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Abstract

The studies presented in'this thesis are the first attempts

to compare in a comprehensive manner the basic eJJl:trical and mechanical

properties of the two muscle layers of the small intestine of the

rabbit. a species that showed electrical control activity (ECA). The

activities of the two muscle layers were ~istinctly different. Cells

in the longitudinal muscle layer (LM) were spontaneously active with
......

action potentials occurring on every control potential (CP). Similarly.

muscle strips dissected alon-g the long axis of LM (LS) contracted spon-.

taneously at the same frequencies as the ECA.. Cells of the circular

muscle layer (CM) usually did not exhibit spontaneous spiking activity

although ECA was also present.

The characteristics of the ECA of the two muscle layers from

the same muscle strips were similar in terms of amplitude. frequency.
,

and their response to temperature change and external electrical stimu-

li. How the ECAs of the two muscle layers interact was investigated in

1i gh t of the hypothes i s that LM is the site of ori gi n of ECA and that

the ECA in CM is the result of electrotonic spread from LM (Bortoff.

1961. 1976; Connor. Kreulen. Prosser & Weigel. 1977). This hypothesis

was tested directly in this study by measuring electrotonic coupling

between the two muscle layers; It was found the there was little

electrotonic interaction between muscle layers. Therefore. the result

of this study is not consistent with the existing model in regard to

the origin of the ECA.
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Study of the control of muscle function by the intrinsic nerves

LM wasalso3ed drastic differences between 'the two muscle layers.

innervate by cholinergic 9lH~If'to~t-nerves and possibly by an

ory al system. eM, three types of neural excitatory events were

identified in addition to the powerful non-adrenergic inhibitory nerves.

"Besides the familiar cholinergic excitatory nerves, a tetrodotoxin-re-

sistant component and an excitatory response that emerged only' after

prolonged repetitve stimulation was.also observed. The neurotransmit

ters for these two excitatory neural systems remain to be identified.

The results of this study indicate that the properties of the

two muscle layers of the small intestine are very different. Nonethe

less, normal physiological function of the intestine requires good

coordination of the two muscle layers. The exact role of the indivi

dual l~yers in motility is not well d\fined. How these two muscle

layers each with its separate neural,Jhormonal and local control mech

anisms interact to produce the final intestinal motility pattern will

be a challenging problem in the future.
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General Introduction

The muscularis ext,ema of the small intestine' carries out the

essential motor functions of mixing the intestinal contents and the

-Ifransport ~f these' con~nts aborally in a ~eil synchronized maler.. -', \

Motility of the small intestine is difficult to study, and the

.;:/ statement that "on no subject in physiology do we meet with so many

discrepancies of fact and opini,on as in that of the physioiogy of

intestinal movements" (Bayliss & Starling, lB99) still holds true

to-day.

The problems in the study of intestinal motility are many.

As will be dealt with in more detail in the sections which follow,

the main reasons include: 1) the variation between animal species;

e.g. 'guinea-pig, a popular experimental animal,_ is different from

most other animal species in not having the basic rhythmic

oscillation of the muscle cells, the electrical control activity

(ECA); 2) the small size of the muscle cells and the orientation of

the muscle layers make it difficult: to study with many of the

techniques commonly used in other systems; 3) the complexity of

the motor activity of the intestine which is modulated by neural,
/'

hormonal and other local factors such as prostaglandins.

In this study, I attempt to define the basic properties of

the two muscle layers of the muscularis extema, and the role of

intrinsic nerves in influencing their activities. Using intracellular

recording techniques, the activities of the cells of each of the two

layers can be directly compared. To eliminate as many variables as

1
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. possible, in vitro recordings from intestinal strips were made. Such

preparations are devoid of extrinsic neural influences and probably

not greatly affected by gastrointestinal (GI) hormones. After fi rst

establishing the basic properties of the muscle layers in isolation,

the action.of different modulating factors can be studied. In this

project, only the role of the intrinsic nerves was studied. In the

future studies with prostaglandins and GI hormones using a similar app-.

roach will yield valuable information as to the mode of actfon of

these agents on the muscle layers. Finally, the interaction of all

these factors. as' encountered under in vivo conditions, in modulating

intestinal motility may then be lTIOre clearly defined.



1
The Anatomical Features of the Intestinal Smooth Muscle

The smooth muscle cells of visceral organs are small. They

are about l50\l in length and 2 to 3.5\l in diameter at the relaxed state

(Lane, 1965; Prosser, Burnstock & Kahn, 1960). Their nuclear and

cytoplasmic contours are smooth. As the cells contract, they become

,t' ellipsoid and invaginations are observed at points of lTlYofilament

attachment to the plasma membrane; these alternate with membrane

vesi cle-containing projections of the intervening membranes. The

nuclei of the contracted cells are shortened to 70\l in length and

the diameter increased to 6\l'(Lane, 1965).

There are three layers of slIDoth muscle cells in the small

intestine. The o~terlIDst layer of muscle cells is oriented long

itudinally, and the underlying layer is oriented circularly. These

two layers make up, the muscularis externa which is primarily responsible

for motor function of the' gut. The thi rd muscle layer,. the muscularis

mucosae, lies closest to the lumen. This muscle layer is not directly

involved in the propulsive function of the intestine.

The smooth muscle cells are aggregrated in bun'dles or sheets

that are surrounded by connective. tissues (Schofield, 1968). The cir

cular muscle coat is thicker than the longitudinal muscle. In the

rabbit duodenum, the circuiar muscle is 65\l thick compared to 32\l

in the longitudinal muscle (Prosser, 1973). The circular coat is

cor.lposed of encircling bundles of muscle cells, these bun'dles vary

from 100 to 400\l in diameter and are connected to each other by regions

of anastomosis; i.e. by smaller bundles which leave one large bundle

3




























































































































































































































































































































































