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ABSTRACT

Two-phase flow structure of an air-water, bubbly, upward, cocurrent flow in a
large diameter pipe, 20 cm, was investigated experimentally. Local flow parameters such
as void fraction, bubble velocity, bubble diameter and interfacial area concentration were
measured using a dual fiber optic probe.

A well calibrated air-water testing loop was used to conduct the present
experimental work. A computerized data acquisition system was used to analyze the probe
output signals and so measuring the different flow parameters.

The local time-averaged bubble diameter was measured using a direct averaging
method and Uga’s statistical method. The interfacial area concentration was measured
using two methods; the bubble diameter-based method and the direct method proposed by
Kataoka et al. (1985).

Results of the present tests were compared with available data obtained for flow in
small diameter pipes under the same flow conditions. Also, selected existing correlations
based on data from small diameter pipe flows were applied to the present data to check
their applicability to flows in large diameter pipes.

The results indicated the following under the same flow conditions,

o The local void fractions were in good agreement with those of Stankovic (1992)
obtained using the same experimental setup.

o The bubble diameter results obtained using the direct average method and Uga’s
statistical method were in good agreement. The present work showed that the

bubble diameter was generally insensitive to changing the flow rate. Unlike the

1il



small diameter pipes results, the present work showed an increase in bubble
diameter near the wall.

Local Interfacial Area Concentration (IAC) results obtained using the two
measuring methods were in good agreement. The IAC values measured in the
present work were higher than those obtained in small diameter pipes under the
same flow conditions. Also, the existing IAC correlations underestimated the area-

averaged values significantly, particularly at low air flow rates.
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CHAPTER 1

INTRODUCTION

Two-phase flows have received much attention in the past few decades due to its
importance in the power and process industries, to name a few. Consequently, there is a
continuous need to enhance knowledge of the parameters affecting two-phase flows in
piping systems. Although a significant body of knowledge on two-phase flow was
generated, available experimental data tend to be limited to two-phase flow in small
diameter pipes.

In the analysis of two-phase flow thermal-hydraulics, various formulations such as
the homogeneous flow model, drift flux model, and two-fluid model have been proposed.
The two-fluid model considers each phase separately, in terms of two sets of conservation
equations which govern the balance of mass, momentum and energy of each phase, and
accounts for interface exchange through additional interfacial terms in the governing
equations. Because of its detailed treatment of phase interactions, the two-fluid model can
be considered the most accurate. However, the accuracy of the two-fluid model, and thus
its usefulness in applications, depends on accurate modelling of the interfacial transfer
terms. The Interfacial Area Concentration (IAC) is the main parameter in the interface
exchange formulation and its importance can explicitly be seen in the basic conservation

equations of the two-fluid model.



Many models and empirical relations have been proposed to formulate the IAC in
terms of flow parameters such as gas and liquid superficial velocities, void fraction and
pressure drop. However, available models are based on limited data for flows in small-
diameter pipes. The validity of these models for use in large-diameter pipes have not yet
been determined.

The present work was driven by the need to obtain data on two-phase flow
structure in large diameter vertical pipes in support of the design of a proposed passive
cooling system for CANDU reactors (Canadian heavy-water cooled and moderated
reactors, using natural uranium as a fissile fuel). Thermal-hydraulic codes used for the
design and analysis of such systems are typically based on the two-fluid model formulation
for which knowledge of the interfacial area concentration (IAC), in terms of other flow
parameters, is required. Available IAC correlations are based on data obtained in small

diameter pipes and hence the need for data in large diameter pipes (D > 20 cm).

1.1 Objectives:

The main objectives of the present work are to provide further knowledge
concerning the structure of two-phase flows in large-diameter vertical pipes, and to check
the applicability of existing IAC correlations for large-diameter pipes, thus providing
information that is necessary for the designers of the Passive Moderator Cooling System

(PMCS). These objectives were achieved through the following steps,

a) Modification of an existing test facility for investigating two-phase flow structure

in a large-diameter vertical pipe (20 cm).



b)

d)

Extensive experimental work specifically designed to cover a sufficient range of

parameters which are known to affect the flow structure.

Data Processing utilizing a visual C++ program which calculated the void fraction,

bubble velocity, bubble diameter and IAC.

Comparing the experimental results of the IAC with existing correlations under the

same flow conditions.

Comparing the IAC results with existing IAC values for small diameter-pipes

under the same flow parameters.



CHAPTER 2
INTRODUCTORY CONCEPTS ON ADIABATIC

TWO-PHASE FLOW IN VERTICAL PIPES

2.1 Definitions And Relations.

This section presents definitions of the two-phase flow parameters that will be
used in the discussion of the present work.

The area averaged void fraction o is the area of the flow occupied by the gas

phase, in proportion to the total flow area.

o=— 2.1

The volume averaged void fraction <a> is the volume fraction of the flow

occupied by the gas phase, as compared to the total flow volume,

2.2)

where Vi, V), A, and A are the volume occupied by the gas phase, the volume occupied
by the liquid phase, the cross sectional area for the gas, and the pipe cross section area

respectively.



The mass flux of the phase k, Gy is given by,

Gr="F 2.3)

where my is the mass flow rate of the phase K.

The actual phase velocity of the gas and liquid phases, ug and u, respectively, are
the space-averaged velocities for the given phase. It is also defined as the velocity that the
phase would reach if it move separately in the portion of the pipe cross sectional area that

is occupied by this phase alone,

Ve Ve
AL SRAL 5 2.4
YT A oA (2.42)
Vi Vi
vV 2.4b
“TA T d-mA (2.40)

where Vg and Vi are the gas and liquid volumetric flow rates respectively.

The superficial velocity j (volumetric flux) for each phase, which is defined as the

velocity that the phase would reach if it was flowing alone in the pipe is defined as,

.V
Jg = Xg (253,)



=" (2.5b)
or,

jg =0 ug (2.6a)

ii=(0-0) u (2.6b)

The slip ratio S is the ratio between the gas and liquid velocities,

s=% @2.7)
U

For homogeneous flows, S=1

The interfacial area concentration a; is defined as the ratio between the gas phase
surface area and the total flow volume,

1 (2.8)
v

where A, is the surface area of the gas phase.

The relative velocity u, is the velocity of the gas phase with respect to the liquid
phase.
u, = (ug —uy) (2.9

For homogenous flow u, = 0.



2.2 Flow Patterns in Vertical Co-current Two-Phase Flow.

The relative velocity and momentum transfer between the phases gives rise to
various flow patterns. These patterns influence most of the two-phase quantities such as,
void fraction and heat transfer coefficient. Also, it is required to quantify the interfacial
area concentration what turns to be the key point for calculating the interfacial transport
of the mass, momentum, and energy. Although the present work is solely concerned with
the bubbly flow regime, each flow regime for vertical upward co-current two-phase flows

will be discussed.

For the case of interest the flow patterns are classified into four main patterns as

shown by Figure 2.1. These are as follows:

a) Bubbly flow is distinguished by the presence of approximately uniformly
distributed gas bubbles in a continuous liquid column. The critical diameter for the
bubbles d.i can be defined as the diameter below which the bubbles remain
spherical and translate in a rectilinear motion in the static liquid medium. Above
the critical diameter the bubbles start to move in a Sinusoidal or Zigzag fashion
[Taitel 1980]. The critical diameter can be represented by the following equation:

04*c "
derie = [m] (2.10)
where o is the surface tension for the bubble-liquid interface, g is the gravitational

acceleration, p is the liquid phase density, and p, is the gas phase density.



Bubbly flow is classified, depending upon the bubble size, as bubbly flow
and finely dispersed bubbly flow. In the dispersed bubbly flow regime, which
occurs at high liquid superficial velocities j, , bubble diameters do not exceed the
critical diameter d.. Taitel et al. 1980, also found that bubbly flow will occur as

long as the following condition is satisfied.

D> %6)2[@:;4‘-—){} 2.11)

where D is the pipe diameter

b)

For an air-water flow near atmospheric pressure, equation 2.11 is satisfied

for pipe diameters of 50 mm or higher.

Slug flow is characterized by the appearance of large, bullet-shaped bubbles,
which have diameters nearly equal to the pipe diameter and move uniformly
upward this is shown by Figure 2.1. These are typically designated as “Taylor
bubbles” [Taitel et al. 1980]. Usually the Taylor bubbles are separated by regions
of the continuous liquid phase (slugs) which bridge the pipe cross section and
contain relatively small gas bubbles. In the thin region between the Taylor bubbles
and the pipe wall, the liquid may flow downward as a thin film. At low flow rates,
this flow pattern also known as plug (piston) flow having well-defined phase
boundaries. However, at higher flow rates the phase boundaries are less

distinguishable clear and the pattern known as slug flow.



d)

Churn flow is characterized by the appearance of bullet-shaped bubbles, as for
the slug flow regime, but is much more unstable, foamy, and disordered. It
appears at a higher gas flow rates compared to the slug flow regime. The bullet-
shaped Taylor bubbles are narrower, their shape is disordered, and the continuity
of the liquid slugs between successive Taylor bubbles is continuously disrupted by
a high local gas concentration. Between the bubbles, the liquid accumulates
forming a bridge which is lifted once again by the gas. This describes the typical
motion observed by Taitel et al. (1980) for the churn flow. At higher liquid flow

rates a foamy flow pattern is observed.

Annular flow is characterized by the presence of a continuous column or core of
gas along the pipe, which is surrounded by a continuous annulus of the liquid
phase. The liquid phase moves upwards both as a wavy liquid film surrounding the
gas core, and as droplets entrained in the gas core for sufficiently high gas
velocity. A wispy-annular flow pattern describes annular flows with a liquid phase

in form of large lumps or wisps.



——
——

Annular
flow flow

Figure 2.1: Two-Phase Flow Patterns in Vertical Co-current Flow

10
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2.3 Flow regime maps.

Flow maps is a simple method of determining flow regimes based upon known
flow parameters. The most common maps are plotted with superficial velocities as the
main coordinates, or as a combination of parameters which include velocities. The flow
regimes are presented as specified areas on the graph separated by lines to separate the
different regimes.

The maps are greatly simplified to present the flow pattern in only two variables,
as it is very complicated to characterize the flows in accordance with every parameter
which influences them. There are several reported maps for upward two-phase flows,
however only a few of these maps are widely used. These include the maps prepared by
Hewitt and Roberts (1969), Taitel et al. (1980), Weisman and Kang (1981), Mishima and
Ishii (1984) and Ohnuki et al. (1995).

The flow regime map of Taitel et al (1980) is the most widely used flow regime
map. This map was developed through modelling of the mechanisms contributing to the
transition boundaries between the various flow regimes. As reported by Taitel et al
(1980), the flow regime map predictions are in good agreement with the actual data
obtained from air-water flow in vertical pipes of 25mm and 51 mm diameters. Figure 2.2
shows a flow regime map for air-water at 25° C and 0.1 MP in a 50 mm diameter vertical
pipes. The five lines (A, B, C, D and E) represent the transition boundaries between the
five flow regimes, (I) bubbly; (II) finely-dispersed bubbly; (III) slug; (IV) churn and (V)

annular.
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Stankovic (1997) showed that slug flow is not encountered in large diameter pipes

(D=20 cm). In such pipes, increasing the gas velocity causes a transition from bubbly to

churn flow directly.

l | T I
10 |- FINELY DISPERSED A i
BUBBLE (II) C
. E
D
— \ ]
3 |
l
g i | AaNNULAR
ol L SLUG OR CHURN  (y) |
= (17| N
\
sscus | | | | E
(m | A | I
ool |- .
Ot = | 100 | 500 -
£g/D =50 | 200 l
) I B S !
0.l ¥o) 10.0 100

Figure 2.2 Flow Regime Map of Taitel et al. (1980) for Air-Water at 25°C and 0.1 MPa

in 50 mm Diameter Vertical Pipes
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CHAPTER 3

LITERATURE REVIEW

3.1 Two-phase flow modeling.

The formulation of appropriate models for two-phase flow has been the subject of
interest for the last three decades. The main difficulty in modeling two-phase flow, as
compared to single-phase flow, is the presence of moving and deformable interfaces
through which mass, momentum and energy are exchanged.

A number of modeling approaches have been used based on assumptions made
regarding the relative motion between the phases and the interfacial conditions. These
approaches range from describing the two-phase flow as a pseudo single-phase fluid, i.e.
homogeneous mixture, to a multi-field model, in which separate conservation equations
are written for each flow field, e.g. liquid, vapour, droplets etc.

The homogeneous equilibrium model (HEM) is the simplest two-phase flow
model. It assumes that the two phases flow at the same velocity and are always in
thermodynamic equilibrium. The HEM is useful in limited applications. Other mixture
models add some complexity through empirical or semi-empirical correlations to account

for relative motion and / or thermal non-equilibrium between the phases.



14

In the two-fluid model, separate conservation equations are written for each phase
and interfacial transport of mass, momentum and energy are incorporated as additional
terms in the phasic conservation equations. The model can predict many more details, as
compared with mixture models, but requires more constitutive relations for interfacial
transport phenomena. The two-fluid model is the closest practical model to rigorous
mathematical representation of two-phase flow as shown below.

The fundamentals of continuum mechanics can be used to develop a general
mathematical model for two-phase flow as shown by Ishii (1975) and Delhaye (1981). It
can be shown that two-phase flow can be represented by two sets of local instantaneous
conservation equations, one for each phase, and interfacial conditions in the following
general forms

@) Local instantaneous equations;

é 3 .
S OE) V. @BE) Y T -p®=0 kL2 (D)

(ii)  Interfacial conditions;

Z (mk \Pk + ﬁk . jk)= 0 (32)

k=1, 2
where m is the mass transfer rate across the interface;

mie = P, ( ui) . Nk (3.3)

where u; is the interface velocity and ny is the unit vector normal to the interface.
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The definition of the variables ¥, , J, and ®, ,as shown by Shoukri (1994a), will

vary according to the conservation equation as given in the following table.

Balance Y. Te D,

Mass 1 0 0

Momentum Uy Gr=- Py a + T 8,
E g -6 u g .1
nergy o + _21_ 2 d -0 uw g, . Ux

Table 3.1 : definitions of conservation quantities.

where U, o, Pv, T, &, ecand G, are velocity vector, viscosity stress tensor,
pressure, average viscous stress tensor, gravitational acceleration, internal energy per unit

mass and heat flux of the phase k respectively. While a is the unit tensor.

The local instantaneous equations can be used to address simple problems with
defined flow fields e.g. single bubble growth in liquid. However, in most two-phase
problems, the local instantaneous equation cannot be applied directly due to two main
difficulties: (i) existence of moving and deformable interfaces which lead to discontinuity
in the flow field, and (ii) fluctuations of the flow variables caused by turbulence and
moving interfaces. Accordingly, an averaging approach is used. It is based on averaging

the local instantaneous equations in time, space or both.
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Volume or time averaging can be used for averaging the local instantaneous
equations. However, using one method alone keeps the continuity difficulties unsolved.
This approach, as reported by Delhaye (1981), leads to the necessity of using composite
averaging.

For example, time averaging of the phasic conservation equations (equation 3.1)

over a period of time T yields;

0 —= —_ -
Zak(pk YI)+ V. oup¥u)*+V ol - oup B

Nj
:lej_l(l’i‘lk\yk + Jk . Ilk)j (34)
=

where j denotes the j ® interface passing through a point at the time T. With o, is the

residence time fraction of phase k, ny is the unit vector normal to the interface, and 1; is

expressed as;

lj = TlVi . nk|j (35)

The RHS of equation (3.4) represents the interfacial transport terms which appear
as a result of the averaging process. For example, for the mass conservation equation

where ¥, = 1 and J, = 0, the RHS represent the rate of interfacial mass transfer

Ni

across the interface per unit volume, where m, is the mass flux and le'l represents the
=1

averaged interfacial area concentration.
Applying composite averaging and making assumptions regarding the distributions,

i.e. the relation between the average of the products and the product of averages, one may
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develop a practical set of conservation equations representing the two-fluid model as

shown below (Ishii 1980)

Continuity:
0
E(akpk) + V.o (a,pu)=T, (3.6)
Momentum:
a 2\ — = t
a(akpkuk) +V (apeue) = -, VP - V. o, (T, + w) G.7)
+a,pg tu, L + M, - Va1
Energy:
o _ .
_é)_;(akpk H)+ V.(ypuH,) = -V. @ *+ )
(3.8)

d "
+ akd_kth + H I + a q,; + O

Where Iy, Mi, T, q;i , and ® are the mass generation, generalized interfacial drag,
interfacial shear stress, interfacial heat flux, and dissipation, respectively. The subscript k
denotes the “k” phase, and i stands for the value at the interface. The variables ow, px, Uy,
Py, and Hy denote the volumetric concentration, density, velocity, pressure and enthalpy of
the k phase, where as %k, T, qQ,, 4;, g Hi stand for average viscous stress, turbulent
stress, mean conduction heat flux, turbulent heat flux, acceleration due to gravity and
enthalpy of phase k at the interface.

In general, the interfacial transfer terms can be modelled in terms of the interfacial

area concentration a; (m*/m’) and a driving force as shown by Ishii (1977). Interfacial
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transfer terms are a function of IAC and a driving force. For mass transfer, I'y = a; i,

where m, is the mass exchange rate per unit area. Similarly, the interfacial heat exchange

rate can be expressed as q:i =a;h;(Ty - T,) and the momentum exchange term (drag)

can take the form, F; = a,Cp(u; —uy).

3.2  IAC Measurement Methods and Techniques.

In general, the interfacial area concentration is measured either directly or
indirectly, through the measurement of other flow parameters from which the IAC can be
calculated. Direct methods include the Chemical method, described below, in which the
volume averaged TAC can be obtained directly from the rate of a chemical reaction across
the interfaces.

A commonly used indirect method for measuring IAC in bubbly flow is through
the measurement of the average bubble diameter D, and the void fraction o or bubble
concentration per unit volume N,. Assuming spherical and uni-directional bubbles, the
IAC can be calculated by either,

or ai = IT ﬁ: Ny (310)

In support of this method, many studies were concerned with the measurement of

D,, N, and o using a variety of techniques including photography and local probes.
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More recently, specific attention was given to using the formulation suggested by
equations (3.4) and (3.5) for measuring IAC. As shown, the local interfacial area
concentration can be defined as:

Ni 1

ai(r):lz—_ 1/m 3.11)
=1 |Va-na|j

T

This requires the measurements of the interfacial velocity and surface direction.
Dual probes are used for this purpose as suggested by Herringe and Davis (1976) and
Kataoka et al. (1985) among others. This method is described in detail in the next chapter.
A summary of the various techniques used in support of the above methods for

measuring IAC are given below.

a) Chemical Method

Most of the early experiments concerning the interfacial area measurements
utilized the chemical method or the chemical absorption technique. Examples include
Kasturi et al (1974), Shilmkan et al (1977), Tomida et al (1978), Dejesus and Kawaji
(1990) and many others.

This method is based on the theory of gas absorption with chemical reactions. In
this situation the rate of mass transfer, i.e. the amount of gas absorbed, is independent of
the liquid side mass transfer coefficient and is governed solely by the contact surface, i.e.
interfacial area. By diluting the gas phase with a tracer gas, which would chemically react
with the liquid phase, and measuring the rate of gas absorption, one can infer the

interfacial area concentration. For example, Dejuses and Kawaji (1990) used the
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absorption of Co, diluted in air into aqueous sodium hydroxide solution to measure the
interfacial area concentration in air-water flow.

The advantages of this method are that it is reliable and simple. The main
disadvantage is the temperature effect on the reaction and readings. Therefore, the
Chemical method requires a temperature controlled environment. This method is limited to

measuring the volumetric average interfacial area in the flow.

b) Light Scattering Method

The light scattering measuring method for interfacial area concentration basically
depends upon the light scattering technique. When a parallel beam of light is passed
through a transparent test section, light is scattered by the particles of the dispersed phase
e.g., gas bubbles in bubbly flow, by reflection, refraction, and diffraction. The optical
device (light source) must be arranged so that only light scattered by diffraction is received
by the photocell so that any light scattered by reflection and refraction must be eliminated.
To satisfy this condition the photocell must be placed a large enough distance away from
the optical device to ensure a small solid angle between them. The remaining scattered
light passes outside the photocell so that only the portion of the incident parallel beam that
passes through the mixture without meeting any obstacle is recorded. For cases with
dispersed particles which are within 10 diameters from one another, multiple scattering
exists causing a false reading. Consequently, larger distances are required for the photocell
to generate accurate readings.

The dispersed phase, as viewed by the photocell, appears as an assembly of black

spots. The amount of light received does not depend on the refractive indices of the two
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phases or on whether or not the dispersed phase is opaque. The amount of light
transmitted to the photocell depends only on the projected area of the dispersed phase.

Calderbank (1958) proposed a correlation for converting the projected measured
area at the photocell into an interfacial area.

This technique is comparably simple but clearly limited to highly dispersed two-
phase flow regimes, i.e. bubbly and droplet flows. The measurement accuracy depends on
the particle size. The light scattering technique is applicable only when interference due to
multiple and forward light scattering is negligibly small. This method is also recommended

for flows with phase change (Calderbank 1958).

¢) Photographic Method

The photographic method is considered the most accurate method and has been
used to compare and evaluate the accuracy of other methods. It is, however, limited to
highly dispersed two-phase flows, i.e. bubbly and droplet flows. Through photography, the
average bubble diameter can be obtained. The interfacial area can then be obtained if an
independent measurement of bubble frequency or void fraction as shown by equations
(3.9) and (3.10),

Zeitoun et al. (1994) used this method for obtaining the IAC in flow boiling
applications. To improve the accuracy of measuring bubble diameter, he used a high speed
video camera and a visualization system which allowed the simultaneous photography of

two orthogonal views of individual bubbles.
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d) Local Probe Methods

The local probe method allows for local measurement of void fraction, interfacial
area as well as bubble size and velocity along with their radial distribution in pipe flow.

This measuring technique depends on the difference of the thermal-physical
properties of the gas and liquid phases that allows the recognition of the phase in contact
with the probe tip. The probe output is typically a time history of the phase contact with
the probe tip. The output data can be analyzed by several methods to determine the local
flow characteristics. Traversing the probe along the test cross-section area, the local
distribution of the flow parameters can be obtained and volume, or area, averaged. The
main source of error associated with this technique is the trigger voltage level which must
be checked and adjusted periodically during experiments (Delhaye 1981). There are two

common probe types or techniques; electrical resistivity probe and optical probe.

1) Electrical Resistivity Probe

This method was first proposed by Nael and Bankoff (1963) and by Akagawa
(1963). 1t is relatively simple and reliable. A typical probe is shown in Figure 3.1, where
the probe tip and the housing tube are the two electrodes.

The electrical resistivity probe measures the instantaneous and local electrical
resistivity in two-phase flow mixture by means of the sensor electrode. For a gas liquid
flow the gas is electrically insulating, while the liquid is conducting. When the probe tip is
in contact with the liquid phase, the circuit is closed, and when it is in contact with a gas
phase, the circuit is open. The voltage drop across the sensor fluctuates between a

maximum and a minimum values depending on whether it is exposed to liquid or gas. The
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output signal of the probe shows the voltage variation with respect to the time. This not
only indicates which phase is contacting the probe, but also the time it takes for the
particular phase to move along the probe tip. For double-sensor probes, shown in Figure
3.2, each sensor gives a separate signal and thus a separate time trace. By correlating the
two signals one can estimate important flow parameters such as bubble velocity.

Analysis of the output signals can yield parameters such as, void fraction, bubble
diameter and velocity. A detailed description of the analysis method will be discussed later
in chapter 4 of this thesis.

This method is known to be one of the most accurate methods. However, this is an

intrusive method which can disturb the flow and thus add error to the measurement.
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2) Optical Fiber Probe

The operation of optical probes is based on the difference of the optical properties
of the two phases. The fiber sensor is a group of fibers tied together so that a light beam
passes down the probe through one half of the optic fibers and is reflected, totally or
partially, at the probe tip through the other half. As shown in Figure 3.3, a light beam
passing down the probe into the flow is totally reflected when the probe is in contact with
the gas while only partially reflected when in contact with the liquid. The phase interface
change affects the reflection of the light into the probe as shown by Figure 3.3. The
intensity of the reflected light determines the phase in contact with the probe tip. The
returning light signals can be converted into voltage signals via a photo-multiplier. This
signal can then be processed in the same manner as for the resistivity probes to obtain the

desired flow characteristics.

r\-”\_/ M~

T
:
i v/

Air phase Water phase

Figure 3.3 Effect of Tip-Touching Phase on Light Reflection
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3.3  Interfacial Area Concentration Correlations and their Limitations

As indicated earlier, the two-fluid model is, in theory, the most accurate model for
simulating two-phase flows. Design and analysis tools used for design and safety analysis
of two-phase systems in industry, particularly the nuclear industry, are based on two-fluid
models. The most limiting factor in applying two-fluid models is the lack of appropriate
closure, or constitutive equations. The most critical of these are correlations for interfacial
area concentration. A brief summary of available correlations is given below.

In order to correlate the interfacial area concentration, an earlier approach was
followed by the work of Banerjee et al (1970) and Jespen (1970). The approach requires
correlating the interfacial area concentration in terms of frictional pressure drop as well as
a measure for the flow velocity which takes into consideration the fact that the interfacial
area and interfacial mass transfer are dependent on energy dissipated in the fluid. With the
same approach, Kasturi and Stepanek (1974), Shilimkan and Stepanek (1977), Tomida et
al (1978) and Dejuses and Kawaji (1990) correlated the interfacial area concentration in
terms of frictional or total pressure drops. These correlations were based on the analysis of
the data from slug and annular flow regimes in upward co-current flows, except for
Dejesus and Kawaji (1990) which covered a wider range of flow regimes from bubbly to
annular flow.

Other investigators empirically correlated the IAC in terms of other flow
parameters and the thermo-physical properties of the fluid. Therefore, several correlations
have been reported, and most of these correlations were restricted to certain flow regimes
and flow conditions in relatively small pipes. The following table (3.2) shows the published

correlations of interfacial area concentration and their limitations.
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As discussed earlier, all of the reported IAC correlations were based on
measurements of two-phase flows in small diameter pipes. The applicability of these

correlations to flows in large diameter pipes needs to be evaluated.

28
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CHAPTER 4
EXPERIMENTAL TEST
LOOP AND MEASUREMENTS.

The present experimental work was performed to measure the flow structure
parameters such as void fraction, bubble diameter, bubble velocity, and interfacial area
concentration in upward two-phase bubbly flow in a 20 cm diameter pipe. To achieve this
goal a two-phase loop and an optical fiber probe were used along with measuring data
acquisition equipment. This chapter describes in detail the two-phase loop, measurement

instrumentation and data acquisition technique.

4.1 Description of the Two-Phase Loop.

A low pressure air-water loop was used to obtain local two-phase parameters
measurements under different flow conditions. Figure 4.1 shows a schematic diagram of
the loop. The loop was designed to operate in a natural circulation mode, as an air lift
pump, or in a forced circulation mode using a centrifugal water pump as shown in the
figure. The loop description could be divided into two main parts, the main components

and the instrumentation. The main components are as follows,
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a) Riser, Downcomer and Stand-by Pump

The riser is a transparent acrylic pipe with a height and diameter of 10m and 0.2m
respectively. Its transparency facilitates flow visualization along the pipe. The downcomer
portion was made of 0.1m PVC pipes including a 1.5 m long transparent acrylic pipe to
ensure only single-phase water flow in the downcomer. Both the downcomer and riser
have the same height and both are connected at the top to an air separation tank. The riser
was extended approximately 0.5 m into the tank to discharge the two-phase mixture at a
level higher than the water level to promote phase separation.

The bottom part of the riser and the downcomer were connected by a 0.1 m
diameter PVC pipe and a gate valve (V) for controlling the circulated water flow rate. A
stainless-steel centrifugal pump with a rating of 450 USGPM at 10 m head was installed in
a by-pass line together with gate valves V, and V3. These two valves served to start the

pump and adjust the water flow rate during testing in the forced circulation mode.

b) Air Separation Tank

A 225 m long, 0.93 m wide and 0.79 m high air-water stainless-steel separation
tank was constructed to separate the air from the two-phase flow mixture incoming into
the tank. This tank is illustrated in Figure 4.2. Complete separation was ensured by having
long separation path and large separation interface area. As mentioned, the riser pipe was
extended into the tank to a height of about 0.5 m to discharge the two-phase flow mixture
to a level higher than the water level in the tank. This height is necessary for achieving a
successful separation of the phases. For the experiments with low mass flux, the flow

mixture was discharged just at the riser end so the air is naturally separated and flows up
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while the liquid falls down as a free film wetting the riser. For the experiments with high
mass flux, a reflector plate helped separate the two phases. The reflector plate was
installed at a higher elevation in the tank than the flow exit, as shown in Figure 4.2.

To reduce flow disturbances and improve air separation, a baffle was welded in the
middle of the tank with a 2.5 cm gap between the plate and the bottom of the tank. The
baffle plate improved phase separation by forcing any trapped bubbles to flow up and be
separated from the water surface. The separated air at the upper part of the tank was
finally vented out through four openings near the top of the tank. The ideal working
conditions for the air separation tank were 20 cm and 40 cm water level for natural and
forced circulation experiments respectively. In case of a tank overflow, or for the high
mass flux experiments, a large-diameter hose was attached to an opening near the top of
the tank. For monitoring the water level in the tank, a sight glass is attached to the tank

side.

c) Air Injection Line.

Compressed air was supplied to the test loop by a 5.08cm (2”) stainless-steel pipe
inlet line. The air was filtered before injection into the loop. The air injection loop is
shown schematically in Figure 4.3. The air pressure was manually controlled by a pressure
regulator and then injected upstream of the riser at an elevation lower than the horizontal
PVC pipe connecting the downcomer and the riser, as shown by Figure 4.1. A circular
“shower head” like sieve, with a large number of 1 mm diameter holes was installed in the
air injection pass. The disk covers the entire cross-sectional area of the lower part of the

riser. A honey comb flow straightener and a coarse grid mesh were also installed
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downstream at the inlet of the riser to reduce swirling and to improve radial bubble
distribution. The air flow rate was manually adjusted by a control valve (V). The air inlet
line was also equipped with a non-reurn valve (Vy;) and a stand-by stop valve (V) to
ensure that there is no possibility of the air injection line being flooded with water from the

test loop in case of a fully-close failure of the air control valve.
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4.2  Measurements and Instrumentation.

The main measurements for each test are the air and the water flow rates and the
voltage output signals from the optical fiber probe which were used to calculate the local
flow parameters, e.g. void fraction and interfacial area concentration. The air and water
flow rates were measured by orifice plates which comply with ASME standards. Two
calibrated water and mercury U-tube manometers were used to calibrate the pressure
transducers used to measure the pressure drop across the air and water orifice plates
respectively. A linear relation was obtained relating the pressure drop across the orifice
plate and the voltage signals from the pressure transducers. The U-tube manometers were
also used during the tests to confirm the pressure readings.

During each test the voltage measurements obtained from each pressure transducer
were converted into the corresponding pressure drop value using the calibration curves.

Volumetric flow rates are then calculated using the following equation:

1/2
2%AP,,

Vi=C * A, @4.1)

Pkop

The subscript k£ denotes the appropriate phase, subscript op denotes that pressure drop
across the respective orifice plate, p is the phase density at the orifice plate pressure and

temperature, A, denotes the orifice area and C is the flow coefficient.

The flow coefficient C depends on the flow Reynolds number and the orifice plate
diameter ratio. According to ASME Report on Fluid Meters (1959), and the Daniel

Industries Technical Data, its value for the water orifice plate is 0.65 to 0.66 for a
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diameter ratio of 0.6 and a 10 cm diameter pipe, and for the air orifice plate is 0.6 for a
diameter of 0.2 and a 5 cm diameter pipe.
The superficial velocity j for each phase k is calculated as a function of the

volumetric flow rate as follows:

. pko * Vk
o= = (42)
Perg ~ Ats
or directly as a function of the pressure drop using equation 4.1 as follows:
) P, A, 2*¥AP,
e = CF (TR *( =) (4.3)
Prs ATs Prop

where “prs“ denotes the phase density corresponding to the pressure and temperature at

the test section, and “Ars “ is the test section‘s cross-sectional area.

The local flow structure data were obtained using a Laser Dual Optical fiber probe
with signal processing system, supplied by AECL (Atomic Energy of Canada Limited) at
Chalk River. The probe measurements were carried out in the test section 1.17 m below
the separation tank bottom (Figure 4.1).

The measurements of local parameters, including the radial profile of void fraction,
interfacial area concentration, bubble velocity, bubble size and bubble frequency were
taken at an axial position corresponds to L/D =42. The dual optical probe was radially
traversed from r/R = 0 to 0.95.

The local parameters were measured using the optical dual-fiber probe shown in
Figure 4.4. It consists of two identical fiber optic probes of 0.1 mm outer diameter. Their

tips are 1.2 mm apart vertically and 1 mm horizontally. It was found that the proper
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vertical distance L, between the two sensors is critical for analyzing the experimental data.
The distance was dictated by possible bubble size, velocity, and the upper-limit of
sampling frequency of the data-logging system. Accordingly, for the test conditions a 1.2
mm vertical distance was found to be appropriate. It is important to note that too small a
distance results in inaccuracies in time duration measurements since it requires very high
sampling frequencies. On the other hand, too large a distance increases the possibility of
misinterpretation of signals since, multi-bubble contact may occur between two signals
originating from the same bubble. During the present experiments, a sampling rate of 10
kHz per channel was used to ensure sufficient resolution in analyzing the high-speed, small
bubbles. A sampling time of 125 seconds proved satisfactory for statistical analysis with
detection of a sufficient number of bubbles for most of the flow conditions. The above
configuration, sampling time and frequency were selected after preliminary tests carried
out at AECL-Chalk River Laboratory and later at our laboratory.

As shown in Figure 3.3, the incident light is transmitted through one of the fibers
and reaches the tip of the probe. The light is then refracted at the interface between the
fiber, whose surface makes an angle of 45 degrees to the axis of the fiber optic, and the
surrounding phase, depending on the refractive indices of the liquid and gas phases, and
returns through the other fiber. The values of refractive index of liquids and gases are far
different. Therefore, the time fraction of bubble existence can be determined by measuring
the change in the amount of refractive light due to the difference of refractive index. As
illustrated in Figure 4.5, the experimental data was obtained in the form of a voltage signal
as a function of time from the front and rear sensors of the optical dual-fiber probe. The

processing of these signals will be discussed in detail later in this chapter.
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Figure 4.5 A Typical Output Signal of the Optical Dual-Fiber Probe

All measurements were acquired using a computer-based system. The signals
obtained during the test included: the pressure drop across the two orifice plates,
temperature of the air and water (or two-phase) and the voltage output from the local
probe. These data were logged using a Pentium 150 personal computer with a BNC-2080
16 channel multifunction high speed analog/digital expansion board, and LabView
software. The output data was processed using a Visual C++5 program, which will be

discussed in detail in the following section.
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4.3  Data Processing of The Probe Signals:

The probe output was obtained as two voltage signals from the front and rear
probes as a function of time as shown in Figure 4.5. The change in voltage indicates a
change in the phase in contact with probe. The threshold voltage representing the voltage
above which the signal is considered to be in contact with the gas phase, has to be set
prior to testing. As a gas interface contacts the front probe the voltage signal increases
abruptly from Vimin t0 Vimax, and then back to Vemin when the probe comes in contact with
liquid. Another voltage signal for the rear probe may represent the same interfaces with
Vimax and Vi min as shown by Figure 4.6. The increase and decrease identifies the individual
phases and the time that they are in contact with the probe. Each increase and decrease
can be considered as a complete bubble passing through the front or rear probe.
Consequently, it is by simply counting the signal peaks that the number of bubbles N

passing through this location during the sample time T could be obtained.
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Figure 4.6 Schematic Diagram of Front and Rear Probe Signals

Ideally, all bubbles move vertically and hit the front probe along their center axis
and then hit the rear probe. However, this is not the case in practice so miscounting was
inevitable during the tests. This miscounting becomes apparent if a bubble is detected by
only one of the probes, or if before a bubble penetrates the first probe, another bubble hits
the second probe. Here, the time lag for the individual bubble is measured as a negative

value which is physically unrealistic. Since the two signals detected by the front and rear
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probes do not always correspond to the same bubble and the residence time intervals of

the gas and or liquid phases at the probes, the origin of the signal must be carefully

identified to make sure it belongs to the same bubble. A successful bubble is one which

hits the front probe and then the rear probe within a narrow region close to its center axis

so that the signals are not disturbed by other bubbles. Failure to identify successful bubbles

using these two conditions adversely affects the bubble velocity, diameter and IAC

measurements. Validation of the data acquisition method for successful bubbles is justified

using the following criteria, which are similar to that used by Revankar and Ishii (1992):

b)

Upward moving bubbles hit the front probe before the rear one. Therefore,
referring to Figure 4.6, the following conditions must be satisfied:

tg > tg and t) > tgy  forj=1,2,3... N, “4.4)
where f and r denote respectively the front and rear probes. t;.;) is the time when
the bubble first touches the front and rear probe and t; is the time when the bubble
leaves the probe tips. N; is the number of successful bubbles, passing through the

probe during the total sampling time T.

To ensure that the same bubble is being detected and that the measurements are
being taken within an appropriate region around the bubble diameter, the two
signal widths should be comparable. Hence the following condition should be also

satisfied:
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| (tg- tg-n)- (t- tgny) | < 0.3% (t5- tg)  forj=1,23....N, (4.5)

This condition will be briefly explained by the next geometrical analysis.

The final check is a physical limitation of the time difference between the front and
rear probe signals. The following conditions should be satisfied:

At pin <tg-tg< At ma (4.6)

and

At min <t gty - t 1) < At oy 4.7)

where At ni, and At .. are the time limits corresponding to the possible maximum

and minimum bubble velocities, respectively. Therefore, At min and At m. should be

determined by the combination of the vertical distance between the two probe tips

L, and the flow superficial velocities.

Measurements Geometrical Analysis

Bubble diameter is considered one of the more complicated parameters to be

measured with a local probe. The main source of this complexity is that the measured

distance is not always the diameter. To ensure an accurate measurement, condition 4.5

must be applied. The following Figure 4.7 shows how it can be implemented to ensure that

the measured distance is within a region close to the bubble diameter.
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1.0
EENl
‘ Y

Figure 4.7 Schematic Diagram of Bubble Parameters Measurements

Considering an ideal case when a bubble is moving vertically and hits the probe,
the front probe measures the distance X while the rear probe measures Y for a horizontal
distance of 1 mm between the two probes. From the geometrical analysis of Figure 4.7,

the following equations are obtained:

X=R* Cos (D) (4.8)

Y?=R*-(R* Sin(®)+1.0)’ (4.9)

where R denotes the bubble radius.
Considering equations (4.8) and (4.9), in order to satisfy the condition (4.5) the

following condition must be satisfied:

| X-Yl<03 *X (4.10)
Substituting equations (4.8) and (4.9) into equation (4.10) results in the following

equation:
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1 R *Sin(®) +1)
1—\/00s2(<1>)_ R** Cos* (D) =03 (411)

For a given R, Equation (4.11) calculates the maximum ® to satisfy this criteria.
For a vertically moving-bubble with Dy= 3 mm, the maximum ® corresponds to equation
(4.11) is 2.767 degree which corresponds to 0.998 < X/R < 1 and for a vertically-moving
bubble with Dy= 6 mm, the maximum ® is 26.64 degree which corresponds to 0.893 <
XR <1

This analysis assumes a vertically-moving bubble, i.e. the angle between the
vertical axes and the velocity vector is zero. However this is not always the case.
Considering the angle (0) between the velocity vector and the vertical axis, the projection
distance between the front and rear probes will be 1.0/Cos 6.

For a bubble moving with a certain angle (6=20 degree) and D,= 6 mm the
corresponding @ maximum is 24.625 degree which corresponds to 0.909 < X/R < 1.

This geometrical analysis shows that to satisfy the condition 4.5 means that the
measured distance is close enough to the actual bubble diameter. The 0.3 factor used in
this condition was found to be accurate enough for the bubble diameter range of the
current tests. However, it eliminates about 85 % of the bubbles and thus leads to more

time for each test to reach acceptable results.
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43.2 Local Void Fraction

By definition, local void fraction is the time fraction of the two phase flow
occupied by gas measured at a specific location. Its time averaged value can be defined as
the time that the probe is in contact with the gas phase during the total sample time T.

Accordingly, the time averaged local void fraction can be calculated as the number
of voltage records higher than the threshold volt divided by the total number of sample
records. Also it can be expressed in a form of Delta function 8(r,t), which equals one for
each record higher than the threshold volt, or gas phase, and equals zero for records equal

or less than that volt, liquid phase. It can be expressed in the following form:
a 13 ) 412
= t. R
® SN E ©t) (412)

where SN denotes the sample number of records which was 1.25%10° for the present tests
and is given by:

SN = SR*T (4.13)
where SR is the scan rate per second and T is the total sample time (10000 scan / sec and

125 sec respectively.

Time averaged local void fraction can be measured by the front or the rear probe.

The values obtained by the two probes agreed to within + 3 %.
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4.3.3 Bubble Frequency
The local bubble frequency, f, is defined as the number of bubbles N passing
through a specific point during the sample time T. It can be expressed as:

N

f=" (4.14)

4.3.4 Local Bubble Velocity and its Spectrum.

Bubble velocity is determined using the signals from the two probes by measuring
the time delay between the two “hits” of a bubble with the front and rear probes, tg.1 - t4.1
(Figure 4.6). The previously mentioned procedure for distinguishing signals from the same
bubble was applied and the velocity was calculated by knowledge of the time delay T and

the vertical distance between the tips of the two probes L.

U= % (4.15)

The local time-averaged bubble velocity was measured with two different methods,
direct average method and multichannel method.
Direct average method can be expressed as the average velocity of successful

bubbles, and is expressed as follows:
1 N
U, (r) =—2 Ubi(r) (4 16)
Ns i=1

where U(r) is the local time averaged bubble velocity, and N, is the total number of

successful bubbles.



49

The multichannel method was also applied for the present tests to evaluate results
of the direct average method. The bubble delay time signals were processed as before to
identify signals for the same bubbles. Then bubble velocities were proportionally
transformed into equally spaced channels. The local bubble velocity, Uy (r), and the
standard deviation of the bubble velocity spectrum, S(r), are given by the following

formulas (Kataoka et al. 1985),

Us(r) = E;Wi Ui (1) 4.17)
S(r) = {% wi[ Us () - Us (r)]z} (4.18)

where Uy; (1) is the instantaneous measured local bubble velocity in the ith channel, N; is
the number of channels, and w; is the probability density of Uy, in this channel.
The results of these two methods were identical when long sampling times were

used.

4.3.5 Bubble Size and its Distribution.

Knowledge of the local void fraction distribution across the pipe cross section does
not completely identify the two-phase flow structure. It must also be combined with the
bubble size distribution. The same void fraction may be due to either large number of small
bubbles or a small number of large bubbles. The two cases differ from each other with
regards to the other flow characteristics, such as interfacial area concentration and the

thermal and momentum transfer coefficients.
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The bubble diameter can be measured by calculating the bubble velocity as shown
by equation 4.16, and combining this with the time required for this bubble to move
completely through the front probe. The time is measured as the number of records for the
bubble N; divided by the sampling rate SR. The bubble diameter can then be expressed as:

Nr Ubi

Du®="gg

(4.19)

To obtain the local average bubble diameter two methods were used: the direct

average method and Uga’s statistical method.(Uga 1971)

(a) Direct Average method
For the direct average method, the local time-averaged bubble diameter is
calculated by averaging the individually calculated bubble diameters over the number of

successful bubbles as follows:

1 N
N E D.i(r) (4.20)

Db (r ) =

Two assumptions were made when using this method. The first assumption is that
bubbles were small (2.5-6 mm diameter) and nearly spherical. The second one is the
assumption of unidirectionality, which was generally true when the measuring point was

far from the wall (relative to bubble size), and using a very small probe tip (0.1 mm

diameter) in comparison with the detected bubbles.

(b) Uga’s Statistical method
The other method used to calculate the time-averaged local bubble diameter is the

statistical method suggested by Uga (1971). In this method, single fiber optic probe is
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used to measure the penetration length of each bubble touching the probe to obtain the

bubble diameter. The steps of this method can by summarized as follows:

1)

2)

3)

4)

5)

6)

The local time averaged bubble velocity, Us, is used together with the signal of
the front probe to calculate the penetration length X for each bubble passing
through the probe

The resultant penetration lengths are then prepared in the form of a histogram
versus its frequency of occurrence.

The histogram is then normalized by dividing each frequency by its penetration
length. The normalized histogram is then plotted versus the penetration length
as shown by Figure 4.8.

Using a curve fitting procedure, a smooth curve function g(x) is obtained the
normalized frequency and the penetration curve.

A function relating the bubble size distribution with the time averaged bubble

diameter is determined from the following relation:

F(9 = (800 - x 2] (4.21)

The time averaged local bubble diameter is the bubble diameter corresponds to

the peak value of the F(x).

Bubble diameters results from Uga’s statistical method were in good agreement to

those results from direct averaged method.
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Normalized histogram with respect
to penetratioq tength

gxi , the best fitting smooth curve
to the histogram

Fuxi , bubble-size distribution with
fespect to the diameter

-t
g

Normallzed frequency , Yem

Bubble diameter , €m

Figure 4.8 Schematic Diagram for Uga’s Statistical Method Principles.

(Uga 1971)
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43.6 Local Interfacial Area Concentration.

In the present work, two main methods were used to measure the local interfacial
area concentration. These are described below:
) Bubble Diameter-Based Method :

In the bubble diameter-based method the local IAC is given as,
A
a;(n)= 0L(r)—b (4.22)
Vs

where o(r) is the local void fraction and A, and V,, are the local mean bubble surface area

and volume respectively, given by

! N§ 423

Ab = = Abi ( . )
Vv L ZN Vv 4.24
TN o (4.24)

where N is the total local number of bubbles at the sample time T.

The very simple approach for measuring local IAC was first reported by Akida and
Yoshida (1974), assuming spherical bubbles for bubbly flow leads to:

60yr)
Db (I')

a(r) = (4.25)

where Dy(1) is the local bubble diameter.

In applying equation (4.25), the two methods for bubble diameter measurements,

namely the direct average method and Uga’s statistical method were used.
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(i1) The Direct Method: (Kataoka et al. 1985)

The local IAC at any spatial location (r) was first reported by Ishii (1977) as:

1N
aM==Y 1/m (4.26)
T i

[Vi-n),
where Vi, n; are bubble interfacial velocity and the unit normal vector of the interface. The
origin of equation (4.26) can be seen in the time-averaged conservation equation, i.e.
equations (3.4) and (3.5).

The form of equation (4.26) suggested to many investigations the use of a double
sensors probe to obtain the required velocity and interface direction. These include the
early work of Herringe and Davis (1976), Veteau (1981) and Veteau and Charlot (1981).

Kataoka et al. (1985) suggested a modified method for the application of equation

(4.26). Using statistical analysis to avoid the need for three-dimensional measurements,

they suggested the following formula:

L lyec (4.27)

ai = [EJ 5 |VI,

where C is a statistical factor.

By assuming that the angle o between the interfacial velocity and the vertical axial
direction is random with an equal probability and the angle o varies in a range from zero

to oL, the statistical factor was found to be a function of o, as follows:

Clow) = {1 - cot(%)ln[cos(%)] - tan(%)ln[sin(%)]}- (4.28)
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Also o, was related to the bubbles velocities in the form of:

S
sin2a, ~ Up(n)
20, . 38D (4.29)
1+
Ui (1)

where S is the standard deviation of the bubble spectrum given by equation 4.18, and U, is

the mean bubble velocity given by equation 4.17.

The angle a., is in the range of 0< a,< I1/2, so that the value of C(a,) is in the

range of 1 < C(a,,) < 0.634. The local IAC is then presented as:
N ]
a() =4[ Z—/% 1C(o) 1/m (4.30)
P Uz

where f is the bubble frequency and U, is the vertical component of the bubble velocity

which is measured by dual-fiber probes.

This method was successfully used by many investigators include Kataoka and
Serizawa (1990) and Kocamustafaogullari and Wang (1991), to name a few.
In the present work, the results obtained by the method of Kataoka et al. (1985)

were compared with those obtained using the bubble diameter-based methods.
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4.3.7 Area Averaged Parameters.
Local time averaged parameters are measured and plotted as a function of the
dimensionless distance (r/R). The area-averaged parameters can be obtained by integration

of the corresponding radial profile of these local parameters,
1 R
<(p>EX*I(p(r)*2Hrdr (4.31)
0

where @(r) is a function profile expressing any fitted group of results, and A is the test

cross-sectional area.

The measured void fraction and the IAC profiles were fitted with smooth curves as

a function of (r/R). The fitted profiles were then integrated using the following equation,

<(p>52*}¢(r/R)*(r/R)d(r/R) (4.32)
0

4.4  Experimental Procedure.

The experiments were carried out under bubbly flow conditions by varying the
liquid and gas superficial velocities and the probe radial position. At each fixed gas
superficial velocity, the liquid velocity was increased. For each set of gas and liquid
superficial velocities, the fiber optic probe was traversed in the direction perpendicular to
the tube vertical axis. Fifteen locations were selected through the pipe radius. The
increment was 10 mm for 0 < r/R < 0.7, and smaller increments were used for the

remainder (r/R = 0.75, 0.8, 0.85, 0.87, 0.9, 0.92, and 0.95)
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For each experimental condition the recorded data includes probe location and air
and water superficial velocities. The output files for each run contain the scan condition

for the probe tips. A typical experimental procedure is as follows:

1. Prepare experimental plan (j; and jg)
2. Check:
a) Water level in the air separation tank;
b) Position of each valve, leakage of pipes and connections if any;

¢) Electric cable connections.

3. Switch on all instruments and computer.
4. Check all signal readings and adjust it to zero if required.
5. Start injecting the air at a predetermined value and adjust water flow rate

6. Adjust the threshold value of the fiber optic signal

7. Set the data acquisition system and acquire data at a rate of 10 HZ for a 125
seconds period.

8. Obtain a complete set of data at fifteen radial locations by traversing the probe
across the pipe radius.

9. At the completion of all measurements,
a) Shut off the air supply;
b) Turn off the pump in the case of forced circulation;

10.  Check no flow instrument readings.
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

51 Introduction

Experimental results such as local distributions of void fraction, bubble velocity,

bubble frequency, bubble diameter and interfacial area concentration for air-water, bubbly,

cocurrent flow in a vertical 20 cm diameter pipe are presented in the following sections.

Comparisons between present results and existing data and correlations are also presented.

A complete list of the experimental results can be found in appendix A. The test conditions

are presented by the following Table:

Pressure 1.0 Bar absolute (approximately)
Temperature 20-25 °C
Inlet air pressure at V9 28 PSI (193 Kpa) gauge

Water Mass Flux G,

20-400 Kg/m’s

Air Mass Flux G,

0.031-0.078 Kg/m’s

Superficial Liquid Velocity j;

0.02,0.06,0.1,0.2, 0.3 and 0.4 m/s

Superficial Liquid Velocity j,

0.022, 0.033, 0.044 and 0.055 m/s

Void fraction

344%-12.7%

Table 5.1: Test conditions
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5.2 Local Void Fraction

To verify the present local void fraction measurements and ensure the repeatability
of the measuring instruments, some void fraction profiles were obtained under similar
conditions to those measured by Stankovic (1997) using the same facility with a single
sensor probe. The results are compared in Figures 5.1 and 5.2. As shown, the present
results are in excellent agreement with those obtained by Stankovic (1997).

Local void fraction profiles were obtained during the present tests under different
flow conditions, i.e. gas and liquid superficial velocities. Selected groups of these profiles
are shown in Figures 5.3 to 5.6. The profiles presented were obtained at constant
superficial air velocities by varying the water superficial velocities. The profiles obtained at
ja=0.022, 0.033, 0.044 and 0.055 m/s are shown in Figures 5.3, 54, 5.5 and 5.6
respectively.

As shown, the local void fraction profiles are generally flat across the central part
of the pipe and tend to be more parabolic with decreasing the liquid velocity at constant
air velocity, i.e. with increasing void fraction. These observations are consistent with those
of other researchers and in agreement with the results of Stankovic (1997).

The effect of pipe diameter on the local void fraction distribution in bubbly flow is
examined by comparing the present profiles with the fully developed profiles obtained by
Revankar and Ishii (1992) in a 5.08 cm diameter pipe under similar flow conditions. These
comparisons are shown in Figures 5.7 to 5.9. As shown in Figure 5.7, the two profiles are
in good agreement. Figures 5.8 and 5.9 show the saddle-type profiles obtained by
Revankar and Ishii (1992) where the void fraction tends to peak near the wall and

decreases to a flat profile in most of the core. As shown, the present data, obtained under
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the same air and water velocities in a large diameter (20 cm) pipe, did not show such a
profile.

These results are consistent with those obtained by Stankovic (1997), who showed
that the saddle-type profiles, which is common in bubbly flow in small diameter pipes, only
appear in large diameter pipes under conditions of very low area-averaged void fraction

<o> <0.04.
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5.3  Bubble Velocity and Frequency

Radial bubble velocity distributions were obtained at different flow conditions. The
distributions were obtained at constant superficial air velocities of 0.022, 0.033, 0.044 and
0.055 m/s by varying the water flow rate. Only sample results are shown in Figures 5.10
and 5.11. A complete listing of experimental results is given in Appendix A.

As shown, The local bubble velocity profiles are almost constant across the pipe
cross section up to /R ~ 0.75, then the bubble velocity decreases towards the wall due to
increase of the shear stress near the wall. The profiles tend to be more parabolic with
increasing the void fraction. The bubbles were observed to be rolling near the pipe wall
particularly for low air superficial velocity flows.

As shown, Local bubble velocity increased with increasing air or water velocity.
These observations are consistent with those of other researches for small diameter pipes
e.g. Revakar and Ishii (1992).

The local bubble frequency was calculated for each test. Figures 5.12 and 5.13
show a sample of the experimental results. As shown, local bubble frequency profiles are
parabolic with the peak at the pipe center. However, the slope of the profile increases as
the pipe wall is approached. Local bubble frequency decreased with increase in water
velocity at constant air velocity or decrease in air velocity at constant water velocity, i.e.

decrease in void fraction.
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5.4  Bubble Diameter

The Photographic measurement technique was used to verify the measurements. A
high speed video camera was used in the tests under very low air flow rates. Diameters
measured with both the direct average method and Uga’s statistical method, described in
section 4, were in good agreement with those measured with the photographic method.

The local bubble diameter profiles were obtained for each test using both methods,
the direct average method and Uga’s statistical method. Figures 5.14 and 5.15 show
samples of the local bubble diameter profiles obtained using the average method. As
shown, the local bubble diameter profiles are generally flat across the pipe cross section
with higher values near the pipe wall. By comparing the two figures, it is evident that the
local bubble diameter increased with increasing the void fraction with tendency to give a
saddle distribution with high air flow rates.

The bubble diameter profiles were hardly affected by the change in water flow rate
at a constant air flow rate. Unlike the bubble velocity or the void fraction, the local bubble
diameter did not significantly change with 20 times increase in the water flow rate as
shown in Figure 5.14.

The present observations are in good agreement to those of other researcher, e.g.
Liu and Bankoff (1993), while the data reported by Revankar and Ishii (1992) showed a
decrease in bubble diameter near the pipe wall. Also, Revankar and Ishii (1992) measured
higher bubble diameters than the present work at similar flow conditions. It is important to
note, however, that the work of Revankar and Ishii (1992) was carried out in a small

diameter pipe (5.08 cm).
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Figure 5.16 shows a comparison between local bubble diameters calculated with
the average method and Uga’s statistical method. As shown, the results obtained by the

direct average method and those obtained using Uga’s method are in good agreement.
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5.5 Interfacial Area Concentration (IAC).

The main objective of the present work is to provide further knowledge concerning
the structure of bubbly two-phase flows in large-diameter vertical pipes, with particular
reference to JAC. To achieve this objective, local IAC distribution profiles in a 20 cm
diameter pipe were obtained using the bubble diameter-based methods and the method
recommended by Kataoka et al (1985). The following sections present the present work
results along with comparisons with results obtained in small diameter pipes and with the

predictions of selected available correlations.

5.5.1 Comparing the Various Measuring Methods:

As shown earlier in section 5.4 and Figure 5.16, the bubble diameter obtained by
the direct average method and Uga’s statistical method were in good agreement.
Accordingly, the same level of agreement will be achieved in using these two methods, in
conjunction with the void fraction, to obtain the interfacial area concentration using
equation (5.25).

In this section the bubble-diameter based methods, using Uga’s method, is
compared with the method recommended by Kataoka et al (1985). The results are shown

in Figure 5.17. As shown, the two methods are in good agreement.

5.5.2 Local Interfacial Area Concentration (20 cm Diameter Pipe).
Local TAC profiles for air-water bubbly flows were obtained for each test
condition proposed in Table 5.1. Only a selected group of the results at j= 0.02, 0.2 and

0.4 m/s and ja= 0.022, 0.033, 0.044 and 0.055 m/s is presented in the following Figures
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for clarity of presentation. A complete listing of experimental results of the three methods
is given in Appendix A.

As described, results obtained using the three methods are similar so only those
obtained using the direct method of Kataoka et al (1985) will be illustrated in the
following Figures as the present results.

Figures 5.18 to 5.21 show the present local IAC profiles obtained using the
method of Kataoka et al (1985). As shown, the IAC profiles are parabolic with lower
values near the pipe wall. The local IAC values are higher and the profiles are more
parabolic with increasing the void fraction. At higher gas flow rates the effect of varying
the liquid flow rate upon the IAC value is less pronounced than its effect at low gas flow

rates.
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5.5.3 Comparison with Other Results:

As discussed earlier, the IAC data obtained using the method of Kataoka et al
(1985) are in good agreement with those obtained using the bubble diameter with Uga’s
statistical method. The main advantage of the method of Kataoka et al. is its
independence of bubble size, as it does not assume spherical bubbles, thus gives the
method a wider applicability range. Data obtained using Kataoka’s method will be denoted
as present data and will be used to compare the present results with those of other
researchers.

The present IAC data are compared with those of other researchers to check the
applicability of previously obtained data using small diameter pipes to flows in large
diameter pipes. Also, to check applicability of existing correlations, two correlations,
which are applicable to available measurements, were used. The predictions of these
correlations were compared with the present data under the same flow conditions.

Figures 5.22 to 5.24 show comparisons between the present local IAC profiles and
those of Revankar and Ishii (1992) for small diameter pipe, 5.08 cm and L/D=29.5, at the
same superficial velocities. As shown, the present data are higher than the data reported by
Revankar and Ishii (1992) for small pipe diameter flows. As described earlier, the present
data generally showed the same void fraction profiles and values and it also showed
smaller local bubble diameters than those reported for small diameter pipes. As a result of
the bubble diameter difference, the IAC measured in large diameter pipes are higher than
the JAC in small diameter pipes under the same superficial velocity conditions.

Figures 5.23 and 5.24 show a saddle distribution for local IAC at low void fraction

in small diameter pipes, which is not observed in the present work.
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Available IAC correlations reflect data obtained for flows in small diameter pipes
which are lower than the local data obtained for flows in large diameter pipe (20 cm).
Area averaged TAC predicted using these correlations are lower than those measured for
20 cm diameter pipe. Figures 5.25 to 5.28 show comparisons between the present area-
averaged results calculated by equation 4.32 and the predictions of the correlations of
Tabie et al. (1989) and Akida and Yoshida (1974) applied to the same flow conditions.

As shown, although the predictions of the two correlations are in good agreement
with each other, they underestimate the IAC measured in the present work. However, the
agreement between the predictions of these correlations and the present data appears to
improve with increasing the air flow rate. A complete list of area averaged data is listed in

Appendix B.



89

(Z661) US| pue JesueAey pue YoM Jussald Wol4 Jy| usamiag uosiiedwo) :Zz'G ainbi

W g0'G=Q Jo} S/W |"0=I pue

S0 '0=Er 18 (Z661) US| PUE JesUBASY DV ©
wo 0zZ=q Jo}

S/W | 0=If PUB y¥0'0 =Ef J& Ejeq jussald Jv| =

0s

0ol

0s}

00¢

0s¢

(wy1) owi



90

(Z661) IYS| pue JesueAsy pue YJOA\ Jussald Wol4 Jy| usamjag uosiiedwo) £zZ'G ainbi4

/i
60 80 L0 90 G0 v'0 £0 Al 1’0 0
wo 80's=Q Jo} S/W ¥'0=Ir pue
SLy0'0=er e (Z661) US| pue Jejueasy QJv| ©
wo 0z=q Joj
S/W ¥'0=I pue yvQ°Q =er e ejeq jussaid Jv| = 1
[ |
. 1
(-4 n o]
8 ° ° +
| |
u ° © 1
(-4 [ |
= n . . n '
o

174

ov

09

o
o
(W) owi

o
N
-—

ovl

09l

08l



91

(Z661) 1US| PUB JE)UBASY PUB YIOA JUesald Woid D] usamieg uosiiedwo? yZ'G ainbi4

h= 2
80 .0 90 G0 y0 €0 c0 10 0
} } f f } } } f 0
wo g0'Gg=Q Joj s/ul Q=|r pue G250 0=er
18 (2661) IUS| pue Jequeaay Jv| @ 1 og
wo 0Z=Q 4o} s/t 20°0=Il
pue gGO'0 =ef je eje jussaid Jv| =
° + 001
° o o
0 ° ° °
9 . o °
u °
T+ 0G1
u n
3 [ ]
=
= - + 00¢
n =
[ ] [ ]

0S¢

(wy1) v



92

zcoo=el1e

(6861) '|e 1o aige ) pUE (7/61) EPIUSOA PUE EINY
WoJj suoijejalio) pue ejeq jussald buisn Dvyj pebelsay ealy ussmieg uosliedwo?) :Gz'G ainbi4

Iy
7’0 GE0 €0 G20 Z0 GL'0 G000 0
v

v 1

¢ . v
[ J 1
(261) BPIUSOA pue EINY JV| v il

(6861) 'l 1@ 81QR] JV| W
ejeq jussaid DV ¢ S/w ZzZo'0=er ¢
[ J

0G

00l

oGt

00¢

0se

(/L) ow



93

s/w ¢g0'0=el je
(6861) ‘le J@ @iqe] pue (y/61) EPIUSOA pue ely
WoJj suole|alio?) pue eje( juasald buisn Dy| pebeiaay ealy usamjag uosliedwo?) :9z'G ainbi4

I
GE0 €0 G20 Z0 GL0 1’0 G0'0 0
} f } } | t ] 0
+ 02
(¥/61) EBPIYSOA pue ey Jv| v
(6861) ‘leje aiqel Qv| = 1 op
ejeq jussald Jv| ¢
+ 09
v
v 1 08
v
. + 00l
v
¢ + 0zl
®
+ ol
S/W ££0°0=er A
. + 091
®

08l

(W) owl



94

s/w y0°0=el 1e
(6861) ‘|8 10 81QEL PUB (/61 ) EPIUSOA PUB BINY
WoJ} SUOKIE|21I0) pue Bjeq Juasald buisn Jv| pebeleay ealy ussmiag uosiedwo) :/Z'g a.nbi4

I
GE0 €0 G20 AV GL0 1’0 G0'0 0
} 1 } } } } { 0
+ 02
(7/61) EPIUSOA pue BlNY JV| Vv
(6861) 'le 1o 8Iqe) JVI = + o
BjeQ jussaid Qv ® | sjw y0'0=er
+ 09
+ 08
v < 00l
v v + 02l
[
v
¢ + ol
®
¢ + 091
[
L 4

08l

(wyy) ov



95

s/w GG 0=el e
(6861) e 1@ alqe| pue (y/61) EPIUSOA PuUB BUNY
wouy suoljejalio) pue ejeq juasald Buisn Qy| pebeseay eary ussmiag uosiiedwo?) :gz's sinbi4

r
€0 €0 SZ0 A 510 10 00 0
+ 02
+ op
(P261) EBPIYSOA pPUE BIDY JV| ¥
(6861) e 18 81qR] QY| ™ 1 09
eleq juesaig Jyj & | /M S50°0=Er
+ 08
+ 00}
+ 0Z)
v 9
* v » s T OV
g ®
¢ + 091
L J

08l

(wyy) owi



96

CHAPTER 6

CONCLUSION

6.1  Introduction

In order to study the two-phase bubbly flow structure and to measure the
interfacial area concentration in large diameter pipes, the present work was performed.
Air-water upward-cocurrent flow was investigated in a 20 cm inner-diameter pipe at a
location with L/D = 42. Using a dual fiber optic probe, local flow parameters i.e. void
fraction, bubble velocity, bubble frequency, bubble diameter and interfacial area
concentration, were measured under a wide range of test conditions. The accuracy and
response of the fiber optic probe along with the whole data acquisition system and the
computer code were checked by photography using a high speed video camera.

Local distributions were plotted for each test and compared with selected existing
data for small diameter pipes. The following is a summary of the results obtained in the

present work:



97

6.2  Void Fraction, Bubble Frequency and Bubble Velocity.

Local void fraction ranging from 2.3 to 17.75 % and area-averaged void fraction
ranging from 3.44 to 12.7 % were detected depending on the test conditions and radial
position.

Increasing the water superficial velocity at constant gas flow rate decreases the
void fraction, and the bubble frequency, while it increases the bubble velocity. Any change
in gas or water flow rates significantly affect the core values of these three parameters and
slightly affect the near-the-wall values. The same effects were observed by increasing the
air velocity at constant water velocity.

The void fraction profiles are in good agreement with other profiles previously
obtained under the same test conditions in small diameter pipes except for the saddle-type
profile, which is frequently encountered in small diameter pipes under low area-averaged

void fraction conditions.

6.3  Bubble Diameter.

The bubble diameter profiles were almost flat with a uniform distribution within
the core region with increase in value near the wall. The two methods used to measure the
bubble diameter, direct average method and Uga’s statistical method, were in good
agreement. The bubble diameter was generally insensitive to changing the flow rate,
however, it increased with increasing the air velocity at constant water velocity.

The bubble diameters were generally smaller than those obtained in small diameter

pipes under the same flow conditions.
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6.4  Interfacial Area Concentration

Local IAC distribution profiles were obtained using bubble diameter-based method
and the method of Kaoaoka et al. (1985). The profiles were parabolic with lower value
near the wall.

Increasing the water flow rate under constant gas flow rate or decreasing gas flow
rate under constant water flow rate, decreased the local IAC values with a more
significant effect in the core zone.

The present work showed higher IAC values in large diameter pipes as compared
with data obtained under the same flow conditions in small diameter pipes. Also, it
showed higher area-averaged IAC than those predicted by applying the selected
correlations. The agreement with available small-diameter pipe data and correlations

improved at high gas and liquid flow rates.

6.5  Recommendations For Future Work.
As a continuation of this two-phase flow parameters investigation, the following

topics are recommended for future studies:

L Obtain a more comprehensive data base suitable for the development of design
correlations for bubbly flow in large diameter pipes.

IL. Study the applicability of the method of Kataoka et al. Measuring the IAC with
higher gas flow rates, or churn flow regime.

III. Study the effect of temperature change on IAC for large diameter pipes.
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Appendix A

Local Experimental Results For 20 cm Diameter Pipe
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Appendix B

Area Averaged Experimental Results For 20 cm Diameter Pipe
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