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ABSTRACT

The design of a nuclear power station to res~st the effects of

a strong motion earthquake represents'one of the most significant con­,
siderations confronting, the electric power generating industry today.,
The prevailing view in the ~uclear industry is 'that st~tures>are

. "

designed to remain essentially elastic and functionally-important equip­

ment to remain fUlly functional during and/or after an earthquake.

In seismic analysis of reactor buildings it is usual to consider

planar models along each of the two principal axes, and to independently

analyse ,the response of each model to the in-plane horizontal component

of ground motion. Analysis on this basis is strictly valid only for

structures with coincident centers of mass and rigidity. The lateral

and.torsiona~.motionsof the structure are coupled if the centers of

mass and rigidity do not coincide.

It is the purpose of this thesis to consider the torsional effect

in the seismic analysis of Nuclear Power Plant Reactor Systems and to

illustrate the effect of the lateral-torsional coupling on the equipment

response. The equipment response is represented by floor response spectra.

It is usually impractical to include such equipment in the dynamic model

representing the building structure because of the large difference be-

tween the mass of the equipment and that of the building. Therefore, the

equipment and the building are treated separately and the building re-

sponse are used as inputs for the equipment analysis.

A torsionally coupled reactor model is developed considering the

effect of eccentricities between the center of mas~ and the center of
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.;rigidity for each floor level of the corresponding uncoupled model, and

a detailed coupled analysis is investigated,' To consider the effect of

torsion, lateral floor spectra are developed for more than one location

on each floor level. Uncoupled and 'coupled lateral floor spectra are

presented for excitation due to several different earthquakes with the

.objective of evaluating the effect of torsional coupling and its in­

fluence on the equipment response.

The s~cond object of this study is to develop a simple procedure

to compute floor response spectra of the torsionally coupled rea~tor

building without a time-history analysis. And finally, the effect of

torsional ground motion is investigated, in which, a rotational time-

'history ground.motion is generated in addition to the recorded lateral

component and these two time-his~ory excitations are used as jnput motions

applied at the base of the torsionally reactor bUilding. The floor re­

sponse spectra are determined and analysed with the objective of evaluating

the influence of the estimated torsional ground motion on the response

parameters.
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CHAPTER I

INTRODUCTION

1.1 Seismic Design of Nuclear, Power Plant Structures and Systems

The design of a nuclear power station to resist the 'effects of a
"

~"ong motion earthquake represents one of the most significant conside-

rations confronting the electric power generating industry today. Earth-

quake motions induce inertial forces in alL parts of a structural system,

including the soil or rock underlying the &tructure, secondary components

including mechanical and,electrical systems, equipment and piping, and any

human beings present. Early approaches to the seismic design of nuclear

facilities included static loading coefficients of the seismic effect.

By the late 1950s d)~amic analyses were being performed on certain cri-

tical subsystems, including reactor core assemblies, piping, and some

heavy equipment.

'In the early 1960s, the first designs of a power plant incorpor-

ating seismic analysis were being prepared. By the late 1960s, dynamic

analyses of nuclear power plant structures and equipment had become

commonplace.

At the present time the seismic design of nuclear power plants

has become a sophisticated technique, and from ii, structural engineering

point of view a nuclear power plant is one of the most sophisticated

structures engineered by man.

From the standpoint of dynamic analysis of nuclear power plants

subjected to seismic disturbance, the plant structure can be divided

into two categories: namely, primary structures and secondary systems.
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This is necessary because it is not feasible,to formulate one mathematical

model which could, in addition to the primary structures, include all of

the equipment, piping systems and other light weight structures. Conse­

quently, it is necessary to consider decoupling'of the secondary system

from the primary system whenever feasible.

Some rules have been developed to determine the' conditions when

decoupling is possible ·(14). Usually, the basis of such decoupling is

the mass ratio (equipment to structure). Although a comparison of fre-

quencies is more appropriate, the problem is simplified by assuming reso-

nance conditions and then determining the corresponding mass ratio that

would justify decoupling. Recently, a family of new decoupling criteria

has been presented by A.i: and Duff (1,2). These new criteria are con­
I

sistent for any mass ratio and any frequency ratio.

In the analysis of the seismic response of an entire power plant

structure, it is essential to obtain:

1.

o..
the interaction effect of subsystems on each other, and

the detailed response of individual subsystems.

For example, if the reactor vessel and the turbine-generator build-
,

ing rest on a common foundation, the dynamic response of each is affected

by the presence of the other. Therefore, an analysis including the inter-

action is required to determine the response. The design of the reactor

vessel itself requires a knowledge of the maximum seismic stresses at

various points. Such information is obtained from the detailed response

of the vessel.

Calculations yielding the desired information are acco~ingly divi-

ded into two categories:
































































































































































































































































































































