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" oruas

The central focus of research undertaken concerned the strength
and behaviour of separated double chord rectangular hollow, section (RHS)
K-joints. Peripherally, the concept of the twin member shear beam is
lntroduced as a simple and inexpensive bridging device for revealing the

intrinsic structural properties of such joints.

The finite element method has been used to investigate the
étiffness cﬁaracteristics of the separated-joint. The RHS chord member
is idealized by a.thin plate representing the inner web and a channel
‘representing the top and bottom flanges and the outer web. The_stiffen—
ing effect offered by the channel is incorporated through its condensa-
tion into a bgundary stiffness matrix to be added to the inner web-

stiffness matrix.

"The proposed finite element formulation includes réctangular
plate elements in the inner web plate and a variety of beam elements in
the channel forming a grillage. The formulation considers both bending
and in-plane actions. Material'qonlipearities of the joint are agsumed
to be adequately reﬁresented by the Von Mises yiald criterion and the
agsoclated plastic flow rule. While geometric nonlinearities have been
excluded, this was deemed reasonable for the r;nge of diSplaéements

considered in this study.
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To verify the finite element model, a number of experiments were
conducted on twin shear beams with the objective of méking definitive.
statements about the joint performance to be anticipated for the finite
element model. Twenty-four specimens were tested in the Applied Dynam
ics Laboratory of McMaster University. Test results showed a-definite
improvement in structural performance for both increased depth and a

decrease in the gap.

From experimental results, a local deflection limit criterion
was suggested to define a range of permissible displacements in double. .
chord joints. Such a criterion was based upon that presented in the

literature for single chord joints.

A verificacioﬁ of the finite element model was made using the
experimental data of the tyin shear beams and it exhibited good correla-
tion. A model sensitivity analysis was then carried out with the objec-
tive of furthering understanding of the behaviour of such _structural

components.

The ﬁo@el was extended to ‘the general model called EPAC-RHS
(Elasto=-Plastic An;lysis of RHS Connections). ' In the processe of this
extension, tri;\gular plane stress-plate bending elements were intro-
duced to accommodate an arbitrary joint assembly of K and N configura-
tion. In addition, member preloads were accounted for in EPAC-RHS.

;

Theoretical results of simulated K-joint models were compared



with experimental data of K-joints obtained from the literature. While
strength predictions were somewhat conservative, very good agreement of

elastic response was observed for all tests.

A yield line theory was developed for which two strength models,
trapezoidal and conical were proposed. Their predicted strengths were
compared with experimental loads at the limiting deflection suggested.
Good agreement with the tests was found particularly for the trapezoidal
model. The twin shear beam models were then extended to be applicable
to K-joints by taking into account both the reduction in strength due to
‘chord axial preload and the horizontal component of the dlagonal force.
Theoretical results were compared with previous experiments on K-joints

and exhibited reasonable correlation.
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CHAPTER 1

INTROBUCTION

1.1 Hollow Structural Sections

The growing popularity of steel rectangulaf hollow sectlons
(RHS) in structural applications’ stems from the fact that they possess
several advantages‘over the_traditional rolled profile steel sections.
In addition té their favoured architectural appearaﬁce, they exhibif

excellent structural performance due to their high torsi&nal rigidiﬁy,

high resistance to local buckling and effective bending strength 3bout

all axes. Moreover, their cost to develap a specitied fire resistance

rating and maintenance is less than that of rolled profile sections

since the ocutside pPerimeter area of a hol&oy structural section (HSS) is

less than the é%ﬁosed sﬁrfaces of an equivalént open section.

At present, HSS have become better accepted by the engineering

profession than previously. They have been used successfully in a large

number of commercial buildings, industrial plants, recreation and

convention centres, pedestrian wallways and overpasses. However, there

are tWwo aspects of which HSS construction has suffered in competition

with open sections. These relate to size limitation available to the

designer and behéviour of member connections. These considefations are
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the basis for the lavestigatidn of which this thesis forms a part.
Naie

1.2 Double Chord Systems

-~ L
The largest sized square- RHS produeed in Canada is 304.87- 304.8
‘ 12.7 mm. If this size were employed in a single chord truss applica-
tion such as the Warren type, t@hgn the clear span would need toibef“
£ ] .
reecricted to about_the thirty ESQQthy metre range. Some appligations,
éucn as long onernasses and recreation centres, necessitate e consider—
‘ably longer span. This gave rise to the concept of }be“double chord
truss of which there are different arrangements for egnfeqiing branch
members to the double chord. Basically, a double chord joint is known
as separated when the chords are spaced apant (Figure 1l.1(a)). ' Other"
wise, the chords are place%?—egk-to-back as shown in Figure 1.1(b). 1In
the Eormer, the diagonals are sandwiched between the chords whereas in
the latter they are attached to the flanges. Diagonals of the separated

v

joint type may be directly welded to the inner webs of the chords or to
/
- "
a pair of gusset plates that are welded to the inner webs. The back—to—
‘back type may be stiffened by inserting a sufficiently thick plate onto

the top flanges of the chord.

In addition, the gype;of truss lends itself to jo{;f clasg fica-

" tion according to: fﬁ)

-

(a) Single Braneh Joints in which a singie branch member 1is

J y connected to the chord such ag the‘T-joinE”ehd L-joint\of a

Vierendeel truss. ’ - e

N . “‘-w""



(b} Two Branch Joints: Commonly these will be gap joeints in
which the branch members are mated to the chord and a gap
is produced in-between. Such joints .are the K an& N~joints
in Warrgn and Pratt trusses respectively.

{c) Three Branch Joints: Such joints exist in Pratt trusses
where a vertical and two diagonals meet the chord in the

middle of a truss.

Double chord systems have certain advantages over single chord
systems. ﬁhile they are applicable to long span strdctures, their use
results in a stiffer structure due to the fact that diagonal forces are
transferred to the webs of the double chords, rather than to the flanges
of the single chord which are s;gnigicantly weaker. In addition, double
éﬁord systems provide economy in fabrication, particularly the separated
type where no special ena cuts are necessary for the web mémbers; They
also require less lateral bracing because of their high lateral rigid-

ity.

1.3 Literature Review

Since the earl;'l960's, a considerable amount of research has
been conducted on HSS joints. The early efforfs focused on testing a .
large number of isolated joints of T,N and K configuration utilizing
single chord RHS members and circular or rectangular HSS web members.
“Various joint pﬁrémeters were -studied in order to arrive at viable
design alternatives and establish some tentative design rules for HSS

construction. As will be shown in Section 3.1, the vield 1line theory

.
.



was used extensively to assess the capacity of such joints. However, to
predict joint deformations, theoretical analyses were first attempted by
the finite difference method and subsequently by the finite element

method. Such analyses will be reviewed in Section 4.2.

It was not until 1979 that the concept of the double chord was
first introduced by Koroel and Chidiac (1,2). The following presentacion
will deal oﬁly with the work reporéed since then on RHS double chord
joints and trusses. The initial investigation began by the testing of a
‘total of 29 isolated K—joint; comprising four types—standard,. channel,
bPlted and back-to-back. The first three are of a separated chord var-
iety having different web member assemblies while the latter type
comprised gapped, overlapped and gapped with stiffening plates. Figure
1.2 shows layouts of the four types tested. It was found that the
standard type was particularly attractive because of its relatively low
fabrication cost and generally satisfactory structural performance. The
channel type appeared to be susceptible to twisting of the chord members
and was therefore not recommended as a viable design alternative. The
bolted connection was found to be structurally very sound but this wés
mor; than offset by its very high fabrication\cost. The back—-to-back
type with a gap did not exhibit adequate strength "and stiffness except
when the joint was reinfarcad by a sufficiently thick plate. The fully

overlapped joints exhibited good performance at reasonably low cost.

Korol and Chidiac continued their experimental investigation and
tested four back-to-back double chord T-joints (3). It was observed

that the étrength and the stiffness of these joints were improved when

a3



‘the chords\ were welded together near the joint. Upon compariseon with
test results of single chord T-joints reported previously by Korol et
al. (4), it was-concluded that double éhord T~joints are more efficient
than their equivalent single chord joints. In 1981, Korol and Keen (5)
derived two interaction. formulae to predict both plastic and ultimate
strengths of standard K-joints. The method was based on partitioning
The HSS section to resist various stress resultants that were imposed.
While good agreement was obtained with test results, it was assumed that 3.
inner and outer chord walls were equally effective in shear. Such z;n
assumption was qualified to apply onl_y to square or deep chord joints.
Ko account was tak'en of localized flange yielding or web. distortion,
iwwever.
. -
el .

It was then decided to extend the_ double chord joint work on
K~joints to include large scale trusses. A primary objective of the
investigation was to ascertain whether the joint test findings woul_d be
substantiated in actual truss tests. Chiu (6) tested five simply sup—
ported Harren trusses that were one-half to one-third scale of possible
’1ong span prototype structures. These included ‘two trusses with back-
to—back cho‘rds, two .étandard trusses and one having bolted diagonals

& g attached to gusset plates welded to the inner webs of the chords'. It
was evident from the test results that the back-to~back as well as the °
bolted trusses were about 25% stronger th'.an \t‘.h/es»f:aﬁd’qrd"'trusses. The
separlated chord truss;es, however, experienced shear faiiurg at the enq
joints of the top chord. These fail.ures were due to a reduced Yotmee—"

ré_sistance in the gap between the diagonals that sustained the highest »

axial forqc‘:es. In all tests, the span to depth r:g:io (1S/d) was lower .
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than would be expected in practice (= 9.5) for which a joint shear
failure 1is .more likely to occur. 4 Korol et al (7) indicated that for
longer span applications (ls/d = 15) a member faillure could be expected

before that of the end Joint for separated square RHS chords.

Korol et al. (8,9) developed an elasto-plast ytical model

to predict the strength and behaviour of double cHor rren trusses.
Several assumptions were made to slmplify the analysis. While local and

overall buckling of me;bers were preciuded from th énalysis, the shéarf
ing resisgance for gap jeoints, when they exisged, was simulated by a

simple elastic~plastic shear spring. Good correlationfwith experimental
results was obtained for the back—to-back truss with overlapped diago—
né S. The gap joint truss models did not correlate as well, perhaps due

tofthe over-simplistic spring model used for the connections.

’

Recently, Shehata (10) and-Mirza et al. (l1) tested ten back-
to-back double chord T-jeints. The purpose of the experimental program
was mainly to obtain more data to verify their finite element model for
such joints. Ultimate strength values obtained from a yield line solu-
tion and a finite element model were compared with the experimental data
and were found to be in very good agreement. The yleld line pattern was

£i;§r-to Mouty's mechanism for single chord T-joints (12) but included
shear ylelding of the connected webs in the energy dissipation formula-
tion. The finite element model treated the“chord face as a thin plate
with rectangular subdivisions. Attached to the plate's longitudinal
sides was a set of boundary spring elements formulated to simulate the

~

restraining effect "that the remainder of the hollow section offers to



the chord face plate. Two basic assumptions were made to simplify the
analytical model. The area of the top plate inscribedégz the branch
member was assumed infinitely rigid and, the inner walls of the double
chord were assumed to rest on rollers. While the first assumption is
almost classical (13,14,15,16,17,18), the second was done to eliminate
overall bending of the chord member. Such an assumption, however, may
not be wvalid for two or more branch gap joints. Major shear deforma-
tions wiil normally occur in the érotch between diagonals. Furcher
description of the finite element formulatién of the joint model will be

made in Section 4.2.

1.4 Study Problem

One of the most popular trusses used in construction is of the
Warren type. TFor long span roof and floof’systems, the RHS double chord
Warren manifests itself, not only as suﬁer{or in structural, performance.
but possessing economy as well. However, 1its use is hampered by a lack
of information about the behaviour ;nd capacity of the K-joints which
are employed in this structure. A .joint may be incapable vof withr
standing the full ,compressivé and tensile strengths of the branch

members if insufficlent consideration is taken of the pattern of

asgembly, the gap distance, the length and location of weldments etc.

As mentioned earligr, Koreol and Chidiac (1,2) performed a number
of tests on four different types of K-joints. One of their prime con-
clusions was that .the separated type, as well as being economical, held

promise both for strength and stiffness requirements. Howevér, their

-
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work was limited to square HSS chords; as such the behaviour of jﬁints
involving RHS chordé. remains to be determined. The question of the
effectiveqess of the top and bottom flanges and the outer webs in carry-—
ing the load applied to the diagonals ®s of primé impor:ance. It has
not been known how the gap distance and the chord aspect ratio affect
such effectiveness. As was learned from previous tests, a sizable
amount of inelastic deformation occurs pridf to failure. This, in turn
Y

underscores the necessity of investigating joint behaviour beyond the

elastic limit.

1.5 Objectives

In conjunction with ﬁhe_results of earlier research, this study
will focus on separated double chord gap joints involving square and
rectangular HSS chords. One of the principal goals of this study is to
assess_;he shearing resistance of the joint. However, because of the
expéﬁse and difficulties encountered in testing and fabricating K-
joinfs, it was decided to test a simple, easy-to—fabricate, model that
could simulate this shearing_action. Such a model is presented in Fig-
;re 1.3. All members comprise RHS sections and the method of attachment-
is either by fillet or bével grgove welding. This specimen, which takes *
the form of a "twin shear beam”, has a major advantage over an isolated
K-joint in tes¥ing. Such a beam requirgi)only a simple compression
testing machine from which load is aéplied vertically to the upper stub
column, as opposed to two hydraulic jacks and an expengive test rig that

is needed for a two branch gap joint.



The use of plastic hinge lines for calculating an upper bound
load is well known (19). This will be employed in deriving strength
expressions for shear beam models and subsequently K and N-truss joints.
The results of the shear beam tests will serve to validate the theoreti-
cal strength expressions. A variation of parameter study will then be

undertaken to determine their influence on the Joint bearing capacity.

The effect of chord axial forces on the joint capacity will also be
investigated.

However, strength is not the only structural property of-int;rﬂ
est to the design engineer. It is also important to be able to predict
the joint stiffness characteristics in and beyond the elastic range.
This will be achieved through the formulation of a finite element model
that incorporates wmaterial nonlinearities. The wmodel will first be
" formulated for the twin shear beams employing rectangular elements and a
grillage of beam ‘elements. Two feasible techniques differing in stiff-
ness analysis of the grillage will be proposed. Comparison with shear
beam test results will help identify the more promising one. The twin
beam model will then be extended to develop a genéral computer model
"EPAC-RHS", Elasto-Plastic Analysis of RHS Connections, that is applic-
able to single, two and three branch member double chord joints of the
separated type. - Specilal attention will be given to compare twWwo solution
methods for sélecting the oné with a minimum computaticonal effort.
Triangular elements will theﬁ be included in EPAC—RHS to account for the
arbitrary geometty of K and N-joint assemblies. Using the experimental
.data.availabie on K~joints from previous work (2), validation tests will

be performed on EPAC-RHS. Finally, some numerical examples on different

o



Joints will be presented to demonstrate the degree to which the model is

capable of predicting joint behaviocur.

o



(b) Back-to-Back Type

Ficure 1.1 : RHS DousLg CHORD K-JoINTs N
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CHAPTER 2

EXPERIMENTAL PROGRAM OF SEPARATED TWIN MEMBER SHEAR BEAMS

2.1 Introduction

Testing of igolated separateg”double chord K—jbi;ts is complica-‘
red by the fact that an elaborate /test setup Involving a mi;imum of two
hydraulic jacks musﬁ be employed. vSince it was observed from previous
experiments that shear stress resultants are ‘the major cause of a shear
failure in the gap (1,2), one can achieQe such a behaviour by using the

concept of a twin member shear beam.
'

In the' tests undertaken, a total 'of twenty four shear beanm
specimens were fabricated from cold and hot Formed steel of grade
G40.21-350w, The cost of fabrication of such specimens was quite
inexpensive due to the nqedbfoy cnly fillet or'bevel groove welding;
either totally or partially; around the perimeter. 1In addition, flame
cutting the member's ends in the vicinity of the joint was adeqﬁate.
Such simplifications are possible both due to the geometric configura-

‘tions of the connection and because the load applied to the beam is

transmitted to the Supporting columns through simple shearing action.

- 14°
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2.2 Description of Experimental Procedure

2.2.1 Parameters Considered

The main objective of. the testing programme -was to examine the
“effect of chord aspect ratio (ho/bo) and gap-to—-depth ratio (S/ho) on
~the strength and stiffness of the double chord-éheaf‘?eam. Also, of

A

concern was the shearing efficiency of the outep_webgﬂof chords and its
variation with the above-mentioned parameters. In the experiments
undertaken the chord aspect ratio ranged from 0.4 to 2.5, while the

gap~to—depth ratio variedffroth.IZS to 1l.0.

2.2.2 - Connection Detail

As can be seen from Figure 2.1, ala members consisted of RHS
_and were attached by welding.. The detail consisted of a double chord
beam that spannéd.tﬁe distance s between the upper and lower vertical
members. All three verticals Qere sandwiched between the twin beam
members and welded to the. inner webs.  Support columns of the large
gapped specimens {a and b type) were welded along the perimeter whereas
those having 'small gaps (c and d type)-were welded“only along the ctop

and bottom sides: Figure 2.2 shows the locations of such weldments.

2.2.3 Specimen Data ’ /,J

The 24 speclmens that were tested, possessed the geometrical
properties indicated in Table 2.1. The vertical members were 127.0 x

127.0 wm 1in cross: section with a thickness sufficlent to prevent local
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buckling. épecimens wére classified according to their chord aspect
ratio (ho/bo) and their gap to gepth ratio (s/ho). Three groups were
defined as ié?lségsd in Table 2.1: a shallew chord group withiho/b0 <
1, a sqgare chord group (holbo = 1) and a deep chord group (h;/bo > 1.
Wicﬁin each group, both hO/bO and s/hO are observed to vary. An alpha-
numéric label was used to identify specific test specimens. The numeral
denotes a particular chord aspect ratio whereas the alphabetic character
signifies'a certain gap'tb'depth ratio. Thus, a further classification
into sets was made. Each set consisted of two or more specimens that
differed only in the gap dlstance (constant h /b )« The letters a, b c
and d indicate the relative size of gap where a is the largest and d is
the smallest. .

»

2.2.4 Measuring Devices

initially, only three dial gauges were used in each test to
indicate the amount of inner web deformation. ‘For ¢ and d type speci-
mens, a fourth dial was placed under the oute; web to measure its verti-
cal deflections. Strain rosettes were mounted on outer webs, and, on
‘inner webs 'when thg gap was sufficiently laége to accommodate them. In
the latter instance, these were applied at a section mid-way in the gap .
spacing. Chords having a deggﬁilﬁ?1127.0 mn or more permitted three
rosettes to be positioned aloﬁg a vertical line on the web face; other-
wise one rosette was placed at mid-depth of the chord. Figure 2,3 is a

L]
sketch of typical specimens with attached measuring devices.

\
Measurements were recorded in milli-volts with an  Autodata 9

Y
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data acquisition system that can monitor up to 80 channels. Knowledge
of the gauge factor then permits strains to be easily calculated by

multiplying the voltage value with a constant.

2.2.5 Loading

Specimens were loaded using the hydraulig RIEHLE testing machine
at McHMaster having a capacity of 2500 KN. The load was applied quasi-
statically in increments varying from 100 KN to 20 KN depending on the
speaimen size and.the stage of loading. Strain aﬁd dial readings were
'

recorded at the end of each load increment.

2.2.6 ° Material Propérties . .

i
Upon completion of each test, standard coupons were cut from
each specimen remote from the welded seam. Uniaxial tensile tests were ‘o

then performed on these coupoﬁs using the Tinius Olson machige available

5 .

in the laboratory. The average yield and ultimate stresses oy and 9.1t

for each specimen are listed in Table 2.1.

2.3 2, Test Results

L]
-

Load-midépan deflection curves are plotted for each specimen in
Figure 2.4 according to the category of shallow, square and deep beam
specimens. 0f particular lnterest was the degree to which the Buter
chorq webs:¢b£tributed to shear-resiétance as both a function of holbO

and the gap-to-depth ratio S/ho' For a given aspect ratio, it will be

- E



- 18 -

~

- .

observed from Figure 2.4 and Table 2.2 that greater elastic stiffuness Ce
and strength were achieved for a decrease in the gap distance (alphabet-—

fcal letter progression of specimen label) with only two exceptions.

The group I specimens (hD/bO < 1) suffered severe distortions of
their inner webs in the gap zones at high loads, but experienced little
deflection of theilr outer webs even at P = Pult' Strain rosettes

mounted on the outer webs to measure maximum shear strains coanfirmed

that the stresses remained within the elastic range. ~

For the group II1 spegimens (hO/bo = 1}, the collapse mechaunism
was similar to that of group 1 except that the maximum shear strains as
measured in the outer webs were considerably higher, exceeding Yy in all
instances. This was indicative of a greater effectiveness_of the outer
webs in sharing the beam's shear resistance. Strength and stiffness
characteristics were consistent as both\ﬁere observed to increase as the -
gap was reduced. | ) N

£ h . *

The deep beams (group III) exhibited g failure.made in which
both inner and outer webs underwent significant shear deformation.
Measured shear strains in the outer webs were well into the plastic
range, «In addition, top and bottom flanges were observed to be severely
deformed by bending. . . -

Photographs of typical specimen; from the deep and shalldw
groups after testing are presented iq Figure 2.5. The taut string line

démonstrates the negligible outer web deflection occurring for the shal-



low specimens (Figure 2.5(a)) whereas visually detectable displacements
are evident for those constituting the deep beam ygroup {(Figure 2.5(b)).

2.4 Effect of Chord Aspect Ratio

Detailed load strain curves are presented in Figure 2.6 for
Vthree representative specimens lb, 4b and 7b. In each case, the gap
spacing s was equal to one-half the beam's depth. Specimen 4b employed
square tubular beams (hofbo = 1), while 1b and 7b utilized rectangles
having_ extr'eme aspect ratios (ho/bo) of 0.4 and 2.5 respectively. Only
single rosettes were moLnted on each of the faces for specimen 1b for
practical reasons. _the increased depth diﬁension for the other‘two
specimens pe.rmitted three rosettes being located aloag a vertical line
of a web face. The curves denoted by (I‘-, M and B in-Fiéure ;2.6 repraesent
strain measurements taken near the tép, the middle\g,nd_\ne_zar the bottom
of the web. The subscripts 1 and o refer to inner and outer webs

respectively. ' f

A comparison of performance of .the three specimens indicates
that” the outer webs of the section having the greatest depth-to-width
ratio were the most. effective in sharing the shear‘: load. For example,
the .measured maximum shear strainé, Ymax’ at ultimate load for the outer
web strain rosettes pos‘itioned at mid-depth (curves MO in Figure 2.8)
were about 1000 p, 2000 uy aad 5000 p for specimens b, 4b and 7b,
respectively. '.In fact, it will be noted from Figure 2.6{c) that the
maximum shear strainfs for the outer webs of the deep sectioﬁ spécimen,

7b, exceeded the ‘alculated shear strain Yy’ for all three rosettes —
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indicative of a distribution of shear stress exceeding yleld throughout
the depth. From Figure 2.6(b), it is evident that only the top portion
of the exterior webs of the square underwent yielding. With a gingle
rosette per web, it 1is surmised fhat,the entire outer‘webs of the shal-
’}ow sﬁecimen, 1b, remained "elastic up to ultimate load.

It may be qoted thaé the inner {eb load-strain curves _are
approximately linear for y values’ not exceeding about 1000 p. This

-

strain level 1is only about 40% of Yy' The latter was computed from a

nominal yield stress oy of 350 N/mm2 and elastic conséants E and v taken

as 210,000 N¥/am> and 0.3 vgspectively. (The /3 factor from the Mises
yield criterion was used't§ link the shear yleld sfress Ty to Uyr)
Early yielding in the shear. beam speéimens appears to have been due to
welding residual stresses iﬁ addition to those generated during the HSS

manufacturing process itself,

2,5, Influence of Gap Distance '

It appears from test results that the beam's outer walls Eontri—

Bute a greater share to its shearing strength when\the gap distance 1s
T\i}ncreased.' This behaviour can be_easily discerned from consideration bf
iéhe load-outer web shear strain curves of the "2" and "4" series speci-
mens. In these sets, ®only the gap distance waslvaried while all other

- paréqs&g;s;ware kept constant (Table 2.1}, For example, it is obvious

from Figure 2.7(b) that the maximum shear strailn attained was smallest

for specimen 4d (s = 19.0 mm) whereas it was largest for specimen 4a
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(s = 127.0 mm). However, this gain in strength was counteracted by the
{acreased bending moment acting on the critical section in the gap spac~
ing. As/a result the two effects tended to cancel one another; and
hence it may be observed for the range of gaps tested in this investiga—
tion, that varying the gap appears to have litrile 1nfluence on the joint'
ultimate strength. However, for prescribed displacements, as will be
discussed below, there Is 4 consistent increase 1in strength with a
reduced gap distance. The elastic stiffness was also found to increase

for reduced gap size in all but two speciﬁens (3b and 4c¢).

-

-

2.6 Deflection Limit Criterion

- %
For every specimen tested,pit was observed_igfz—mmjor distor~

tions in geometry occurred at the maximum load P « As such, the

ult
original geometry had evidently been altered substantially with tensile
stress fields in the-inner webs being particularly obvious. However,
for'précfical design purposes, a serviceability_&eformation criterion is
normally required to prevent major distortions oecurring in a structure.
Such a deflection criterion was previousgly proposed by Mouty (12) in
applications of RHS single chord K and T-joints., He suggested a maximum
chord face displacement of 1% b0 for unequal width connections.
Implici; ip his limitation is the ‘peed to regstrict the slope af the
chord face. No account was taken of the section's depth; perhaps
because flexing action of the connecting flange plate for the single‘
chord joint\ tends to be little influenced by the chord's d pth. For the
- Jf The connec-

separated doubje chord, the situation is quite different’,

tion relies onla combination of web shearing and flange flexing actions
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to resiét apélied loads. Distortions will involve both the chord
flanges and the webs, and as such, a deflection criterion ought to
*Include both ho and bo. For square double chords, the equivalent limi~
tign to that of Mouty would be 2% bO or, in this instance 1% of
(h0 + bo). This latter criterion is proposed 'as the deformation limit

load Pdfor RHS double chord joints. While arbitrary, such a limitation

is simple and conforms to that of ‘Mouty when square chords are used.
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Table 2.1 Dimensional and Physical Properties of Twin Shear Beam Speci-

mens
Gr?up Specimen Depth x Width x Thickness 5 o %1t
() (mm)  (Pa) (MPa)
la 50.8 x 127.0 x 4.78 50.8 338 517
1b 50.8 x 127.0 x 4.78 25.4 343 506
1 2a 63.5 x 127.0 x 4.78 63.5 335 497
(shallow) 2b 63.5 x 127.0 x 4.78 31.8 334 496
2¢ 63.5 x 127.0 x 4.78 15.9 325 524
2d 63.5 x 127.0 x 4.78 12.7 319 547
3a 76.2 x 127.0 x 4.78 76.2 337 510
3b 76.2 x 127.0 x 4.78 8.1 349 517
4a 127.0 x 127.0 x 4.78 127.0 367 461
4b 127.0 x 127.0 x 4.78 63.5 365 460
be 127.0 x 127.0 x 4.78 38.1 391  S06
II 4d 127.0 = 127,0 x 4.78 19.0 402 516
(square) 8a 152.4 x 152.4 x 6.35 152.4 413 523
8b 152.4 x 152.4 x 6.35 76.2 424 534
* 8c 152.4 x 152.4 x 6.35 38.1 392 491
8d 152.4 x 152.4 x 6.35 19.0 400 495
Sa 127/D/x 76.2 x 4.78 127.0 343 511
5b 127.0 x 76.2 x 4.78 63.5 333 501
IiT 6a 12?\9 x 63.5 x 4.78 127.0 338 502 !
(deep) 6b 127.0 x 63.5 x 4.78 63.5 337 494 \
6c 127.0 x 63.5 x 4,78 31.8 336 530
6d 127.0 x 63.5 x 4,78 15.9 333 532
7a 127.0 x 50.8 x 4.78 127.0 351 516
7b 127.0 x 50.8 x 4.78 63.5 341 505

N.B. Measured dimensions of HSS were found to be very close to the
nominal dimensions and as such the latteg were employed.



Table 2.2 Shear Beam Experimental Results

Specimen s/ho, ho/b0 Ce Pd Pult
No. {KN/mm) (kN) {kN)
la 1.0 0. 40 364 280 496
b 0.5 0.40 444 324 571
2a 1.0 0.50 400 328 661
2b 0.5 0.50 400 378 552
2¢ 0.25 0.50 455 401 628
2d 0.20 0.50 769 438 616
3a 1.0 0.60 417 375 680
3b 0.5 0.60 357 421 727
4a 1.0 1.0 385 506 830
4b £ 0.5 1.0 714 567 932
4e 0.30 1.0 625 617 1042
4d 0.15 1.0 1000 801 1113
8a 1.0 1.0 555 901 1450
8b 0.5 1.0 833 1081 1661
8¢ 0.25 1.0 1250 1050 1622
8d 0.125 1.0 1300 1184 1618
5a 1.0 1.67 357 506 986
5b 0.5 1.67 833 644 1157
6a 1.0 2.0 400 562 1077
6b 0.5 2.0 800 680 1063
6c 0.25 2.0 833 668 1110
6d 0.125 2.0 833 742 1108
7a 1.0 2.5 400 505 943

7b 0.5 2.5 800 679 1218
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CHAPTER 3

STRENGTH ANALYSIS

3.1 -~ Introduction

The use of plastic hinge lines for calculating an upper bound to
the plastic collapse of plates is well known €19). The basic principle
involves equating the external work done by an applied load system to
the internal work performed by a set of plastic moments and forces
operating along hiﬁge lines through changes in éngle and displacements
respéctively. The deformed state must satisfy compatibility require-
ments " and a plausible yieid line pattern in order to be accéptable. A

minimization of internal energy dissipation with respect to certain

geometrical parameters is then required in order to find the lowest

upper bound. The method is known as the yleld line theory %nd was—

originally developed by Johansen (20) in application to reinforced
concrete flat slabs. Basic assumptions of the simplified theo;y
include: (1) Rigid-perfectly pléstic material; i.e. elastic strains

are sufficiently sqall to be neglected compared\to plastic strains, (2)

For loadings transverse to the plate, the effect of shear force on the

plastic moment capacity may be ignored, and, - (3) Deflections are small, -

and as such, membrane stresses developéd in the plate may be assumed to

be négligible. With these considerations, .the theory appears to be

- 36 ~
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simple to grasp and easy to apply.

In HSS joint applications, the yield iine theory has been widely
usedfby several researchers. Early attempts focused on evaluating the

punching shear strength of single chord T-joints. This wa e Initi-

-

(22) using a

ally by Jubb and "Redwood (21} followed by Patel et 3l.

combined trapezoidal and corner fanned collapse chanism. , Davies .

Roper (23,24) then presented similar mechanis to estimate the strength

of N-joints. 1In their second paper (24 they modified the s

’

equation to account for the work done by the high shearing forces in the
crotch zone. Mouty (12) extended the yield line patterns by Jubb and
‘Redwood and Davies and Roper and derived strength expressioms for T, N
and, K joints considering the effect of chord axial forcaf. He also
adj;essed the effect of membrane stresses occurring in the chord face on
the joint ultimate strength. Packer et al. (25) included such effects
in\\their ultimate strength aﬁalysis —of gap joints employiné Mouty's
meéhanism. Korol et al. (26) defined three plausible mechanisms for a
plate reinfofﬁed single chord T-joint subjected to branch punching shear
and bending moment. They used these mechanisms to determine the joint
strength for prescribed plate dimensions. They also derived optimum
plate dimensions. for maximum strengéh. It was not until recently
however that the yield line mefhod was applied to RHS double chord
connectiong: Init;ally, Korol and Mitri (é%) derived ultimatg‘strength‘
equations for truss gap connections neglecting the effect of axial
forces. They also carried out an ultimate strength analysis (28) for

rEouble beam-to-staggered column connectioﬁs.

8
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In this chapter, the yield tine theory is adopted to derive the
yield load for twin chord RHS shear beams ana subsequently K and N
jotnfs. Two mechanism models are presented, namely the trapezoidal and
conical types. A comparison between Eifgretical and experimen;gl
results 1is made to verify the theoretic{} models proposed. ?:SQEgégth
expresslons are then modified to apply to real truss joints. These
expressions are applied to tested joints to compare predictions with
experimental work previously done on K-joints. Finally a variation of
parameter study 1is conducted to indicate their influencg on joint

strength. Effects of chord axial preload and web member-to—chord‘angle

are also investigated.

3.2 Trapezoidal Mechanism

The yield load of the twiﬁ beam, Pb, may be definéa as that
which causes the inner weSs to distort- in % vertical plane an amount Al,
as shown In Figure 3.1(a), while the four flanges deform 1in a ¥ield line
pattern as indicated in Figure 3.1(c). Furthermore, the outer webs may
alsof@istort 4, (Figure 3.1(b)). If the angles formed along the yield
lines of the flange segments are compatible with the deflections Al and
Az, a kinematically admissible set of displacements results in the for-
mation of a mechanism. In fact, the deformation patternlﬁroposed is
judged to be an acceptabié model of the actual distortion of the speci-
mens tested: Figure 2,2 show§‘ two extreme - cases illustratingl this
observation. ' Indeed, for the shallow twin beam (Figurs? 2.2(a), the
outer webs were visually observed to undergo virtually n displacement,

i.e. AZ = 0, thle an exterior'wéb of a Heep beam specimen (Figure

»
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2.2(b) tended to displace as much as did the inner web.
3
]

Equating the external work to the internal energy dissipation

glves /

PA, =L MY L +IZhettA 3.1
b~1 337 0 ]j 1] ( )

H

where the first term represents the work done by the formation of yield

lines developed in the beam flanges, while the second term involves the

plastic shearing action of the webs.

The hinge votations can be simply determined by means of the

hodograph method proposed by Johnson (29).

As observed from Figure
3.2, these rotations are

A, — A
1 2
\yl = li12 = 0A = b (3-23)'
8
TB = AC = 5 cosa {3.2b)
s
A A
e 1 _ 2
?4 EC = s cosf b sing (3.2¢)
~ 4 5y
?5 = EC sing = g—-tans - — (3.2d)
A 8,
‘{’6 = QE = m (3:2e)

o

"



where the angles a and 8 are defined in Figure 3.1.. Also, the lengths
©

ijare glven as:

b
[

u + 2b tana

E3 b coza
24 = co:B-
—
25 =3 ‘
26 = ;

Substituting (3.2) and (3.3} into (3.1) gives

) o
A = A A b

2 1 2 1 -
P&, = 20yto {—b— (b tana + u) 4 =~——
S CO5 ¢

) A b A.b As A,

1 . 2 2 2
+ = ) + (&, tang - ==} + }
s coszﬁ b sinp cosp 1 b tang

-

+ 4h torySA1+ Az)

(3.3a)

(3.3b)

©(3.3¢)

(3.3d)

(3.3e)

(3.31f)
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Dividing by A

1 and noting that tang = % — tang, 1t can be shown that

2' u 25 2b 2
= 2 | - - 4 =2 == -
Py = 2ot L - e)(g + £ + = (1 + tan’d), - 2 tana}
+ Aryh to(l + 1) . : (3.4)

where r is defined aﬁfhzfal.
The minilwmum vélue of Pb may be determined by differentiation
with respect to tana and setting it equal to zero. This results in the

*
yield line pattern defined by a . Thus,

ap
b _ 2b _
3 Cana Q= Y {2 tana) 2
and . L
* s
tang = Ty . (3.5)

Substituting this wvalue 1nto (3.4), the upper bound load can be

obtained.
<
L
. 4h t
_ 2 _ u+t+2s 2b s 0
By = 20yt0{(1 D5—+5 -5 + o (1 + 1) (3.6)

/3

&

where Ty has been ;eplacgﬁ by cy//i from the Von Mises yleld criterion.
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If r takes on irg minimum value of zero, the outer webs of the

twin beam will remain undistorted and the deformation pattern 1llus-

trated in Figure 3.3 evolves., In this instance, the failure load

represents a lower. limir on Pb such that:

"oty (B b tn G
7 s toﬁ

If r takes on a maximum value of unity, the outer webs will be
most effective. The corresponding mode of failure is depicted in Figure

3.4, The assoclated load, PUL’ is an upper limit on the yield load and

is given by
2 r4b ] 8h
PUL cyto_ [—; + ] .(3.8)

t /3
o]

Comparing Equations 3.7 and 3.8, it can be seen that the lower limiql\‘—ﬁ\
Ny

load is less than the upper limit load provided that

5 /3
—= +
hb> 3 to[u 2s5]
In practice, this condition is likely always to be satisfied. Conge-
quently, the lower limit load glven by Equation (3.7) will provide the

"lowest upper bound solution. When calculating the res&lts of the

- trapezoidal mechanism in discussion to follow,_it 1s therefore to the
lower limit solution that reference ighbeing made. ¢ ‘
F-‘
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3.3 Conical Mechanism - S~

(

. hN
Conical mechanisms are well kﬁbwn in analyses of collapse for

flat slab applications such as floors \n buildings and bridge decks
subjected to concentrated loadings. In p;?kicular} the conical sQiPe
commonly utilized is the central fan describped by Wood (19). This type
of failure mode can be shown to glve lﬁéer upper bounds to collapse
loads 4s compared with mechanisms consisting of straight yield lines.

A possible circular fan mechanism for t E\EEi“, ea shown in
Figure 3.5(a). The Haécg;d reglons form the conical shape- of the
deformed top‘anq bottom flanges. A more detailed qua%ter segment of the
deforméd state is shown in Figure 3.5(b). Because of symmetry of de.
mation,* the vertex of the cone qs}qéides with the central point of the
loaded column. The assoéiaéed shear distortion of inner and odter webs
1s hyperbolic and 1s indicated by the conic sec%}ons }-1 and 2;2‘of
Figure 3.5(c). The plastic collapse load may be found by equating the
. lnternal and external work quan;ities obtained, as thﬁ(load displaces an
amount 4, (figyre 3.g(c)); elastic strain effects are assumed to be
negligible. Thus, the external work term becomes P A while the total

b1l

loternal work dissipated in causing such a plastic mechanism is given
i/

4

by -
m n

W, = L [M &d¥ + ¢ T v.dV 3.9
fpi_i lny ( )

int 1=1 j=

where, for the first term, m is the number of plastic.hipge lines, MP
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) - ;e 4
the plastic moment of the flange plate per unit length (= ayto/A), and
'Ei the length of the plastic hinge line with Ti its rotation. 1In the
second term, p 1s the number of webs distorted by shear, Ty the yield
shear stress, while Yj is the shear strain in the web (j = 1 for the
lnner one, 2 for the outer). The right hand side of (3.9), then, repre-

sents the plastic strain energy dissipate&izy bending of the flanges and

by the #hearing action of the webs. From Figure 3.5(b) it can be seén
. ™ . -

-

that the followiﬁg geometrical relationships hold

- L

~ 21 = I.'Oa‘ - (3-108)‘
=g
£, = rocos(a + B) ) £3716b)
2y =S S (3.10¢)

14 = (n/2 - T)ri (3.10d)
v
fs = ¥ T T siap B9 <
- i « \'ﬁ—-' .
=r ‘-, Y<d<Ka+8 (3.10e)
b0 + v/2 .
C =S " fyret B << /2

The hinge rotations can be easiéy calculategmfrOm Figure 3.5(b). These

are



The shear strains in the webs

(3.11a)

(3.11b)

are determined from. the equations

of the .conic sections 1-1 and 2-2. Referring to Figure 3.5(¢), it is
evident that ’
~ <
'c)Z'1 Alx %
Y, = = —X (3.12a)
1 dx 2_——-'—-2- .
(r -, Wx" + (v/2)
o i
and
az ‘A x .
R 1 ) (3.12b)
2 dx '2 2 .’”
(rO - ri)/x + (b0 + v/2)

The expressions in (3.9)

external work quantity. Noting‘EEg;/f/ may be replaced by c /¥3 from

\ Miges yield criterion, the plastit shearing capacity of the twin ghear

beam, P p» can be obtained as

L}

¥ Pr =g Dz[
b yotr,

i

R 3

can- thus be integrated and equated to the

—_2_—;— {r°(2<!:'-_$ cos(a + B)) + s

v
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s
Y
. =(v/2)zn [tan((atzngéﬁgitan(T/Z)J - bozn(tan et BJ}
+/ih (1 + r)] .. . (3.13)
3 _}to ‘ﬁ
where.
ry = )%+ (s + 32 | : (3.14a)
r, = /022 + (u/2)? «  (3-14b)
W
3.
-1 v
B = sin —
’ 21-0 - —
¥ L b, (v/2) /
@ = sin = —————— -

N
o b
| i\
tan-l(u/v) _

and r is the ratio of outer to innei/web def ctions,'Azlﬂl. It should

-<.
I

(3.1l4e)

be noted that in general

T r_ - 1Ib_+ (v/2)]" )
0&r =2 2 <1 : C (3.15)
0 i '

Physikally, this stipulation infers that the outer web mid-span deflec-
tion A2 can neither be négaciye (positiveadoanﬁards) nor greater than

Al. These cﬁ%ditions can easily be justified from the physical model
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*
geometry and loading systemikzﬂehCe, ifr < [b + (v/2)], there will be\\\
-// . D O
no plastic shearing work contribution by the outer web. Also, th8_angle
a will increase to ©/2 - 8. Figures (3.6b) and (3.6c) depict such & v
]

cases, On the other hand, if L, > (bO + v/2), r will be a maximum and

equal to unity (Fig. 3.6a). As a consequence, the plastic hinge line L,

will reduce to

) _ b0 + v/2 .
(ﬂ/2 - Y - cos —-—1?f-—)ri (3.16)
i
‘f .
3.4 - Comparison with Shear Beam Experiments ¥\‘\\\ -
: _ N
Z \—-) ‘f . }

A comparison was made between strengths predicted for the shear

beams, Pb, anaﬂzﬁeir experimental counterparts Pult aad Pd defined in

Chaptef 2. These results are presented in Table 3.1 and are graphically ¢
: “ ’ ‘
displayed in .Figures 3.7 and 3.8, It 1s evident that there is much
‘ (-]
closer correspondence of the 45° line WTQE Pd values thgn with Eult'
This result is not surprising since the theoby exc strain hardening

and membrane force effects which become ‘significant at large inner web

-~

deflections. It was found that the trapezoidal mechani'sm model estima-—
- ) '

ted the beam strength very accurately. The predicted to observed mean f//”

strength ratio was 1.00 with a standard deviation of 0.13. However, for

. . . . $
three of the specimens having the largest gap distances relative” to

rtheir size, i.e. 5a, 6a 7a, the strength Pb predicted by the conical
. .
mechanism model differed ‘oqnsiderably from the experimental limit Pd' “
The reason may be attributed to the exclusion of bending moment effects
by

in formulating the equation for plastic joint stréngth. Clearly, such



an éffect is significant when the gap distance is very mucﬁ larger than
would be contemplated in practice, Tt may be noted that the trapezoing(
model did not exhibit discrepancy of results for large gap specilmens.
This may be explained-by the fact that neither possible contribution of
out2r webs to sheafing resistance nor lo;s of strenfth due to bending
monents was accounted for in this modél. _As a result, the two effects

seen to have cancelled one another.

A comparison was also. made with predictions wbtained from an

elasto-plastic interaction equation that was d dped earlier by Korol

and Xeen (5). The underlying assumption of that approach was that the
webs -and flanggg would resist céttain prescribed proportions of mome
shear and axial force. It was also supposed ¢that all four webs were

equally efficlent in resisting shear, a statement that was qualified to
¢ ,
apply only to square or deep beams. From Tabf; 3.1, it is noted that,

for large gap'specimens 5a, 6a and 7a, the load Pint obtained from t}

interaction equaticn Bpoéides a better estimate of Pd than does P, since

b
reduced joint strénggﬁ'due Zojbending moment is accounted for in that
P

approach. With only one exc tion, the other specimens possessed smal-

‘ler gaps, ‘and hence were more in concurrence with stumulating K-jeint
behaviour in normalﬁﬁﬁfactice. For these“ 217 Spécimens, the conical
mechanism approach provided a considerable improU;menc in correlation_
with tests;l fhekhsedicted to observed mean load ;atioé°for both-the
coni;al‘sttength_model and the intégéption equation for these specimens

- .
Qefg_computed to be 1.04 and 1.15 with standard deviations of 0.10 and

0.28 respectively.

¥



3.5 Application to K-Joints

A

3.5.1 Basic Modifications to Beam Models

The strength of a double chord K-joint may be directly or indir-

—

ectly evaluated from the strength of a twin shear beam having similar
geometric and physical properties. Thus, 1if the influence of the

chord's axial force in the gap betweén dlagonals is sufficiently small,
it is the sﬁZaring component of the web member force, Pwsine (see Figure
3.9) that will pfgcipitate failure. The predicted shear force that
s occurs in the gap of the twin beam 1s Pb/2. Equating the shear forces
, .
- e yie}%?.Pw = Pb/(z sinf8). To acéount for the redaced strength due to the
_non:negligible effédts of axial force in the chord member, Pw requires

modification. Such a reduction may be ascertained by considéring the

\\Eﬂig_bquj/having the failure mode previously describéd, subjected to an

‘f

axial force of magnitude N + H where N\is tle chord preload and H is the
contribution from a diagonal given by chose. The resulting web member
force capacity becomes

P, = Pl/(2 sing) ‘ : | (3.17)

where Pé‘represents the reduced twin beam capécity. To compute 1its
value, assumptions must be made regarding the distribution of stresses
due  to N and H. Epe éhord preload N 1is taken to be uniformly distri-
buted across the section while H is assumed to be distributed over the
same -region deformed by shearing action. For example, frém Figure
3.6(a) thch represents the case of a large gap and/or narrow chﬁrd,,

this force component would tend to be transmitted bver the entire cross
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section since the outer webs are effective in resisting shea&, On the
otner hand, the region in Figure 3.6(c) s confined to-a:\inggribed cone
. occupying a small part of the flange. This reduced area’ (inner webs and
adjacent flange portions) would thus transmit the axial stress flow in
the gap. Such a hypothesis tis consistent with St. Venant's principle
that concentrated forces tend to become uniformly distributed a reason-—
ably short distance beyond the loaded boundary. For the K~joint tests
carried out by Korecl and Chidiac (1); it was in fact the case 3 mecha-
nism (Figure 3. 6) that dominated throughout. Empl'ying the same hypoth-
esis for the trapezoida; mechanism, the Fforce H will be uniformly
distributed over the top and bottom flanges and the 4inner web. The
outer web then, would be assumed not to contribute either towards the
shearing resistance of the beam, or H, by virtue of the mechanism model

-

adopted in Figure 3.3.

The reduction in web ehearing resistance may be determine&lby
linking the shear and normal -stresses through the Mises' yield criterion

Lo give

y
Z

' =~(0y/33)/1 - - : . (3.18)

)
H

where [ is the non dimensional axi#l stress o/cy. Note thapr f is

s

%omposed of the chord preload to axial yield force ratio N/Ny and the

tetnm P cosf whicﬁ“ac?ounts for H. Thus, the reduced web shearing resis-

' tance is L‘WM_ ) f“\\e//
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Vis tth e g ay g - g2 (3.19)
P Q p

The reduction in plastic moment capacity per unit length depends
both on the chord axial force and the angle between a hinge line and the
longitudinal axig. The plastic moment capacity M per unit fgngth is
affected to-a maximum extent by the axial force if the hinge line is

perpendicular to the x—axis (Figure 3.5(c)) but is little influenced

when parallel, Consequently the plastic moment capacity per unit length
M s glven fy’klZ) ' i
+

S A :
Mp M [1 - £%cos™¢] (3.20)

+

The modified strength may then be defined by

—

Fs

\ , P' = p - R , : (3.21)

where R is the re tion in strength caused by the ax{al)forces. Hence

- ‘ ‘ .

g

N (B, ="R)/(2 sine) ' ' (3.22)

»
&

represents the design equation for double chord K-joints. Because the

expression for R will involve P w? (3.22) must be solved by trial employ—

ing a simplexiggiftive procedure. - \V



- 52 -~

3.5.2 Trapezoidal Mechanism Model

Referring to Figure 3.1, it 1is evident that plastic mdments at

yleld 1lines 1, 2 and 5 will remain unchanged whereas those at 3 and 4

will reduce to

senn (3.23)

~—
~—
it
+
g

~ The modified strength equation can be written as

\ 2u + 2 (A5 s . ,
P/ = Aup[——b-—]&ggp[s + b] + 4vp (3.24) - /\5

:Sﬁbstituting for\Mp, M; and Vé and collecting terms, one obtains

- P! = 2[2u+35+_1_4£+ 4h ]_ N .
b‘ S CY -’

» N
T 2¢.hb £ 4h )
Uyto[(;—-+ %J(l -+ (1 =71 -]

\ (1 + E_' )2 Ejtg_/ 4.
. . 42 (

!

ceees  (3.25)

" Comparing (3.7). and (3;25),.it appears that éﬁgf{eduction in strength is
— -
- glven by:

i



2
27c4b 5 £
R = % ° to[[E_ 'E) Z 27

(1+

4b"

P
“E (1 -1 - £2)) (3.26)

t0/3

3.5.3 Conical Mechanism Model

A similar procedure can be followed to calculate the modified
strength for the conical mechanism with reference now made to Figure
3.5 for identification of the yleld lines involved. In view of Equation

3.20 the reduced moments are:

= Mp[l - fzsin4¢j], j=5 - (3.27a)

[ 2 4 ’ . R
=M {1 - £cos @J.], i=14 N (3.27b)
N\ M , 1 =23 T (3.27¢)

-

After integrating in accordance with (3.9), it can be shown that the
reduction in strength, R, caused by the axial stresses in the flange and

web sections &s gliven by

(.

sin 4(a + B) _ win Ah]

l6 16
%-\‘h
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- 3 3
cos y _ cos B
3 3

sin 2y v o
- —— e — - o +
ri 7 2 pcos 3 Cos vy

, 3 3 ‘
- cos(a +/,) +w5_®5:gJ +b_[cos(a + ) _Los a¥ By

S

0’ e ———
+ 8t (4 e (1 - /1 - £2) (3.28)
° /3 .
3.6 Comparison of K-Joint Results with Tests

The experimental results of 29 tests performed on four differeat
types of double chord K-joints were reported by Korol and Chiéiac)(l).
Among these, there were twelve Jolnts having separated double chords and

diagonals of équare HS5. From the diagonal memher force—-displacement

-curves of that work, thelloads Pd wére determined based on the 2% b0

local deflect%on criterion as described earlier 1in Section 2.6. To

compare the test results with the strength theory just described, a

prescription for the gap was needed because the diagonals had not been” -

end cut parallel to each other, but _ rather conformed to the detail shown

in Figure 3.9. Because of bridging action that occurs between diago—
nals, the stress lines tend to converge at the toes (30). The effective
gap wilf be somewhat larger than the clear space -between weldments, s',
buti%gss than the centre-to—centre distance of diagonals, with respect
to the chord's centreline. A gap distance s of 2 was selected for

convenience in computing Pw from Equation 3.22.

The results of predicted strength of the K-joint with experimen-
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tally attained values are plotted in Figureé 3.10 and 3.11 for the
trapezoidal and conic;l mechanisms. The theoretically obtained strength
Pw 1s observed to be genera¥ly slightly lower than the deformation load
limit value Pwd for both mechanisms. The average difference between
corresponding values wag computed to be 2% and 6% for thé trapezoidal
and conical models respectively.

v : \

3.7 Variation of Parameters

Y.

To assess the influence of varying the geometrical properties on

the strength of double chord RHS K-joints, a sgnsitivity analysig was
undertaken using the conical model. Typical strength results of ehe
analysis correspoﬁding to thg_yield load Pw for XK-joints are presented
in Figure 3.12. The branch members have been taken ag 100 mm squares
with 5 mm wall thicknesses and positioned at a 2:1 slope with respect.to
the chord (8 = 63.4°). The chord preloading force, N, will be assumed

~to be zero.

Figure 3.12(a) shows the effect of varying the gap distance for
different widths of chord. The gap for which the strength P is a mini-
mum corresponds to mechanism (b) in Figure 3.6. 4 larger gap activates
the outer webs in shear thus having a positive effect on strength (Fig—
ure 3.6(a)). On the other hand, a reduction in the gap causes the
bending energy. due to large angle changeg ‘along- the yield 1lines ‘to

become increasingly dominant.

*  Localizing the mechanism as in Figure 3.6(c) is the cause of no
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-—

improvement in strengch with increasing b0 beyond a certain minimum
level that depends on the gaps. This 1s clearly evident in Figure
3.12(b) by the horizontal strength lines. I; contragm an increasing
depth provides consistent benefits in strength since sheai\régfaggnce is
linearly proportional to depth, This attributg is demonshrated in
Figure 3.12(c) for varying chord thicknesses. Figure 3.13 demonstrates
the effect of chord axial load on joint strength for a particular joint
geometry indicated. It is obvious that by varying the geometrical para-
meters of the joint different péths will evolve; the two limiting points
of N/Ny = 1,0 and Pw/Pw° = 1.0 willuhowever be common for all possible
curves, It may be discerned from the illustrated example that chord

axlal loads should not be ignored if they are in the order of 20% 0%

more of the chord yield load. Finally Figure 3.14 suggests that joint

.

strength itereases as the angle between the chord and the diagonal

- 1

becomes smaller. Such a behaviour cam be easily deduced from examining

Equation 3.22. -
(/.»' o \\A
3.8 . Discussion

The trapezoidal and conical mechanisms developed in this étudy
hﬁve bee; found teo provide.a basis for predicting the strength of double
chord standard RHS K-joints subjected to high shear‘fﬁrces. The analy-
ses are based on the well known yield line theory of plates and accoun;
Eor localized flange bending of the chord including the effects of chord

axial force, Although the analyses have been demonstrated only on K-

joints, cthey are equally applicable to other double chord gap joints of

\

J‘w
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;hé separated cCtype. . This can be accomplished by appropriately using
Equation 3.22 1in conjg’fnction with Equations 3.26 or 3.28 that are

applicable to the trapezoidal and conical mechanisms respectively.

It may be concluded from both models that the shearing resist-

]
ance of the connection is primarin dependent upon its’ chord aspect

‘ratio (ho/bO')' Both theory and experiments confirm that the joinc
strength' is improved when tha&_ ratio is—iacreased. From. the conical
mechatdism model, it 1is shown that the connection's geometrical proper—
ties determ.‘ine the t;’pe of mechanism that.ig applicable: for a giver
configuration, and this in turn affects the degree to which the outer

~ * oA .

webs contribute!r in resisfing diagonal member forces.

For example, a

high depth-to—width ratio (h Ab ) and, large gap-to—depth

ratio (s/ho) will ensure full participat on"]; he c}xter webs. The
opposite extremes lead to very localized yie ding;in'" the regions sur-
—r

rounding the gap of the lnner jgebs, and thu&{cludqua outer webs as

NV - '

Predictions of joint strength were compatred with experimental

shear resisting elements. *

strength limits based on a lobsl displacement of 0.01 (b + h rat

than on ultima values that are associlated with unacceptabf \}m:ge

-
deformations. The analytical results™show the models to be consistent

in providing good agregment both for tests conducted on RHS twin sheai
beams and on’ 1solated K-'joint specimens of\ squaahollow slection of a

previous study. -~

»

The trapezoidal me anism, besides being simple and easy to use

+

6-

N ,;}L %
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for design purposes, has provided remarkable agreement with experimental
results of both shear beams and K-joints. Despite the fact that the
outer web's resistance does not enter inte the strength expressiom/fhe
: —

deviation f__rom experimental cEta is very slight; this 1is perhaps because

-at yleld load level, the outer web Is not yet active in resisting shear.

If the model were to be extended For ultimate strength analysis, then it
would underestimaate e Joint's ultimate capacity and empirical factors

.- ) .
would have to be introduced to account F&r outer web shearing resistance

(28).

On the other hand, the conical mechanism gave slightly poorer

S
results than the trapezoidal mechanism. However, for other than the

large gapped specimen, the agreement was also quite satisfactory. It

should be noted that both models do not account for the reduction in
strength due to the bending moment acting on the critieal section. This
bending moment, however, becomes rather insignificant for small gap

)

sizes.

/X
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'I‘abl“e\_.(B. Dguble Shear Beam.Experimental and Analytical Results
. ES s * & k*kk
- Specimgn Pd Pult Pb Pb Pint
No. {KN) (KN) (KN) (kN) (kN)
la 280 496 272 285 51 °
1b ‘324 571 346 349 29
' 2a 328 661 304 318 314
2b 378 552 356 362 361
2c 401 628 457 446 379
24 438 616 505 483 377
3a 375 680 347 -359 381
3b 421 727 403 412 461
N .
ba 506 830 571 626 700
4b 567 932 587 " 602 840
4e . 617 1042 669 “681 970
4d 801 1113 802 796 1050
8a 901 1450 1027 1107 1325
8b 1081 1661 1099 1116 1645
8¢ 1050 1622 1119 1111 1657
8d . 1184 1618 1383 1301 1750 -
5a 506 986 550 790 s s21 ’
5b 644 1157 531 560 628
6a 562 1077 554 828 480
. bb 680 1063 541 683 597
6c 668 1118 556 600 672
6d 742 1108 584 689 €70 :
7a 505 943 - 596 911 463 ‘\\“‘“-.\\
: 7b 679 o 1218 558 800 565 i '
= N .

. )
, Predictions from tr)pezoidal mechanisd
s Predictiéksxfrom conical mechanidm

Keen (22)

\

-

R

Predictions from elasto-plastic inceraction equation of Korol and

A\

4

)
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CHAPTER 4

FINITE ELEMENT MODEL FOR RHS TWIN MEMBER SHEAR BEAM

4.1 Introduction

“  With the aid of digital computers, the finite element method

(FEM) appears to be one of the most powerful tools for analysis of
complex structures. The approach is based on subdividing the structure
into a number of discrete elements with assumed types of displacement.
fields. Knowledge of these fields enables the derivation of the
elements' stiffness matrices. The solp‘tion is then obtained by assemb-

ling the .‘sﬁiffness' matrices of these elements in such a way that the

com{:atabil;l.ty conditions at element interfaces are satisfied, then solv- \

ing the system of equations for the unknown displacements. Further

details of the basic concepts of the FEM method can be found in refer-—

3

In this Chapter, a review of the various numerical models simu-

ences (33") and6(34).

lating rectangular hollow section (RHS) T and K-joints is first out-

’

lined. This is followed by a description of the proposed Finite element
model for the RH3 twin member shear beam. Such a description includes

the type of elements employed, discretization and the boundary cofidi-

—_——

‘tions used. Finally, the iMealized stress—strain relationship and the

- . ]
assoclated "properties of the stéel Used are explained.

]
i

*

_75..
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4.2 Hodelling of RHS Joints—~Historical Review

Several studies have been undertaken over the past two decades
to model the different RHS connections by numerical methods. The Ffirst
attempt was made by Redwood (13} in 1965 for elastic analysis of unrein-
forced T-joints of unequ§l width. The .plate bending of the top flange
of the chord member was solved by the finite difference method (FDM).
The rest}aining effect offered by the remainder of the chord section was
incorporated through the boundary conditions of the top flange plate in
the form of a roller (to prevent vertical deflections) and a rotational
spring (to resist rotation) as shown in Figure 4.1(a). In 1979, Korol
and Mansour (l4) presented a model for haunch reinforced T-joints
consistiﬁg of squafe RHS that accQunted for both deflections and rota-
tions occurring near the rounded corners of the RHS chord face. This-
was achieved by introducing translational and rotational flexibilities
of the springs shown in Figure 4.1(b). The elastic solution of the top
flange  plate was thén obtapned using the FDM. El-Hifnawy (15) anﬁ
. - . .
Koroi‘and Mirza (16), then solved the problem by the FEM by discretizing
the top flange plate into a number of rectangular nonconforminé plate
bending elements (12 degress of féee&ﬁp (DOF) per element). The plate
wa;,supported by two coupled edge springs, translational and rotational,
whose coefficients were calculated from stiffness anglyse; of the adja~-
cent U-frames representing tﬂ; rest of the RHS as indicated in Figure
4.1(c). Each U-framé was made of a series of beam-column elements of
unit width with 6 DOF per e;ement. Shehata (10) and Mirza et al. (ll)

further improved this model and applied it to single chord and back-to-

back, double chord T-joints.  The in-plane stresses occurring in the top
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flanges were taken into account by adding plane stress rectangular
. a .

elements (8 DOF per element), thus permitting a third spring coefficient
to be included in the analysis; see Figure 4.1(d). As before, direct
stiffness analysis of' the U-frame was emplayed for determiqing the

']

coupled spring coefficient matrix per unit width of the frame.
[}

Recently, Osﬁrogski (17) and Packer et al Q}B)‘ introduced geonmetric
nonlinearities into Sheh;ta's modeél (10) and applied it to single chor;
K-joints with small branch-to-chord width ratio. In Norway, Str;mmen
(31) used a finiEe element package called ABAQUS-LO simuléte behaviour
of aﬁ' ﬁHS singie chord K-joint. The 8-node combineé//in-p@ane-shell

rectanguylar element with 5 DOF per node was selected and the analysis

was carrled out using elastic-perfectly plastic material properties, ’

¢ ’ r

In all of the analyses above, tke aréa of the flange pla%g,.
inscribed by the branch member was assumed infinitely rigid whether the! ™
applied load was punching Shear\or bending moment. Also, in all but one
(31), the chord member webs were assumed not to deflect in their ver-
tical plane with the intention to focus on local joint behaviour alone.
While these assumptions weli sulted T-joint applications, it was pointed
out by Ostrowski in his K-joint model that better performance could be
achieved if a more flgxible inclusig% was'used. It was élso recommenééd
by‘Packer.et al. (18) that the K-joint model be a%piied térjoiﬁfs for

which the branch-to-chord width ratio is less than about 0.8.

-

It should be noticed that, 1in general, the trend was always to
focus on-solving the top flange plate‘nuhgrically (using FDM or FEM)

after separating it from the rest of the chord member section. The

w 2
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+

influence of the latrter was {included through a set of uncoupled or

coupled edge spridgs.

4.3 Basic Finite Element Model

It is evident féom Figﬁre 4.2(a) that because,of thé Symmetry
inherent in the double chord section, only o&e half of the joint cross
section needs to be modelled. Based on the test results described
earlier, it is suggested'théé the inner web plate be modeiled by the
finite element method .and the Trest of the chord section be considered to
assess the amount of restraint acting along the plate boundaries. As
such, the basic model treats thé RHS_sectibn as composed of a thin plate
representing the inner web and a chaqnel grillage represen;ing the top
and gottom.fianges and the outer web.

In this model, the chanﬁel is treated a; a substructure; thus in
order to obtain the total stiffness matrix oé the twin shear beam, it is

2

necessary to do the following.

(1) Formulate the global stiffness matrices of tﬁe'inner webh

plate and the channel separately,

(2) Condense the chénnel into a smalley size matrix

[t

matrides).' The influence coefficients of th

-regpond to the 3 degrees of freedom at ever

channel-inner web interfake as indiéated in

~and 4.3.
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and

(3) Add the stiffness matrices of the inner web plate and the

condensed channel according to the compatibility require-

ment.

This 3-step procedure to compute the total stiffness matrix has certain
" merfts over the classical procedure, - While each of the two components
of the model’ ({.e. the plate and the channel) has a conslderably large
sized stiffness matrix, a common high spezd storage in ‘the computer can

be allocated because of the nature of substructuring adopted in the

model. Indeed, the entire qperations of both ‘components can be over—

-layed, with eome bookkeeping scheme, throughout the computational

process. Another advantage of this procedure is that it permits analys=-

—

ing each component of the model .separately (if desired) thus;providing

»

more insight .and understanding of the model performance.

. I '

Step (2), which involves the estimation of the channel s effect_

on the inner web plate, is an inherent part of the model. Two methods

of analysis, talled uncoupled and coupled, are proposed for this pur—

. . . -
pose. N : .

'Tﬁe unconpled analysis aims at simulating the channel's regsis-

[

tance by a series of boundary’ springs located at the top and bottom
edges of the inner web plate. Each'spring contains 6 coupled DOF that
correspond to two translations u, v and .a rotation O at the top and

bottom ends of .a C-shaped frame (Figure 4.2(b)). Thue, the springs can

o

p
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be expressed as 6 x 6 stiffness matrices, the number of which is equal
. to the number of C-frames involved. The procedure to compute the spring

coefficients is summarized below.

(1) Assemble the global stiffness matrix of the channel gril—-
lage. |
(2) Referring to Figure 4.3,lapply a unit displacement in the
direction of DOF k at node j of' the ith C~frame while con-
’ ' straining other DOF at nodes j and j + 1 to zero. All
oﬁher DOF in the system are allowed to "float", i.e. no
restraining.
(3) Calculate tﬁe holding forces at all 6 DOF of nddes j'an&
j + 1 resulting from such a displacement. These represent
the kgg-column of the ith Boundary spring.
(4) Repeat steps (2) ‘and (3).for other ‘DOF at j and j + for
\ the ith F-Erame.
(5) 'Repeat steps (2) te (4) for each C-frame of fhe grillage.
Hence, there is a 6 ; 6 coupled’ spring fdrle;ery pair of
top and bottom Poundary nodes.
Because all boundary_DOF, other than those at th ith locétion, are
unlocked d;ring the above process, uncoupling evolves; l.e. the 6 DOF of
" each spring, aifhpugh couﬁled amang themselves, are not coupled Qith the
rést of the boundary DOF. This techniqﬁg 1s analogous to the one pro-
posed by Shehata (ld) but with a major difference.in that 1t™is carried
out pn|the entire channel grillage és opposed to an individual U-plgne
frame in his.model. ‘ ’ ’ A

]
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The coupled method of analysis uses the static condensation

procedure.

(1)

(2)

(3)

(4)

The general steps of the method can be outlined as follows.

Formulate the global stiffness wmatrix of the channel gril-
lage as before.

Condense the channel stiffness matrix in terms of its boun—
dary DOF. Noting that there are 3 DOF per node on the
boundary of‘the grillage, and if there are m C-frames, the
resulting matrix [K ] will be 6m x 6m in size.

Since there are also 6m matching DOF available on the inner

web plate top and bottom edges, the matrix [Kc] can there-

fore be added to the inner web blate.stiffness matrix main-

taining continuity of the nodal displacements along tpe
interfaces.

The matrix [Kc] is fully populated; its use would fresult in
an  extremely large bandwidth of the global system.
Neglecting the stifgﬁess coefficients in [Kc] that are
sufficiently remote from its diagona; (which are logically
.very small in magnitude) would help reduce the problem sizi
and improve the model éfficiency. The extent to which the
bandwidth of [K ] can be reduced ig determined through

nunerical tests to be presented in Chapter 6.

Both uncoupled and coupled methods are explained in more, detail 1in Chap—

ter 5.

&

e
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4.4 Inner Web Plate — Discretization and Boundary Conditions

As 1indicated in Figure 4.4(a), the plate is subdivided into
rectangular elements in the X~Y plane. The resulting mesh of elements
has diméﬁsions of (ho - 3t0) x (s + 3h1/2), where h0 is the chord member
height, to its thickness, s the gap distance and hl the branch member
depth. The plate is locaded in its plane_(X-Y) by a uniformly distribu-
ted pressure acting dowmwards through the branch member. The overlap-
ping part of the branch member is composed of an outstanding leg and a
web. The outstanding leg was discretized into plane stress rectangular

elements of thickness (b1/2) and width t;» where b, is the width of the

1

branch member and t1 its thickness. Bending of these elements out of

the X-Y plane was precluded, because of the condition of symm
web of the branch member is subdivided into a number of nonconforming
plate bending-plane stress elements (20 DOF per element). This resulted
in twe layers of elenments, namely the chord inner web layer and the
branch member web layer of thicknesses t0 and t1 respectively; see
Figure 4.4(a). The two layers have different internal nodes and henée
different DOF. However, along the boundaries, common nodes are speci-
fied for both layers to satisfy the compatibility conditidn arising from
welding the branch member to the chord inner web. was mentioned in
Section 2.2,2, there exists two patterns of welding the support columns
to the inner web of the chord member. Accordingly, two different g}ids
are generated in the md¥el. 'Figures 4.5_and 4.6 illustrate su;h grids.
A roller support was placed along the left bOtifm boundary of the plate
o

Figure 4.4(b) to replace the’ reactive stub column. It is worth noting

that vertical elastic springs were used in early attempts to simulate
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{

by

the support column. The results obtained were not different fr thoée

N

-

with roller supports.
It may be noticed that the branch members have been terminated

at top and bottom flange levels of the chord member, It was assumed

»
s

that the removed portions would not play an important role in thi)twin

beam behaviour.

4.5 Top Flange, Bot{om Flange.and Outer Web .

The remaining portion of the RHS section takes the form of a
channel as shown in Figure 4.7. This is modelled as a grillage of beam
elements both in the longitudinal ‘and transverse directions. The gril-
lagé can be envisaged as being constructed from a number of trangverse

 pafallel ‘
C-shaped plane frames located in (or paral to) the global Y-Z plane
of the "inner web (Figure 4.4) and Iongitudinally connected by beam

J
elements. While beamcolumn elements .(6 DOF per eléﬁeﬁfﬁ are used for

.-

v

N\

F

the transverse C-frames, combined beam bending-pure shear elements (6;.1";”

DOF per element) are employed to link the'C-frames in the longitudinali
] . .

direction on all three sides oﬁ the channel. The‘resulting grillage has
4 DOF per nq@e; i.e. two translations u and v in the i apd f directions

f the chanhél, and two rotations ax and 62 about the x and ;-a;éé,
respectiYe}y. Ihe rotation gy was assumed to have very little influence
on the deformation of the channel. This éssumption'is based on tﬁe
experimental observations.  For the same reason, the longitudinal axial
displacement i{n the z direction was discarded. As depictedlin Figufé

4.7, the generalized displacements of beam—column elements are u, w and
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©. The latter corresponds to 0 -in the channel global co—ordinate
System. On the other hanq the beam elements running in the z direction
have nodal displacements 5 and 9. Figure 4.7(b) shows a beam element
represencing the channel top or bottom flange. Such an elemeqt (which
will be referred to as the flange element) reslsts shear due to bending
in the y direction (out- —of~plane) and pure shear in the x-direction
(in-plane). The rotation ¢ In this case corresponds to 0 » The same
element is used to Simulate the outer web but rotated by ninety degrees
about the Z axis as shown in Figure,4 «7{c). It should be noticed that b
now corresponds to Gy and‘is therefore set to zero. ?his element will

e

. »
be referred to as the web element.

'vi.~ T e,

-
. Ry

Typically, there are 12 beam—column elements per C- fra?e (Figure f)'

%, 8) and 17 beam element in z "direction joining every pair of C-frames
(Figure 4.9), The web elements in z direction at the tips, of the chan—
nel have a depth of t eacﬁx~\1mpliciﬁ ir this assumption is that the
depth °f. the inner web A\}ate- that 1{s effective 1in pure shear 1s
(hO - to). .This 1s consistent with the strength analysis presented
earlier in Chapter 3. The widths of‘ull elements of the grillage are

(simply takenfas the centre-co“centre distance between the nodes. The

number and locations of the centre lines of transverse C—frames vary .

according to the anticipated stress levels the type of stiffness

analysis performed on- the channel and as su they will be defined L\\

later.

o

4.6 . Mddelling of Material Properties y

The material properties Play an important role in the behaviour

”



<
;i of the }joint assembly. As such, it is ihportant‘ to identify cthese

properties with reas??able accuracy. In RHS* joints, the material used

1s structural steel which, fortunately, exhibits to a. great’ extent,

consistent behaviour. : Research has been done pfeviously to develop

approximate uniaxial stress—-strain relationships; a review of the sub-

.

ject Is not intended in this study. For structural steel, a tri-lidear

L4

stress*strain relatlon is considered to be sufficiently accurate for

most applications (32). Initially, the material is elastie with the
AN '

stress-strain relation a straight line’ hauing a slope E Effupg s Modu-
> .

lus). This is follﬁwed by a plastlc plateau which 1is a/ﬁorizontal line
extending from the point of elastic limit strain Ey to the strain est

beyond which strain hardeniné begins. -The third line, then, represents

LA
material strain hardening with a slope of E st _
{ } ‘ ) y i

. N L. ~ N .

. .
‘ ;
i oL

If one attempts to further simplify.the’tri—linear behaviour to ~

a 'bilinear one, then only values of the yield stress and the tangent

modulus ET are to be specified. From the uniaxial test results under-

(
taken om the RHS twin shear beam .Coupoas;- such’ values were selected for'

------ B L
o R

a "best fir" to the actual stress-strain curve. The "bi-linear" yield

streBS'values and the associated tangent modull' are listed in Table 4.1
for each of the 24 specimens tested.

For K-joint tests, full st s—strain curve data was not avail-

able and hence‘bilineaf.yield stfess values could not be détefmined.

For steels used in the manufactuting-of‘HSS it is evident from Table
'\

- 4.1 that, the measured yield stress (0.2% offset method) and ‘the bilinear

yleld value differ by no more than about 10%.  As this difference is not

- Sy ) . ' ¢

‘.
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excessive, the reported yield stress ‘values (2) wertt;sed for modelling
joint behaviour using the finite element method. For other than compar-—

ing with experimental results, a yield stress of 350 Mpa was émployed
K

To accgunt for two dimensional plate actfon, the usual assump-

1

tion of material isotropy is made. The material is also assumed to

throughbut.

follow the Von Mises yield criterion and the associated plastic flow

rule,

N
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Table 4.1 Material Properties of Twin Beam Specimens

/

4

Specimen Measured Yie Bilinear Yield . ET/E
‘Stress (MPa) Stress (MPa)
la 338 372 ' 0.025°
1b - 343 377 0.025
2a 335 369 0.025
2b 334 367 0.025
2¢. . 325" 363 10.025
24 | g 378 0.025
3a 337.. 37 - 0.025
3b 349 . 384 0.025
ba 367 373 0.010
4b 365 ) 371 0.010
be 391 399 0.010
4d 402 k 408 0.015
8a 413 420 0.015
86 424 431 - 0.010
8¢ T 392 395 "0.015
8d y  -400 408 0.015
5a 363 377 . 0.025
5b - 333 366 ' 0.025
62 . 338 372 0.025
6b 337 371 0.025
“6e 336 368 0.025
6d 333 360 0.025
7a . 351 386 0.025
7b S a4 375 0.025




_+_ __._J"]\__
r bs2r o
T L
i x| % 3
T ' r T =
AP
3
M = N
be L e, T
e N
1] 3 It
—3 II_—_'...—.J': = ';. :'—'.__'T__'_'."'__.':'l’
(a} REDWOOD (1965) (b} KOROL and MANSOUR(1979)
i ‘(w,wx,wy) Y4 (u,v,w,wx,wy).
- X —T X _
bo—3t, .
o @
¢
[
(c) KOROL and MIRZA(1982) (d) MIRZA et al (1982)

FIGURE &,]1 : Various Mobers oF RHS T-JoinTs




-89-
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Ficure 4.3 : CHANNEL ORILLAGE OF
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CHAPTER 5

FINITE ELEMENT FORMULATION AND NONLINEAR ANALYSIS

5.1 Equilibrium Equation

In finite eleﬁent'modeiling, it is essential to establish the

discrete equationigggfequilibrium "and identify the unknown parameters
"ﬁéh .

for which these equatfons should be solved, Since the displacement

r . .

finite element method is-adopted in this study, (Section 4.1), these

parameters are the system nodal displacements. The equations of static

. equilibrium for an element can be derived through a minimization of the

)

total pocantial energy for linear problems or by using the principle of
virtual work for the nonlinear problems (33, 34) For the e finite

element which has a volume V and subjected to a set of forces, it can be

shown that either approach leads_to:

’

{P%} = (k% {6°} (5.1) -

where  [K®] = f [B]7[D] [B]av .- (5.2)

p

A

is the eléﬁent‘stiffness matrix which 1s a funetion of its strain maﬁ}ix
. >

(B] and elasticity matrix [D]. {P®} is the load vector due to the

~

-9 -
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appliedAloads to the element. Equation 5.1, for eaéh element; can be
" assembled for the overall equilibrium of the discretized struzﬁhre.
Thus : ) Toa
SN
P} = (K ] {8} , . (5.3)
nxl nxn nxl

+ [ ] .
represents n simultanequs equations that correspond to n DOF of the

Structure to be analysed. The first task in this Chapter is therefore

centre& on the formulation of individual stiffness matrices of the

T v

elements proposed in Chapter 4 for the twin shear beam model. This

leads to the formation of the global stiffness matrices [KW] and [K ]

CH

of the inner web plate and the channel, respectively. It 1is then
F

required to incorporate Ehe stiffening effect of the channel into the

Inner webd stiffnegg matrix [Kw]'to obtain the total stiffrness matrix

[KT]. . Two methods of analysis, namely uncoupled and coupled, and
mentioned earlier, are presented r this purpdse._ A quantitative
. : ] T/

assessment of the resulting uncoupled and coupled FEM models will fbeda
made subsequently in Chapter 6. Owing'to the presence of matefial non-
1inearities, incrémenpal stress—strain relation must be furﬁished beyond
the elastic limit. As such, an élasto-plastic analysis that is b;sed on
the Von Mises yield criterion and the Prandtl-Reuss plastic flow rule is
used. Also, the equations of equiiibrium 5.3 are developed in incremen-
tal form and the Newton—Raphson iterative method (34) 1is employed to
arrive at the-equilibrium at the end of each load increment. A detalled

description of the method and the adopted procedure in"ﬁhe nonlinear

range is. also presented. o -
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5.2 Finite Element Formulation

R

5.2.1 Inner Web Plate o~ }\\\_\\;;}

The 12 DOF nonéonforming plate bending element and the 8 DOF

plane stress element have been employed to form a plate element for the
inner web. Both elements are well documented in the literature (32,
34). For completeﬁess, however,. their basic features will be high-

lighted below.

The out-of-plane displacement, w, of the plate bending element
By

is assumed as o ) o “

2 2
w o= a) + a,x + aqy + a,x + ag Xy + é6y=

: 2 .2 3 - 3 3
af§2-+ agx’y + agxy  + élOy + v +.alzx y (5.4)

Since there are 12 DOF for the rectangular, plate bending element with
. ——

four cormer nodes (w,_ax, Oy at each node), Equation 5.4 can 'be’ solved

.
-

for the unknowns ajto a, in terms of the nodal DOF. Thus, w can be

expressed as:

_ 12 .
W= N ] {6 } = ¢ N i Shs , (5.5)
1=1 :
1x12 :

.
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-
T e )
where - {Gb} f <w10x19y1"'w49x40y4>' ) : (5.6)

ffThe shape functions [N ]4are listed in Appendix A.l1. The rotations O

and Oy can be obtained by differentiating (5.5) with respect to y and x,_.fﬂ

respectively, i.e.

.

. i . - '
¥ -
o, = and o :.\'..)i,_ 7).
. 8y ¥ ax . .

The generalized displacement fields for iqﬂﬁi“he displacements u

and v are assumed to be bilinear, i e. : Q;ﬁ
u = bl + b x + b3xy + ba (5.8)
C Yo . 3
V=t eyx 4+ cyXy + LY o ' T (5.9) . '-f

,

The coefficients in (5.8) and (5. 9) can easily be calculated in terms of
the corner nodal DOF (ui, vy ). Hence

“ E

: 4
‘u = [N = T N . 5.10
u = [ o] {u} L piui _ ) ( )
1x4
* 4
v = [N ] {v} = iEIN j_vi T ‘ (5.11)
1x4 :
where {u}T <u u,u n > ‘ (5.12)
1727374 . n )

'\L.

A
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and {V}T = i 2v3v4> . o (5.13)

and the shape functions [Np] are given in Appendix A.2.

Equatibns 5+5, 5.10 and 5.11 can be condensed into the follow

matrix form.

u

{v}=1In] {55 = (5.14)

w 3x20 20x1 A

{s°}F = <pvie e 0 =00, > (5.15)
1 71

which contailns the twenty DOF of the rectangular plate element. The

shape functions matrix [N] has. the following form.

Ny 0 00 0 N, o0 0
(N] ={0 x
PN Bl 0 0 o | N2
0 "1 N2 My 0 0 N NN .
N3 00 0 0 N, o 0 o0
O Nio o o Ny 0 0 0
-~ — ’
0 0 Ny N N O Noio Ypir Mpi2
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n 2|

* € xxd ax z 2 “
ax
2
d 3

fe} =/e VN =10 — -z { vy . (5.17)

yy 3y 3y2
2
3 3 g9

[ PR way] Y

Denoting the differential operator matrix on the right hand side of

(5.17) as [L] and substituting (5.14) for u, v and w, one obtains

{e} = L) ) {&%} = [B] {5%] (5.18)
3x1 3x3 3x20 3x20 20x1

where [B] 4s the element strain matrix. The stiffness matrix of the
plate element can now be  computed from Equation 5.2 in which [D] 1is the

plane elasticity matrix and is given by

1 Vv 0
L}
D] = E2 v 1+ 0 |. : (5.19)
1-v 1~y
¢ 0 7

Beyond tﬁlastic limit, the matrix {D] is variable with the stress
level at a point within the element and is known as the compliance
matrix. As such, 27 iﬁtegration points within an elemenf were used for
the calculation of [D] in the elasto-plastic range; see Figure 5.1.
Locations of points and the associlated welght ~fact;3r§ are determined

from Gauss Quadrature Tables (34). 1In its discretized form, Equation

5.2 i3 written as ' J
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3 3 3

e a b t T
(K™] 7 "3 '3 L & I wiijk[B(Ci, Ny s z, )]
o 20x20 1=l 3=l k=1 .
20x3
[D]ijk‘ . IB('z:i, Ny 2z, 1. ' (5.20)
3x3 3x20 -
The locations of the integration points are
T T — — '
{e}’ = {0} = <0.5 -~ /B.15, 0.5, 0.5 + YO.I5>. (5.21)

{z}F = <= ¢ /0.3, 0.0, ¢ VOIS (5.22)

and the corresponding welght factors are

-

{0} = <5/9 8/9 5/9>. _ (5.23) |

[
. -
/\ -

The stresses in the elastic range at amy point.in the element are deter—

miped from

‘.}.
. Uxx . ‘
{a} = [o ] = (0] {e} o, 7 (5.28)
[;YY 3x3 3xl -
Xy )
: N
A ]

where [D] 1s defined in (5.9). In the elasto-plastic range, stress

lncrements are calculated from
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{40} = [Dep] {ae} (5.25)

A

in which (D] s che compliance matrix which will be defined in Section
5.4. It should be noted that the strain matrix [B] at an integration

point FEi, Ny zk) 1s constant throughout the analysiis since the geo—

4

imetfic- nonlinearities arﬁynot included. The [B] matrix is therefore

computed only once at each of the ;27 sampling points ofs an element in

—F
" the beginning of the computational procedure and stored.

\
H

5.2,2 Top and Bottom Flanges and Outer Web @

The 6 DOF beam-column element has bee.n used to model the trans-
verse C-shaped 'frames of the remaining portion of tl}e RHS section. The
eleﬁént is capable of resisting normal stresses resulting from axial
deformations u as well as ben.ding deformations w and 0. The axial dis-
placement field is linear whereas the bending displacement field w is‘

cubic. Hence the element strain matrix <B> is given by

B> = ¢ ;1.’ bz (1-2£), 2z (2-3g), ;1., =6z (1-2¢),
1 L 2 £ 2 2
x6 ) £ -

%a (1-3£)> (5.26)

and the corresponding element DOF are

{67} = <uyw, 8, u,w,0,> , (5.27)

»
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For numerical evaluation of the element stiffness matrix, 9 integration
points are selected as shown in Fig. 5.2. The locations z and E are
l1dentical to those of the plate element defined in Equations 5.21 and
5.22, ‘respectively. Thus, the -element stiffness matrix can be computed

AY
from

£ t 3 3 T E
(K%] = b » >3 I L w, w [B(Ei, z )] .
6x6 1=1 j=1 T ] b 1-v
. [B(Ei, Zj)] (5.28)
6x1 '

It may be observed that [p] matrix‘has been replaced by E/(l—uz) in the
beam element. The term‘l—vzhas been used to account for plate action
occurring in the channel grillage. The welght factors are the same é}
given-in (5.23). '
! .

In the longitudinal direction éf the channei, the beam bending
element with DOF ;, 8 is cémbined with the inplane, pure shearing
element with DO§ v. This element then offers resistance to o;t-of—

: A
sending and to in¥plane deformation by pure shear.

plane deformation b

Therefore the strain matrix for this element, for discretizing the

flange, 1s 2x6 and 1is given by:

2 a-20), Z 230, 0, & (20, 2 (1-py, o
2 . S S T

[B] = ' . (5.29)
2x6 -1

o
o
-
o
-
o
-
ol
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and the element nodal displacements are

»

T  aemmoa -
{Ge} = <w1®1v1u292v2>.

As described in Section 4.5, the elements-discretizing the outer webs of
r ' -

the C-frames have only 4 DOF which are

17272

and their strain matrix is 2x4 as listed below. {§
6 6 ’
=5 (1=2¢), 0, - 2% (1-2¢), ©
L 5
[B] = ' (5.30)
2xb -1 1
1O T °© 3

J
Employing 9 integration points as béfore and noting that the plane

elasticity matrix for the flange or the web element is

], (5.31)

b
X
o]
—
i
<
P
Nt <o
<

the element stiffness matrix can be eagily computed. Hence,

~

lKeJ =b.2.L, g g W, w EB(E z )]T[D ] [BCg,, Z,)]
I 1° %y 1§ 1 %

(5.32)
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To” illustrate the strain and stress calculations in the channel gril-=

(ﬁﬁ\

lage, consider for example the stresses occurring in the flange.

o, = normal stress computed from beam—-column element.

o, = normal stress computed from beam bending-shear element.

-~
¢ __ = shear stress computed from beam bending-shear element./ \\\-

xz \

The axial strain at any point in the beam—column element is evaluated \
from .
. A
e, = <B> {&]. (5.33)
1x6 6x1

Consequently, the normal stress is

o, = 7 " Er (5.34)

The axial and shear strains of beam bending—shear element are determined

8

from ;
€2 e ' )
{7 1= 18] (&% . : _ (5.35)
Yxz 2x6  6xl N
2x1 . //’
Hance,



- 107 -

g €

{*}=1p) {*} & (5.36)

T C2x2 v
Xz Xz
~
"!
are the corresponding tormal and shear stresses.
=
In the| elasto-plastic range, the above relations
. .

- .

(5.33) to
(5.36% hold true for calculation of straia and stress incrementg. For

the latter, the following criterion is also chegked. 1If the affective

=

stress o at a point exceeds the uniaxial yield stress of the material

Uy’ the modulus of elasticity E is replaced by the tangent modulus ET

defined in Section 4.6. From the Von Mises yileld criterion, t?g effec~

tive stress, g at a point in the grillage is computed from g

G = Vot - oa + b+ 31l : (5.37)
X X Z z Xz .
5.3 Stiffness Analysis of the Channel Frame ‘

5.3.1 Feasible Strategies

It is concelvable that the top and bottom flange and the outer
web of the RHS double chord section offer a* considerable restraint. to
deformation of the inner er. It is therefore importatrt to include such
a restraint in the FEM model. However, before a method of analysis is

suggested, the following should be considered.



With “"the above consideratipns in mind, two approaches are described.
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The inner web grid has 5 DOF per node (ulvlwlox’ey) while

the channel grillage has 4 DOF per node-(GlG 6x’6z in Figure

1

5.3). At the. common. nodes on the inner web plate-channel

boundaries, there are only 3 DOF that match; {.e. (v,w,@x Vs

;,5,62).- The fourth DOF 5x' is locked by virtue of the web

eléments used at the channel's tips (Figure 4.9).
The global stiffness matrix.of the inner web plate is banded
due to the node nuﬁbering and a baﬁded solution routine is
therefo;e employed ih{the cdhputer model %Bj%plve\the equa—
tions-of equilibrium. ‘Thus, it 1is desired rto keepéihe prob-

lem band width minimum, after augmenting the plate with the

channel, to allow the best efficiency for solution.

”

below. These are the uncoupled and coupled models mentioned in Section

4.3. The merits and disadvantages of each approach will be discussed
accordingly.
5.3.2  Uncoupled Modél . , i

In this model, it is assumed that the influence of the channel

frame 1s tra
contains six
the plate; t
w and Ox’ of

each boundar

nsg&tted to the qlate by sets of boundary springs. Each set

7

coupled springs located at the top and bottom boundaries of

hree springs at each. These are in the directions of DOF v,

the inner web plate t ranslational and one rotational at

f{fiy&? matrices are deter-

Y The 6 x 6 coupled Sﬁifn

L
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T . '
mined from a stiffness $hnalysis of the channel frame. This was des-

cribed earlier in Section 4.3. The resulting matrix for each C-frame

takes the following form.

L
[eppd o [y '
33 3x3 -
[ksp] = ~(3.38)
[y [Ecc] ' .
. 3x3 3x3 . -

The'submat;rices [.k ] and [k ] represent the holding forces necessary
to maintain unit displacements, one at a time, in the directions u, v,’
and e at the bottom and top of the channel respectively. Also, the
submatrix [kbt] represents ‘t:he forces required at the bot:tom due to a

unlt displacement imposed along a DOF at the top of, the channel and wice -

versa for [ktbl" From Figure 5.4, it can be seen that each pair of

plate elements at the top and bottom boundaries
respectively) are attached to a C-shaped frame

located mid-way of the plate element length. Thus

K 1. | o

*

. The matrix [Ksp] .can now -be regarded as a set of coupled springs

imposed along the top and bottom edges of the inner web in the direc-
. k

tions v, w and Gx, The strain energy stored in these springs is given

»

by



Loy % T
Up ~ E‘i {6}

where {6*}T = <vab03vtwt@;> is the;vector of the generalized displace-
méné flelds of the plate elements T.and B in Figure 5.4. Since the
displacement field. can always be expressed in terms of the ngdal
.dispiacements usiﬁg the shape functions, one can write {6*} = {N*]
{é*e}. The relation between {N*],and t;e ;hape functions of the plate
elements T and B is éxplaiped in Aﬁpendix A.3. Hence,

P

(8" )T g RS ) N lax (s} (5.39)
a i

\

But

. *e T *ey
U, =1/2 {87} (k] {85} (5.40)
in which [Kb] is fhe stiffness matrix of the boundary spring elbment.

Cotiparing (5.39) any (5.40)

~
\

. * * g '
K1 =[0I ] 8 )ax. | (5.41)
b a - sp -

40x40 40x6 6x6 6x40 ’ -

\

a

The above equation has been previdusly presented in detail (10).
For easler assembiing of the boundary elemgnt stiffness matrix [Kb], the
dimension 40 ar#ses from waintaining all twenty DOF per element T and B

in Figure 5.4. Equation 5.3 can now be solved for the unknown nodal

N
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displacements of the inner web noting that

(K] = K]+ T [K]

Knowing the displacements, the strains and stresses in the pla

“m = total no. of boundary (5.42a)

?
. b3 spring elements

j=1

-~

ments can be computed from Equations 5.18 and 5. 24 respec%&v ly. For

/

the strain and stress calculations 1in the channel portion, the following

procedure 1s followed.

D

Extract the top and bottom boundary displacements of the
plate from its global oisolacement vector.

Since each C-shaped frame is located midway th}ongh the
boundary plate element (Figure 5.4), use the average of the
two adjacent boundary nodal displacements for the channel
tip nodes j. and ] + 1 in Figure 5.3. '

Repeat step 2 for all of the channel tip nodes to obtain the
vector {9} containing the channel's tip displacements.
Compute the equigalent lecad vector {PCH} resulting from
imposing the cbnstraint vector {C} on the channel boundary

while locking all other degrees of freedon in the system.

Knowing the global stiffness matrix [KCH], solve for the

' displacements in the entire grillage.

Calculate strains and stresses in the grillage using the
appropriate of Equations 5.33 to 5.36 depending on the type

of element as under consideration.
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5.3.3 Coupled Model

As described féarliér, this approach utilizes the concept of
static condensation to obtain the influence of the channel.frade oﬁ tﬁe
lnner web plate. By condensing the channel frame matrix [K ] in terms
of its boundary nodal displacements-‘a ;mal;sx size matrix (6m x 6m)
results; where 2m is the total number of bo;;dary nodes withﬁthree DOF
per boundar; node and m.1s the number of C-frames. The efficiency of
this method is dependgpt»&pon tﬁe node numberiﬁg of the channel gril-

lage. Two méchdds, with different node numbering systems, have been

'implemented and are presented below. While, of course, identical

results were obtained, the primary objective at this point * was to
compare the computational efficiency of the two methods and to opt for
the one possessing economy. In the'Tollowing presentations, the centre-

lines of C-frames align with the plate element edges, i.e. the channel

boundar§ nodes goincidg with the inner web pléte_boundary nodes,

In the first method, the node numbering illustraﬁed in Figure
5.5a is considered. It is séen.that C-shaped frames are numbered in an
alternating ;équential manner. The advantage of thig type of numbering
1s that the global s;iffhess matrix. has a ;niform bandwidth; (Figuré
5.5b).  Typically, for 13 node per C:frame,‘the half bapdwidth is 50

excluding the diagonal. The procedure to obtain the condensed matrix

is summarized as follows. <

1. Formulate the global stiffness matrix of the channel K H]

2. Impose a unit displacement in the direction of a DOF on -the

y
Fal
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~

"

bound;ry while locking all other boundary DOF.
3. Calculate the equivalent load vector {PCH} necessaéy to
. ;épintaip such é discpacement and modify the stiffness matrix
accordingly to [K;H]' o ‘
4. Solve {P .} = [KC;] {8} for the displacement {§} and hence
compute the end forces acting in directions of all 6m DOF on

the boundary. These forces represent the ith column of the
required matrix, albeit, very small away from the nodal DOF
under consideration.

5. Repeat steps 2 to 4 for all 6ém DOF of the channel boundary.

The resulting matrix [Ké] is 6m x 6m in size and is fully populated.l'
Considering Figure 5.6a, the bou ary nodes are numbered first.
These are followed by the internal nodes of the C-frames which are
numbered sequentially. This nuwmbering scheme, yhich is used in the
second method, allows partitioning of the channel's global stiffness

 matrix in‘ﬁhe following manner.

[Kbbl (X, ) )
[KCH] o | 6mx6m 4bmx4]lm : (5.43).
47ux47m
X, ,] [Ky4]
L 41mx6m Almxélm_

where for a typical of 13 nodes per’ frame, 4 DOF per node on the flange

and 3 DOF on the web, there exists a total of 47 DOF Per C-frame; thence
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Q?m DOF for the chaanel grillage. The subscripts bb and il denote the
boundary and internal DOF, respectively. The matrix [KCH] in Equation
5.43 has a very common form; its ‘structure is sketched in Figure 5.6(b);

and it is easy to see that by applying the static condensation to sup-

press the internal DOF, one obtains (33)

f 0
-1 ~ .
S R U L W IR I T (5.44)

6mx6m 6mx6bm  bmx4lm 4lmx4lm 4lmxblm .

in which‘[KCI represen&s‘ﬁke condensed stiffness matrix of the channel
in terms of its 2m boundary nqdes. The matri; [KC] is identical to that
derived prevfously. Whilg the tyo methods just described are equally
) 'valid, the first one is distinguished sy its apparenf simplicity and
storage economy . - Unfortunately, the execusidﬁ“fime regquired to imple-
ment thig methéﬁ is inevifably high. The'é&iffhess matrix [KCH] must be
modified and decomposed 6ém number-'of times. The difficulty with the
Jsécond met;od stems from its very large sized matrix [Kbi]' This prob-/ﬁ%‘x/—q’
lem was ;reated by writigg an algorithm to store only the active columms
éf [Kbi] which are shown by the hatched boxes” in Figure 5.6c. With this T .
'provision made, the second method appeared to outperform thé first one’
both in storage and time. Equation 5.42(a) can now be.written for the

—

doupled model as A

(K] = (K] + (] , : (5.42b)

to obtain the total stiffness matrix of the twin beam. It may be

'obserVeajthat when [KC] is added to [KW] to obtain the total stiffness

-
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matrix, ipe bandwidte of the latter would greatly increase. As such,
the solution would require extremely large computer storage and the
model becomes insufficient. Clearly, this problem stems from the fact
that the matrix [K;] i1s fully populated; i.e. there exists complete
coupling among all of its 6m.DOF. Therefore, if one assumes that the

influence coefficients of [KC] that age‘?émote from the diagonal can be
neglected: the matrix [KC] would tend to take a banded shape and coﬁse—
quently the problem bandwidth can be reduced. Physically, it isg implied
in this assumption that although a unit displacement at a boundary JOiﬂt
at the i C-frame can cause forces to develop at all boundary nodes,
such forces will diminish gradually away from the node considered and

become small enough to be ignored at node locations that are n or more

C-frames away from the displaced node; i.e.

kcijEO if |1 - 3| » én

where the appropriate number of lines n can only be deiermined'from

numerical tests. Such number represents the extent of effective coup-
% 7 .
ligg between %oundary nodes to be accounted for.in [KC] and should be

large enough to preserve the oﬁerriding condition of equilibrium. To
avold this assumﬁtfon, an alternati@e.solution routine will be presented
subsequently in Chapter 7, which will permit full utilization of [K ] in

[
the total stifipess matrix. .

) Subey}tugﬂﬁg Equation 5.42(b) into Equation 5.3 and after

solving for the nodal displacements, the strains and stresses in the

L

inner web can be computed. The procédure in the -channel is summarized

below.
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2
"
1. Extract the top and bottom boundary displacements of the
inner web plate from its -global displacement wvector *and

) -
store %n {ébb}. The size of this arraf“ii 6bm and contains

the bouaahgx/displacemen;s 4, v and O .

2. Solve for the channel interior displacements {611} as fol-
., lows
_.1 .
{611} [Kii] [Kib] {6bb} (5.45)
4lmxl 4lmx4lm  4lmxbm  6mx1

® 3. Use {be} and {5ii} to calculate strains and stresses at
e&ery(;ampling point in the grillage using Equations 5.33 to
5.36. -

5.4 Plasticity Relations for Elasfo—Plaspib'Analysis

-~

5.4.1 Introduction

]
'

The plastigubehaviOur of a material is distinguighed from th&t

“_“ngan elastic material by the fact that, for the former, strains are not

udiquely defined for a glven state of stress. In fact it can be shown
that complecély different strains ex;sg for the same state of stress
KTLBS) which -infers that plastic strains are dependent on the 1oading
history of the mg;erialﬂ It is for this reason that an incremental
stres;-strain relation must be established. As will be seen, such a

relation, in 1its simplest form, is analogous to Hooke's Law for elastiq

“w
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materials with the difference that the plane elasticity matrix [D] is

replaced by the elasto-plastic “compliance” matrix [Dep]. The deriva-

tion of the elasto-plastic matrix was first pfesented by Yameda et al
. °

(36) and Zeinkiewicz et al (37). In this section the Prandtl-Reuss flow

rule and the Von Mises vield criterion are employed to arrive at the

explicit form of the compliance matrix.

5.6.2 Elasto-Plastic Compliance Matrix.

-«

The basic plastic flow rule states that plastic-strain incre-
ments can be expressed as (35)
?

{dep} = {%g} _ | C (5.46)

where ) is a proportionality factor and F is the yield function. The

latter can.be\defrned as °

F = F(Ul,cz,-..,K) = F(o,K) =0 (5.47)

-

in which K is a parameter represenﬁing material hétdening. Differentia-

aF 3F _
+ 302 - ddz Faus 3K » dK = O-
AN

Defining A = -3F/3K + dK/X, the above equation becomes
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. (5.48)

A ptress increment {dc} can be calculated as

]

{dc} = [D] {dee}

where {de j\ig the elastic strain increment.

increment {de} 1s the sum of plasti
‘4

Since the toral strain

¢ and elastic strain increments, one
can .write

{dc}.= [d] [de} - (D] {dsp},

DAY

(5.49)

Premultiplying by {BF/BG}T.and substituting for {ds }

T T

‘ ] T
(5o} lae) = (5} 101 fae) - Bon- @ e

Gemparing (5.48) 'gnd {5.50), it can be seen that the left hand sides of

the two equations are identical. As such, a value of A can be obtained

as

—

B (o) fac)

T . (5.51)
A+ (50} o (25

ag

A=

Sfxbstit:uting ' value into (5.50) after removing the premultiplier,

one ob

tains the required incremental stress—-strain relation ag follows
v, . .
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where [Dep] is (37)

3F, L

(5.52)

T =1

[?Ep] = [D] - [p] {gg} {5;} ﬁh] [a + {%%} (D] {%%}J . (5.53)

It is now desired to apply this result

-to the particular problem at .

hand. Since we have a plane stress problem, only s Uy and ¢ are the

stresses present. From the Von Mises yield criterion, we have: ™

F=(62+02-gg + 3o 2)1/2
x“ Uy Xy Xy
g

Hence,

SF T 301 301 3a
}55} = ( _:E..:z.__%XQ
_20’ 20 a (

1 1
= P — + .
where o, o 3(°x cy), ete,, are the

Prandtl-Reuss plastic flow rule (35)

{BF

{dsp}.= de_ {==}.

p

- a(K) = 0. (5.54)

(5.55)

deviatoric stresses. From the

(5.56)

It follows from the comparison, of equations (5.%6) and (5.56) ghat

»

_J}



A= de N _ (5.57)

where dep is the effective plastic straln increment. Substituting this

result into,the\dgfinition of A yields . {\
N ',/. e
A = CI_L— (5058)
de
P
Since de = de_ + de_, (5.59)
€ p
. or
gg = %E + de -
T
L]
then
- E - E .
I (5.60)
de T : '
P

for a bilinear material behaviour with modulii £ and ET in the elastic
and plastic ranges, respectively. Thus, the infofmation needed to
compute the compliance matrix" is now dvailable (Equations (5.55) ‘and

(5.60)). Substituting these into (5.53}), one obtalns the explicit form

of the compliance matrix. This is

»



where

and
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32
r E 1
( - =)
1—v2 S
5.5 ' s2
172 E 2
)= - 55—
P 1-v l1-v
5,5 $.8
173 L7273
i ( 3 ) ( S )
1
4 2 1 1
S = 9 Ag + $19, + szcy + 253°xy’
E 1 1
S, = (o + vo),
1 1—02 x } Yy
82 = (c1 + vci),
I-v ¥
© g = _E

3 (l+v) ny'

It is worth noting that for elastic-perfectly plastic matefial

symm

(5.61)

~

. . . \
where ET = 0, only the term involving A will drop out but S remains

nonzero.

Thus the compliance mafrix above is valid for both the

berfectly plastic and the strain hardening materials.
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5.5 Nonlinear Finite Element Analysis

5.5.1 Newton—Raphson Method

i
. .

Nonlinear analysis 1involves establishing the finite element
equilibrium equations through virtual work for each load increment.
These arel then solved for the incremental displacements, strains and
stresses. Since the displacement finite element method is used, the
principle of virtual displacement has been -employed to express equilib-

' th
rium. The discretized equations of equilibm&um after the n load
P
increment can be expressed in the following form (34).

\

N

- ‘ T - “
{¥(s )} = J (8] {cn}qv - {Rq} = 0. (5.63)

The vector {Rn} represents the consistent load Vvector due to surface

tractions (uniformly distributed stress over the branch member para-

meter). For incrémental load analysis. Equation 5.63 takes the follow—.

ing form

f [a]T[aén}dv - {ar_} = 0. - (5.64)
v .

Obviously:Equation 5.64 is not satisfied ex;ctly aftérfpeforming
a limited number of itergtions and therg are undesired residual forces
present. .In order to minimize these residual forces and prevent drift-
ing of the solution, the Newton Rabhson method 1s emp d&%d and itera-

tions are carried out within each load incfement. Hence, during the nth

_
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th -
load increment and the m lteration, the residual forces are computed

L

in the following manner.
(et = [ 8176 }av — [ _}. ©(5.65)
v .

. Al
The iterative Newton—-Raphson equation can be written as -

[¢7

S IER e I (K (g)] {asT} = {o} (5.66)

where the tangential stiffness matrix-[KT(gz)] Has been computed by
assembling the individual stiffness matrices of all elements. It is
lmportant to note that an indiwidual stiffness matrix is computed
through numerical iﬁtegration by uﬁéyg twenty;geven integration poiﬂts
for the state of stress g:. Prpper-lDz], elastic or elasto-plasgic
matrix, 1is used depending oé the stress level and thg,tangent moduius at
each integration point. It may very well happen tha"within the same
element some integration points can ge within the eiastié rahge‘and
‘others past the proportional limit. The residual load vector in Equa-
tion 5.65 which can be controlled by specifying a certain tolerance, is
édded to the next load increment {ARn} at the beginning of n itefations.
This prevents driftiné of the solution.‘

) v P ’

The incremental displacements are coﬂguted as

(a7} = ~ K (D17 {¥7) o (5.67)
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and the Incremental total strains and stresses at any point within an

element are given by

fae } = (8] {as] } | - (5.68)
{807 } = [D7) {ac] | (5.69)

where {Aﬁm }, {Aem } and {Aom } are the element, incremental nodal dis-
ne ne ne

placements, strains and stresses at any given point, respectively.’

The strain matrix [B] and the updated elastic .or elasto-plastic
matrix [D:] are functions of space (i.e., X, y and z of" £, n and z) and
must be evaluated at the point where the strain and the stress incre-
.ﬁgnts are required to be computed. The uﬁdated element stiffness matrix

[ke(cm)] is evaluated by using Equation 5.20 and [Dzl, the elastic or

A

elasto plastic compliance matrix determined for stress level 0 « The
Newton—Raphson ltel;tive scheme above is illustrated graphically in
Figure 5.7 for’ a single degree of freedom system. Howaver, it 1is

equally applicap&e to a multi-degree of freedom system.
% : .

- r

5.5.2 Algorithm for Computer Model

»*

A description of the steps followed in the finite element compu-

ter program Is presented heré.,o

#



S

L} :
Suppose that at a load level {Rn}, the displacement vector {6:}

and the stiffness matrix [kT(gg)] of the system are known. Apply the

next load increment {ARn} which brings the load level up Eo { The

Rn+l}'

resulting displacement increment {Aén} Is computed in the following

manner. (

-~

(1) After the Newton—R"ﬁsQn'iterative procedure has converged
(Qithin,thp specified tolerance) for the (n—l)th load
increment after m iterations, assume that the residual -
forces are given by {?2_1} according to Equation (5.65).

The displacement increment due to the first iteration for

the nth load increment can be computed from thg‘following

equation:
g (o) {as} = = {¥2 )+ {ar } = = (0} + (ax |

where {?O} = [¥" '} and {aR_} is the (n)th load increment.
n; n—1 n :
(2) The displacement vector 1is updated in the following man-
ner.

(5,} = {62} + {as%).

(3) In the inner web plate, do the following for each plate

element:\\



J

)
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~

(1) Extract the elemeﬁt‘incremental nodal displacements

{Adge} from {Aﬁg} just computed. “ | o

(11) At{each integration point (Ei,_ni, zi), calculate

e

the incremental strains via Equation 5.68
\

0 - 0
{Asn}i = [B(&;, ny, 2] (88 .}

\\

; N

+

— calculate the incremental stresses via Equation \

5.69

{aay}

- . ) 4

where the elasto-plastic :rmpliance matrix [Dgli'is

0 0
g = opllee s,

determined for the stresb levels (og) at point 1 -

with local coordinates (Ei’ Ny i);

L]
— update the stresses at each integration point;

(o by = Lok + faslly "

-~ check for the compliance matrix.

1 -
[Dn]i [Dezli | 1f o, < cy



- 127 -

l _ -
[Dnli = [Dep]i if o, > ay

where ;i 1s the effective stress at point { defined

in Equation 5.54.

- i
. (111) If o, > o at one or more integration points, update
17 7y w

the element stiffness matrix_[EEJ using Equation
. N I

5.20. )

(1v) Calculate the internal forces for each element. -
Yoo :

1 T, 1

F?ne] = J (8] {o_}av.

e

Steps (i) to '(iv) are repeated for all plate elements in the

inner web. Meanwhile, the global stiffness matrix [Kw(oi)l and the

Al

1 .
internal force vector {Fw}n are assembled.

(5) For the chéﬁnef - Unqpuple&/;odel, follow the six steps

outlined in Section 5.3.2 to.obtain‘the'inéremental strains

e e ' .
and stresses at every point in the grillage.
’ 2
For the channel - Coupled Model, the J-step procedure
Tt>‘_ . described at the end of ‘Section 5.3.3 is carried out,

In addition,.the following calculations must be made for each

-

beam element: .
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(1) Update stress level to {ci+l} at every sampling
point;
(11) Check for yilelding at each point by comparing the

effective stress ;, Equatign 5.37, with the yield

stress a§. As such,

i
i

.

if g>0 E = Ep, and

if 0 < g E
(i1) Update the element stiffness matrix'uéing the appro-

priate of Eduations 5.28 and 5.32.

The updated global stiffness matrix [KCH(gi)]'is then form—

ulated. Employing the Uncoupled Model or the Coupled
Model, the bovndary spring e1§;g§1 stiffness matrices

. R ‘ .
[Kb(gi)] or the condensed boundary matrix [Kc(gn)] are

computed wusing Equation 5.42(a&<:f11jjﬂgggiQ% 5.42(b),
respectively. The associated interna’ resistance of the

rd

1 .
channel {FCh}n is calculated from

-

{F; }I = g (K (cl)] . {63*}1 for uncoupled model
CH'n {=] P n P

or,



(5

(6)

(7>

(8)

e_D=100x

= 1LY -

{FCH}i = [KC(Gi)] {ébb}-r: for coupled model

/ 1 1
model, respectively. Also, add {Fw}rll'and {FCH }n to obtaln
the total internal stance {FT}:}. The residual f'orces

are now computed as

-

¥,

Solve rthe following equation to determine the next incre—’

mental displacement vector.

.&A
1 2, 2
(Kp(g )] {as } = -{¥}

Repeat steps (2) to (6) ‘u:il two consecutive determinants
, °
of the global stiffness matrix are within the specified

percentage tolerance g, which’ is chlculated the follow=

&.ng manner.

Det [K (g™ = Der K (g™ )]
Det (K (g™ "))

=
. S ) i
- - '

If the percentage tolerance is within the prescribed value,
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L‘

apply the next load incremen; and repeat steps (1) to (7).

The iterative procedure outlined above is commenced by formular-
ing whe system elastic stiffness matrix and applying an arbitrary magni-
A

tude of the loaﬂs, The system is then solved for displacements, strains
>

and stresses. The elastic limit 1s determined by scaling the applied

loads such that ¢ at the most stressed point in the model 1is equal to
' . ]

the yield limit cy. The same scaling factor is applied to the calcula

~

ted displacements, strains and stresses. Additional loads are then

applied in increments as a percentage of the initial yield load until
stiffness of the joint reduces significantly In comparison- with its

initial value where stiffness is defined as the slope of the é—n dia—

gram., ///

s

The computer algorithm. outlinéd in this section requires a »
complete re—analysis of the system for eve?} itera;ion sitce “the Newton
, FRaphson method has been employed. Ho;ever, it allows applica;ion‘bf the
loads in relatively'large increments. Furthérmore, the method converges
in about two to, three iterations fof each load increment. For equal
load incremedts, the numfer of {terations éequired for convergence
-Etarts increas;gg rather quickly as the P-A curve becomes flatter and
the stiffghss diminishes rapidly. This is usually a gignal to decrease
the” load incrMments in this range to help reduce the numbet of itera-

tions.
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CHAPTER 6

MODEL VERIFICATION AND SENSITIVITY ANALYSIS

-—

6.1 Introduction P ~,

The response of the uncoupled and coupled finite element models
presented in Chaptefs 4 and 5 are the subject df investigation in this 7
Chapter. Of importance was to establish the degree to which coupling of// ’
the long’itudfﬁal effects (Which 1is accounted for in the coupled model
ogly) along the innmer web platé's top and bottom boundaries can influ-
ence tlje strength and stiffness characteristics of the twin shear beam.
The investigation was carried. out throu@%mmerical examples covefing a
\.{ide range of chord member and gap dimensions. Secondly, verifi.cation
of the FEM model is presentea. For such verification, modelling was
extended to the twenty-four twin shear beam specimens tested and repor-
ted earlier .(Chapter 2). Theoretical and experimental load-deflection
paths are compared, thus provi;:ling a basis for evaluating the adequacy
of the finite element model. -

Also to be considered in this Chapﬁer is a sensitivicty analysis
of the FEM model. The coupled twin beam model was selected for .this

purpose, The effects of changing the geometry of the chord and. web "

members, and the gap distance were iovestigated using a three—level

- 137 -
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parametric study. Of interest, as well, is the influence of the tangent
modulus on the posf-elastic behaviour. Numerical results of predicted
rest specimen behaviour are assimilated intosgroups and are expressed in

terms of load—deflection plots to reveal properties of the model.

Finally, the spread of plastic =zones under incrementally

increasing load is graphically illustrated for two typical twin beams.

. "

6.2 Comparison Between Uncoupled and Coupled Finite Element Twin -

Shear Beam Models . -

From a theoretical viewpoint, it is known that the coupled model

is superior to the uncoupled one in providing a more;ﬁccurate response
]

of the channel's resistance, particularly in shear. The cconoﬁy in
computer time and storage inherent in .the uncoup%ggh model,_/hQ§;ver,
makes it worthwhile to compare the performances of the two hbdels to see
whether the difference in their résponses is' of any pfaétical signifi-
cance. Three idealized twin shear beams (shallow, square-and qeep) were
selected to assess the performances of the uncoupled and coupled finite
element models for a practicai range of depth to width ratioc. Geometric
properties of these beams are indicated in Figure 6.1. Employing these
properties and the mesk of elements shown in Figure 4.5 for a and b\type
beams, the two models werg run under the lsame boundary chditions.
Before us@ng the coupled model, it G%s necessary to détermine the para-
meter "n” which denotes the degree of coupliﬁg considered in the matrix
[Kc] derived in Equation 5.41. It is koown, a priori, that cémblete

coupling is achieved. when n is a maximum and is equal to the number of
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N
\:oundary nodes on one side of the finner web plate minus one. However,
this was nat practically feasitzle as 1t required extremely large storage
on the computer. Rather, elastic test runs of the model were made for a
typlcal beam using n=2,3,4,5,6 and 7. From a comparison of the results
it was found that the behaviour gradually stabilized until it became

.

. 2z
identical both for n=6 and 7. A value of n=7 was thus select¥d for. the

3

analysis to follow in subsequ_enc work of this ~Chapt:er:.

The twin beams were theoretically loaded well into the plastic
range. .Each run was terminated when the midspan deflection attained a
/value_ of 1% -(hﬂ + bo) as proposed in Section 2.6. Predicted behaviour
is fepresented by the lload—defle&on diagrams of Figure 6.1. From

these results, it is observed that:

(1) The coupled model generally predicted a stiffer .response in
and beyond the elastle range.

(2) The difference iIn strength between the two models con=

v stantly inwsed with deflection and becomes more pro- 3

| nounced in .l:_he-‘elasto—plas.tic range.

(3) The slope of the P-a curve of the coupled model at the

. limitf;ng deflecéion 1s considerably steeper thay that of
the uncoupled model indicative of the capability of sus-

taining more loads at larger defvlenctions.‘

Mg

The coupling of the degrees of,_freedom at the channel-inner web plate.

4

interface in the longitudinal direction appears then to have a sizable
effect on the overall behaviour of the model. It is therefore concluded

at the coupled model td.s more appropriate than the uncoupled one in

?
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Simulating the twin shear beam and consequencl;’separated double chord

joints.

6.3 Verification
R . . - -\t

The coupled finite element model had to then be verifi\d using
the experimental results of the twin shear beams reported in ChapEéx 2.

‘Firstly however, it was essential to test the rectangular plate eleQEEE‘ﬁ\\\E__//’

eﬁployed in the inner web plate model. While well documented in the
-~

licereture, it wes-ngpessary_to perform some simple checks to ensure
that the present computer program was operatin&\correctly. The out-of-
plane aeeion of the nonconforming plate bending elemene was previously
checked by Shehata -{10) who used an example given by Stanton et al. (45)
gor a simply supﬁerted ghuare plate with uniformly distributed 1load.
Comparisons of results in ehe elastic, as well as in the elasto-plastic,

ANy
range showed good agreement. . Y .

The in-glane action simulated by the‘~eight DOF plane stress .
rectangular element is checked herein. This element was tested both in
the .elastic and elasto-plastic ranges in applicatiéns of gravity loaded
beams having span—to—depth ratios of 4:1 and 6;1. Another test was
conducted on a deep shear panel (2:1) subject to in-plane edge loading.
, N

> The first test (1V), which was limited to the elastic Tange, was

done on a cantileeer beam loaded at its free end by a parabolically

digtributed traction to simuldte a concentrated 1oad. The deflection at

&j}i’i‘fd :

point ¢ was compared with the "exact solution” derived from



v
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form of elasticityr solution (38). The. ratio of computed to exact
deflection was found to be 0.951 for a 4 x 16 mesh of elements. The
second test {(2V) was dnne €;3 a cantilever beam with a higher span—-to-—
depth ratio of 6:1 in order_ to ensure that the behaviour would be
governed solely by bending. As can be seen from Figure 6.2(a), the beam
wvas subjected to-uniformly distriﬁlteﬂ pressure. . Employing a 4 x 24
é&id of elemegts and elastic-— perfectly plastic marerial, the beam was
subJecteé to-simulated loadlng into the plastic range until no Eurtner
convergence was achieved after 10 iterations of the Newton  Raphson
method for a load increment of 2% of the elastic limit load: , From the
comnuted normal stresses ef the sempliné‘ﬁgints of elements.adjacent to
the clamped_ end, the bending moment\.M acting on the' pport section
could thus be evaluated. The ratio of M/Mp is plorted against the tip
deflection in Figure 6.2(b). It was Found that the finite element solu-—
tion provided ‘as much as 99% of the plastic moment;capacit& ﬂ . As
expected- yielding of the cantilever beam commenced simultaneously at
the top and bottom fibres at the support, then progresséﬁ ‘through the
depth and the length.making a symmetrical pattern about the longitudinal

centreline, The distribution'of the plastic regionslin the besm'at the

point of failure is traced in Figure 6.2(c).

' ' . ' . +
Verification test No. 3V comprised 'a deep shear panel with an
)

aspect ratio of 2:1. The primary objective of this test was to‘induce a

-

situation where shearing actfon govegﬁs the behaviour and hence to check

the element™s .capability of developing the full plastic shearing resis~
v

tance of ' the section. The panel was subjected to a uniformly distribu-

ted load’ applied along its edge as shown in Figure 6.3(a) and was

I

a

—t



. _ - 142 -

subdivided into 52 elements using a 4 a 8 grid. " For an elastic-
oerfectl; plastic material, the maximum shearing load sustained by the
panél wae‘enly B6.7% of the blastic sheariné force.VP-indicativetof a
lower bound solution. Results are demonstrated in Figure 6.3(b). The
apparent bilinear behaviour of tbe load-deflection plot is due to TEE:

abrupt failure of the panel which resulted from simultaneous ylelding of

the twelve elements in the middle of the panel as shown 1in Figure

6.3(c). . | o >

£

For the verifioation of the FEM model against the twin shear

beam experiments, the material properties definegﬁin Section 4.6 were
. . .
used, " The discretized inner web plate for a and b type beams is pre—-

sented in Figure 6.4. (Those for ¢ and d types were previously shown in

Figure 4.5). Each twin beam analysed consumed twenty to forty load

incrementsxof variable size beyond the elastic limit level in order to

arrive at the prescribed deformation limit determined in accordance with:
the deflection criterion proposed in Section 2.6. To provide the basis ~
for;proper comparison between theoretical and experimental‘results, tbe
deflection. values from the test Specimens were ‘nodified slightly in

‘order toAconfr‘orm with thei‘?/ umption of the roller support underneath

P - . .
\7 the reactive stub column. Experimental and theoretical load-deflection
-curves are presented in Figires 6.5, 6.6 and 6.7 for shallow, square and

A

deep twin beams respecrivelf. The A" values in these figures represent
* 3’

* the relative deflection occurring in the gap, rather than the midspan
———

Ny

deflection minus the nominal contraction of support columns.” It will be

observed . that while very good agreement was a tained for some twin beams

‘

such_as 6d, 7a and 8¢, poor ;gyeement was observed for others, such_as
F l (
,y/

A i ‘
et
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. ) . *
la, 2¢ and 4c. ComputedVYvalues of elasti¢ stiffness Ce and deflection
*
limitc load Pb are plotted for the beam versus thelr experimental
s ,
counterparts in Figures 6.8 and 6.9. It is evident from both plots that

the theoretical results exhibit a reasonable scatter around their exper-

) g{
imental counterparts,

In Chapter 2, it was ocbserved that the ela§¥!c stiffness
" generally increased with reduced gap size. This was not observed to be
the case for specimen 4c. 1In caiculating the relative deflection occur-—

ring in the gap from the dial gauge readings at the supporting stubs,

the results of specimens 2¢ and 2d exhibited the same unexpected hehav—

. -
iour. Their elastic stiffnesses calculated from relative deflection .
f "‘\."J -
were lower than those of 2a ang 2b which possess larger gaps. (It is-

possible that this 1is due to experimental errof§‘5§~theoretical dic—
tion indicates that reducing the gap increases the elastic st
which is expected. It follows thatﬁfhe~f=ﬁ curvé.is fl:; gned
strength at the deflectix dmit was le_ss than it should havé bee;n.'

Consequently, 1if was deémed-:i;L‘the results of these Fhree sPec£mQEiﬂf~

ought to be excluded from an assessment of the model's validity. 1In

light of the demanstrated res:}ts, thesg~ observations are made.

o

(1) Except for three twin beams (2c, 2d and 4c), the predicted

- elastic stiffness 1is 1in good agreement with the measured
value. The mean ratio of computed to<experimental elastic
stiffness is 0.97 for the remaining 21 specimens.

(2) Theoretical deflection limit loads for a and b type speci-

- .
kv
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mens are lower than their experimental counterparts u%fh an

average “agreement of 0.8l. Higher correlation is obtained
- -4

S
for ¢ and type specimens where the mean value of predicted
\ . ? k./ .
. to observed loads is increased to 0.99 at the limiting
deflection. Overall, the theoretical model correlates with

experiments at an average of 0.87)\

s the inner web continues to digtort in its plane, a field of
melpbrane tensile stres;es develops along a line making a maximum of é5°A
ith Mdhe herizontal towards the longer diagonal of the distorted web 4 _
/
(46). This action, which is due to a change in gesaéfﬁf of the ®eb is
,iléifkn wn as the “diagonal tension field". The extentf'td which teﬁsion .
| ‘fields can grow inhthe ianer web under large displacements depends on
its widfﬁj?b—depth ratio and its boundary conditions. The width;to—
'depth rétio determines whi;h sides of the web are supposed to serve as ¢
anchors for é té%sion stress field. When this ratio is small, as‘ig the
.;case for -all twin beams tested in IQE; study, the Fensile gtress flow
would tend to bridge the vertical sfdes./' such, the development of
tension field stresses in the twin shear beams. will depend primarily on

the amofmt of anchorage offered by the verticafjioundéries of the inner

web. o ‘ )

In Lhe'theéretical godei, tension fieids ‘are not ' acetunted for
since the model is based on small deformation theory. fwin beam speci-
mens of a and b type were completely welded to their branch ﬁembers and
as such the development of membrane stresses was enhanced. It is for

~ . .
this reason that the theoretically analysed twin beams ‘of a and b type -
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exhibited somewhat premature loss of strength and stiffness. It is
surmised that the lack of weldment along the supported side of the inner
web in ¢ and d type‘:becimens played a role in retarding the effective

growth of membrane tensile stresses; it would be expected therefoyre that

- theoretical and exper&mgntal resu&ts would thus be in better agﬁgsfij;_

as in fact they were (see Figures 6.6(c), (d), (g), (h) and 6.7(e) an
(£)). .

-

6.4 Sensitivity Analysis

. . ¢

All the parameters~ho,-b0, to’ s, hl’ bl, tl and ET were candi-

dates for a sitivity analysis of the FEM coupleds model. No attempt
was madé initially to coasolidate the number. This was’ done intention-—

v
ally with the primary objective of revealing the’ effect qﬁ each para-—

meter separately. With the ekceptiap of ET’ the selected parameters

completely describe the geometry of the twin shear beam. A total of 17

hypothetical rw{? shear beams, designated TBl,TB2,...,TBl7,-and ha ng

J
the data showéf n Table 6.1 were analysed. The postulated beams wkre
¥ N . y

N

classified into ning/@?ﬁupings, the first of which contained only TBl.

Each of the other groupingg%consisted of two twin shear bgams for which

. -

a4 certaln parameter was assigned upper and lower limit values. Mid

values of all eight parameters investigated were established for TBl,

In this way, only a single parameter need be varied without interference
K N : X

from other lparameters. With T?%ﬁas a bench mark, there existed there-
N L] .

¢
fore three typical regplts for “each parameter for which the groupings

are denoted }n Table 6.1. .
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Ic waslassumed that all beams were welded to their stub columns
along the perimeters of contacQ; i.e. the case for a aAd b type éhysical
specimens illustrated in Figure 2.2(a). A consistent ngaF¥or the inner
web plate having four rows and twelve columns of elements, three of
which were in the gap spacing, was used 'thgogghout the sensitiviry
tests, This element representation is sketché; in Figure 6.4. The

chiannel griflage-was generated to conform with the beam element distri-

butign depicted in Figures 4.8 and 4.9.

0

-

The beams were presumed to be loaded incrementally until well

into their plﬁgtfc range. The elastid limit load was determined from
- ‘

‘application of an arbitrary uniform pressure to the upper‘stub column

o~

and computations were made for the resulting stresses at every sampling

Rgizﬁzjaﬁlntﬁ the inner web mesh and the channel grillage. That point

possessing maximum effective stréss'yaglidentified after which a factor
was used to attain the yield valug. The associated factored ﬁressure
would then define the elastiec 1limit load Pe' Twenty or more variable
gizéd load incremeats (5 to 20% of Pe) wng then applied beyond the

-

elastic limit load. The permissible tolerance for the convergence of
Lo »
solution in the nonlinear range was preset to 1Z.

Load-ﬁidSpan deflection curves for the twin shear beams from the
finite element analyses are plotted in elght groups; each of which

oA
represents a variation of a single parameter. These are displayed in

‘Figures 6.10 to 6.17. Somewhat smoother P-A curves would have resulted

had smaller load increments been used, however, not withouf increased

computer costs. In order to maintain consistency, a common legend was

5
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N
M
~—

used in all plots. The curve corresponding te the parameter's central

): . .
level value 1is denoted by a solid linew Resdlts\fﬁ/]nwer and upper
level values are expressed by dashed and solid—dgtted lines respectiv-

1

ely. In view of these results it is observed that:

(1) There is a pronounced benmefit both in strength and stiff-
ness for increasing the chord depth ho and chord thickness
£, (Figures 6.10 and 6.12).

(2) The change in the chord membér width has virtually no

- influence onlthe perfoFmance of the twin shear beam except
whgre it is very small. 1In ghis case (b° = 50 mm), the P-A
curve was slightly elevated in the'post-elasfic range.,

(3) The s;rength and stiffness charactéristié; were noticeably
weakened for enlarged gap size. The ibad—deflection curve
corresponding to the smallest gap in Figuré_6.13 maintained
the highest slope throughout the range of loading;apﬁiiéd.

(45 Except fqr.ﬁarying by, ﬁﬁe geometty of the branch members
has only a minor iunfluence on the behavio;r of thi Qi}n
shear beam; (Figures 6.15 and 6.16). Comparing the three

lbad—deflection plots_i.bced in Flgure 6.14, it is observed

- that the value of'hl = 50 mn provided a response slightly
: (::j>\/gzgher than hi = 100 mm in the elastic range but thence-
. _ - " forth éopewhat‘wegker. On the other hand, when h1 took on

Al

. ' its 150 wmm.value, the P-A curve dnitially had a relatively

. o

lpwer slope indicating a reduced elastic stiffness but '
eventhIE? joined the curve of'h1 = 100 wm. the results

concerning h, were rather inconclusive, two additional
¢ 1 . —

i
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beams TB18 .-and TB19 (Table 6.2) having h1 = 200 and 250 om
were analysed. Figure 6.18 presents the results of TB1,
TB1O, TBIl, TB18 and TH19 representing five different wval-
ues of hl' It becomes evident that the larger the value of
. h1 the smaller is the elastic stiffness of the begm. It is
1 also observed that the group of load-deflection curves are
almost parallel in the plastic range which implies equal
stiffness. The differences 1in resistance for large A 1s
within 10% throughoyff/he po'st elast:ic‘. range.
(5) As expected, a variation in,ET had no influence  on behav-
iour up to the elastic limit load (Figure 6.17). Beyond
. this level, the increaée in the téngent modulus was accomp-
anied by gains in\bo}h Strength and stiffness.
Based on these observatiogs, it is evident from the model that the para-
meters h ’ to and i play the greatest role in the performance of the
twin shear beam both in the elastic and the post—elastic ranges. This
is to be expected since it is these parameters that define the web geom—

etry of a ‘dofb chord gap joint and offer the major source of resis-

action (Chapter, 2). By i;crepsing the fieb dimensions
(ho apd to), an ilmproved behavioﬁr i1s therefore achieved. Also, a
smallef gap distance results in a higher elastic st;ffness siace the
séiffness of a shear bean méy slmply be expressed by Eé'where s is its
span. A highe‘ stiffness is observed to extend to the elasto—g}astic
range si&g:honly portions of the web have yieﬂﬂed for the cases plgtted\f
in Figure 6 \3 The reason Fhere is an increase in strength for reduced

-

gap size is the subsequent reduction of bending moment acting on the

~

critical section.

o~ v
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There is an apparent Insignificance of the chord member width b;
on the model's behaviour. A plausiﬂle explanation for this response is
that when the gap i; small (which is the casemlgzall tests conducted},
major flange deformations tend to be localized around the loaded meﬁber
;egardless of how widg is the chord member. As regards hl’ a high value
reflects a larger overall span (or CEntre—to—éentre eccentricity in the
case of' double chord jointé). This would invariably lead to reduced
elastic stiffness. The poét—elastié strength attained may vary only

. P

within 10% depending on the chosen value of hl'

/

¢

It is of interest‘;o examine the effect of weldment type on the
behaviour of the twin m. While all beams analysed-were of the a and

b type, an additional beam TB20 that is welded to its support member

-according tg the ¢ and d pattern was also analysed, i.e. the weldment

was bresumed to exist along one side of'the inner web plate only. The

geometric properties of TB20 are giwven in Table 6.2 and arb. identical to
s

\—TBl, thus enabling a comparison of performance to be made between the

two. Buch comparison is‘graphically 1llustrated in Figure 6.19. It is
i Co » A
evident that there exists substantial benefits in both strength and
stiffress when complete welding along the supported side of “the gap is
. . { .

employed. 7 T

;9 provide a §2\ter aiderstanding of t;:‘resistance offered by
the channel and thé inner web segments of the RHS,.an'assessment was
made of the amount of restraint offered by jthe channel portion. For
this purpose the twin beam TB21 (Table 6.2) identical 1in geometry to TBI

but without the channel part was analysed. A compafison between the two

> 7
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i1s 'shown in Figure 6.20. It was found that TB2l could not sustaln
further loads beyond the last point identified in the figure. At that
point a load increment of 0.05 Pe was applied but no convergence was
reached after !0 {terations. From the numerical results, it appears
that the channel portion is responsible for 4.8% of the total.ela&tié
stiffress and 9.3% of the strength when TB21 failed by shear. However,
TBl continued to sustain greater, loads at la}ger deflections implying
“that the channel provides an'increasing contribution to the strength of
the twin beam. It 1is worth noting that this test could not Se performed
without the substructuring method employed in the model. Such a method
permits optional elimination of the channel and analysis of the inner

ey

web alone. g

[
+

Figure 6.21 presents the progression of plastic kegions in the

|
inner webs of two representative twin beam specimens 5a and 7a. As can
be.seen from the figufe,'yieiding‘commenced_at ;he bottom corner of the
gap zone near the roller support.. This was a fgsult of a combination of
high normal and shear stresses. The other three corners of the gap
spacing yielded soon aftérwards at a h}ghgr load level. As the load was

further increme;?sqsiiasticitf spread and occupied virtually the whole

gap spacing.
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Table 6.1: Test Data for Sensitivity Analysis
\;B(eam h0 bo s h1 bl r.l ET/E. P@ter
i _ Varied
haN
TB1 100 100 1S 100 100 5 0.025 None
TB2 50 100 15 100 100 5  0.025 h_
TB3 150 100 15 100 100 5 0.025 h_
- f [aN% 4
TBA 100 S0 _15 100 100 5 7 0.025 b
TBS 100 150 15 100 100 5 0.025 b,
TBé 100 100 15 100 100 5 0.025 €
TB7 .Aagloo 100 15 100 100 5 0.025 £,
TBS 100 100 10 100 100 5 0.025 s
TBY 100 100 20 100 100 5 0.025 s
TB1O 100 100 15 50 100 5 fo-025 hy
TB11 100 100 1S 150 100 5 0.025 h,
TB12 100 100 15 100 50 5 0.025 b,
.TBI3 100 100 15 100 150 5 0.025 by
TBl4 100 100 15 100 100 3.5 0.025 £y
TBLS 100 100 15 100 100 6.5 0.025 £
TBL6 100 100 15 100 100 5 0.00 Eq,
TBL17 100 100 IS 100 100 5 0.05 B
No-te: ~ All dimensions in mm.
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>

Table 6.2: Additional Test Data for Sensitivity Analysis
Beam h0 bo r s hl ‘bl 1 ET/E Parameter
_ Varied
TB18 100 100, 6. 15 200 100 5 0.025 h1
TB19 100 100 6 15 250 100 5 04025 h,
.TB20 100 100 6 15 100 100 5 0.025  a&b type of weld
TB21 100 100 6 15 100 100 5 0.025 Inner web Plate
only
Note: All dimensions in wm, ‘
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CHAPTER 7 ~

EXTENSION OF TWIN BEAM FINITE ELEMENT MODEL TO SEPARATED DOUBLE

_ CHORD JOINTS

S

7.1 Introduction v,

A general finite element program for separated double chord
Joints 1s presented in this Chaptef- The model called "Elasto-Plastic
Analysis of RHS Connections"” (EPAC:&E?) is capable of analysing N, X or
T-joint configurations with the brénch'mémbers sandwiched betwéén the
chords. Owing to the similarity between twiﬁ ‘;;mber shear beams anq-
separated double chord gap joints, thevnew.model 1s an extension of the
twin shear beam FEM model. The concept of subdividing the RHS chord
member into a plate and a channel representiﬁg the inner web and the
remainder of the RHS is retaIned. Of the two methods of anaiysis
presepted earlier for condensing the channel, only the coupled one is
included in the present model EPAC-RHS. There aré, however,. some
changes to be invoked iﬁto the new model in order to account for diffe

ent joint geometry and the problem size. Such changes are descrilpd in

detall in this Chapter.

‘Because of the unsymmetric response of an N or K Joint, there

é&ists only one plané of symmetry, i.e. the vertical plane along the

~
D
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l;ngitudingl axis of the joint. Therefore, half of the }oint needs to
b? modeiled and, consequently, the storage required onl the computer
increases significantiy. To circumvent this problem, tﬁe active column
solution technique developed by Bathe (40) replaced the banded solution
routine in the new computer modél. The technique, which is commonly
known as the skyline, permits assembling ;nd decomposing a‘matrix'with
variable bandwidths (or rather column heights). Hence, the method 1is
particularly economical when the global stiffness mAﬁrix of a structure
i1s not uniformly banded. Such 1is ‘the case with RHS joint models cited
in this study since.the boundary degrees of freedom of the inmner web
plafe'&re coupled. Not only is the skyline method economical, it also
permits full inclusion of the matrix [KC] in the global stiffness matrix
of the joinr..bIn the twin beam model, E.he stiffness coefficients of
[Kc]‘that ;{e remote from 1ts diagonal were.neglected in an effort to
reduce‘the bandwidth of [KT] {Section 5.3.3). Such an assumption is not
needed in Ehe present model.
] )

In truss joint assemblies, nonrectangular regions ‘invariaﬁly
exist and discretization of the innmer web plate using rectangular- sub-
divisions is just not possible. To overcome this difficulty, trigngular
elements are introduced. The noncdnform;ng plate bending- and the
constant strain triangular eleﬁents have been combined to form a Eriéng~
ular plate element for the inner web or the branch member as the need
may be. 'éhe formulation of the combined element is outlined in Section

7.3,

Constant as well as proportional loading types can be simulated
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in EPAC-RHS. This provision has beGi made in the new model_to permit
the application of chord axial preloa&g, as a prescribed load, while
proportioning the applied load on ghe diagonal; .The .search proéeduf;
for the elastic limit load is different from before (Séétion 3.5.2) and
is summarized in Section 7.4.

Finally, it was decided to include the modifiéd Newton Raphson
method for thg nonlinear part of the ana}ysis wiéh an option of using
either the original Newton Raphson, which is explained in Section 5.5.1
or the modified method to be described in Section 7.4,

-

7.2 Special Considerationms

. +

S

Figure 7.l presents a typical: éonfiguration of\‘a_ separatéd ‘

double chord K-joint. 1In finite element simulation of this joint usiné'5

EPAC-RHS, the following points should be considered.

~
-

l.. The’ inner web plate and thejbréhch>mémbgrs are represented
- . o . ‘} Lo .

" by separateAiayers of elements. Common nodes areISpecified
along the boundaries of the branch members welded to the
' inner web.
2. Outstanding webs of the branch meﬁberé aFé modelled as plane
stressreleﬁents. 7
3. Top and bottom boundary nodes of the inner .web plate must
remaln aligned vertically. This 1is a prerequisite . for

proper attachment of the channel grillage of beam elements

to the inner- web.
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@

The firet\two_cdﬁSideracions were addressed earlier in the twin beam

" model. The stringent requirement of aligning 'the boundary nodes,
although not readily established .as was the case for the twin beam, can

; beraccommodated by properly using the triangular plate elements. The

discretized inner web plate ‘and the branch members are shown in Figure

- .

7.2,

.

7.3 Triangular Plate Element

-

To be consistent wi%n_;be'exiéting'rectangular plate element,
the nine DOF nonconforming plate bending triangular element derived by
Bazelex et al (41) has been employed. - In addition, the' constant strain

triangle WithﬁfoﬂF (34) has been combined with the bending element.

Thus, the combined triahg;har element has 15 DQF with 5 at each node;

-3w * . R : K
i.e., u, v, w, Ox = 3y and 0 Sy

In the derivation of the nonconforming plate bending element

Baqsley et al (41) assumed that the lateral displacement w at any point_

e e
b ‘..,.l-

in the element i1s made up of a rigid _bedy translation W and a displace-

e

b,
ment due to curvature W o Thus .
3
'.

¢’ N

wo= w4 w : : ' (7.1)

~where ' ' . T
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T
w alL1 + azL2 + 33L3 (7.2)

{

is at}inear function of the area coordinates Ll’ Lz and L3 representing

the strain free translation and

1 1
v = ah(Lng + i‘LlL2L3) + aS(L§L3 + 3-L1L2L3) +

2 1 , 21
3g{Laly + FL1Loly) + ap (Ll + 3 L L,L,) +

v’

2 1 o 2 1
ag(LiLy + 5 LLoLy) + ag(LL, + = L LyLs) (7.3)

AN

1s ‘the lateral displacement function due to bending. Thus, it 1s pos-
sible to solve for the unknowns al'to ag, and hence obtain the element

shape functions. There are nine nodal displacements available which are
. -
-glven by

i

. :
{s; 1" = <”1@x10y1“29x20yz"39x39y3>' (7.4)

The explicit,form of the resulting shape functions is listed in Appendix

B. It is readily seen that a, Wi a, = vy and 2, =W from direct

3
substitution in Equation 7.2. follows that wb mst be a function of

the bending components of the six rotations of the element which are

{Ob}T - <éb éb Ob Gb'
X

e: o > C(7.5)
1 71 ¥ 7,

3 Y3

nd
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where
! .
T
Gb =0 4+ %E— {7.6a)
Xy X y
and <:
. r v
o =0 - % (7.6b)
yi yi- -

-

Equation 7.6 can be used to relate the bending slopes {Gb} to the
element nodal displacement {61}. Hence

b . .

{7} = 111 {s,}. (7.7)
6x1 6x9 9x1

The transformation matrix [T] is given in Appendix B.2. The form of the
element strain matrix [B] was reported by Cheung et al. (42). Having
aerformed the necessary differentiation of the shape functions w.r.t. x

and y, they showed that the strain matrix is given'by

(B] = -2+ [a] [B] [T -‘ (7.8)
3x9  8A7 3x7 Tx6 6x9 .

where A& is the area of the-friangle and [A] 1s a function of x and y and

is given by:
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-2 0 0 -6x -2y 0 0
(Al =] 0 0 =2 0 0 -2¢ &

yi. (7.9)
0 2 o0 0 4x 4y 0 ‘

J..

The matrix [E] is rather lengthy and is therefore given in Appendix

- B.3.
The assumed fields for the in-plane displacements are (34)

u = ulL1 + u2L2 + u3L3 _ (7.10)

v=vL +vL +vlL o ‘ g (7-1D)

1 272 373

which are linear in both x and Y+ The strain witf{in the element can be

calchlated from

" -
F™ 0
a [ .
gi; 190 % . = [L] N, {6,} | (7.12)
3 3 .
| 9y 9% |
i.e. [BZ] = [L] [N2] (7.13)

\

is the strain matrix for_iﬁ-plane diaplécements where

T .
{62} = <uyviu,vougved (7.14)

and -
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2] = . (7.15)

Since  the assumed .flelds are linear, the strain and hence the stress is

constant within the element. Combining the matrices [Bll and [B2] in a
~ .

similar manner to the one described for the rectangular element, the

total strain matrix, which is 3 x 15, can be obtained; 1its columns, cor-

respond to the following degrees of freedom.

L3

e T '
{87} = <uv w0 0 ... 6 >. | (7.16)

™= 7y Y3

Twenty—oﬁe integration points within the element were selected éor
straig and stress computafions and for evaluation of the element stiff-
ness matrix by means of numerical integration. Locations of ;ntegration
points through the element thickness and the assoclated weight factors
are identical to Cthose ;eported earlier for the rectangular element.
The positions of the seven points selected over the element area and
their weight fgctors are determined- from Hammer's Table (34) for triang-

ular element with ares co—or&%ﬁates and are shown in Figure 7.3. The

plate element stiffness matrix can now be computed as

37
K°] =8 +% ¢ IwwlBWL,.,, L., 2% D]
(15x15) Zogmgm V32 P2y B0 0

(15x3) -
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[B(Llj’ sz, zi)]. (7.17)
(3x15)

The weight factors mi and the corresponding z coordinates have been

defined éérlier in Equations 5.22 and 5.21, respectively. The (D]

matrix is given by Equation 5.18 in the elastic range and Equation 5.60

for the eiasto-plaétic range. _Also,

1

{LU}T =< 9, B, B, a 8,>

1° %20 Byr By .
(7.18)

T 1
Fo= < 8, @> Bys Byy ay, B0
/T

with  a, = 0.05971,58717

L,

= 0.47014,20641

1

@, = 0.79742,69853 -

= 0.10128,65073
and
T
{uﬁ} = <wl, Wy Wy Wy, Wy, Way w3> (7.19)
with  w = 0.22500,00000°
w, = 0.13239,41527

wy = 0.12593,91805.

It may be worth noting that the area coordidatg L3j at any point j is
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3
redundant once L., and L are determined because I L = 1.
Lj 2] a=] ™

Verification tests reported in Section 6.3 for the rectangular
element were repeated for the triangular element and showed equally good
results. For test 1V, the computed to exact defléctién ratio at point ¢
for a 4 «x 16‘division mesh containing 128 elements wag 0.854, which is
in close agreement with the 0.859 reported in reference (}9). This
compares with 0,951 for thg rectangular element for which some differ—
ence 1s to be expected since the rectangulér elements are more flexible
in view of their bilinear displacement field. The elasto-plastic test
2V ylelded almost identical results, alb;it with slight difference in
final yield pattern due to thg fact that the CST element yield wholly
(constant stress state). The data for test 3V shown in Figure 6.4(a)
was used to check the elasto~plastic petformance of the C5T element in a
shear predowminant sitﬁation. This was a case of deep shear panel héving
an aspect ratio of 2:1 and subjected to simulated edge loading. The
maximum.shearihg force by the panel was found to be 0.862 of the plagtie

shearing force of the section (with the result for the rectangular

element being 0.867).:

g
e

In addition, the triangular plaee/)beﬁding element was also
checked wusing 21 inategration points having the locations defined
earlier. The elastic responge ;f the element was successfully tested
against the exact solutions of 2 thin-square ﬁlate subjected to a vari-

‘ety. of loads and boundary conditions (34).  As is evident from the

results listed in Table 7.1, both convergence and accuracy were good.
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-~

Vd

yLoad-deflection curves and vield =zone progres%ﬁgg for tests 2v

and 3V are not being presented as they are similar to those for the

-

rectangular element.

A Chord/Web member Preload ™

Joint failure 1is normally induced by high magnitude Fforces
acting on the joint, such as punching shear or bending moment. It is .
well known that in real truss systems, there also exist significant
forces that can influence the -joint performance. For example, N and K
joints wusually collapse under increased web member fordes while their
chords are subjected to small axial forces. On the othef hand, critiCj
a%ly loaded Vierendeel.Téjoints normally experience- high branch bending
moment when the chord transmits relatively small axial‘ forces e.g.

+

simply supported trusses. These normal forces are termed preloads since
during joint testing such forces are often applied prior t; the incre-
menting of the major force comﬁbné;t. Preloads have been allowed in the
new model. As such, the search for the elastic limit locad requires'some”
additional steps in the analysis than usual. The approach is conceptu-~

ally simple and is summarized as follows.

l. Store the load vectors due to prescribed preload and arbi-
' trary web member load separately in {Pp} and {Pw}'
‘ -~
2. Compute the displacements due to each of the two loads d
l% an\"‘

store ythese separately. :
]

3. Calculate the corresponding strains and hence the effective
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stresses E; and Ei due to preload and web member load,
respectively, Ty :
. /

4, The elastie limit ﬁoad factor "u" ar a point can be found

I‘J
/
~

(7.20)

from the expr,

o = o) 4 Gt
y P w

where 1 varies frot\ I to the number of sampling points of

t ,
the § h element, an varies from ! to the total number of

elements in th$ jeint. The minimum value of "u" (Hnin) is
the required elastic limit load factor.
5. The total elastic limit load {Pte} is then given by
= -+ = -+ - 7.
e = b+ drd = (2 )+ fp ) (7.21)

The nonlinear analysis is commenced noting that load incre-

ments should be taken as fractions of the web member elastic

limie loae {Pwe} and not {Pte}'

w

//A‘»\\ .
Cho/ﬁ member preloads were gimulated in the computer model by a set of
/"‘\-..
nodal forces acting -2t the vertical boundary of the inner web plate.

This was not possible for the channel, unfortunately, - since there is

not a degree of freedom in the longitudinal direction of the grillage.

Alternatively, preloads were simulated by a "preset” uniformly distribu-

»

ted normal stress acting at all integration points of the beam bending

ot

elements of flange and web type (Section 4).

s
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7.5 Solutidn Technique for Nonlinear Analvsis

The {terative Newton Raphson method was previously employed in

™

the nonlinear analysis of the twin beam model to search for the equi~-

L3

librium position at the end of every load increment. In the present

model, the modified Newton Raphson method (34) was also included to

provide ;he opportunity of comparing computer costs froﬁ the two
methods. Ofiginally, the global stiffness matrix was updated after each
iteration until equilibrium was attz;ined'. The latter was based on a
comparison of determinant values of "current” and "previous” iterations.
In the modified method, the global stiffness matrix is kept constant
throughout the load increment and is only updated at the end of the load
increment. Naturally, the solution in this case takes more iterations
to converge to. the equilibrium config_uration._ However, the global
stiffness matrix is decomposed only once at the beginning of the load
increment. As such it may be difficult to predict the efficlency of

each method without expe_rimenté‘tion.

-
-

Testing fhg convergence based on a comparison of the determinant
value 1s, of course, not wvalid sinch—k)stiffness matrix remains
unchanged. Alternatively, Bathé. and Cimento (43) proposed three.
convergence criteria basled on displacement, out-of-balance force and
incremental internal energy considerations. From"t:h'ei:r experience, it
appeared that a displacement convergence criterion can sometimes be i11

behaved. They also cautioned about’ inconsistencies of units that may

arise when calculating the norm of the out-of-balance force vector.

-
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Such a vector may contain forces ahd moments. Hence, it was deemed most
sulitable to adopt‘their third convergenée criterion which recommends
computing the increment In internal energy during each itération Awi and
comparing it with the initial work done by the residual (out—of—balance)
forces on the initial displacement increments AWC. Thus, the iteration

is terminated when

o {aet) T {ar})

{48°} {aR°}

or < Eg | | (7.22)

where {360} 1s the first approximation of displacement increments when
o i i

the full load increment {AR } has been applied; {A§ } and {ARr} are the

subsequent displacement increment and the corresponding residual force

vectors. The value of the tolerance €g employed in EPAC-RHS was 0.005.

-

Ve

‘ -
Numerical results of typical K-joint models indicated that the

Newton Raphson method always provided a more economical solqtion. it

may be worth remarking that several methods to accelerate the converg-
ence bf the modified Newton Raphson ﬁé;hod have been presented in the
literature such as the Aitken accelerator (44) and the ﬁFGS methad (43).
Implementation of these schemes was not however attegpted in éhe present
model since the performance of chelNewto Raphson methed wés believed to

be satisfactory.
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7.6 Comparison with Previous Experiments on K-Joints

Twelve separated double chord K-joinc‘bpecimens were tested by
Korol and Chidiac (1,2). These comprised 3 groups that had web~to-chord
member slopes of 2:1,‘2:1 and 1:l. The centre—to-centre gap distance
between diagonals measured 178 mm, 108 mm and 90 mm for the three éeoups
_with other dimensions provided in Table 7:2. Chord preload and yleld
stregs data were previously given in Table 3.2. .

The joint behaviour was characterized in terms of a load-
deflection plot in which the load was fhe simulated axial force of the
diagonal member and the deflection "“was the relative displacement in
Y-direction between two points on the diagonal centre lines. These are
points A and B marked by heavy dots in Figure 7.l1. The disc;eticized
inner web plates and the mated Branch members for groups 1, 2 and 3 are

shown in Figures 7.4, 7.5 a?d 7.6, respectively.

Using the model EPAC-RHS, ana;ytical Joint models were subjected
to similar chord preloading and incremental loading beyond the;r propor—
tional limit load until the relative displacement reaehed the prescribed
limit of 1% (hO +.bo) (Section 2.6). Experimental load—deflectien
curves obtained'f;om reference (2) have 5een pletted with the corres-
ponding results from EPAC-RHS in Figures 7.7, 7.8 and 7.9 for the three
groups. It 1s obvious that very good correlation between theoretical

and experimental elastic stiffnesses exist. In the post-elastic range,

the finite element solution exhibited a more rapidfaeterioration than
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~
i

experiment. ‘However very good agreement was obtained for some jolnts
such as S2P4qT and SIPZGT. It should be pointed out that the proper O'y
&ﬂ ET for best fit with ‘bilinear behaviour could not be evaluated for
the K~jolnts due to lackl of 1information. Instead, the reported yield
stresses and a value of E.T = 0.025 E were employed. Clearly, had ET.L.or

cy been higher, a better agreement would have resulted in the post—

elastic range without affecting the elastic response.

In order to wmaximize the benefit from the finite element
results, joint models SZP76C and S2P46C were compared to evaluate the
effect of changing the joint eccentricity (or gap distancei. As was
concluded earlier for the twin beam model, there are substantial gains
in both strength and stiffness for a decrease 1in eccentricity from
‘178mm (S2P76C) to 108mm (52p46¢C); this is evident from Figure 7,10(a).
A similar comment cap be made in relation to the performances of 52P74C
and S2P44C which are illustrated in Figure 7.10(b). The latter posses—

ses considerably higher strength properties than the former.

To ir}vestigate the influence of the chord~axial preload, load-
deflection curves of SZP76C, S2P74C and S2P72C were traced in Figure :
7.11. Such Joints, while identical in georﬁetry,‘ were subjected to simu-
lated compressive cho'rd prestresses of 0.085-cry, 3.165 oy and 0.235 Uy’
respectively. As can be geen from Figure 7.10, it was not until the
preload ratio was 0. 235 when 2 sizeable decline :Ln behaviour could be
observed. Similar observation was made earlier. in Section 3.7 from a
conslderation of the interaction diagran_t\ constructed by the conical

mechanism model (Figure 3.13),
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7.7 Discussion
;
N -
The finite element model EPAC-RHS developed in this study has
been found to provide a means for predicting the behaviour of double
hord RHS joints of the separated type. With the introduction of

t ngular plate elements and the algorithm for allowing preloads, a

realistic slmulation of such joints can be made. Substantial savings on

computer time and storage can also be achieved by employing the skyline-

technique and the dynamic storage scheme (40) While only demonstrated
on K-joints in this Chapter, EPAC~RHS is also capable of analysing the

behaviour of other RHS connections of the separated type. This can be

accomplished without difficulty with the aid of the. User's Informatiqn'

Manual for EPAC-RHS (47).

From the demonstrated results, it may be \concluded that the
finite §EEnt model\predicts the joint elastic.reeponse with reasonable
accdracE{ On the other hand, conservative estimates of joint strength

were found for localized relative displacement of 1% (ho + bo). This

was perhaps due o an underestimation of the yield stress or tangent -

modulus values used.. "

[
AR

It may be noted thaf the lock d-in-stresses that develop due to

weldments were not included in the analysis. However, the stiffening

effect of the weld material dtself was also discarded from the simulated
- jJoints. It was assumed that these effects would tend to cancel each
other. However, the relative magnitudes of their effects are unknown as

these aspects were beyond the scope of this work.
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Table 7.1 Computed Central Deflection - of a Square Plate for
' ‘\___‘ .

Several Meshes Using Triangular Plate Bending Element

= 21 Integration Points

4

Simply Supportgd Clamped
Mesh Point Point’
whole plate UDL(a) Lokd (bY UDL(a) ~ Load(b)*?
A R
b % 4 .00458203" .01367346 .00136291° . .00653056
6 x 6 .0043%?30 »01279G51 .00135117 .00630664
B x8 .004%&&87 01240747 - .00132527 E33;::§35
. B . . . :",
16 x 16 00412268 01192449 00128758 .00582943
%

Exactc ) 004062 .01160 | 00126 - -00560

(*) Extracted from Ref. (34) S o " .

’ .
v \né )
Note: Central Deflection = a (35—) +» for uniformly distributed load q
' | % ' :
= b (—5—) «- for a concentrated load P at the
Y R \
. 3
. 4 ' centre.
v
J ‘
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o
'~ Table 7.2 Dimensions of Separated Double Chord K-Joincs

(Ref. 2)

Group Specimen L 2 L
{mm) (mm) (mm)

S2P76C ‘ <<:;/[
* .

S2p76C

S2P74C
1 $2P72¢C 1168.5 1219 178
CS2PT4T

S2P727

S2P46C
. ‘ - -
2 S2P44C 1168.5 1194 108

S2PL6T /

26C
Bt *
© 73T s1P26CT | 1168.5 1181 4

51P26T
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CHAPTER 8

CONCLUSIONS

\.

8.1 Summdry and Conclusions -

A‘\

The research programme presented has aimed at establishing a
better understanding of the strength and sgi.i’fnesg bchai'acteristics of
separated double chord joiqts .employed in truss systems of steel
réctangular hollow section;. Due to their flexibilities, such joints
may precipitate premature failure and hence disrupt the  anticipated
functiqr; of Fhe trx'zss. In the process of evaluating their strength and
‘lnehaviour, the notion of the twin member _s'hear beam evolved as a simple
means for simulating ﬁhe shearing action ocurring in double chord gap K
or N joints on which the emphasis has been placed. ’

The main objective of this investigation was' then to develop a
finite element model for* separate; double. v.:hord RHS joints i_n steel that
would be computationally efficient and 'Yet. capz’z_l.ﬁe of predicting th.e
" behaviour accuragely. It was also desirable to cast the developments in
a general format that would be applifcable to varlous separated double

chord join{) configdations.

The finite element model developed in this study involves ideal-

- =212 -
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ization of the RHS chord member as a thin plate representing the inner
web and a channel grillage of beam elements representing the top and
bottom flanges and the outer web. The restraining effect of the channel

ortion on the inner web plate was incorporated through a condensation
of .the former into a boundary stiffness matrix and augmenting it to the
global stiffness matrix of the latter. The model incorporates material
nonlinearities of the joint material that is presumed to- be isotropic;
its plastic behaviour can be adequately descriﬁed by the Von Mises yield
criterion and the associated plastié flow rule. The gtress—strain
relationship qu been idgalized by a bilinear behaviour to account for
varyling degree of strain( hardening. Joint déformationa are assumed
small apd hence geometric nonlinearities are neglected. This latter
assumptidqi was deémed' satisfactory for the range of deformations
consldered in this étudy. Furthermore, no account‘is héde eithef of tﬁe
weakening effect of fesidual stresses due to fabrfzation and weldment‘
or of the stiffening effect of the added weld material itself around the
chord-branch member inclusion. The two effects were presumeé CO‘cancel

r
one another,

The four node rectangulaf element, with both in-plane and out-
of-plane actiogg, is employed in discretizing the inner web plate of the
joint. While a beag—column element .is used 1in subdividing the channel's
cross sections, a combined beam bending—pure_sheér element 1is selected
in 1its longitudinal direcﬁion, thu§ resulting in a grillage of bean

elements.

-

.To wvalidate 4the finite element model, it was important to

L}

) o %



compare predicted joint behaviour and strength with experimental
results. As such, a number of experiments were undertaken on twin shear
beams with a J;ew to making definitive statements about failure modes
and deformation patterns to be énticipated for the fin%te elemen& model
ﬂfoposed. Twin shear beams formed a simple alternative and enhanced the
understgnding of the more coumplex K or N jolnts which are assoclated
with popular Warren and Pratt truss constructiomn. Twenty-four specimens
were tested iﬂ the Applied Dynamics Laboratory of McMaster University.
As expected, all twin beams failed Ey shearing actioQ in which a
pronounced distortien of their inner webs was exhibited. The amount of
deform;tion of the outer web and fléngé portions varied according to the
selectgd geometry of the beam%; Principally, it was concluded that deep
beams with small gap-to—depth ratio exhibit Vsuperior performance in

termgs of strength and stiffness.

In’view of the éxperimqgtal results, a local deflection limit
criterion waé proposed to provide a unified basils for Ptescribing the
maximum pe;missiblé deform;tion in a separated double chord'joint. The
criterion, which is algo con;istent with that described in the iitera—
ture for single chord joints, suggests that the relative'deflecti;n ina
gap joint may not exceed 17X (ho + bo). Beyond this.limit, gains in a:

‘Tiprength would be relatively Ssmall and inevitably are accompaniéd by

) - : ’
large increments of deflection.

]
~ + The f%nite element model was then verified through a.comparison
of its prediction with twin shear beam experimentallﬁgsults in the range

of displacements described above. Correlatiqn/ between theory and
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experiments was found to be reasonably good for most of the geometricgl
configurations analysed. It could therefore be ascertained that the
model is promising and could well be extended to truss joint applica—
tiong. A sensitivity analysis was also carrled out on a number of hypo-
thetical twin beams. It was evident that improved behaviour is obtained
for larger chord depth‘ﬂnd thickness and smaller gap distance: 1t was
also found that changing the branch member geometry or the chord member
width had dittle~influence on the behaviour. .
/7 y

An extension of the finitg elementagsdel was made to the general
model called EPAC-RHS (Elasto—Plastic Analysis of RHS Connections). The
nonconforming triangular plate bending element and the constant strain
triangle were combined for application in the model. With a combination
of rectangular and triangular elements, joints with branches arbitrariiy
positioned céuld be gimulated. In ‘addition, the model accounts for the
menber preloads. The model was rendered more efficient by introducing
the skyline technique to assemble and solvé the global system of the
inner web. The .method of dynamic storage was alsg empiﬁfggpzn the
source coding of EPAC-RHS for additional savings én-storage.

. "

Relevant experimental data extracted from the literature were
compared with EPAC-RHS simulated K~joints. It is concluded from such a
comparisohn thaf elastic feaﬁgnse prediction is very good; however,
conservative strength estimates were generally observed at the
deflection limit. It may be emphasized that by giving appropriate
consideration to the simulation scheme of the inner web ~ branch member
inclusion, it 1s possible to use EPAC-RHS for the analysis of RHS
single, two or three branch member joints of the separated type.

[

Another aspect 6f this study involved the use of yield line

-+
]
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theory to derive theoretical strength expressions for separated double
chord gap joints. In this analysis, the joint material is assumed
rigid-perfectly plastic. For Ezadings transverse to the plate, the
cffect of shear fdrce on the plastic moment capacity 1s assumed to be
negligible. Furthermore, deflections are small and as such, membrane
stresses‘developed in the plate may be ignored.

With these assumptions, two plastic failure mechanisnm models;
trapezoidal and conical, were proposed for the twin beap. Based upon a
comparison with twin shear beanm experiments, both‘models proved satis-—
éactory. Theoretical expressions were then applied to K-joints after
making provision to account for ch;rd preloading. Comparison with test

I
results from a previoqs study was successfully made. 1t was concluded
that both trapezoidal and conicgl strength models provide a good basis

for predicting the deflection limit strength of separated double chord

joints of K or N type. , (’
’ w

8.2 Suggestions for Future Research

-

A number of research areas are suggested to broaden the scope of
application of the EPAC-RHS model developed in this study. These are:
1, Incorporation; of large deformation theory for ultimate
' ¥
strength predi on and identification of failure modes.'
This would “qecount) for tension field Yaction that was

obserggd to develop in the gap spacing of the inner webs and

the stretching action in the flanges around the Iiglusion.
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Better models for material behaviour such as the trilinear

stress—straln model.

On the other hand, to enhance our knowledge about the behaviour of

double chord RHS connections, further research is needed in s eral

topies of which the following are suggested.

Undertake a study on the effect of residual stresses due to
weldments on the joint behaviour. Given their distribution,
the locked-in étresse; due to welding can be simulated in
EPAC-RHS in the form of a preload vector. It is also desir-
able to determine the effect that weld material itself has
4s a resisting element by employing thicker elements along
the welded portions between the chord and branch members.

EPAC-RHS can also be used in an analytical study to search

L} I3
for optimum joint configuration (¥ or N) leading to winimum

s;resslconcentrationa ;t its toes. This can be accomplished
by cutting the end of diagonal members at different angles
and varying the eccentricities. A comparison of numericai
results would then form a basis for selécting the best
cdnfiguration to be adopted %n practice, R
4

Another objective to - be aégieved thfough the finite element
model 1is the development of characteristic edu;tions to
describg the joint behav{our. Such equations can then be
incorporated into an elasto-plastic model for truss analy-
sis. ‘ '

Finite element modelling of back—to-back double chord K-

L]

“
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joints is also possible through chg present model. In this
case, however, the top flange plate would be the candidate
for discretization into rectangular and/or triangular plate
elements. The channel frame w?uld represent the inner and

outer webs and the bottom flange.
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APPENDIX A

Shape Functions for the Retangular Plate Bending Element

If w== teaea leeya, then
N, = -£)(3-2n)n

_ 2
Nip = (1=E)n(1-n)"b ¢
Ny = -g(-0(1-n)a o ‘

3

Ny = (3—25)52(1-n)+£n(1-n)(1-2n)
2

Nys = En(l-m)"b
2

Ng = (1=€)E7(1-n)a

Ny; = (328 n-En(1-n)(1-2n)

N = ~£(l-n)nb
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A.3

Nyg =

z
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blO

=
]

bil

=
"

bl2

Shape Functions for the Rectangular Plane Stress Element

(1-£)¢%na

(1-£) (3-2n)n>+£(1-£ ) (1-2€ )0

- (1-&)(1-

-E(l-E)zna

-

2
nn"b
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Np3 =
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p4

Shape Functions for the Boundary Spring Element

(1-£)(1-n)

£(1~-n)
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6 x40

(0]

3

-



QL\
where

[0

[Nsp] =10
. 0

NoL

0
Ny

A - 221 -

l'l r2 r3 r7 Z'8
0 Np4 0 0 o |
o0 Yor0 Nbll "o,
0 0 ero erl erz_

where Nbi aﬁd-Npi are defined in Sectiong A.l and A.2, respectively.

u‘The shape functions Nri correspond to Ox and can.be obtained using Equ&—

tion 5.6.
rl
T2

r3

These are:

= & =€ + £5(3-28) - 6(1-E)n(1-n)]
N

- (1-5)(1-n)(1-3n)/)
o~

! S

; { )
2 i

- a
= E(1-g

=1 G20 + 52 ? 2 2en(1-n))

= £(1-n)(1-3n) )
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r7
N, = [.2—'2 1
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r10 = T [EQ=E)(1-26) + 6(1-E)n(1-n)]
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APPENDIX B

B.l Shape Functions for the Triangular Plate Bending Element
ef. 34)
Ifw=N w +N. 0 +N 0 +.ve0e N @, then
byl by by by 3
N N R B
Yo Tyt bl t LTy - Ll - 1Ly
~ 2 L, . 2 1
sz = by Lyl + 5L LyLy) = by(Lyly + 7 L L,L,)
d‘
I i} 2,1 *
Yo, T c3(Lyly * 3 LiLyLy) = cp(Lyly + 5 LyLyLy }
b . ; KS
2 2 2 2 ‘
Nb4 =L, * Iply + 1L - Lly - L,L: |
N, = b, @l +-1—LLL)—b(LL2-;-—l~LLL)
b 1V20y T 7 ol 3V T 7 Ml
>
N o= e (Ll +—1—i.LL)—c(LL2+lLLL)
» g 142 2 “1kh 3V T 7 blply
. 2 2 2 2
Mo, T I3 T Igly +lgly - Laky - Lyl

7
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_ 2
Ny, = bpEsl)
8 .
N = ¢ (LZL +
b9 2737
where
4
b, = Yy 7 Yy
and. ci =.xk - xj.

The suffices 1,3 and k take up the valie of 1-2-3 respectively in cyclic

order. -

+
-~
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1

2 1

+—LLL)—bl(L2L + =L L.)L.)

2717273

..1

3 2717273

2

' 1
7 LjLL) = o (LL3 + S LiL L

2 7172 3)

Y

" B.2 Transformation between Bending Slopes and Triangular Element

Nodal Displacements (Ref. 41)
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Therefore, twenty-one expressions are-needed to define E X
='Y£i) (7 each). The E, functions are: . ) A :
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1

B
B.3 Matrix [B] of Triangular Plate Bending Element (Ref. 42)

The matrix [ﬁ%/is 7 x 6 in size and can be defined in terms of

six submatrices as follows. .
(B] = [{Bx}(”{BY}“_){BX}(Z)'{BY}(Z-){Bx}j{BY}3]... C (B.1)

Each submatrix is 7 x 1 and has an £th entry of

(W) | 1) | o) @)
(BX) -x'g\ b - Y, b+ Ej «F
or ' - (B.2)
) e (1) (D) _ LD (D)
(BY)Q = Xz * o Yl --cj + Ez G
where (i) = 1,2,3 : .
g = ceidn : ) -
and L 1,2, ' ) o ' q\

.

o s

.

a I (b,b)

E =
: i=1,3 1 -
E. = a ’-E {e,b.+ b,c,)
2 1=1,3 3 17
»
E T ¢ ) ’fﬁ
= g c,c . ]
3 gm,3 1
»
t !
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B.3)

kA
where a = 1.5 A and 1,§ and k are assumed to take up the values 1-2-3

(1)

respectively in cyclie order. The formulae for X.Q, are:

)
(1y _ 2 . L
Xl = bia + Zabibj
X(i) = 2b,.ec,a + 2lb ca+2b'c’a
2 i1 it 173
' .
(1) 2 ‘ ' ' e
X377 = c,a + Za(':it:j /g'-\
) 2 S
{ }{‘,4 | bibj _ {B.4)
(1) _ 2 "
XS = Zbici_bj + bicj
(1) 2 w )
X6 = cibj + Zbicicj o
. X X
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(1) _ 2
X7 = cicj,

and those for Yii) are given by:

(1) .2 . g
7 = bla + 2ab b,
Ygi) = Zbicia ; Zbkcia + ésickav/////
Ygi)_¥ Cia + Zacick ' ‘
Yéi) = bfbk | (B.5)
Yéi) = 2bjeiby * b:‘:k' 4
Y'éi)' - oly + 2b/c o
AR
(1) | @

(3 each) can be condensed as

The six functfons‘F(l) and G
P = o - b072

]
(B.ﬁ)

G(i) = (ck —1 Cj)XZ-

)
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