
,MICROSTRUCTURE AND GROWTH OF A120 J

'ON Ni-Al ALLOYS

•

",

By

HAROUN HOHAMED HINDAM, B. Sc.

A Thesis

~
1
'!
'I
~
'1
i

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

May 1979



/ "
I

,

"'

MICROSTRUCTURE AND GROWTH OF Al 20 3

ON Ni-Al ALLOYS

, ...

,
)



DOCTOR OF PHILOSOPHY (1979)
(Metallurgy and Materials Science)

McMASTER UNIVERSITY
Hamilton, Ontario

. --'

TITLE : Microstructure and G~oWth
of A120 3 on Ni-Al Alloys

AUTHOR : Haroun Mohamed Hindam, B.Sc. (Cairo University)

SUPERVISOR: Dr. W.W. Smeltzer

NU~mER OF PAGES: xii, 168

ii

•



ABSTRACT

The oxidation proEerties of Ni-2, Ni-6 and Ni-32wt.lAl

alloys were investigated in one atm oxygen at the temperature

range 1273 to 1573 K. The reaction kinetics were determined

thermogravimetrically and by layer thickness measurements. The

reacted specimens were analyzed using light microscopy, X-ray
.

diffraction, X-ray topography and electron metallographic.
techniques (TEM, SEll, EP~IA and AES). Particular interest was

given to the growth of 1'.12°3 on these alloys,

Ni-2wt.lAl alloy oxidizes parabolically, at a rate

one order of magnitude larger than pure Ni, giVing rise to a

scale consisting of an outer AI-doped Nio layer, an inner
I

lliO-NLl\1204 layer and an A1 20 3-alloy internal »recipiti!.tion

zone. The growth of the 1'.1 2° 3 rodlike precipitates, which is

interpreted by a NiO/Al(alloy) solid state displacement reaction,
.

is controlled by oxygen diffusion through the Al-depleted alloy

in the precipitation zone. The increage in the reaction rate

is attributed to the doping effect of dissolved 1'.1 on NiO and

the hign affinity of 1'.1 for oxygen resulting in internal pre-

cipitation.

The oxidation kinetics of Ni-6wt.%Al alloy are irrepro-

ducible due to the formation of an imperfect 1'.12° 3 scale con­

taining NiO nodules, localized at alloy grain boundaries, be-

neath which 1'.1 2° 3 is precipitated internally. The transition

from internal precipitation to continuous 1'.12°3 formation is
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,i.l?-terpre ted. by a model involving the "impingement 6f favorably
., ..... '" - ...

oriented rodlike precipitates and lateral diffusion of Al from

the impingement sites to neighboring regions of the precipitation

front. The steady oxidation stage is cOntrolled by thickening

of the A1 203 film.

The initial sub-microcrystalline film, which is formed

on Ni-32wt.%Al alloy, "recrytallizes" subsequently to a-A1 20 3

giving rise to a well orienfed film containing regions of dis­

arrayed polycrystalline oxide. Inert marker measurements indi-

cated that the initial .film grows by inward oxygen diffusion.

The metallographic observations on the growth of the recrystal-

lized a-A1 20 3 scale are consistent with counter-current Al and

oxygen boundary diffusion in the. disarrayed oxide and outward

Al la·ttice. diffusion in the oriented film. Accordingly. the

growth of ~~is scale was interpreted by a short-circuit dif-

fusion model involving simultaneous reactants lattice and

boundary diffusion .
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CHAPTER 1

INTRODUCTION

t:
Nickel superalloys find wide applications as construc-

tion materials for gas turbine engines either for aircraft or

industrial applications, coal combustion furnaces arid high

temperature reactors for electric power generation. In this

environment, the alloys are subjected to severe corrosive con­

ditions'resulting from hot oxidizing gas. Alloys operating in

such envi~nt must fulfill two major xequirements : high

mechanical and corrosion resistances.

Mechanical resistance is achieved by precipitation

hardening with (Ni 3 (Al,Ti)} phase, called gamma prime, which

. . h' l' th . (1) f 1
prec~p~tates co erent y ~n e matr~x . Re ractory meta s

are added to act~as solid solution strengtheners(1). The pre-

sence of carbides of Ti, Cr and refractory metals inhibits

grain boundary sliding and improves creep resistance(1). Dis-

persion hardening with oxide particles or fibres also contri­

butes to the strength of the alloys(2,3).

Oxidation resistance is achieved by incorporating metal-

lic elements which can be selectively oxidized to form a conti-

nuous, adherent and slow-growing oxide film. Cr, which forms a

protective Cr20 3 scale, is the most frequently used metal for
•

this purpose. However, at high temperatures and in oxygen at­

mospheres, the formation of volatile oxides of cr(4)deteriorates



,

•

2

/
the oxidation resistance of the alloys. This phenomenon is en-

'--.

hanced cruring service due to thermal fluctuations and high flow'
~

rates of oxidizing gases. Al is a potential competitor to Cr

in this respect, since volatilization of,A1203 in oxidizing at-

h ' " 1 (5) d d' ff' , th' 'd' h 1mosp ere ~s ~n~ma an ~ us~on ~n ~s o~ e ~s muc s ow-

e~ than in cr20 3 under the same experimental conditions (6,7) •

Considerable effort has been made to achieve each of'

these two' properties independently. As a result, it is neces-

sary to apply a coating on high streng~h alloys to form a compo­

site' system which c?mbines corrosion resistance wit~ mechani­

cal strength, Nickel aluminide coatings based on the interme-

tallic phases Ni 3Al (y') and NiAl (e) have been successfully

d ' th' f' d(8-15) "use :Ln ~s ~el . In ox~diz~ng environments , a pro- .....

tective A1 20 3 film is formed.

The objective of this research is to study the mecha-

nism of growth of A1 20
3

on Ni-Al alloys at high temperatures

in oxygen atmospheres. Depending on the experimental condi-

tions, A1
2
0

3
may

nuous protective

form as internal precipitates
j,

f
' (16) . l' ,
~lm . Part:LCU ar :Lnterest

or as a conti-

is given to

the latter case since the growth of a protective A1 203 on al-

loys

sial

containing Al has been the subject of several controver-
, ,(16-29)
:Lnterpretat~ons • A major problem encountered in

the task of elucidating oxide film growth is the identifica-

tion of the mobile species responsible for its thickening. In

the present study,a new method, which is based on inert markers

and a surface sensitive electron spectroscupy technique (ABS),




























































































































































































































































































































































