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ABSTRACT

'.
The nature of the dislocat\on substructure developed at. large

~ strains in single crystals of aluminum has bee~ studied. Tpe detailed

characteristics of the substructure have been studied as functions of

..

study ,the i~flU~,

ence of the stability of orientation on the nature of ,the diSlocation' .~

(a) strain, up to compressive strains of 1.0 and (bl crystal orienta

tion. The crystal orientations have been selecteafto• <

substructure developed during deformation.
-"

The Bishop-Hill and yield subsurface analyses have been adopted

to predict the· operative slip systems. Applicability of these methods

to large strain deformation studie~ has been discussed.
,

Results of the present study emphasize the influence exerted by

crystal orientation via the nature of operative slip systems and the

extent of homogeneity of slip on the extent of dynamic recovery and

the resulting dislocation substructure. Development of high angle

boundaries in the as-deformed condition in crystals deformed to large

strains, is associated with inhomogeneity of slip. Origin of these

high angle boundaries during. deformation and their role in subsequent

recrystallization process have~~n discu~ed.
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