :
R.,= 4 fork =1,2 and p>1.
= [€ (a_a)PP~!
=1 ple B
i=r

In the limiting case as p — 1+, the rectilinear distance model is minimized at the point a, if

(2.10)

and only if
max{R |, IR )= W,
Witzgall (1965) showed that if one weight, w,, was greater.than or equal to the sum of the

remaining weights, then x* = a, was the optimal location. The Witzgall condition does not

provide as strong a result as the condition given by (2.10)" Juel and Love {1982) have provided

conditions where an optimal ]ocaﬁon can be constructed.

In situations which do not fit the previously mentioned special cases, the practi-
tioner is faced with using an iterative procedure to determine the optimal s“olution.- The
Weiszfeld technique given by (2.5) can be extended to include the hyperbolic approximation
(2.8). By setting the partial derivatives equal to zéro and isolating x; and x2 on one side,

—

Verdini (1976) and Morris and Verdini (1979) showed that a recursive relationship can be

obtained for the solution at the kth iteration as xk' = (x X, x9k) with

n a.,w

it j
“ k-] k-1
xk__ j=ld(x .aj)d (xt ,8jt_)
A_'- - [+ W

i

k-1 o k=1
j=1d"(x ,aj)d(xt ,ajh)
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where
\p2 pP21(p- 12
d'(xk—l,u)z ((x:‘_’l—ujl)z+c) +((x12t_l—aj2)2+t)
and
TN z |7 (2.11)
d(xL ,ajt)=l(xl —ajt) +s:] fort=1,2. :

_—

Setting € to a very small number such as 1.0x10-8 provides protection against the possibility
of division by zero in a computer program when the optimal locat}on converges quite closely to
an existing facility. A convergence proof is given by Verdini (1976) for p=1 and p=2 and in
generalfor 1 < p < 2by Morris (1981).

The dual fermulation of the single facility Euclidean distance model (2.4) was given
by Kuhn (1962) ;md Witzgall (1965) and appears implicitly in a dynamic programming proce-
dure by Bellman}lQGS). Kuhn (1967) provides a history of the dual as well as a geometric and

algebraic derivation of it. The dual for the single facility Euclidean distance problem (2.4) is

n
.. , (2.12)
maximize — Z}uj Uj
]=

o n
subject to j; Uj =0
[Ujiswj forj=1,....,n
where
Uj" = (uj, vj) are dual variables,

Francis and Cabot (1972) have described properties for the single and multi-facility Euclidean
distance duals. One of the properties of the single facility Euclidean distance d’ual is that the
dual variables at optimality represent the direction vectors from the existing facilities to the
optimal location, providing the optimal solution is not at an existing facility location. When
the optimal location coincides with an existing facility, the dual variables are zero. This

property can be expressed as
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Uj. = W}(Kl‘—ﬂjl)/dg(x‘,uj)
and vi" = wilxe® - ajaldy(x®,ny) for x* 2 aj, otherwise
y' = v =0 forx" =g : (2.13)

Bellman (1965) proposed a dual similar to (2.12) but it included the equalities |Uj| = w;j for
j=1,..,n, since the possible discontinuities in the derivatives of the primal problem were
ignored. The single facility' dual containing a mixture of €; and 3 norms was given by
Planchart and Hurter (1975), where the dual was solved by means of a de}:omposition method.

Given an optimal dual solution,\the optimal primal solution can be calculated using
x* = a; + kU;" where k; = 0. If all |Uj*l = wj, then using any two of the aj and the corre-

sponding Uj", four equations in four unknowns can be solved to obtain x*. [f|U,"] < wy, then

X = 4.
22 Bounding Methdds for Single Facility Location Models

The bound given by Love and Yeong (1981) for the single facility Euclidean
distance modf{i2.4) is

- 2.14
W, x*) = Wz(xk) -a (xk)IVWZ(ka @14

where Q is the convex hull of the a;,

o ()= max[dyxy)l,
yeQ

VW, (x) is the gradient of Wy(x), and xk is the value of x at the kth iteration of the solution

procedure: The bound given by Juel (1984) is

. 1 .
W,(x*) = W) — YW,y x5 + minVW,x") y]

yeQ

where the prime denotes transpose. These two methods are applicable to both single and

(2.15)

multi-facility location problems and can accommodate generalized €, distances. Juel (1984)
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und Elzinga and Hearn (1983) have proved that the Juel bound (2.15) must always be at least

as good as the bound {2.14) given by Love and Yeong, ~ ' -

A third bound is given by Drezner (1984) for the single facility case with Euclidean

distances. Drezner showed that

i d

. ' n ,

i : k k| k 2.16

W, (x*) = ::“;2 Zl {wjldz(aj, X )][lxl—ajlllajl - xll'+|x2_aj'z“aj2 — X/l (2.16)
j= . )

‘At each iteration of a seclution process this bound is evaluated by solving the following
rectilinear distance problem:
. R "n ' ' A n
min <, min .
< 2 w; |x1—aj1| o z w, ]x2—0j2] ,
1‘ J:[ 3 2 j=1

where the “created" weights w;’ and w;" are defined as

. k k
w' = [wjfdz(aj, x )] lajl_xll_ ,

. ) )
and v ; .

» k k ) L e
| W= [wjldi,(aj, x )] Ii.ljz_le forj=1,..,n. |
A fourth bounding method proposed by. Wendell and Peterson (1984) utilized the

dual of the location problem. The dual of (2.4) is given by

n
maxini ' ) . (2.17a)
maximize — z UJ aj .-
j=1 .
" | {2.17b)
: ) _--l . . ‘1
subject to 2 Uj =0
j=1 .
) U] s w,, « i=l,..,n (2.17¢)

LA

where the Uj are vectors of du.al variables. " To evaluate t_he dual at each iteration of tﬂ%

-golttion procedure, a dual feasible solution must be generated using the current primal

solution. When the dual f'é;s\ible solution has been calculated, the corresponding dual
objective function can then be used as a lower bound for the optimal primal solution. Wendell

and Peterson construct a vector from the current primal solution which is then projected into

N

i
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=

the subspace (2.17b) whete

n
2.U =
=1

and then the resulting projected vector is shrunk to satisfy the norm constraints (2.17¢).
Unfortunately no description was given of the projection method used and only four small

examples were included in the paper comparing the Love and Yeong, Juel, and dual bounds,

2.3 Multi-Facility Location Models

The first multi-facility loeation model was the rectangular distance model
developed by Franc1s (1964) to locate several new factlltzes where each new facility could
interact with a group of existing facilities as well as the remamlng new fm:lhtles The

transportat:on costs or interactions between two new facilities are assumed to be proportional

to the dlstance between them. The mult1 facility €, distance model is given by

N (2.18)
WM (x) = Z Z L ACER Z Z Woie €%, ) .
i=1 j=1 i=1 r=i+l -
where
m 'is the number of new facilities, ,
n . isthe number(of existing facilitjes,

- Wijj i3 the nonnegative pardmgeter which converts the distance between new
facility i and exi—sting fa'cility jinto cost, .
wair i3 the'qonp.egaﬁve parameter which converts the distance between the ith
and rth new fa_cji!:iﬁs iglbo cost (i=r),
;i’=(xi1,xi2) . are the location coordinates.ofnew:?;:ilityi,

aj'=(aj;,aj2)_ are the location coordinates of existing facility j, and P is the ¢,
»

I distance parameter.
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Substituting p=1 yields the rectilinear distance model:

m 1]
minimize WM, (x) = z z aj1|+|xi2— ajzl)
m-=1 m (2.19)
+ Z Z WXy = %+, — x D '
i=1 r=i+l

This rectilinear distance model has convexity and separability properties similar to the single

facility rectangular distance model (2.2), and can be writlen as

‘ n m—1 m
min WM, (x) = ‘Z 2w Wil — 2y + > > w2ir]xi1—xrll]

Xl j=1 i=lr=i+1

lz Zwl i u2|+‘>— Z 2“ X, x2] (2.20)

i=l j=1 - i=1 r=i+l
Exact solutions to the multi-facility rectilinear distance problem were obtaired by Cabot,

Francis and Stary (1970) and Wesoiawsky and Love (1971a) using linear programming. The
Wesolowsky and Love linear prograrn_mir;g formulation intr;)duces an equality constraint and
two new variables for every absolute value term in (2,19), which makes its use impractical for
large multi-facility problems. The linear programming approach does allow the introduction
of additional constraints when restrictions on the locations of new facilities are required.
There are a great number of discontinuities in the partial derivatives of WM(x); this makes

the use of gradient search techniques infeasible. Discontinuities occur when a new facility

coincides with an existing location or with another new facility as reported by Love (1967,

1968, 1969). Several methods are available to solve large scale problems. Wesolowsky and
Love (1972) used & hyperbolic approximation to the terms involving rectangular distance;.
Approximating WM (x) by a non-linear convex function with continuous partial derivatives
allowed an iterative gradient descent method to be used to determine an optimal solution to

the approximation function. An algorithm was proposed by Juel and Love (1976) which uses a
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"
modified edge descent procedure and can solve large problems in short computational times (1
second for m=70and n= 350 on a Univac [110).

The Euclidean distance multi-facility problem is

12
min WMz(x) =

s
M=

1
—
—.
It
—_

2 2
wiille, - 2, )"+ - 2,)°]

.

2 (2.21)

-1 m
+ 2 2 WoselOXi = “j1)2+ ("iz—xrz)zl
i=l r=i+l

Various approaches have been employed to solve this problem. Vergin and Rogers (1967)
used a heuristic which located all the new facilities in a step-wise manner, and then took each
new facility in turn and located it optimally, considering all other facilities as being fixed.
This procedure was continued until no further improvement could be made to the objective
function value. A three-dimensional formulation of (2.21) was solved by Love (1969) using a
convex programming algerithm after first using the Method_of Fitted Functions to overcome
the discontinuities in the partial derivati’ves of the objective function.

Frar;c;s and Cabot (1972),described the dual for the unconstrained Euclidean
distance problem but no solution me'(thod w’lxéi_given. Although the primal problem (2.21) has
discontinuities in the partial derivatives, the dual does not have these differentiability
probléms. Love and Kraemer (1973) used a nonlinear decomposition technique to solve the
multi-facility Euclidean dual with linear constraints. . For the unconstrained rectangular
distances problem, the dual was given by Cabot, Francis and Stary (1970) and Wesolowsley
and Love (1971a) provided duals for the linearly constrained and unconstrained cases. The
Euclidean distance multi-facility dual for the prir;ml problem (2.21) has dual variables
defined by Upij' = (uy;, vyjj) fori=1,.,m;j=1,.,n and Uzie' = (ugjy, voir) for i= 1,...,m-1;

r=i+1,.,m. =

The multi-facility dual problem is expressed as
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m n .
.. R . (2.22)
maximize — Z Z 2 Ulij .
i=1 j=1
i—-1 m n
subject to - Z Uzn. + Z U2ir + Z U“jz 0 fori=1,..,m
r=1 r=i+1 j=1
|Ulijlsw1ij' i=l..,m;j=1,.,n
|U2ir15w2h__ i=1,...,m=-1;,r=i+1,..., m
The inequalities arise in the situation where x; = gj, in which case |U1ij| = 0 (otherwise

[Uri) = wiij), or when x; = x,, in which case |Ug;;| = 0 (otherwise |U2i;] = woir). One of the
’ properties given by Francis and Cabot (1972) for the multi-facility Euclidean distance dual
provides a relationship between the dual and primal vari';ables at optimality. The U*;; duel
variables satisfy the condition that the line through the existing facility aj which is parallel to
U*1;j passes through the optimal new facility location x*;, providing that the new facility does
not coincide with the existing facility aj. _ Similar]ir, if new facilities x*; and x*, do not
coincide, then the line through new facility x*_ parallel to U*yir passes through x*. If a new
facility coincides with an existing facility or if two new facilities coincide, the corresponding
dual variables are zero and vice versa. This property can be expressed as

2 212
L * . _ .
Ut = Wy B Vix*, —a )7+ (x*%, a,)’l

» = . o . 2 . _ o Y2 .
Vi T w“j(x @ ajz)/[(x i ajl) + (x o ajz) ] . forx :taj
) , 12 (2.23)
s - - e P U
Wrop = Woy (X% = 2 MO — x® 7 %y — x* )T,

' 2 22 ‘
T R L D * *
Vi = Wop (X %p — x® QG — x* ) (%, - x? )] for x* = x*,

otherwise
* =y =0ifx*t = * —y* = ifx*. = x*
LTI A 0ifx*, ajandu 2= Vg = 0 ifx*=x* .

The multi-facility Euclidean distances optimal solution can also be bounded by con-

dition (2.7), as shown by Pritsker and Ghare {1970, 1972). Sufficient conditions for optimal
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facility lecations to coincide for some multi-facility problems are given by Juel and Love
(1980). In some cases, by checking the interfacility weights to determine if they satisfy a few
simple inequalities, it is possible to solve o multi-facility problem. Also, a muiti-facility

generalization of Witzgall's majority rule was given by Juel and Love, whereby if

n

m
Wi = Z Wit 22 Wori »
j=1 i=

then x*, = a; may be assumed without loss of generality.

To solve the ¢p distance mul‘ti—facility problem, an approximating function
WM h(x) can be used to overcome the problems of differentiability of (2.18), as proposed by
Wesolowsky and {fve {1972) and Eyster, White and Wiervilie.(1973). The multi-facility
H.yperbolic approximation version of (2.8) as given by Morris and Verdi;ﬁ (1979) is:

m n

Lp

WM (x) = Zl z!-wuj[[(xn_ ajl)2+e]'ﬂ +[x,,— aj2)2+a1""*'} -
1=] |=

Up
+ Z wzir[[("u““r1)2+.clﬂ+[(xi2"xr2)2+8]'ﬂ) . (2.24)

Coi<r

where ¢ > 0. They show that the function WMpn(x) is étri\;tly convex and ig differentiable to
any order everywhere. It can easily be shown that WMph(x) is uniformly convergent to
WMp(x) as e — 0, since

m n
max[WM__ (x) — wmpun:z“%”( 2> Wt Z wﬁr),
1<r

i=1j=1 .

as given by ‘Love and Yeong (1981). Morris and Verdini (1979) showed that the iterative

sequence given by (2.11) generalizes to the multi-facility caseforr=1,. mand s= 1,2 as:

xf:‘ =(A+BY(C+D) - @22

where
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k

m w_ X,
A z : 2ri is

kK k2, 02 ok ke P~lp k k2. (2—py2 °
i=1 flx —x”) +g]™ +[(xr2—xi2) .H:]W}P P[(xm _xis) +g2-p

rl

Bzi 4 lrJJS

{[(x 1 —ay) +a]'ﬂ+[(x 2~ 2) +e]‘ﬂ}(p"“lpf(x —aja)2+c](2‘"")’2 '

s E ‘
o w, .

C = Z 2ri

1 (X —xK P42l [k~ xf) o clP2P Dy AR Ll

and

n . T w
D= Irj
j=,1{].'(xk -a )2+c]‘ﬂ+[(x a2) +c]p{2}(p_mp[(x —a, ) +f:](2ﬁp”2

Ostresh (1978b) has proved that for p=2 this generalized Wexszfe]d sequence is strictly
decreasing and Morris (1981) hag given a convergence proof for 1 < pPs2
Dual formulations for the unconstrained and linearly constrained £, distance
location model and the hypetbaolic approximnting. fuﬁction mode! were provided by Love
(1974). The dual for the multi-facility location model was exten‘ded by Juel and Love (1981) to
include generalized distances and linear constraints. For the €, distance primal (2.18), the
corresponding dual, as given by Love (1974), is
m n ' T {2.26)

maxlmlzeD(U) maximize — Z Za U
i=1 j=1

subject to —-ZUzn+ Z U, +Z =0 i=1,..,m
r=1 r=it+l =1
IUlijlq=w1ij i=1,..,m;j=1,...n
IUmr’ = Yo i=l..,m-1;r=i+l,.,m
given that the derivatives aWM(x)axyi k=1,2and i=1 »--T exist and that 1/p+1/q=1, Iq is

the £, norm, and Upi' = (ulij, viig) and Ugy’ = (ug;, v2ir) are dual variables,

Love (1974) also showed that the hyperbolic approximating function
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min WMH (x) = ? Z ”xil— an[P+ |xi2— ajzll’ & P

l—l j=1 d
m-—1 m - ' 2.27)
1/ .
+ Z z W b, — xrt|p+ 1xi2_xr‘llp+ S

izl r=i+l
has a corresponding dual

m n
- . (2.28)
max D (U, 2) = max ~ > 2 U, Z Z eZ,
i=1 j=1 i=l j=1 .
i-1 - n N
subjectto — » U, . + Z U, Y U=0
' r=1 r_—|+l . =1

N ) \
[(IIUhlI )+ ‘Zluiq]l!p = wll Up i=1,..,m;j=1,.,n

(U, 1+ |zur|q1”P = w,, Up-1) i=1,.,m—-1;r=i+1,.,m

where Z' =.(Zu L - Z11qs - L1mn) 18 @ vector of.ndditional variables and ||-| is the €4 norm

Love (1974) has shown that

.llmD (UZ) Dp(U),

c—0

g0 that the dual of the limiting case whene — 0 is given by

max -— Z Zaj' qu
r

% (2.29)
i-1
" subject to ZU + z U, +ZU =0 i=1,.,m
r=i+1 j=1 .
|qu|q=wm. or 0, i=1,..,m;j=1,...,n

U =w, orl i=1,..,m-1;r=i+1,..,m
2ir'q Ar

If the solution U, = 0 is obtained, then x;=x in the optima! primal solution, and if Uyj;=0

then x;=a;. The converse is also true.
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2.4 Bounding Methods for Multi-Facility Location Medels
fa:
Two of the bounding methods for single facility location models have been applied

to multi-facility €, distance location models. The extension of the Love-Yeong bound (2.14)

and Jue! bound (2.15) to include the multi-facility case (2.18) was given by Love and Yeong

¥

(1981) as
= . (2.30)
WMp(x‘) = WMp(x )~ o(x )1VWMp(x )

and .

« k. Kk . min K (2.31)

WM (x*) = WM () — WM (x*) x"+ —{VWM (x")y},
p P p y€ Q p

where

Q== (31,...,sm)|si€ Q,i=1,..,m}, (isthe convex hulloftheaj;j =1,..,n

o (x) = max {d(x, y)|y € O}

and x¥* = (x11X, X12%, ..., Xm1¥, XmzK) is a point generated by a computational procedure at the

kth iteration. When an approximation function WMgy(x), as in (2.24), is utilized then the

bounds can be calculated using

) m B m-1 m -
kK, = X Up 2 ' (2.32)
WM (x*) = WM, () — o[TWM,(x |- 2%e (Z Z Wit Z Z wmr),
|_=1_|=1 i=1lr=1+1
and

k min Ky X
WMp(x‘)z Mph(x )+yE a{VWMph(x Yiy—x"l

. m 0 m-1 m (2.33)
-2 c'ﬂ(zz w11j+ z Z wﬁr).

i=1j=1 i=1r=i+l
No generalization of the single facility Drezner bound (2.16) to include an & distance function
-

" andfor the multi-facility problem has been published to date. Also, 'the dugl has not been used

to bound the multi-facility primal since a method for obtaining a feasible dual solution from

the current primal solution is required.

A+



CHAPTER 3

A COMPARISON OF BOUNDING METHODS FOR SINGLE FACILITY

LOCATION MODELS

In this chapter, £he dual-and Drezner bounds will be developed for the single
facility location model using €, distances. A projection matrix tgchniquc will be used to
generate dual feasible solutions from a given primal solution, so that the dual can be used as a
Alower bound to the primal problem. Results will be given for a compufational comparison of
the Juel, Love and Yeong, Drezner and dual bounds, followed by conclusions regarding the

use of these bounding met?ods.
B!

3.1 A Lower Bound Obtained from the Dual .

Recall that the single facility location problem with £p distances is given by
S (3.1)
‘minimize Z w, Ep(x. aj) : o
=1
and the corresponding duel by’

n

.. , {3.2a)
maximize — z a Uj i

j=1

\

o 2 (3.2b)
subject to Z U= 0

=1

U| =w, (3.20)

S

forj=1,..,nand 1/p+1/q = 1.
A lower bound can be determined by obtaining a feasible solution to the dual in the °
following manner. Given an iterative computation procedure and the current solution

xk' = (x1k,x9k) at iteration k, the direction vectors "Uj are estimated using

26
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Uik = (ujk, vik) = (x1k - 51, xgk -ajp) for j=1,...,n. Condition (2.13), which gives the relation-
ships between the dual and primal variables at optimality for the single facility Euclidean
distance model, provided the motivation for this method of obtaining an initial estimate of t_[r;e .
dual variables. ‘The non-normalized Ujk direction vectors are used to ol-)t,ain vecter Uk; =
(uik, ..., uzk, vik, ..., vo&). This initial dual solution need not satisfy constrz;}nts (3.2b) and
(3.2c). The Ujk vet;tors are adjusted so ‘that constraints (3.2b) and (3.2c) are satisfied, thus
generating a dual feasible solution at the kth iteration. Eac}; Uik is adjusted so that the
equality holds true in {3..2c), using ¢; = wyiUjk|, to obtain the adjusted vectors I_ij = ¢Ujk, for
J=1,2,...,n. Although the norm constraint is satisfied, the adjusted Ujk vectors may not satisfy
the linear equality constrai;lts. In order to satisfy {3.2b), the vector Uk’ = ey ugk, ..., cqn voklis
projected into the intersection of the two planes determined by (3.2b), using the projection

matrix P as given by Rosen (1960).

Pisdefinedas P = I —'As'(Ag Ag')-1 Ay, where Ag is the matrix whose rows are the
coefficients of the variable_s in the dual using constraints (3,2b). The constraints in (3.2b) can
be expressed as

A U= 6 ) (3.3
-\;h“em‘r{g is a 2X2n matrix given by

11 .. 1 00 .. 0]
0o .. 0 11 .1
In general, P will be of the form

g

R O
O R
where submatrix R is an n X n matrix with elements
_ [ (n—1¥n i=j

—1n i=j “ij=1,2,..,n .

e

r.
i
The derivation of this result can be found in Appendix A.

-

yoe
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) Th‘c projected vector Uk = P Uk now satisfies (3.2b). However, some of the ij
vectors may no longer satisfy (3.2¢], or all of the Ujk may satisfy the strict inequality

|Ujklq < wj, forj = 1,..n. A final adjustment can be made to Uk so that at least one equality

condition in (3.2¢) holdstrue. Calculate EJ. =w, I|ijl and ¢ = mj“l{::j}; ¢U* will then provide

a feasible solution to the dual at iteration k. For the case where all lﬁjkl q< wj, forj=1,..n,
Uk will provide a feasible solution but cUk provides a better objective function value since
each¢; > 1, forj=1,..n, and hence ¢ > 1. A lower bound to the primal objective function can
be calculated using the dual objective function value
. - : ] _
- z ca' Uk,
i

=1

t

It would require less computation time to use the projection matrix on the 2n

components of Uk to obtain {Jx = PUX and then adjust the resulting vector by a constant

[

min k

= 1104 3.
c i tw, /1U71)
However, computational experience has shown that_the solutions obtained are extremely
poor. This occurs because any adjustment must be applied simultaneously to each of the 2n
components of PUk so that constraint (3.2b) is still satisfied. Furthermore, the adjustment

made is based on the worst violation of {3.2¢).

3.2 " The Drezner Bound for Single Facility €; Distance Problems

Drezner (1984) has shown that for Euclidean distance problems

n
- min Ky - k _ _ .k
wz(x ) 2 xl.x2 .zl [wjldz(a] ,X )] [lxl'—ﬂj ll laj 1""11 + |X2 ajzllaj 9 xz“ ’
j=
where xk’ = (x;k, xgk). At each iteration of a solution process this bound is evaluated by

solving a rectilinear distance problem. The Drezner bound is obtained by sclving the

following problem, given by (2.16):
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n ' -

n

mig ~ N nmun N\ . ,

x ‘\.;}_ wj |x1—aj ll‘+ %, 2 wj lx'.‘._dj'l
=1 j=1

where the "created” weights wj’ and w;" are defined as

k K
w'=[w. M (a A x)]|a, —x |,
i [ J2T | i

and

. ky1. _ k
W, —[wj/d2(aj,x 1 |nj2 X

2| forj =1,..,n.

The single facility Drezner bound can be generalized to €, distances in the

following manner, using the H.ﬁld?r.inequnlity which is given by:
. . J. . T

N N p N lq
p q
13 el s(Xnp) (Sier)
i=1 i=1 i=1
where {bn} and {cn} are real sequences, p>1 and 1/p+ l/g= 1. Let b; = |x-a;} and

¢; = |gji—xi¥|fori = 1,2andj = 1,...,n. Then

2
k by k kgl
z |xi_aji”aji_xi IS{HXl—aj1|p+|12—ﬂj2|p] p}{ﬂajl—xllq+|8j2—?(2|q] Q}‘

i=1
This can be written as
k; k
, v |:o:1—nj lllajl—xll+|x2—aj2]|aj2—x2
“lx —ay Ptlx,—a, 1P 2 k@ kiqql/q '
[Injl—xll +[aj2—x2| ]
t
or -
] n n
Wp(x) = z w, Ep(x,ajlz Z w, le—aj 11 + z w, Ixz—-aj2 ,
i=1 i=1 j=1
where
v K K kiq1Lq
w, —wjlajl—xl| /[fa“—xl] +|aj2—x2| ]
and
v _ k _ kg . _ <K@l
W= w, ajz—x2|:’[]ajl xl| + |aj2 x2| 1"
Since
n n
r L]
Wp(x)z Z w, |xl—aj 1] + z w, lxz—aj2 ,
= i=1
then
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n n

« — min min ' _ N " _
Wp(x )= Wp(x)le.xz [ Z W, ]xl aj1| + Z’ w, |}w:2 aj2|

i=1 i=
.

or ¢

n ) n
* min ' min . _
Wp(x Yo Z w, |xl-aj1|+ x, z wjlx2 aj2| .
i=1 j=1 .
This result can be used to generaté the rectangular bound for the single facility €,

distance model. At each iteration of the solution process, a single facility rectilinear problem
n n
« . _ min ' min -
minimize R(x) = " >: W, |xl—a.1|+ z w, ng—a.

1 ! ) ’2l !

is constructed, using the fixed facilities aj, weights w; and current solution xk to calculate’w;’

i=1 je=1

and w;" for j = 1,...,n. The two optimization problems can be solved indépendently and an
optimal solution xg* can be used to calculate R(xg*), which is the lower bound on Wy(x*} at
the kth iteration.

While it may appear that adding another optimization problem and solving it has
increased the work required to find a lower bound, this procedure hds several advantages.
The rectilinear problem is separable ar{d each part' can be solved rapidly. Also, it is not
necessary to find the hull points which are used in both the Love-Yeong and Juel bounds.

In order to test the effectiveness and efficiency of the four bounding methods,
several single fécility test prob.lt-ems were randomly generated. Comparisons and observations

are presented in section 3.3 for these test runs.

33 Bound Comparisons for the Single Facility €, Distance Model

Four programs were written to incorporate the generalized Weiszfeld pro-t}bdure
with each of the lower boumg methods. At each iteration of the solution procedure the bound
was calculated and tested against the current solution. By entering a proportionb.t.e error

T

difference e, a stopping rule calculated as
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| (bound value - objective function value) | Aobjective func}ion value) < e
was used to terminate the process. [n all sample ryns e = 0.01, and the initial starting
solution used in the Weiszfeld pr;)ceduré was (0,0). Snﬁples of size n = 6, 10, 15, 20 existing
facilities locations were randomly generated. In the first set of runs a unit value was assigned
to the w; weights, and €, distances were calculated forp = 2,1.8,1.6, 1.4, 1.2.

For a given value of n and p, a series of test runs w:as made using each of the four
programs. For each I_:)ounding- method the iterations were terminated using the stopping rule
N
with ¢ = 0.01. The numl;er of iterations réquired, the objective fqnction value, the value of
the bound, and the CPU compilation and executign t‘ivm,e\? were recorded in"each case. The
bound values are displayed in Table 3.1, where B1, B2, B3, B4 refer to the Love-Yeong, Juel,
Drezner and dual bounds, respectively. The average computation times [:or various sam;ﬁle
runs are in Tables 3.3 and 3.4.

E‘rom Table 3.1, it is quite evident that for p = 2 the Drezner bound provided
superior results. However, it is also quite e'vident that for p<2 the Drezner and dual bounds
may not converge. For exa‘mple, with n = 6 and p = 1.6 the Drezner bound giid not reach the
1% error difference in 25 iterations. The c[os'est it came was at iteration 9.when the error
diﬁ'erex.mce was 1.06%. At successive iterations after the ninth, the percentage e-rrortiiﬁerencg

increased in value. To further stl;dy this phenomenon, a second set of test samples was
created using-weights randomly selected frbt{x\the r@ge {1,10]. For each n and p combination
a'é’eries_ of fou:.' runs was made and the data were recorded. Then a new set of weights was
generated for the next n and p combination. Tlée results for these test ru;ls are shown in 'fable
3.2 -

The second series of test runs provided,data that supported the earlier observa-

tions. The instability of the Drezner bound makes its use impractical except for models with p

equal to two. The apparent convergence of the Drezner bound for p=1.8 was due to the
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magnitude of the error difference value (¢=0.01). If a smaller value had been used for e, say
2=0.00001, the Drezner bound would diverge before that error difference value could be

attained. -However, the test results show that for the Euclidean distance model the Drezner
v

bound was always superior to the Juel bound. Also, the Drezner bound is computationally

moreiffmfif}x{t\than the other three bounds. Average compilation and execution times for

Euclidean distances are shown in Talilvcs 3.3and 3.4 for ar_CDC Cyber 170/730.

-

;o | -

) o

o
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n 6 10 15 20

Ne. No. No. Na.

P of Obj Bound of Obj . Bound of Obj Bound of Obj Bound

[ter Funct Iter Funct [ter Funct Iter Funct
' 2 Bl | 12 11772 11681 6 187.34 185.53 T 290.37 288.60 8 J89.25 386.03
B2 | 7 117.74 116.86 6 187.34 186.11 7 290.37 288.43 8 389.25 386.64
B3 [ 4 117.83 117,01 4 187.39 18640 4 294,55 288.54 4 389.97 386.07
B4 ! 6 117.76 116.93 6 18734 18634 6 290.38 287.96 7 389.27 385.50
1.8 Bl | 11 12094 11991 7 19348 19159 8 297.86 29531 9 399.11 385.58
‘ B2 | 5 120.97 119.80 T 193.48 192.09 8 297.86 295.55 9 399.11 396.11
Bl | 4 121.00 120.02 4  193.59 15180 6 297.92 295.62 6 399.32 395.68
B4 | 6 12096 119.96 7 19348 191.7¢ 11 297.85 295.11 25* 399.10 393.18
16 Bl | 7 125.36 124.35 9 201.69 200.03 10 30802 305.27 1t 412.40 409.10
B2 | 4 125.38 124.35 8 201.69 19973 10 308.02 30549 11 412.40 409.52
B3 | 25* 12536 124.03 9 20169 199.68 25*  308.01 304.36 25 412.39 407.53
B4 | 25* 12536 123.87 25* 201.69 198.14 25 308.01 300.23 25* 41239 397.89
14 Bl | 19 131.64 13041 12 213.10 21129 i3 32226 319.61 16 431.13 42722
B2 | 18 -131.64 13034 Il 21310 211.36 12 . 32226 319.05 16 431.13 427.87
B3 | 25% 131.64 12772 25* 213.09 207.90 25* 32225 31191 25%  431.12 419.71
B4 | 25% 131.64 127.21 25* 213.09 204.42 25% 32225 303.07 25*  431.12 407.17
: 1.2 Bl | 25° 141.01 139.50 20 22978 227.74 13 343.08 340.89 25  459.07 454.99
82 | 25 14101 139.61 18 229.79 227.50 13 343.08 34111 24 459.08 455.00
B3 | 25 141.01 13054 25* 22977 216.18 25* 34308 32247 25*  459.07 431.07
B4 | 25 141.01 12830 25° 22977 208.34 25* 343.08 306.76 25* 459.07 41489

*did not converge to within 1% error difference in 25 iterations.

Table 3.1: Lower Bound Data for Single Facility Samples, w; = 1
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n 6 10 15 20
Na. No, No. No.
P of Obj Bound | of Obj Bound of Ohj Bound of Obj Bound
Iter Funct ' {ter Funct Iter Funtt Iter Funct
2 Bl 18 72852 721481 9 1095.51 1086.70 9 1591.44 1579.82| 10 208937 207177
B2 17 728.55 72163 | 8 109557 1084.87 8 1591.51 lSBI.Qd 9 2089.47 2074.56
B3 | 6 T730.19 72295 6 1096.056 1086.91 T 1591.72 1582.03| 6 2089.06  2078.33
B4 | 25* 72844 T18.42 ) 12 1095.47 1087.42 11 1591.41 1579.65( 12 2089.31 2069.41
[+ .
1.8 Bl 21 745.67 73886 | 10 1128.55 1117.71 10 1632.40 1616.50 12 2146.56  2130.53
B2 | 20 T45.70 739.18 | 10 112855 1119.78 9 1632.50 1620.85| 10 2146.79  2128.17
B3 10 T47.01 T39.60{ 13 112848 111731 8 1632.76 1622.70| T 214951  2133.78
B4 | 25* 74;’1.61 698.18 | 25* 1128.46 1073.78 10 1632.40 1619.4T7| 12 2146.56  2130.01
1.6 Bl 25 768.80 76166 | 12 117153 1160.11 13 1687.84 1674.63| 14 2223.67 2203.53
B2 | 24 76884 762.15| 12 1171.53 1162.09 10 168821 1671.76| 12 222393 2203.68
B3 | 25* 768.80 757.98 | 25* 1171.40 1137.90 10 1688.21 1672.04| 10 222491  2208.01
B4 | 25* 768.60 635.85 | 25* 1171.40 1043.8.5 25* 1687.79 1664.51| 25* 222358 2196.Te
14 El 25® B03.25 769.26 | 16 1228.62 1216.82 17 1766.00 .;!,749.97 19 2331.54 2311.34
B2 | 25* 80325 774.02 | 15 122870 1216.64 13 1766.50 1750.05| 17 2331.72 2313.36
B3 25‘ 803.25 77399 | 25* 1228.43 1151.36 25* 170590 171665 25* 233149 2278.06
B4 | 25* 803.25 657.98 | 25° 1228.43 1028B.75 25% 176550 1T702.23) 256* 233149 2273.57
7
1.2 Bl | 24 84814 B42.44 | 25 1308.03 129575 25* 1880.68 185533 | 24 249078  2468.99
B2 24 848.14 843.12 | 25 1308.03 .1295.81 19 1881.73 1864.06 | 23 2490.81  2467.26
B3 25* 848.14 781.65 | 25* 1308.03 118T.83 25* 1180.68 1734.62 | 25* 2490.78 2357.87
B4 | 25* 848,14 T!8.70 | 25* 1308.03 1149.,52 25* 1880.68 1710.66 | 25* 2490.78 2353.82

*did not converge to within 1% error difference in 25 iterations.

Table 3.2: Lower Bound Data for Single Facility Samples, w; € (1,10]
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Love-Yeong Juel Drezner

1.961 2.028 1.992

» -

Table 3.3: Average Compilation Time (secs) for Program and Bound,p = 2

n 6 10 15 20
Love-Yeong 0.545 0.699 0.587 0.524
Juel 0.542 0.487 0.628 0.544
Drezner 0.358 0.421 '0.415 0.414

Table 3.4: Average Execution Time (secs) for Solution and Bound, p = 2

From Table 3.1 where all weights have a unit value, the Juel and Love-Yeong
bounds provided better bound values than the dual as p decreased in value when n was fixed.
Also, for p fixed, the Juel and Love-Yeong bounds provided better bound values than the dual
as n increased, except for p = 2. In Table 3.2 where the weights are from the interval [1,10],
the Juel and Love-Yeong bounding methods provided better bounld values than the dual for 19
out of 20 n and p combinations.

in the following section, it will be proven that the Drezner bound is superior to the

Juel beund for the single facility Euclidean distance model.
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3.4 Comparison of the Drezner and Juel Bounds for Euclidean Distances

The bound values in Tables 3.1 and 3.2 confirm the theoretical results given by
Juel (1984) and Elizinga and Hearn (1984) which establish that the Juel bound gives as good
or better results t\}‘l‘nn the Love and Yeong bound. A comparison of the Drezner and Juel
bounds will now be made for the Euclidean distances location model.
| The Juel bound at iteration k is given by
Jx5) = w, x*) - VW, (") x* + ;‘5‘3 [ywz(x")' vl.
For Euclidean distances, ‘

n L2
W, ) = ‘Zl wdy x5, a)), where dy(x¥,a,) = (xy—a; )% + (xp—a, )
J:
and
n n
Ky k k k k
sz(x ) —(Z f (xl—n“)/dz(x ,nj), Z wj(xz—an)/dz(x ,aj)).

j=1 =1

Substituting in the Juel bound gives ‘

n n
I = Zl widyeha) - 3w -y K )
j= i=1

n n
k k k min k <k
- »zl w; (xz—ajz)ledz(x ,aj) +(Y132J€0 I -Zl wj(x1 -3 )ylldz(x ,nj)
i= j=

~

n
k k
+ Z W, (x2 - aj 9 )yzldz(x ,gj)
ji=1 .

The Drezner bound at the kth iteraticen is specified by minimizing

a i n
R(x) = Z w, le—ajxl + z w, |x2—aj2|
j=1 j=1
where
v k k . _ k k
w = wj|ajl—xljld2(x ,aj) and W= wjlajzuleldz(x ,aj) .
Let x*gk = (x*g;k, x*gok} represent an optimal solution obtained by minimizing R(x). Define

51 = {a11, 821, ..., an1} and Sy = {a}9, ag9, ..., an2} as the sets of first and second coordinates

.
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respectively from the existing facility locaticns aj, for j=1,...,n. An optimal solution to the
rectilinear distance problem must be an element from the set 5; XS;. Wendell and Hurter
(1973) have shown that x*gk € (S; XS4)N § for at least one optimal solution.

It will now be shown that at iteration k the Drezner bound is at leust‘as good as the

Juel bound.

THEOREM 1

Forp = 2, R(x*gk) = J(xk).

Proof:

2 n
o ky _ k K k
Rix*) = z Z wjlajl—xtl|x’m~aj'_|/d2(x .aj) ,
t=1j=1
' . -
k
t

[t
M
N4E

w.|x
i

k ' k *k k
: —ajtl‘l(xt—ajt)—(xt—xm)lldz(x ,aj).

t

L

S

2 =n -
= lelwi (= & JL{xp—a, ) = (xf = xp] 7d,x",m))
t=1j=

t

a

2
= 2 X wilxke a0 rd68 a)—ZZw(x -a )x rd <",

t=1j=1 t=1j=1
+ ZZw(x —a )xRtld(x a)
t=1j=1
_ k kys kys_*k
—Wz(x ) - VWz(x yx© + VW2(x ) Xp
Thus R(x*gk) = J(xk) if

2 n
22w e K n)a““['zzr“x —a, )y, /)5, 2)

t=1j=1 t=1j=1
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For x‘R'»< lying in Q, the convex (Euclidean) hull, then R(x*gk) = JOxk) with equality holding
only when x*pk = y* ¢ . |1 multiple optimal solutions exist, at least one optimal solution
must lie in Q. Let x*gk and z*rk represent optimal solutions where x*gk €  and *pk g Q.
Then, R(z*gk) = R(x*gk) = J(xk). Thus, therorem 1 holds true for P=2 and any optimal

’

solution,

This establishes that the rectangular bound can be used without‘uny- trepidation
about. its convergence with Euclidean distances since R(x‘nk) will converge to Walx*). Con-
siderabie computation time can be saved us‘ing this bound, as it required fewer iterations to
reach the same leve| of percentage error diﬂ'er-'ence as the other two bounds.

Theorem 1 in conjunction with the results of Juel (1984) and Elzinga and Hearn
(1984) establishes that B3 = B2 = B1 for the Euclidean disﬁnce single facility model. In
sectign 3.3, Tables 3.1 and 3.2 revealed that the Juel and Love-Yeong bounding methods
provided better results than the dual in a majority of .the examples. For p = 2, the dual
outperformed the Love-Yeong bound only when the weights had unit values. For P < 2, the
Love-Yeong bound provided superior results to the dual in 29 out of 32 test problems. The
nature of the dual makes it difficult to provide a theorétical comparison with the other three
bounds. In the next section, the dual and the Love and Yeong bound will be compared using

humerous examples forp = 2,

.

-

3.5 Comparison of the Dual {B4) and Love-Yeong Bound (B1)

Sé‘veral hundred test examples were construct_ed and run on a CDC Cyber 170/730
computer in order to investigate the performance of bounds B1 and B4 with respect to the
number of exi‘gting facilities, the locations of the existing facilities and the vaiues for the
positive weiéhts. Computational experience has revealed that there are three factors which

influence a comparison of bounds Bl and B4 for Euclidean distances: the number of existing

yi



facilities, an outlier umong the existing facilities, and the range of values for the weights. It
i3 the difference between the maxlmum and minimum vaiues of the weights rather than the
actual values of the weights which affects the relative performnnce of bounds B1 and B4, For
the numerical examples, the positive weights wj were chosen from g range of values [r,, ro]
wherer; < vy, The interval [ry, ra] could b?z‘mapped onto [1,w) where w = ra/ry. When w was
unity, or very close to unity, the dual previded a better bound than B1 at each- xteratxbn As
the number of facilities increased, the dual's performance was diminished, and as w
increased, the dual no longer provided ‘a better bound than BI. Figure 3.1 illustrates the
relationship between n and w that wag observed from running sample problems with n= 5 10,
20, 30, 40, 50, 75 and 100 for various values of w. For each value of n, a value of w was
selected and the wj weights were randomly generated over the 1nterval {1,w]. Twenty
different values for w were used for each value of n, and the bounds B1 and B4 were compared
for 25 iterations of the test problem. In most cases the dual provided a better bound for the
first 3 or 4 iterations, then B1 provided a better bound. More than 160 test problems were
used to plot the graph in Figure 3.1, Some test problems were run several tlmes with the
same weights and existing facility coordinates but with the weights assigned to different
facilities on each run. ‘
The effect of outliers was t,est.ed on many examples where each facility coordmate

. except for the outlier, wag generated randomly from the intervy] [0,50]. The weights were
randomly generated from the interval {1,20]. Each example was run 9 times, usmg 3 outliers

and 3 different outlier weights. The results are dlsplayed in Table 3.5, which shows the better

bound obtained at each iteration.
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40

g
— B1 better at each iteration
l— B4 better at each iteration
= | ] | I 1 I 1 :
10 20 30 40 50 15 100 n
Figure 3.1: Dual (B4) and Love-Yeong (B1) Comparison
Better Bound Obtained
.0 Qutlier Qutlier weight
[ SEANG : 3 11 19
[] ) ] -
16 (78, 93) B4 B4 B4
(126,112) B4 B4 . B4
(163, 186) B4 : B4 B4
20 (78, 93) B4 B4 B4
‘ (126, 112) B4 B4 B4
(163, 186} B4 B4 - B4
30 (78,93) B1 Bl B1
(126, 112) B4 Bl Bl
(163, 186) B4 B1 Bl

Table 3.5: Bt and B4 Comparison with 1 Qutlier.

>
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For a small number of facilities, when there is a single outlier with a small weight

"attached to it, the dual will usually provide a better bound than B1. Asthe weight attached to

the outlier intreases and/or the number of facilities increases, the effect of the outlier is mini-
mized. An outlier has the effect on B1 of increasing o which has a detrimental effect on the
bound value. The dual receives preferential treatment since the direction vector from the out-
lier will have either two large negative components or a large negative component ‘and a
smaller positive component which increases the value of the dual objective funct:on As the
number of facilities increases, the effect on the dual is diluted. Increasing the weight

associated with the outlier has the tendency to shift the solution towards the cutlier,

* decreasing 0 and the negative componénts of the outlier direction vector.

. While the dual may provide a better bound than B1 in some special cases, this is
attainegl at considerable cost in t.ern:s of CPU execution time. Table 3.6 gives the.average
CPU compile and execution times in seconds based on three runs fo:r each example using
weights randomly generated from the intervals (1,11, (1,2] and-[l,l(;]. As the number of

facilities increases, the proportion of CPU execution time required by the dual as compared

with B1 increases. For n=30, 50 and 100 the ratio of CPU execution time is 2.9,3.6 and 4.3 ‘

/

respectively.
Weiszfeld Solution Weiszfeld Solution Weiszfeld Soluti:):'
and Bound B1 and Bound B4
n Comp;xle ~ Execution Compile  Execution Compile  Execution
10 0.184 . 0.280 0.202 0.313 0.293 . 0.599
30 0.192 0.8.43’ 0.223 0.933 , 0315 2.726
S0 0,208 1.678 0.237 1.787 0.338 ' 6.387

3

Table 3.6: CPU Timings tseconds) for 20 Iterations on CDC CYBER 170/730
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If the dual could give a lower bound in fewer iterations thun B1, then it muay be
possible to overcome the difference in CPU execution times. In order to compare the.timing
and number of iterut.‘ions required to obtain equivalent solutions, the program was run until
the percentage difference between the total cost function and the lower bound was less than a
prescribed constant, The weighis selected were unity so that the examples were biased in
favor of the dual bound. The CPU timings are displayed in Table 3.7. THe execution time
needed to obtain the same percentage difference is much less for B1 than B4. Usually, if the
dual does provide a better bound at each iteration, Bl is never lagging more than 2 or 3

iterations behind it.

% difference | No.of Objective Bound Execution

n Iterations Function Value Time (secs)
50 B1 0.1 11 900.906 900.247 1.37
B4 0.1 10 900.906 900.387 3.66
B1 0.0001 23 900.906 900.906 1.93
B4 0.0001 21 900.906 900.905 6.69
100 B1 0.001 13 12132.6 12132.5 4.43
B4 0.001 12 12132.6 12132.5 14.59

Table 3.7: CPU Timings to Reach Equivalent Solutions

Both the dua! and B1 can provide equivalent bounds for an iterative solution proce-
dure. The examples in Table 3.8, one favouring B4 and the ot.}ller favouring 15:1, illustrate that
a wicg discrepancy in bound values may exist over the first five, iterations but very littl‘e
differeﬁce is observable by the 25th iteration. However, when computation time is taken into

consideration, B1 is generally superior to the dual bound.




43

Objective
‘n Weights Iteration Funection Bound B1 Bound B4
20 [1,20] 1 15958.8 0 10517.0
' outlier with b 15619.3 13694.6 15045.3
weight 3 10 15617.6 15301.2 155561.9
, 15 15617.5 '15550.4 15603.3
20 15617.5 15602.9 15614.4
25 15617.5 15614.2 15616.8
30 (1,80] 1 25364.9 20988.9 61440
5 24941.0 24190.2 20856.5
10 249324 24867.7 24524.7
15 249323 24926.9 248972
20 24932.3 24931.9 24929.4
25 24932.3 24932.3 24932.2

Table 3.8: Bpund Comparisons at Selected Iterations

3.6 Conclusions
For p=2, the Drezner method provides a better bound at each iteration than the
N
other three methods. In some cases, the Juel, I:ove and Yeong, and.dunl bounds required
twice as many iterations to reach the same value as t‘l:ua Drezner bound. The computational
sa¥ings achieved by using the Drezner bound with an iterative solution technique could be |
considerable. .

Another advantage of the Drezner bound was observed whe/ a series of test
problems with 30, 40 an;i 50 existing facilities were randomly genérated with coordinates
from the interval (1,50], an outlier at (30,78), and weights equal to 1. The bound results for
B1, B2, B3 and B4 are displayed fnﬁl‘able 3.9. For the situation in Taletla 3.9 with 40 existing
facilities, the optimai sclution was very close to an existing facility. This slowness of
convergence of bounds B1, B2 and B4 has always been observed in test problems where the

optimal solution was very close to an existing facility. The Drezner bound has never been

affected by thig situation. : L
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n B1 B2 B3 B4
tter. No. 10 10 5 8
30 Bound 595.6 595.6 595.4 595.0
Obj. Fn. 600.0 600.0 600.6 600.1
[ter. No. 25+ 25+ 4 25+
40 Bound 771.5 784.8 795.9 ' 787.4
Obj. Fn. 797.1 797.1 . 799.0 7971
_ [ter. No. B T 4 8
50 Bound 978.2 977.9 981.6 978.2
Obj. Fn. 984.8 984.8 988.0 984.8

* Did not converge to withine = 1% in 25 iterations

Table 3.9: Comparison of Bounds for Weights = 1 '

A final comparison of Drezner's bound (B3) and the dual bound (B4) using the four
examples from Wendell and Petersoﬁf(lg&i) is given in Table 3.10. The solution procedure
was terminated when e reached 1% or less. The Wendell and Peterson examples are of the
type that favour the performance of the dual ovér Bl since they have small numbers of fixed
points, an outlier, and uniform weights. However, as shown in Table 3.10, the Drezner bound
13 cleﬁrly-r superior to the dual bound in each case.

;\W}_';en_l < p < 2, the Juel bound provides the best boun-d from among the four
methods. Both. the I‘)rezner and dual bounds may experience convergence problems when
p<2. The Juel bound-isalways as good or better than the Love and Yeong bound, but

[
computational experience reveals that in most instances the Love and Yeong bound is never

lagging any more than I or 2 iterations behind the Juel bound.

LR el



!)‘rcz'ner Bound B3 Dual Bound B4
Number of Iterations Number of Iterations
Example
1 3
2 1 6
3 4 i0
4 1 25*

Did not converge to withine = 1% in 25 iterations.

’

Table 3.10; Coemparison of Drezner and Dual Bounds.
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SN CIfAPTER 4 -

.
’

A COMPARISON OF BOUNDING METHODS FOR MULTI-FACILITY
‘ LO;}ATION MODELS ™. )

The format for this chapter will be similar to the one us;zd in Chapter 3. The dual
and Drezner bounds will be developed for the multi-facility £, distance models. Dual feasible
solutions willr}r)_g constructed from a given primal solution using a projection matrix
technique. The proof that the Drezner Bound is as good or better than the Juel bound for the
single facilify Euclidean distance problem will be extended to include the/ multi-facility

Euclidean distance model. A computational comparisen of the dual, and the Love and Yeong

bounds will be given as well as conc®hsions regarding the ustge of these bounding methods.

.
-

41 A Lower Bound Obtained from the Dual <

The multi-facility €, distance location problem is given as

m n
ek . _ P p
mmunmeWMp(x)— .Zl.zl wlij”xil—ajli +|xi2—-aj21p]
i=1j=

)

(3.1}
P Up .
‘) + Z wo (1%, —x 1l..-_+-.|xi2—xl_2|"] , ) y
1<r A / - /
and'@e corresponding dual is given by .
- ) - * o _,A\
=
-
& d
) } \
_/—\/\ - Y
. 46
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maximize - ‘_\_ \_ zxj"Uhj (4.2a)
i=1j=1
-1 I m n
e <~ 2 — e
subject to -2 Uy + > Uy + 2 Up=0, i=l,...m (4.2b)
e r=1l r=i+1 ji=1
(U .| sw. i=1,..,m;j=1,..,n (4.2c)
lijq lij
./
™ Uyl Swy, 121, m=1ir=i+1, . m (4.2d)

where l/p + 1/q = 1, [Ulg= (lu)a + | v[a]ta for U' = (u,v), and Uy;; and Ugj;, are vectors of dual
variublfs. At optimality, Uii" = (uyj, vyy) is the non-normalized direction vector from the jth
existing facility to the ith new facility and Uyi," = (us, voi.) is the non-normalized directionl
vector from the rth new to the ith new facility.

Given a primal iterative computation procedure and the current solution xik for
i=1,..,m at iteration k, vecu;rs U\yjj and Ugg, are gstimated by Ukyi" = (xi1k - ag, xiok - aj7)
and Ukéj,' = (xi1k - x.1X, xj2% - x,9k). Each Uyi* and Ug; Kk vector is adjusted so that the
equality condition holds true in (4.2¢) and {(4.2d), using ¢y = wiij/ [Upijlg for i=1,...,m;
j=1,...nand coy = wair / {Uaick|q fori=1,..,m~land r=i+ 1,...m. The adjusted vectors are
ljlijk = eyUpkfori=1,...,m;j=1,..,n and.Ugi,k = coir Ugikfor i=1,2,...,m-1; r=i+‘l,.,.,m.
Although the norm constraints in (4.2¢) and (4.2d) are satisfied, the adjusted vectors may not
satisfy the linear equality constraints in (4.2b). The constraints in {4.2b) can be written with
the ug;, and uyjj variables in the first m rows &na the vo;, and vijj variables in the second set of

mrows.

Let Kk K X K k k K k
U™ = (uy,, ""uz:n-nm'”m"'"ulmn’V212"“'V2(m-nm'v1u"‘" Virmn)

a‘vector with 2mn + m(m-1} components. Constraint (4.2b) can be expressed as AUk = 0

where Agisa2mX[m(m-1)+ 2mn] matrix and



A =

B 0
g ‘

0 B

Bisan mX[m(m-1)/2 + mn] matrix, defined as B = [B; By ... Bn1 C; Ca.

mX (m-t} matrix with elements
1 i=t
b.={ -1 i=j+t fort=1,...,m-=1

i (P
0 otherwise

and C;is an m X n matrix with elements

I i=r

c . . forr=1,..,m.
1) 0 otherwise
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.. Cp] where B.t is an

»
hane)

The vector Uk is projected into the intersection of the 2m planes determined by

(4.2b), using the projection matrix P as given by Rosen (1960).

P is defined as

P=1-Ag{AzA;' ;1A In order to develop the form of the projection matrix for the given

matrix Ag, the first step is the calculation of AgA,".

| R lBB' OI
0 BB

o

0 A

where A isan mXm symmetric matrix with elements

l m+n-1 i=j
a .=
i -1 izj

The derivation of this result can be found in Appendix B.

e

In Appendix C, it is shown that the Efn)(i!m symmetrix matrix (Ag Ag')-1 can be

calculated using

(VO RN E

o A°!

where A-!is an m X m symmetric matrix with elements

_1 (n+1)n(n+m) i=j

S I/n(n+m) iz]
The final form of the projection matrix P is
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_ ' n-1
Pr— l - Ag (ARAK) AK

RO
=l/(n+m)l |
0R

where Risan [m(m-1)/2+ mn] X {m(m~1)/2+ mn) matrix given by

a - Fy G, o Gy | H Koo Kimon Kim
Gy F, o Gyl | O Hy Kym—1) Ko
; : ‘ .o . '
Gl(m—l)r 2(m—-l)' Fm—l 0 0 Hm—l (m—1)m
R=
Hl’ 0 0 L N N
KIZ' Hz' 0 N L N
. <o ’ '
L Klm' tet K(m—l)m' N e L i

and Fy, Gy, Hy, Ky, L and N are defined as follows:

Y v n+m-2 i=j
F isan(m—t) X (m—t)matrix with elementsf. = Cfort=1,...m-1;
t 1] -1 12]
7
1 i=s—t
Gu isan{m—t) X (m - $) matrix wit.helemenl:s«;gi‘i =1 -1 i=j+s—t fort<s=2,. . .m—1;

0 otherwise
His an (m-t) X n constant matrix with hj = -1fort=1, .., m-1;

1 i=r-t
Ku- isan (m —t) X n matrix with elements kij = [ fort<r=2,.,m;

0 otherwise

(Atn+m)—(n+1Di/n i=j
L isan n X n matrix with elements eij =1 "

~(n+1yn ixj

and N is an n X n constant matrix with elements n;j = _1/n.
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This result is obtained in Appendix D. Applying the projection matrix P to Uk‘yields the
vector Uk = P Uk, which satisfies the linear constraints in (4.2b). It is possible that some of

the ﬁgi,k or ﬁ“jk vectors may now violate (4.2d) or (4.2e) respectively or each vector may
-
. . - . \

satisfy the strict inequality. Uk can be adjusted by a factor ¢ so that at least one) vector

== - /
satisfies the equality in (4.2d) or (4.2¢) and all remaining Ug;k and Uik vectors sutisfy the
strict inequality. Calculate cg;r = wzir/|ﬁ2i,k|q foril=i<r=sm El;j = wyjj/ Ukl for
i=1,..,mandj=1,.. n;and

¢= min{ min Cpr s min c“j}.
1<i<r=m i=1,...,m

—
—
-

Vector Uk will provide a feasible solution to the dual problem at iteration k and the dual
objective function value
m n .
Tl
—c z z a U Lij
- i=1 j: 1
can be used as a lower bound for the primal objective function.

While the projection matrix P appears to be quite complicated, it is not necessary to
actually calculate and store it in a computer program. Any component of the projected vector
PUK can be expressed in terms of the elements of Uk and the submatrix elements from P,
where the non-zero elements of P only take on the values 1, -1, n+m-2, <{n+1)/n or

[n(n+m)}<n+1)Vn.

4.2 The Drezner Bound for the Multi-Facility €, Distance Problem

The multi-facility £, distance location problem is to r{ﬁnimize

m n .
= _ P _ plp
WM (x) = 'Zl Zl Wil —a;, 17+ Ixp—ay, P
i=1j=

m-1 m
+ Z Z wmr[l"n_"nlp+-["i2"‘r2|p]up

i=1 r=i+1l
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where
x;' = (x{1,%2) are the location coordinates of new facility i,
‘ a3 = (aj1,8j2) are the location coordinates of existing facility j,
and xiX' = (xX;1,xk;p) represents the current solution at the kth iteration of a solution

procedure for the ith new facility location. Using the Hdlder inequality,

N N wy N 1
l Z b c, s( Z |bL|P) ( z ]cth) where p>land 1/p + l/gq =1,
t=1 t=1 t=1
and substituting
— _ k
b, = x,, — ajtl and ¢ = |th - xg

fort=1,2; then
| k k P pp
lxil_njlllajl_xil|+Ixi2—3j2|laj2—xi2|S Uxyy—a;, +[x;,— 8,10
. _ykq _ Lkl
[|a].1 xi1| +18.i? x12|] .
This can be rewritten as

X x
|x;,—a; Hay —x; | + Ix;5—a; 118, %,

(x. -8 |P+|x.,—a P1"P=
il il i2 7j2 k q k q,l/q
Uy ==l +Iaj2_x12ll

By multiplying both sides of the inequality by the nonnegative weights wy;; and summing,

then )
m n
p pilp
22 wlij[lxil_ajll +x;5-2;,17]
i=1j=1 , ,
m ey lxg e llag,~xk]
Z Z LAt AL E MY !
i} i =1j=1 E k 1)
| i=1j [lajl—-xul +|aj2—xi2|]
’ k
i i wtiji"iz"’jz”ajz'xizl . .
+ . kq k qUg
i=lj=1 []ajl—-xill +|ﬂj2—xi2| ]
Let
W = k kq k q,lq
Wi —(wuj|aj1--x.l1|)l[|aj1—xnl +|aj2—xi2| 1
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and
o =yl x l)f[lil —Xk ¥q+|ﬂ -X; 1q]Uq

then

m
w3 5 =Dt 23w b

e islj=1

mlnzzw Ix jzl'
%2 i=1j=1

For the terms representing the weighted distances between pairs of new facilities,

. -
the Halder inequality can be used in the same manner as before.

Substituting

b = Ixit - xnl and ¢ = I)!:n -
*for t=1,2 in the Halder inequality, then -
k k k 4
Iy = %ol gy =%l + X — xﬂ“‘rz_"izl
- 1 - q1Vq
by ==l F ki = %"

n-negative weights wair and summing,

Ux;y = L "er 1Pz

By multiplying both sideé of the inequality by the no

then
z z woo Xy — %, F +|x -X_ |plu"22 2 oir =%l
i=1 r=i+l i=1 r=i+l
m-1 m
+ Z Z wﬁr-lxiZ_erI '
i=1 r=i+l
where
" 4 LA
-1 _(wﬁrlxr I)lﬂxrl—xlllq+|x =% Iq !
and
v _ k k k kq k k q,Vq
w'Zir _(wﬁrixﬂ_xul)luxrl—xill F‘-I;"'rf_xi‘}.Jl ) ,
e

Combining these two results gives



WM(X)ET E zu X~ 11|+E 2 —8;,

1—1 i=1 i=] j=1

m-—1 m
+2 Z. Woir % |+Z Z""']" x4
i=l r=ivl i=1 r=i+1

or

WM (x) = Z Z 1|+ Z Z Woir M =Xy

i=1] j=1 i=1 r=i+1

m—1 m . .
+ Z Z Xig= 8yl + > > o IXip =% 5| =RMx) .

i=1 j=1 i=l r=i+1

The solution at each iteration of a computation procedure for the multi-facility problem is
used to construct RM(x), a multi-fdcility rectangular distance model. ‘An optimal selution

x*R, which minimizes RM(x), is used to calculate RM(x*g) which is the lower bound. '

4.3 Bound Comparisons for the Multi-Faéilit\i;. Distance Model

Programs were written to 'mcorporgt,e the multi-facility hyperbolic approximation
version of the Weiszfe.ld procedure (2.23) with the Love and Yeong, Juel and dual bounding
methods. At each iteration of the solution procedure thé bound was caleulated andltes.t,ed
against the current solution. By ent,erir;g a proportionate error difference, e, a stopping rule
calculated as

|(bound value - objective function value)/(objective function value ) < e
was used to terminate the process. In all sample runs e = 0.01 and the initizal starting
5olutio:‘1 used for each of the m new faqilities in the We.izfeld procedure was (0,0). Samples of
size n=5 and 10 existing facilities were randomly .generated for m = 2 and 3 new facilitjes.
The wyjj weights were randomly generated from-the interval [1,3], the interfacility weighf;s
w2ir were 1 and £, distances were calculated for P=2and 1.8, An mtemctlve computer.

program was written to solve the multi- -facility rectx]mear distance problem. When the
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current solution from the Weiszfeld procedure was entered, the new weights for the
rectangular distance model used in the Drezner bound were calculated and an optimal
solution x*g and lower bound value RM(x*g) were obtained. Then RM(x*p) was adjusted by
subtracting the value of

m n m-1 m

Up 12
2% (Z zwlij+ 2 2 “’zn-)

i=1 j=1 i=l r=i+l
since a-hyperbolic approximation function, (2.24) and (2.32), was used to solve the multi-
facility € distance problem. In all sample runs, ¢ = 0.001 wag used in the approximating
" function.

For each bounding method, the number of iterations required to obtain e < 0.01,

the hyperbolic and true objective function values and the value of the bound were recorded.
These results are displayed for 2 and 3 new facilities in Tables 4.1 and 4.2, where B1, B2, B3,

B4 refer to the Love-Yeong, Juel, Drezner and dual bounds respectively.

n 5 10
p No. Hyperbolic True No.  Hyperbolic True
of Objective  Objective Bound | of Objective Objective Bound
Iter. Function Function . Iter. Function Function
2 Bl| 13 49534 495.34  490.61 12 679.20 679.11 673.12
B2 | 12  495.37 495.37  490.73 11 679.20 679.11 673.14
B3| 10 49548 495.48 491.18 6 679.63 679.60 673.79
‘B4 ] 13 49534 495.34  490.72 25 679.19 679.10 636.18
1.8 Bl | 16 509.66 509.66 505.09 | 16 699.35 699.25 693.36
Bz | 14 50972 509.72 505.83 15 - 699.35 699.25 693.48
B3] 25* 50963 509.63 495.45 8 699.88 699.79  692.92
B4 | 25* 509.62 509.63  496.79 25* 699.34 699.24 653.05 ,

* did not converge to within 1% error difference in 25 iterations.

Table 4.1: Lower Bound Data for Multi-Facility Samples, m=2.
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n 5 10
p No. Hyperbolic True No. Hyperbolic  True
of Objective  Objective Bound | of Objective Objective Bound
Iter. Function Function Iter.  Function Function
2 B1] 22 691.66 691.66 685.72 15 1624.72 1024.60 1015.79
B2 1 20 691.68 691.67 685.91 14 1024.73 1024.61 1015.87
B3 | 12 692,99 692.98 .687.54 T . 102588 1025.82 1015.63
B4 | 22 691.66 691.66 686.32 25+ 1024.71 1024.59 943.14
1.8 Bl | 25 70562 705.61  699.36 18 1053.09 1052.95 1043.74
B2 | 23 705.63 705.63  700.23 17 1053.09 1052.95 1043.8%
™~
B3| 15 706,46 706.45 701.93 11 1053.44 1053.30; 1043.00
B4 | 25* 705.62 705.61  686.37 25 1053.08 1052.94\\960.67

* did not converge to within 1% error difference in 25 iterations,

Table 4.2: Lower Bound Data for Multi-Facility Samples, m = 3.

From Tables 4.1 and 4.2, it is quite evident that for p =-2-the Drezner bound
provided superior results. As before, when p declreases in value, the Drezner and dual bounds
may not convérge. The Juel and Love-Yecng bounding methods provided better bound values *
than the dual in most of the examples. In the fallowing section it will be proven that the -

Drezner bound is superior to the Juel bound for the multi-facility Euclidean distance model.

y

L
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4.4 Comparison of Drezner and Juel Bounds for the Multi-Facility Euclidean Distance
L)
Model o~
The lower b\ound for the multi-facility £, model by Loveand Yeong (1981) is given .
by ° -
WM (x*) = WM.(x¥) — S T WM ()]
p p . P ' 4
where o 3
Q ={s= (3,3, ...,sm)l 5, € Q,i=1, .., m}
= — -
o (x) = max{d{x,y)| ¥ € Q}, (

and xk' = (xkyq, xkp9, ..., xkq1, XKgno) is a point generﬁ'ted by any procedure at the kth

iteration.
For the same model, the lower bound by Juel (1984) is .
WM (x*) = wmp(x“) - VWMp(xk)' x* + ;‘ég {VWMP(xk)' v}

Forp = 2, the gradient VWMa(x) has components dWMa(x)/ax;,, where A Y.
aWM,Z(x) 0 m {,
—-ax— = Wi (xit_ajt)/dZ(xi’aj) + z Woir (xit—xn)/dz(xi,xr) s

it i=1l r=1
rxi

w =

N w2ri r=i,r=1,2..,m
N 2r

[\] r=i

fort = 1,2,gr}di =1,.m

By sjubstituting for the gradient, the Juel bound for p = 2 can be expressed as

2 m o :

ky __ X k k k

Ja®) = WM - D [21 leuj(xu—ajt)xitldz(xi,aj)
t=1 i= ] = .

m m
k | S kfk min kye
DD IEINCEL WL r)l * e (VWM v}
i=lr=1
r*i .
Since the Juel bound is as good or hétter than the Love-Yeong bound at each
A
iteration, only the Juel bound need be compayed to the multi-facility rectangular bound. It
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¥
i will now-be shown that the multi-facility rectangular bound will be gt least as good as the
Juel bound. Before proceeding with this proof, the following Lemma is required
Lemma 1 ‘.;\\\ /
' m-] m \
Z ? W (x—x)(x—x)—iv l.(x—x)x
E=1 r=j+] i=1 r=1
” r=i
Proof:
m m-1 m
—Z S\w(x—x)x 22 zwzl(x—x)x
l*!)r:ni-l 1= r=i+]
m m
Z wmr(xr—ml )xr + z X —x, Ix
r=2 r=3
m
+ z w (J(l_—xm__l):n:r s -
r= 5 R AN
TRy grouping the ( )xo, ( )x3, ..., ( )x, terms together, and using the fact that Wair = wo; ™
fori,r=1 smandi=zr, then
m r-1 )
. _Z zw(x—x)x ZZw(x—x)x
=1 r=i+l r=2 =}
m -1
Z Z Wy, (x —-x, )x
i=2 ra]
m -1
Z z W x -x_ )x
i=1 r=|
L] rxi
" Therefore
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m m i-1
AN TN —xx”
LHS = > 3wy mxdx+ 2 D wy (e —x )x,

r=

rxi
m m m i-1
= z Z W (=X, DX, + 22 Wore X =X )X
i=1l r=1+l i=l r=1
r=Et rEl
m m .
= —_— ~
Z W {(x. —x )x
i=1 r=1
i

b

This estdblishes that

m-—1 m m m .y

z Z W21'1' (xi_-xr )(xi_xr) = Z Z w‘Z‘ir (xi_xr )xi '
i=l r=i+} i=1 r=1
r=i

It also follows that a

m-—1 m m m

» - L]
Z Z wZ‘ir (xi—-xr )(xi —xr) - Z Z W2:‘r (xi—xr )xi ’ .
i=1 r=i+l i=1 r=1 .

r=j
Let x*gk’ = (x*g) |k, x*g14¥, ..., x*Rm1X, x*Rm2¥), represent an optimal solution at the kth
iteration obtained by solving the muiti-facility rectangular distance model RM(x}, where
x*gik is the optimal location of the ith new facility. Hansen, Perreur and Thisse (1980),

Theorem 2, have proven that x*gik € (S; X S3) N Q for at least one optimal solution. Using

this result for x*g;k and the definition of Q, it follows that x*gk € Q for at least one optimal

solution.
Theorem 2 i
For p= 2, RM(K*Rk) = J(xk)
Proof:
By substituting for w'y;;, w”(jj, w'2ir and w"gir, )

L=y



Y
D wy e —xxg - a [/ dxa)
L=l 1=1 j: |
| m—1 m \
- ko ky *k o
+ l Woie | %ie = % el %= % zl /d (" )
i=1 r=i+l

2 &
Z Z. W“jlxﬁ—ﬂ || k— k

"k k
i xil+xmt-ujt|/d2(x.
t=1"f=1 j=1
m-1 m '
+ 3D g IR e k- xR+ xpE - x |N)
i e t Rit Rt
i=1 r=i+1 ‘ ' r r
2 m n
k k *k « k
! Sz Z [ E Z Y, t_ajt)[(xit_ajt) - ("it"xmz”’dzt"i-a]‘)
- t=1"1i=1 ) =1}
. m-1 m ‘ o
k k k *k k _k
+ Z z wmr(xit—x") { it._xrt.)—(x -x )+ XRit~ th) _Idz(xi,xr)
©i=l rai+l
}: [z Zw (x —a )0/ d, x5, )+ Z Y t—x:t)zfdz(x:‘,x:)l -
t=l "=l j=1 1=l r=i+1
—Z[sz(x -8 )x/d(x a)+? z x—xWx —-x)/d(x )
t=t " i=lj=1 i=1r=i+
7
m
*k k k _k
+ z | > Z Y1 (x 8, Xy fdo(x, a0+ Z E wﬁr(xit_xrt)(xRiL_ert)/d2(xi x
=1j=1 i=1l p=i+1 .
’Applying Lemma 1to A
m.-l m 14 .
k k k k
z WZr(xit'—xrt) (xit—xn) -
i=l r=i+l
and
m-1 m
. k k *k *k
Z z wﬁr(xit— xr)(xRit_erL)' .
p——— . iml =i+l
then

=
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T2 m n

Rﬁf ) = WM,(x*) \1\_ RIS CET IR EIC RN

ra—

t={" i=1j =l

) /"y

r L

-

. - oy Ltk k
2: 2% x'_jr.xmt/d2(xi'nj)

/d T\k_, xui)
2 \ 4 n
"0
a
IWM,(x) .
*k
X
Rit
1 axit 1
Therefore, . ;
: 4
. *k k ky _k kv "k "
RM(x ") 2WM,(x") - VWM, (x") x" + VWM, (x7) xp
)
_ This expression can be compared to the Juel boand,

J(x*) = WM ox %) _ vwM Sfx Ky x +'“”‘ vwM

By choosing x*gk € Q, then L

A
ym (TWM (x ky y} < WM (x“)'

which means ~ \)

RM(x )P:J(x) forx EQ

'V[ultxple optimal solutions can occur when solving the multl fac1hty rectangular distance

problem RM(x) at iteration k. An optimal sclution may or may not be an element of Q, but

-

Theorem 2 from Hansen, Perreur and Thisse (1980) guarantees that at leasf one optimal
P .
solution is an element of I_IL Let x*gk and z*gk represent optimal solutions to RM(x) where
- - /
x*rk € Qand z*gk € (1. Then, RM(z*gk) = RM(x*gk) = J(xk). Thus, for p=2, Theorem 2 holds

for any optimal solution to the multi-facility rectangular distance problem at iteration k.

. N



This establishes that the rectangular bound can be used without any dol;bts about
ity convergence with Euclidean distances. Considerable computuh_ior'l time can be saved using
this bound, as it req;xircd fewer itcrutions to reach the same level of percentage error
difference as the other two bounds.

Theorem 2 ir; conjunction with the results of Juel (1984) and Elzinga and Hearn
(1984) egtublishes that B3 = B2 = B1 for the Euclidean distance multi-facility model. The
nature of tjhe dual makes it difficult to provide a theoretical compnr?gon with the other three
bounds. In Tables 4.1 and 4.2 the Love-Yeeng bounding method provided better bound values
than the dual in a majority of the examples. The duai ottperformed the Love-Yeong bound in
only 2 of the 8 test problems, where the n and p values were 5 and 2 respectively. Inthe next
séction, the dual and the Love and Yeong bound will be compared using numerous examples

forp=2.

4.5 Comparison of the Dual (B4) and Love-Yeong Bound (\Ei_l)/‘

Several test examples were constructed for the multi-facility hyperbolic approxi-
mation model with Euclidean distances (2.22) and solved using the generalized Weiszfeld
iterative thf:b-n’i_que (2.23). At each iteratiogn, the Love-Yeong and dual bounds were recorded
in ordé;_to—investigate the performance of Bl and B4 with respect to the number of existing
facilities, the number of new facilities, the locations of t.h\e_rexist.ing facilities and the values
for the non-negative weights.

 Test problems were constructed with m = 2 and 3 new facilities and n = §, 10, 20
and 30 existing facilities. For each value of mand n, a valueofw =1,2,3,4,7, 8and 10 was
selected and the wyj; weights wet:e randomly generated over the interval [1,w]. For each of
these test problems with n, m and w fixed, the bounds Bl aﬁd B4 were compared with the true

6bject.ive function value for 25 iterations with wo;; = 1. Then each problem was run again

o«
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with the we;, weights randomly generated over the interval [1,w]. The'bound values for these
sample runs are djspluyed in Tables 4.3t04.10.

’ When m is fixed and n increases, this situation usually favours the Love and Yeong
bound. For example, in Tables 4.3 and 4.7 form = 2 and 3 respectively, when w is smalland n

-

ig small the dual provided a better beund over the first 25 iterations. However, as n increases
as in Tables 4.6 and 4.10 with w small, the dual usually prqvidcd a better bound over the first
few iterations and then the Love and Yeong bound was better at each iteration. When n and
m are fixed and w increases in value, this usually has the tendency to favour the Love and
Yeong bound. Also, when the wy;; weights were gselected from the interval [1,w] and the wajr
weights were changed from a unit value to a value from the range [1,wi, then this situation
usually favoured the Love and Yeong bound. Ne definite patterns have really emerged for the
Love-Yeong and dual bounds invelving n, m and w. In Table 4.5 where m = 2, n = 20,
wyij € (1,4] and wair € [1,1], the dual provided a bettel: bound over iterations 1-3 and 15-25 and
the Love-Yeon.g bound was better over iterations 4-14. It is doubtful if Miy patter;l occurs
involving n, m and w where either bound can be declared to be superior to the other for all
situations.

The effect of outliers was tested for m = 2 and 3 new facilities where each existing
facility coordinate, except for the single outlier, was randomly generated [rom the .L'nterval
{0,50]. The wy;; weights were randomly generated from the interval{1,4] and the woj, weights
were assigned a value of 1, 4 or 8. Each multi-facility Euclidean distance model was solved 6
times, using 2 outlier values and 3 different outlier weights: The Bl .and B4 bound values and
true objective function are shown in Table 4.11 for sample runs with 2 and 3 new facilities and
5 and 10 existing facilities. In each test rur;, the solution precedure was terminated when an

error difference of e < 0.01 was reached or when 25 iterations were completed.

)
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Interval for

Interval for

Iteration 25

[teration Range

wyjweights  weir weights Obj. Fn. B1 B4 B1 > B4 B4 > Bl

(1,13 (1,11 216 68 178.16 173.19 14-25 1-13
(1,2l (1,10 391.73 353.90 357 44 1-25
(1,21 397.21 307.96 312.70 1-25

{1,3] o1 405.11 403.41 40476 3-4 1-2
5-25

(1,3 415.80 237.40 236.59 25 1-24

(1,41 {11} " 462.62 460.39 461.27 6-18 1-5
19-25

(1,41 477.11 400.08 408.46 1-25

(L7 (1,11 1097.18 1094.97 1096.92 6-17 1-5
| 18-25

7 1154.77 'rsiAse 839.23 1-25

1,81 (1,1} 879.82 877.35 878.40 421 1-3
- 22-25

(L, 1017.97 547.61 $30.58 1-25

(1,10 1,1 1212.54 1203.24 1185.38 3-25 1-2
{1,10\, 1269.16 866.77 1-25

843.11

Table 4.3: Love-Yeong and Dual Comparison for 2 New and 5 Existing Facilities

e

!/
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Interval for

Interval for

[teration 25

Iteration Range

1876.98

wij weights  wo;, weights Obj. Fn. B1 B4 Bl > B4 B4 > B1
(1,11 (t.1] 309.29 306.11 277.13 22-25 I-21
[1.2] [1,1] 489.30 425.78 438.17 1-25
[1,2] 513.77 373.48 394.93 1-25
(1,3} {L,1] 571.12 568.90 547.64 19-25 1-18
[1,3] 600.89 518.89 544.57 1-25
(1,4] (1,1] 576.32 494,50 494,94 18-25 1-17
(1.4] " 61131 443.98 437.75 21-25 1-20
[1-7] [1,1] 934.20 930.41 727.76 12-25 1-11
(1,7] 1326.88 1193.57 1151.63 3-25 1-2
[1-8] (1,1} 1479.95 1469.58 1421.50 15-25 1-14
[1,8] 1532.61 1495.15 147298 || 22.25 1-21
(1,10] [l,li 2041.33 . 2036.10 1609.61 2-25 1
(1,10] 2140.41 2036.66 2-25 1

Table 4.4: Love-Yeong and Dual Comparison for 2 New and 10 Existing Facilities
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Intervalfor  [nterval for \\\ fteration 25 Iteration Range
wij weights  waj, weights Obj. Fn. \ Bl B4 B1 > B4 B4 > Bl
-
/)
[1,1] (1,11 776‘7’1\ Y 40.81 727.27 24-25 1-23
i1,2] (1,1) l 1188.34 ‘ 1184.39 1187.24 6-9 1-5
* ) 10-25
1,2l 1189.99 1185.156 1187.22 10-13 1-9
| 14-25
(1.3} [1,1)< | 1473.61 1470.10 1472.51 1-25
11,31 1476.15 1414. 44 1387.50 6-25 -\/ 1-5
(1,4} (1,1} 2066.15 2051.66 2051.99 4-14 1-3
15-25
(1,4) 2057.17 1967.25 1826.09 3-25 1-2
(1,7] (1,1} 2609.87 ?602.19 2599.96 2-25 1
(1,7 2622.17 2600.72 2562.38 3-25 1-2
[1,8] (1,1} 3580.08 3571.33 357295 2-12 1
13-25
{1,8} 3590.35 3410.88 3352.38 8-25 1-7
1,10] (1,1] 5020.56 5006.36 5007.63 2-10 1
11-25
[1,10] 5040.93 4878.46 4538.16 325 1-2

Table 4.5: Love-Yeongand Dual Comparison for 2 New and 20 Existing Facilities
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Interval for Interval for [teration 25° Iteration Range
Wi weights wo;r weights Obj. Fn. B1 B4 Bl > B4 B4 > Bl
Y (1,11 (1,1 1122.52 1102.42 1080.34 11-25 1-10
(1,21 (1,11 1692.81 1681.63 1669.66 7-25 1-6
(1,21 1692.97 1646.66 1605.33 925 ©1-8
K N
[t,3! (1,1} 2138.26 2125.50 2126.39 3-21 1-2
22.25
\/"\,—
(1,3] 2139.07 2047.53 1938.76 3-25 1-2
(1,4] (il | 320694 320518 320279 411 1-3
12-25
(1,41 3213.29 3064.3 2954.72 3-25 1-2
(1,71 (L4 3591.73 3583.10 3585.39 1-12 1
13-25
4
(1,71 3602.53 3582.50 3574.40 3-25 1-2
(1,8 (1,13 5046.98 5035.21 5033.80 3-25 1-2
*(1,8] 5072.44 5054.96 5057.89 3-23 1-2
24-25
(1,10] (1,1} 6902.27 6881.76 687266 225 1
(1,101 £903.02 6764.80 [5524. 2-25 1
- |

o

/""\

) /\

Table 4.6: Love-Yeong and Dual Comparison for 2 New and 30 Existing Facilities

N




67

Interval for

[nterval for

[teration 25

Iteration Range '

wijj weights  waj, weights | . Obj. Fn. B1 B4 B1 > B4 B4 > Bl

(1,1} (1,11 353.01 160.22 194.95 1-25
(1,21 (1,1] 512.17 363.38 383.86 1-25
(121 539.24 261.38 333.48 1-25

(1,31 (1,1 599.28 43524 497.44 .1-25
— 3 687.34 223.69 343.99 1-25

(1,4] (1,1) 613.31 505.04,  488.99 4-25 1-3
(1,4] 626.73 626.81 324.23 17-25 1-16

11,7 (1,1] 1313.56  1309.01  1311.39 2-18 1
¥ 19-25

1,7 1357.12 846.70 71892 |- .3-25 1-2

(1,8 (1,1) 1350.70  1346.22  1346.11 3-25 1-2
(1,8 1384.'}8 1194.00 947.12 5-25 1-4

(1,10] (1,1] 174062  1733.44  1725.36 3-25 1-2
[1,10] 177473 126071 1-25

1376.29

Table 4.7: Love-Yeong and Dual Comparison for 3 New and 5 Existing Facilities

A
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| Interval for [nterval for Iteration 25 fteration Range
wijjweights  wai weights | Obj. Fn. B1 B4 Bl > B4 B4 > B1
{1,1] [1,171 491.46 302.19 363.38 1-25
T (2] (1,11 778.99 600.45 626.60 ! 1-25
(1,2 792.34 }\ 447.86 565.37 1-25
(1,3] L1 93360 93091  880.84 | 1525 1-14
(1,3] 947.91 523.18 704.22 1-25
[1,4] (1,11 1030.59 1023.30 917.90 8-25 1-7
[1,4] 1046.84 662.28 629.30 16-25 1-15
1,7 [1,1) 19;3;.70 ‘ 1904.03  1467.34 2-25 1
(1,71 1940.93 1583.47  1474.89 4-25 1-3 .
h,al [1,11 2018.00 1982.73 1881.98 8-25 1-7
(1,8 2046.70 1440.66 1558.69 1-25
[1,10] (1,1] 282375  2816.38  2288.97 2.25 1
(1,10] 2896 86 fzm.os 2307.16 3-5 12 -
1 | 6-25

Table 4.8: Love-Yeong and Dual Comparison for 3 New and 10 Existing Facilities
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Interval for

Interval for

[teration 25

Iteration Range

wy weights  woj. weights Obj. Fn. B1 B4 B1 > B4 B4 > Bl
(1,1} (1,1] 1167.35  1039.14  1017.73 17-25 1-16
(1,2] (1,1} 180727  1802.64  1B06.88 5-12 1-4
o a 13-25
| \ ("',

(1,2] 1811.23 66774 _:1626.62 6-25 1-5

(1,3] (1,11 215569 l2s1l  2097.12 5-25 1-4
(1,3] 2162.26 192121 1832.69 3-25 1-2

{1,4] (1,1] 295219 295171  2951.70 4-25 1-3
(1.4] 297358 239174 2077.12 4-25 1-3

(1,7 (1,11 4118.07 410843  4177.99 2-11 1
12-25

[1,7] 4131.37  3997.00  3867.86 4-25 1-3

(1,8] (1,1] 511404 510210  5114.04 3-10 1-2
11-25

[1,8] 512690  5113.95 5125382 3-11 1-2
12-25

(1,10 (1,1} 7107.97  7091.62  7107.59 2-14 1
15-25

’ (1,10 713153  6594.70  4798.83 2.25 1

Table 4.9: Love-Yeong and Dual Comparison for 3 New and 20 Existing Facilities
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Intervel for Interval for W [teration Range
wij; weights  wo; weights Obj. Fn. B1 B4 B1 > B4 B4 > B1
[1,t] [1,1] 1684.63 1581.42 1540.40 14-25 1-13
[1,2] (1,1] 2537.95 2475.43 2441.66 9-25 1-8
[1,2] 2538.43 2433.85 2403.78 8.—25 1-7
[1,3) [1,1] 3123.25 3058.57 3039.69 3-25 L2
(1,3] 312473 2938.04 2723.76 3-25 I 1-2
(1,4] (1,1) 442313 441243 442296 412 13
13-25
»
1,4} 4434.12 4247.04 4040.40 4-25 1-3
(1,71 (1,1] 6536.95 6517.34 6475.04 2-25 1
(1,7] 6547.70 6418.68 6211.72 2-25 1
[1,8] (1,1] 7410.06 7492.02 7509.80 3-13 1-2
- 14-25
(1,8] 751932 749981 751589 | 348 1-2
19-25
[1,10] {1,1] 9924.45 9900.98 9920.50 2-16 1
17-25
[1,10] 9955.71 97716.32 8030.32 2-25 1
Table 4.10

: Love-Yeong and Dual Compariscn for 3 New and 30 Existing Facilities

Yo




m 2 3
Outlier| Na. Obj. No. Oby.

n  Outlier Wdight| I[ter. Fn B1 B4 | Iter, Fn. B1 B4
5 (78,93) 1 25+ 5403 5247 5348/ 25 8948 3725 651.1
4 9 1002.5 9935 996.0 | 25+ 1468.5 1253.8 123383
8 25* 14418 1366.5 13443 25% 21994 19809 1773.1
(126,112)* 1 |16 6141 6044 611.5] 259 9878 5624 8550
4 25 13230 11874 11604 25¢* 1955.3 1369.3 1445.3
8 25¢ 2112.2 20238 19234 25* 32597 3029.8 26488
10 (78,93) 1 2\5' T12.4 667.8 687.5| 25+ 11949 846.1 971.0
-4 24 1258.3 12479 1228.01 25+ 2009.0 1879.0 18962
8 14 1973.8 1957.7 1953.6 25 3079.7 30489 30312

a
(126,112) Iy | 25* 8265 8152 7182/ 25+ 13025 7935 10452
4 14 1635.1 1626.1 1564.0 | 23 24354 2413.1 23560
8 12 27274 27106 25534 12 3933.0 3899.2 3616.0
* did not converge to within 1% error difference in 25 iterations,

Table 4.11; Qutlier Data for2and 3

"%

~

New Facilities with woir = 1.
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As in the single facility situation, the presence of an outlier amoffhe existing
facilities favours the dual. "However, as the outlier weight is increased, the dual loses its
advantage and the Love-Yeong bound is better. As the number of existing facilities increases,

this also favours the Love and Ye:)'ng bound.

-

4.6 Conclusions

For p = 2, the Drezner bound is superior to the Love and Yeong, Juel, and dual
bounds. In some cases the Juel, Love and Yeong, and dual bounds required twice as many
iterations to reach the same value as ihe Drezner bound. Considerable computut.ionst\l savings
can be achie\\r‘:}d by using the Drezner bound with an iterative solution technique. The dual
has, in most instances, been the poorest bound. In situations where the dual has been better
than the Love-Yeong bound, this has been achieved by sacrificing computation time. The
computation time required when calculating the Juel or Love-Yeong bvo:.md is increased, on

average, by‘:lfactor of 3.2 when the dual bound is used.

When 1 < p < 2, the Juel method provides the best bound from among the four

methods. As in the singfé facility case, the multi-facility Drezner and dual bounds may
- \

~

experience conveygence preblems when p < 2.

N



CHAPTERDS

CONCLUSION

51 Usc:Criteria for Selecting a Bounding Method ' .

’

’I’i}is thesis has shown that the practitioner, when c'onsider.ing a bounding method to
terminate an iterative computational procedure for a single or multi-facility €, distance
) location model, can make a choice based upon the value of the parameter p.

F;)r 1 < p < 2, the best bound value was obtained by asing the Juel method. The Juel
bound i3 computationally efﬁcien;‘. and has bepn provc{:n to beras good or better than the Love
and Yeong bpund. Since the Drezner and d;l bounds may eJ;perience convergence problems
for1 < p < 2, the useage of these two bounds should be confined to models with Euclidean
distances.

Wh?n p = 2, the best bound was obtained by using Drezner's method which requires
fhe solution of a location model with rectangular distances. The single facility rectilinear
model can easily be‘solvet’i, which gives the Drezner bou;ld a computational advantage qver
the-other three bounds. This thesis has established the effectiveness of the single and multi-
fqd‘ffty‘Drezner bounds over the Love-Yeong and Juel bounds by proving that the Drezner
Eound is-always as good or better than the Juel bound- for p = 2. The superiority of the
Drezner bound over the dual Eas been shown using many exampl'es. Since an 'interactive
program was used to solve the multi-facility rectilinear problem to obtzﬁn the Drezner Bound
value, no computation times are available for the multi-i‘gcility bound.. Proctdures for solving

. the multi‘-facility rectilinear model have been g'ils{\ by Juel and Love (1976), ar-zd Drezner and
Wesolowsky (1978b). One of these techniqués for solving the multi-facility rectilinear model

could be i.ncori)orat,ed in the Drezner bounding méthod and then computation timgs could be

13
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obtained to compare all four methods, Even if the Drezner bound required double or triple the

computation ‘time of the Juel bound, this disadvantage could be offset by calculating the
) . e

Drezner boufid after every sdcond or third‘ib&gration.
The st.ut:ernent made by Wendell and Peterson (1984) that the dual is often much
better than the Jucl or Love-Yeong bound for the single facility Euclidean distance model has

been shown to have little validity. The dual requires more computation time than the other
three methods and, in general, yields bound values which do not compare favourably with the
14
other three methods.
/

v

52 Future Research

This thesis has extended the Drezner and dual bounds to include the multi-facility
model with £ distances, and shown the superiority of the Drezner bound for the Euclidean
distance situations. One problem which has emerged is that for p < 2 both the dual and
Drezner bounds may experience convergence problems. An area for future research would

entail investigating the reasons for this lack of convergence.

» * A
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APPENDIX A 4

PROJECTION MATRIX FOR THE SINGLE FACILITY ¢, DISTANCE MODEL

L4

Given the 2 X 2n matrix >

1...1 0...0
A = )
B 0...0 1...1
the projection matrix P=I-A; (AEAE‘)-IA' can be derived as follows. AgA;' is a 2X2 matrix

where any element x;; € AgA;' can be written as

2n
Xi = Z By
k=l

2n
=2 Bkl .
k=1
n n " i ! -
= z a8, + Z LI forijj=1,2. ~ -
k=1 k=n+1

+
Since a1y = agm+x) =1 fork=1,..,nandasy = a2(k-m) = 0 fork=n+1, ..., 2n;

n Zn .
fori=j, x. = z 8,8, + z 8,4, =n N

k=1 . k=n+1

n 2n

and fori = j XS Z 88 + z a8, = 0.
k=1 k=n+l
S
\_/

. (n 0 Wy (1m0
AA = ) and (A A)‘ = ( )
€ E ‘0 n 4 0 1/n/s
so that Ag'(AgAg")! = (1I/mA,’ and Ag'(AgA 1Ay = (/n)Ag'A;. Now, (I/n)Ag'Ag is a
2n X 2n matrix where any eletnent x;; € (1/n)Ag'Ag can be written as

- - >

75 . -
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Therefore

or

2
x; =Um) > a,a
k=l

kj

Y

2
={(1l/n) Z nkinkj
k=l

= (1:";’\')[&“9.u + amnﬁ].

([ (UnX()()+0]  Lj=1,..,n

(I/m)0+()AY] i,j=n+1,..,2n

0] otherwise

1/n i,j=1,..,n ij= n+1,.,2n

| 0 . otherwise

The 2n X 2n projection matrix P can ke written as

T _ A -1
P=1 Ag(AgAJ Ag

“lo%]

where R i3 an n X n matrix with elements

’
-

~

ll—lln i=j
- —un  izj

-~

-
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APPENDIX B

S

CALCULATION OF A A, FOR THE MULTI-FACILITY PROJECTION MATRIX

Given the 2m X [m{m-1)+ 2mn] matrix )
’ B O
. A =
' E OB
A.A" can be determined using

AA =
E £

BB' O ]
O BB’
The elements in matrix B only take on the values 1, 0 or -1, so that row i can be described in

8
terms of row index sets cont.ainiﬁg the column indices of the elements in row i which have
valuesof 1 or -1. Then, lisin-g properties of these index sets, matrix BB can be calculated.
" ThemX [m(m—l)/;+ mn] matrix B has elements q, where
' 1 jer®muUL@
£ q; = -1 jeL®

0 otherwise

) with
f i-1 ’ :
) Il(i) = [f+ Z (m-k) l £=1,.., m—i i<m]
& kwl
i>1
lz(i) = [[M+ ni-1))+1, ..., M+ n(i—l)]+nl
and -1

LM ’={i-c+ > (m-k) | £=1,..i-1, i22} for M=m(m —1)2.
"k=1 ’
“ t>1 -

The following properties are evident from the definitions of q and the index sets.

-

h ]

T

T



Property 1

Property 2

Property 3

Property 4

Let n(S) denote the number of elements in set S.
(i) n(l (i) = m-i
(i) nl()=n

i) n(1() = i-1

()  Forr€l(),telGifi <jthenr <t.

() Forr €l tel (@ thent <r.

@ LONLEH =4
i LO L6 = ¢

i) L6 N16 = ¢

Fori=j

M LHNILEH=e .

@ LHNLG = ¢ |

(i) LHNIG=¢ fori<jsothatnd MHnl{) =1
) LONLH=¢ fori>j

W LONILEH=9¢

W) LONLE = ¢

vi) LHNLEH = ¢

78

The preceding properties can be used to determine the elements x, of the mXm

matrix BB', \;vhere



Fori=j,
&

Fori=j,

Fori <j,

Fori>j,

M + mn

i = z g9y
k=1

M +mn

Z 9y 95
k=1

> T 2 G > BTy -

k€l (l) L {3 (l) k€] (l)

»

2. 99 + E Uy + E Uy,
k€l m\ €10 k€1, (i)
= n(I, (XD 1+ (A1) l(’n(la(i))[(— 1IX-1)}
=m—i+n+i-1

=m+n-—1.

x'ij Z q.kq + Z 99 + Z QG + Z 995

K€L (i) kel i) K€L (i)
k€L, kel u m o
+ Z Qi Iy + Z 995k
kel () kel (i)
kll L0 kEI @
>: R + Z Qi ’
k€L (i) U kel
kEl L) kE[IU)

Z 9,9, = 1(—1)—~—-1
k€l (l)

k€l (1)

= 2 4uq, = (DM = -1
| 431 (l)

}"" kEI 0

(1)
kEIz(J

79
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Therefore

m+n-1 i=j

ij -1 otherwise Lj=1,..
Thus,
. BB' O
AEAS =[ 0 BB'I
AO
- l 0A I
where A is an m X m symmetric matrix with elements -
m+n-1 i=j

-1 RESE

G

a2



APPENDIX C

CALCULATION OF (A  Ag")' FOR THE MULTI-FACILITY PROJECTION MATRIX

From Appendix B,
. AO )
AA =
E B OA

where A is an nX n symmetric matrix with elements

[m+n-—1 i=j

(O a i -1 Q=
..\/ The 2m X 2m symmetric matrix (A‘-A.')'l can be calculated using
A1 (At o
(s =g il =
g g 0 A-l

where A is an m X m symmetric matrix with elements
c i=j
a~l= { L.
Nl d i=j.
Since I"rl\'l = 1, take x, € I, then

m
— -1 -
xij— 2 nikakj Lbj=1,...,n.
k=1 o)
Fori=j, x, = land

m
N -1
1 = Drauag
k=1

m
_ -1 -1
= g 8, + z Bix®ki
k=1
=i

/ =(m+m-le+ (m-1{-1d.
This provides one of the equations required to solve for cand d,

(+m-e-(m-1d =1, (n

» B |
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Forixj, ;(u ='Oand

m
_ -1
0 = z uikak;
k=1
m
— -1 L -1
it ij nqan z alknkj
k=1
k=i

=Mm+m-=1d+(-Il}+(m-20-1Md.

This provides a second equation,

(n+1)d_c=o.;/ | @) 8

v

By substituting ¢ = (n+1)d into equation (L) and solving for d, the elements of Al are
obtainedasd = 1/n(n+m)ande¢ = (n+1)Yn{n+m). -

- Thus A™ is an m X m symmetric matrix with elements

-1 (n+1¥nn+m) i=j
= 1/n{n+m) i=j.



APPENDIX D
PROJECTION MATRIX FOR THE MULTI-FACILITY ¢, DISTANCE MODEL

The calculation of the projection matrix P = I - Ap'(AgA;")-! A will be accom-
plished in three stages, beginning with the calculation of Ag'(AgAg)-1, then Ag'(Aghy')! Ag

and ending with the final form for P.

L Calculation ofA"(A,A,'}-l
B’ 0 H Al oo

RecallthatA (A A V' = [
['4 g 8 0 B

. l with A™! defined
0 A

as in Appendix B. A-1can be written as A-1 = (1/n(n+ m)) A where A is an m X m symmetric
I
matrix with elements '
[ &- 1) i=j
a.= ..
1 1 1£)
Then,

[ B'A 0
B'A
Using B = [B,... By.1 Cy ... Cw), B'A will contain the submatrices By'A, ..., B;D_I'A,

r r _1_
A' (A! _At) = 1/n(n+m)

C1'A, ..., Cy'. From the definitions of By and Cy, the elements by’ € B, and ¢’ € C;' can be

expressed as
1 J:t y 9
bij'= -1 j=i+t igl,....,m=-t;j=1,... mt=1,....,m-1

0 otherwise
. Y
1 j=r ) .

and <c.'= . i=1,....m;j=1,....m; r=1,....,m.

D 0 otherwise

Také any element x;; € Bt'A'fot t=1, .., m-1;
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m -—

p— L}

ij - 2 bij kj

k=1
.m _ -

— L [

= by’ a,, +b, a +b
kal ° -

kxti+t

g7 Cikity ivnj

= uu,— n(ih)j fori = l,...m-tandj=1,...,m.

FOI'_i:t, Xit = 8t~ Qj4+tn = nN+1-1 =n,

Forj=i+t, xii+n = ayivn-i+misn = 1-(n+1) = -n.

Forj=t,i+t; xj=1-1=0.

Thus, Dy = B;" A is an (m-t) X m matrix with elements “

Ay

n J=t
dij" -n j=i+t  fort=1,.,
< 0 otherwise

L2
Take any elementlﬁ‘!’mm the n X m matrix product C," A,
m —
5000T k}: Si "

- m
— r *
= 2 Cy 8yt a
k=1
k=xr

rj

forr=1, .m.

=c'a

ir Tej
Forj=r, xip =ci'ag=1(n+1) = n+1.

Forj:r, x, =crag=101) =1

s’

ThusE, = Q,.'A is an nX m matrix with elements

n+1l j=r
o]
4 1 otherwise

/
o

forr=1,.

.., m.

P
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LY

2, Calculationof A '(A A ')'A
[ § [ 3 [}
BA 0 B o
AAANA = 1/n{n +m) [ _] { l
B £ & 4 0 B'A 0 B
BAB 0
= 1/n(n+m)[ _ I
: 0 B'AB
where
Dl
D
.= m-—1
B'AB = [Bl Bm_lcl.. C ]
E
1
E -
b m -
DIBI D1 Bm—l chl DlCm
Dm—lBl m-le—l Dm—lcl Dm—lcm
El Bl El Bm—l Elcl Elcm
EmBl\.‘ E.B._, |E.C E_C_ |
i ,.i
It is necessary now to derive the elements from the various matrix products in B'AB. 3
4
~— =
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-
2(a) Calculation of D, B, -
For xjj from the (m-t) X (m-s) matrix D, B, ands,t=1,....,m-1 ,
m -
X~ diy By i
k=1

[fk=t, i+t, s or s+jthen either djy or by; is zero.
By writing x;; in terms of these values for k and imposing restriction on the indices to prevent
duplication of terms, then

: L}
[ —
4t i vn e s=t

tii(.l*_t_)b(“_';)j + di(‘.“}b(j“)j + ditbu’ 3=t i+t=9j+sxt, i+txj+s

X = diby + di Py t di-bnj,// oW JbLitt=zs+sxt, 1+t=)+s
y /\"\ / j’
di.bh\"' diienPivo; T Hgrahien s*b, i+tes, J+s=, 1+b2)+s
T e o\ T . .
‘dhb-j + di(i+t)b(i+t)j + danfdv' . st i+t=2s j+Hsxt, i+t=j+a

-~

Casel s=tandxy=dy(l) +dij+y(-1)=n

Fori = j, xij = n-diji+n = 0= n

Forizj, xj=n-0=n N
DBt is an (m-t) X (m-t) matrix gith elements
.. i
2n  i=j
X.= . fort=1,...,m-1,
y n otherwise

\

s



-g:}.ﬂz_2 s<t.If i+t=gtheni=s-t whichis impossible since s;t. Thus i=s-t
For  i+t=j+s, xij=ditby+ dijsubges; + diaby
= nbyj+ra + ) (-1 + dij(1)
Since s<_t,tﬁens<t+inndlhencedi5=0
Sinces=tand t=(i+t-5)+3, then byj4+4 = 0, and
Xj=n fory=i+t-s

Forj+s=t, JJ xjj = dig bgj + digi+0)bi+ 1ty + die beea)
A

V= dig (1) + (~n) b 4y + n=1)
" Since s<t, thens<i+t and dis =0. Also i+t *j+sand 50 b+ = Oand x; =
for j= t-s. s
Forj+s=t,i+t=j+sandi+t=s, thendij+g=0and b4y = 0.
Then xi= dijuby + die by -
= djs + nby, '
Sinces<tands = t+ithend;,= 0. Since j+t=s+j, thenby = Oand x;; = 0

fors<tandj= t-sorj= i+ t-a.

Therefore thi, is; an (m-t) X (m-s) matrix fors<t=2,. . . ,m-1:
-n j=t-s
with elements ;=10 j=i+t-s
0 otherwise
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o’

s>t. Ifj+s = tthen j = t-3 which contradicts s >t.
Fori+ t =s, xj= digbg + dig+abg+aj+ dieby
= digai(1) + dig+g=~1) + n by

= -n-djj+agt+ n by
Sincej+s = tandj+s = i + t, thendij+y =0
Sinces>tandj + s > t, then by= 0and xjj = -nfori =s-t.
Fori + t = j+ s, xjj = djy by +dii+ 10 +a + dir by

=nby + (-n) (-1)+ dj,..
Since t = j + s and t<s, then byj = 0. Since s>t and s= i + t thendjy = 0 and
xj =nfori=j+ a-t.
Fori+t=si+t=j+samdj+ st thendijery =0, byj+g =0,dig =0,
by = 0,and xj = 0.
Thus, Dy B, is an (m-t) X (m-6) matris for t<s=2, . . ,m-1.
-n i=s-t
with elements X, = n i=j)+s4

0 otherwige

DB, is the transpose of D, B;.

2(b)

Calculation of D,C,,

The calculation of DyC,, proceeds as follows; for xj; € DiCy, t=1,..,m-landu=1,.. m

-

-
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m
‘ &y T Z dip Gy -
- k=1
m ‘ A
?[“EZ dmﬂJ+dn%+dMHﬁwm
. k=1 - '
k=t,i+t . .

=N — NGy

Casel: t=u | : <«
L

Then xj; = Deyj — OCi+u) = n-0=n and D,C; is an (m-t)Xn constant matrix for

t=1 ,.7..,m—l with elements x;=n.

-

Case2: t<u
Fori+t=u, xj= N¢w-ij—Ncyj = N(0)-n(1) = -n.
Fori+t=u, x;=n(0)-n(0} =0, and D; C, is an (m-t) X n matrix with elements
—-n i=u-t
X..
D) 0 otherwise

fort<u=2,..,m.

Cased: t>u

L

Ifi+t=u, then i =u—t which is impossible since t>u. If i+t=u, then x;j=0. Thus

DCy=20 fq'r'u<t=2", v, m-1,

2(c) Calculation of E.B,

For x;; from the n X {m-s) matrix E; Biands=1,....,m-1; r=1,...,m ,



- 2 €y Py T e byt €ij+m PGisay
k=1
k+a,j+s

®ia T Cigesy

Casel: s=r o .

Then x;; = €ir - €i(j+r) =n+ 1-1= n.

E; B, is an n X (m-r) matrix ffoi- r=1,...,m-1 with elements "u =n,
Case2: r<s.

Sincer<s, thens=r,s+jzrandx;;=1-1=10.

~ E;By=0forr<s =2,.., m-1 -

Case3: r>s

fj+s=r, x; = é;,-eir =1-(n+1)=-n.
Ifj+s=r, xj=1-1 = 0.

E, f!, is an n X (m-g) matrix for s<r=2,...,m, with elements

-n j=r-s -

" 1 0 otherwise

2(d) Calculation of E.C,

For xjj from the nXn matrix E, Cyand u,r = i,....,m;
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m

i T 2 Cik &

k=1

m

Z ik % T %Sy
k=1
k=u

iu -’

Casel: u=r
Thenxjj =e,=n+1.

E;C;isannXn matrix withelements xij=n+1forr =1, ., m.

Case2: r=u.
Thenx; =ejy, = 1.

E;CyisannXnmatrix forr,u = 1, ..., m with elements xi=1forr=u. .

3. Projection Matrix

Using the properties that : a .

DBy is the transpose of D,B; and EB, is the transpose of D,C;,
E.C,is an n X n constant matrix with elemén.ts xu =n+1lforr=1,.., mand
E/CyisannXn unit matrix with elements xij = 1lforr,u=1,.. ,mand r # u, the final form

for (-1/n{n + m))B'AB can be written as

\. # ’

“a

A
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D
|~
" -. ’
- » . .
-—DlBl _Dle -—Dle_1 —DICI—-D1C2... _chm-l —chm_
(—Dle)' —Dsz —-DzBm_1 0 —9202... —Dz(lm_1 _chm
' . ; ;
(_Dle—l)' -Dm-l m -} 0 0 .. ._Dm-l n-1 m—].Cm
1/n{n + m) '
, ("chl) 1] 0 —EIC1 —EIC,Z Ve —E102
(-—DICQ)‘ (—DZC2)' ves 0 —-E‘C2 ---ElCl ee e —E102
» : . : ’
(;chm)’ e (_Dm-;cm)' _Elcz —EICZ aiid _Elcl

E

P=1-A AAN'A
g E B

|

[—(1/n(n+m)BAB 0

0 [-(1/nn+m))BAB

‘= 1/{n+ )[Rol‘
=T o R

where Ris an [(m(m—l)li +mn] X [m(m-1)/2+ mn] matrix given by
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Fl C'12 Gum—l) -Hl Klz Kl(m—l) me
GIQ‘ F2 GZ(m—l) 0 H2 Kﬁm-—l) K2m
: : : v : :
LY : B B
c"l(m—l) G2(m—- b A Fm-l 0 0 e Hm—--l K(m-l)m
R=
. Hx' _ 0 - 0 L- N eel N
Kﬁ‘,z' H,’ . 0 N L N
R o ’ .
’ ’ : .
| Klm' . ter K(m-l)m N -" ‘e "‘- L
and Fy, Gy,, Hy, K¢y, Land N are defined as follows: b
‘ : n+m-2 i=j “
Ftisan (m —t) X (n—t) matrix with elementsf.. = L fort=1,.. ,m-1;
y -1 i=}
1 j=g—t
Gu isan {m—t) X (m-s) matrix with element:sgij =11 i=j+s—t fort<s=2,..,m-1;
- 0 otherwise

Hgis an (m-t) X n constant matrix with hy = -1 fort=1, .., m-1;

(1 i=r-t
Ku_ isan (m—t) X n matrix with elements kij = [ for t<r=2,..,m,

0 otherwise

. . [nn+m)-(n+li/m i=j
Lisann X nmatrix with elements{.. = )
y —{n+1¥n e

and N is an n X n constant matrix with elements nj; = -1/n.

.‘-
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