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ABSTRACT

The influence of the elastic interaction energy of
plate-shaped precipitates causing tetragonal distortion on
nuclgation,growth and coarsening is considered.

. The analysis shows that the elastic interaction
energy may be minimized by the formation of regula} £hree~
dimensional arrays, which emphas;ze the "edge-face" confi-

‘gﬁxation. Algebréic conditioﬁs of stability against coarsening
are developed, énd the results of the detailed numerical
test of stability égaiﬁst coarsening for a particularly
simple and symmetric\array arevreporled. Experimental
observatiogs on 6" (Al-3%Cu alloy) microstructured show
st;ong evidence of short-range oriéfing, with two characteristic
configurations (edge—féce and “parallel—stgp"), both
. energetically favourablg. \ - '
* It is shown that the glastic interaction energy
:may‘have a'deéisive role in the nucleation stage of o' .
preoipitates. The 6" ﬁicrostructure, in é relatively early
stage of developnent, is often inhomogeneous and consists

mainly of linear (parallel inclined and gross-like) stacks.
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Numerical calculations of the elastic interaction
energy show that the experimentally observed stacks are
energetically favouréble, and can be. generated in an auto-
catalytic way. Numerical and preliminary ;xperimental
results on the stability against growth and coars;ning of

jelastically—locked linear arrays are reported.

Finally, the chemical driving force and elastic
retarding force acting on moving ledges on a planar interphase
boundary are considered. It is shown that elaétic interaction
may cause a departure from the local equilibrium at a moving

growth ledge, and may dictate the location of "homogeneous"

nucleation of growth ledges. Some experimental results
\

concerning ledge nucleation and ledge interaction are reported.
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Fig. No.

"elastlc\dlsplacement in the matrix.

LIST OF FIGURES

Page

Schematic representation of a set of five imaginary 10
operatlons in order to find the elastic field
(after (18)).

A section of a solid solution with unit edge lengths. 25
Lattice parameter a has to be subjected to strains

é = (a-agp)/a in both x and y directions if it is to

be coherent when added to material having a lttice

parame ter a, in the xy plane (after (45)).

The relationship between Helmholtz free energy 29
[£' (c)] and the cohgrent free-energy function

$(C,Cq) - Coex1st1ng coherent phase compositions

in a system of average composition C, are seen to

lie within the coexisting incoherent phase compo-

sitions (after (46)).

Typical moﬁg;ology of G.P. zones and y' precipitates
in Cu-2% Be alloys. Notice in a incipient alignment
of G.P. zones; b, shows the Yy" phase with {100}
habit plane, hut aligned along the traces of the
{llO}a planes (after (33)).

Dark field micrographs of a Ni-19% V alloy aged
minute to 6.3 hours at 780°C. a) 1l minute,

g (610]. Note a random distribution of 6 precipi-

tates. (b) 18 minutes g [010) and [001]. Notice

a larger distribution of one variant of 6 precipi-

tates 1n the right-hand side micrograph. (c) 6.3

" hours, g [001]) and {010]. Notice two completely

dlfferent distributions of 6 precipitates on a
glven region (after (33)). -

- <

Mlcrostructures and diffraction pattern obtained via ~ 33 ,

-computer ,simulation. Figures (a),. (b) and (c) are'

in order,of 1ncrea51ng "ageing"” in the cemputer.

. Notice the Qil? pment’ of tetragonal precipitates

along the {110} planes and.the preferred development )

of one variant of prec1p1tates (after (48)). .
} .

Crystal lattices of e", o' and 6 in the Al-4% Cu al- 36

loys. . Tﬁe misfit in the ¢ direction is taken by .

’
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Fig. No.

10

11

12

13

15

Phase diagram for Al(rich)-Cu alloys showing the

solvus lines of 6, 6', 6" and G.P. zones (after
(58)). i

Transformation of a plate-~like inclusion (a) 1is
formed by displacement by -b of the upper side (b).

Pure prismatic infinitesimal dislocation loop.

a) The geometry of the thin foil used by Weatherly
and Sargent (72) to compute images of ledges in
precipitates in Al~4wt% Cu. b) A CDF image obtained
with a (111) matrix reflection showing particles:
with ledges. c¢) Schematic diagrams showing images
of growth and dissolution steps. The position of
the step is given by the dashed line, the heavy
line being black contrast and the shaded region
bright. d) A BF image with a (200) reflection
showing the ledges as faint double images. e) Dis-
placement fringes visible in BF, §(1l1l).

Schematic representation of streaks produced, by
strain field effects along <111> for G. P. zones
on {100} in Cu-Be alloys for three different re-
flections (after (30)).

(a) Disposition of plates in a b.c.c. lattice of
edge length L. The arrows indicate the direction
of the particular plate normal. (b) Projection of
the arrangement of (a) onto a (00l) plane. Plates
depicted by dashed line lie at L/2 above and below
the plade of the projection. (c) Schematic tweed
contrast from overlapping black-white images,

g = 200, beam direction [001}. (d) Schematic
tweed contrast 3 = 110, beam direction. [001]
fafter (35)).

(a) Schematic pat!gfﬁ of distortions due to projec-
tion of strain centres in Fig. 13 onto (001). Two
orthogonal transverse waves with wave vectors paral-
lel to [110) and [110) are produced, with X = L/V2.
(b) Diffraction pattern associated with lattice
disturbed by single transverse wave of wavelength

X (aftexr (77)). ‘

Arrays of circular rings ranging from perfect square
alignment (a) to complete disorder (3). Optical
diffraction patterns made from negative copies of
these arrays are shown in Fig. 16 (after (81)).

39

43

50
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16

17

18

19

20

21

22

23

Optical diffraction patterns made from negative
coples of the arrays of rings in Fig. 15. Note
that the diffraction pattern of the regular square
array (a) gradually disappears and is replaced

by an approximation to the diffraction pattern

for a single ring (d). Note also that the first
order diffraction spots in (a) fall within the
limits of the rings in (d) (after (81)).

Simple optical diffractometer. The diagram shows
the arrangement of the components used to construct
a simple optical diffractometer. A, laser; B, beam
expanding lens; D, pinhole; E, adjustable
diaphragm; F3, diffraction lens; G, electron
micrograph; and H, viewing screen or camera (81).

The <1230> array.

Interaction energy of two square shaped particles
when they are mutually parallel (face=face configu-
ration) as a function of separation. The broken
line indicates the interaction of infinitesimal
precipitates of the same strength. D is the centre-
to-centre distance; each unit represents the
edge-length of the particles (D has the same mea-
ning, r/%, in all other figures in which it appears.

Interaction energy of two square shaped particles
when they are mutually parallel (edge-edge configu-
ration) as a function of separation. The broken
line indicates the interaction of infinitesimal pre-
cipitates of the same strength.

Interaction energy of two square shaped particles
when they are mutually perpendicular (edge-edge con-
figurations) as a function of separation. The
broken line indicates the interaction of infini-
tesimal precipitates of the same strength.

Interaction energy of. two square shaped particles
when they are mutually perpendicular (edge~face con-
figuration) as a function of separatidén. The

broken line indicates the interaction of infinitesi-
mal precipitates of the same strength.

The total elastic energy of the «1230> array per
plate vs the distance between the plates enclosed
by the sphere of radius of 6.4, 7.5 and 10.0 times
the plate-length.
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24

25

26

27

28

29

30

The total elastic energy per plate of the 51230> b
array vs the number of precipitates, N (or R), the
radius of the sphere which includes that number of

. precipitates). The distance between the particles

is 1.2 times the plate-length.

The total elastic energy per plate of the <1230>
array vs the distance between the plates (infini-
tesimal approximation). The energy was calculated
between the central plate and the plates enclosed
by the sphere of radius of 10.0 plate edge-lengths.

The elastic energy change per plate of the <1230>
array in the infinitesimal approximation as a func-
tion of the displacement of the central plate along
the x-direction (each division is 1/10 plate edge-
length). The radius of the sphere is 10.0 times
the plate edge-length and the distance between the
particles (centre-centre) is 1.2 plate edge-lengths.

The elastic energy change per plate of the <1230>
array in the infinitesimal approximation as a func-
tion of the displacement of the central plate along
the z-direction (each division is 1/10 plate edge-
length). The radius of the sphere is 10.0 times
the plate edge-length and the distance between the
particles (centre-centre) is 1.2 plate edge-lengths.

The elastic energy change per plate of the <1230>
array in the fininitesimal approximation as a func-
tion of the displacement of the central plate along
the y-direction (each division is 1/10 plate edge-
length). The radius of the sphere is 10.0 times the
plate edge-length and the distance is 10.0 times the
plate edde-length and the distance between the
particles (centre-centre) is 1.2 plate edge-lengths.

The elastic energy change per plate of the <1230>
array in the 'large precipitate' approximation as

a function of the displacement of the central plate
along the y-direction (each division is 1/10 plate
edge-length). The radius of the sphere is 7.5 times
the plate-length and the distance between the par-
ticles (centre-centre) is 1.2 plate edge-lengths.

Al-3% Cu crystal with (001) orientation, solution-
treated and aged 6 hours at 160°C. Bright-field
conditions show tweed contrast. 6" particles are
not clearly seen (94500x).
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31

32

33

34

35

36

37

Bright field microtraphs of Al1-3% Cu crystal with
(001) orientation, solution-treated and aged 24
hours at 160°C, showing strain fields of the inda-
vidual 6" particles._, The particles are now re-
vealed as about 400 A in diameter (94500x).

, .
Al-3% Cu crystal with (001l) orientation, solution-
treated and aged 95 hours at 160°C. a) Braght
field micrograph shows coarse tweed-like contrast
(27500x); b) Corresponding selected-area electron
diffraction pattern.

Optical diffraction patterns corresponding:

a) to the model lattices of different degrees of
ordering and b) to the series of micrographs of
the type shown in Fig. 32.

Bright field micrographs of Al-3% Cu crystal with
(001) orientation, solution-treated and aged 95
hours at 160°C. Both micrographs show that the
energetically favoured edge-face and "parallel
step" orientations are well represented, clearly
showing evidence of short-range ordering.

(a) 55000x; (b) 33000x.

The change of elastic energy due to volume ex-
change between a pair of 'large' precipitates in
the face~face configuration. The distance between
the precipitates is 2.6, 3.2 and 4.0 times the
plate edge-length.

The change of elastic energy due to volume exchanges
between a pair of 'large' precipitates in the edge-
face configuration. The distance between the par-
ticles is 0.8, 1.0, 1.2 and 2.0 times the plate-
edge-length.

The elastic energy change per plate of the <1230>
array due to volume exchanges between a pair of
'large' precipitates in the edge-face configuration.
The distance between the first neighbours is 0.8,
1.6 and 2.0 plate edge-lengths. The radius of the
sphere is 6.4 times the plate edge-length. The
ordinate represents the even part of the variation ’
of Ejp, with V; and so clearly shows the positive
curvature and the array stability.

Xiv

96

97

99



Fi

38

39

40

41

42

43

NO.

[

Page
g‘—

The variation of K(f,p) function vs the bolume frac- 101
tion f (or D, the distance between the precipitates).

The arrow indicates the D value at which the interac-
tion energy is a minimum; see Fig. 23. The aspect

ratio £/d is kept constant at a value of 10.

The elastic energy change of the <1230> array due 104
to co-ordinated volume exchanges among the nearest
neighbours in the [010) direction (full line). The
broken line represents the volume exchange between
the single pair labelled (2) and (5). The distance
between the first neighbours is 1.5 plate edge-
lengths, and the cut-off radius of the sphere is

7.5 times the plate edge-length. The ordinaten
represents the even part of the variation of E with
V and so clearly shows the positive curvature of the
stability of the array.

The elastic energy change of the <1230> array due 105
to co-ordinated volume exchanges among the third

nearest neighbours in the [100] directign. The

distance between the first neighbours is 1.5 plate
edge-lengths, and the cut-off radius of the sphere

is 7.5 times the plate edge-length. The ordinate
represents the even part of the variation of E with

V and clearly shows the positive curvature and the
stability of the array.

Al-3% Cu crystal with (001) orientation, solution-
treated and aged 1 hour at 240°C. Bright field
conditions show inclined stacks of parallel 6°'
particles, containing only one {100} variant
(24750x) .,

Bright field micrographs of Al-3% Cu crystal with
(001) orientation, solution-treated and aged 1
hour at 240°C, show inclined stacks of parallel
6' particles. The inclination angle with {100}"“
habit plane is much smaller than that of Fig. 41.
(a) 53250x; (b) 33000x,

Al-3% Cu crystal with (001) orientation,solution-
treated and aged 1-3 hours at 240°C. This series
of micrographs shows non-parallel stacks containing
more than one {001} variant. . (a) and (b) contain
two {100} variants and (c) and (d) contain three
{100} variants« Note much smaller 6' particles
between larger 6' plates, and also larger 8' par-
ticles on the ends of the stacks.

(a) aged 3 hours, 12450x, (b) aged 1 hour, 25000x,
(c) aged 1 hour, 55000x, (d) aged 1 hour, 41250x.
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44
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A series of micrographs similar to Fig. 43 but with
different proportions of the respective habit plane
variants. Note, again, smaller §' precipitates be-

Page

tween larger 6' particles. (a) aged 3 hours at 240°C;

41250% (b) aged 1 hour at 240°C; 14250x (c) aged 3
hours at 240°C; 65250x (d) aged 9 hours at 240°C;
41250x%. )

Al-3% Cu crystal with (001) orientation, solution-
treated and aged 1 hour at 240°C. Bright field
micrographs show overall structure of 6' preci-
pitates in their relatively early stage of develop-
ment. - Both micrographs contain different kinds

of stacks, already described in Figs. 43 and 44.

(a) high strain field around stacks is very visible.
(b) only particles are imaged by tilting the foil
from the Bragg condition (bright field weak beam
condition).

(a) 15000x (b) 25000x.

Al-3% Cu crystal with (001) orientation solution-
treated and aged 1 hour at 240°C. The series of
micrographs show stacks in dark field. (a) and
(b) stacks imaged in dark field using matrix re-
flections, show strain field around particles;
Note also the stack in (a) imaged by differentials
absorption. (c) and (d) show stacks in dark
field using precipitate reflections.

(a) 42000x, (b) 14250x, (c) 33000x, (d) 14250x,

Al-3% Cu crystal, solution-treated and aged 1 hour
at 240°C. Bright field micrograph showing stacks
in the foil of approximately (l111) orientation
(28000x) .

Solution-treated and water-guenched Al-3% Cu
crystal with (001) orientation. (a) dark field
micrograph shows punching of dislocation loops
from an inclusion (14250x). (b) Bright field
mijcrograph shows the matrix with only a few
defects; small defects could not be resolved
(53250x%) .

Al-3% Cu crystal with (001) orientation, plastical-
ly deformed during cutting, solution treated and
aged 1 hour at 240°C. Dark field micrograph shows
repeated nucleation on moving dislocation; note
the leading dislocation (42500x).
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50
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55

Al-3% Cu crystal with (001) orientation, solution-
treated and aged 15 minutes at 240°C. This series
of brignht field micrographs shows small clusters
of only a few particles, all in energetically fa-
vourable orientations. Note possible spreading
of ' 6' precipitates from the cluster on the top (a)
and small particles very close to the large ones
(c) and (d). Two particles, large and small, in
very favourable orientation (face-face and edge-
face) are seen in (3) and (£f). Also note in (¢)
and (d) how the strain field can obscure visibility
of small particles.

(a) 27500x, (b) 43500x, (c) 27500x,

(d) 27500x, (e) 79500x, (f) 94500x.

Bright field micrographs of Al-2% Cu crystal

with (00l) orientation, solution-treated and

aged 1 hour at 240°C, show clusters of a few ‘
particles in the energetically favoured, edge- .
face orientation. Note how diffusion and strain
interaction fields have influenced the particle
shape.

(a) 16000x, (b) 16000x.

Al-3% Cu crystal with (001) orientation, solution-
treated and double-~aged (1 hour at 240°C and 23
hours at 160°C) to show the solute fields around
the original 6' particles by well defined 6"

" precipitates.

(a) 53250x%, (b) 31500x.

Al-3% Cu crystal with (00l) orientation, solution-
treated, aged 15 minutes at 240°C followed by in
situ hot stage ageing at 240-300°C. Matrix dark-
field micrograph shows a dislocation network on
the semicoherent 6' particles (42000x).

Interaction energy of two square shaped particles 119
when they are mutually parallel (face-face con-
figuration) ‘as a function of separation. The

broken line indicates the interaction of infinite-

simal precipitates of the same strength.

Interaction enerxgy of two square shaped particles 120
when they are mutually perpendicular (edge-face
configuration) as a function of separation. The

broken line indicates the interaction of infinite-

simal precipitates of the same strength.
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Interaction energy of two equal size square-shaped 122
particles, when they are mutuallv perpendicular
(edge~face orientation) as a functaon of inclina-

tion angle ¥, keeping the centre-to-centre dis-

tance constant (1.2 times the plate length, which
corresponds to the minimum in Fig. 55 ).

Interaction energy of two equal size square-shaped 123
particles, when they are mutually parallel (face-

face configuration) as a function of translation
(parallel to the plate plane) of one particle. The
effect of variation in the initial separation 1is

also shown.

Interaction energy of two equal size square-shaped 124
particles when they are mutually perpendicular

(edge—-edge cohfiguration) as a fuanction of trans-

lation along the y-axis.

Schematic representation of some linear arrays. 126

The total elastic interaction energy of the linear
array of equal size parallel particles (per cen-
tral plate) as a function of the inclination angle
and distance between the plates. The energy was
calculated between the central plate and 9 partic-
les equally spaced along the z axis.

The total elastic interaction energy of the linear 129
array of equal size particles (per central plate)

vs distance between the plates. The array is made

up of parallel plates (the inclination angle

¢ = 45°) and of perpendicular particles (edge-

face configuration).

The total elastic interaction energy of the linear 130
array of equal size particles (per pair of central
precipitates) vs the distance between the plates.

The array is formed from parallel plates (with
inclination angle ¥y = 0°) and from perpendicular

plates (edge-face configuration); r is the centre

to centre distance between the particles in edge-

face configuration. .

Interaction energy between large and small particles 132
when they-are mutually perpendicular (edge-face
configuration) as a function of separation. (The

size ratio in this and all similar calculations was
1/10).
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64
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70

71

The change of elastic intaraction energy (for a
palir initially at the minimum irn the potential
curve of Fig. 63) as a function of _the displace-
ment of the small particle along the z-axis.

The change of elastic interaction energy between
large and small particles when they are mutually
parallel (face-face configuration) as a function
of the displacement of the small particle along
the y~axis.

Interaction energy between large and small par-
ticles when they are mutually perpendicular
(edge-edge configuration) as a function of the
displacement of the small particle along the
y-axis.

Interaction energy between large and small particles
when they are mutually parallel (face-face con-
figuration; inclination angle y = 0°) as a function
of separation.

The change of elastic interaction energy which cor-
responds to the minimum in the potential curve
given- in Fig. 67 as a function of displacement of
the small particles along the z-axis.

Al-3% Cu crystal with (001) orientation, solution-
treated and aged 1 hour at 240°C. Bright field
micrograph shows stock development in relatively
early stage. Note supersaturated matrix around
the stack (53250x).

Al-3% Cu crystal with (001) orientation, solution-
treated and aged 3 hours at 240°C. Bright field
micrograph shows development of new 6' particles
in the stack and around the stack (41250x).

Al-3% crystal with (00l1) orientation, solution-
treated and aged 9 hours at 240°C. The 8' par-
ticles are much smaller than the 8' plates in the
surrounding matrix. Particles on the ends of the

stack are much longer than those within the stack
(53250x) .
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Al-3% Cu crystal with (001) oriertation, solution-
treated and aged 23 hours at 240°C. Bright field
micrograph shows the atack possible elastically
stabilized against growth. Note much longer 6'
particles in the surrounding matrix (18750x).

The change of elastic. interaction energy of the li-
near array of parallel plates (inclination angle

Y = 45°, and vertical separation 1.2 times the
plate length) due to lengthening of the central
plate into the matrix. The rest of the particles
in the array have equal dimensions. The central
particle was allowed to increase to length in one
direction as indicated by the arrow.

The chande of elastic interaction energy of the li-
near array of parallel particles (inclination angle

-y = 45°, the vertical separation is 1.2 times the

75

76

77

plate length) due to lengthening of the central
particle into matrix. The central particle was
allowed to increase its length in two directions.

The change of elastic interaction energy of the 1li-
near array of parallel particles (inclination angle
Y = 16°, vertical separation 0.3 times the plate
length) due to lengthening of the central plate.
The central plate was allowed to increase its
length in one direction only.

The change of elastic interaction energy of the 1li-
near array due to lengthening of the central plate
into the matrix. The central plate was allowed to
increase its length in one direction. The array

is formed from parallel plates (face-face configu-
ration, y = 45°, vertical separation 1.2 times

the plate length) and perpendicular plates (edge-
face configuration with the centre-to-centre ‘
distance 1.2 times the plate length.

The change .of elastic interaction energy of the li-
near array of parallel particles (face-face confi-
guratkon, y = 45°, vertical separation 1.2 plate
lengths) due to lengthening of the last particle

in the array. The particle was allowed to grow

in one direction.
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INTRODUCTION AND SCOPE

Certain phase transitions in the solid state are
accompanied b%,consié;rable elastic deformation of the parent
crystal. At the same time the phase transition occurs in such
a'manner .that,'at each step, the loss of free energy of the
system due to the deformation turns out to be minimal.

While the chemical free energies of the matrix and
precipitate phases generally provide the bulk of the driving
force for precipitation, the elastic strain energy may affect
significantly the kinetic path along which ageing occurs. That
is, the elastic strain energy is generally believed to exert
a mayor influence upon the distribution and shape of preci-
pitates which are coherently bound to the matrix.

The aim of this work is the investigation of the role

of elastic interaction energy of plate shaped precipitates

on their spatial distribution, nucleation, growth and coarsening.

£
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CHAPTER 1

LITERATURE SURVEY

1.1 THE ROLE OF ELASTIC ENERGY IN PHASE TRANSFORMATIONS IN
SOLID STATE

l.l.a INTRODUCTION

In solid-solid transformations the difference in speci-
fic volumes of the matrix and precipitate phases introduces an
extra energy term, the strain energy, because in this case the
volume change of the transformation cannot easily be accom-
modated by the matrix material. We find that in general the
shape factors are Jnot those of simple spherical nucleus, but
both surface a strain energy terms are anisotropic. Further-
more, these ferms are composition dependent. The characteris-
tics of solid-solid transformation processes therefore vary
widely depending upon the particular compositions, crystal
structures and elastic constants of the matrix and precipitate
phases.

The minimization 'of elastic energy is possible because
of the existence of an optimal form and distribution of the
;nclusions of the new phase which are coherently bonded to the )
matrix. 2

The (self) strain energy of an inclusion has been shown

to depend on the shape of the inclusion both in the case where

L}
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the precipitate-matrix interface is incoherent (1,2) and when
it is coherent (3,4). 1In addition, periodic arrays of coherent
precipitates have been shown (5-12) to be energetically prefer-
red over a random distribution owing to the interaction of the
strain fields of the precipitates.
In the investigation of the coherent stage the following
important questions arise:
1, What is the optimal shape of the new-phase particles to
ensure minimum free-energy?
2. What is the orientation of the new-phase particles rela-
tive to the crystallographic axes of the matrix?
3. What is the orientation relationship between the lat-

tices of the new and parent phases?

4. What is the mutual spatial distribution of the inclusions?.

A complete answer to these questions may be obtained in
principle by considering the elastic properties of the matrix
and the precipitate, the crystal geometry of the transformation
and the surface tension (free energy).

The present review concerning the optimal form and dis-
tribution of the inclusions of the new phase is based chiefly

on the work of Khachaturyan and co-workers (11,6).

- A<
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1.1.b BASIC EQUATIONS OF THE GENERAL THEORY OF ELASTICITY

The components of the displacement will be denoted by
ui. The spatial derivatives of u, will be written u 5 [{e)

[4

that,

(1)

1
-f(u .o+ ou, L) (2)

The components of the stress are denoted by Oij’ and
the components of the body force per unit volume are fi.
The conditions for translational equilibrium can now be

written as

fi

Ol:),:] + i H (llj 11213) (3)

or, when written out in full,

oo 90 90
11 + 12 + 13 +F. =0

3%, ' 3%, @ 3%, 1
3021 . 3022 . 3023 st =0
7%, | 3K, 3%, 2
%931 , %932 . %3, f -0
3%, | 3%, ' 9%, 3

The eij and Oij are symmetric.

The relations between stress and strain are taken to be

the generalized Hooke's law of proporticnality of stress and

strain (14).
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These relations ;estrict us to the linear theory of
elasticity. They may break down when the elastic strain be-
comes large, e.q. in the region close to a dislocation. (In
a more rigorous treatment, we might consider either 2 nonla-
near theory of elasticity, a detailed atomic theory or a plas-
tic deformation theory.)

In general, the elastic¢ constants CinQ in the fore-
going wiji vary from point to point in a medium. They are
constant, however, in an elastically homogeneous continuum;
which 1s the best macroscopic approximation to a chemically

homogeneous single crystal.

1t follows from the symmetry of Oij and elj that

Ciske = Cjikg = Cijeke (5)

Therefore it follows from eq. (4) and eq. (2) that

95 T CijkeVk, (6)
so that the equilibrium conditions, egs. (3) can also be writ-
ten as follows:

Ciikel, 23 * £ =0 (7)

It can be shown that, in the case of an isotropic me-
dium, the set of elastic constants Cijkk reduces to two inde-

pendent constants. Introducing Lame's constant 2 and the

modulus of rigidity u, Hooke's law reduces to,

/
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+ Zpelj . (8)

Olj = Aekkéij
It can be shown that it is possible to represent the unknown
functions - the displacements, u. entering the equilibrium
equations (7) in terms of three harmonic functions Bx’ By,
Bz. In other words, the displacement vector u can be repre-

sented by an harmonic vector B, whose Laplaciran vanishes:
AB = V-VB = 0 , (9)

The projections of thyis vector on the axes of a cartesian

coordinates system satisfy Laplace's equation.
AB. =0 ; AB_ =0 ; AB_ =0 . (10)
y z

The general expression for the displacement vector, for three
dimensional elasticity theory, in terms of the harmonic vector
B and the harmonic scalar 8, given by Popkovich and Neuber (8,

14) 1is,
— — l .
u = UO + B m (R*B + B) (11)

where the vector U0 is an arbitrary particular solution of the
equilibrium equations which accounts for the action of body
forces, and R is the radius vector from the origin. In a

cartesian system of coordinates, the displacements in the ab-

~\
sence of body forces are given ﬁ;,
U. = B, - 1 —é—-(XB + X, B, + X.B +6)‘ (12)
i i 4(1-v) axi 171 272 373
with
v2B, = v38 = 0 "
i
where 1 = 1,2,3 and Xi = X,Y,Z.



The solution of the problem of the effect of a concen-
trated force, f, an an infinite elastic medium gives an example
of a state of stress which arises in.the presence of the simp-
lest point singularity; with the aid of this solution one can
construct states of stress which are produced by singularities
of a more complicated nature. Given the solution of the equa-
tions of elasticaity, corresponding to a concentrated force,
one can derive by means of summation the solution for any dis-
tribution of forces throughout a volume, over a surface or
along a line in an infinite elastic body.

A powerful method for the solution of problems in the
continuun theory o0f elasticity (in particular for the continuum
theory of dislocations) derives from a consideration of point
forces. The problem is similar to that of finding the elec-
trostatic potential caused by a distribution of charge. Solu-
tions are derived by the Green's function method of electro-
statics.

To integrate the differential equations of elasticity
e.g. (7), it is useful to introduce Green's tensor function,
analogous to Green's function of electrostatic theory. 1In
electrostatics, Green's function represents the potential ari-
sing from a point charge. Similarly, Green's tensor function
represents the displacement ui(r) at a point r arising from a
point force at the origin in the xj direction.

The displacement due to the force f applied at the point,
assuming the classical isotropic theofy of elasticity is given by

(e.g. 15).



u = U._.f, (13)

b3 13773
where
1 1 rlr.
UiJ = Ig?ETT:VT [Gij T (3-4v) + _271} (14)

Uij 1s the Green's tensor function for the elastic displace-
ments; it denotes displacement in the i-direction from a unat
point force acting in the j-direction (it is symmetrical in
the 1 and j indices)) An exact derivation of eq. (14) can be
found in (16) and (17). There are several ways of finding

Green's tensor function. The method of Fourier transforms seems

to be the most straightforward.

l.1.c THE OPTIMAL FORM AND RELATIONSHIP OF THE COHERENT
INCLUSIONS OF THE NEW PHASE

As a result of fluctuations in concentration and order
parameters, inhomogeneities bearing a more or less random
character arise in the crystal. 1If the lattice parameters de-
pend strongly on composition, then from the macroscopic point
of view the inhomogeneities of composition will lead to con-
centratioh stresses, inhomogeneous strains associated with
these, and static displacements of the atoms in the crystal.

As a result of the supe?position of the fields of the displace-
ments created by different atoms, a complex distribution of )
static displacements develops in the solution.

It is clear that the determination of the stresses
and static displacement as a function of the coordinates of
the atoms in the crystal in the above mentioned case of a complex
and not completely symmetrical fluctuation of stresses sources

constitutes an extremgly difficult problem. The problem is
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greatly simplified, however, if we use the method of fluc-
tuation waves and transform from the displacements of the
atoms to their Fourier components.

In the case of long-wave fluctuation waves we may car-
ry out a macroscopic calculation of the static displacement
waves, based on the use of equations taken from elastic theory
and not on any specific model of the crystal. The amplitudes
of the displacement waves are expressed in terms of crystai
characteristics which may be determined experaimentally. 1In
the case of short wave fluctuations, the macroscopic approach

becomes inapplicable.

For a wave-like change in concentration;

Sc(r) = Ckexp(-ikr) . (15)

Corresponding to the k-th fluctuation wave, the displacements

and strains also vary in a wave-like manner:

a(dUl) B(GUm)

{ +
axm 3X£

ol -

]

m
(16)

! .
= E[K(nmAk2+ngAkm]CRGXP(—lkr)

where n, are the components of the unit vector n = k/k paral-
lel to the wave vector k, A(k) are the proportionality factors
between the amplitudes of the static-~displacement and con-

centration waves. Because of the presence of the matrix, inter-

nal stresses exist both inside and outside the inclusion.



To obtain a general solution for the elastic state of
an inclusion and the matrix when the inclusion undergoes a
change of shape and size (optimal form and orientation of the
inclusions of the new phase) one must answer the question:
What is the energy of a non-simply-connected anisotropic con-
tinuum with arbitrary configurations of the domains of non-
simply-~connectedness?

‘ The problem in such a general formulation does not seem
to have a solution 1in closed form. However, such a solution
can be found 1f one assumes that the elastic moduli of the
inclusions and of the matrix are identical, and that the
interphase boundaries are coherent.

In order to find the elastic field*, following Khacha-~

turyan (1l1l),a set of five imaginary operations can be used

as shown in Fig. 1.

The strain energy associated with a coherent particle in an
infinite homogeneocus isotropic elastic medium, has been
analyzed by Eshelby (4). Eshelby provides formulae for cal-
culating the total strain energy, referred to unit volume

of inclusion, for an ellipsoidal particle of arbitrary trans-
formation strain, and arbitrary, but isotropic, elastic con-
stants in the inclusion and matrix.

Tne elastic field of a dislocation loop derived by Kroupa (69)

using Esnelby's theory (4) will be given in the section
1.3

Cahn's treatment of the coherent strain energy (44) (again
for isotropic elastic medium) and the effect of the coherent
strain energy on nucleation in a binary solid solution (46)
will be given at the end of this section).
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Fig. 1 Schematic representation of a set of five imaginary

a)

?ggf?tions in order to find the elastic field (after

Cut around the inclusion which is going to transform

and remove it from the matrix.

Allow the transformation to proceed without the con-

. . . o) .
straint; i.e. stress free transformation, Eij, which

is directly connected with crystallographic %ransfor—

mation.
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c) Apply surface tractions to restore the original shape
of the inclusion.

d) Replace the inclusion into the hole i1n tne matrix and
rejoin the material across the cut.

e) " Allow spring-back to the self stressed state by the re-
lease of the surface tractions.

The surface traction in (c) can be written as;

© = A e? n
132 m o im )

N Ol]nj (17)

where nJ is the normal to the surface and Aljim are the elas-
tic constants of tne new phase.
Applying operation (d) no strain 1is produced:in the

system, but there 1s the stress in the inclusion,

o _ o
955 = Mijemem (18)

The surface force has now become a layer of body force spread
over tae whole surface, s.

In order to cancel the force fi inside the inclusion,
a further force (-fi) must be applied. This force produces
displacements ui at every point in the matrix and the inclu-
sion. The bodyhig now free of external force but in a state
of self-stress‘because of the transformation of the region.

The total elastic energy in the matrix and inclusion is given

by (e.g. 19).
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.. _ 1 o
E = 5 elj Oijdv (19)

where Olj is the stress in the inclusion, V is the volume of
the: inclusion and E?J is the stress-free strain which the
inclusion would undergo in the absence of the matrix.

The stress i1n the inclusion is given by;

_ _0
OiJ oij(fl) Ol] (20)

where

o j(fi) - Cljﬁmcﬁm -

1 CiijUR,m
i1s the elastic stress, caused by the force (—fl).
~=— Introducing the function 6(r), which is equal to one

inside the inclusion and zero outside, eq. (19) can be inte-

grated over the whole body,
~ l o - 3
E = - > eij J oije(r)d r . (22)

The displacement component ug at a point x, due to the com-
ponent fj of a point force acting at a point r, is known

from the theory of elasticity (e.g. 15). It is given by,
u, = U,.£. . (23)

Uij denotes the displacement inthe i-direction from a point
acting .in the j-direction.

The displacement field-ui from a surface distribution
of forces (ogjnj) is given by a surface integral (the force

on a surface element dS is df., = o?.ds.)
3 1) 1 N
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u = | U _f ds (24)
133

- o '
ul = ( 0y U av' . (25)

As already mentioned, in order to integrate the differential
equations of elasticity (eq. 7) 1t 1s useful to introduce
Green's tensor function Glj, analogous to Green's function

of electrostatic theory. After introducing the function 6(r),

eq. 25 can be writteq as /™

\/
3G__ (r~r')
= o 1] a ' 3 '
ui(r) = Ok] T— 8(1' )d X (26)

with the condition that the Green's tensor function in an

infinite elastic continuum satisfies the equation:

azcmj(r-r')
Aikam X, 9K, 648 (r-r") =0 (27)

togetner with boundary condition that Gij vanish at infinity.
Gij is the Kroneker delta and §(r-r') is Dirac's delta

function. Expressing eq. 20 in terms of eq. 26, eqg. 22

becomes,
N ‘BZG (r-rt')
_L % o, 1 o o - 3 = Ls 3,
E 5 Eijcijv 5 Oﬁmost J 8(xr)d r J 8{x') axmaxt d xr' (28)

Finding Green's tensor function using Fourier transforms

eq. 28 can be written as,

3 (29)

AN

' 2 .3
_1l o oty _ 1 k d’x
E.= % eijoijv 5 J A(E),e(%), -

(

- -

[y T ———
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where

(k)o is the function which depends

k) - £m m 2 t t
only on the direction but not on the magriitude of the vector

K, (G._ ~ 1/k%).

Ls

o (k) = { B (r)exp(-ikr)d-r

GQSXk) = st(r)exp(-ikr)d3r is the Fourier transform
of Green's function which can be obtained from the eq. 27.

Equation 28 expresses tbg elastic energy in terms of
the coefficients Ozj and (G-l)13 which characterize the elas-
tic properties of the anisotropic medium ahd crystal geometry
of the transformation, and also in terms of the function
le(k)|2,whichcharacterizes the shape of the particle. It
gives a connection between the elastic energy of the system
(precipitates of the new phase and perfect matrix) and the
elastic properties of the system, the crystallography of the
transformation, the shape of the precipitates and their crys-
tallographic relationship with the matrix. Eq. 28 is valid if
elastic constants of the inclusion and the matrix are equal.

To elucidate the orientation relationship between the
lattices of the phases it is necessary to find the ahgle of
rotation of the new-phase particle relative to the matrix.
The vector of loca} rotation, ¢, at a point is expressed in

terms of, the displacement at this point by the equation:

> = = f |e(k)| [k gL (k)oo(k)] — . (30)
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From the structure of eg. 30 it follows that the orientation
of the invariant plane depends, generally speaking, on the
shape of the crystal of the new phase.

The formation of a single inclusion of the new phase
in an infinite anisotropic continuum is agpompanied by a mini-
mum value of the elastic energy if the indiusion has the form
of a thin extended plate, the normal unit vector ko of w§}ch
is determined by the condition of maximum for the quantity

A(k|k). The answer to the questions posed can now be formu-

lated:

1. The optimum shape of a new-phase particle to ensure
minimum elastic energy is that of a thin plate, with
length and width much greater than its thickness.

2, The plane of this plate is perpendicular to one of
the k  vectors, thus bringing about a maximum A(k|k).

3. The direction and magnitude of the angle of rotation

of the crystallographic axis of this plate are given
by eq. 30. The invariant plane is perpendicular to
the vector <¢>.
For the ca;e where the crystal geometry of the transformation
is aescribed by tensor sgi, which has a tetragonal character,

while the matrix for a cubic lattice, e§l= 522 = Aa/a,

e§3ﬂ= Ac/c, e(j?j = 0 when i# j. In that case we have:

100 -% 0 O

o A

Uij O, 010 + e 0~-% 0 (31)
001l 0 0 -1

B W e s .



T ot oAt

16

where
o - 2 o | 1'% ) sa, ge
o) 3 11 3 a c
. 2C17C2) ae na
g = { + —)
o) 3 c a
Mia11 T €1 7 Mppa2 T €2 7 Ma12 T Cyy

Ael 17
For the case of a cubic lattice the matrix (G l) ] has

the following form:

2 2.2
21 AL €€y mCyny FALC) 4 #C) 5 nong
670 = = SPEIEY
K Cy4
‘ (32)
2 :
12 (C ) (1+An )n.n
-1 1 (Cpo* 44 3)nn,
[G (k)] = -
K2 CyqP(m)

where

_ ; 22 22 22
D(n) = C11+A(C11+C12)(nln2+nln3+n2n3) +

2 2 2
+ A (C +2C12+C44)nln2n3

C,,-C,,-2C
e éz 44

. a4

i

- i]
The other Tomponents of the tensor [G l(k)] J are ob-
tained by cyclic permutation of the cartesian indices. The

elastic energy is given as:

(0 +o)

2 2
—iBTHT—— [y+n A—n§B+ACni 2

2.2
n; 3+2Ay n, ] (3?)

where
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C C C
I DL MU LIPS
44 44 44
C C C
B=gt -1+ (-1 -2y @2+
44 44 44
C C C
c- A, 12,202
44 44 44

From eq. 33 it follows that the elastic energy of the crystal
takes on its least value when the normal to the new-phase plate,
n = ko/ko, is orientéa in such a way that the right-hand side
of eq. 33 is a minimum.

On analyzing eq. 33 it can be shown that, depending on
the relationship between the elastic constants Cij and the
value of the numerical factor y, the energy is a minimum when
the vector n lies either in the plane (100) or in (110). This
means that the Miller indices of the plane of the crystal
form (the plane of the plate) may either have the form (ho#) or
(hht).

To find the invariant plane (the orientational relatién—
ship) it is necessary to find the direction of the axis of ro-
tation. For this we must know the direction of the vector
Gﬂleoko. As the tensor agj has tetragonal symmetry, then both
the vector k_ and Ggl(ko)Goko lie either in the plane (100)
or in (l10). Since the vector <¢> is the vector product of
the vector ko and S_I(ko)aoko, then the axis of rotation lies

perpendicular to these planes. Thus when tetragonal deformations

are present the invafiant planes are either (100) or (110).
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All the results derived above are valid as long as
it 1s possible to neglect the contribution made by surface
tension. The effect of surface tension will be to prevent
the "expansion" of the new-phase particle into an infinitely
thin, infinitely wide plate. 1In the general case the equi-
librium shape of the inclusion will be determined by compe-
tition between the elastic deformation energy, which is
minimal for an inclusion in the form of an infinitely than, /
infinitely wide plate, and surface tension (enerxrgy), which
conversely, 1s minimal for an inclusion of equiaxial form,
if energy is isotropic. (It should be noted that besides
the important role of the surface tension in determining the
equilibrium shape, it is very important in controlling shapes
formed on initial growth; however a clear distinction between

kKinetic and equilibrium shapes should be maintained.)

1.1.d THE DISTRIBUTION OF COHERENT INCLUSIONS

The so-called modulated, periodic or tweed structures
have been observed in numerous systems.

Present X-ray and electron microscopical studies show
that in a number of cubic solid solutions, a periodic distri-
bution of coherent inclusions of a cubic precipitate phase
arise at an early stage of decoméosition. Thig phenomenon was
observed in Cu-Ni-Co (20-22), Cu-Ni-Fe (20-23), in a group of
nickel-based alloys (24-27), Au-Pt (28), Fe-Be (29).

This kind of structure is not only restricted to cubic

precipitate phases. One of the characteristic modes of trans-

[ P
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formation associated with strain relief twinning are the kine-
tic ordering reactions that are characterized by plate-like
morphology and by specific crystallographic features which
comply with the crystallography of martensitic transformation;
e.g. Cu-Aull (40) and TaOy (41) .

Finally a phase transformation from a cubic to a tetra-
gonal one associated with a periodic distraibution of strain
relief twinning is martensite transformation. The martensitic
transformation in steels 1s only one example of a class of
similar transformations that are found in a number of physical
systems. Materials known to exhibit martensitic transformation
include a variety of metal alloy systems, ferro-electric
materials such as barium titanate, ceramic materials such as
zZirconium oxide, superconducting phases,‘and many others..:

This observation has instigated theoretical work on
the elastic interaction between individual inclusions (4,6).
It is well known that there is no elastic interaction among
centres of dilatation in an elastically isotropic medium (4,
42,43). Sometimes particles of a peparated phase have an
"equiaxial" form which is nearly spherical. Eshelby (5) has
calculated the interaction potential of two spherical inclu-
sions under the assumption that the interaction is due to the
differences in elastic moduli of the inclusions and matrices,
and that the tensor e?j described a pure dilation. 1In this
case the potential goes as l/r6 and decreases rapidly.

However, defects or precipitates which give rise to



tetragonal distortions can interact quite strongly (6). The
presence of a strong interaction must lead to correlations in
the relative positions of the inclusions (short range and pos-
sible long-range order) during their formation in the field

of already formed inclusions and also in thgir subsequent
growth.

In a theoretical study of the elastic interaction of
tetragonally distorted spheres Khachaturyan and Shatalov (6)
showed that the existence of strain fields which differ from
purely dilatation fields, leads to a complicated angular de-
pendence in the potential .even for the isotropic continuum.
Following Khachaturyan and Shatalov (6; , the elastic energy
of the medium with the inclusion of the new phase relative
to the undeformed state is (if the elastic moduli of both

phases are equal)

z
= o 1 3
Eal = pil J[Oij(P)eij(r)ep(r)ﬁ-f Aijlmeij(r)elm(r)]d r (34)
M '0 = o . . R .
where: oij(p) Aijgmsgm(P): Aijzm is the elastic moduli

tensor; eij(r) is the strain tensor; 6(r) is a function which
is one inside the inclusion ﬁland zero outside; z is the
number of inclusion types.

Transforming to Fourier components eq. 34 becomes:

z 3
E . = ~ % T (n,So(p)G(n)So(p)n)G (k)6+(k) d k
P.q P 4 (2m)

(35)
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where k is the wave vector of the Fourier transformation;

n = k/k; the symbol (+++,+++) indicates the scalar product;
So(p) and G(k) are operators whose elements are S?j(p) and
Gij(k)’ where Gij(k) is the Fourier component of the Green's
tensor for the elastic problem.

The functian ep(k) can be multiply connected. For
s%mplicity it will be considered a medium in which there are
only twé inclusions altogether. Then, if the origin is put
at the center of mass of one inclusion at type p designating
the form factor of this simply connected inclusion by ep(k),
the form factor of the other simply connected inclusion of
type q, located at a distance r from the origin, has the
form eq(k)exp(ikr), where eq(k) is calculated in a coordinate
system with origin at r.

"It follows from eqg. 35 that the interaction of these

two inclusions is given by the expression:

. 3
pq . _ _ 1 + —-ikr d’k
Eint. 5 [ A (n)ep(k)eqe ?;;;3 (36)

(n,d° (p)G(n)c®(g)n). The quantity

where: qu(n)

qu(n)ep(k)e;(k) is the Fourier component of the pair interac-
tion potential.
Using the isotropic continuum model to solve qu(n), the

interaction of two inclusions is given by the expression:



e A e e =

Pq 2, .2,.pq
qu VlV2 2D2 (R1+R2)D4

= [ + ]
int. 16 r3 5r5

(37)

where ng and Dsq are complicated terms depending on the
orientation of the particles relative to the radius vector
which connects the two particles. The first term in eq. 37
is the interaction for distances much greater than the inclu-
sion dimension, and the second term is connected with the
inhomogeneity of the deformation field of one inclusion at
the limits of the region occupied by the other inclusion.

The expressions for the total energy of the elastic

stresses of the system of coherent inclusion may be written in

the general form:

E=E +E. .. (38)

The first term in eqg. 38 does not depend on the mutual arrange-
ment of the inclusions; it is the sum of the elastic self-
energies of inclusions. The second term in eq. 38, on the
contrary, depends on the reiative spatial orientation of the

inclusiofis. Consequently it represents the stress-induced

interaction caused by the interference of the stress fields
associated with each inclusion. One of the most interesting
aspects of the potential in eq. 38 is that it can have the
form of a potential with a minimum, aEint./ar==O. It has been
shown that the resulting potentials can be monotonically at-
tractive, mopotonically repulsive, oreban have a minimum at a

specific value of the interparticle spacing.
~
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Since hl gV Vlv2’ E. is maximal when VvV ==V2,

nt. int. 1

other conditions being equal. This means that' the inclusions

"try" to have the 4ame dimensions if Eint is negative, for

“~

then Elnt 1s minimal. Thus, the elastic interaction energy
appears as a factor which stabilizes the dimensions of the
particles if this interaction is attractive.

The theoretical treatment has been extended to multi-

23

particle arrays (7,8). It was shown that three types of perio-

dic arrays are possible: a one-dimensional system of parallel
lamellae; a two-dimensional distribution which may be viewed

as a planar square macro-lattice formed by rods of the second

phase; a three-dimensional primitive cubic macrolattice which

is equivalent to the macro CsCl array connected with spinodal

decomposition.

Next we will turn to Cahn's treatment of coherent dila-
tation strains (44) (the derivation of the coherent strain
energy is based on Hilliard's review paper (45)).

For most crystalline solid solutions there is a varia-
tion of lattice parameter with composition. If the lattice of
such a solution is to remain coherent in the presence of com-
position modulation, work has to be performed in straining
the lattice. The maintenance of coherency thus affects the
driving force for diffusion. .

Consider an infinite crystal containing an arbitrary
composition fluctuation whiéh is one dimensional and parallel

to the axis of a set of orthogonal axes x,y,z. The composi-
1 i
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tion will be uniform across any xy plane in the crystal and

there will be no tendency for any variation of lattice spacing

within the plane. Because of the composition variation along

the z axis one might expect a corresponding variation in the

24

lattice spacing in an xy plane as it is moved alonglthe z axis.

Fd

However, it 1s the basic premise of Cahn's calculation that
no such variation is allowable if the lattice is to remain
coherent. The reason for this restriction is evident i1f we
consider the consequences of a difference in lattice parame-
ter between two adjacent xy atomic planes. As we move away
from the region where there is a matching of atoms between
the planes there will be an increasing relative displacement
between corresponding atoms in the planes, and this displace-
ment must eventually reach a value equal to half the atomic
spaeing. In such a region, the lattice will no longer be
coherent in the z direction.

Having established the foregoing principle, the work
required to maintain coherency in the presence of a composi-
tion fluctuation can be now calculated. Consider a slab of
the solid solution (Fig. 2) having a unit cross-section area
in the xy plane., Let the lattice parameter in this plane be a
To this slab we wish Fo add a slice of thickness w which in

the unstressed state has a lattice parameter a. The slice is

H

supposed thin enough for there to be no appreciable variation

in composition along the z direction.

0°
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it §

N
\

Fig. 2 A section of a solid solution with unit edge lengths.
Lattice parameter a has to be subjected to strains
§ = (a—ao)/a in both x and y directions if it is to
be coherent when added to material having a lattice
parameter a, in the xy plane (after (45)).

If this slice is to be coherent with the slab after its addi-
tion it must be subject to a strain & in the x and y directions

given by

5 = (a—ao)/a. (39)

Assume that the solid is elastically isotropic (which is never
strictly true for a crystal); then stresses Iy and oy required
to produte this deformafion in the absence of any stress in the

z direction are given by the solution of

[} R



o . (40)

]
w
Q
+

S.,0 (41)

§ =€, =829, * 5119

in which the S's are the elastic compliances., Thus,

o, = oy = fS/(Sll + 512) (42)
The reversible work, W of deformation is given by
W = L (e o, + € 0 ) (43)
2 X X Y Y
and hence, from Eq. 42, 1is
W= wsl/(S,, +S,.) (44)
11 127 -

Inasmuch as Young's modulus E = 1/S and Poisson's ratio

11
v = —slz/sll, Equation (44) can be rewritten in the form

W= wYéz (45)

in which Y = E/(1-v). 1If a solid of length L is made up of
a large number of such slices, than the work done per unit
volume, wv' in achieving coherency is given by
L
W, = (1/L) Yézdz . (46)
0

The next step is to relate § to the composition variation.

Denoting the average composition by qo and the lattice para-

meter of the unstressed solid of this composition by ags then

a Taylor's expansion about Co yields

26
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a=ajll +n(c-C))+---] (47)
in which n = (l/ao)(da/dc) evaluated at CO. Thus,
§ = (a~a0)/a = n(C*CO) (48)

which, on substitution jipto equation (46), yields

W=

g

L

) I nzY(C~CO)2dz . (49)

O
This then is the coherency strain energy for any arbitrary one-
dimensional composition fluctuation in an isitropic solid of
infinite cross section. 1f Y can be assumed independent of
composition and the higher-order terms in Eq. (47) are likewise
negligible, the additional stresses required to maintain co-~
herency are unaffected by the composition variation in the
z direction. 1In other words, there is no inﬁgrac%ion between
the fluctuations in two directions. The strain energy will
therefore be the sum of the energies of the individual fluc- -
tuations. Thus, for any arbitrary three-dimensional compo-

sition variation in a volume V, (
wo=2L % | (c-c)?av . (50)
L o
v

This result applies Strictly only to isotropic systems and
to the case where the amplitudes of the fluctuations' are

small enough to justify neglecting the composition dependence

B O e e
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of n and the elastic constants. Thus, it is applicable to
the early stages of spinodal décompositibn in isotropic solids,
but may be a poor approximation in nucleation because the
nucleus can differ appreciably in composition from the sur-
rounding phase.

Cahn (46) modified the equat;on for the free energy of
an inhomogeneous_ fluid to include strain energy to give

2
F = [ [£' (c) + & (c—co)2 + k(vO)1av . (51)

Y

1-v

Combining Helmﬁoltéffree energy and strain energy Cahn defined
a new free-energy function,

| £2E 2

¢(C,Co) = f'(c) + iy (C—Co) (52)
which has the same properties for coherent systems that £f'(c)
has in incoherent systems. A system is stable with respect'
to small coherent fluctuations as long as 32¢/ac2 > 0, just as
azf‘(é)/ac2 > 0 insures the stability of fluid systems. The
barrier to eaherént nucleatioﬁ is A¢ for critical nucleus for-
mation, so strain energy is‘automatically included with the
chemical free energy.

Fig. 3 shows the Yelation between ¢(C,Co) and f'(c)

and between the coherent and incoherent miscibility gaps in a

" hypothetical system.

28
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a
Mole Fraction A —= /

Fig. 3 The relationship between Helmholtz free energy
[£f'(c)] and the coherent free-energy function ¢(C,C,).
Coexisting coherent phase compositions in a system of
average composition C_ are seen to lie within the
coexisting incoherent phase compositions (after (46)).

It can be seen that ¢(C,Co) > £'(¢c) for all compositions
but C = Co' The common tangent rule applieé (as shown) for
coherent equilibrium between phases.

Cahn (47) has also considered the interaction of dila-
tational strains in elastically anisotropic cubic crystals.
The'strain energy associated with an infinitesimal volume now

depends not only on the strain at tﬁgt point (as in eq. 52) but

also on the strains due to all other particles in the system
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as well as strains in other parts of the same particle. Cahn
gives the strain energy per unit volume strained region in a
cubic crystal as

2
W(r) = Tle); (1)1 -| g(r,r")av’ (53)

v

where g(r,r') is a complicated expression involving transfor-
mation strains and elastic constants, and r, r' are position
vectors. The integral over the volume contains anisotropic
contributions. Y is the average over all orientations of an
elastic constant Y(r). Equation (53) gives only the strain
energy associated with an infinitesimal volume at r, and

must be integrated again over all space to give the total strain
energy. Cahn draws some interesting qualitative conclusions
without evaluating the integral in eq. (53). Nucleation of

a second particle ;n'the presence of a pre-existing precipitate
parFicle is easier in a "soft" direction, a direction where
Y(r) is a minimum. For most metals, <100> directions are
favored (47).

Next consider a particle with two neighbours of equal
size at equal distances, but with one neighbor in a hard direc-
tion and the other in a soft direction. The particle in the
soft direction has a lower solubility afng hence is more stable
than the other particle of the same size. Therefore, even if
particies nucleate and initially grew at random, the enhanced

stability would favor the development of an ordered array, a

L e R
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simple cubic pattern 1f <100> directions are soft. Random
nucleation followed by growth could give the same kind of ar-
ray of particles that is produced by spinodal decomposition
(47) .

:

To summarize this discussion on the spatial distribu-
tion of coherent inclusions it can be seen that the most com-
mon and most controversial microstructures of coherent phase
mixtures are the so-called modulated, periodic, or tweed
structures. As already mentioned they have been observed in
numerous alloy systems. The only transformation process of
coherent phases which leads inherently to phase separation
with a given spacing (Am) is spinodal decomposition. How-
ever, periodically modulated microstructures are not only ob-
served in systems with miscibility gaps but also in systems
where ordered phases precipitate from solid solutions; 1i.e.
where azf/ac2 > 0 for both phase at all compositions and
temperatures and, therefore, no spinodal occurs. However, modu-
lated structures can develop flom initial arrays which are
not modulated at all (26,27). Modulated structures do not
seem to occur when the volume fraction is small.

" All modulated structures, including those produced by
spinodal decomposition, involve to some extent the minimiza-
tion of strain energy of the array. 1In the preceding para-
graphs we have seen that elastic interactions between indivi-
dual particles play a role. All modulated or tweed structures
thus far observed can be referred to one of the three types

B
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of periodic arrays described above (see p. 23). Their de-
velopment in an ordinary precipitating system will begin

with randomly distributed supercritical nuclei which produce
increasing displacements as they grow (and coarsen) until the
stresses become sufficiently high that they affect the dif-
fusional processes. These will then become anisotropic in
such a way as to favour the growth of periodic arrays whose
elastic energy is minimum-completely analogous to (%ose pro-
duced by spinodal decomposition.when the misfit 1s signifi-
cant (47). Providing that the chemical driving force for
overall homogeneous nucleation is small, the elastic interac-
tion energy may alsé be-a controlling factor during nucleation.

Thus, coherent precipitation associated with coherency
strains and higher volume fr€é£ions of precipitates will al-
ways result in qué%i—periodiéiWEYe—like arrays of matrix and
particles which are similar to spinoidally decomposed struc-
tures with composition-waves.

It can be seen that spinodal decomposition cannot simply
be distinguished by the fesulting microstructure: the origin
of periodically modulated, coherent arrays is a minimization
of elastic strain energy by anisotropically stress affected
diffusion in all cases.

An illustration of development of alignment structure
Cu-2% Be and Ni-19% V a%loys is shown in Figs. 4 and 5

(after 33).
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Dark field micrographs of a Ni-19% V alloy aged
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§ (001) and [010). Notice two completely different
distributions of # precipitates on a given region
(after (33)).




Chen et al. (48) have also performed computer simula-

tions of the microstructures that develop during phase separa-

tjon when the elastic energy is a major contribution to the

free energy of the system. Their results fot tetragonal

precipitates are shown in Fig. 6. Notice the alignment of

tetragonal precipitates along the [110] direction.

Fig. 6
computer simulation.

in order of increasing "ageing"

Q' ;

ra N .
'(v"-*.g v <
s o\ e o~
e oS L L "

021

&

Microstructures and diffraction pattern obtained via

Figures (a), (b) and (c) are

the alignment of tetragonal precipitates along the

{110} planes and the preferred d

riant of precipitates (after (48)).

evelopment of one va-
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1.2 PREVIOUS WORK ON Al (RICH)-Cu ALLOYS

A tremendous amount of research has been performed
on Al (rich)-Cu alloys. The number of contributions to the
literature concerning these binary alloys 1s so large that
1t is impractical to report on all of them. Therefore, only
the most relevant references will be mentioned*.

The precipitation processes in aluminum-copper alloys
have been studied by a variety of technigues over the past
fifty years. The extensive X-ray investigations have been
reviewed by Hardy and Heal (49). The more recent electron
mic?oscopy and electrical resistivity observations have been
discussed by Kelly and Nicholson (50) and Phillips (51,52).
These investigations have demonstrated the existence of
several\metastable phases in addition to the equilibrium
CuAlz(e) phase.

The generally accepted sequence of precipitation in
supersaturated solid solution aged at 130°C and above is (50,

51).

ass + a+G.P. zones + q+6" > a+8' -+ a+b

Using X~ray technigues, Guinier (53), Preston (54) and
Gerold (55) deduced that G.P. zones are thin copper rich
platelets, probably one or two atom planes thick, lying in
{100} /planes of the aluminum matrix. Both 6" and 6' are or-

dered arrangements of copﬁer and aluminum atoms with tetra-

*
Further references will be mentioned in chapter 3.
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gonal unit cells. The precipitates are thin discs with the
¢ ax1s perpendicular to the habait plane, and the orientatio-

nal relationship is (56) :
{100}e" , o'|| {100}

The 6" plane can be envisioned as {100} planes of éﬁré copper
separated by the three planes of pure aluminium, Fig. 7(a).

It has been shown that a minimum 1n the elastic energy
at four atomic planes from an existing G.P zone enhances the
formation of the 6" phase.

Silcock et al. (56) have pointed out that when 6" forms
from G.P zones, the ¢ parameter changes from 8.0 to 7.6 R as
the 6" precipitate grow. Because the maximum misfit between
the 6" and matrix lattice planes is about 5 percent, 6" is
coherent across all interfaces.

The misfit in the c¢ direction is taken up by elastic
displacements in the matrix as shown in Fig. 7(b).

The structure of 6'*, as determined by Silcock et al.
(56) is shown in Fig. 7(c). 8' is coherent across the inter-

face parallel to the habit~plane, but owing to the large misfit

*It should be noted that the exact structure of 6' is still
unknown. No one of the proposed models matches exactly with
X-ray intensity distributions, displacement field measurements
and lattice images. This is also true for many coherent
metastable phases in substitutional alloys and intermediate
phases, e.g. in Fe(-Au,Be,Cu,Mo,W) alloys and many others.

e | .
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in the c direction, 1t 1s non-coherent across the interface
of the peraiphery of the disc. The chemical composition of
this phase 1s about CuAlz.

The equilibrium phase 8(CuA12) 15 also tetragonal,
Fig. 7(d). This phase 1s incoherent or semicoherent. 0 pre-
cipitates nucleated preferentially at grain boundaries, dis-
locations and at the 0' parent 1interface.

The metastable phase diagram as compiled by Aaronson
and Russell (58) 1s shown in Fig. 8.

1.3 AN APPROXIMATION FOR THE STRAIN FIELD OF A DISC-SHAPED
G.P. ZONE

Several models have been proposed for the strain field
of disc-shaped zones. Guinier (53,59) based his model on the
Fourier transform of intensity distributions observed from
low-angle diffuse X-ray scattering, while others (60-64) cal-
culated intensities from assumed strain fields, and compared
these with intensities observed in diffuse X-ray scattering
exper iments.

Nabarro (65) noted that a collapsed disc of vacancies
may be regarded essentially as a prismatic dislocation loop.
Franz and Kroner (66) showed that the strain field of a G.P.
zone, as modelled, for example, by Gerold (60,61) may be ap-
proximated by that of a prismatic dislocation loop, with
Burgers vector proportional to the difference between the
size of solute and solvent atoms. The calculation of finite

prismatic loops has been carriegﬂguz in detail by Bullough

37
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and Newman (69) and Kroupa (68).

When the diameter of the loop 1s small compared to the
detail required, 1t 15 possible to treat a praismatic loop
as a point singularity in an elastic continuum (69). Kroupa
(69) specialized the derivation used by Eshelby (4)‘for the
more general case of an ellipsoidal ainclusion. We will show
the derivation of the formulae for the displacement and stress
field around 1t, following Kroupa (69).

Consider a plate-like region T with an area ¢A and
thickness h (Fig. 10(a)) in an infinite body with the same
elastic constants as the region T and perform the same opera-

tion as described on pages 10 and 1l1.

n n
w ) S
T A—_

Fig. 9 Transformation of a plate-like inclusion (a) is formed
by displacement by -b of the upper side (b). ’

-

The region T taken out of the body is transformed in
such a way that the face on the positive side of the normal
("upper side") displaced by a vector -b while the face on the
negative side of the normal ("lower side") does not move at‘

all (Fig. 9(b)).

The plastic displacements Uy in the region are,

39
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- _ b _,0
. u, = h (xi xi )ni (54)

1 ]
where X4 are the coordinates of a point of the region T, x?

the coordinates of a point on the lower side.
T

N The tensor of the plastic deformation ekj = % (auk/axj
+ au;/axk) is constant in the region T and given by,
T _ _ 1 ‘
ki =~ 3h (bknj+bjnk) . (55)

-

Stresses in the region T are equal to zero during this
operation. ‘Assuming that the elastic constants of the region
have not changed during the plastic deformation the stress ten-

sor ogj, can be calculated from Hooke's (eqg. 8) using eT as

kj
strain tensor.

The displacement and stress field outside’the region T
can be calculated as the result of forces (oijnk) spread over
the surface T.

The displacement component u, at a point X, due to the
component fj of a point force acting at at a Qpint X', as

»

already discussed on p. 7 is given by,

where .
1 1 Tity
U5 T Temueey (15 F G4 - D)

Uij denotes the displacement in the i-direction from a point
force acting in the j~direction (it is symmetrical in the i

and j indices). The displacement field u, from a surface

)

~

T
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distribution of forces is given by a surface integral (eq.
18) . For the displacements at a large distance from the re-
gion T (i.e. at a distance much larger than the dimensions of
the region T), the integral in eq. (25) can be replaced by

the product.

- T V'
ui = 1] K kj (58)
where
V' = §A-h . (59)

The derivation Uij K in eq. (58) is taken in respect
14
]
to the coordinate Xy of an internal point of the region T.
'
Denoting this point xk as the "centre" of the region T, or,

’

according to reality, that the distance r is much larger than

~.~"the dimensions of T, as the point at which the region T is placed.

From egs. (58), (553, (8), (55) and (57) (after dif-
J
ferentiation with respect to xk) and using the relations be-

tween X, u and v, u, ‘can be written as,

k 3r b, rn,r
_ o ;l-2v KTk e
uy ;2 {(—= [n bkrk+b n Iy -, b nk]-+ r3 }8A (60)

- 1
ko T 8w (1l-vy

Equation (60) does not depend on the thickness h of
the region T and also gives the limit for h~+0 fpr which the
transformed region T represents a dislocation loop with an

area 6A, normal n and Burgers vector b. Eq. (60) also gives
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displacements at a large distance from a (finite) dislocation
loop (described by §A, n, b). They depend only on the area
of the loop and not on the form of the loop.

For an infinitesimal area SA the loop can be called
infinitesimal. Then we can write dA instead of §A and dui

instead of ui,

k
= O e o '

The stress tensor 0y at a larger distance from a finite loop
or doij around an infinitesimal loop can be calculated from

eq. (60) or (60') using Hooke's law, thus

2k
— 0 3(1-2v) _
Oij = r3 { r2 bk k% Jz,+(4" l)b ]6 +(1 2v) (b, nJ+n b ) +
+ %% [b (n rj+r n. )+n (b rJ+r b.)] + (61)
3(1-2v) _ 15
+ ——;7——- bknkrirj T bk kDT eT; r }6a -
or
2k u
d A (P }da (61")

it is apparent that the displacements decrease with distance
r or l/r2 and stresses as l/r3.
Equations (60') and (61') can be simplified by using a

special coordinate system, Fig. 10.

[ S
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X4

Fig. 10. Pure prismatic infinitesimal dislocation loop.

The loop is at the origin of the coordinate system

in the XlX2 plane (n1 = n£~= o, ny = 1Y and separately

introduces displacements and stress for a pure prismatic

infinitesimal dislocation loop (bl = b2 =0, b3 = b) which
are:
2
le 3X3
uy s;—*i-[—(l—Zv) + —TT]
m,§ r
KX, 3x§
u2 = E-j [-(1-2Vv) + —7T_] (62)
r t
KX, 3x§
uy = 3 [1-2v + —5]
r r
2 .2 2.2
B T PN i B X1X3 ]
11 r3 3 r2 r4
2 2.2
X,.+X 5X.X
_ Ky (4v-1 _ 2%%3 - 2%2%;
00 = 73 /5= + (1-2v) —— 7]
r r r
2 4
0., =SB L4 i ¥ (63)
33 "3 '3 7 77 )
X X X
XX, sxg
0'12 = Ku rs [1-2v -~ —;-2—"‘]

(continued next page)
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2
X. X X

1%2 3

0y = Kp —5= [1-5 =]
Y r
XX X2

where

K=- 41 (1-Vv) da

L

b is Burgers vector, dA is the area of the loop, rz::xf+x§+x§,

p is shear modulus and v is the Poisson ratio (assumed 1/3).

1.4 ELASTIC INTERACTION BETWEEN PAIRS OF DISLOCATION LOOPS -
THE INFINITESIMAL APPROXIMATION

The total energy of a pair of dislocation loops is the
self energy of each loop plus the interacfion energy between
the two. This interaction energy may be defined as the ener-
gy required to create one loop in the stress field of the other:

For infinitesimal loops, it can be written as,

= S (2) (1), (2) ., (2)
E.ng = 04 oij bj 8A (64)
where: niz) is the unit normal at loop 2,
oié) is the stress tensor from loop 1 at loop 2;
Oij of . course depends upon L., the vector
defining the relative positions of the loops
ng) is the Burgers vector of loop 2,
GA(Z) is the area of loop 2.

L

Examples of this kind of interaction for various relative
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orlentatioﬂs of precipitates are given by Eurin et.al. (10).
It has been shown that, depending on the configuration, in-
teraction can be strongly attractive, strongly repulsive and
other configurations which are intermediate between these
extremes. For example, the edge-face configuration is strong-
ly attractive and the face-face configuration is strongly
repulsive.

From these interaction energies (and derivative forces)
one can proceed to larger numbers of loops in different con-
figurations; a balance may be obtained between the repulsion
of two parallel coaxial loops and a loop placed midway per-
pendicular to both, etc.

Fillingham et al. (70) have also used the infinitesi~
mal loop approximation to calculate energies of several ordered
arrays of disc shaped zones in order to describe "tweed"
structures and to model the diffraction contrast they yield
in the transmission e}ectron micrpscope.

/
1.5 DIFFRACTION CONT&AST FROM THE 6" AND 6' PRECIPITATES
AND OPTICAL DIFFRACTION FROM ELECTRON MICROGRAPHS

1.5.a INTRODUCTION

A description of the Howie-Whelan two-beam dynamical
theory has been published (71). The following equations re-
present both the wave amplitudes, ¢0 (transmitted) and ¢g
(diffracted), obtained by the dynamical theory for the general

case of the imperfect crystal with varying atomic displacements.
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Yo im, LAy, (65)
dz go o Eg Eg g
and
d¢ : "
._g = .L. - ..L + - -—n_. + 2 2 . @_ 66
iz ﬂ(gg géwo ( % m1s+2m1g dz)cbg (66)

where gg is the extinction distance; g; and g; are the ab-
sorption parameters, s is the deviation from Bragg diffrac-
tion condition, g is the reciprocal lattice vector and R
is the displacement which leads to a phase shift between the
two parts of the matrix lattice.

It will be observed in the above equations that the
amplitudes of contrast intensity of the image in thin foils
are dependent on g-dR/dz and consequently, provided that

drR/dz # 0 when g-R # 0, phase contrast is obtained.

1.5.b ELECTRON DIFFRACTION CONTRAST FROM LEDGES AT THE &
INTERFACES OF FACETED 0' PRECIPITATES

For'ase;sile ledge, which can only move by diffusion,
the strain field (if the length is much greater than the
thickness) is almost identical to that of prismatic dislo-
cation loop of Burger's vector b=¢ed; where € is the elastic
mismatch and d is the thickness of the precipitate.

The contrast arising from such ledges has been stu-
died in-detail by Weatherly and Sargent (72) using the

geometry shown in Fig. 1ll(a). The ledge is treated as a dis-

location b = %{OOl]e,andthe following features were charac-



e

PN

Practical Electron Microscopy

N T \\}\’*:K;\;“
& ey &“—“‘v‘* tm%\

S

ialt

Qrnwtr wiaps LRIZIVUE SN, - )

Bortom

Fig. 11  a)

The geometry of the thin foil used by Weatherly
and Sargent (72) to computaé images of ledges in

precipitates in Al-4wt® Cu. b) A CDF image
obtained with a (11l) matrix reflection showing
particles with ledges. c¢) Schematic diagrams
showing images of growth and dissolution steps.
The position of the step is given by the dashed
line, the heavy line being black contrast and the
shaded region bright. d) A BF image with a (200)
reflection showing the ledges as faint double

images. e) Displacement fringes visible in
BF, g (111).
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o
terized for precipitates ~ 150 A thick.

a)

b)

c)

d)

The precipitate dark field images are often wide

(v 300 R), Fig. 11(b).

In two-beam precipitate dark-field with no §}gnifi—
cant excitation of the matrix reflection, (that 1is,
only the precipitate diffracts),continuous ledges in
the interface (like a circular dislocation loop) have
a line of no contrast approximately perpendicular to
g. On one side of the line of no contrast the
image of the ledge on a positive print is a black
line whereas in the other it is a white line (see‘
Fig. 11(b), provided that w = 1.0-1.5. For g\?iven

a and type of step (that is,either growth r disso-
lution) the black and white image reverseg depending
upon whether or not the ledge lies on the top or bot-
tom surface of the precipitate (see the schematic
diagrams, Fig. 11l(c)). For a giveﬁhiedge the black/

white contrast reverses across the line of no contrast

0

when g or w reverse sign.

When a matrix reflection is excited in bright field
with § in the habit plane a faint double image is ob-
served, Fig . 11(d), like g.b = 0 and g-bAu > 0.64 for
a dislocation.

When a matrix reflection with § not'in the habit plane

is excited displacement fringes are observed in bright



field at the interface, Fig. ll(e). These fringes
are displaced at the ledges and the magnitude of the

displacement is related to ledge height (73).

7z

1.5.c ELASTIC STRAIN EFFECTS

Guinier (59) has shown that elastic distortion of the
matrix arising from a coherent misfitting precipitate produ-
ces diffuse scattering in reciprocal space in the direction
of the distortion. 0Often, the diffuse scattering arises si-
multaneously with shape effects (Al-Cu, Ni-Al alloys) and
these are difficult to separate because they often occur in
the same direction. However, Tanner (30) showed that it was
possible to do so for G.P zones in Cu-2% Be alloys. In this
case, G.P zones are plates on {100} matrix planes producing
shape streaks in recig;ocal space in <100> ., AHowever, the
coherency strains are shear strains in <100>%* (31) and pro-
duce streaks parallel to <110> in reciprocal space.

The main characteristics of elastic strain effects
were described by Guinier (59) and obtained for Cu-Be alloys

by Tanner (30). These are as follows.

1) The size of the streak increases. with increasing or-
dexr of 3 (this is difficult to observe because s
increases with increasing order of 3 and the specimen

must be tilted to s=0 for each reflection).

4

*
More about the origin of this contrast will be given in
section 1.5.4d.

48
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2) There are no streaks on the transmitted spot.

3) There are no streaks present along the distortion direc-
tions that lie in the reflécting plane. Thus, for <110>
strain fielas, all <110> distortions will be represen-
ted within the selected area operator. Each reciprocal
lattice point will have some streak missing, that is
{111} type; will have three out of six missing, {200}

"
types will have two out of six missing, and {220} types

—

one of six missing, see Fig. 12.

It is important to realize that the occurrence of double dif-

fraction effects whereby a diffracted beam contacts as an

incident beam can complicate the above effects.

1.5.4 ON THE ORIGIN OF "TWEED" CONTRAST

’ The reason for the occurrence of shear coherency strains
in Cu-Be alloys but not in the Al-Cu alloys is not at present
clear. 1Initially it was attributed to elastic anisotropy of
the Cu-rich matrix (30) but more recently this has been rejec-
ted in favour of complex strain field interactions from the
very closely spaced par£icles (74,70,75).

Phillips and Tanner (75) applied high resolution elec-
tron microscopy techniques and for the first time they have
clearly revealed the monoiayer G.P zones that are formed paral-
lel to {100} matrix planes during the ageing of a Cu ™~ 2.0 wt &

Be alloy at 100 and 198°C. Ageing at 100 and 198°C produced

abutting stair-step arrangements of zones.

b
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I (21220

‘d)

(b) 200

Fig. 12 Schematic representatich of streaks produced by
strain field effects along <11l1> for G.P. zones
on {100} in Cu-Be alloys for three different reflec-
tions (after (30)).
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Computer simulations have showh that "tweed" contrast
can arise from a two-dimensional array of two mutually perpen-
dicular loops (the "stair-step" array) which produce overlap-
ping black-white strain contrast (70). The three-dimensional
arrays have also been proposed (70,763} to account for the
tweeq‘structure but neither give simulated "tweed" contrast

compatible with that observed.

Eurin et al. (10) have considered the elastic interac

tion between precipitates which cause tetragonal distortions

c:‘:'

and conclude that they arrange themselves in a pseudo-perio-
dic array to maximize the number of "edge-face" configurations:

Jack (35) used one of their arrays to demonstrate how
"tweed" contrast may arise from a three-dimensional periodic
array of tetragonal strain centres acting in <001>, Fig.

13(a). Projection of the arrangement of Fig. 13 (a) onto a
(001) plane is shown in Fig. 13(b). 1In calculating electron
microscope image contrast due to strain, only those plates on
(100) and (010) need be considered.

For the plate densities envisaged therevare many par-
ticles within one extinction distance of the foil surface and
the final image will consist only of wide, asymmetric black-
white images. Calculation of the detailed image shape from
each plate needs to take into accoﬁnt the elastic anisotropy
of the matrix, but the nature of the final image can be seen in
principle by superimposing the simple black-white strain con-

trast from each plate and in Fig. 13(c)-(d) the overlapping

o
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(a) Disposition of plates in a b.c.c. lattice of
edge length L. The arrows indicate the direction of
the particular plate normal. (b) Projection of the
arrangement of (a) onto a (001) plane. Plates de-
picted by dashed line lie at L/2 above and below.
the plane of the projection. (c) schematic tweed
contrast from overlapping black-white images, §==200,
beam direction [001]. (d) sSchematic tweed contrast
§ = 110, beam direction [001]) (after (35)).
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contrast for 5 = 200, and 5 = 110 is sketched schematically and
corresponds to the tweed striations actually observeél

As already;mentioned, the streaks in <110> (in Cu-Be
alloy) are attribﬂted\to shear waves which are considered to
arise owing to effébtéof the primary <100> tetragonal dis-

i

placement actiﬂg in an elasticaily anisotropic matrix. How-

W ever, Lou and Jack - (77) have pointed out that it is not neces-

[

sary to postulate an anisotropic matrix in‘order to explain
the <110> streaks. 4wﬂ

I1f the array of strain centres in Fig. 1l3(a) is pro-
jected onto a {001} plane, the arrangement of Fig. 1l4(a) re-
sults, with d¥stortions of the matrix lattice as shown.

MéConnell\(78) has pointed out, such distortions are
equivalent to two orthogonal transverse waves with wave vec-

TToTs~f110] and [110], and displacement vectors [110] and-[110],

respectively. For a sinéle transverse wave, Fig. 14(b),
with wave vector k (|k| = 145} and amplitude vector a, addi-
tlonal satellite diffraction spots will appear on either side
of matrix dlffractxon spots m pomtlons given by, (ghkz t k)
where'3 is the reclprocal lattice veotor of the matrlx spot.
The amplityde Oof the Batellites are proportlonal (79) to‘
a-éﬁik), whence it can be seen that no LntenSLty is observed
“around a particular matrlx spot where the dlsplacement vec~
tor is normal‘to the reciprocal lattice Vector for that. spot,

i.e., where the transverse wavg,doas not alter the spacing aof

4
!
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. Fig. 14 (a) Schematic pattern of distortions due to projec-
L tion of strain centres in Fig. 13 onto (00l). 'wo
-+ . -orthogonal -transverse waves with wave vectors paral-
lel to [110] and T110) are produced, with A = L/VZ,
(b) Diffraction pattern assogiated with lattice dis-
turbed by single transverse wave of wavelength. A
(aftexr (77)). s .
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hypothetical diffraction pattern of Fig. 14(c) is obtained.
Superimposing the effect of two orthogonal transverse waves
gives a pattern characggristic of those observed in associa-
tion with tweed contrast except that discrete satellites are
never seen, always diffuse streaks without any apparent
maxima. This would indicate imperfect periodicity, as might

perhaps be expected.

1.5.e OPTICAL DIFFRACTION OF ELECTRON MICROGRAPHS

Just as in electron diffraction, the form of the opti-
cal diffraction pattern is directly related to the structural
detail of the micrograph (80). If the micrqgraph is.of an
amorphous specimen area and shows no periodic or regular de-
tail, then the optical diffraction pattern will contain only
a diffuse "noise" spectrum radially distributed aboyt the
central diffraestion spot. The "noise" spectrum may be altered
by the presence of astigmatism, specimen drift or out-of-
focus effects in the microscope image, and in this way pro-
vides inﬁormation about the recorded micrograph; “but it does .
not provide ahy‘information about the strﬁcture of the speci-
men éxéept; of‘courée, that it is amorphous.

1f the specimen area is _erystalline of the micrograph
‘contains perlodlc deta11 then, in ‘addition to the nomse spec-.
trum, discrete dlffractxon spots will be .pbserved in the

opt;cal dxffraction pattern, at dlstances and orlentatloqs

from the central d;ffractlon spot’ that can be analyzed to pro-‘

vide lniormation about the periodic structure of the corres-

- .
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ponding specimen area, Fig. 1l5(a)-(d) And Fig. l6(a)-(d).

As in electron diffraction, the optical diffraction
spots become sharper the more regular and extensive is the
periodic'array recorded in the micrograph.

It must be remembered in optical diffraction analysis
that the diffraction object is the electron micrograph and
not the specimen itself, and so even if the specimen itself
is crystalline or periodic, unless these features are re-
solved in the micrograph, the periodic spacings cannot be

observed and analyzed by optical diffraction methods.

(a) . (b)

Fig. 15 Arrays of circular rings ranging from perfect square
. alignment (a) to complete disorder (d). Optical
diffraction. patterns made from negative copies of
* these arrays are shown in Fig. 16 (after (81)).
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Fig. 16 oOptical diffraction patterns made from negative
copies of the arrays of rings in Fig. 15. Note
that the diffraction pattern of the regular square

¢ array (a) graduall

, e X

y disappears and ais replaced
by an approximatjon to the diffraction pattern
for a single ring (d). Note also that the first
order diffraction spots in (a} fall within the
limits of the rings in (d) (after (81)).
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CHAPTER 2

EXPERIMENTAL PROCEDURES

2.a PREPARATION OF SINGLE CRYSTALS*

The material used in this work was supplied by Alcan
international Ltd. in the form of hot rolled plate. The
chemical analysis carried out on the material using gpark

analysis techniques gave in weight per cent:
3.62 Cu, 0.002 Fe, < 0.001 Mg, 0.002 Si, remainder Al.

The production of single crystal rods (1 cm diameter)
was carried out by directional solidification using a modified
Bridgeman technique.

The results of the chemical analysis showed that there
were slightly different amounts of copper in the top and bot-

tom. The results of 10 tops and bottoms show

TOPS : 2.96%0.10 Wt $ Cu

BOTTOMS: 3.08+0.15 wt % Cu

From the analysis of back reflection Laue X-ray photo-
graphs taken from different placés on the top and bottom it

was confirmed that the rods were indeed single crystals.

. —

*The single crystals of Al-3% Cu alloy used in this work were
very kindly supplied by J. D.“Moan and the shortened descrip-
tion of single crystal preparation presented here is taken
from his Ph.D. thesis (McMaster University,-1977).

1
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2.b SPECIMEN PREPARATION

1 cm diameter crystals were spark-cut using a Servomet
Spark Cutting Machine with an orientation close to (100). The
spark-cut slices of about 0.3 mm thickness were carefully hand
ground on both sides to about 0.1 mm, using 600 grade paper.
Discs of 3 mm diameter were cut, wrapped in aluminum foil, and

heat treated..

2.c PRECIPITATION HEAT TREATMENT
All samples were solution treated at 530°C for at
least 24 hours, then water-quenched.
Immediately after the solution treatment samples were
aged at various temperatures and times;
- At 160°C, i:e. below 8" solvus line, up to 100 hours.
- At 240°C, i.e. above 6' solvus line up to 23 hours
(Some foils of the Al-3.6 % Cu polycrystal were
aged up to 500 hours.)
- Double'hea£ treatment: first step 240°C, 1 hour
second step 160°C, 23 hou;s
-~  Some of the foils were observed in the as-quenched ‘

state,

K

2,4 THIN FOIL PREPARATION : .
Discs were electrochemically thihned;by the double jet

technique (a Streuers' "tenupol") in a mixture of 33% nitric
.'!

acid, 67% methanol’at -30°C, at 12 v.

g
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Before thinning, discs were cleaned in the NaOH solu-
tion (20 gr NaOH+100<ﬂn3H20) at 70°C for very short time
(v 1 sec) to remove the stable oxide layer. After polishing
the foils were kept about 5 minutes in the cleaning solution

washed out in a methanol and dried.

2.e ELECTRON MICROSCOPY OPERATION

A Philips 300 electron microsdope operating at 100 KV
with a tiltable specimen holder was used in this study. The
magnification was calibrated from a series of photographs of

a carbon replica of a diffraction grating. The rotation was

59

determined as a function of magnification selecting using these

photographs and pairs of microscopy and diffraction photo-
graphs. Transmission electron micrographs were recorded along
with selected area diffraction patterns, in order to permit

deter%inatiop of the foil orientation as well as of the dif-

fraction conditions responsible for the contrast effects in

the micrographs. -Bright‘and dark fields using both matrix

" and pfecipitate reflections and weak beam techniques were

employed in this study.

2.f bPTICAL DIFFRACTION

Some of the eléctron miérographs were examined in the
optical diffractometer in order to study the periodic struc-
ture. The optical diffractometer ‘'used in this work is sche-
matically shown in F;g. 17. The technlques employed are

described in more detail by Horne and Markham (81)..



Fig. 17 Simple optical diffractometer. The diagram shows the
arrangement of the components used to construct a
simple optical diffractometer. A, laser; B, beam
expanding lens; D, pinhole; E, adjustable diaphragm;
F3, diffraction lens; G, electron micrograph; and
H, viewing screen or camera (81).
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CHAPTER 3

RESULTS AND DISCUSSION

3.a PROLOGUE

The aim of this work is the investigation of the role
of the elastic interaction energy of the plate shaped pre-
cipitate, causing tetragonal distortion, on their spatial
distribution, nucleation, growth and coarsening.

The theoretical and experimental results are presented
in three separate sections. First, the interaction energy
aLd stability parameters against coarsening for a simple
and symmetrical three dimensional array of plate shaped pre-
cipitateé are considered. The second section explores the
contribution of the elastic interaction on the initiation
and propagation of lineailarrays of plate shaped precipitates
and stabilization of such elastically locked arrays against

growth and coarsening. The third part considers driving

(chemical) and repulsive (interaction energy) forces acting

on the ledge interfaces of the plate-shaped precipitates during

their thickening. ' ,

3.1 ON THE STABILITY OF ARRAYS OF PRECIPITATES*
The purposes of this section are two: we will first

give_thé results of‘a”series of approximate numerical cal=

% g o '
The essential content of this seption has been published by
the author and Professoxs Purdy and Brown (82,83).
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culations of the interaction energy and mechanical stability
for a particularly simple and symmetric array of disc-shaped
precipitates, assuming that the elastic properties of the
matrix are isotropic. The array is of the form suggested by
Eurin ét al. (10). wWe will then give the results of a series
of approximate numerical calculations of the stability para-
meters against coarsening of the.above mentioned array, and
we will explore the general conditions for the stability of
an array against coarsening. This represents a refinement
of aﬁ earlier suggestion based on the same concepts (9).
3.1.1 ELASTIC PROPERTIES OF THREE-DIMENSIONAL ARRAYS OF

PLATE SHAPED PRECIPITATES
3.1.1.1 ELASTIC SELF ENERGY

This section deals with the strain fields of plate-like
precipitates (to be used in a subsequent calculation) ?nd in
the total self-energy of such inclusions.

As already mentioned (see section 1l.3) the strain field
of G.P. zone may be approximated by that of a prismatic dis-
}ocafion‘loop with Burgers vector proportional to the dif-
fereﬂce between the size of solute and solvent atoms. Krou-
pa (69) specialized a derivation due to Eshelby (4) for appli-
cation to the displacement field of an iﬁfinitesimal disloca-
tion loop. ‘

The stress tensor do,. at a point r; near an infinite-

J .
simal prismatic dislocation loop at the co-ordinate origin
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is given by eq. (61'). 1If the "infinitesimal" approximation
is a poor one, the strain field of large loop can often
satisfactorily be approximated by the superposition of the
strain fields of a regular planar array, or raft of such
infinitesimal loops. This improved approximation will be
used in subseguent pair and lattice energy calculations.
If a simple square plate-shaped precipitate

has misfit parameters that permit it to be treated, in ap-
proximation, as a dislocation loop with Burger's vector

of magnitude, b = €d, then the elastic self energy is,

~

_pelral o8 (67)
el T {1-V) ed

where & is the length and d is the thickness of the precipi-

tate (84). This model assumes that d/f is very small and

that almost all strain is located at the age of precipitate;.

the core cut-off radius has been taken equal to ed.

3.1.1.2 THE INTERACTION ENERGY
This term is specific to the type of arrangement of
precipitates actually formed, and it is therefore this term

which, "a priori" presents the greatest computational diffi-

culty.

One mﬁst first have some knowledge 6f the type of array

formed or some method of selecting arrays which are ener-

getically the most fqvourable.‘ We have used two approxima-

"tions; one being the "infinitesimal approximation® (section

63.
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1.4), and a second in which "large" precipitates aée modelled
as square rafts of such infinitesimal disturbances. The dis-
tinction between the results for "infinitesimal" and for
"large" inclusions allows cne to evaluate the adequacy of the
simple infinitesimal approximation.

The total energy of a pair of dislocation loops is the
self energy of each loop plus the interaction energy between
the two. The interaction energy may be defined as the ener-
gy required to create one loop in the ;tress field of the
other. For infinitesimal loops, it is given by eg. (64).

This expression has the virtue of simplicity. How-
ever, Brown et al. (9) and Khachaturyan and Shatalov (6) have
shown thgt the elastic interaction between pairs of "large"
precipitates can be quite different from those modelled as
infinitesimal centres of disturbance.

For the two precipitate interactions, the following
procedure was perforggd.

A plate, taken in approximation as a“dislocation loop,
was modelled as a square raft of ocne hundred small platelets.
After computing tﬂe iﬁteraction,energies amond all of the

platelets (using- the infinitesimal approximétion) the sum

of all these energies was taken to give the total interac-

‘tion energy between two precipitates. Taking p = x/L, and
A

f = V/nL3, the interaction- energy between two such hlarge"'

precipitates can be written in more general form as:



e e oy e mn e

i
+ =3 £(8) (68)

where r is the separation of the precipitates centres, L is
the nearest neighbour spacing, 4V is the volume of the infini-
tesimal plate-like precipitates, n = A-l is the number of

infinitesimal precipitates in the raft, p is the shear modulus,

65

¢ is the constrained elastic mismatch, f is the volume fraction

of precipitaté, and f(6) is a function of the mutual position
and the orientation of the precipitates in the space. The num-
ber n depends upon the type of array.

For a regular array of precipitates, the energy-separa-
tion relationships will be determined by a summation of all

two-précipitate interactions i.e.

1 N-1 N
E.. = I I E,. (69)

where N is the total number of precipitates being considered,
Eij is the interaction energy between i-th and j-th precipi-

tates as given by eq. (68).

3.1.1.3 THE ENERGETICS OF THE <1230> ARRAY .

In this section, the energy-separation relationship
for pair; of brécipitates, and the corresponding results for
a la;ge numbér of precipitates arranged in a <1230> array
(Fig. 18) are preéenéed; The ‘four digi£ notation for the geo-

metry of the:.arrays is that of-Eurin et al. (10). For the
S - ~
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Fig. 18

The <1230> array.

66



<1230> array, the number in equation (67) 1s—equal to 4/3.

We have chosen the long edge-length of the "large"
square plate precipitates as a convenient characteristic
unit with which to measure the interparticle spacing. . In
comparing the results for these "large" precipitates with
those for infinitesimal, or point precipitates, the interac-
tions of the latter are computed by collapsing all of the
elements of the square raft into a central point, and holding
"all other factors constant.

The interaction energies between two plates versus
the distance between them, when they are mutually parallel
(face-face and edge-edge configuration) and when they are
mutually perpendicular (edge-edge and edge~face configuration)
are shown in Figs. 19-22. This is compared with the interac-
tion of infinitesimal precipitates (broken lines).

It is clear that the interaction energy of two "large"
plates in the face-face configuration (Fig. 19) is much less
positive (repulqi@e) than the corresponding interaction ener-
gy of two infinitesimal precipitates. This stems from the
interaction of the elements far away from the centres of the
precipitates. For the same reason the interaction energies
of two "large" plates in both edge-edge configurations (Figs.-
20 and 21) are much more negative (attractive) than the cor-
responding energies of two infinites;mal precipitateg.

More significantly, the interaction of elements far
from the centres of precipitgtés leads to the minimum in the

interaction energy of two "large" precipitates when they are
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mutually perpendicular, in the edge-face configuration; Fig.
22 (again this 1s in contrast to the result using the infini-
tesimal approximation).

The total elastic interaction energy (per central
plate for the <1230> array in the "large" approximation)
versus the distance between neighbouring plates 1s shown in
Fig. 23. The calculation was performed using cut-off radii_
of 6.4, 7.5 and 10 units (i.&. no interactions beyond these
radii were included in the calculation). ©Note that there is
a minimum in these energy tCurves suggesting that short or
long range order may occu¥ for a near-neighbour spacing of
about 1.2 units. This is determined e.g. by combinations
of the potentials given in Figs. 19 and 22.

From an examination of Fig. 23 it is apparent that
the energies are similar and that the ;nergy minimum occurs
at approximately the same separation for each curve: Table 1
shows the total number of precipitates enclosed by sphere of
radius 6.4 to 10 units for near-neighbour separafions of 0.8,
1.0, 1.2, 1.6 and 2.0 units. In view of these results a
radius of 10 units is considered a reasonablé point at which
to begin using the infinitesimal, approximation in computing
the interaction energy for a large perfect array. The total
elastic energy per plate of the <1230> array was calculated

on this basis. It is shown plotted against, the number of
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The total elastic _energy of the <1230> array per
plate vs the distance between ,the plates enclosed

by the sphere of radius of 6.4, 7.5 and 10.0 times
the plate-length.
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TABLE 1

NUMBER OF PARTICLES

RADIUS TIMES DISTANCE (CENTRE TO CENTRE) TIMES THE PLATE

THE PLATE EDGE-LRNGTHS

EDGE~LENGTH 0.8 1.0-"- ' 1.2 1.6 2.0
6.4 1584 794 | 468 184 106
7.5 1294 766 328 186
10.0 . 3128 © 1848 950 388

precipitates (or the radius of tHe sphere which includes that
number of precipitates) in Fig. 24.

Fig. 24 shows that the elastic energy per plate reaches
a plateau and that, on further addition of precipitates to the
system, the energy changes are negligible. The greatest
contribution to the elastic eneigy of the array comes from the
nearest neighbours, as expected from the general form of the
potential: (oij = l/r3).

Fig. 25 represents the interaction of infinitesimal
plates in a <1230> array. As expected from the two-precipitate
interactions, Figs. 19-22, this array shows completely dif-
ferent characteristics, in particular, there is no energy

minimum for small separations.
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25

The total elastic energy per plate of the <1230>
array vs the distance between the plates (infini-
tesimal approximation). The energy was calculated
between the central plate and the plates enclosed
by the sphere of radius of 10.0 plate edge-lengths.



77

3.1.1.4 NUMERICAL TEST OF THE MECHANICAL STABILITY OF THE
<1230> ARRAY

In order to be sure that a periodic distribution of
inclusions 1s stable, it is necessary to study ghe changés
of the interaction energy of precipitates with respect to
displacement from the ideal lattice sites, (as might be ac~
complished by surface diffusion within one precipitate) and
with respect to volume exchange (as might be accomplished by
volume diffusion between precipitates). Here, we will consi-
der only mechanical stability (the second kind of displace-
ment will be considered in the section 3.1.2.1).

The interaction energy calculations were made for the
<1230> array (in the infinitesimal approximation) but with
the central plate's position altered a small amount, i.e,
subjected to displacement along the x, y and z axes and the
total elastic interaction energy calculated after each dis-
placement. The results for infinitesimal precipitates are
shown in Figs$. 26-28. From these, it was found that the in-
teraction energy increases with displacement along the x and
z axés but decreases with displacefient along the y axis.

When these calculations were carried out in the large
precipitate approximation however, the array was found to
be stable against displacements in all three directions, Fig.

29. Thus, the <1230> array is mechanically stable.
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The elastic ehergy change per plate of the <1230>

array in the iniinitesimal approximation as a func-
tion of the displacement of the central plate along
the x-direction (each division is 1/10 plate edge-
length) . The radius of the sphere is 10.0 times -the
plate edge-length and the distarnce between the par-
ticles (centre-centre) is 1.2 plate edge-~lengths.
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Fig. 27 The elastic energy change per plate of the <1230>

array in the infinitesimal approximation as a func-
tion of the displacement of the central plate along
the z-direction (each division is 1/10 plate edge-
length). The radius of the sphere is 10.0 times the
plate edge-length and the distance between the par-
ticles (centre-centre) is 1.2 plate edge-lengths.
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The elastic energy change per plate of the <1230>
array in the infinitesimal approximation as a func-
tion of the displacement of the central plate along
the y-direction (each Jdivision is 1/10 plate edge-
length) . The radius of the sphere is 10.0 times the
Plate edge-length and the distance is 10.0 times

the plate edge-length and the distance between the
Particles (centre-centre) is 1.2 plate edye-~lengths.
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Fig. 29 The elastic energy change per plate of the <1230>
array in the !'large precipitate' approximation as a
function of the displacement of the central plate
along the y-direction (each division is 1/10 plate
edge-length). The radius of the sphere is 7.5 times
the plate-length and the distance between he par-
ticles (centre-centre) is 1.2 plate edge-lengths.



3.1.1.5 EXPERIMENTAL RESULTS

In thlsﬁsection, some experimental results concer- -
ning the elastié\interaction of plate-like precipitates and
possible orderin& of the precipitates will be reported. The
Al-Cu system was chosen for two reasons; first, 0" and ¢'
produce tetragonal distortion which 1s requisite for strong
elastic interaction, and secondly the aluminum matraix in
this system is nearly 1sotropic as was assumed 1n the interac-
tion energy calculations.

Observations were made on specimens aged at 160°C,
i.e. below the 8" solvus for up to ~ 100 hours. Fig. 30
shows the microstructure of the specimens aged 6 hours at
160°C. This represents early stages of deveidpment, and its
main characteristic is the "tweed" micro structure. Par-.
ticles are not clearly seen, only the overall strain field.
Fig. 31 represents the microstructure of specimens aged 24
hours at 160°C. The micrograph is taken under such conditions
that only one of the {100} plates are visible. The particles
are now revealed (a'few hundred angstroms long), together with
the strain fields around them. The micrographs and corres-
ponding diffraction pattern shown in Fig. 32(a)-(b) represents
the microstructure of specimens aged 96 hours at 160°C. The
main characteristic of this micrograph is the very high strain
field with the wave—like tendency, which could be regarded as
a very coarse "tweed" structure. These coarse waves are the

result of the complex elastic interactions among the indivi-
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dual precipitates.

In order to get some evidence concerning long-range
orderang, optical diffraction patterns of the series of mi-
crographs of the type shown i1in Fig. 32 were recorded. Diffrac-
tion patterns were taken with the laser beam expanded to v 1
cm diameter, which allowed a large number of precipitates to
be analyzed. The real micCrographs were compared with models
having different degrees of ordering. The main characteris-
tic of these results, as shown in Fig. 33(a)-(b) 1s that there
15 some degree of ordering, but that the arrays are highl§
imperfect. Some of this apparent disorder could be attribu-
ted to imperfect imaging of the particles; many of them were
completely obscured by the strain fields of neighbouring pre-
cipitates.

Some of these micrographs were photographically en-
larged, Fig. 34(a)-(b) in order to study directly the precipi-
tate environs. The main feature is that the particles have
relative orientations of two types. One is the edge-face
orientation which is expected from the interaction potential
shown in Fig. 22, and the second one is the "parallel-step"
confiqguration (see Fig. 59(c)) -

Thus for this system, there is little evidence for
long—rénge ordering which would lead to stable three-dimensio-
nal arrays. ﬁowever, these observations clearly show that the
energetically favourable edge-edge face configuration is very

common, suggesting that a degree of short-range order exists.
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Optical diffraction patterns corresponding:
a) to the model lattices of different
degrees of ordering and b) to the series of
micrographs of the types shown in Fig. 32.
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Fig. 34

Bright field micrographs of Al-3% Cu crystal with
(001) orientation, solution-treated and aged 95
hours at 160°C. Both micrographs show that the
energetically favoured edge-face and "parallel
step" orientations are well represented, clearly
showing evidence of short-range ordering.

(a) 55000x; (b) 33000x.
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In the next section (section 3.2) we will show that the
"parallel step" configuration for small inclination angles
(see Fig. 60) is also very attractive and one of the dominant

factors 1n 6' nucleation.

3.1.1.6 DISCUSSION

The elastic interaction among large precipitates
causing tetragonal distortions is qualitatively and qﬁantl-
tatively distinguishable from that foi infinitesimal preci-
pitates. It is clear, Es shown 1in Figs, 19-22 that the
"infinitesimal" approxiﬁation 1s not adequate of an array
in the separation range eof greatest interest. The distinc-
tion is also clear from the energy-separation plots for pairs
of precipitat?s. Quite naturally, the arra§ characteristics
reflecf those of the dominant near-neighbour interaction; if
" a minimum appears in thé pair-interaction/separation relation,
we might expect thét‘an array will form which emphasizes that
nearsneighbourxr configuration.}mﬁaextent to yhichrthe energy/
separation characteristiés of the array match those of the
dominant near-neighbour pair is of interest. From a comparison
of Figs: 22 and 23, we sée that the minimum occurs at nearly

<
the same separation in both cases, suggesting that the main

+

characteristics of the full array, are dictated by those of
the pair.
It was shown that the <1230> array is mechanically

¥
stable since any displacgment.of the central precipitate in



either x(y) or z direction leads the system to a higher
energy state. The opposite result was obtained in the infini-
tesimal approximation. The reason for this lies in the energy-
separation curve which i1n the "infinitesimal" approximation
does not possess a minimum.

The present experimental results are not conclusive
but suggest that long-range ordering, 1f 1t exists in this
system, 1s highly imperfect. It should be noted that Boyad
and Nicholson (85,86) did not find kinetic evidence for 8"
stabilization. 1In the following sections we will show that
the requisaite for stability against coarsening is formation
of regular three-dimensional or linear arrays elastically sta-
bilized.

However, short-range ordering which emphasizes the at-
tractive pair-interactions (the edge-face and the inclined

face-face configuration) is very evident. 1Indeed, it is fos-

sible in Fig. 34(a)-(b) to find small clusters (a few particles)

ordered in the way predicted by the interaction energy calcu-

lations. The optical diffraction also indicates some measure

of periodicity. The wave-like strain field is evident through
all micrographs and it is clear that it is a result of strain

field interactions from the closely spaced particles. The

origin of those wave-like strain fields may therefore be in-

terpreted in the way described by Jack (35) (see section 1.5.d).

It should be mentioned that the analysis of the perio-
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dicity 1s a difficult problem because it requires very than
foils with uniform thickness and proper orientation. - Any
larger thickness leads to an effect related to overlapping
of the images from particles at different heights which
seriously complicates the image. The same 1s true for foal
(section) orientation relative to the symmetry planes of the
array. As already mentioned, the diffraction object 1s the
electron micrograph and not the specimen i1tself, and so even
1f the specimen itself is periodic, unless these features
are not resolved in the micrograph, the periodicity can not
be observed and analyzed by optical diffraction methods.
Nevertheless in this particular case, where the 6" phase has
rather small elastic mismatch, it is hard to expect long-range
ordering to a larger extent, in the nucleation and early
growth stage, under the very high chemical driving force.

A higher degree of ordering might be expected for sys-
tems with higher elastic mismatches and higher anisotropy as
is observed in many systems which produce tweed structure.

It is interesting to note that R. Cahn (87) has dis-
cussed the present work and its connection with the genesis
of a void lattice. 1In some metals, voids (formed after a
metal crystal is irradiated with neutrons or other more mas-
sive particles) arrange themselves in an orderly three-
dimensional array - a vdid\lattice. The voids are originally
formed in a random pattern, and a void lattice is formed only

later when a much higher radiation dose has been absorbed and

i g
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individual voids have grown to a sufficient size. Liou et
al. (88) pointed out that the formation of void lattice 1is
analogous to the alignment of precipitate plates on different
planes to form a preferred, stable array. 1In the case of
precipitate array, each precipitate plate creates an aniso-
tropic field; whereas 1n the case of voids, it is only the
anisotropy of the medium which allows a void lattice to form
at all.

Finally it should be mentioned that J. Cahn (89) poin-
ted out that the symmetry of the <1230> array is that of VBSl.

To see this clearly, the origin of the array shown in Fig.

11

3770

21 should be taken at

3.1.2 ELASTIC STABILIZATION OF THREE-DIMENSIONAL ARRAYS
AGAINST OSTWALD RIPENING

3.1.2.a INTRODUCTION R

There are several reported cases (90,91) where a
very fine dispersion of a coherent ordered precipitate re-
sists coarsening. This behaviour is shown for example in
alloys of iron containing 5 to 9 atomic percent aluminum in
which the ordered Fe3Al phase has precipitated. Warlimont
and Thomas (91) showed that the particle radius was less
than 100 R and there was a precipitate density of lO17 cm_3
for an alloy with 15 atomic percent aluminum whose microstruc-
ture did not -change detectably even after long annealing time.

Boyd and Nicholson (85,86) have measured coarsening

rates and particle-size distribution, in Al-Cu alloys, using



the Wagner-Lifshitz-Slyozov theory (92,93) modified for the
case of dasc-shaped particles. They have found that the
coarsening behaviour of 6" agrees guantitatively and guali-
tatively with the theory, but coarsening behaviour of 6'

1s anomalous.

Ham et al (94) reported on the solidification, ageing
behaviour and creep properties of the intermetallic compound
N13(A1,T1), strengthened by a bimodal distribution of vy
precipitates. They have found, when these alloys are soli-
dified rapidly under planar interface conditions to give a
uniformly supersaturated parent phase, and then aged, that no
correlation of y platelet length with ageing time exists
for the resulting unimodal dispersion of platelets. They
have presumed that the platelets give rise to tetragonal dis-
tortion and thét the array 1s stabilized by elastic interac-

tion.

3.1.2.1 CONDITIONS FOR STABILITY AGAINST OSTWALD RIPENING

To investigate the stability of a regqular array against
Ostwald ripening the variation of the elastic energy of a
perfect array with small volume exchanges between neighbouring
precipitates will be considéred. To facilitate the rather
detailed calculations of this section, it is assumed that
apart from simple rotations all precipitates have the same
environment.

T

in a general form as:

The total energy of one precipitate can be expressed
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El = ES + ElL (70)
where
Es - Eself * Esurface (71)
where Eself and Esurface are the strain and the surface ener-

gy of a disc-shaped precipitate, E 1s the elastic interac-

1L
tion energy between the precipitate (1) and the whole lattaice.
ES in eq. (70) 1s given for the eguilibrium shape, as a con-
sequence of the competition between the elastic and surface
energies.

It is-instructive to consider the interaction between
precipitate (1) and any other precipitate in the array; 1f

we label that precipitate (2), eq. (70) may be wraitten in a

slightly different form as:

El = BS + (ElL—Elz) + Elz . (72)

Similarly, for the other precipitate (2);

E, =E + (

2 s E By #E

E =k

12 7 1L (73)

2L

where E12 is the interaction energy of the pair. We will
next take évl from precipitate (1) and 6V2 from precipitate
(2); 1if le = —6V2, matter will be exchanged between pre-
cipitate (1) and (2).

Expanding El(vl) aboeut V. =V_ one gets:

1 0
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aEs 1 s
SE. = (—é—{,—) §v, + 2—( ) SV, 4+ -~

+

SV, + eees (74)

and a similar expression for 6E2, at V2 = vé.

The first condition for equilibrium 1is:

a(El+E2)

7 =0 . (75)

It must be remembered that the exchange of volume between
any two precipitates gives a general test of stability

against coarsening; so we may have

6\.71 = -6\72 = §V

Thus, for arrays in which ElL = E2L’

precipitates have equivalent environments,

i.e. arrays for which

BES BES
{[W]V - [W]V'} 8V +
O (o]
-(E,,~E,,) 9 (E,.-E
1L 12 1L 12
+ { [—=——1] - [—=——"1] 18V +
EAY v v v
(o] (0]
oE 3E
12 12
+ {[—=5—] - [—==] }sv=20. (76)
EAY v Vv Vl .

(o] (o]
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This 1s only true at VO = VO; all precipitates must there-

fore have equal size for equilibrium.
The second condition for a stable equilibrium 1is:

2

3% (E.+E.)
1 2. (77)
-
orxr
2 2 ] 2
9 Eg X 9 (fy7E D) LR o (78)
aVv BVZ avz—

We wi1ll now take Vl==V2:=VO, so that the condition for sta-

bility becomes

+ ) > 0 . (79)

It should be enphasized that this condition for stability in-
cludes volume exchange between any two precipitates in the
array. Thus equation (79) is a stability condition based on
the rational addition of an infinitesimal volume to one of the
precipitates, although the fulfillment of equation (79) guaran-
tees the stability of the array against the exchange of an
infinitesimal volume between any two precipitates of the array.
In equation (79), the elastic self energy, Eself'
which is a part of Es, is a constant for a given volume frac-
tion in the linear elastic approximation and does not depend
on the relative positions of t;; precipitates. The surface

energy, which is also a part of Es, will always promote coar-

sening, so stability can be achieved only by elastic interac-
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tions for which 3 ElL/SV2 is large and positaive.

3.1.1.2 ALGEBRAIC CONDITIONS FOR STABILITY

In order to establish the conditions of stable egul-

libraum 1n terms of the interfacial energy, elastic mismatch,

volume fraction and spatial configuration, 1t is necessary

to calculate or estimate the following guantities:

elastic self energy
interfacial energy
egullibrium shape

elastic interaction energy

Elastic self energy and elastic interaction energy are al-
ready discussed in the first part of this section (see
sections 3.1.1.2 through 3.1.1.5). We will here consider
interfacial energy, equilibrium ;hape and stability of the

<1230¥ array against coarsening, in turn.

3.1.2.2.a THE INTERFACIAL ENERGY

For a simple square plate-like precipitate the sur-

face enexrgy can then be written as:

.2
E . e, = 2277, + 42dy, (80)

where £ is the side-length and 4 is the thickness of the
\
precipitate, Y is the surface energy of the habit plane

interface, and ye‘is the edge surface energy.



3.1.2.2.b THE EQUILIBRIUM SHAPE
Accepting the dislocation loop model, and putting

the expressions for Eel(eq. {(67)) and ES {eg. (80)) ain

ur

eq. (71) 1t becomes

pe vV 8 2/3

! -2/3 2/3.1/3
E. = 7 STToT S zn(zg) + 2y£v S + 4YeV S (81)

where S = d/% 1s the aspect ratio and V = ﬁzd, 1s the volume
of the particle.

The elastic energy tends to "roll" the precipitates
into thin plates. However, the effect of the surface energy
1s to prevent this elongation of the second-phase particles.
The equilabrium shape can thus be obtained by minimizing BS,
eg. (8l), at constant volume, or Ezd = const.

Thus, we find

y
s=-t-g (82)
Te
where
1/3 2.5/3
_ WV 3e”S 8
B = 2n(€Se) (83)

Yo  3Z2(1-V)

is the correction term due to the elastic energy. The ef-
fect of the elastic energy is to reduce S, i.e. to act like
a decreased Ye-

For cases when the surface energy is large and the
misfit small, YeB/YQ is a small number and can be neglected;

one then obtains for the minimum Es
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1/3
. ey2/3 Ly a2
B # 8V " Yegr 7 Vegf T (vyore) ’ (84)
According to eguation (79), the quantity of importance
15 the second deraivative of ElL with respect to volume. It

1S convenient to define the dimensionless number K which 1s

a function only of volume fraction (f) and array-type (P).

2
;
\o d ElL

K({(f,P) = —% (— ) . (85)
ucz dgj— v
o)

Here, VO refers to the precipitate size corresponding to a

given volume fraction and spacing. From equation (84) one
gets
2
3 E
s _ _ 4 -4/3
‘ g;?— - 3 Yetf'o : (86)

With the help of equations (79), (85) and (86), 1t 1s now
possible to give an improved condition for the stability of
an array against coarsening

2 1/3
3 HE K(f,P)VO

> 1 . (87)
] Yeff

From these considerations it is clear that stability will be

promoted by:

- low interfacial energy,
- large elastically-accommodated misfit,

- large or optimal value of K(f,P)

¥
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3.1.2.3 NUMERICAL TEST OF THE STABILITY OF THE <1230~ ARRAY
AGAINST COARSENING

In section 3.1.1.5 1t was shown that the <1230 1s
mechanically stable, 1.e. with respect to displacement from
the 1deal lattice sites. Here, we are interested in the sta-
bility of a periodic distribution of inclusions with respect
to volume exchange, as might be accomplished by volume
diffusion, between precipitates.

The situation with regard to stability with respect
to volume exchange 1s somewhat more complex. Consider first
the interaction between a single pair of precipitates, El2'

Since E12 o VlVZ’ El2 1s stationary when vl=:v2, othem;cgn— -
ditions being equal. This means that the particles tend to
have the same dimensions if £12 1s negative. If the elast:ic
interaction is repulsive BlZ 1s positive, then the elastic
interaction will tend to promote the diffusional growth of

one precipitate at the éxpense of the other. The energy
change for small volume exchanges between members of an iso-
lated pair of precipitates for different distances between
them, in the face-face and edge-face configuration is shown in
Figs. 35 and 36. (The perturbations were carried out at fixed
aspect ratios.)

Fig. 35 shows that all volume exchanges decrease the
elastic interaction energy. This might be expected from

Fig. 19, which shows that E;o in the face-face configuration

is always positive. However, Fig. 36 shows that volume ex- ¢
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Fig. 35° The change of elastic energy due to volume exchange
between a pair of 'large' precipitates in the face-
face configuration. The distance between the pre-

cipitates is 2.6, 3.2 and 4.0 times the plate edge~

length. '
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The change of elastic energy due to volume ex-
changes between a pair of 'large’' precipitates in
the edge-face configuration. The distance between
the particles is 0.8, 1.0, 1.2 and 2.0 times the
plate edge-length.
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changes decrease the elastic interaction energy for small
separations, but increases 1t for larger separations. Again

this is consistent with Fig. 22, where E for the edge-

12
face pair changes sign with increasing separation.

Thus, the elastic interaction energy appears as a
factor which stabilizes equal dimensions of the particles in
a pair only if thas interaction is attractive. This point
has also been made by Khachaturyan and Shatalov (6).

From the above considerations it might then be con-
cluded that the <1230> lattice is stable with respect to
volume ‘transfer in the "attractive" direction but not in the
"repulsive" direction; this conclusion, however, would be
reached without considering the possible stabilizing in-
fluence of the lattice against volume transport in the latter
direction. 1In order to investigate the stability of the
unstable pair in the strain field of the lattice, the follo-
wing calculations were done:

The total interaction energiesgﬁer plate for equal

size precipitates surrounded by an interaction sphere of

radius of 7.5 units spaced at different distances were calcu-

lated; and the energies of the perfect lattice (AV=10)

were calculated and compared with those of the perturbed ones
with the same number and volume of precipitates.

The results of these calculations are shown in Fig. 37.

. Por interparticle spacing of 0.8 units or less, it is apparent

that volume transfer in the "repulsive" direction leads to
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The elastic energy change per plate of the <1230>
array due to volume exchanges between a pair of
'large' precipitates in the edge-face configuration
The distance between the first neighbours is 0.8,
1.6 and 2.0 plate edge-lengths. The radius of the
sphere is 6.4 times the plate edge-length. The
ordinate represents the even part of the variation
of Ejj, with V] and so clearly shows the positive
curvature and the array stability.
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an increase 1n the total energy of the lattice, in spite of
the strong positive interaction energy of closely spaced
pairs of precipitates i1in the edge-face configuration. On

the basis of this result 1t 1s concluded that the lattice has

a stabilizing effect with respect to this type of volume

o~

exchange.

Finally the behaviour of K(f,p) was investigated,
using essentially the methods of the previous section. The
resulting curve, which is specific to the <1230> array, is
shown in Fig. 38, It is particularly interesting to note
that K increases continuously (indicating increased stability
of the array of equal sized precipitates) as the interparticle
spacing is diminished, and that the behaviour of K with se-
paration does not reflect the minimum in the interaction
energy-separation curve (Fig. 23).
3.1.2.4 NUMERICAL TEST OF THE STABILITY OF ARRAYS OF

PRECIPITA’I:‘ES AGAINST CO~ORDINATED DIFFUSION

In a discussion of thé bublished fofm of the preceding
numerical results, Aubauer (95) claimed that co;ordinated
volume exchange between several precipitates in the array may
not lead to metastability. He made two poiﬁts: (i) although
consideration of energy changes caused by exchange of in-
finitesimal volume between any two precipitates in the array
demonstrates that the array is in some sense metastable, the

array may not be metastable against co-ordinated diffusion;
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in particular, Aubauer claimed that simultaneous exchange
between several precipitates as 1indicated in his Fig., 1 (see
the scheme in Fig. 40) results 1n a continuous lowering of
the energy so there is no metastability; and (11) Aubauer
pointed out (correctly) that the existence of metastability
1s no guarantee of the existence of a kinetic process which
leads to the formation of a regular array of precaipitates.
Regarding the first point, a co-ordinated diffusion
process which obviously leads to a continuous lowering of
the energy 1is the simultaneous growth of all precipitates
together with an 1ncrease in their separation to keep the
volume fraction constant, a process which produces a reduc-
tion in interfacial energy with no change in elastic energy.
This process of course involves an infinite number of pre-
cipitates in an infinite medium. However, Aubauer claimed
that co-ordinated processes involving a finite number of
precipitates also exist. The mathematics underlying this
claim is incomplete because Fhe interaction energy between
a precipitate and the rest of the array involves second-
order terms in AV not considered by Aubaueér—_in.particular,
the argument produced by Aubauer would suggest that exchange
between precipitates C3 and B4 alone would continuously lower
the energy; i.e. for these two, the interaction energy is
positive and both the interface and the elastic energy are

reduced by such an exchange. However, the calculations of
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the previous section show that the presence of the array sta-
bilizes these two precipitates; second-order terms enter
the calculation which are not present in the equations of
Aubauer. St}ll, as Aubauer suggested, the array may be
unstable to co-ordinated exchanges of volume between more
than two precipitates. This point was tested by using the
computer program to investigate exchange between infinite
lines of nearest-neighbour precipitates in the [010] direc-
tion. Some results of these calculations are shown in Fig.
39. The full line represents the change of elastic in-
teraction energy due to co-ordinated volume exchange between
nearest neighbour precipaitates in the [010] direction; cor-
responding to the <1230> array. The broken line represents
the volume exchange between the pair labelled as (2) and (5)
in Fig. 39. The cut-off radius was 7.5 times the plate
edge-length, which includes about 1000 particles, around
the pairs subjected to the simultaneous volume exchange. Fig.
37 clearly shows that the array is stable against this per-
turbation. ’

The specific exchange proposed by Aubauer, which in-
volves third nearest neighbours was also tested, and the

array again found to be stable, Fig. 40.
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39 The elastic energy change of the <1230> array due <
to co-ordinated volume exchanges among the nearest
neighbours in the [010] direction (full line). The
broken line represents the volume exchange between
the single pair lavelled (2) and (5). The distance
between the first neighbours is 1.5 plate edge-lengths,
and the cut-off radius of the sphere is 7.5 times
the plate edge-length. The ordinate represents the
even part of the variation of E with V and so clearly
shows the positive curvature out of the stability
of the array.
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The elastic energy change of the <1230> array due

to co-ordinated volume exchanges among the third
nearest neighbours in the [100] direction. The dis-
tance between the first neighbours is 1.5 plate
edge-lengths, and the cut-off-radius of the sphere
is 7.5 times the plate edge-length. The ordinate
represents the even part of the variation of E with
V and clearly shows the positive curvature and

the stability of the array.
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3.1.2.5 DISCUSSION

The qguestion of the stability of an array of pre-
cipitates against coarsening has rather far-reaching impli-
cations, both for the understanding of microstructure and as
a possible basis for the design of alloys. We will begin by
discussing those general factors that determine whether a
particular system 1s likely to show array-forming tendencies,
and whether such arrays are likely to be stable against
coarsening.

The kinetics of 1initial coarsening of precipitates un-
der conditions of strong elastic interaction will not be con-
sidered. It is assumed, rather, that the effects of elastic
interaction during nucleation and initial coarsening of pre-
cipitate groups will lead to the selection of a particular
type of array of equal-size inclusions, provided that the
elastic strain field, .volume fraction, and aspect ratio of
the included phases is such that the interaction energy of

the array is large and negative. (In the case of the <1230>

array, as already discussed, this means an overall composition

corresponding to a near-neighbour separation of about 1.2
precipitate diameters. Other arrays, which emphasize dif-
ferent kinds of near-neighbour interactions, may well be
stable at different volume fractions.) It is expected that

mechanical stability is also a prerequisite for the forma-

tion of an array.
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Once an array has been selected, 1ts stabilaty with
respect to coarsening must be considered in the light of the
types of constraints presumed present when the system 1s
perturbed. To illustrate this point, note tnat the total ener-
gy of an array of equal sized precipitates, as a function of
precipitate size, for given volume fraction, shows no indi-
cation of metastability. Such a plot simply reflects the
expected decrease of surface free energy and the constancy
of all volume free energy terms, 1.e. chemical and elastic
energy with increasing particle size. It 1s only when one
consxrders that no mechanism exaists for continuously i1ncreasing
the scale of the array that the need for a perturbation analy-
sis becomes evident, and a form of metastability 1s found.

So far, the only known process which does not show
metastability is the "infinite homogeneous coarsening process"
referred to above. Such a process seems to be physically
quite impossible; 1indeed any other co-ordinated diffusion in-
volving large numbers of precipitates must be extremely slow.
Such processes rely upon simultaneous fluctuations; let the
probability per second of one fluctuation occuring be v - a
small number. Then if N precipitates are involved in speci-
fied simultaneous fluctuations, the probability is vN, which
becomes vanishingly small for large N.

Similarly, it is found that stability against coar-
sening, as indexed by K(f,P), may exist for an array whose
total interaction energy is positive (e.g. the <1230> array

at small interparticle spacing). If such an array could be



formed, for example by manipulation of the temperature and
pressure during ageing, then the present analysis indicates
tnat it would indeed be metastable against coarsening. As
already discussed, the array characteristics reflect those
of the dominant near-neighbour relation, we might expett
tnat an array will form which emphasizes that near—neighbour
configuration.

From a comparison cf Figs. 22 and 23 wee see that the
minimum occurs at nearly the same separation in both cases,
suggesting that the main characteristics of the full array
are dictated by those of the pair. 1t 1is,however,in the
assessment of stability against coarsening that the charac-
teristics of the dominant pair and the full array are in
sharp contrast. This is shown in Figs. 35 and 37, where the
stabilizing effect of the array on a repulsive pair 1s evi-
dent. Similarly, a series of pair stability calculations
(Fig. 36) implied that the array should become unstable with
respect to volume transfer when the pair separation becomes
small; this was later refuted when the effect of the full
array on the perturbed pair was evaluated, (Fig. 38). 1t is
therefore clear that the important properties of a particular
type of array are accessible only through rather extensive cal-
culations; we believe that the level of approximation used in
the present calculations is adequate for the broad understan-
ding of the behaviour of these arrays.

For the <1230> array, taking an aspect ratio &/d=10,
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Fig. 38 shows that the quantity KD3 1s approximately constant

and equal to ZXlO»Z. Then the stability condition of equation

(87) becomes

ptzlf
Yeff

0.12 - 1 . (88)

This 1s to be compared with the crude estimate given by Brown
et al. (9); the more accurate estimate given here differs only
1n the numerical factor; 1t is 0.12 rather than 0.2 in the
earlier estimate. Many examples, 1ncluding "tweed" structures
in Cu-Be and 8' precipitates 1in Al-Cu have dispersions for
which equation (88) 1s satisfied, or nearly satisfied, and 1t
may be concluded that the array-forming tendencies of certain
plate-line inclusions have a profound influence on the develop-
ment and stability of microstructure. A recent study in steels
(35,77) shows that the effects are not confined to non-ferrous
alloys.

Finally, regarding the existence of a kinetic process
which leads to the formation of 5 regular array of precipi-
tates, there is of course no theoretical guarantee that kine-
tic routes exist which select a particular type of array. It
is assumed that in competitive growth favourably placed neigh-
bours prosper at the expense of unfavourébly placed ones, and

that this will lead to stable 'elastically-locked' arrays.
&

This remains to be proven; however, the experimental evidence
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strongly suggests that such arrays do form, particularly in
interstitial alloys or alloys with very large misfit where
"tweed" structures are a common observation. More experimen-
tal work on the kinetics of coarsening 1n these systems

wi1ll be of great interest.

3.2 AUTOCATALYTIC NUCLEATION AND ELASTIC STABILIZATION OF
LINEAR ARRAYS OF PLATE-SHAPED PRECIPITATES

3.2.a INTRODUCTION

Autocatalytic nucleation, the process whereby one pre-
cipitate of a daughter phase catalyses the formation of
another, 1s a well documented phenomenon in martensite trans-
formations; the concept has received less attention in dif-
fusional transformation systems, although the work of Lorimer
(96), and Aaronson (97) clearly deserves mention. Lorimer
conjectured that the strain field of the 6' phase in Al-Cu
alloys could cause the spreading of colonies by an autocata-
lytic process, in which successive new plates were nucleated
in the stress and diffusion fields of existing ones. Aaronson
found that proeutectoid ferrite sometimes forms on existing
ferrite crystals in steel and termed the effect "sympathetic
nucleation". 1Indeed, the phenomenon may be more widespread
that is commonly supposed: it is possible for example that
the "repeated subunit" morphology of Bainite colonies rests
on the autocatalytic nucleation of the individual units.

In this section the evidence for the autocatalytic
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process 1n Al-3.0 % Cu will be .examined and the stability against
growth of stacks of 8' precipitates assessed. The precipitate
grows as thin plates on {00l; planes in the aluminum rich (u)
matrix, so that (001)6‘ planes are parallel to {001; planes.

The equilibrium ratio 1is thought to be about 40 (98).

The misfit 1s such that the broad faces are completely
coherent at lower ageing temperatures, and may contain widely-
spaced misfit dislocations at higher ageing temperatures (98).

Aaronson and Laird (99) demonstrated that the strain
fields of the 8' plates are not entirely relieved when the
plates become incoherent. They showed that the diffraction
contrast is similar to that of a prismatic dislocation loop,
with Burgers vector parallel to the plate normal, b = n(OOl)e,.

It 1s clear however that a high elastic misfit obtains
at the nucleation stage so that 6' plate nucleates first on

!
dislocations,and,probably, in the stress fields of existing
‘plates. Headly and Hren (100) have recently shown that the
nucleation of 6' often occurs (during the guench from the
solution treatment temperature) on climbihg dislocations.

Lorimer (96) had earlier proposed that subsequent nu-
cleation and growth may occur in the autocatalytic fashion,
such that the new 6' particle may be nucleated, essentially
homogeneously, under the influence of the elastic stress-
field of the 6' particles already present. ~

The fact that quite a small stress field can have a

-
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large effect on 6' formation has been demonstrated by Nakada
et al. (101) and Hosford and Agrawal (102). Recently, Stobbs
and Purdy (103) observed that,in specimens aged above 6"
solvus line, the most striking feature, (for early stages /

of development) is the presence of inclined stacks of paréllel
' plates. They too suggested that after the heterogeneous
nucleation of one platelet, many others could be formed in
this'first precipitate'’'s enviroﬂment, by successive nucleation
and growth in their respective stress and diffusion fields.

In preceding sections it was proposed_(82) (see sec-
tions 3.1 to 3.1.5) that elastically stabilized three-dimen-
sional arrays can resist coarsening. Here the suggestion is
put forward that autocatalytic nucleation may develop precipi-
tate arrays of 1 and 2 dimensional character which may also
be resistant to growth and/or-coarsening.

This section is divided. into two parts: one treats
nucleation of stacks and their morphology and the second deals
with the stabilization against growth of precipitates within

the stacks,

3.2.1 NUCLEATION AND MORPHOLOGY OF STACKS

Observationé were made on specimens aged at 240°C, i.e.
above 6' solvus liine, so tﬂat 8' precipitates formed directly
f;om supersaturate 1lid solution. Samples were aged for
relatively short times so that the microstructure was in an

early stage of development.
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Figs. (41), 42(a)-(b) and 43(a)-(d) show characteris-
tic microstructures of the specimens aged 1 and 3 h at 240°C.
At this stage of the transformation, the microstructure con-
sists mainly of inclined stacks of parallel 6' plates, as
shown in Figs. (41) and 42(a)-(b) and of arrays containing
more than one variant, Fig. 43(a)-(d).

The microstructure is however very inhomogeneous; it
will be shown later that the regions between stacks are super-
saturated.

Fig. 41 represents a part of one "array" of the total
length more than 20 um, which is composed of many small paral-
lel stacks in which nearly all of the precipitates have the
same habit. Fig. 42(a)-(b) also represent inclined stacks
of parallel 8' plates, but here the stacks are longer and
substend a much smaller angle with {100} habit plane (see
also Fig. 44(c).

In contrast, the precipitates in Fig. 43(a)-(d) are
non-parallel, correéponding to two or three {100} variants.
The same is true of the stacks shown in Fig. 44(a)-(d) but
here we have different proportions of the respective habit
plane variants.

It is interesting to note that neighbouring precipitates
are oriented such that the edge of one often confronts the
face of the other (Figs 43 and 44). We will see later, that
this configuration is very stable. The 0' precipitates shown

in Figs. 41 and 42 are mainly in parallel orientation but in
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Fig. 41

77
o |

A

N -

Al-3% Cu crystal with (001) orientation, solution-
treated and aged 1 hour at 240°C. Bright field
conditions show inclined stacks of parallel ¢'
particles, containing only one {100} variant
(24750x) .



Fig. 42

v

Bright field micrographs of Al-3% Cu crystal
with (001) orientation, solution-treated and
aged 1 hour at 240°C, show inclined stacks of
parallel 8' particles. The inclination angle
with {100} habit plane is much smaller than
that of Fig. 41. (a) 53250x; (b) 33000 x.
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Fig. 43
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Al-3% Cu crystal with (00l) orientation, solution-
treated and aged 1-3 hours at 240°C. This series
of micrographs shows non-parallel stacks containing
more than one {001} wvarianty (a) and (b) contain
two {100} variants and (c¢) and (d) contain three
{100} variants. Note much smaller 6' particles
between larger 6' plates, and also larger 6' par-
ticles on the ends of the stacks.

(a) aged 3 hours, 12450x , (b) aged 1 hour; 25000x,
(c) aged 1 hour, 55000x , (d) aged 1 hour, 41250x.
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Fig. 44

A series of microg\ phs similar to Fig. 43

but with different proportions of the respec-
tive habit plane variants. Note, again, smaller
0' precipitates between larger 6' particles.

(a) aged 3 hours at 240°C; 41250x (b) aged 1
hour at 240°C; 14250x (c) aged 3 hours at 240°C;
65250x (d) aged 9 hours at 240°C; 41250x.
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such a way that they are displaced by a small amount with
respect to each other. This configuration ("parallel-step”)
is also energetically favoured.

The overall morphology of the 6' precipitates in the
early stage of their development is shown in Fig. 45(a)-(b).
It is seen that the main feature of these microstructures is
a large number of different stacks. However, all these stacks
are in energetically favoured orientations as will be shown
later. Some of the stacks were imaged in a dark field using
both matrix and precipitate reflections, Fig. 46(a)-(d).

Finally, in order to find out whether these stacks
are one or two-dimensional some of the observations were
made on the foils close to the <lll> section, Fig. 47. Re-~

sults of these examina;ions have shown that most of the stacks

were in fact linear arrays.

Occasionally a dislocation was seen to join some of
the larger precipitates. However, it must be noted that the
great majority of 0' precipitates examined, parEicularly the
smaller ones between these larger plates, were not sq connected.

These smaller 6' precipitates very often formed close
to the larger plates. This effect is particularly pronounced
in Figs. 43 and 44(d).

Since we were aware that nucleation on moving or static
dislocations occurs in this system a detailed search was made
for evidence that these stacks were somehow generally associa-
ted with dislocations. The weight §f evidence is tha£ they

. |
are not. This result is in accord with the conclusions of

N
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" Fig.

45
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e

Al-3% Cu crystal with (00l1) orientation, solution-
treated and aged 1 hour at 240°C. Bright field
micrographs show overall structure of 6' preci-
pitates in their relatively early stage of develop-
ment, Both micrographs contain different kinds

of stacks, already described in Figs. 43 and 44.

(a) high strain field around stacks is very visible.
(b) only particles are imaged by tilting the foil
from the Bragg condition (bright field weak beam
condition) .

(a) 15000x (b) 25000x.
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Fig. 46

Al-3% Cu crystal with (001l) orientation solution-
treated and aged 1 hour at 240°C. The series of
micrographs show stacks in dark field. (a) and

(b) stacks imaged in dark field using matrix re-
flections, show strain field around particles;

Note also the stack in (a) imaged by differential
absorption. (¢) and (d) show stacks in dark field
using precipitate reflections. .

(a) 42000x , (b) 14250x ; (c) 33000x (d) 14250x,
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Al-3% Cu crystal, solution-treated. and aged 1 hour
at 240°C. BrigRt field micrograph showing sgtacks

in the foil of approximately (lll) orientation.
(28000x) .
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Stobbs and Purdy (103),

Some of the foils were observed in the as-quenched state.
Results of these observations are shown in Fig. 4§(a)—(b).

The main feature of these microstructures is a very small frac-
tion of defects. As can be seen there are small clusters which
could not be resolved. These (and % few dislocations) may serve
as a place for heterogeneous nucleation of the first 6' par-
ticléﬁ from which new particles can s£art spreading in pre-
férred orientations, directions and spacings. It should be
noted that dislocations loops or helical dislocations were
not observed .in these samples.

A number of stacks were imaged in different operating
reflections and these generally proved to be free of disloca-
tions. (It is assumed here that an energetical;y favourable
interaction would tend to keep the dislocation pinhed to the
stacks, so that they could be readily detected after specimen
preparation). This suggests therefore, that upon the hetero-
geneous nucleation of at least one’platelet,imany others are
formed, by successive nucleation and growth in their respective
stress and diffusion fields. This type of array was observed
and interpreted in much the same way by Lorimer (96) and by
Stobbs and Purdy (103).

Oneg set of the specimens was plastically deformed du-
ring cutting. The characteristic structure of these speciﬁens
is shown in Fig. 49. The microstructure is quite different

from the stacks described in Figs. 41 through 47, and is very
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Fig. 48

Solution-treated and water-guenched Al-3% Cu
crystal with (00l) orientation. (a) dark field

micrograph shows punching of dislocation loops

from an inclusion (14250x). (b) Bright field
micrograph shows the matrix with only a few
defects; small defects could not be resolved
(53250x).
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. Fig. 49 -~ Al-3% Cu crystal with (001) orientation, plastical-
: ly deformed during cutting, solution treated and
aged 1 hour at 240°cC. Dark field micrograph shows
- repeated nucleation on moving dislocation; note
L . the leading dislocation (42500x) ,
.- _ . .
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similar to the colonies of 6' precipitates thought to be
formed by repeated precipitation on climbing dislocations, as
described by Headley and Hren (100). The leading disloca-
tion is clearly visible. |

Some observapions were made on épecimens aged 15 min
at 240°C. These are shown in Fig. 50(a)-(f).

Fig. 50 represents possible spreading of the 6' pre-
cipitates from the cluster on the top. The very small 6
particlé at (A) has presumably formed at the edge of the last
Yarge particile.

Besides the common morphology Eig. 50 (b) and (c)
show small "clusters” of'only a few particles. Similar ef-
fects are shown in Fig. 50(e)-(f), where the small 8' par-
ticles are very close to the larger 6' plates.

. In some foils aged 1 h at 240°C clusters of a few par-
ticles in the eﬁergetically favoured, edge-faée orientation
are;observed, Fig. 51(a)-(b).

To check on the solute.aistributioﬁ in the matrix,
double hea£ treatments were carried out. The first step was
thé(same as above, i.e. specimens were aged lh at 240°C in,
order to obtain stacks, and subsequently aged 23 h.at 160°C
(below the 6" solvus - llne)

- "Results of observations of‘these aonble-agéd specimens
are shown in fig. 52(a)-(b) .- Here the éolute fields around

the oriqinal 8!’ partiplés are well defined .by eﬁ precipitates.
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Fig.

50

Al-3% Cu crystal with (001) orientation; solution-
treated and aged 15 minutes at 240°C. This series
of bright field micrographs shows small clusters
of only a few particles, all in energetically fa-
vourable orientations. Note possible spreading

of 6' precipitates from the cluster on the top (a)

- and small particles very close to the large ones

(c) and (d). Two particles, large and small, in
very favourable orientation (face-face and edge-~
face) are seen in (e) and (f). Also note in (c)
and (d) how the strain fleld can obscure visibility

. of small particles.

(a) 27500x , (b) 43500x , (c) 27500x , (d) 27500x%,
(e) 79500x, (£f) 894500x,
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Fig. 51

¥

.Bright field micrographs of Al-2% Cu crystal

with (001) orientation, solution-treated and
aged 1 hour at 240°C, show clusters of a few
particles in the energetically favoured, edge-
face orientation. Note how diffusion and strain
interaction fields have influenced the particle
shape. . )

(a) 16000x, (b) 16000x.
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; Fig. 52 Al-3% Cu crystal with (001) orientation, solution-

i treated and double-aged (1 hour at 240°C and 23

: hours at 160°C) to show the solute fields around
the original 6' particles by well defined 8" .

| precipitates.

b (a) 53250x, (b) 31500x.

-



i
NS
‘
4
4
]

Fig. 52 (a)

L ]

1]



L7

A

O 000N

52 (b)

Fig.




as

To summarize the observatiqns of the general micro-
structure; it has been demonstrated that stack formation is a
feature of initial nucleation and growth.

Stacks appear to result from the competition between
growth of existing plates and nucleation of new 6' precipi-
tates in the stress and diffusion fields of these neighbours.
The stack morphology is not generally related to dislocations.

Finally, it should be mentioned that a series of "in

situ" ageing experiments were conducted in the electron micro-

scope, with the objective of seeing the nucleation of the
new particles in the vicinity of stacks in the way described
above. ‘These experiments failed because of very easy nuclea-
tion of the equilibrium 8 phase on the free surfaces, and the
very fasf loss of coherency of the existing precipitates,

Fig. 53.

"3.2.1.b NUCLEATION OF 6°'

In solid-solid transformations the total energy change

accompanying the formation of a new phase, may be expressed

7

>

AG = ;—AAGv +' By + Ce + Eint‘ (89)

where A, B and C are shape constants, AGv is a volume free
energy term, and y is a surface energy. ' The third‘téfm of

' J -
eq. (B89) represents the strain field of the nucleus, and the -
fourth term, Eint
energy between the strain field of the nucleus and any other

takes into account the elastic interaction

elastic strain field in the system.
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Al-3% Cu crystal with (001)

orientation,

0SUm

solution-

treated, ayged 15 minutes at 240°C followed by 1n

si1tu hot stage ageiny at 240-300°C,
field micrograph shows a dislocation network on the

semicoherent ' particles

(42000~) ,

Matrix dark-
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The nucleation process in this-system does not admit a
simple description in terms of classical nucleation theory,
This 1s essentially because the concept of monomer addition
to a critical-size cluster whose properties are similar to
the fully developed precipitate 1s 1nappropr1até to the semi-
coherent misfitting disc (103). Here we will concern our-
selves only with the relative effects of elastic interaction
on nucleation.

It is assumed that the interactlon térm will dictate
the favourable site for nucleation.

In oraer to determine the effect of elastic interaction
on nucleation we have calculated the elastic interactions be-
tween precipitates of different size, orientation and sepa-
ration as descriped in section 3.1.2.d.

Similar calculations have also been performed to de-
términe stack stability against growth.
3.2.1.c NUMERICAL ESTIMATIONS OF THE ELASTIC INTERACTION

ENERGY

Thé pair interactions between "large" equal size
plates versus the distance between them, when they are mutual-
ly parallel and co-axial (face-face configuration), and when
they are mutually perpendicular (edgé—face configuragion)
are shown in Figs. 54 and 55.

It is clear that the interaction energy depends on
the separation and orientation of the particles:. Fig. 54 shows

that the face-face configuration is unfavourable because the

interaction is repulsive for any separation distance.
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The edge-face configurgtion (Fig. 55) is attractave,
and'gﬁ;"minimum'in the interaction energy curve at tke 1.2
plate length distance suggests a likely place for the nuclea-
tion of the new paxticle in the stress field of the pre-
existing particle.' Results of calculations in which particles
are moved from their minimum (Fig. 55) and maximum (Fig. 54)
energy pdsitions are shown in Figs. 56 and 57.

It is apparent (Fig. 56)  that the configuration and
separation corresponding to the minimum in the potential
curve shown in Fig. 55 is very stable; any shift from the
minimum energy position (keeping the ‘centre-to-centre dis-
tance constant) results in a significant restoring force.

Fig. 57 indicates that translation (parallel to the
plate plane) of one of a pair of particles initially in the

“high energy face-facé configuration quickly brings it into
a minimum energy position. (A similar result is obtained for
the edge-face confiquration, Fig. 58).
This effect is more pronounced when.the separation
between particles becomes smaller. -

From the results shown in Figs. 54 through 57 it is
of interest to speculate concerning possible linear configura-
tions of precipitates, fgrmed by chain autocatalysis and
assuming that the driving férce for homogeneous nucleation
is of the proper magnitude that the elastic introduction be-

comes important.

Some hypothetical configurations are shown schematically
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Interaction energy of two equal size square-shaped
particles when they are mutually perpendicular
(edge-edge configuration) as a function of trans-
lation along the y-axis.
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in Fig. 59(a)-(e). According to the potentials shown in
Figs. 54 to 57 it is clear that the confiquration shown in
Fig. 59(a) is very unlikely (all interactions are repulsive)
and that configuration in Fig. 59(b) is somewhat more

stable. Near neighbour\}nteraction between precipitates (1)

—

and precipitates (2) are ,attractive, as well as interactions
between second neighbour precipitates (l1). These attractive
interactions must be balanced against repulsive interactions
between precipitates of orientation (2).

More stable configuratlons are depicted in Figs.

59(c) and (d). From the potentials shown in Figs. 10-12 it is
again clear that both first and second neighbour interaction
enexrgy are negative,

To obtain a more quantitative insight into the ener-.
gies of linear arrays of equal-size precipitates shown in
Fig. 59(a)-(e), their interaction energies (per central plate)
were computed.

Fig. 60 shows the potential of arrays of parallel
precipitates as a function of their separation (centre-to-
centre) and the inclination angle (y) between centres of
precipitates. The hypothetical stack shown in Fig. 59(a)
is represented by the angley = 90°; the stack (c¢) by the
Yy = 16° and the array (e) by the ¢ = 0°.

According to the potentials shown in Fig. 60, it is
clear that the potential depends strongly on separation of

precipitates in the stacks, and on their inclination; it
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59 Schematic representation of some linear arrays.
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Fig. 60
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1 1 i 1

0 1.0 2.0 30 - 40 5.0

The total elastic interaction energy of the linear
array of equal size parallel particles (per central
plate) as a function of the inclination angle and
distance between the plates. The enexrgy was calcu-
lated between the central plate and 9 particles

Ty B ~the z . 5.
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tions between equal-size particles. Experimentally, smaller

128

goes from repulsive (¢ = 90°) for any separation to attrac-
tive (¢ = 0°), for any separation. The most important result
was obtained for angles about 20°; in these cases potentials
possess a minimum for very small separations, indicating that
the hypothetical array shown in Fig. 59(c) is energetically
stable. 1In fact, this type of array was often observed. Note
that the very attractive array (¢ = 0°) has not been observed
experimentally (nor has the configuration shown in Fig. 59(b)).
This suggests that the nucleation event was somehow prevented.
This point will be diééussed }ater (see Figs. 67 and 68) when
1t will be shown that nucleation energetics will promote the
development of arrays of the type shown in Fig. 59(c).

The interaction energy of the hypbthetical linear
array given in Fig. 59(d) 1s shown in Fig. 61. The potential
possesses a minimum for a separation of about 1.5 plate lengths,
and the inclination angle y = 45°, Again, the interaction
energy depénds strongly on separation. This type of array was
also found in the present observations.

A similar potential (per pair of precipitates) is shown
in Fig. 62. This correspondé to the array of Fig. 59(b).
Here, the minimum is less pronounced and appears at a larger
separation.

So far this discussion has been concerned with interac-
8' precipitates were often observed between large ones, (which

again do not appear to be connected with dislocations). It
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Fig. 61 The total elastic interaction energy of the linear
array of equal size particles ( per central plate)
vs distance between the plates. The array is mage up
of parallel plates ( the incination angle Y = 45~ )
and of perpendicular particles ( edge-face configuration).'’
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Fig. 62 The total elastic interaction energy of the linear
axray of equal size particles ( per pair of central
pre01pltates) vs the distance betweén the plates.
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7
has been suggeséed (103) that these smaller precipitates are
formed in the stress field of those already present. For
application to the nucleation event the elastic interaction
between large<and small particles was calculated using the
methods discussed pr;;16hsey.

The interaction energy between large and small preci-
fitates (the size‘ratio in all calculations was 1/10) versus
sebéragion is shown in Fig. 63 for the edge-face configuration.
Compaf;ng this result with the potential given in Fig. 55 it
can be seen that the minimum in the curve is shifted towards
the edge of the largé particle. This éonfiguration is very
often observed experimentally. The stability of the confi-
guration which corresponds to the minimum in the potential
curve given in Fig. 63 can be further assessed from Fig. 64,
where the small parficle has been displaced in the z direc-
tion. Any displacement of the small particle along the z
éxis increases the energy sharply until, for a value of Az
about 0.6 times the length of the small particle, the interac-
ti&ﬁ becomes repuls%ye. |

Another interesting result is obtained for the face-
face configuration. When the small particle is coaxial with
the larger particle (Fig. 65) the interaction is repulsive,
for any separation (see Figq. 54) . ‘Moving the small particle
in the y direction causes the potential monotonically to in-
crease until abéut‘o.gs times the larger barticle length.

“

At that point it begins to increase sharply, réaéﬁing a maximum



132

"uot3leaedss JO uoTiIOoUNI ' SE

*(0T/1T Sem SUOTIETNOTED JIeTTWTIS TP pur STY3 UT OT3ex 22TS IYJ)

(uotgzeanbrjuoo soejy-sbpa) Jernoipusdaad

ATTenanu oxe Kaysz uaym satoTixed prews pue abxey usemisq Abasus uor3zoeasajul

a
Sl 74! 0l SL0 G0
T 1 1 T
- X -
£ X
X
- J - -
. N, 9l
- lml
X
ll\\l\\\\\\\\\\.X\\\\\\\
| X " 10
8

€9

22 N1
ol x 3

*bta




133

e '
\/ »
I T T
\ 16 .
K r
) {
8 -
/
X
. O .
'O |~
| w
tv:f
UI ]
8- . -
16| . . :
24 . -
| kj 1
0. 0.04 0.08 - 012
D

Fig. 64 The change of elastic interaction energy (for a pair
initially at the minimum in' the potential curve of
Fig. 63) as a function of the displacement of the
small particle along the z-axis.
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Fig. 65 The change of elastic interaction energy between large
and small particles when they are mutually parallel
(face-face configuration) as a function of the dis-
placement of the small particle along the y-axis\
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at the edge of the large particle. Further displacement
causes a very sharp drop in the potential, bringing the par-
ticle into a stable position. (A similar interaction poten-
tial is obtaineq between an edge dislocation and a praismatic
dislocation loop).

Returning now to the problem of strain induced nuclea-
tion, it is clear from the potential shown in Fig. 65 that
the most likely place for the nucleation of the new particle
is near the edge of an existing large one. Keeping this in
miﬂd, it 1s not difficult to imagine the autocat;lytlc for-
mation of inclined stacks of parallel plates. A similar, but
less pronounced effect i1is obtained far the edge-face configura-
tion, Fig. 66L

As already mentioned, the hypothetical array shown in

Fig. 59(e) of equal-size particles is attractive (see Fig. 60;

————

¢y = 0°), but was not observed exp8riméntally. In order to {
determine the favourable nucleation siée, interactions be-
tween large and small particles in the configuration which
would lead to the array shown in Fig. 59 were evaluated. The
potential is shown in Fig. 67 which clearly shows that it is
attractive for any separation.
The stability of the configuration which corresponds
to the minimum in the potential curve given in Fig. 67, was
then tested by moving the small particle in the z-direction,
(Fig. 68) . Displacement of the small particle along the z-

axis decreases the energy further, indicating that the array
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Fig. 67 Interaction energy between larce and small particles
when they are mutually parallel (face-face configura-
tion; inclination angle y = 0°) as a function of
separation,
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of Fig. 59(e) will not be developed during nucleation. (A
similar argument can be made for the array of 59(b)).

In all the above calculations‘a constant mismatch was
assumed for all particles. Stobbs and Purdy (103) have
recently shown that the misfit of semicoherent discs is not
necessarily constant during particle thickening but 1s subject
to periodic variation in magnitude and sign even before
accommodation of the residual misfit of the thicker plates
by the nucleation or capture of dislocations. Allowing the
misfit to change sign and magnitude, it would be not diffi-
cult again to imagine asignificant,but more complex, elastic
interaction during nucleation. However, from Fig. 65, the

favourable site for strain induced nucleation of small par-

ticles is roughly independent of the sign of the misfit.

3.2.2 THE STABILITY AGAINST GROWTH OF ‘PARTICLES IN STACKS
3.2.2.a RESULTS
Observations were made on specimens aged at 240°C up
to 23 h so that the 6' microstruc£ure was well into the
growth stage: Figs. 69 and 70 represent stacks at an early
stage of development. These stacksihave the same chagacteris—
tics discussed earlier in section 3.2.1. Again, it should be
recalled égat the matrix around the stacks is supersaturated.
After hold%ng the samples for 9 hours at 240°C, evi-
dence for an impediment to growth (lengthening) was obtained,

e.g. Fig. 71; the 8' particles in the stacks are much smal-
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Fig. 69. Al-3% Cu crystal with (001) orientation, g%lution-
treated and cged 1 hour at 240°C. Bright field
nicrograph shows stock éovelopment in relatively

carly stags. Noto suporsaturated matrix around the
stack (53250x).,
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Fig. 70

Al-3% Cu crystal with (001l) orientation, solutio
treated and aged 3 hours at 240°C. Brignht field
micrograph shows development of new 6' particles
in the stack and around the stack (41250x).
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Fig. 71

Al-3% Cu crystal with (00l) orientation, solution-
treated and aged 9 hours at 240°C. The 6' par-

ticles are much smaller than the 6' plates in the
surrounding matrix. Particles on the ends of the

stack are much lenger than those within. the stack
(53250x) , QQ\\
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ler than the particles in the surrounding matrix.

From the results given earlier above it is obvious that
the stacks formed first; they must therefore be somehow
stabilized against growth. It should also be noted that the
0' particles at the ends of the stack are much longer than
those wighin the stack.

Similar results were obtained after 23 hours at 240°C,
Fi1g. 72. Here, both stable configurations discussed 1in

section 3.2.1 are present, and again it is seen that the 6°'

140
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particles within the arrays do not appear to have grown. This
again suggests that the stacks are elastically-locked and
stabilized against growth in much the same way as proposed
in section 3.1.4 for the three-dimensional case.

To summarize these observations of stack stability, it
has been demonstrated that particles in the stacks may
resist growthl In the first part we have shown £hat the stacks
are very probably formed in an autocatalytic fashion. These
arrays appear to be stable against growth even in the presence

of high chemical driving force.
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Fig. 72

Al-3% Cu crystal with (001) orientation, solution
treated and aged 23 hours at 240°C. Bright field
micrograph shows the stack possible elastically
stabilizzd against growth. Note much longer 6°'

particles in the surrounding matrix (18750x).
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3.2.2.b NUMERiCAL ESTIMATIONS OF STABILITY

To show how the elastically-locked stacks may be
stable against growth, the interaction energy was calculated
for certain model arrays (Fig. 59(c)-(d)), for the case where
a particle in the middle of the stack is allowed to grow
(lengthen) into the matrix.

The results of these calculations are given in Figs.
73, 74 and 75, for several stable inclined arrays of paral-
lel 6' plates.

The central particle was allowed to increase 1ts length
in one direction (Fig. 73) and in both directions (Fig. 74).
The result in both cases is similar: The elastic interaction
energy increases sharply as soon as the growing particle
starts to overlap its first neighbours. This is consistent
with the potential shown in Fig. 57. This result also shows
clearly that stability is controlled in the main by interac-
tions with first neighbours. -

Fig. 75 represents stability calculations for the array
of minimum energy (Fig. 60, ¢ = 16°). It shows that the
elastic interaction energy increases much more sharply co&l
pared with the less stable arrays of Figs. 73 and 74.

The other kind of stable stack (Fig. 59(d)) shows
similar behaviour (Fig. 76).

The observation that the last particles in the stacks

are much longer than the particles within the stacks suggests

that these larger particles were free to grow.
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length) due to lengthening of the central plate into
the matrix. The rest of the particles in the array
have equal dimensions. The central particle was
allowed to jincrease to length in one direction as
indicated by the arrow.
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The change of elastic interaction energy of the linear
array of parallel particles (inclination angle,

Y = 45°, the vertical separation is 1.2 times the
plate length) due to lengthening of the central par-
ticle into matrix. The central particle was allowed
to iAcrease its length in two directions.
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Fig. 75 The change of elastic interaction energy of the linear
array of parallel particles(inclination angle ¢ =16°,
vertical separation 0.3 times the plate length) due
to lengthening of the central plate. The central
plate was allowed to increase its length in one direc-
tion only.
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The change of elastic interaction energy of the linear
array due to lengthening of the central plate into the
matrix. The central plate was allowed to increase its
length in one direction. The array is formed from
parallel plates (face-face configuration, ¢ = 45°,
vertical separation 1.2 times the plate length) and
perpendicular plates (edge-ffice configuration with

the centre-to-centre distance 1.2 times the plate length.
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To check this, the last particle in the model stack
was allowed to grow; Fig. 77. This calculation shows that
the poténtlal decreases sharply Jath particle growth, sugges-
ting that once the stack development stopped, the particles
at the ends were not constrained and were therefore free to
grow. It is thus demonstrated that the stacks are stable
against growth.

These calculations are for growth into a supersatura-
ted matrix. The possibility that the particles are prevented
from growing by local solute depletion was not considered;
clearly, however, this is a viable alternative explanation or
an additional reason for the observed stability against
growth; in many éases the plates could well have stopped be-
cause of overlap of solute fields from neighbouring precipitates.

The stabi1lity of the elastically stable stacks
against coarsening has also been examined, by choosing the
array of the equal size parallel precipitates with the lowest
éhergy (Fig. 60; ¥ = 16°) and allowing volume exchange be-
tween the first neighbours in the centre of the stack.

The result of this calculation is given in Fig. 78 and

clearly shows that the stack is also stable against coarsening.
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The change of elastic interaction energy of the linear
array of parallel particles (face-face configuration,
¢ = 45°, vertical separation 1.2 plate lengths) due

to lengthening of the last particle in the array. The
particle was allowed to.grow in one direction.
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linear array of the parallel particles (face-face

configuration, ¢ = 16°, vertical separation 0.3
times the plate length) due to volume exchanges

between the central plate and its first neighbour.
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3.2.3 DISCUSSION

These observations demonstrate that the formation of
stacks of 8' precipitates 1s a prominent feature in the early
stave of ¢' microstructural development. Certainly, as al-
ready discussed, dislocations occasionally play a role 1in
1n1t1a§1ng Oor even in propagating linear chains. However,
the weight of the present evidence 1s that t¢' strain fields
are effective in nucleating subseguent o' partlcles\and that
1t 1s this autocatalytic effect which 1s dominant i1n micro-
structural development under the conditions employed here.

Thus 1t 1s suggested that the first-formed precipi-
tates were nucleated heterogeneously (perhaps on gquenched-in
defects) and that the nucleation of the subsequent precipi-
tates generally occurred in the strain fields of their pre-
decessors.

Nakada et al. (101) and Hosford and Agaxwal (102)
have demonstrated that even a very small applied stress
during ageing has a large effect on the stability of certain
precipitates. 6' 1s particularly susceptible to this influence.

The present observations and analysis indicate that
the energetics of fully developed one-dimensional arrays is
a good preliminary guide for their prediction. However, a
more detailed analysis, involving relative sizes more typical
of the nucleation stage, is required to distinguish the more

probable arrays.
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r'rom these considerations of elastic interaction 1t
1s clear that the elastic-interaction cnergy depends strongly
on the relative positions of the precipitates. Provading
that the drivaing force for overall homogenecus nucleation is
small, the role of elastic i1nteractions must predominate in
controlling the 6' morphology 1in 1its early stage.

Some preliminary evidence for the elastic stabiliza-
tion of particles within stacks has also been obtained. The
§' particles in the stacks resist growth, and 1t 1s shown
tnat this is consistent with the stagl 1ty analyses. One
can further distinguish between configuyations which are stable
against all modes of lengthening (eg. Fig. 69), and those
which are unstable with respect to synchronous lengthening
(eg. Fig. 72). Again, the present experimental evidence sug-
gests that synchronous growth of parallel plates does not
occur to any appreciable extent.

It is probable that plates within a linear chain will
generally be stabilized with respect to coarsening. These
preliminary inve;tigations have failed to disclose any speci-
fic coarsening modes that lead to instability.

It is concluded that elastic interaction among preci-
pitates plays a determining role in the formation and stabili-
zation of one-dimensional arrays of precipitates; the evalua-
tion of microstructure in this system is evidently hetero-

geneous and critically dependent on local interactions.
' oo

4
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3.3 THE ELASTIC INTERACTION OF THE LEDGES ON PLATE-SHAPED
PRECIPITATES

3.3.a INTRODUCTION

It has long been recognized that one of the principal
mechanisms for interface motion during growth and dissolution
processes 1nvolves the lateral movement of steps along an
interface (104-114).

In particular cases where the precipitate and matraix
crystal structures are related by a plane strain transformation,
the structure of these ledges 1s simple and the precipitate can
grow or shraink by the movement of glissile transfarmation dis-
locations (115). For more complex crystal structures,the
ledges will probably not be glissile and may be several atom
planes high.

Laird and Aaronson (116) observed ledge migration during
the dissolution of 8' plates in an aluminum-copper alloy and
deduced that the ledges were approximately 20 g high., Elec-
tron diffraction contrast from ledges at the 1nterfaces of
faceted 0' precipitates has been described by Weathexly and
Sargent (72) (see section 1.5.b). A detailed study of the
image enables the sense of the ledge to be determined; i.e.
whether it is in fact a growth or dissolution ledge, and an
approximate determination of the ledge height to be made. Re-
cently, Stobbs and Purdy (103) reported that elastic misfit

associated with 6' particles and ledges is not constant during

IR e
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initial particle thickening but 1s subject to periodic varia-
tions in magnitude and sign. Weatherly (117) and Sankarn and ;
Laird (118) have discussed the origin of steps on ', It seems
that they are often nucleated "homogeneously" as pill-boxes
during initial growth and form readily and heterogeneously -at
prec1p1£age intersections, which become numerous during pro-

i

longeg/edgrsenlng, as well as at the edues of precipitates which
are/élssolv1ng.

As described in ref. (72) Qhen a matrix reflection lying
1in the plane of the plate 1s excited in the transmission elec-
tron micrograph, a weak double image 1s observed with a line of
no cohtrast running perpendicular to 5 {see section l;S.b;

Fig. 12(d)). This contrast 1s typical of prismatic dislocation
loops when g-b = 0, and the contrast arises from the secondary
displacements around the loops (71). The strain field of the

precipitates 1s thus expected to be very similar to those of

prismatic dislocation loops.

3.3.1 THERMAL NUCLEATION OF GROWTH LEDGES

Consider the nucleation of simple square plate-like ledge
of length £ and thickness d at a planar precipitate-matrix
interface, of the same shape. The energy change accompanying the

formation of this ledge is,

_ .2
AG = % dAGv + 4£dye + Eself + Eint‘ (90)

where AGv is the driving force per unit volume for formation of
AN

4
\
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the new new phase, Y, 1S the edge surface energy. The third
term, Eself’ represents the strain field of the nucleus, and
the last term, E.,t takes into account the elastic interac-
tion energy between the strain field of the nucleus aﬁd any
other elastic strain field i1n the system. This term will dic-
tate the elastically favourable site for nuc}eatlon.

In order to evaluate the magnitudes of forces acting
on the steps, the chemical driving force and the elastic in-
teraction force must be evaluated separately.
3.3.2 THE STRAIN FIELD OF PLATE-LIKE PRECIPITATES AND STEPS

AT THE INTERPHASE INTERFACES

The strain field of a G.P. zone and a sessile ledge (if

the length 1s much greater than the thickness) approximated

by that of a prismagic dislocation loop of Burger's vector,

b = ¢d, 1s discussed in detail in section 1.3 for an infinitesi-
. \

mal dislocation loop. for a large loop the strain field can
often satisfactorily be approximated by the superposition of
the strain fields of a regular planar array, or raft of such
infinitesimal loops (82) (see sections 3.1.2.a. and 3.1.2.d.).

~

3.3.3' THE ELASTIC INTERACTION ENERGY

The elastic interaction energy between the ledges and the
edge of the precipitate as well as among the ledges was cal-
culated in the way described in section 3.1.2.d.

Assuminé that th\ stress field around plate-like preci-

pltates and ledges can\ be approxlmated as that of a prismatic

dislocation loop, the elastic interaction of a ledge with the

) l’_«',( -t
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plate (or that between ledges) reduces to that between two

parallel and concentric prismatic loops.

3.3.4 NUMERICAL ESTIMATION OF THE ELASTIC INTERACTION ENERGY

In order to calculate the most favourable place for homo-
geneous nucleation of the ledges (from the point of view of
elastic interaction) we have calculated this interaction be-
tween a plate-like precipitate and a small ledge (1/10 the
size) for different p;sitions of the ledge on the surface of
the precipitate. The interaction obtained by moving the ledge
from the centre of the plate to the edge of the precipitate
in the x(y) direction are shown in Fig. 79*. When the ledge
is located in the centre of the précipitate, the interaction
energy is repulsive, as expected, for any ledge height. Dis-
placing the small ledge from the centre of the precipitate,
causes the potential to grow linearly until the ledge displa-
cement is about 1/3 of the precipitate diameter at which point
it begins to increase more sharply, reaéhing a maximum at the
precipi£ate edge.

It is thus clear that the centre of the precipitate is
the most favourable place for the homébeneous nucleation of
the growth ledges. However, as in the evaporation of crys-
tals, the edge of a precipitate should be the favouréd site

for dissolution. (There is no nucleation barrier to overcome.)

’r
b

x .
A simrilar result was obtained by moving the ledge in the
[110] direction. ;

<
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Assuming that the ledge is "homogeneously" nucleated
at the centre of the precipitate, we have calculated the in-
teraction energy between the precipitate and the ledge, which
is allowed to grow. Results of these calculations are plotted
in Fig. 80, which demonstrates that the interaction energy
becomes more and more repulsive as the size of the ledge is
increased. This becomes most pronounced when the ledge size
approaches the precipitate size. It is thus clear that the
strain field associated with the edges of the precipitate
exerts a rep&lsive force on the moving ledge interfaces. This

+

repulsive force, has been evaluated from Fig. 80 as

Fint’
AE/A%. The interaction energy shown in Fig. 80 was calculated
assuming the following parameters; vppt==1000x1000x20 g;
€=0.005 (103); p = BXlOll dynes/cm2 and the ledge of the same
thickness and mismatch. As expected, the same result is ob-
tained for interaction energies between the ledges with the
same parameters.

Provided that the driving force is af the same order of
magnitude, it is clear that this repulsive force can produce
pile~ups of the ledges, in analogy with the dislocation case,
as long as the total force is positive.

This total force is defined as the sum of the driving

force, Fchem’ and the repulsive force, Fint'
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3.3.5 THE CHEMICAL DRIVING FORCE

To derive an expression for the driving force actaing
on the step, we should examine the free-energy change in the
way described by Hillert (119).

By assuming ideal or dilute solution behaviour, Hillert
obtained a simplified formula for the total driving force for

the complete reaction:

2
AGtotal - RT (Ce-Co) (91)
\Y 2C
m o

where Ce 1s the equilibrium interface composition, CO is the
composition of supersaturated matrix, Vm is the molar volume
of the precipitate, and RT has its usual meaning.

The total free energy available in a transformation
cannot, in general, be used to overcome the pressure difference
at the curved surface but some free energy will be used to
overcome friction and some free energy will be needed for
diffusion.

Hence, of the total driving force, or potential for trans-
formation, as indicated by AG (or the corresponding AC), some
fraction is available to act directly at interface. 1If
we call this, ACr, the remainder, ACdiff may be considered
to be used in providing a concentration gradient for the dif-
fusional supply of solute. The corresponding free energy

change AGdiff 1s given by,

2
RT (Ci—CO)

- 5 (52)
m

AGdiff
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where Cl 1s the actual 1nter§§ce concentration.

FFor the cases of the interface at rest and the slowly
movaing interface, chemical equilibraium 1s established locally,
with c&rrespondlng concentration profiles in the matrix. The
formation of concentration profiles 1n the matrix ahead of an
advancing interface give rise to diffusion. The magnitude
(height) of the concentration profiles should then be indepen-
dent of the growth rate as long as there is a localr*equilibrium
established at the interface. The free energy change in the
case when the local equilibrium is established at the interface
will give no force on the interface.

Consider now a disc-shaped precipitate of some radius
rys whose lengthening is controlled by volume diffusion, i.e.
chemical equilibrium is established at the interface with a cor-
responding concentration profile in the matrix. The disc will
grow with a certain rate Vl' which depends on the disc's ra-
dius. The plane coherent faces of the disc are assumed immobile
in the absence of a ledge. Assuming that there is no chemical
interaction between the ledge and precipitate, the same diffusion
field will exist in the front of a ledge. Coﬁsequently the
ledge of the same shape, but smaller radius, Iys will grow
fgster with velocity V2, other conditions being equal.

(k; Because of the existing strain fields and corresponding
retarding forces the ledge will not grow with its independent

velocity V2, but with constrained velocity Vl' This constrained
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velocity will give rise to a departure from local equilibrium
at the moving interface. The difference between the new inter-
face concentrataion, Ci' and concentration, Ce’ dlctéted by

the local equilibrium, will result i1n a chemical force acting
on the interface.

To evaluate the constrained concentration, Cl, at the
ledge 1nterface, we have to find the relationship between the
velocity and the disc radius, under the condition that the
sink is localized at the disc perimeter, i.e. thickening i1s not
allowed. Ham (120) has pointed out that, to the extent that
a steady state is established in the diffusion of atoms to a
sink region, the diffusion equation may be approximated by
Laplace's equation. Thus the profile( and hence the flux of
atoms to the precipitate, is obtained from whatever solution of
Laplace's equation, satisfies the appropriate boundary condi-
tions. An alternative statement of this observation, borrowed
from electrostatics, is that the effective radius of any geo-
metry of localized sink is equal to the electrostatic capacity
of a conducting body having the same dimensioﬁs as the sink.
The effective sink riﬁius (the precipitation flux) may there-
fore be found from tables of capacitances. Consider a disc-
shaped precipitate, whose thickness, d, does not change with
time. Only the radius is modified by absorption and, since
the active sing is then localized at the perimeter, we may

represent the sink geometry by a torus of ﬁpproximate radius
T
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d/2 and of principal radius r equal to the disc radius.

OI

The capacity of such a torus is approximately (121).

X
i 2 .2
i (4ro—d )

¢ = tn(ler_/d) -

(93)

The descraption of prec1p1tatlon from a dilute assemb-

ly to a central sink, assumlng”tﬁat the boundary conditions

C=0 holds at .the sink surface and C(w)==Co, is therefore con-

tained in the equations ,
———

5

3 3n(4r2—d2) D C
C e] (o]
3T = - Y (94)
2R ln(lGrO/d) )
and
dr 3
- _ 4 RO 3ac
2'"1' a —EE- = -—T 3t (95)

where Q@ is the atomic volume and R is the distance from the

. ac -
sink wherg IR T 0.

With the above condition that Vl==V2, we are now able

to find the relationship between concentrations and disc radii,
2. %

d) rl

dz ;- G 09

_2)

r d Qn(16r2/d2) (4r

2 2
°© - ry d Qn(lGrl/dlS

NNP—‘N

1 (4r

COl is dictated by the 6" precipitates homogeneously
nuc}eated in the matrix, and according to the phase diagram (58)

is taken as 0.010 at 160°C.
1 T2
The difference between C, and Co gives the constrained
r r
concentration Ci2 at the ledge interface. These Ci2 concentra-

tions were used in the eq. (92) to calculate the driving force
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acting on the moving ledge interface. Results of calculations
of the actual (constrained) concentration at the ledge, show
that the chemical force 1s much higher than the elastic retar-
ding force, unless the thickness of the ledge 1is half that of
the initial precipitate.

However, ledges of the same thickness have the same capa-
city, and under that condition i1t 1s possible to get proper con-
centrations, sz (and corresponding concentrations, Ciz, at

the ledge interface of radius, r for significant ledge

2)
interactions.

It should be mentioned that capillarity was not taken
into aécount in these calculations; its effect is thought to
be minimal, as discussed next.

The equilibrium shape of a disc-like precipitate is dic-
tated by surface anisotropy (neglecting strain energy) and can
be obtained by the Wulff construction (122), which requires
that the radius of the perpendicular distances from the centre
of a crystal to its various facets be equal to the ratios of
tneir interfacial energies.,

A homogeneously formed disc-like particle has energy
cusp facet at the habit plane, Fig. 81. This gives a much
larger radius of curvature, r, of tpe disc edges than that
given by r=d (where d is the thickness of the plate), as
used by Aaronson and Laird for calculation of diffusional
lengthening of 6' (123). Accordingly, we expect that the
capillarity effect is rather small and have neglected it

in our calculations of equilibrium concentration at the ledge
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Fig. 81 The Gibbs-Wulff construction of the ' precipitate

ledge interfaces, given by eq. (96).

As already mentioned, Stobbs and Purdy (103) noted that
the nucleation process in this system can not, be described by
the concept of monomer addition to critical size clusters
whose properties are simitar to the fully developed precipitate.
Admitting that the thickening of the 6' particle takes place
by nucleation of the ledges whose thickness is an integral
number of half 6' unit cells, Stobbs and Purdy (103) have shown
that the misfit of the 8' particle is subject to periodic
variation in magnitude and in sign. The estimated misfits,
and the corresponding elastic self energies (see appendix I),
obtained by matching integral number of half 6' unit cells and
matrix unit cells are shown in Table 2 (the estimated misfits
are also shown in Fig. 82). The chemical free energy (see

appendix 1I), available for nucleation is given in the same

table.
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Table 2

-

Chemical | Number | Ledge Number | Height Mismatch Elastic
Free of 0' | Height | of o of hl~h2 Self
Energy unit hl Unit Matching =% Energy,
ergs/cm Cells Cells Matraix 2 3
h, < 100, ¢ | ergs/em
1.5 8.7 2 8.08 +7.67 | 3.35%10°
2.0 11.6 3 12.12 - 4.29 1.05%109
23.0-10°| 2.5 | 14.5 4 16.16 ~10.27
3.0 17.4 4+ | 16.10 ¢ 7.67
3.5 20.3 5 20.20 + 0.49 l.43><107

The free energy (in arbitrary units) versus the size of
the nucleus expressed i1n terms of number of the 6' unit cell
(n) 1s schematically preserted in Fig. 83,

The curves are not continuous because thicknesses dif-
terent from integral values of n are not allowed.

From table 2, 1t can be seen that the ledges of 8.7 and
1l.6 R height have very large elastic self energies, which are
comparable with the chemical driving force. This suggests that
the nucleation of these ledges has small probability unless a
complementary lattice strain exists to help them. However, the
ledge of 20.3 g height has negligible strain energy compared
to the chemical free energy. This size was observed by Weather-
ly and Sargent (72) and by Laird and Aaronson (116) in coarse-
ning studies. Taking the equilibrium aspect ratio as 1/20 it is
seen that a nucleus of this thickness would have length 400 ;,

Such a large nucleus is considered unlikely. The details of the
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° ,* x—volume energy term
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Fig. 83 The free energy change as a function of the nucleus size
expressed in terms of integral number of half 6' unit
cells.
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transition to the lo& energy state are thus not clear at pre-
sent. One possibility 1s the formation of a nucleus via elas-
tic interaction of G.P. zones, allowing at the same time a
chemical ordering which results in the 9' nucleus. Seatz and
Defontaine (57) have recently shown that a minimum in the elas-
tic energy four atomic planes from an existing G.P. zone en-
hance the formation of another G.P. zone. This may lead to
formation of the 8' precapitate.

Using high resolution electron microscopy, Phillips (52)
has observed two or more parallel G.P. zones separated by one
to three htomic spacings.

If we have two ledges, of equal thickness and of the same
sign which are repulsive (Fig. 79), the first ledge will exert
retarding force on the growing second ledge forcing it to grow

with the constrained velocity, V,. . /

{ = \-/

This constained velocity, as already mentioned, will give
rise to the departure from the local equilibrium at the moving

interface. Results of these calculations are shown in Table 3
r g
for given conditions: COl = 0.010, ry 1= 40 R, d2 =

o
40 A, T = 413°K and Vm“= 10 cm3/gr-mole, where ry is the radius

of the first ledge and dl is the thickness of the torus, whose

= 1000 &, 4

thickness is twice of the ledge thickness (rl and d1 were kept
constant) ; r, and d2 are the radius and corresponding thickness

of the second ledge.
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Table 3
r ; Cr2 % F ><10—6 dynes
27 i’ chem Y
100 0.003717 - 8.716
200 0.002651 ~13.245
300 - 0.001993 ~15.505
400 0.001520 -16.183
500 0.001152 -15.628
600 0.000849 -14.053
700 0.000593 -11.607
800 0.000371 - 8.397
900 0.000175 - 4.506
[}
- The results of the total force (F +F. .) acting on
. chem ~“int

the ledge interfaces versus the ledge size are shown in Fig.

84 shows that the total force in the beginning dic-
tated by the drivihg force, is more and more negative. This

is in agreement with fig. 80, where the slope of the interaction
potential curve is very small up to d.; times the preéipitate
length, and wiFh the fact that the driving force is also much
larger for smaller radii (Table 3). With furtﬁer ledge growth
the curve reaches its maximum negative value, when the repul-
sive force comes into play, causing the atta;nmgnt of an equili-
brium position (F

total
the precipitate length. -
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=0) at the €ige length of about 0.9 times .
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Fig. 84 The total force acting on the interface of the growing
ledge as a function of the ledge size.
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3.3.6 EXPERIMENTAL OBSERVATIONS

Observations were made on specimens aged above and
below 6" solvus line. Fig. 85(a)-{(c) shows microstructures
characteristic of specimens aged 5 hours at 240°C; 1.e. above
the 6" solvus line, so that 6' precipitates formed directly
from supersaturated solid solution.

At this stage of the transformation, the microstructure
consists of a number of different ledge morphologies, mainly
heterogeneous nucleated in the ways described by Weatherly
(117) and Sankarn and Laird (118). The main characteristic
of these microstructures is a very complicated ledge morphology
which precludes the direct study of ledge interaction. Comp-
lications come from at least two sources; the very high driving
force accompanying growth and heterogeneous nucleation of the
ledges at points of precipitate impingement. BAlthough these
microstructures are complex, it is often possible to discern
cases where ledges on the upper and lower surfaces of the pre-
;ipitate (distinguished by contrast reversal (72); see section
1.5.6) appear to interact (see the arrowed region in Figs.
85(a) and (b)).

Fig. 86 shows microstructure of the specimen aged 1
hour at 240°C. The main characteristic of this mocrostructure
is a high density of the equally spaced 1ledges. This suggests
that the nucleation and growth of these ledges was completely

controlled by the very high chemical driving force.
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Fig.

85

Al-3% Cu crystal with (001) orientation,
solution-treated and aged 5 hours at 2400cC.
This series of dark field micrographs show
very complex ledfjes morphology of the
particles. At arrowed regions in (a) and
(b) it appears that the ledges on upper
and lower surface interact. Heterogeneous
nucleation of the ledges at points of
precipitate impingement is evident in (c).
(a) 87000x ; (b) 62500x ; (c) 42000x.
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86

Al-3%* crystal with (111) orientation, solutlon-treated
and aged 1 hour at 240°C. park field condition shows
high density of equally spaced growth ledges (71000x),
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Figs.87 (a)-(b) are microstructure of specimens aged
92 hours at 160°C; i.e. below the 8" solvus line, so that the
driving force for 8' growth is considerably reduced, because
of the presence of homogeneously dispersed 6" precipitates. The
main feature of these microstructures is the facetted nature
of the ledges at 6' which show approximately the same symmetry
as the peripheral interfaces of the 8' plates.

At coherent or semicoherent interfaces significant
variations of ledge velocity with orientation may occur, due
either to anisotropic diffusion rates or to variations in kink
density. A series of ledge ("homogeneously" nucleated) sprea-
ding from the centre of the plate was frequently observed, sug-
gesting that the centre is indeed a favourable place for nuclea-
tion of growth ledges.

Some of the experiments were done in the microscope, but
because of the easy nucleation of 8 on the free surfaces, these
experiments failed. Fig. 88 shows high density of dissolution
ledges which move synchronously,‘and which were easily nucleated
on the plate edges. .

Finally, some of the foils were aged 30 minutes at 390°C,
Fig. 89. The main characteristic of these microstructures is
the heterogeneous nucleation of the equilibrium 6 phase on the
6'1}nterfaces. Dissolution ledges are clearly seen on the 6’
interfaces (they are clearly distinguished from the interface dis-

locations on the semicoherent %' interfaces shown in Fig. 53).

H]



Fig.

87

Al-3% Cu crystal with (001) orientation,
solution-treated and aged 92 hours at 1600C.
This series of dark field (weak beam)
micrographs shows very regular shapes of 6
particles and ledges. Ledges are nucleated
as pill-boxes in the middle of the plates.

In many cases it seems that the edges clearly
lead the ledges.

(a) 55000x; (b) 42000x.
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Fig. 87 (a)
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Fig. 88 Al-3% Cu Crystal with (001) orientation, solution-
treated and in situ aged at 240-300°C. Bright field
micrograph shows high density of equally spaced
dissolution ledges (11250x) .,
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Fig. B89 Al-3% Cu crystal with (001l) orientation, solution-
treated and aged 30 minutes at 3909C. Heterogeneous
nucleation of the equilibrium o phase on the #'
interfaces. Dissolution ledges on the o' 1interfaces
are clearly seen (11250-).
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3.3.7 DISCUSSION

From the present consideration of‘elastic interaction
energy it is demonstrated that strain energy exerts retarding
force on the interface of the moving ledge. ' This retarding
force may have, under certain conditions, strong effect on
the ledges morphology.

In the case that the two ledges have equal thickness,
the elastic interaction energy may cause departure from the lo-
cal equilibrium at the moviﬁg interface, and generate driving
force. Thus when the driving and retarding forces are compa-
tible the ledge growth may be stabilized by the elastic in-
teraction energy.

As already meﬁtioned the elastic interaction energy may .
dictate the elastically favourable site for nucleation. This
term becomes important when there is no possibility of hetero-

geneous nucleation, and the new ledge must be formed as a

" pill-box on an otherwise perfect interface.

Exgerimental xesults show that the ledges morphology
is determined in a complex way by competition between nucleation
and growth. Two types of experiments were conducted in order
to see the effeot of elastic‘interaction energys, one type of
éxpériment was' done undér lower chemical driving forces and
the other under higher chemical driving forces.

When the dfiving force for 6' growth is considerably

reduced, because of the presence of homogeneously dispersed 6"

-

4

precipitates, the §°' particies have nearly ideal shapes. The
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shape of the ledgeg is also very regular with approximately the
same symmetry as the peripheral interfaces of the 68' plates.
For these low driving forces where the 6' particles

are isolated, nucleation of the ledges may be controlled by
the elastic interaction energy. It is demonstrated that under
these conditions pill box nucleation is very common. New ledges
are very often (if not always) in the middle of the plate, as
would be expected from the interaction enexrgy for nucleation of
the growth ledges. In this case nucleation will occur when
the plate is large enough that the repulsive interaction ener-
gy is diminished (see Fig. 79). (This is in contrast to the
case of dissolution ledges which are nucleated at the plate edges).

' The calculations of the total force suggest that if the
initial plate thickness is 20 ; and the ledge thickness is also
20 i, there will be no significant intéraction between them and
the edge will run away; this situation seems to be observed,
e.g. Figure 87. However, a more quantitative study is required.

Fig. 87 (a)-{(b) shows pronounced edge facetting, sugges-

ting that particle and ledge growth‘was not completely controlled
by volume difffusion. However, it is probable that the assump-
tion that lengthening is controlled By volume is valid as a

first approximation.

Finally, it shoﬁld be pointed out that in the case of low

chemical driving forces, the elastic interaction is comparable

with these forces; there is therefore an oppertunity for a complete

and quantitative ‘experimental study of ledge interactions.
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SUMMARY

1. It was shown that the elastic interaction energy of the
plate shaped precipitates, each causing tetragonal distortion,
depends strongly on mutual orientation and separation, and that
it can be minimized by the distribution of the precipitates in

a regular three-dimensional array. The elastic interaction
among large precipitates is qualitatively and‘quantitatively
distinguishable from that for infinitesimal precipitates, This
difference stems from the interaction of elements far from the
centres of precipitates. This "peripheral" interaction causes

a minimum in the interaction energy when two precipitates are
mutually perpendicular, while in the parallel configuration

it leads to a considerable decrease of the interaction energy
(otherwise positive). The appearance of the minimum on the po-
tential for large precipitate leads to the mechanical stability
of the <1230> array. Opposite results were obtained in the
"infinitesimal" approximation. The optimum separation of square-

L
shaped precipitate is seen to occur at separation (centre to

centre) of about 1.2 times the edge length. |
Experimental results obtained in the 6" range show
strong evidence of short-range ordering which emphasizes the
edge-face configuration and face-face configuration with very
low inclination angles and sm@lllseparation distances. Both

1

configurations are attractive. The wave-like strain field is
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evident through all microstructures which is a result of
complex strain field interactions from the closely spaced par-
ticles. Experimental results concerning long-range ordering

in this system are not conclusive, even though along some

lines in the microstructures, it is possible to see a tendency
to long-range ordering with a preponderance of the edge-face
orientagion.

2. The investigation of the stability against volume per-
turbation of a single pair of precipitates show that the edge-
face c9nttguration is stable while the face-face configuration
is an unstable one. The reason for this lies in the fact that
the edge~face configuration is atrractive,whil§ the face-face
configuration %s repulsive. Thus, the elastic interaction ener-
gy appears as a factor which stabilizes equal dimensiens of

the particles in a pair only if this interaction is attractive.
The investigations of the variation of the total elastic energy
of the <1230> array caused by volume exchange between the un-
stable pair shows that the lattice has a stabilizing effect.
The array therefore possesses a minimum in the elastic interac-

tion energy when all precipitates have the same dimensions. The

" investigation of the stability of the <1230> array against

co-ordinated diffusion between.nearest neighbour precipitates
shows that the array is stable against such perturbation. A
similar result is obtained for volume exchange which involves

third nearest neighbours.
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General and algebraic conditions for stability against
coarsening were developed which showed that stability will be
promoted by: low interfacial energy, large elastically-
accommodated misfit and large or optimal value of K(f,p)

(the second derivat%gg/gf the elastic interaction energy with

‘/J

respect to volume fraétion, f, and array - type,p).
3. Experimental observations show that the formation of
stacks of 6' precipitates is a prominant feature in the early
stage of 6' microstructure development. Elastic energy calcu-
lations for some hypothetical stacks show that the stack's
morphology depends strongly on elastic interactions; their de-
velopment can be explained in terms of minimization of the
elastic interaction energy during nucleation. Only stacks with
attractive interaction energy were 5bser;ed experimentally.
Thege stacks are based on the edge-face configuration and the
face-face configuration with low inclination angles, (v20°)
and small separations, both attractive.

The weight of the pfesent evidence is that 6' strain fields
are effective in nucleating subsequent 8' particles and that
it is this autocatalytic effect which is dominant in microstruc-
tural development under the conditions employed here.

Some evidence for elastic stabilization of particles
within stacks was also obtained.
4. Experimental results concerning ledge interaction give

:

some evidence of the elastic interaction among ledges on the 6'

precipitates. Development of the ledges morphology on the 8'
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precipitates is complicated by high chemical driving force

and due to precipitate impingement. Although these microstruc-
tures are complex it is often possible to discern cases where
ledges on the upper and lower surface of the precipitates appear
to interact. Development of the ledge morphology at low dri-
ving forces.is more regular. Very frequently, a series of
ledges ("homogeneously" nucleated) were observed spreading

from the centre of the plate. The developed structures of

the ledges are probably controlled by the elastic interaction
energy either through nucleation or during growth.

In the absence of the heterogeneous nucleation, new,
ledges are nucleated "homogeneously" as pill boxes and the elas-
tic energy calculations show that the nucleation event can be
influenced by the elastic interactions.

Considerations of the chemical driving force and the
retarding force (interaction energy) acting on the ledge inter-
face suggest that under some conditions the ledge separation

during growth may be' stabilized by the elastic interaction ener-

gy .



APPENDIX I

THE ELASTIC SELF ENERGY

Eshelby (4) has obtained a general solution for the
elastic state of an ellipsoidal inclusion and the matrix,
when the inclusion within an isotropic elastic solid under-
goes a change of shape and size, which would be homogeneous,
but for the constraint imposed by the matrix. Because of the
presence of the matrix, internal stresses exist both inside
and outside the inclusion. Following Eshelby, the total
strain energy in the matrix and inclusion is given by:

I T

- _ 1
dv = 5 oijeijdv (1)

el

rof 1~

total volume

where oij is the stress in the inclusion, and VI is the volume
of the inclusion, and the summation of repeated indices is

implied.

efj is the "stress-free strain" which the inclusion
would undergo in the absence of the matrix.
The main problem is to find the "constrained strain", Eij’
in the inclusion when it transforms while it is embedded in

the matrix and also the strain set up in the matrix. Since
e

eij is uniform within -the inclusion, eq. (I1l) becomes:
_ 1 I T | _ 4 )
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The stress in the inclusion is given by:

1. _ ¢ _ T
Oij = Oij oij (I3)

. where, 0. is the stress derived by Hooke's law from the

1)
. C . . .
strain Eij in the inclusion.

c _ .,.¢ C
Oij = e dij + 2ueij (14)

and ofj is the stress derived from the stress-free strain
efj by Hooke's law:

T _ . T T
Oij = )e Gij + 2“€ij . (I5)

Substituting expressions for oij and ij from egs. (I3) and

(I4) into eq. (I2), we obtain:

i c T c __T
Oij = A{e -¢ )Gij + Zu(sij Eij) . (16)

The relation between the constrained and stress-free strains

L4

in the inclusion is given by:

C T «

 15.7 Si5k1% (x7)
Eshelby described the general solution for Sijkl in terms

of the elliptical integrals, from which the strain energy can
be obtained. All the components Sijkl referred to the inclusion
‘coordinates for ribbons, fibres, plates and spheres are tabu-

lated by Brown and Clarke (124).

In the case of a disc-shaped precipitate most of the

\\/strain is taken in the "c" direction, ( <:f:§) ), and the eT

and egj are given by:

o N
e oo s -
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000
el = looo (18)
0 0 ¢
and
v
= 00
ec = S € = S €= 0 00
ij ijk1%kl 133 ¢
0 00

Substituting expressions for strains, eq. (I8) in eq. (I6)

and eq. (I6) in eq. (I2), the elastic energy becomes:

_1 I 1 A Voo _
Ee1 = 3 V 0338 = 3 VI3 (z5 - De-2uele

= 3 tyrayuve’ o)

0.3

%
[
‘-f
=3
<
]

H o= SXIOIl dynes/cm2

I =1.14x5x1011x52, ergs/cm3
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APPENDIX I1I

THE CHEMICAL FREE ENERGY FOR NUCLEATION

The available free energy change, when unit volume of
B

precipitate (B) of composition C” is formed from a very large
amount of matrix material (a) of composition c® so that the

composition of the latter is not sensibly changed is given

B a
a_(C”) a. (Ch)

BG oo = - 3% ic®on B (1-c®) en —é——g—] (I11)
\Y aB(C ) aA(C )

where aB(CB) is the activity of component B in 8 of composi-
B

tion C° and similarly for the other activities.

Direct measurement of activities in the metastable

phase (via vapor pressure, electromotive force, etc.) is seldom
practical and\some method of extrapolation is needed. The
simplest of these is the dilute solution model in which the
activity is directly proportional to the composition (126).

This model is usually adequate when a phase contains only a

few percent of the second component. Then for B of composition

cz ,
) RT .8, c° B (1-c%)
AGchem = - ;@ [Cexn Ea + (l-Ce)zn ————;—] (I12)
e , (1-C_)
e
with ¢%, c® << 1 .
. rr .. C%
) BGpon = = — Cotn == (I13)
v c
e
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where Ce
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and C: are the equilibrium concentration of solute in

the B and o phase (with respect to stress free large particle)

and ¢% is the solute concentration in the supersaturated matrix.

B

meaning.

in our case:

this gives,

AGchem

12

V™ is the molar volume of the nucleus and RT has its usual

c® = 1 wtt (denoted by the 6" solvus line at
~v160°C, see Fig. 8)
cg 2 0.2 wt % (assumed)
‘3,
Cg = 53 wt %, (assumed CuAlz)

T = 433°K (160°C)

Vel = 10 cm3/gr-mole.
7
8.314x10 x433 0.01
—To $ 0-33 0 5902
3.0x109 erg/cm3
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