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ABSTRACT

The purpose of the present investigation was to examine the nature of the timing
mechanisms used by humans in two very distinct tasks and to determine whether there
was any evidence to suggest that there was a common timekeeper. The duration
discrimination experiment involved the presentation of a train of isochronously spaced
auditory pulses with the interval between the last two pulses either slightly longer or
shorter than the interval between any other two immediately successive pulses. The
subject was instructed to make a judgment as to whether the final interval was long or
short relative to the preceding intervals. This task was patterned after Kristofferson's
(1980) many-to-few duration discrimination task which did not incorporate an explicit
pulse train preceding the test stimulus. The second task, which was modelled after Wing
(1973), involved two phases of repetitive finger tapping. In the first phase, a train of
auditory pulses was presented to the subject and the subject was instructed to tap a Morse
telegraph key in synchrony with the pulses. The second phase was a continuation of the
first in the absence of any pulses. Subjects were instructed to continue tapping at the rate
defined by the exogenous pulses in the synchronization phase.

The main reason for using the pulse train duration discrimination method was to
evaluate the role of using an explicit standard in the context of duratior discrimination.
Using Kristofferson's (1976) Real Time Criterion Model to obtain variance estimates of
the internal timekeeper, it was possible to determine how those estimates changed with
changes in the base duration. The function relating variance to base durati-on is flat over
short base durations and rises in accord with Weber's law over longer base duration.
This is in contrast to earlier findings with the same subject and similar amounts of

practice in which the implicit standard many-to-few method of duration discrimination
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was used. In that experiment a quantal step function emerged (Kristofferson, 1980).
This difference implies that the nature of the stimulus plays an important role in the
functioning of the internal timekeeper. More specifically, it appears that implicit
standards elicit a quantal timekeeping mechanism whereas explicit standards elicit a non-
quantal timekeeping mechanism. Explicit standards appear to elicit timekeeping
mechanisms that obey Weber's law.

Weber's law also characterizes the relationship between the variance and mean of
the internal timekeeper in the continuation phase of the finger tapping experiment. Afier
extensive and concentrated practice, it was shown that the above relationship is better
described as being linear in timekeeper standard deviation than in timekeeper variance.
Since no stepwise increments occurred in these functions, it seems unlikely that a quantal
timekeeper is involved in the timing of interresponse intervals. Thus, the statistical
principle of timing appears to apply to both explicit standard duration discrimination and
the timing of repetitive finger taps in the form of a proportional standard deviation
model.

Although Weber's law better characterizes the tapping functions in gencral, one
subject's bias corrected timekeeper variance versus mean function is very similar to his
step function obtained in a many-to-few duration discrimination task. This similarity
suggests that the motor timekeeper may have gquantal characteristics under some
circumstances and that the perceptual timekeeper may be related to the timekeeper
involved in motor moven.ent. |

A second reason for using the tapping paradigm was to evaluate Wing's (1973)
Two Process Model over a wider range of base temporal intervals. In this regard all of
the predictions of the Two Process Model were upheld when it was applied to_the short
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base temporal intervals (T less than or equal to 466 msec) but a major predicton of the
model often was not borne out when the model was applied to longer base intervals
(greater than or equal to 734 msec). It was concluded that it is appropriate to apply the
model to evaluate tapping performance using base intervals in this shorter range, but that
its application to base intervals in the upper range is probably inappropriate.

Although the synchronization phase of the tapping paradigm has been used in the
past primarily to start and set the motor timekeeper for controling continuation phase
tapping, it was here evaluated with the use of the Stimulus as Clock Model. This new
model, which has its roots in the Two Process Model, evaluates synchronous
interresponse interval tapping performance. The model accurately predicts one major
characteristic of the timing of synchronization phase timing of interresponse intervals.
However, its utility in terms of helping one understand the nature of the internal
timekeeping process is limited.

The role of concentrated practice was examined in the context of both
experimental paradigms. In both, practice steadily and significantly reduced variability
in performance. Such a reduction played a major role in the shape and location of the
variance functions and thus in estimates of various parameters.

Results of the two experiments are discussed with reference to previous
investigations of response-stimulus synchronization with an attempt to integrate the
vastly different results on a theoretical level. This discussion led to a new method by

which to generate various parameters of the internal timekeeping mechanism.
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GENERAL INTRODUCTION

Human beings live in a complex, dynamic, and demanding environment. To
adequately cope with the many demands facing them they must accurately perceive
events taking place around them and behave appropriately with respect to those events.
It is generally accepted that such behaviour is the result of processing at three structurally
and functionally distinct stages in the nervous system. The afferent system processes the
external stimuli via a sensory organ (transduction) and then transmits the result along
afferent pathways to the next stage, the central processor. The central stage is commonly
referred to as the decision process as it is there where judgments are made and all higher
level information processing takes place. Once a decision to act has been made, a signal
is sent from the central processor to the efferent system. This last stage transmits the
information it receives to the skeleto-muscular system which is mobilized to generate the
response. All three stages have space, energy, and time requirements and constraints, so
an analysis of behaviour would require specifying the parameters of all those
requirements, and their interrelationships, at all stages of processing. A limited approach
might be to specify the characteristics of only one. This limited approach is adopted in
this thesis with the temporal characteristics of behaviour being the focus of investigation.

For centuries, answers to questions concerning the temporal characteristics of
behaviour have been sought. In a comprehensive review of early thought on timing
Nichols (1891) reviewed timing hypotheses which date back to Aristotle. Philosophical
explanations of psychological time gave way to experimental investigations during the
second half of the 19th century. At that time philosophical hypotheses were replaced by

organically based ones. They, in turn, were being investigated by empirical observation
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and the scientific method. The transition to the scientific investigation of psychological
phenomena was, in great part, due to G. Fechner, the founder of psychophysics.
Fechner's (1860) important insights led to the indirect measurement of psychological
phenomena and they opened the way for future scientific investigations of human
behaviour,

Shortly after the inception of the scientific inquiry of psychological phenomena, a
wave of investigations began which spawned many new experimental methodologies.
Allan (1979) reviewed some of those that are used in the study of time perception and
identified two major categories; duration scaling (DS) and duration discrimination (DD).
In the method of DS, a subject (8) is queried about the duration of several clearly distinct
stimuli usually in an attempt to measure the magnitude of the subjective duration.
Examples of methodologies belonging to this category are magnitude estimation,
category rating, ratio-setting, and synchronization (Allan, 1979). In many but not all
methods subsumed under the heading of DS, the timing of a motor response is an integral
part of the task. For present purposes they will be called "motor timing" tasks.

DD differs from DS in that S must discriminate among indistinct or ambiguous
stimuli. Examples of methodologies under the DD heading are the method of
comparison, the method of single stimulus, identification, and the many-to-few method
(Allan, 1979). With rare exceptions, the timing of a response is not a critical component
of DD tasks; a judgment is made and sometime later, the length of time is unimportant, a
response is made. These tasks will be referred to as "perception” tasks.

Using these new experimenial methods researchers conducted many studies to
determine, for example, the method, the stimulus modality, the stimulus intensity, or the
stimulus duration, that produces the best (most accurate and most precise} results (see
Allan, 1979 for an excellent review of this research). But investigations using motor

timing and perception tasks were generally conducted separately, presumably because it



was assumed that different and unrelated processes mediate performance in each.
Undoubtedly a lack of theorizing contributed to the absence of attempts to relate
performance between them. However, several lines of evidence suggest that the
underlying processes may be related. Lashley (1951), for example, observed persons
listening to a musical rhythm and noticed that they tended to start walking, talking, and
even breathing in time with it. Such an interaction between perceptual and motoric
phenomena strongly suggests the non-independence of the underlying temporal
processors. Based on this and other examples of rhytiumic actions (e.g., in music, speech,
and typing) and of spatial orientation, Lashley (1951) concluded "...that there exist in the
nervous organization, elaborate systems of interrelated neurons capable of imposing
certain types of integration upon a large number of widely spaced effector elements; in
the one case transmitting temporally spaced waves of facilitative excitation to all effector
elements; in the other imparting a directional polarization to both receptor and effector
elements. These systems...contribute to every perception and to every integrated
movement" (p. 127-128). He further summarized his thoughts by stating that "every bit
of evidence available indicated a dynamic, constantly active system, or, rather, a
composite of many interacting systems" (p. 135). Lashley (1951) emphasizes two
important points. The first point is that both perceptual and motoric behaviours are
mediated by central mechanisms and the second is that these mechanisms are
interrelated.

More recent experimental evidence addressing the question of the relatedness of
the underlying processes mediating the perceptual judgment of duration and the timing of
respcnses in motor production tasks has been carried out by several investigators (e.g.,
Keele & Ivry, 1987; Keele, Pokomy, Corcos, & Ivry, 1985; Pokorny, 1985; Wing, 1980).
Wing (1980) and Pokorny (1985) show that a brief auditory stimulus can interfere with

the timing of an ongoing motor task. This observation suggests that the timing systems



underlying duration perception and the timing of motor movements might be related. Of
course it is possible that the same system mediates timing in both duration perception and
motor movements. This latter, stronger position, is the one adopted by Fetterman and
Killeen (1990) in their evaluation of Killeen and Weiss's (1987) Optimal Timing Model
(OTM).

There is, however, another, more compeliing line of evidence that leads to the
same conclusion. It is the measurement of performance using several DD and DS
methods to identify general principles of timing. Evidence emerging from this approuach
indicates that some timing principles are common to both perception and motor
production tasks.

A comprehiensive understanding of human timing abilities will require much more
than specifying whsther or not the underlying processes are related or whether the same
principles are operative in different tasks. It will require the specification of all structural
and functonal characteristics of the system and how they are affected by internal and
external conditions. In this context many organic and psychological mechanisms have
been proposed as being temporal mediators of behaviour (e.g., Michon, 1967; Kristan,
1980). But since unequivocal links between those mechanisms and human temporal
abilities have not been made, the emphasis in research has shifted to the investigation of
the properties of hypothetical processes.

Many theories of psychological time are based upon the idea that psychological
time is a function of an internally generated, clock-like, periodic time base originating
from within the central nervous system (CNS). The better theories give rise to specific
quantitative models of behaviour which make testable predictions about performance.
Most of those predictions specify the characteristics of the distribution of psychological

duration over a range of stimulus values. In addition, they may outline how various



parameters of these distributions are related to one another or how they are affected when
experimental conditions vary.

By comparing statistics obtained from perceptual and production tasks to each
other and to theoretical predictions, more can be learned about the underlying timing
principles which govern them. As a result we can further our understanding of the
processes involved.

There are limitations to this comparative approach. Different experimental
paradigms have different sources of variance associated with them. They may, for
example, involve different stages of processing that contribute to variability in
performance. All of these sources of variance must be accounted for, and estimates of
variability made if we are to move toward an understanding of the component processes
involved. Comparing estimates of variability among different methods is of questionable
utility if they contain multiple sources of variability.

In light of the preceding discussion, the approach taken in the present
investigation is to compare performance from two experimental paradigms; a perception
experiment (using a specific DD paradigm) and a motor timing experiment (using a
repetitive finger tapping DS paradigm). The theoretical bases upon which the variability
in performance from both paradigms may be decomposed into all their component parts
already exist. Thus, it should be relatively straight forward to compare parameter
estimates between them to bring evidence to bear on the temporal nature of the
underlying processes invoived.

In the next section, a selection of theories of human DD and several important
issues that those theories address will be reviewed. A similar review of theories and
issues of motor timing follows. In the last section, an outline ot.' the rationale and specific

goals of the present investigation will be provided.



INTRODUCTION TO DURATION DISCRIMINATION

In recent history many major trends in experimental psychology have been
heavily influenced by the Information Processing Paradigm (IPP; Michon, 1985). In
general, a model based on the IPP consists of a series of components through which
information passes and is processed. At a fundamental level these components are 1)
sensory stores, 2) short-term memory, 3) long-term memory, and 4) a decision/response
production centre (e.g., Gleitman 1981; Spear, Penrod, & Baker, 1988; Church &
Broadbent, 1990).

The application of the IPP to time perception has been extremely fruitful as it has
generated many new models (e.g., Creelman, 1962; Treisman, 1963; Kristofferson, 1977;
Treisman, Faulkner, Naish, & Brogan, 1990; Gibbon, Church, & Meck, 1984; Church &
Broadbent, 1990) to name just a few. Most of these models are similar in that they
consist of the basic components of the IPP mentioned above. At the core of these models
is the time base, which is generally thought to be a flow of successive signals that are
generated by an internal "clock” or pacemaker. These signals are sent to a counter (or
accurnulator) which is provided with a switch to gate the flow of information entering
into it. Following the counter, information is transferred to a memory store and then on
to the comparator.

Models that are based on the IPP for timing differ in where they place variability
in the system in order to account for variability observed in behaviour. In some models
there is only one clock with its time base being either constant (e.g., Stroud, 1955;
Kristofferson, 1967) or variable (e.g., Treisman, 1963). In other models there are
multiple clocks each having a different period (e.g., Church & Broadbent, 1990) or
multiple pulse sources that fire at random and independently of one another (e.g.,
Creelman, 1962). Some models also place variability in the counter (e.g., Kristofferson,

1980; Killeen & Weiss, 1987) while others place it in higher processes such as memory



or attention (¢.g., Allan & Gibbon, 1984; Ornstein, 1969). In general, models based on
the IPP for timing have provided excellent quantitative descriptions of time perception
data. Because of this success in accurately representing time perception data the IPP has
been widely accepted and has become the standard approach used by investigators in the
field (Church & Broadbent, 1990). The following review will be limited to models based
on the IPP.

INTERNAL CLOCK MODELS

STROUD'S PERCEPTUAL MOMENT HYPOTHESIS (PMH)

One of the first hypothetical process models to attempt to account for temporal
information processing is Stroud's (1955) Perceptual Moment Hypothesis (PMH).
According to the PMH, physical time is continuous in nature whereas psychological time
is discrete. A physical stimulus of duration T is processed and transformed into a
sequence of identical units of psychological time "moments”. Stroud (1955) described a
moment as "the least possible timewise element of experience” (p. 180) and stated that
each successive pair of moments is delimited by a point in time called a "date", (Stroud,
1955).

Stroud (1955) never discussed the PMH in the context of DD but a simple model
of it could be developed. S should be able to judge whether a test stimulus is longer or
shorter than a standard by comparing the number (n) of "dates" spanned by the test
stimulus to a criterion number, ng, that corresponds to the number spanned by the
standard. In order to do that it must be assumed that S can accurately count the number
of dates that occur during the test stimulus and base the judgment on a comparison
between it and ne. Of course, it follows that if n is greater than or equal to nc then the
stimulus will be judged as being longer than the criterion.

From such a simple model it follows that the psychometric function should be

linear in shape. The psychometric function describes the relationship between the



probability of judging the test stimulus as long (P(L)) relative to the standard, as a
function of the difference in duration between them (8T). But because psychometric
functions in DD typically are sigmoidal in shape, and not linear as predicted by the model
based on the PMH presented above, that model and the theory that gives rise to it must be
rejected. A valid theory of DD must lead to the prediction that variability in judgments
of duration will result in a sigmoidal psychometric function.

Creelman (1962) developed a model that predicts a sigmoidal psychometric
function. Both Creelman's model and Stroud's PMH assume a perfect internal pulse
counter but Creelman's (1962) Poisson Counter Model (PCM) is based on the idea that
the durations between internal pulses (events which are similar to Stroud's dates)
randomly vary. This internal variability results in a change in the characteristics of the
distribution of the number of pulses counted during the presentation of a test stimulus.

CREELMAN'S POISSON COUNTER MODEL

Creelman's (1962) model assumes that there exists a large number of independent
pulse sources, or elements, and that each has a fixed probability of "firing” per unit time.
Second, it assumes that there is a counter mechanism that precisely counts the number of
firings that occur in the source between the onset and the offset of a stimulus. As with
most internal clock models, the PCM assumes that the perceived duration of a stimulus
depends directly on that count; the higher the count the longer the apparent duration of
the stimulus.

According to the PCM, variability in subjective duration results from the random
firing of elements, The PCM makes the assumption that the intervals between successive
firings are exponentially distributed. Given that these intervals are exponentially
distributed, statistical theory requires that the number oi‘ elements firing during a given
interval of time (T), and therefore the count registered in the counter, should be Poisson

distributed with mean and variance equal to AT, where A is the average rate of element



firings (Creelman, 1962). If the only source of variance is in the element firing
mechanism, a major prediction of the PCM is that the variance of the number of counts
over a given interval (and therefore the variances of the temporal estimates) should
increase in proportion to T. Furthermore, since the Poisson distribution rapidly
approaches the Normal distribution as AT increases, a second prediction of the PCM is
that psychological duration should be approximately normally distributed. This
prediction specifies that the psychometric function should be sigmoidal in shape because
the cumulative form of the normal distribution is a sigmoidal function.

Creelman (1962) tested his model against auditory DD data and reported good
agreement between theory and data. His experiments were concerned with the ability of
human subjects to discriminate two successive auditory stimuli that differed slightly in
duration. The shorter stimulus was T msec in duration and the longer stimulus was T +
ST msec, where 8T is a small fraction of T. On each trial stimuli were presented
randomly with respect to order with each being approximately equally likely to be the
first presented. Throughout all experiments there was an inter-stimulus-interval (IST) of
800 msec, with ISI being defined as the duration of the interval between the offset of the
first stimunius and the onset of the second. This is known as the two-alternative forced-
choice (2AFC) procedure.

In the 2AFC procedure S is required to identify which of the two successively
presented stimuli is longer or shorter. That decision depends on a comparison of the
number of counts accumulated over the duration of each stimulus. Creelman (1962)
models the decision making process on the constructs of Signal Detection Theory (Green
& Swets, 1966). Each stimulus has associated with it a distribution of counts, which as
stated earlier, is approximately normally distributed. Since 8T is very small relative to T,
the distributions of counts will overlap to some degree. Under conditions of ambiguity

such as these, S makes a judgment based on a comparison of the counts registered during
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each stimulus. If the count {c) corresponding to the stimulus of duration T is less than
the count (c2) cormresponding to the longer stimulus then the longer stimulus will be
correctly identified as the longer of the two. Likewise, if ¢ is greater than c2 then the
shorter stimulus will be erroneously identified as the longer of the two. In the rare event
in which c] equals ¢z, presumably S guesses which one of the two stimuli is longer.

Applying his model to an auditory DD task Creelman (1962) reports good
agreement between theory and data when 8T was greater than 5 msec. However, below
that level the model failed to accurately predict behaviour; discriminability deteriorated
more rapidly than predicted.

Following Creelman's (1962) lead, several quantitative models were developed in
an attempt to account for performance in various temporal paradigms. The deveiopment
of those new models was made possible by the emergence of alternative theories about
the nature of psychological time.

TREISMAN'S MODELS

In common with Creelman's PCM, Treisman's (1963) internal clock model
assumes that subjective time depends upon the accumulation of internal pulses generated
by an internal clock. However, Treisman's model differs from Creelman's in an
important way. According to Treisman's model there is only one pacemaker, or pulse
generator, and that a specific arousal center can influence it by modifying the rate at
which pulses are produced. Of course Treisman's model maintains all the other major
components of a clock-counter model (i.e., short term memeory, counter, comparator,
etc.).

Treisman (1963) evaluated his model and showed that it accounted well for two
empirically based psychophysical phenomena. First, with some additional assumptions
his model accurately predicts the linear generalization of Weber's law and provides

meaningful interpretations of the constants of that model. Second, Treisman (1963)
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shows how his model accounts for the overestimation of short intervals and
underestimation of long intervals, a phenomenon known as constant error.

Recently Treisman et al. (1990) presented a revised internal clock model that
includes a modified temporal pacemaker. The new temporal pacemaker consists of a
temporal oscillator that emits pulses at a regular frequency and a calibration unit that
receives the output from the oscillator. The calibration unit transforms the signal it
receives into an output that is fed into the other components of the internal clock. The
temporal oscillator provides a stable reference frequency that serves as a clock to ail
sensory and motor systems. The reference frequency is, for the most part, fixed, but the
temporal oscillator is subject to specific arousal from strong sensory input. Such arousal
would result in perturbation of the functioning of the oscillator. However, in general,
modification of the pacemaker output comes about by mechanisms acting on the
calibration unit. This "calibration factor" may be set by central sources or by sensory
input,

Using a computer simulation technique, Treisman et al. (1990) derived several
predictions from their model and, then, from a set of time estimation experiments using
human subjects, tested those predictions. Their experimental results support the model
and estimates of the frequency of the oscillator were on the order of 24.75, 37.3, and 49.5
Hz. These frequencies translate into clock periods that are approximately equal to 40, 27,
and 20 ms. respectively.

Treisman's et al. (1990) model is impoi'tant because it provides some support for
the existence of an internal temporal oscillator and hence the internal clock hypothesis.
All of the models discussed this far (e.g., Stroud, Creelman, and Treisman's) are internal
clock models with each being based on the proposition of a dedicated internal clock, or
structure, whose function is reserved entirely for temporal information processing. Other

internal clock models rest on entirely different assumptions and propositions, some of
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descriptions of empirical data and sometimes provide similar estimates of the parameters
of the internal clock. One non-dedicated internal clock model was originally developed
by Kristofferson (1967).

KRISTOFFERSON'S QUANTAL THEORY OF INTERNAL TIME

Kristofferson's (1967) quantal theory of internal time states that the "...temporal
integration of the data processing activities of the human central nervous system is
achieved through the control of a 'clock’ which generates a succession of equally spaced
points in time", (p. 93). Each time point is thought to be separated from the next by an
interval of about 50 msec, a duration which was defined as the time quantum, q. Because
the time points are the product of an internal process they are assumed to be temporally
unrelated to external stimulation. These are the main components of Kristofferson's
quantai theory of time,

Kristofferson (1967) suggested that the time points serve two main functions.
First, they define a limitation of one's ability to switch attention from one “input
channel" to another, where an input channel is described as "a set of all possible
messages which can be admitted simultaneously into the central processor”, (p. 94).
Only one channel can be attended to at any given moment and attention can switch to
another channel at the time point instants, but never between them. In connection with
this function it is assumed that an unattended channel can cause the attention mechanism
to switch to it thereby admitting the message it contains into the central processor.
Hc;wever, when a switch does occur there will be a delay associated with the transfer of
information into the central processor. Second, the time points control the flow of
information between stages within the central processor. Specifically, they determine
when information can be transmitted from one_stage to the next. Internal time then, is

thought of as a continuous variable but variability in it is caused by a quantal process.
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Kristofferson (1967) conducted two experimental investigations to evaluate his
quantal theory of time. In the successiveness discrimination study Ss were presented
with two pairs of stimuli on each trial. The synchronous pair consisted of a light-sound
combination in which their onsets and offsets occurred simultaneously. The
asynchronous pair was different in that the offset of the light occurred t msec before the
offset of the sound. The two pairs of stimuli were presented in random order and the S
was instructed to identify which pair had asynchronous offsets.

Kristofferson (1967) defined the function relating the probability of correctly
identifying the asynchronous pair vs. t as the successiveness discrimination function.
According to Kristofferson's (1967) theory of internal time, the successiveness
discrimination function is predicted to be linear in shape. Furthermore, assuming that
afferent latencies are equal for auditory and visual stimuli, the function should rise from
t=0, when the probability of making a correct identification equals 0.5, to t=M, when that
probability equals 1.0. The measure M should provide an estimate of the duration of q.

Kiristofferson (1967) found that the successiveness discrimination function was
linear in shape but that it was shifted about 10 msec to the right. That shift was
interpreted as the difference in auditory and visual afferent latencies - in this particular
case indicating that auditory afferent latencies were, on average, 10 msec faster than their
visual counterparts. More important however is the magnitude of the estimate of q.
Kristofferson (1967) reports that, on average, M was equal to 54 msec.

The second study reported by Kristofferson (1967) used a reaction time (RT)
paradigm. The same auditory and visual stimuli that were used in the successiveness
discrimination experiment were used in the RT experiment but only one was presented
on each trial. Two conditions were defined: In the certain condition Ss knew which
stimulus modality was about to be presented so they could attend to the appropriate

channel. In the uncertain condition Ss knew that the reaction stimulus could be either
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visual or auditory but did not know which. Ss were instructed to respond as quickly as
possible to the stimulus on each trial.

Using the RT method Kristofferson was able to measure an effect of channel
uncertainty on response times. That measure, which was symbolized by K, can be
interpreted as being equal to the increment in time that is added to the process as a result
of uncertainty. According to the theory, that increment should be the same regardless of
stimulus modality since the time required to switch attention from one channel to another
is under the control of the internal periodic process. Kristofferson (1967) showed that K
was the same for both modalities and that it was equal to approximately 53 msec on
average, in excellent agreement with his successiveness discrimination results.

One more measure obtained from Kristofferson's (1967) RT study is pertinent to
the present discussion. By modelling the distribution of response times obtained under
the condition of certainty, Kristofferson estimated the duration of the quantum. That
estimate was called Q and it equalled 53 msec. Thus, from three different behavioural
measures and from two different experimental tasks Kristofferson (1967) provides
evidence supporting 1) his quantal theory of internal time and 2) his ideas about how
attention switching is related to the period of the internal clock.

Kristofferson's (1967) quantal theory of internal time lent itself to the
development of quantitative models of successiveness discrimination and reaction time.
The general nature of the theory should permit it to give rise to the development of
quantitative models to account for pérformancc in other experimental paradigms such as
duration discrimination. A model based on Kiristofferson's theory should, at the very
least, reflect the quantal nature of psychological duration. Kristofferson (1977)
developed such a model which accounts well for duration discrimination data. However,
prior to presenting Kristofferson's model, a precursor, the onset-offset model, which was

developed by Allan, Kristofferson, and Wiens (1971) will first be presented.
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The Onset-Offset Model

The onset-offset model (Allan et al., 1971) specifies that psychological duration is
a continuous rather than a discrete variable and that variability in psychological duration
is produced by a quantal process. The model states that variability in DD judgments is
caused by the transfer of information into the central temporal processor and that the
central process itself adds no variability to those judgments. According to the model
there are two sources of variability that contribute to performance variability. The first
source is the psychological onset time, which refers to the variable interval between
stimulus onset and that point in ﬁme when the internal temporal process begins timing,.
The psychological offset time, which is defined as the variable interval between the offset
of the stimulus and that point in time when the internal timing process stops timing, is the
second source of variability.

If entry into the central processor is gated according to Kristofferson's (1967)
theory then both onset and offset times will be uniformly distributed over an interval of q
msec. If it is assumed that these two random variables are mutually independent, then
Allan et al. (1971) show that the distribution of internal durations is a convolution of
these two identical uniform distributions. That convolution is an isosceles triangle
distribution with base equal to 2q msec and variance equal to g2/6 msec2. Since the
cumulative form of the triangle distribution is sigmoidal in shape, the predicted form of
the psychometric function according to the onset-offset model is also sigmoidal and,
while different from the normal ogive, is difficult to distinguish from it.

Allan et al. (1971) evaluated the onset-offset and Creelman's PCM in the context
of single stimulus (SS) DD. In SS DD only one of the two possible stimuli is presented
on each trial and S must judge which stimulus is presented. The decision process
according to the two models is similar but differing predictions should provide a basis

upon which to decide between them. The decision process according to the PCM, as
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presented above, must be modified for the SS DD siwation. Because only one stimulus is
presented on each trial, it must be assumed that S compares the count generated by that
stimulus to an internal criterion. If the count is greater than the criterion, that stimulus is
called long, otherwise it is called short. The distributions of counts associated with the
stimuli are the same as presented in the 2AFC case; they are Poisson distributed with the
distribution associated with the longer stimulus having a greater variance. The decision
process according to the onset-offset model is similar. However, it is assumed that the
two distributions, which represent psychological durations rather pulse counts, have
equal variances and are triangular in shape. They have equal variances because, in the
onset-offset model the variance of the triangle distribution is not affected by 8T. If the
psychological duration of the stimulus exceeds an internal criterion then the stimulus is
called long.

Discriminability may be measured according to both models for S DD data and
Allan et al. (1971) outline the procedure to do that. For the PCM it is measured as the
difference between the means of the counting distributions in standard deviation units of
the distribution generated by the shorter stimulus. Allan et al. (1971) called this measure
d'. For the onset-offset model discriminability is measured as the difference in the means
of the two distributions of internal duration in terms of units of q msec. This quantity
they label dq. They go on to specify how d' and dq are predicted to be related to T and
ST according to both models. According to the PCM d' is expected to increase in
proportion to 8T for a given value of T. Also, if 8T is held constant, d' should be
inversely proportional to the square root of T. The onset-offset model, in contrast,
predicts that dq is not related to T but that it is proportionally related to 6T (Alian et al,,
1971).

Allan et al. (1971) tested these predictions and found evidence that was contrary
to Creelman's PCM but that supported the onset-offset model. An analysis of operating
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characteristic curves showed that best fitting data generated by the PCM deviated more
from the observed points than those data generated by the onset-offset model. Based on
those results Allan et al. (1971) concluded that the underlying distributions have equal
variances, not unequal variances as predicted by the PCM. However, their analysis
supports the idea that the distributions were well described as being normal. But, they
also found that the isosceles triangle distribution describes them equally well. Therefore
both models predict the shape of the psychophysical function equally well but the onset-
offset model better predicts the variances of the underlying distributions. On the basis of
these results and on the finding that when the variance does increase with T it does not do
s0 in strict proportion to T, as required by the PCM (see Allan & Kristofferson, 1974 for
a review of these findings), the PCM was rejected.

The onset-offset model, however, was not without problems of its own. The main
problem with it is that it incorrectly predicts that variability in DD judgments will be
independent of T. Because the variability in DD judgments generally is not independent
of base duration, the onset-offset model was abandoned. The rejection of this model ied
Kristofferson (1977) to develop the Real Time Criterion Theory (RTCT) of DD and a
model based on it.

KRISTOFFERSON'S REAL TIME CRITERION THEORY

The models of Stroud (1955), Creelman (1962), Treisman (1963), and Allan et al.
(1971) all assume that S estimates the duration of a stimulus and compares that estimate
to an internal criterion to judge whether the stimulus is longer or shorter than the
standard. They hypothesize that errors in judgments are made as a result of variabilty in
the estimate of the stimulus duration; the critcrio_n is assumed to be fixed, or invariant.
Kristofferson (1977) provides an alternative theoretical perspective in his RTCT.

There are two major differences between Kristofferson's RTCT and the other

theories discussed above. The first is that, rather than basing a judgment on a measure of
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the duration of an external stimulus over its entirety, S generates an internal interval and
bases his decision upon which ¢uds first. The second is concerned with the source of
variability in DD judgments. According to the RTCT that variability is a direct result of
variability in the terminus of the internally generated interval, not in a measure of the
temporal information of the stimulus.

Kristofferson's (1977) RTCT of DD is pictured in Fig. 1.1. P; and P are 10
msec auditory markers whose onsets correspond to the beginning and end of the test
stimulus respectively. The difference between Py and P2 equals T, the test stimulus
duration. The RTCT states that P; and P2 precipitate two corresponding internal events,
Bj and B2 respectively. The interval between Py and B ¢t between P2 and B2 represents
afferent latency which is symbolized by Aj ()= 1,2). Bj imviates the generation of an
internally timed standard interval, I, the end of which defines a point, C, the criterion.
Because it is assumed that I is variable in time, the time at whicl' C occurs relative to Py
must also be variable in time. To decide whether the test stimu’us is long or short S must
decide whether C or B2 occurs first. If in his judgment C occurs prior to B2 then the
stimulus is called long. If these two events are perceived to occur in the reverse order
then the test stimutus is called short. Thus, the decision is based on a race between C and
B».

The RTCT provided the theoretical context to evaluate DD results using the
many-to-few (MF) single stimulus (SS) method (Kristofferson, 1977). The SS method
involves presenting one stimulus on each trial and the subject is to judge whether it is
longer or shorter than an internally generated standard. For each trial, in the MF case, the
duration of the test stimuius is chosen from a set of several possible values. For all of
Kristofferson's (1977; 1980; 1983; 1984) experiments that set consisted of four values;
two longer and two shorter than the standard, or base duration (BD). They were arranged

such that the midpoint of the shortest and longest stimuli, and the



FIGURE 1.1

A pictogram of Kiristofferson's (1977) Real Time Criterion Theory of Duration
Discrimination. P1 and P2 are auditory markers whose onsets correspond to the
beginning and end of the test stimulus respectively. P1 and P2 precipitate two
corresponding internal events, B1 and B2 respectively. al and a2 are afferent latencies,
R marks the time of the response and C the criterion. The triangle represents the
theoretical distribution of C.
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midpoint of the two intermediate stimuli, equalled the BD. Since a stimulus equal to the
BD is never presented, subjects are forced to infer its duration from the set of test stimuli.
Based on that inference Ss must learn to generate the internal interval I

In Kristofferson's {(1977) experiments Ss respended according to the "go-no go”
response procedure in which a button is pressed to indicate one condition and not pressed
to indicate the other condition. On some trials the subject was required to press the
button if he judged the test stimulus to be longer than the standard, and to withhold from
pressing the button otherwise. On other trials pressing the button signaled a short
response. Subjects were instructed to respond as quickly as possible on all trials, and
they always received rapid feedback regarding the correctness of their responses.

Kristofferson (1977) presented a specific model based on the RTCT and provided
strong support for it using the DD paradigm and the MF method. The RTCT model
specifies that all temporal variability in the discrimination process arises from variability
in the time at which C occurs. Suppose that Kristofferson's (1967) quantal theory of
central intermittency is adopted and there are two independent, central stages of
processing. If we assume that the time for information to enter and/or exit each stage is
uniformly distributed and that it must pass through both before a decision is made, then
the resulting distribution of C would be a convolution of the two identical uniform
distributions. That would give rise to an isosceles triangle distribution with a base equal
10 2q, twice that of each of the contributing distributions, and a variance equal to q2/6.
Because afferent variability is negligibly small the psychometric function, which is
defined as the function relating the proportion of long responses to each member of the
set of test stimuli for a particular BD, must represent the cumulative form of the
distribution of C. Kristofferson and his colleagues (Allan et al. 1971) have shown that
the cumulative form of an isosceles triangle distribution fits the obtained DD

psychometric function extremely well.
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Additional evidence in support of the RTCT model comes from testing specific
predictions arising from the mode! (Kristofferson, 1977). Consider the causal factors
giving rise to an R). According to the RTCT , the chain of events culminating in Ry is Py-
Bi-C-R;. The variance of the Rj latencies is equal to the sum of the variance of all the
contributing components of which there are three; afferent, central, and efferent latencies.
An R; on the other hand is triggered by B2. The chain of events preceding it is P2-B2-Rs.
Since it involves afferent and efferent latency components only, the variance of Ry
latencies will be a sum of the variance associated with each component. The difference
between the variances of the R} and Rg latencies should provide one estimate of the
variance of the central component if no other sources of variance enter into the response
latency times. In order to avoid such unwanted extraneous sources of variance from
entering into these estimates, a procedural modification was adopted - Ss were required
to respond as fast as possible.

An independent estimate of the variance of C can be obtained from the
distribution of response probabilities. Because we know the characteristics of the
triangular distribution, an estimate of q may be calculated once we know the empirical
proportions of each stimulus being called "long". Let us assume that the criterion C has
the triangular distribution illustrated in Figure 1.2. The distribution ranges from c-q 10
c+q and it has a mean equal to c. Since comparison stimuli will be chosen to produce
imperfect discrimination they should be represented within this range. The
representation of stimulus T-3t should be located to the left of ¢ by a proportion, A, of q.
Likewise that of T+0t should be located above ¢ by a proportion, B, of q. The areas
under the distribution to the left of the marker corresponding to a stimulus equals the
probabiliti/ that that stimulus will be called "long". If P(RL | S1) and P(RL | §2) equal the
probabilities of S1 and S2 being called



FIGURE 1.2

The isosceles triangle distribution of the internal criterion, C, according to the model
based on the RTCT. Symbols are explained on page 18 in the text.
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long, where S1 represents a stimulus of duration T-8T msec and S2 a stimulus of duration

T+8T msec, then we may estimate q as follows:

q=(52-S1)/ (A+B) (1.1)
with A =1- (2P(RL [ S1))12 (1.2)
and B=1- (2(1-P(RL | S2))12 (1.3)

Central variability, 62, may be estimated from the estimate of q;

oc? = g2/6. (1.4)
The estimate, M, of the mean of the internal duration distribution, L, is equal to (T-6t) +
(Aq) msec.

If the RTCT is to maintain its integrity these two estimates must be approximately
the same: Kristofferson (1977) found that they were almost identical. For T equal to
1150 msec the estimate of oc? from latency distributions was 1520 msec2 and from
response probabilities it was 1512 msec?.

According to the RTCT model presented above, long responses are the result of
an internally generated estimate of a temporal interval. The distribution of long response
latencies, then, should be symmetrical which is typical of time estimation latency
distributions (Kristofferson, 1976). Short responses, however, are simple reactions to Bz.
Latencies from them, therefore, should be distributed as simple reaction time latencies
which have been described as being positively skewed, asymmetrical, with sharply
peaked modes (Snodgrass, Luce, and Galanter, 1967). Because both R) and Rg latency
distributions conform to these predicted shapes (Kristofferson, 1977), the thcory- and
model gain even more support.

The RTCT model provides a good account of the MFDD results for the two Ts,
1150 msec (experiment 1) and 850 msec (experiment 2), studied by Kristofferson (1977).
The next step was to find if the model could be generalized to other Ts. To do that
Kristofferson (1980) reanalyzed some previously obtained DD results. Although the MF
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method was used in the collection of those data, several other procedural differences
existed. In Kristofferson's (1980) experiment subjects were tested at many Ts (13 of
them ranging between 100 and 1480 msec), responding was not speeded (the technology
had not been developed, Kristofferson, 1980), response latencies were not measured, the
subject pressed one button for a "long" response and another button for a "short"
response, and a considerable amount of practice was given at each T before changing to a
new one.

One of the primary manipulations of Kristofferson's (1980) experiment was the
level and kind of practice given. Ss were required to complete 20 sessions on
consecutive days at each T before changing to a new T. Each session consisted of 300
trials, for a total of 6000 trials at each T. This is an enormous amount of practice at one
T. Such a high degree of practice was given because it was apparent (see Fig. 4,
Kristofferson, 1980) that an asymptotic level of performance had not been attained.

The effect of practice on DD performance is dramatic. When the function
relating T and q for the first 5 sessions i1s compared to that for the last 3 sessions a clear
difference emerges. The function for the first 5 sessions, which is illustrated by the
dotted line in Fig 1.3, shows that there was a proportional relationship between q and BD
with the best fitting straight line going through the origin. The slope of the line equals
0.131. This translates into a slope of 0.053 for the same function when q is transformed
into the SD of the psychometric function. Extensive and specific practice reveals an
orderly departure from this line. A rising step function emerges with the slopes of the
treads being nearly equal and slightly greater than zero. The magnitudes of the slopes
appear to be approaching zero, and with even more practice Kristofferson (1984) shows
that they probably would have. The value on the ordinate cor;espondjng to each tread is
twice that of the next lower tread (or half that of the next higher tread). Similarly, each

tread spans twice the range of



FIGURE 1.3

Kristofferson's (1980) quantal ciep function shown as the standard deviation of an
isosceles triangle vs base duration. The upper dashed line represents a zero intercept
Weber function with slope equal to 0.051 and the lower dashed line a similar function

with slope equal to 0.026.
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values of BDs as it's lower neighbour. Kiristofferson (1980) describes this relationship
as obeying a "doubling” rule; doubling T doubles its corresponding estimate of q.
Kristofferson’s (1980) quantal step function, as it might appear after more practice at
each T, is shown with its flat steps by the solid line in Fig. 1.3.

The emergence of the step function means that practice did not have the same
effect at each T. There was almost no reduction in the duration threshold for Ts at the
low end of each tread. Conversely, the most dramatic reduction occurred at the high end
of each tread. Because both the variance of the internally timed intervals and the range
of durations that each q encompasses depends on the size of q, Kristofferson (1980)
assumed that the timing of the internal interval, I, must also depend on q.

No existing quantal counting model could readily account for the obtained step
function. The idea that the counting mechanism may not be free of error and that there
may be a limit to the number of quanta counted, provided Kiristofferson (1980) with the
necessary ideas to describe this special function from within his theoretical perspective.
Kristofferson (1980) suggested that internal timing is carried out by counting quantal
units and that there was a maximum number of them that could be counted without
introducing error in the counter. For his data that number was 16. How then can an
interval that is greater than 16q msec be timed? Kristofferson (1980) suggests that that
can be accomplished by doubling q which would then double the maximum timeable
interval as it would halve the number of quanta needed to be counted for any given
interval duration.

A S can, perhaps, count more than 16 quanta, but if counting accuracy rapidly
declines as the count increases beyond that limit, it would be to the Ss advantage to keep
the number (N) small, But reducing N necessarily increases the size of the quantum for a
given T. If central variability also increases with the duration of the quantum, then

minimizing the duration of the quantum would be a good strategy for S to adopt if he is
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motivated to be as accurate as possible. Thus, there are two competing processes; the
first is to keep the duration of q to a minimum, and the second is to keep N to a
minimum. A "compromise" between these two processes must be reached to achieve
minimum timing variance,

Taken together these two hypothetical processes can explain why the steps of the
function are located where they are, why the values on the flat sections of the steps are
what they are, and why the treads may have a small positive slope. In addition, the
decreasing slope (Kristofferson, 1984) of the treads with practice can be explained as a
slow reduction in the variability of the counting process for a specific quantum value.
The fact that the treads are linear suggests that variability in counting increases linearly
with N for N between 8 and 16.

For a given interval there appears to be a minimum value that q can assume,
Stepping down to the next lower quantum value, after counting error has been reduced
nearly to zero, will reduce error due to the timing process. But overall variability will be
less only if such a change increases counting error by an amount that is more than
compensated for by the reduction in timing error. An interval that requires counting
fewer than 8 quanta will be timed more accurately by reducing the duration of the
quantum, thereby increasing the number of them to be counted. Likewise, an interval
requiring more than 16 quanta will be timed more accurately if q is doubled so that there
is a corresponding halving in the number to be counted. Optimal timing occurs for a
given q when the interval to be timed lies between 8 and 16 q msec.

As mentioned above, practice significantly reduced estimates of s¢2 for certain
base durations. Kristofferson (1980) attributed that change to a reduction in quantal
counting error but other considerations may have been key factors. The ;ncthod by
which the criterion is established may play a major role in determining its variability. In

MF DD the criterion is established implicitly, the subject never experiences the standard
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stimulus directly. Perhaps if it were established by a more direct method even better
performance would result. The pulse train duration discrimination (PTDD) method
served to provide such a method.

PTDD involves the presentation of n auditory pulses that define n-1 temporal
intervals between the onsets of each adjacent pair of pulses. The onset asynchronies
between the first n-1 pulses are identical and they define T, the standard interval. The
interval between the onsets of the last two pulses defines the duration of the test stimulus
which equals T33T msec. The subject must judge whether it is longer or shorter than the
standard. This method is identical to the MF method except that one or more standard
intervals of duration T are presented immediately prior to the test stimulus when n is
greater than two. When n equals 2 the conditions are identical to the SS MF method of
DD in that no standard stimulus is presented prior to the test stimulus on a trial.

A major difference between PTDD and MFDD is that the standard interval is
implicit in the latter method and explicit in the former. In MFDD the internally timed
interval I is derived from experience with a set of test stimuli symmetrically arranged
around the standard, T. Because the subject never experiences an overt stimulus equal to
T, I must be determined indirectly and it must be memory controlled. In PTDD the
standard is overtly presented on each trial immediately prior to each test stimulus. I
therefore, is probably determined directly from presentations of the standard.
Kristofferson proposed that this methodological difference might lead to a memory-
driven internal criterion for MFDD and a stimulus-driven criterion for PTDD.

Jezdic (1986) tested Kristofferson's idea by varying the number of pulses in the
pulse train, from a minimum of two (i.e., MEDD) to 2 maximum of nine but he kept the
number of pulses in a trial constant th'roughout a session. T was either 233 or 367 msec
and 8T was +8 msec. Jezdic's major finding was that discriminability was the same at

each T regardless of the length of the pulse train. Particularly noteworthy is the case
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when the number of pulses in the train was two. In that case, no standard preceded the
test stimulus - a condition identical to MFDD, yet discriminability remained at the same
high level. In conclusion, Jezdic (1986) stated that the internal standard, against which
the test simulus is compared, is retrieved from a memory store in both MFDD and
PTDD.

It is interesting to note that Jezdic (1986) reports better discriminability for the
n=2 condition in his experiment than Kristofferson (1980) reports in his MF DD
experiment. This is true even though Kristofferson's (1980) subject received more
practice at the n=2 condition at each base duration than Jezdic's (1986) subjects. The
across subject mean estimates of the clock standard deviation were 5.7 and 6.7 msec for
base durations of 233 and 367 msec respectively. By comparison, the lowest previous
estimates obtained from MFDD (Kristofferson, 1980) were approximately 10 msec for
each of the above values of T, and that was after 20 sessions of practice. Jezdic's (1986)
subjects required only a moderate amount of practice {(about 5 sessions) to attain these
low estimates.

Although Jezdic's (1986) conclusion is justified, his results do not bear on the
importance of how MFDD discrimination performance may be affected by previous
experience with PTDD, and vice versa. Jezdic's (1986) subjects experienced many
sessions with n>2 prior to shifting to the n=2 condition. Perhaps this experience led to
lower discrimination thresholds as a result of having established an internal standard
duﬁng PTDD which was then transferred to the n=2 condition. The critericn in both
cases is memory controlied, but if it is established via experience with an overt standard
it is less variable.

Halpern and Darwin (1982) also used the PTDD method to determine if Weber's
law characterizes the relationship between the SD of the psychometric function and T.

An estimate of the SD was obtained, assuming that the function took the form of a
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cumulative normal probability density function. That estimate will be symbolized by sp,.
For each T there were 11 possible values of 8T, five greater than zero, five less than zero,
and one equal to zero. Subjects had to discriminate each test stimulus 17 times for a total
of 187 discriminations at each T. This is a very small amount of practice when compared
to Kristofferson's (1980) 6000 trials at each T. Fortuitously, they used 8 values of T
(ranging from 400 to 1450 msec in 150 msec steps) that fall within the range used by
both Getty (1975) and Kristofferson (1980).

Halpern and Darwin (1982) found that sp increased with T in a fashion that was
well described as being linear. For whatever reason, each parameter of their equation
was too high by a factor of exactly 8, the number of base durations studied. The correct
equation, based on a regression of the data they present in their paperis sp =0.049 T +
3.54. The Weber fraction of 0.049 is nearly identical to Kristofferson's (1980) estimate
from data of unpracticed Ss, and close to Getty's (1975) estimate 0.055.

Finally, Schulze (1989) used the PTDD method to determine whether Ss could
detect irregularity in the pulse train as opposed to discriminate between two stimuli on
the basis of their temporal characteristics. His method differed slightly from those cited
above in that the test interval was either equal to or greater than T. The test stimulus was
never shorter in duration than the standard. The pulse trains Schulze (1989) used varied
in length from 4 to 7 pulses and T was either 50, 100, 200, or 400 msec.

Schulze (1989) reports results that confirm Jezdic's (1986) findings on a number
of counts. He found that the number of pulses in a train is unrelated to the detection of
iregularity in the 200 to 400 msec range, although detection of irregularity seemed to
decrease with the number of intervals below that. Furthermore, Schulze (1939) found
that the difference limen did not change significantly over the 200 to‘ 400 msec range
(when averaged across Ss and trials of 3,4,and 5 intervals in length the mean was 9.3) and

that it was higher for the two lower values of T (the mean was 12.25). This finding is



31

consistent with the results of Jezdic (1986), Kristofferson (1980), and Kristofferson
(1984) in that discriminability changes little between interval durations of 233 and 367
msec. In addition, when the difference limen is converted to SD units (multiplied by a
factor of 0.68) then an average of Jezdic's (1986) and Schulze's (1989) estimates are
virtually identical. They are 6.2 and 6.3 msec respectively.

Several temporal psychophysics investigations have shown that estimates of
variability are independent of T over one or more ranges of durations. Kristofferson
(1976) first identified such a range in the context of response-stimulus synchronization
(R-SS). He interpreted that independence as evidence that a non-variable time delay
could be inserted into the internal sequence of events. The duration of such a delay could
be set to any value between zero and 400 msec.

A similar deterministic delay appears to be involved in PTDD but while the range
of its operation seems to have an upper limit of 400 msec, the lower limit is unconfirmed
because stimuli below 200 msec were not used in those experiments.

All of the IPP intemnal clock models presented above have some elements in
common and others that make each model unique. Many of the models place variability
in the pacemaker mechanism and none in the counter/accumulator although one notable
exception was mentioned (Kristofferson, 1980) in which variability in the counter was
entertained as a possibility. Recently Killeen and Weiss (1987) proposed a generalized
clock-counter model which formally introduced variability in the counter.

KILLEEN AND WEISS' OPTIMAL TIMING MODEL (OTM)

In the Optimal Timing Model (OTM), Killeen and Weiss (1987) formally
introduce counting variability, in addition to timing variability, into modeling of temporal
processes. Killeen and Weiss's (1987) generalized clock-counter model is really a

metamodel because it subsumes many specific models. It is discussed here because it
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provides an alternative conceptual framework that integrates many of the models
presented earlier in this chapter.

Suppose Dj are independent random variables representing the durations of the
subintervals with mean, d, and variance, op2 Suppose further that N is a random
variable representing the count of the subintervals which is independent of Djs and is a
positive integer with mean, n, and variance, sN2. If the total interval which is timed is
defined as random variable T, with mean equal to t, and it is simply N subintervals of
duration Dj, then the following equalities must hold;

t=n.d, 1.5
or2 = n.op? + d2-op2 1.6
These are Killeen and Weiss's (1987) equations 2 and 3 respectively.]

The OTM allows for many forms of error in both timing and counting processes
and can theoretically accommodate any subinterval duration of mean d, where 0<d<T,
and any number of mean n of them, where OSn<es, The OTM, like Kristofferson's
(1980) revised model of DD, assumes that counting error increases with the number of
counts and that timing emror increases with the duration of the subinterval timed.
"Optimal timing" is achieved by adopting a specific combination of the number and
duration of subintervals.

How the values of n and d are chosen to produce optimal timing depends on how
the variance in timing a subinterval (op?) is related to d, and on how the variance in
co{mting the number of subintervals (oN2) is related to n. Killeen and Weiss (1987)
propose that these relationships are governed by processes described by their
"fundamental error equations” (FEEs). Killeen and Weiss (1987) suggest that the
variance of each variable is a quadratic function of the variable with all coefficients being

non-negative. Thus,
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op? = opdz + ayd + 0 (1.7
and

oN2 = P2n2 + Bin + Bo. (1.8)
(These are Killeen and Weiss's (1987) equations 4 and 5 respectively.) They are quick to
point out that the theory does not require quadratic FEEs; any of the coefficients may be
equal to zero depending on the model one is constructing.

According to the OTM, an S who is motivated to reduce timing error will settle
on values of n and d that minimize 672 in Eq. 1.6 and at the same time satisfy the
relationship expressed in Eq. 1.5. The theoretical optimal value of d can be obtained if
Eq. 1.6 is re-written in terms of d, differentiated with respect to d, set to zero, and solved
ford. The optimal value of d can be determined for all values of the parameters in the
FEEs but the general solution is vastly simplified if g and o are constrained to positive
values. If these conditions prevail then Killeen and Weiss (Killeen & Weiss, 1987; Eq.
8) show that the following relationship holds

d = (oo/(p+B2))112. (1.9)
Using this result in combination with Eq. 1.6 it is now possible to predict the form of the
central variability vs. T function. That relationship, expressed by Egs. 9-12 in Killeen &
Weiss (1987), is

or:=AR+Bt+C (1.10)
where A=po, (1.11)
B =y + 2(ag(o2+B1)1/2, (1.12)
and C = ogBo/(c2+B1). (1.13)

A quick glance at Eq. 1.10 suggests that the relationship between or2 and t
depends on the values of the parameters of the FEEs. It was stated earlier that the
original version of Creelman's (1962) PCM predicts that 612 should be proportional to t.
Killeen and Weiss (1987) show that Creelman's model can be represented in OTM terms
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by Eq. 1.10 with A = C =0, and B > 0. This makes sense because all Bj (5=0,1,2) should
be equal to zero for an error free counter, as assumed by Creelman’s model. Thus, itis a
relatively simple matter to state Creelman's PCM in terms of Killeen and Weiss's OTM.

Similarly they go on to show that Getty's (1975) generalization of Creelman's model and

Getty's (1975) generalizaton of Weber's law can be stated in OTM terms. Other models

can also be accommodated by the OTM but it is difficult to specify Kristofferson's
(1980) step function generalization in terms of the OTM because of the discontinuous
nature of that function.

Although their OTM is extremely flexible in that it subsumes many existing and
potential models, Killeen and Weiss (1987) point out that a major shortcoming of it is
that it does not permit discrimination among the models on the basis of the data. Because
of this serious limitation the OTM cannot be used as an evaluative tool and will not be
applied to the present data sets.

All of the theoretical developments discussed thus far have emerged from direct
experimentation using human subjects. Recently several important theoretical advances
have emerged from the animal timing literature (e.g., Gibbon, 1977; Gibbon, Church, &
Meck, 1984; Killeen & Fetterman, 1988; Church & Broadbent, 1990), some of which are
relevant to human timing.

GIBBON'S SCALAR TIMING THEORY (STT)

Gibbon's (1977) internal clock, Scalar Timing Theory (STT) is the major timing
model currently available in the animal timing literature. Recently STT has been revised
and refined (e.g., Gibbon, Church, & Meck, 1984; Zeiler, Scott, & Hoyert, 1987;
Wearden & McShane, 1988; Wearden, 1991; Allan & Gibbon, 1991) to the extent that
several investigators have borrowed methods that have been developed to study animal

timing and applied them to study human timing.
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The STT acknowledges that subjective time varies but predicts that mean
subjective time should equal real time. The scalar property of timing refers to the
variance of subjective time. It states that the standard deviation of temporal estimates
should be a fixed proportion of the mean subjective time. This second property ensures
that a direct manifestation of the scalar timing property will result in behaviours that are
consistent with Weber's law.

Zeiler, Scott, and Hoyert (1987) used a human analog of the temporal
differentiation procedure to evaluate the STT in humans and report that their data were
not consistent with the STT. However, the bulk of investigations report results that are
consistent with STT. Wearden and McShane (1988), for example, used an analog of the
peak procedure (interval production) and report results consistent with STT in both of its
main predictions. Their results show that mean production time is almost perfectly
related to target time and that the standard deviation of production times is well described
by a linear function of mean production times.

Wearden and McShane (1988) then coliapsed their data into relative frequency
polygons in order to analyze it according to the way peak procedure data is traditionally
analyzed. Gaussian curves were fitted to the relative frequency polygons and the best
fitting cases were described in terms of the peak location and the ratio of the standard
deviation of the curve to its mean, the coefficient of variation. Again, these results
conformed to STT but one observation deserves further comment. When subject’ data
were collapsed within each target time category, the peak of best fitted Gaussian curves
always underestimated the real peak of the distribution. This pattern emerged in 19 of 20
of the individual distributions as well. These results suggest that the Gaussian
distribution might not be the best distribution to describe the results and that a more

leptokurtic distribution (e.g., a triangle) might be better.
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To further strengthen the triangular distribution idea is the observation that the
sides of the distributions shown in Wearden and McShane (1988; Fig. 2) appear to be
relatively straight and the distributions are fully bounded. It should also be kept in mind
that these distributions are a combination of the variances of the internal clock and the
efferent systern since the motor end of the two responses that define each interval
produced has variance associated with it.

More recently Wearden (1991a) reviewed evidence from many human temporal
tasks (i.e., interval production, analogs of temporal bisection and temporal generalization
tasks, and chronometric counting) and shows how most of it is consistent with STT.
Wearden (1991a) states that the findings suggest that while scalar timing operates in
humans, the decision process in humans differs from the decision process in animals.
Finally, from all the evidence reviewed, Wearden (1991a) suggests that a coefficient of
variation in the 0.10 to 0.16 range is a possible defining characteristic of scalar timing in
humans.

Coefficients of variation in human experimentation pre-dating STT are rarely in
the STT range and usually they are in the 0.015 to 0.05 range for healthy human subjects
(e.g., Gettv, 1975; Wing & Kristofferson, 1973). For this reason it is probably not valid
to apply STT to traditional timing procedures involving human subjects unless significant
modifications of it are first developed.

Having said that it must be noted that both Wearden (1991b) and Allan and
Gibbon (1991) have found evidence that STT is consistent with- human performance, In
both of these investigations human subjects were used in an analog of an interval
bisection task (note; interval bisection has been used in animal timing studies by Church
& Deluty (1977), Meck (1983), Maricq, Roberts, & Church (1981) and others). In a
typical trial of a bisection discrimination experiment, subjects are presented with one of a

set of probe stimuli which they must categorize as being more similar to an established



37

short or long reference stimulus. The data generate psychometric functions for each
standard duration interval which is defined as the arithmetic mean of the two reference
points. This is the procedure taken by Allan & Gibbon (1991) and for which they report
results consonant with STT. Interestingly, their results are the first STT analyzed data to
produce Weber ratios that are very similar to those typically reported in the human timing
literature for stimuli in the same temporal range. For this reason it would be interesting
to apply the STT to PTDD and tapping but these procedures do not lend themselves to
analysis by STT. Consequently, although STT is a major advancement and primary
alternative to the other theories cited above, it will not be applied to the results of the
current investigation.

CHURCH AND BROADBENTS CONNECTIONIST VERSION OF STT

A more recent advancement in timing theory (Church & Broadbent, 1990) does
not use the generally accepted information processing model but rather builds upon the
parallel distributed processing paradigm (Rumelhart, Hinton, & McClelland, 1986).
Church and Broadbent's (1990) new connectionist model of STT is similar to the IPP
models in that all of the major components of the internal clock (ie., pacemaker,
memory, and decision process) are maintained but their model makes fundamentally
different assumptions about the properties of these components. First, the pacemaker is
conceived to be a set of oscillators each with its own period. This modification is
thought to be more plausible from a biological point of view. Second, each oscillator has
its own status indicator that records information about the phase of the oscillator, rather
than the number of cycles it has gone through, as is typically the case for an IPP
accumulator.  These are the two main connectionist modifications of the
pacemaker/accumulator system.

Under the connectionist model, working and reference memory are replaced by

matrices of connection strengths or weights. Among the advantages of storing a time
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within a matrix as opposed to a one-dimentional number, Church and Broadbent (1990)
cite that a fixed size matrix can hold information about a large number of stimulus
samples, and that a single matrix can store many values. Another major modification
concems the decision process. Decisions under the connectionist approach are made on
the basis of a comparison between the input vector with the output vector from the
memory matrix.

Church and Broadbent {1990) ran some simulation tests and found that their
model reproduced three empirical facts about time perception in rats using the peak
procedure. To date the model has not been applied to time perception experiments using
human subjects and it remains to be seen how such an application would be carried out.
Until Church and Broadbent's (1990) connectionist model is refined and its application to
such experimental paradigms as duration discrimination in humans is made possible,
there seems little value in trying to discuss the results of the present investigation in
terms of their model. Their connectionist model is an exciting contribution to the timing
literature, with immediate relevance to animal timing, but it cannot yet be evaluated in
the present context.

KILLEEN AND FETTERMAN'S BEHAVIOURAL THEORY OF TIMING

Kileen & Fetterman's (1988) Behavioural Theory of Timing (BTT) is based on
the principle of reinforcement. They propose that reinforcing stimuli elicit adjunctive
behaviours that serve as the basis for conditional discriminations of the passing of time.
However, because their theory depends heavily upon the rate of reinforcement angd that
reinforcement as such is not involved in either PTDD or tapping, their BTT will not be
evaluated in the present program.

. In the preceding pages a number of unresolved and interrelated issues in DD were
identified. They are 1) the form of the psychometric function, 2) the relationship

between the variability of the psychometric function and T (i.e., does it conform to a
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stochastic principle such as Weber's law, a quantal principle such as outlined by
Kristofferson, 1980, and/or a deterministic principle), and 3) the role practice plays in in
the changing nature of the first two issues.

THE FORM OF THE PSYCHOMETRIC FUNCTION

In order to estimate the mean and variance of the psychometric function one must
first specify its shape. The cumulative normal distribution or close approximations to it
have been suggested as the correct shape by some (e.g., the Phi-Gamma hypothesis;
Creelman, 1962; Getty, 1975; Halpern & Darwin, 1982), while the isosceles triangle
distribution has been used for that purpose by others (e.g., Kristofferson, 1977; Allan et
al., 1971).

The cumulative form of several distributions (e.g., the normal, the isosceles
triangle, and the logistic) represent the psychometric function very well because they are
all sigmoidal in shape. Because of the excellent correspondence between these functions
and the obtained psychometric functions it is very difficult if not impossible to determine
which one fits the best.

Unfortunately, specifying the functional form of the relationship between the
variability and the mean of the psychometric function will not necessarily provide
detailed information about the underlying timing mechanism. Getty (1975) presents two
very different cases, both of which specify that SD should obey Weber's law, but only
one of which specifies that Weber's law also applies to the hypothetical distribution of
psychological duration. Thus, specifying the correct form of the above relationship will
provide the necessary information to decide among classes of models that are consistent
with one form or another., The Weber's law class predicts that SD should be proportional
to M and the proportional variance class of models predicts that the variance (VAR)

should be proportional to M. If we can show that the functional form of the relationship
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between variability and M follows the prediction of one of these classes, and not the
other, then a model based on the latter must be rejected.

PROPORTIONAL STANDARD DEVIATION MODELS - WEBER'S LAW

Originally Weber's law (Fechner, 1860) described the relationship between the
just noticeable difference (JND) between two duration stimuli in DD, and the duration of
the shorter stimulus of the pair (Allan, 1979). This form of Weber's law states that the
ratio (JND/T), which is known as the Weber fraction, should be a constant for all T.
However, the contemporary version of Weber's law is often stated in terms of the SD and
M of the psychometric function. In these terms SD should be a constant proportion of M.
More formally

SD = kM. (1.14)

From Eq. 1.14 one can see that the function relating SD to M, over a range of values of
T, should be a zero intercept straight line with slope k. A few theoretical examples of
this functional form are shown in Fig 1.4.

Throughout the history of psychological research several generalizations of
Weber's law have emerged because it was clear that the original version did not describe
DD results over a wide range of durations (e.g., Allan & Kiristofferson, 1974). Instead
the original version appears to be valid only over a restricted range of intermediate
stimulus durations. Fraisse (1963), Creelman (1962), and Allan et al. (1971), for
example, found that the original form of Weber's law did not describe results for
durations below approximately 200 msec. Getty (1975) and Fraisse (1963) found that the
function for durations greater than 2000 msec was non-linear, a result also incompatible
with Weber's law.

Fechner (1860) fu:st proposed that the decrease in discriminability observed for

very short stimuli is due to a constant minimum amount of variability inherent in the



FIGURE 1.4

Three examples of the contemporary interpretation of the original version of Weber's law
illustrating the relationship shown in equation 1.14.
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sensory system. Incorporating this component into the Weber's law equation forces the
function to be linear in SD rather than being strictly proportional. Thus, the
mathematical statement of Fechner's generalization is;

SD=kM+c¢ (1.15)
where ¢ represents the minimum sensory noise component. This form of Weber's law is
illustrated in Fig. 1.5. But Getty (1975) points out that if the sensory noise component is
independent of the stimulus component then a convolution of their distributions should
result in an addition of their variances, not in an addition of their standard deviations.
With this idea in mind Getty (1975) formulated a different generalized version of
Weber's law that takes the following form; ;

SD = (k2T2 + Vy) 5, (1.16)
where Vr symbolizes the variability arising from all sources that are independent of T
(note: he did not specify the source(s) of Vy and he used T in place of M). Two
examples of this form of Weber's law are illustrated in Fig 1.6. The non-linear function
has an intercept equal to V5 and it increases with T, approaching a zero intercept
straight line as the V/k2T2 ratio approaches zero. Notice that when Vr equals zero, this
generalization reduces to the original form of Weber's law.

Kristofferson (1976) offered yet another generalization of Weber's law. The
main difference between Kristofferson's and Getty's generalizations is that under Getty's
model SD is a function of stirnulus magnitude for all values of the stimulus, whereas
under Kristofferson's generalization it is proportional to stimulus magnitude only for
increments in magnitude greater than L msec. For stimuli less than L msec in duration,
variability is a constant, Vo, where Vg reflects a residual amount of variability in the
system. Kiristofferson's generalization is;

SD = (Vo + k2(M-L)2).5 (1.17)

and two examples of it are shown in Fig, 1.7,



FIGURE 1.5

Two examples of Fechner's generalization of Weber's law illustrating the relationship
shown in equation 1.15.
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FIGURE 1.6

Two examples of Getty's generalization of Weber's law illustrating the relationship
shown in equation 1.16.
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FIGURE 1.7

Two examples of Kristofferson's generalization of Weber's law illustrating the
relationship shown in equation 1.17.
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The last generalization that will be considered in this subsection is Kristofferson's
(1980) quantal step function. it is considered to be a generalization because when the
upper or lower ends of the risers are connected the two resulting functions are straight
lines that intersect the origin (i.e., they are consistent with the original form of Weber's
law). It differs, obviously, because the treads connecting these two functions are flat.
The step function is illustrated in Fig. 1.3 from which it can be seen that doubling M
results in doubling the corresponding values of SD. The dotted lines represent the two
Weber law functions mentioned above.

Although the strict form of Weber's law cannot account for much existing DD
data, the emergence of the scveral generalizations mentioned above suggests its utility in
describing the relationship between variability and stimulus magnitude. However, one
major alternative has been given serious consideration in the literature. That alternative
constitutes the proportional variance class of models.

PROPORTIONAL VARIANCE MODELS

Proportional variance models, as the name suggests, state that it is VAR, rather
than SD that is proportional to M. In its most basic form, the mathematical statement of
this modet is;

VAR =cM (1.18)
where c is the constant of proportionality. Rewritten in SD terms this model becomes;
SD = (cM)5 (1.19)
in which it can be seen that SD is proportional to the square root of M. Examples of this
function are shown in Fig. 1.8.

Creclman's (1962) PCM is perhaps the best known psychological model of DD
that is a member of the proportional vadance class of models. Although Creelman
introduced several modifications to his original model, the basic form of the relationship

between variability and M derived from his model is expressed in Eq. 1.18.



FIGURE 1.8

Two examples of the original version of the proportional variance law illustrating the
relationship shown in equation 1.18.
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Getty (1975) developed a generalized version of Creelman's (1962) model in
which he assumed that some portion of the observed variance arises from sources that are
related to T (note: Getty used T rather than M), a component he called V(T). The
remainder of the variance was generated from sources unrelated to T, sources he
classified as residual variance, Vr. Assuming independence among all sources within
and between both vartance components, as he did for his generalized Weber's law model,
total variance, VAR, will equal the sum of the variances generated by all sources.

VAR =V(T) + V;. (1.20)
If V(T) is proportionally related to T, as predicted by the PCM, then Getty's
generalization of the PCM becomes;

VAR =cT + Vi, (1.21)
where c is the slope constant and Vr is the intercept. This function is non-linear when
stated in terms of SD. Example SD vs T functions, which are shown in Fig. 1.9, are well
described as being monotonically increasing, negatively accelerating functions of T.

In order to evaluate which of his two generalized models more adequately
describes the DD function, Getty (1975) measured auditory duration thresholds using the
2AFC method for 15 stimulus durations ranging between 50 and 3200 msec inclusive.
Getty (1975) measured the threshold as the SD of the psychometric function, assuming
that that function was the cumulative form of a normal density function. He concluded
that the SD vs T functions increased continuously and monotonically. They did not,
however, conform to the original form of Weber's law. The obtained functions were
better described as monotonically increasing from a residual limit at T = 0 msec, and
quickly approaching linearity and maintaining near linearity to an upper limit of T =
2000 msec. Beyond that upper limit the slope of the function contir;uously and rapidly
increased. When Getty's generalized Weber's law model was fitted to the data within

these two limits, he reports that k, the Weber constant, was about .055.



FIGURE 1.9

Two examples of Getty's generalization of the proportional variance law illustrating the
relationship shown in equation 1.21.
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Getty (1975) reports that his generalized Weber's law model accounts for about
93% (an average between the 2 Ss) of the variance in the data as compared to only about
81% for the generalized PCM. Thus, within a limited, but wide (50-2000 msec) range of
base durations, Getty's (1975) results provide support for Weber's law.

THE ROLE OF PRACTICE

Kristofferson (1980) demonstrated that practice affects the estimated level of
variance in DD. Practice was shown to lower the SD vs M function and fundamentally
alter its shape from a straight line to the doubling step function. The type and level of
practice were most likely major contributors to this transition. Very long term experience
with each T was provided to S prior to changing to a different T. This type of practice
will be referred to as concentrated practice. Getty (1975) also provided quite extensive
practice at each T (although substantially less than Kristofferson's Ss received) but the
practice they received was not concentrated at each T but rather was diffused across
many T. His Ss ran many sessions at each T but they were not run in a block.
Significantly Getty's (1975) SD vs T functions did not transform into step functions and
it is impossible to compare pre- to post-practice functions because Getty (1975) does not
provide data collected on the earliest sessions at each T.

GOALS OF THE PTDD EXPERIMENT

The main goal of the duration discrimination experiment in the present research
program is to reveal the nature of the PTDD function following concentrated (extensive
and specific) practice at each T. From a broader perspective, the results of the PTDD
experiment will be compared to those obtained from a tapping experiment in order to

draw comparisons between perceptual and motor timing.



INTRODUCTION TO MOTOR TIMING

The control of motor movement is a complex and multi-faceted process. It
involves parameters of space, energy, and time because it requires 1) the selection of an
appropriate muscle or group of muscles, 2) the control over the range and force of the
movement, and 3) the control over its timing. The processes underlying the temporal
control of skilled responses made by human subjects is the focus of the second
experiment described in this thesis.

Many actions consist of the generation of a repetitive sequence of movements,
Walking, breathing, speaking, writing, chewing, scratching, playing a drum, and tapping
a finger or foot are some examples of simple actions zll of which are commonly
displayed in the repertoire of human behaviour. Investigators concermmed with the
temporal control of repetitive motor acts often debate whether the mediating processes
are located in the central or peripheral nervous system (e.g., Delcomyn, 1980).

The central control hypothesis maintains that a central timekeeper controls the
timing of muscle activation independent of sensory feedback. It is widely believed that
such control is mediated by a "pacemaker”" neuron or group of neurons often referred to
as a "central pattern generator" (CPG, Delcomyn, 1980). Juxtaposed to this view is the
peripheral control hypothesis. It is based on the idea that movement timing critically
depends upon sensory feedback signals from the effectors in motion.

Pearson (1976), Delcomyn (1980), and Grillner (1985) reviewed the literature
addressing the central/peripheral issue for motor control as it pertains to repetitive
movements in non-human subjects. Their coverage includes a diverse range of animal
species spanning several classes and phyla. The articles they reviewed used many
procedures (e.g., deafferentation, isolation, and paralysis) and studied more than a dozen
behaviours (e.g., walking, swimming, and flying). There is a consensus among the

reviewers that it is incorrect to think that all timing is achieved through either a central or
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a peripheral timing mechanism. Both mechanisms exist and it is the nature of the task
that determines which is used and if both are used, how the two systems interact.

Researchers investigating motor timing abilities of repetitive acts in humans have
also reported evidence supporting each hypothesis (e.g., Adams & Creamer, 1962;
Glencross, 1975; Jones, 1972; Pardew, 1976; Turzuolo & Viviani, 1980; Tyldesley &
Whiting, 1975; Wing, 1973; Wing & Kristofferson, 1973). In the following sections
several studies and models that address motor timing issues will be reviewed. The
review will focus on procedures using simple keypress responses made by healthy human
Ss.

WOODROW'S REPRODUCTION STUDIES

Woodrow (1930, 1933) conducted two extensive experiments designed to
determine the relationship between interval duration T and the accuracy of repeated
attempts to reproduce T. The duration of the interval to be reproduced was defined by
two brief auditory clicks (S1 and S2), with T being equal to the difference between their
onsets. Thirteen values of T ranging from 200 msec to 30 sec were studied. T remained
constant for all fifty trials in each session. Ss were instructed to attempt to reproduce T
by pressing a response key twice following the terminating click of the stimulus. The
interval separated by their responses was taken as a measure of their ability to reproduce
T. Ss were explicitly instructed not to count or thythmically move anv body parts to
improve estimates, and no experimenter-supplied feedback was provided.

Woodrow (1930) reports that the mean among subjects standard deviations of the
reproductions (sr) were about 9% of the mean reproduction interval (my) over the range
of 200 to 2000 msec. Between 4 and 30 sec sy nearly doubled, relative to my, to about
17%. In a follow-up study Woodrow (1933) further investigated the ability of Ss to

reproduce time intervals over the 400 to 6000 msec range and arrived at the same
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conclusion. From these studies it appears that s; is a constant proportion of m; for
intervals up to about 2000 msec.

RESPONSE-STIMULUS SYNCHRONIZATION (R-SS)

The method of R-SS has frequently been used to study the ability of human Ss to
synchronize a response to an external stimulus (e.g., Niilitinen et al., 1974; Kristofferson,
1976; Hopkins & Kristofferson, 1980; and Hopkins, 1984). The stimulus presentation in
this paradigm is very similar to that used in Woodrow's reproduction studies in that the
interval separating the onsets of two stimuli (S1 and S2) defines a temporal interval T.
Unlike the reproduction task, in R-SS § is required to synchronize his overt response to
the onset of S2. In order to achieve true synchronization the response must be initiated
and carried out to completion at the onset of S2. As T increases, S is required to modify
his response latency accordingly. Strictly speaking this procedure involves both
perceptual and motor aspects and therefore should really be considered as a mixed case
of perceptual and motor iming.

Using the R-SS procedure to shift response latencies along the temporal axis,
Kristofferson (1976) found that latency variance estimates reached unprecedented low
levels. Surprisingly, those levels were even lower than the lowest levels achieved using
the simple response time (SRT) paradigm (e.g., Saslow, 1974; Snodgrass et al., 1967;
Ollman & Billington, 1972). The response latency variance estimates for T between 165
and 550 msec were all between 100 and 125 msec2. Kristofferson (1976) suggested that
R-SS variance estimates may be lower than SRT variance estimates because the reaction
stimulus in SRT may interfere with the response mechanism. If that is the case then one
would expect that the variance of time estimation response distributions should be lower
than SRT latency distributions. Such a prediction goes contrary to previous assumptions

about the relationship between SRT and time estimates (e.g., Snodgrass et al., 1967;
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Ollman and Billington, 1972) and it casts doubt on the notion that SRT variance
estimates should provide the lowest possible levels of response variability.

Estimates of R-SS latency variance (Kristofferson, 1976) in this low range were
all nearly the same. However, the latency variance of distributions for $1-S2 intervals
greater than 550 msec increased above that constant low level. They increased “in the
way that would be expected if SD/M were constant for the delay in excess of 550",
(Kristofferson, 1976; p.89). Kristofferson (1976) described the R-SS latency variance
(VRs) versus mean latency (MRs) function of his ascending series by a model that can be
partitioned into two additive variance components. That model is presented in Eq. 1.22.

VRs = Vo + K2(MRs - L)2 (1.22)

It states that there is a residual amount of variance (Vo) that is constant for Mgg below a
certain level, L. For his data Vg equals 142 msec2 and L equals 550 msec. For MRg
greater than L, an amount of variance equal to K2(Mgs-L)2 is added to Vo to generate
the predicted level of Vrs. Kristofferson (1976) reports that for his data K = 0.034,
Thus it appears that for R-SS, timing of the increment in synchronization intervals in
excess of 550 msec conforms to Weber's law.

Kristofferson (1976) offered several accounts of how Vrs could be independent
of Mgs for temporal intervals between the reaction time limit and L. The first specifies
that an adjustible, non-variable time delay of between O and 400 msec can be inserted
into the temporal chain of events. Kristofferson (1976) suggested that delays of that kind
would probably be located in the afferent end of the system because there is evidence that
afferent latencies are almost variance free. Efferent delays, on the other hand, are not
variance free, so deterministic delays are not likely to be Iocated in that end of the
system. Further indirect evidence suggesting that the deterministic delays are located in
the afferent end of the system comes from tapping experiments. Wing and Kristofferson

(1973) found that central variance estimates increased monotonically with the base
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tapping interval, suggesting that deterministic timekeeping was not operating at the
central level. However, it is conceivable that deterministic timing operates at the level of
the central timekeeper. Kiristofferson (1976), for example, suggests that if the centml
mechanism is a quantal counter then deterministic delays may be the result of the
deterministic nature of the fixed quantum. A deterministic interval would emerge for a
given quantal unit if no errors in counting were made.

The second account of deterministic timing (Kristofferson, 1976) involves the
balance between at least two factors. At least one factor serves to increase variability as
ISI increases and at least one other serves to decrease variability simultaneously. The
combined effects would cancel each other out leaving what appears to be deterministic
timing. I know of no empirical evidence to support this hypothesis.

Although Kristofferson's (1976) Ss achieved amazing results, even lower values
of VRs were obtained by Hopkins and Kiristofferson (1980) after several procedural
modifications were incorporated into the R-SS paradigm. First, the key press response
was replaced by a finger withdrawal response. This modification eliminates all
mechanical movement on the part of the response apparatus and thus all variability
associated with that movement. Second, all trials were subject- rather than experimenter-
paced in order to eliminate the problem of momentary lapses of attention. When S
initiates the trial it is more likely that he is attentive to the task at hand than if the tial is
initiated by the experimenter. Finally, more extensive feedback in terms of a delayed
stimulus signal was inserted into the stimulus chain of events following S2.

Hopkins and Kristofferson (1980) were able to reduce VRs to less than 50 msec2
for S1-S2 intervals between 310 and 550 msec. Hopkins (1980) later extended the lower
bound of that range to the simple reaction time limit (approximately 170 msec). This
reduction in variance further reduces the amount of variability that can be attributable to

the central stage once an estimate of motor variance is removed. These low variance



estimates led Hopkins and Kristofferson (1980} to question whether the central stage of
timing might be non-variable. Could it be the case that timing at both afferent and
central stages ars deterministic under optimal conditions? Intuitively that seems highly
unlikely, but with the levels of performance seen in Hopkins and Kristofferson's (1980)
Ss it is a possibility worth considering. If that were the case then the 50 msec2 variance
estimate should be an estimate of efferent variance.

Hopkins (1980, 1984) developed a model of R-SS similar to that of
Kristofferson’s (1977) RTCT model, but with several key modifications. According to
Hopkins' (1980, 1984) model, it is assumed that the variance due to timing the central
interval arises from two independent sources. When sensory stimulation is transferred
from the sensory organ to the central processor Hopkins (1984) hypothesizes that it must
wait in a buffer for W1 msec before it can enter the central processor. W1 is variable
because the model states that the buffer is "read” continually, once every n msec. It is
assumed that the periodic process controlling when this buffer can be accessed is
independent of the external stimulus. Thus, W1 is uniformly distributed over wi msec,

Once the central timekeeping mechanism receives stimulus information, it times
out a non-variable delay, the duration of which depends on T. Following this delay a
signal is sent from the central processor to the response processor. For this signal to gain
access to the response processor it must wait for another variable period of time, W2, in
an output or response buffer. Hopkins (1984) assumes that W2 is uniformly distributed
over a very slightly different period (w2) than that of W1. This assumption is necessary
to maintain independence between waiting times in the two buffers. After the response
processor is triggered, the response mechanism is set in motion and, following a variable
efferent delay, the overt response is made. _

Response latency variance, according to Hopkins' (1980) model, should equal the

sum of central variability arising from the waiting times in the two buffers plus efferent
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delay variability. Based on the evidence presented earlier, Hopkins (1980) assumes that
the afferent delay is variance free. Errors contributed by the cenwmral source should be
almost triangularly distributed (the convolution of two similar uniform distributions) with
a base equal to wi plus w2. For the sake of computational ease Hopkins (1980) assumed
that efferent delays were logistically distributed.

Hopkins (1984) showed that his model provided an excellent description of the
data of a highly practiced S for an S1-82 interval equal to 460 msec. Estimates of central
and delay variance were 21.7 and 13.0 msec2 respectively. Unfortunately Hopkins'
model has not been assessed over a range: of T so it is not known how estimates of central
and delay variance change as a function of the mean.

In addition to the simple RK-SS method outlined above, several other
synchronization methods have been used to study human timing abilities. One of those
requires S to synchronize responses to each of a series of isochronously spaced stimuli. 1
will refer to this method as multiple response sensorimotor synchronization.

MULTIPLE RESPONSE SENSORIMOTOR SYNCHRONIZATION

In Woodrow's (1932) synchronization experiment S was instructed to
synchronize a response to each pulse in a train of isochronously spaced pulses with
onsets separated by T msec. Woodrow (1932) studied 8 Ts equal to 250, 400, 571.4,
666.7, 800, 1000, 2000, and 4000 msec. According to his data, which are reproduced in
part in Table and shown graphically in Fig. 1.10, the SD of the distribution of
reproductions cuanged only slightly as a function of T (the slope = 0.012) for values of T

ranging between 400 and 800 msec. The average SD in that range was 24.9 msec.



TABLE 1.1

Data from Woodrow's (1932) experiment (Table IIT).



T (msec)
250

400

571

667

800
1000
2000
4000

SD(msec)
19.5

22.5

244

259

27.1

39.0

89.8
242.0



FIGURE 1.10

The relationship between the SD of the distribution of reproduction times and T. T is the
time between adjacent pulses in a train of isochronously spaced pulses. Data from
Woodrow's (1932) synchronization experiment. The data are reproduced in Table 1.1.
'I'hc6 slope of the least squares fit straight line regressed on the upper four points equals
0.067.
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When these data are compared to Kristofferson's (1980) quantal step function, the
almost flat segment between 400 and 800 msec corresponds closely to the q = 50 msec
tread. Between 800 and 4000 msec, the function increases linearly with slope = 0.067 (r
= 0.996). It is interesting to note that the slope coefficient for the linear segment of the
function is just slightly higher than that found by Getty (1975), for a similar range in a
DD experiment, and about twice that when compared to Kristofferson's (1976) linear
segment obtained in an R-SS experiment.

The difference between these slope coefficients may be due to various
methodoiogical differences. For example, Getty's (1975) Ss received more practice at
each T than Woodrow's. Woodrow's (1932) Ss ran only 8 sequences of 40 seconds each
at each IS 1. Perhaps if his Ss were given more practice the slope of the rising segment of
the funct'on would reduce. This becomes even more plausible when it is considered that
Woodrow's (1932) Ss received decreasing levels of practice with increasing values of T.
This was the case because each sequence duration was held constant regardless of the
value of T. Kristofferson's Ss received by far the most practice at each T which probably
contributed to the lower slope coefficient.

Even more important is the remarkable similarity in shape of the three functions -
a relatively flat segment at low values of T changing into a linearly increasing segment at
higher values. These similarities suggest that there may be a common timing mechanism
undzrlying the three tasks.

Although synchronization techniques provide useful information about the
temporal abilities of human Ss they are limited in how much information they can
provide about motor timiﬁg. The problem is the complexity introduced by the presence
of the exogenous stimuli. It is not clear how S uses the information about the

relationship between the stimulus and his responses to time subsequent responses. At
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least two possibilities exist. Voillaume (1971) and Fraise and Voillaume (1971) (cited in
Wing, 1973) suggest that Ss may use the error of synchrony to adjust the subsequent
delay and/or they may use the perceived duration between pulses, T. Their studies
suggest that both strategies are used, thereby making the development of mathematical
models exceedingly complex. To circumvent the problem of direct sensory influences on

motor timing some investigators have employed other methods. In the next subsection

one of those methods is described.

THE CONTINUATION METHOD

The "continuation" method was initially developed by Stevens (1886) and later
used by Michon (1967), Wing (1973), Wing and Kristofferson (1973a), Wing and
Kristofferson (1973b), Wing (1980), Kolers and Brewster (1982), Collyer, Broadbent,
and Church (1992), and others. Like the repetitive sensorimotor synchronization
paradigm described above it involves the presentation of a series of auditory pulses,
equally spaced in time (T msec between the onsets of two adjacent pulses). S must
attempt to synchronize a response to each pulse. Following a predetermined number of
pulses, the pulse train stops and S must continue to respond in an attempt to maintain the
same rate of responding that was established during the pulse train. The synchronization
phase (SP) is employed in an attempt to set Ss motor clock to time out intervals of T
msec in duration. Thus, from an examination of the interresponse intervals in the
continuation phase (CP) we should be able to infer the characteristics of the motor
timekeeper.

One of the most salient features of interresponse interval (IRI) timing using the
continuation paradigm was first reported by Stevens (1886) and later by Michon (1967)
and Wing (1973). Itis the observation “hat there is an alternating or "zig-zag" patte:n in

IRI responses in the continuation phase. Not every shorter than average IRI is followed
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by a longer one and vice versa, but that general trend is clearly evident in IRI response
sequences (e.g., see Stevens' (1886) graph on p. 398).

Stevens (1886) discussed that observation and interpreted it to "...indicate that an
interval is judged more correctly after it is completed than before, and that correction is
made for its error in the next reproduction...” (p.401). In other words he thought that the
pattern reflected a compensatory, or corrective, timing process based on a sensory
feedback mechanism. Stevens' interpretation, then, is consistent with the peripheral
control hypothesis.

The term "closed-loop"” process is often used synonymously with a sensory
feedback process based on the peripheral control hypothesis (e.g., Wing, 1977 ; Schmidt,
1988). A simple closed-loop model for interresponse timing is shown in Fig. 1.11. Itis
called closed-loop because there is a cyclic relationship between the timing of responses
and the stimulation (feedback) provided by the response that is used to time the following
response.

The zig-zag pattern of responding in interresponse interval times may be caused
by a process that has nothing to do with error correction or sensory feedback from
responding. In contrast to the closed-loop processes, processes not dependent on sensory
feedback are often categorized as "open-loop". A model based on an open-loop process
is consistent with the central control hypothesis because the central timekeeper times out
and triggers responses independent of any sensory feedback from those responses.
Although it is not immediately apparent how an open-loop model would predict the
observed zig-zag pattern of IRIs, the open-loop based Two Process Model (TPM) (Wing,
1973; Wing and Kiristofferson, 1973) does just that.

WING AND KRISTOFFERSON'S MODEL
Wing (1973) and Wing and Kristofferson (1973) developed the TPM to account

for the timing of IRIs in the CP. A schematic representation of the TPM is shown



FIGURE 1.11

A simple three-stage, closed-loop model of IRI timing (Wing, 1977). Each IRI is
composed of three time intervals; Aj-1, G, and Dj. Aj is the afferent delay, Cj the
timekeeper interval, and Dj the response delay associated with the response. R is the
response time line.
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in Fig. 1.12, Their model is based on the assumptions that mot.m' timing is a stutionary
process and that two mutually independent random variables contribute to IRI timing;
the timekeeper variable C, which produces a series of independent, centrally timed
intervals with mean pc and variance o2, and the motor delay variable D which produces
a series of independent delay intervals with mean up and variance op2. Turning to Fig.
1.12, it can be seen that Cj is the centrally timed interval, and Dj and Dj-1 are the motor
delays for response j and the immediately preceding response respectively. Each IRI is
equal 1o the difference between the motor delays associated with the two responses
defining it plus the intervening timekeeper interval between the central triggers of the
two response delays.

Jj = Cj-Dj.1+Dj. (1.23)

In order to evaluate the TPM, Wing (1973) used the interresponse interval
autocovariance function, (k). ¥i(k) is defined at lag k as;

(k) = E[-u0 ), Ikl =0,1,2,... (1.24)

where || represents the theoretical mean of the IRIs and my an estimate of it. The

computational formula used to estimate (k) is;

N-k
Gi(k) = 3 (Fm)QacmiN-k-1), k=0,1.2,.N-1. (1.25)
=1



FIGURE 1.12

Wing and Kristofferson's (1973) two-siage, open-loop model of IRI tming. Cj is the
timekeeper interval and Dj the response delay. The upper horizontal line is the intemnal
time line and the lower line is the response time line. The time between two adjacent
responses is the interresponse interval (IRI;).
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For the TPM it can be shown that (see Wing, 1977 eq. 2)

yi(k) = gc2+20p32, k=0 (1.26)
= -0‘[)2, k=1
= 0, k>1.

Thus, -Gi1(1) provides an estimate of op2 and G1(0) + 2 Gi(1) an estimate of 6¢2.

From the mathematical presentation above it is apparent that Wing and
Kristofferson's (1973) model provides a method to estimate the portion of sj2 that is due
to variance in Dj. More significantly, from that estimate the portion of variance
attributable to C; may then be estimated. I know of no other model that offers a rationale
and the technique to partition sj2 in this way. The ability to do so is perhaps the single
most important contribution arising from the development of the TPM.

Although the TPM offers a way to estimate 62 and op? it does not offer further
guidance as to how to partition each of those major sources into their contributing
subsources. The central source of variance may originate from variability in the CPG
which may have many of its own contributing subsources. Likewise, variance
originating from a peripheral source may arise from variability in transmission times in
the efferent nervous system and/or from variability in effector movement. Factors such
as response force (Keele, Ivry, & Pokomy, 1987; Semjen, Garcia-Colera, & Requin,
1984) or movement requirements (Wing, 1973) may further contribute to effector
movement variability. However, the inability of the TPM to partition central and efferent
variance components into their subsources is not an important restriciion at present
because the main point of interest is to compare the two estimates that it does provide
with equivalent estimates obtained from other experimental paradigms. _

According to the TPM, lag 1 autocorrelation, pi(1), which equals y(1)/(0), is
predicted to be negative, falling somewhere in the range -.5 S p1(1) £0. Thus, the TPM,
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which is a member of the open-loop class of models, predicts that successive IRIs should
be ncgatively correlated. The magnitude of pi(1) depends on the relative contribution of
each of the two variance sources. If all variance is due to the motor delay process (i.e., a
deterministic central delay) then p1(1) should equal -1/2. On the other hand, as the
variance contribution from the delay process approaches zero, so too should pi(1)
approach zero. Thus, values of pI(1) smaller than -1/2 or greater than zero are not
predicted by the TPM and an py(1) value between these two limiting bounds reflects the
relative contribution of variance from each source. Furihermore, all non adjacent IRIs
are predicted to be stochastically independent and therefore should not covary (i.e., pi(k)
=0fork>1).

Wing (1973) and Wing and Kristofferson (1973) tested the predictions of the
TPM and were rewarded by the results. Estimates of pi(1) were in the predicted range
for data collected for T between 170 and 400 msec inclusive. Furthermore, it tums out
that this result is also incompatible with a closed-loop model based S-R chaining.
Consider that, logically, motor timing might be accomplished by linking smali motor
movements together by chain reflexes with sensory feedback eliciting each subsequent
movement, Varying the number of such movement units could be one way to vary the
interval timed. An increase in the number of units would probably manifest itself by a
change in the course of the overt motor response. As Wing (1973) points out, if lor.ger
movements are temporally more variable than shorter ones, then there should be a
monotonic increasing relationship between the means and variances of timed intervals.
That does appear to be the case. But if the elements in the chain are mutually
independent random variables then the distribution of timed intervals will also be
independent. That is, pi(k), for k greater than zero, should not differ from zero (Wing,

1973). Because estimates of pi(1) were negative, the closed-loop model was rejected.
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In summary, Wing (1973) and Wing and Kristofferson (1973) found evidence to
confirm the roie of an open-loop process in which a central tmekeeper times out a delay
independent of sensory feedback. They found no evidence to suppert the idea that
sensory feedback from the response plays a role in response timing.

Wing (1973) and Wing and Kristofferson (1973) went on io obtain estimates of
op® and oc2. It should be kept in mind, however, that valid estimates will be obtained
only if all assumptions of the model are met, including the assumption of stationarity. In
order to evaluate whether or not there were trends in the sequences of 30 IRIs in the CP,
Wing (1973) compared the mean of the first 15 IRIs to the mean of the last 15 IRIs. He
argued that if the means were statistically different that there would be reason to doubt
that the assumption of stationarity was valid. That analysis provided conflicting results -
for approximately half of the cases the 95% confidence intervals about the change in the
mean of the first and the last 15 IRIs did not include zero. Consequently, for those values
of T, the assumption of stationarity was rejected. However, because the changes in the
means, when averaged over all T, was typically less than 1 percent of the mean, Wing
(1973) did not consider detrending the data. Thus, although the effects of non-
stationarity were statistically significant their magnitude was thought not to be
psychologically significant. Because the trends were so small relative to the mean the
application of the TPM was considered to be appropriate.

In another continuation experiment Michon (1967) used a much wider range of T
spanning from 333 msec to 3333 msec. He found that non-stationarities in the CP IRIs
became more significant in absolute and relative terms as T increased. Michon (1967)
interpreted that to mean that as the interval to be timed increases, storage efficiency of
the internal standard decreases. But he offers no reason why storage inefficiency should
lead to non-stationarity as opposed to just an increase in variability. Unlike Wing (1973),

Michon (1967) chose to detrend the CP IRI to eliminate the effects of non-stationarity.
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The detrending procedure involved the method of least squares to find the highest order
best fitting poiynomial that significantly reduced residual variance. His IRI data were
then recuced to the residuals to either side of that best fitted function. As expected
detrending in this manner reduced s;2 for the majority of sequences analyzed and did so
to a greater extent for longer Ts. But, it is a mystery to me why the detrended data
provided slightly higher sj2 estimates in five instances and why positive overall Gi(1)s
sometimes remained.

The existence of non-stationary CP IRI sequences must be considered very
seriously when the TPM is being used to model the CP IRI. However, I think that
fundamentally altering the data (i.e., detrending it) without adequate justification can
only lead to the misrepresentation of the processes involved. For example, Michon's
(1967) finding suggests that the applicability of the TPM may not be justified for T
greater than an upper limit. However, detrending the data to force it to comply with the
assumption of stationarity can lead to the misleading conclusion that the TPM is valid.
For this reason data collected in the present experiment will not be detrended should they
contain non-stationarities.

In Wing's (1973) study, the average value of sp2 was reported to be 16.2 msec2
for a Morse key finger tapping task with estimates ranging between a low of 10 to a high
of about 50 msec2. These estimates comespond nicely with others reported in the
literature. For example, Hopkins and Kristofferson (1980) found that total response
variance for S$1-S2 intervals in the 170 to 550 msec range was no greater than 50 msec2.
Thus, it appears that efferent delay variance must be at most 50 msec2. According to a
model fitting procedure carried out on R-SS data by Hopkins (1984), the estimate of
motor delay variance was on the order of 13 msec2 for an S1-S2 interval equal to 460
msec. Thus, because several independent sources provide corroborating estimates of

delay variance it appears that those based on the TPM are valid.
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Estimates of oc? derived from the Morse key tapping procedure appear to
increase monotonically with my from a low of approximately 20 msec?2 for the shortest
interval, to approximately 70 msec2 for the longest interval. Upon application of the
method of orthogonal comparisons to the mean estimates of o2, Wing (1973) reports
that the linear component is significant but the quadratic component is not. The
functional relationship between sc2 and my for the averaged data was; sc2 = 0.20 (mj -
62), (Wing, 1973). Although slightly different parameters were found for different
responses, this basic linear relationship was maintained. This result supports the notion
that the timekeeper is based on a simple stochastic process in which the variance of the
timed interval increases in proportion to the mean. However, we must keep in mind that
the range of Ts investigated in Wing's (1973) morse key finger tapping experiment was
very narrow, spanning from 170 to 350 msec only.

Curiously the range of durations employed by Wing (1973) is fully contained
within the range of durations over which other investigators have found evidence of
invariance in the timekeeper (e.g., for R-SS, Kristofferson, 1976; Hopkins &
Kristofferson, 1982 and for DD, Kiristofferson, 1980; Schulze, 1989; and Halpern &
Darwin, 1982). For those tasks it is only above a point somewhere between 400 and 550
msec that the function starts to rise in accord with Weber's law. Thus, in order to gain a
better understanding of the nature of the tapping function, and to directly compare the
tapping function with functions based on other tasks, a much wider range of intervals
needs 1o be studied.

As mentioned above, the TPM was evaluated in the context of several response
requirements ( e.g., finger flexion, wrist flexion, and forearm elevation, Wing, 1973).
" According to the model an alteration in response requirements should change op? and
not change 62 if T is held constant across conditions. Contrary to these expectations,

Wing (1973) found that changes in response movements resulted in changes in sc2 but
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notin sp2. Thus, in order to maintain the integrity of the TPM the model itself needed to
be modified.

It wrns out that the necessary modification was to make the independence
assumptions less stringent. Wing (1973) noticed that the autocovariances for lags greater
than one were non-zero, a result that is not predicted by the original TPM but one that is
predicted by modified versions allowing dependence among either Dj or Cj. As a result,
Wing (1973) tested two generalizations of the TPM in which there was either a firsi-order
autoregressive (AR(1)) process in timekeeper intervals or motor delays.

GENERALIZATIONS OF THE TPM

The defining characteristic of an AR(1) process is that successive deviations of a
random variable from its mean equals the sum of a proportion of the immediately
preceding deviation plus a random variable that is distributed about a mean equal to zero.
If an AR(1) process is operating on Cj then

Cj-uc = Xxj+ ¢(Cj_1 - HO), 19l <l. (1.27).
xj are independent and identically distributed with mean equal to zero and variance equal
to 6x2 and ¢ is the lag one serial correlation coefficient among timekeeper intervals,

Wing (1973) shows that the resulting IRI autocovariance function for this generalization

is

(k) = [ox%/(1-¢42)] + op?, k=0 (1.28)
= [$ox?/(1-92)] - op?, k=1
= $20x%(1-¢2), k=2
= dmk-1), k>2

The autocovariance function can be of three forms depending on the value of ¢.
Ifdis ncgativé (k) oscitlates in sign - it is negative for all odd k, positive for k = 0 and
all even k, and it damps down toward zero as k increases. For ¢ positive the entire

function is positive and it too approaches zero as k increases. Thus, regardless of the sign
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of ¢ the function is always positive for even k. For the unique case when ¢ equals zero
the function is identical to that of the TPM with full independence assumptions because
that is formally equivalent to independence in Cj. In keeping with Wing's (1977)
terminology this generalization will be called Model 1.

If the independence assumption for the Dj variable is relaxed such that there is an
AR(1) process in Dj, we arrive at Wing's (1973) second generalization (Model I1I, Wing;
1977). Successive deviations of Dj about its mean, Wp, are based on some proportion, 0,
of the previous deviation plus some new random variable, y, with mean py = 0, and
variance csyz. The mathematicai representation of this process is;

Dj - #p = yj+96(Dj.; - KD 18 < 1. (1.29)
Once again, if 0 ¢«uals 0 then (k) is identical to that of the TPM. For 0 less than zero,
Ti(k) oscillates to either side of zero as it did for the generalization presented above.
When 0 is greater than zero however, Yi(k) diminishes in magnitude as k increases and it

is predicted to be negative in value for all positive k. yj(k) for this process is;

(k) = oc?+[20y%/(1+6)), k=0 (1.30)
= -[(1-8)/(1+8)]oy?, k=1
= Opk-1), k> 1.

When the best fitting parameter estimates were determined for each Model
according to a least squares criterion, Wing (1973) found that Model 111 provided the best
fit to the autocovariance functions over the entire range of temporal intervals (T = 220 to
490 msec) studied. For the best fitted case, estimates of © were negative so the
autocovariances oscillated around zero. However, as T increased so did @ even to the
extent that O became positive on some occasions.

In a follow-up investiéation, Wing (1977) evaluated two generalizations of the
TPM in addition to Models I and III. Each of these was an instance in which the

independence assumptions were relaxed such that a first-order moving average (MA(1))
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process is introduced among either timekeeper intervals or efferent delays. Again, the
main assumption that timekeeper intervals and motor delays are independent was
maintained. In contrast to the AR(1) generalizations, MA(1) generalizations state that
each successive deviation of a random variable (i.e., either Cj or Dj for our purposes)
from its mean is equal to a weighted sum of two variables. If the MA(1) process is in Cj
(Model II, Wing, 1977) then the mathemetical statement of it is
Cj-uc = X +¢xj_], Ipl <1. (1.31)

Once again xj are independent and identically distributed with mean, Jix, equal to zero

and variance equal to 6x2. Wing (1977) gives the IRI autocovariance function for Model

Ilas
Ti(k) = (1+92) ox? +20p2, k=0 (1.32)
= ¢ox2-op? k=1
= 0, k> 1.

This function equals zero for all k > 1, but for k =1 it is negative unless ¢ > 0 and op? <
Gox2.

Finally, the MA(1) process in Dj (Model IV; Wing, 1977 ) was defined by

Dj-uc = Y +eyj_1, - 6l <1, (1.33)
The IRI autocovariance function for it is
(k) = oc2+2[1+0(8-1)] oy? k=0 (1.34)
= -(1-8) oy?, k=1
= -Boy? k=2
= 0 k>2.

From the expressions above it can be seen that this function is always negative for
k=1and zerofork> 2, Fork=2itis negafivc when O is positive and positive when 6

is negative.
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Wing (1977) used the autocovariance functions to determine whether the daa
supported any of the four TPM generalizations. Model III proved to fit the obtained
autocovariance functions the best (Wing, 1977) when T = 400 msec. However, unlike
the previous analysis (Wing, 1973), the best estimate of 6 was positive.

The conclusion that emerges from these studies is that there is an AR(1) process
in response delays for short IRIs {(e.g., shorter than 500 msec) and that there appears to be
a transition point somewhere between 400 and 500 msec below which 9 is negative and
above which it is positive. Autocovariance functions for a series of T greater than 500
msec have not been reported for highly practiced Ss using the continuation paradigm so it
is not known whether the TPM or any of its generalizations can be used to model the
process timing responses at those durations. The absence of such an investigation, in
part, motivates the second experiment presented in this thesis.

BIAS IN AUTOCOVARIANCE FUNCTIONS

There is a potentially serious problem with the use of autocovariance functions to
evaluate the TPM and its four generalizations - a problem of bias in Gi(1). Anderson
(1971) shows that the degree of bias in Gj(1) is on the order of 1/N, where N is the
number of IRIs in a sequence. Thus, the shorter the sequence the more bias is introduced
into Gi(1).

Taking bias into account, the expected value of the estimator Gi(k) according to

Anderson (1971) is expressed in Eq. 1.35 below;

N-k N N N
Elgi(k)] =yi(k) - /(N(N-k)) Z Z(yi(n-m) +yin+k-m)) + 1/(N2) & Zy(n-m)
n=1 m=1 n=1 m=1

where y(k) is the theoretical autocovariance function. To cdmplicate matters further,
Vorberg (1978) states that bias changes the geometric shape of the function such that the

shape of the biased function is different from that of the unbiased theoretical function.
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Therefore, any attempt to model obtained functions should be carried out after first
removing the contribution due to bias.

One approach taken to account for the bias in estimates of yj(k) was suggested by
Vorberg (1978) and adopted by Vorberg and Hambuch (1977) and Wing (1979).
Because the theoretical autocovariance functions are not known they must be estimated
from the obtained biased functions. Best fitting parameters that describe the obtained
autocovariance function are taken as estimates of the parameters of the theoretical
function. These estimates are inserted into Eq. (1.35) to generate biased theoretical
estimates of yj(k) which are then compared to the biased Gy(k) to determine if differences
between autocovariance estimates of the two functions are statistically significant, If
they are, the model that is used to generate the theoretical autocovariance function must
be rejected.

Based on a comparison between unbiased theoretical autocovariance functions
and biased obtained autocovariance functions, Wing (1977) concluded that of the four
generalizations of the TPM only Model Il could not be rejected. However, when the
effect of bias in Gy(k) was taken into account, for those Gi(k) in which the corresponding
v1(k) equals zero, Wing (1979) concluded that, in addition to Model III, the rejection of
Model IV in Wing (1977) was unjustified. Thus, while it appears that successive
response delays are correlated, the evidence does not allow one to conclude whether that
correlation reflects an AR(1) or an MA(1) process.

Unfortunately modeling of the autocovariance functions by Wing (1973), Wing
and Kristofferson (1973), and Wing (1977) was carried out withoug taking account of
bias in Gi(1). Fortunately, relatively long sequences were used in all of those studies so
the degree of bias should be small. However, even though long sequences wcre‘used, the

reanalysis of Wing's (1977) data by Wing (1979) illustrates the serious implications the

effect of bias has on modeling.
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In summary, it appears that the TPM is valid for the timing of IRIs in the CP.
However, modeling of the autocovariance functions suggests that the assumption of
independence among D;j does not hold but it remains an open question as to whether D
are correlated according to an AR(1) or MA(1) process.

Wing and Kristofferson's TPM provides a way to estimate 6¢2 and op? from si2
but it does not offer guidance as to the fundamental nature of the timekeeper (i.e., a
discrete or continuous mechanism). In this regard Michon (1967) reports that the
distribution of IRIs are multi-modal for T above 1000 msec. He interpreted this
characteristic of the distributions as being strong evidence for the existence of a time
quantum similar to that offered by Stroud (1955). The peaks were separated by about
100 msec, an interval that Michon (1967) interpreted as an estimate of the time quantum.
This was the first time empirical evidence was presented to suggest that the mechanism
underlying the timing of continuation IRI was quantal in nature.

Collyer et al. (1992) conducted a continuation experiment in which 27 values of T
ranging from 175 to 825 msec in steps of 25 msec were used. They too report evidence
supporting a discrete internal timekeeper hypothesis but their evidence comes from an
approach very different to Michon's (1967). Rather than analyzing the variance of IRIs
their evidence is based on an analysis of the difference between mean IRI and T, a term
they call bias. Bias was partitioned into linear and residual components, where the latter
was defined as the difference between mean IRI and the predicted mean IRI based on a
linear regression of mean IRI on T. The evidence for discrete timing comes from the fact
that residual bias was non-randomly related to T. Furthermore, it was related to T in a
way that is consistent with a discrete timekeeper. The term oscillator signature was used
to refer to the form of the relationship between residual bias and T.

It is possible that oscillator signatures are determined by the physical

requirements of the response. Collyer et al. (1992) ruled out that possibility because the
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oscillator signatures of finger and wrist tapping responses did not differ significandy.
The similarity between finger and wrist tapping oscillator signatures was taken to suggest
that they are not produced by biomechanical requirements of the efferent end of the
system but rather, are the result of the operation of a central timekeeper.

In summary, only a couple studi' s have reported evidence favouring a discrete
timekeeper hypothesis for the timing of motor responses. Michon's (1967) investigation
and the insightful approach taken by Collyer et al. (1992) both suggest that while timing
is continuous in that mean IRI approximates T very closely they also suggest that the
underlying mechanism is discrete in its operating characteristics.

THE STIMULUS AS CLOCK MODEL

The TPM was developed to account for timing of CP IRI but there is no reason
why it can not be applied to IRT of the SP. In this section one possible application of the
TPM to model SP responding is presented.

Woodrow (1932) studied the IRIs in a series of attempts to synchronize responses
to a train of stimuli. His analysis was at a descriptive level and no attempt was made to
model internal processes. Several other investigators have use the method of
continuation (e.g., Stevens, 1886; Wing, 1973; Wing & Kiristofferson, 1973; Wing, 1977;
Wing, 1979; Wing, 1980; Kolers & Brewster, 1985) to study the timing of IRIs in the CP
but none have systematically studied the timing of IRIs in the SP. The Stimulus as Clock
Model (SCM) which is developed betow, is a first attempt to fill that gap.

Itis generally thought that the central timekeeper, in the context of the TPM, is
located inside the subject where it generates a series of internal events. However, there is
no reason to believe that the locus of the timekeeper must be internal. This distinction is
an important one for the development of the SCM for tapping in the SP.

The essential feature of the SCM is that the pulses of the external pulse train are

timekeeper pulses. Thus, according to SCM the timekeeper is exogenous, located outside
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of S. Each external pulse triggers a delay, Dj, which terminates at the response which is
made in an attempt to synchronize to the pext pulse. Thus, the SCM is similar to
traditional R-SS models in that it is a stimulus-response, rather than a response-response
model.

The essential characteristics of the SCM are shown in Fig. 1.13. The beginning of
the timed interval J; is defined by the terminus of delay Dj-1, and the end by the terminus
of delay Dj. Immediately successive Ij are related because the termination of one delay
ends one response and begins the next. Symbolically, the relationship between these
cemponents is

Jj = T+Dj-Djq (1.36)

where T is equat to the duration of the interpulse interval.
Although the external pulse train is the clock under the SCM, that does not rule out the
existence of an internal central processor. If Dj subsumes all components in the chain of
events between the onset of the external pulse and the moment the overt response is
registered then the central processor simply may be a pan of Dj
We know from R-SS models (e.g., Kristofferson, 1976; Hopkins & Kristofferson, 1980;
Hopkins, 1984) that the interval between pulse onset and the registration of a response
has been partitioned into three subcomponents; the afferent subcomponent, A;j (with
mean jto and variance 642 ), the central subcomponent, Cj (with mean pc and variance
oc? ), and the motor subcomponent, Mj (with mean pyM and variance om2). If that
convention is incorporated into the SCM then Dj is simply the sum of those three
subcomponents;

Dj = Aj+G+M; (1.37)
Inserting this modification into Eq. (1.36) yields the following e_xpansion;

I = T+(Aj+C+Mj - (Aj1 + G-1 + Mj-1) (1.38)



FIGURE 1

A3

The SCM for the timing of synchronization phase IRIs. T is the inter pulse interval, Mj

the motor delay, Ali is afferent latency, and Cj is

timekeeper interval. Dj = Aj +Gj +M;.

S is stimulus time line and R is response time line. Pjis pulse j and DSjis deviation from

synchrony from pulse Pj+1.
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Because of the high degree of temporal control afforded by modern computer
technology it is assumed that T is a fixed constant. Since the pulses act as clock triggers
it follows that there is no variability associated with the response triggers. Consequently,
all 512 will arise from variability in the subcomponents that make up Dj. If it is assumed
that those subcomponents are mutually independent then ;2 equals 20p?2.

The Aj delay is equal to the time between the onset of the external pulse and the
time of occurrence of the internal event that marks the transferrence of the sensory
information to the central processor. Some lines of evidence suggest that while Aj is
greater than zero, 642 is negligible (e.g., see Hopkins, 1984).

Following A;, the internal signal enters the central processor. Numerous theories
about the nature of that process, and models about the distribution of central processing
times have been offered. For present purposes it will be sufficient to assume that s¢2 is
greater than zero. After the signal has been completely processed by the central
processor, the response processor is activated, and following a variable motor delay, M;,
the overt response is made. It is usually assumed that the Gaussian distribution
adequately describes the shape of the distribution of M; (Hopkins, 1984).

If we assume that o2 and oa2 each equal zero and distribute the resulting

covariances, the following interresponse interval autocovariance distribution is obtained

for the SCM;

1(k) = 2(oc?+om?), k=0 (1.39)
= «(oc?+om3), =1
= 0, k>1.

This distribution states that — y1(1) equals sp2, which in turn equals oc2 + opm2.

In general, ~ (1) will equal the sum of the variances of all components that comprise D;.
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Only immediately adjacent I; are expected to covary since yi(k) for all k > 1 equal zero.
Furthermore, it can be seen that both — (1) and y1(0)/2 are equal to op?.

Two predictions arise out of the autocovariance distribution. The first is that
p1(1) (which is equal to y1(1) /y1(0)). equals -0.5. The second is that all pi(k) and yi(k) for
k greater than 1 should equal zero. If the data are consistent with these predictions then
the SCM will receive general support.

Assuming that the SCM will be supported by data then two estimates of o¢? can
be obtained if an estimate of oMm2, sM2, is first obtained. One estimate of o¢? equals (-
Gi(1) - sm2) and the other equals (Gi(0)/2 - smM2). However, the validity of either
estimate of 62 depends directly on the estimate of om2.



DURATION DISCRIMINATION EXPERIMENT
INTRODUCTION

The central issue concerning the PTDD experiment is the functional form of the
relationship between the variance and mean of the psychometric function. At a general
level of analysis the goal is to determine whether it is the variance or the standard
deviation that is better described as being a linear function of the mean. This will be
carried out fitting a set of mathematical models and rank ordering them in terms of how
well they fit the functions. This analysis will provide the necessary information upon
which the bulk of theoretical implications will be based. Closely linked to this issue is
one of the shape of the psychometric function. This too is a matter of theoretical
significance because of the implications that the shape of the function has on the
underlying temporal processes. In this regard an attempt will be made to determine
which of the normal or isosceles triangle distribution has a cumulative form that better
represents the shape of the psychometric function.

Finally, the issue of how practice affects variability at each value of T, and
consequently how the variance vs mean function changes as a result of practice, will be
investigated. First we wish to determine if extensive practice leads to an improved level
of performance. If it does, and we expect that it will, we will further analyze how
variability is affected by practice. In particular we wish to determine if performance
stabilizes with experience. If it does, we would like to know the degree to which it is

affected and the amount of practice necessary to reach the asymptotic level,
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Based on findings reported by Kristofferson (1980) we expect that practice will

not improve discriminability equally for all base durations. Thus the shapes of the post-
practice variability versus mean functions should be different from their pre-practice
counterparts if explicit standard DD (i.e., PTDD) is similar to implicit standard DD (i.e.,
MFDD). Specifically, we expect that practice will have little effect on discriminability
for those base durations corresponding to values at the low end of each tread on the
quantal step function, and that it will have an increasing effect for those base durations
approaching the high end of the tread. As a final comparison, the models that are fitted
to the pre-practice functions will also be fitted to the post-practice functions, The
parameter estimates and the rank ordering of how well those models fit will form the
basis of the comparison.
METHOD

SUBIJECTS

Three highly motivated subjects participated in this experiment. LL, an adult
female technician in the laboratory, was well practiced in DD experiments. She was paid
five dollars per session for her time. The other two subjects, AK and GF, are adult males.
AK served as a subject in previous experiments on R-SS (Kristofferson, 1976), DD
(Kristofferson, 1977, 1980, 1984), and numerous other projects. GF, the author, had very
little prior experience as a subject in psychophysical experiments.

PROCEDURE

Each session of the PTDD experiment is composed of four blocks of 96 trials
each, with a one minute break between blocks. A computer beep initiates each trial.
After a delay of two seconds the first of a train of four auditory pulses is binaurally
presented to the subject through headphones. The interval between the onsets of the first
and the second and the second and the third pulses is equal to T msec in duration. The

interpulse interval defined by the interval between the onsets of the third and fourth
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pulses is the test stimulus. The test stimulus differs from T by an amount equal to oT
msec. There are 48 "long” (T + &T) and 48 "short” (T - 8T) test stimuli in a block that
are pseudorandomly distributed throughout it. Fig. 2.1 shows the structure of each trial
and session.

On every trial, the subject is required to judge whether the variable interval is
longer or shorter than T. A “longer" judgment is indicated by pressing "L" on the
computer console, and a "shorter” judgment is indicated by pressing "S". Speeded
responding (Kristofferson, 1977), the technique which requires subjects to respond as fast
as possible, was not used in the present experiment. Instead, subjects were encouraged to
respond as accurately as possible. If a key other than "S” or "L" was pressed the message
"Press either L or S", which is displayed on the computer monitor and the computer
waited for another response. Only after one of these two keys was pressed does the trial
end and progress to the next trial. No provision is made to repeat a trial. As soon as an
acceptable response is made, S receives immediate feedback indicating whether his
response was correct or not. Between trials, a visual display of the trial number and a
cumulative count of total errors made to that point in the block are presented on the
monitor.

A set of eight values of T are used in this experiment. They are: 100 (for AK and
GF), 110 (for LL) and, 175, 233, 367, 466, 734, 932, 1468 msec for all three subjects.
They were chosen such that their values correspond closely to the lower and higher ends
of each step on Kristofferson's (1980) step function and so their range spans the range
previously identified to be in the Weber's law range of base durations (e.g.,
Kristofferson, 1980; Getty, 1975). Subjects continue at one value until performance does

not noticeably improve over a five session span.



FIGURE 2.1

Stimulus and response time lines for each trial of the PTDD method. pj marks the pulses
in which p4 is presented T + 8D msec following p3 in stimulus train S1 and T - 8D
msec following p3 in stimulus train S2. The enclosed box represents a typical session.
Bj, for j = 1 to 4 represents the four blocks.
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APPARATUS

An Apple IIe computer, in conjunction with an Interactive Structures DIO9 card
and an assembler program, controls the timing of events in a session. The accuracy of
stimulus timing is plus or minus one half of one msec. Each pulse of the pulse train is a
2000 hertz, 10 msec (from pulse onset to offset) square wave signal generated by an
EICO Audio Generator (Model 377) with the amplitude setting fixed at 20. The auditory
pulses are comfortable and clearly audible for all subjects who sit alone in a well
ventilated sound attenuating booth during a session. Responses, as indicated above, were

registered by pressing either the "S" or the "L" key on the computer keyboard.

RESULTS AND DISCUSSION
The presentation order of T was the same for AK and LL but it differed for GF,
and the duration of the variable interval, T + 8T generally differed across Ss. The value
of 8T initially was set by trial and error in order to ensure imperfect discrimination.
Table 2.1 shows the values of T encountered by each subject, the order in which they
were presented, the number of sessions run at each, and the final value of 8T at each.
THE PSYCHOMETRIC FUNCTION
The cumulative form of the normal and isosceles triangle distributions describe
the obtained DD psychometric functions extremely well and it is extremely difficult to
judge which one does so better. Allan et al. (1971) found that these two distributions
represented the DD psychicmetric function equally well.
Because the issue of whether the psychometric function is better represented by
the normal or the isosceles triangle distribution remains unresolved, estimates of the
_mean, |, and the variance, o2, of the psychometric function will be calculated twice,
They will be calculated once assuming that the function represents the cumulative form

of a normal distribution and again assuming that it represents



TABLE 2.1

Details of the Pulse Train Duration Discrimination Experiment

LEGEND:
SYMBOL DESCRIPTION
O sequential order of T
#3 number of sessions

oT final deviation from T for last interval of pulse train



Tms O
100 5

110

175 6

233 7

367 8

466 1

734 2

932 3

1468 4

#S
30

27
35
45
30
20
30
40

o)

P UIB) = 0o~ N

cohlhthth

15
30

WO h S ~1 O

#S
25

16
20
25
15
20
12
17
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the cumulative form of an isosceles triangle distribution. The algorithms that were used
to calculate these estimates are presented below.

When estimates of o2 and p are based on the isosceles triangle distribution, they
will be represented by sj;2 and mit respectively. If P(Ry | Sg) and P(RL | 81) respectively
represent the probabilities of Ss and S, being called long, where Sg represents a stimulus
of duration T-8T and 51. a stimulus of duration T+3T, then sji2 and mij; can be calculated

as follows;

si2 =q2/6 2.1)
where q=(SL- Ss)/ (A +B), (2.2)
A=1-Q2PRLISsH12, 2.3)
and B =1-(2(1-P(RL]I SN2, (2.4)
mj; = T-6T + Aq, (2.5)

Fig. 2.2 shows a picture of the relationships among these variables.

Estimates of pand 62 will be represented by mp and sp2 respectively when it is
assumed that the underlying distribution is normal. The internal representation of Sg
should be located below mp by some proportion, Zp, of sn. Similarly, the internal
representation of Sy, should be located above mp by a proportion, Za, of sn. The areas
under the distribution to the left of these markers correspond to the probability of the
respective stimulus being called "leng" (ie., PRy | Ss) and PRL|S,)). Fig. 2.3 shows
the relationships among these variables.

According to the algorithm outlined in Abramowitz and Stegun (1970);

Zb=t- (C, + Cat + C3t2)/
(1 + Dyt +Dat2 + D5t3) (2.6)
where t=(In(1/P(L | 85)2)):5 2.7



FIGURE 2.2

The relationships among the variables used to estimate o2 and 1 when based on the
isosceles triangle distribution. P(Ry|Ss) and P(RLISL) respectively represent the
robabilities of Ss and St being called long, where Ss represents a stimulus of duration T-
T and S, a stimulus of duration T+3T. A represents the distance in standard deviation
units of tﬁe triangular distribution the intemnal representation of Ss lies below mi and B
represents the distance in standard deviation units of the triangular distribution the
internal representation of S lies above mijt .
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FIGURE 2.3

The relationships among the variables used to obtain sp2 and mp when based on the
Gaussian distribution. P(R(!Ss) and P(Ry/Sy) respectively represent the probabilities of
Ss and Sy. being called long, where Ss represents a stimulus of duration T-8T and S, a
stimulus of duration T+3T. A represents the distance in standard deviation units of the
Gaussian distribution the internal representation of S lies below mp and B represents the
distance in standard deviation units of the Gaussian distribution the internal
representation of S lies above mp.
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and
C; =2.515517 D; = 1.432788
C; =0.802853 D> =0.189269
C; =0.010328 D3 =0.001308

An estimate of Z; may be obtained in a similar manner if

t=(n(1/(1-P(L 1S )2))-5 2.8)
is substituted into equation 2.6. The sum of Z, and Zy, indicates how far the two physical
stimuli are apart in sp units. The magnitude of one sy may then be estimated because the

difference between the two physical stimuli is known (i.e., 28T).

sn = (8TY(Z,+Za). 2.9)
Similarly, the mean may be estimated as;
my = T-0T + Z,. (2.10)

These two procedures yielded highly similar estimates of G and p. In fact, when
mean mj and mp are compared over sessions at each T, no statistically significant
differences emerged for any S. However, a similar comparison of sj; and sp indicates that
sit tends to be smaller than s, For the most part that difference was not statistically
significant but in a few cases it did reach statistical significance. Table 2.2 shows the
results of these comparisons.

Not surprisingly, when the Pearson correlation statistic, r, is used to evaluate
whether there is a significant correlation between sn and sj; over sessions, r reaches
significance at every base duration. See Table 2.3 for the details of this analysis.
Furthermore, when sy is regressed on sj; for each T, the slope coefficients differ little
from unity and from one T to another. In addition, the intercepts are, on average, within
milliseconds of the origin. These results indicate that the difference between estimates

based on the two distributions is not a function



TABLE 2.2

Comparison of estimates obtained assuming timekeeping of the internal clock is
triangularly versus normally distributed.

LEGEND:
SYMBOL DESCRIPTION

11 mean
o standard deviation



n S

T AK LL GF AK LL GF
100 -0.177 -0.339 -1.378 1.279
110 0.757 1.521

175  -0.088 0.462 0.1673 -1.878 1762 -1.565
233 -0.036 0.437 0077  **-2.878 -2.003 -1229
367 -0.036 0.005 0105 %2507 -1.916 -0.462
466 0.005 0.155 -0.006 -2.037 *.2.194 -1.390
734 0313 0.183 -0.024 -0.824 -1.559 -1325
932 -0.003 0.008 -0.030 -2.017 2077 1792
1468 -1.379 -0.023 -0.158 -1.654 **.2.800 -1.168




TABLE 2.3

Regression analysis and correlations between standard deviation estimates derived from
assuming the triangular and normal distributions.

LEGEND:
SYMBOL

T

N

SLOPE
INTERCEPT
T

DESCRIPTION

base temporal interval
number of sessions
slope of best fit line
intercept of best fit line
correlation coefficient



AK
100
175
233
367
466
734
932
1468

LL
110
175
233
367
466
734
932
1468

GF
100
175
233
367
466
734
932
1468

MEAN

30
27
35
45
30
20
30
40

25
16

25
15
20
13
17

SLOPE INTERCEPT

1.1444
1.1686
1.2095
1.1730
1.1454
1.1608
1.1545
1.1209

1.1596

0.4558
1.2168
1.2125
1.1350
1.1459
1.1630
1.1522
1.1256

1.07585

0.7970
1.0327
1.1956
1.0834
1.1420
1.1235
1.1365
1.0743

1.0731

-0.872
-1.254
-1.951
-1.114
-0.38C
-13.567
-11.374
20.060

-1.307

5.138
-1.497
-1.476

0.172
-1.106
-7.022
-2.644
16.177

0.9678

1.3048
2.3252
-2.3555
2.0079
-0.1282
1.8631
-1.0746
76.4240

10.0458

0.99596*
0.99725%
0.99918*
0.99970*
0.99978*
0.99950*
0.99950*
0.99945*

0.99879

0.97746*
0.99957*
0.99908*
0.99992*
0.99795*
0.99850*
0.99984*
0.99982*

0.99652

0.98070*
0.97972*
0.99951*
0.99989*
0.99987*
0.99977*
0.99884*
0.99992*

0.99478

* (p <.05)
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of T. That fact means that the use of either distribution will provide estimates of s that
can be readily transformed into estimates based on the other distribution. To obtain an
accurate value of sp from sj; one need only to multiply sj; by the appropriate slope
coefficient provided in Table 2.3.

The above analyses indicate that either method will provide similar estimates of
the parameters of the psychometric functions and that one estimate can be readily
transformed into the other with a high degree of accuracy. But they do not offer
guidance as to whether it is the normal or the isosceles triangle distribution that more
accurately represents the true nature of the psychometric function. Unfortunately that
issue cannot be addressed with the present data because only two points are available on
each psychometric function (i.e., only two values of 8T were used for each value of T).
However, there are several reasons why the isosceles triangle distribution will be used for
the purposes of modeliing the PTDD psychometric function. First, because the DD
psychometric function is represented very well by either distribution, there appears to be
no empirical basis upon which to decide between them. The present analysis shows that
estimates based on either distribution are highly correlated and not significantly different
for the most part. Because one of the main goals of the present experiment is to evaluate
Kristofferson's (1967) quantal theory of timing in combination with the RTCT
(Kristofferson, 1977) in the context of PTDD, the isosceles triangle distribution will be
used to model the PTDD psychometric functions.

VARIANCE: ESTIMATES AND PRACTICE EFFECTS

Figs. 2.4a through 2.4x show a detailed representation of s;2 as a function of
session number for each value of T and for each subject. These curves will be referred to
as the PTDD vm:iance practice curves. Each point represents an estimate of variance

based on all judgments in a session - no data are excluded.



FIGURE 2.4

PTDD variance practice curves: sit2 shown as a function of session number for each
value of T and for each subject.

PANEL  SUBJECT T (msec)

A AK 100
B AK 175
C AKX 233
D AK 367
E AK 466
F AK 734
G AK 932
H AX 1468
I LL 110
J LL 175
K LL 233
L LL 367
M LL 466
N LL 734
0O LL 932
p LL 1468
Q GF 100
R GF 175
S GF 233
T GF 367
U GF 466
Vv GF 734
w GF 932
X GF 1468
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Practice clearly affects variance estimates. By way of a general description, most
of the practice curves appear to be negatively accelerating, monotone decreasing
functions. Variance estimates of all three subjects usually decrease as a function of
session at each T. This generalization is most readily depicted by AK's practice curves.
Sometimes however, variance remains constant throughout training and little practice
effect is observed.

GF's data are well described by the general description above. However, his data
show an unusually fast decline in variance over the first few sessions at T = 367 msec.
Also, there appears to be a slightly negative practice effect for him at T = 1468 msec and
perhaps at 932 msec. While GF's practice curves show an improvement in performance
at most base durations, in comparison to AK that improvement is small.

For LL's data, there is also a gradual decline in sj2 with practice for most values
of T. In common with GF, LL appears to show a negative practice effect at the two
highest base durations. Her data indicate a very large positive practice effectat T = 110
msec.

The significance of the practice effect was assessed by testing the practice curves
for a monotone trend. Several tests based on the number or length of runs (Gibbons,
1985) in the data sets, or on the strength of association between time points and a series
of time-ordered observations (Gibbons, 1985) were considered for this purpose. But
Kendall's Tau () was chosen because, unlike simple run's tests, it considers the relative
magnitude of each score relative to every subsequent score, not just the single
immediately subsequent score. When T is adapted to test for a trend it is sometimes
called the Mana test for trend (Gibbons, 1985). |

The significance of t will be assessed according to Table L (Gibbons, 1985) for N
< 30 and by transforming < to Z according to the following formula provided by Gibbons
(1985) for N > 30;



Z = [BTN(N-1))2)/[(2(2N+5)).5] (2.11)
where T = 28/(N(N-1)) (2.12)
and S is computed as follows: If s;2 for session i (i = 1 to N-1) is less than that for
session i+k (k = 1 to N-1), then S is incremented by one otherwise it is decremented by
one unless the two estimates are equal, in which case S remains unchanged. The results
of this analysis are presented in Table 2.4 and would be identical should the sy practice
curves be analyzed instead.

Most (15 of 24, or 62.5%) of the variance practice curves contain a significant
negative rmonotone trend and all the rest except four have a tendency toward negative
monotonicity. Thus, from this analysis it appears that practice significantly reduces sj2.
This pattern of change in variability with the number of sessions of exposure presents a
problem in terms of how to estimate initial and final (i.e., post-practice) levels of
variance. There are a number of procedures that could be used to estimate initial and
final variance levels. An averaging procedure could be used to compute the mean of s;2
over several of the first sessions to arrive at an estimate of the initial variance level.
However, that would almost always lead to an underestimate of the true initial level of
variance because of the rapid decrease in s;2 over those sessions. As an alternative the
value of sj;2 obtained on the first session could be used as the estimate of the initial level
of variability. That option was ruled out because that would mean basing the estimate on
a single session. To avoid these two problems, several common functions that can
readily represent monotone decreasing or increasing curves were fitted to each practice
curve. Several functions were used as I know of no apriori reason for choosing one over
another. Also it is hoped that the use of several functions may provide insight into the

nature of the practice effect if one function fits the practice curves unequivocally better

than the others.



TABLE 2.4

Test for monotone trends in the s;2 vs session practice functions. Values in the table are
the statistic T.



T AK LL GF
100 **.0.480 *¥.0.650
110 **.0.611

175 -0.123 *.0.277 -0.300
233 *%.0.429 *%.0.361 **.0.653
367 **.0,371 -0.123 **.0.453
466 **.0.382 *¥.0.421 -0.162
734 *.0.332 -0.253 *.0.316
932 **.0.440 0.258 0.051
1468 **.0,623 0.022 0.074
* p<.05

*¥p < 01
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For each practice curve the best fitting cases for the logarithmic (i.e., aln(x)+b),
the power (i.e., axb), and the exponential (i.e., aebX+c) functions were determined
according to a least squares criterion.

Of the 24 data sets analyzed the logarithmic function provided the best fit for 15,
with the exponential function being best for five, and the power function being best for
four. The interpretation of this curve fitting analysis is complicated by the fact that when
the logarithmic function proved to fit better than the other functions, it was only
marginally superior to the next best fitted function in many cases. Also when it did not
provide the best fit, it often proved to be a very poor fit. Because no one of the three
functions unequivocally represents the practice effect better than the others, little insight
regarding the nature of the practice effect has been gained. In general the practice curves
are well represented by a negatively accelerating monotonic decreasing function that
most often is logarithmic,

Because none of the three functions was clearly better than the others at
representing the practice effect, estimates of initial and final levels of variance will be
made using the function that best fitted each data set. The predicted vaiue for session 1
(sF2, F for first) and session L (s1.2, L for last, where L equals the number of sessions run
at a given T) respectively were taken as estimates of these effects. This procedure is
preferred to the averaging procedure mentioned earlier because it makes use of the data
of all sessions to arrive at the desired estimates. It is better especially for estimates of the
initial level of variability because it is over the first few sessions that practice affects
performance the most. Obtained values of sp2 and sy 2 using this procedure are presented

in Table 2.5 for all subjects and for all values of T.



TABLE 2.5

sp2 and st 2 variance estimates for AK, LL, and GF.



T

100
110
175
233
367
466
734
932

1468

AK
SE2

29.8

19.6
24.6
36.1
82.6
431.0
671.9

.3640.2

sL.2
17.7

18.4
18.1
21.2
46.1
216.6
339.5
13194

LL
sp2

50.3
18.7
18.2
35.6
67.5
2173
212.8
1175.0

GF
SF2

28.2

30.1
41.5
245.6
90.0
279.9
534.6
1796.3
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sp.2
10.5

21.9
20.2
25.5
64.7
153.4
441.5
2241.9




MEAN: ESTIMATES AND PRACTICE EFFECTS

If mj;-T were plotted as a function of session number for each value of T it
would confirm that mj; slowly becomes a better approximation to T with practice for
each subject. Regardless of whether m;; is initially greater than or less than T, it tends to
become closer to T with increased practice. This generalization is true for all three
subjects. The difference between mj, and T, which is called the constant error (CE), is
generally a negatively accelerating monotone function of session number with the value
of the function approaching T in the limit.

The above general description is accurate when describing the data for AK.
When mjq is less than T, it approaches T in a negatively accelerating monotone increasing
function of session and when it is greater than T it approaches T in a negatively
accelerating monotone decreasing function of session. Positive values of CE are
common for AK at small values of T (e.g., 100, 175, and 233 msec), CE oscillates around
zero for him at values of T equal to 367 and 466 msec, and CE is predominantly negative
for values of T greater than 466 msec.

As was the case for AK, the absolute value of CE usually becomes smaller as a
function of session number for GF and LL. However, CE is almost always negative for
both of them at all levels of T.

Practice appears to improve timing precision. To determine if practice
significantly improves a subjects ability to precisely match T, each mj; vs session practice
function will be tested for a monotone trend. The results of that analysis are presented in
Table 2.6.

Only 9 of 24 (37.5%) practice curves show a statistically significant monotone
trend, and for every one of those the trend is in the expected direction. That is, the

difference between mjand T reduces regardless of whether it is initially positive or



TABLE 2.6

Test for monotone trends in the m; vs session practice functions. Values in the table are
the statistic 7.



T AK LL GF
100 **.0.352 -0.223
110 0.011

175 -0.137 -0.031 -0.142
233 -0.168 **0.366 **0.411
367 -0.139 0.203 -0.133
466 0.182 **().495 -0.124
734 0.132 **0.632 *%().495
932 *(,283 0.058 *0.487
1468 **(0.579 0.140 0.015
*p<.05

**p < 01
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negative. The results indicate a negative practice effect for a few practice curves, but in
all those cases the trend was not statistically significant.

Because there is a2 monotone trend in many of the practice curves, the same three
functions that were fitted to the variance practice data sets are fitted to the mean practice
data sets according to the least squares criterion. The best of those, for each function, is
shown as the solid line on the practice curve.

Unlike the variance practice curves, the power function fitted most of the mean
practice curves the best. Of the 24 practice curves, the power function fitted 11 of them
the best, the exponential function fitted eight curves the best, and the logarithmic
function fitted the remaining five curves the best. Of the three base durations greater
than or equal to 734 msec, eight of the nine practice curves were best fitted by the power
function. From that result it appears that a theoretical understanding of the practice effect
for the longer base durations might be gained. However, because the proportion of
variance accounted for by the logarithmic function is trivially less than that accounted for
by the power function for those eight practice curves, I will refrain from concluding that
the fit of one function is unequivocally better than the other. Because no one function
best represents the practice effect in general, I feel that the only justified conclusion is
that the practice effect is not homogeneous across base durations.

From a practical point of view, the analysis serves as a basis to obtain initial and
final estimates of mj;. Using the best fitted function for each data set the initial {mg) and
final (my) estimates of the mean are computed as the predicted value for session 1 and
session L. These estimates are given in Table 2.7. A comparison between the values of
mr and T and mp, and T illustrates the fantastic precision with which Ss can match I, the
internal interval in the RTCT, to T. .

Can the stron-g relationship between mj; and T lead to insight about the nature of

the underlying timekeeper? Recall that in the context of motor timing, Collyer et al.



TABLE 2.7

Initial (mg) and final (my,) estimates of mj; based on the practice functions.



T

100
110
175
233
367
466
734
932

1468

AK

Mg
103.0
175.2
233.2
367.8
465.6

727.5
928.7

1435.9

mL

100

174.9
233.0
366.9
466.5
730.9
932.8
1467.9

LL
mF

110.3
174.7
231.9
366.4
463.4
728.0
929.8
1459.9

mL,

109.7
174.6
232.9
366.7
465.2
732.7
930.8
1467.7

GF

mg
100.2
174.5
231.7
368.2
465.5
730.4

923.1
1461.0
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mL,
99.5
174.7
233.1
366.0
464.9
733.7

929.5
1462.8
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(1992) proposed a new method involving oscillator signatures to detect evidence of
discrete timing. Oscillator signatures may be present in duration discrimination data and
an analogous analysis could reveal new evidence for discrete timing in PTDD.

Unfortunately the present experiment was not designed with such an analysis in
mind. The characteristic shape of the oscillator signature might not be detectable because
the difference between successive values of T is too large. With this potential
shortcoming in mind let us see if an oscillator signature emerges from the PTDD data.

In the context of PTDD, the term bias refers to m;-T, a difference which earlier
was called constant error. To avoid confusion in the application of the oscillator
signature analyses to the PTDD data the terminology set out by Collyer et al. (1992) will
be used in the present discussion.

When mp-T is plotted as a function of T we have the final bias function which is
displayed in Figure 2.5. Figure 2.5 shows that the function is very different for each of
the subjects, a fact that makes generalizeability impossible. There is a tendency for the
function to oscillate to either side of zero for AK in a way that resembles the oscillator
signature pattern described by Collyer et al. (1992). However, there are marked
differences between the two patterns, differences which suggest that AK's function does
not conform to the discrete timing hypothesis as it is outlined in Collyer et al. (1992).
Finally, the patterns of the final bias functions do not oscillate about zero for LL or GF.

An analysis of bias functions will only be valid if there is an identity relation
between my, and T. In order to determine if that is the case, linear regression is used to
generate slope and intercept coefficients for the my, vs T functions. These regression
coefficients along with the corresponding coefficients of determination are given in Table
2.8. The near perfect linear relationship between mg, and T is revealed by the h1:gh degree

of common variance; the coefficient of determination equals 0.99999 for each S.



FIGURE 2.5

The final bias function: mj -T plotted as a function of T for each subject.

LEGEND:
SURJECT SYMBOL
AK Crosses
LL trianglcs

GF circles
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TABLE 2.8

Regression analyses evaluating the relationship between my. and T.



Subject Slope Intercept

AK 0.999785 -0.14248
LL 0.999674 -0.40500
GF 0.996612* 0.544849

r2

0.99999
0.99999
0.99999

*significantly different from 1.0 for slope or from zero for intercept, p < .01.
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The linear model fits almost perfectly but it does not rule out the possibility of
linear bias. Linear bias is a term Collyer et al. (1992) used to indicate that either the
slope of the best fit straight line differs significantly from one or the intercept differs
significantly from zero. If either of these conditions occur then there is a non-identity
relation between my. and T, a condition referred to as linear bias. It can be seen that the
slope coefficient differs significantly from one for GF but not for either of the other Ss,
and in no instance does the intercept coefficient differ significantly from zero.

Collyer et al. (1992) detected linear bias in some of the functions they analyzed so
they went on to analyze residual bias functions instead of the bias functions. Residual
bias is a term used to refer to the difference between my and the predicted value of mp,
based on the best fitting straight line.

Figure 2.6 shows the functions relating residual bias as a percentage of T to T.
The data that are plotted in Figure 2.6 are presented in Table 2.9. One feature of these
functions is very clear - there is no oscillator signature pattern in any of them. None of
the subjects shows a pattern of residual bias that alternates between positive and negative
with increases in T in a way that is consonant with Collyer's et al. (1992) discrete
timekeeper hypothesis. At this level of analysis the absence of an oscillator signéture
fails to support the hypothesis that the underlying timekeeper is discrete. In conclusion,
the analysis of the residual bias functions does not suppo:t the discrete timekeeper
hypothesis. However, it should be kept in mind that this conclusion is not based on the
appropriate experiment with closely spaced base durations so it should not be taken as

critical evidence contrary to the discrete tirnekeeper hypothesis.



FIGURE 2.6

Residual bias, expressed as a percentage of T, plotted as a function of T

LEGEND:
SUBJECT SYMBOL
AK CTOSSeS
LL miangles

GF circles
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TABLE 2.9

Residual bias expressed as a percentage of T foreach T.



100
110
175
233
367
466
734
932

1468

AK
0.164

0.046
0.083
0.033
0.159
-0.381
0.123
0.024

LL

0.128
0.035
0.163
0.061
-0.052
-0.089
-0.053
0.040

GF
-0.706

-0.144
0.148
-0.082
-0.014
0.224
0.012
-0.053
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THE WEBER FRACTION

It is important to determine how measures of variability and central tendency are
affected by practice because that information will lead us to a better understanding of
how practice affects discrimination of different intervals of time. However the
relationship between variability and mean is of more theoretical importance in order to
better understand the processes underlying duration discrimination. The Weber fraction,
W, which equals sj/mj;, will be used to study that relationship and is the topic of this
section.

W was computed from initial (sg/mF) and final data (sL/mL) for each T. See
Table 2.10 for these data. Using W as an index of overall performance, LL is the best
discriminator. For her W is lower at each value of T, with only one exception, than those
of either AK or GF. However, it should be emphasized that all Ss performed extremely
well. The lowest value of W reported in the present data set is .0125, and in many
instances it falls in the 0.013 to 0.017 range. These low ratios reflect the impressively
good performance of all three subjects.

Getty (1975) reported a Weber fraction equal to about 0.055 (an average across
two Ss) in his 2AFC DD experiment. By comparison, when averaged over the three
subjects in PTDD W is equal to about half of that reported by Getty (1975). Some of this
difference is due to the fact that Getty (1975) used the cumulative form of the normal
distribution (sp) rather than the isosceles triangle distribution (sj) to model the
psychometric function. We now know that W is smaller when it is based on sj rather
than sp because estimates of sjy are smaller than estimates of sp when both are based on
the same data. That fact was established in an earlier section of this chapter. If the
normal distribution were used to model the psychometric function, W would, on average,
be about 15% higher for AK, and about 7.5% higher for LL and GF. When averaged

across Ss, the sg/fmp ratio



TABLE 2.10

Initial and final Weber fractions for each T and subject.



Tms

100
110
175
233
367
466
734
932
1468

Mean

AK
SF/ME

0.0530

0.0252
0.0213
0.0163
0.0195
0.0285
0.0279
0.0420

0.0292

sL/mL
0.0421

0.0245
0.0182
0.0125
0.0146
0.0201
0.0198
0.0247

0.0221

LL
SF/mE

0.0643
0.0248
0.0184
0.0163
0.0177
0.0203
0.0157
0.0235

0.0251

sL/mL

0.0279
0.0197
0.0147
0.0134
0.0144
0.0166
0.0174
0.0242

0.0185

GF
SF/mF

0.0530

0.0315
0.0278
0.0426
0.0205
0.0229
0.0250
0.0290

0.0315

spfmL
0.0326

0.0268
0.0193
0.0138
0.0173
0.0169
0.0226
0.0324

0.0227
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equals 0.0286 in the present experiment. Were that ratio to be based on sy it would
change to 0.0315, which represents an increase of about 10%.

The quantity (0.0315 - 0.0286), which equals 0.0029, is an amount equal to the
difference in W that is attributable to the use of the two variance estimation procedures.
That difference accounts for only 11% of the difference between Getty's (1975) estimate
of W and the present estimate (0.055 - 0.0286). Thus the difference that remains
unaccounted for (approximately 89%) must be due to other considerations with the most
likely candidates being the use of different experimental procedures (i.e., PTDD method
with specific practice instead of the 2AFC method).

Halpern and Darwin (1982) used the PTDD procedure and found that W equals
approximately 0.05 which is in close agreement with Getty's (1975) estimate. They too
assumed that the shape of the psychometric function is normal. Thompson, Schiffman,
and Bobko (1976) also report that W equals approximately 0.05 for stimuli over a very
wide range of temporal intervals (250-3750 msec). They used the 2AFC DD method.
Triesman (1963) however reports W to be 0.11, approximately double the other estimates
and in good agreement with Snoglgrass et al. (1967) and Woodrow's (1933} time
estimation studies. In contrast, Wing and Kristofferson (1973) report W to be
approximately equal to 0.023 in their continuation experiment. Kristofferson (1976) on
the other hand reports Weber ratios that fall below 0.02 in R-SS, and Hopkins and
Kristofferson (1980) were able to reduce that to less than 0.015 after special procedures
were implemented into the R-SS procedure. In summary, the smallest Weber ratios
obtained in the present experiment are as small as the smallest ratios previously reported
in the literature evaluating timing and time perception, and much smaller than Weber
ratios that have been reported when duration discrimination procedures were used. These

new results indicute that the relationship between mj; and sit needs to be investigated.



THE WEBER FUNCTION

The Weber function describes the relationship between the mean and standard
deviation of the psychometric function. When the function is composed of sg and mg it
will be referred to as the initial Weber function, and when it is composed of s;, and m it
will be called the final Weber function. Initial and final Weber functions are shown in
Figs. 2.7 through 2.9 for each subject. In order to facilitate between subject comparisons,
Figure 2.10 shows all of the initial Weber functions plotted on the same graph and Figure
2,11 shows all three final Weber functions on the same graph.

In general it can be seen that the final Weber functions are remarkably similar in
form and position for the three subjects. There is one region, over the smaller values of T
within which sg, appears to remain constant. Above that region sy, appears to increase in
proportion to T.

Several mathematical models of the Weber function were presented in the
Introduction, all of which are based on various generalizations of Weber's Law. In this
subsection each of those models will be evaluated in terms of how well it can describe
the obtained PTDD Weber functions. The best fitted case of each model will be
determined by fitting the model to the data for each subject according to an iterative
procedure using the least squares criterion. This was carried out on a VAX 6420
computer with the use of the LMDIF1 subroutine (Garbow, Hillstrom, and More, 1980).

The LMDIF1 subroutine uses a modified Levenberg-Marquardt algorithm to
quickly find the solution to several variables in several non-linear equations. Upon
starting the program, an argument vector of length n contains a user provided initial
estimate for each parameter in the functions. When the program terminates, the
parameters that correspond to the minimum sum of squared errors (SSE) are returned in

that same vector. The routine comes to a successful termination when the algorithm

estimates 1) that



FIGURE 2.7

s plotted as a function of m (light crosses, dashed line) and sy, plotted as a function of
my, (bold crosses, solid line) for subject AK.
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FIGURE 2.8

s plotted as a function of mr (open triangles, dashed line) and s, plotted as a function of
my, (filled triangles, solid line) for subject LL.
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FIGURE 2.9

sg plotted as a function of mp (open circles, dashed line) and si, plotted as a function of
my. (filled circles, solid line) for subject GF.
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FIGURE 2.10

Initial Weber functions (s plotted as a function of mE) for all three subjects.

LEGEND:
SUBJECT SYMBOL
AK Crosses
LL triangles

GF circles
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FIGURE 2.11

Final Weber functions (sg plotted as a function of mg) for all three subjects.

LEGEND:
SUBJECT SYMBOL
AK Crosses
LL triangles

GF circles
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the relative error in the SSE is at most equal to a pre-specified tolerance level, tol, or 2)
that the relative error between the nth and the n-1 cstimate of the solution vector is at
most tol, or 3) that both 1 and 2 simultaneously occur. Tol was kept constant at 104 for
all runs. Unsuccessful terminations occurred when the program halted for a reason other
than those specified above. These were extremely rare and they occurred as a result of
providing improper input parameters. Fortunately that problem was simple to correct by
re-running the program with new input parameters.

When the parameters for each of the models had no range constraints imposed on
thern meaningful estimates of them were recovered for the Weber and the Kristofferson
models only. For Creelman’s and Getty's models, estimates of residual variance, Vy, for
all subjects were negative. Because negative variances make no sense, the models that
generate them must be considered to be inadequate representations of the data. But if the
variance terms were constrained to non-negative values the solutions would be
meaningful.

Unfortunately the routine does not provide an option to constrain the range of
acceptable values for an argument. Such an option would be extremely useful under the
present circumstances in which negative variances are being retumed. Non-negative
range constraints were imposed on an argument by squaring the argument in the function
expressions and carrying out the same transformation on the parameter returned by the
program. This technique was incorporated into a similar program used by Wing (1973).

When the non-negative range constraint was imposed on Vr during the evaluation
of Creelman's and Getty's models, Vr equalled zero for all three subjects and both
models. Remember that when Vy equals zero, Getty's model effectively reduces to the
original Weber's law model. Under these circumstances, Weber's model must be

considered to be superior to Getty's because while both models fit the data equaily well
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Weber's is the more parsimonious since it contains only one parameter as compared to
two in Getty's model.

Getty {(1975), however, used a different technique to estimate Vy. He initially
fitted his model to only those data points corresponding to base durations of less than 400
msec to obtain an estimate of Vyr. Defending this procedure Getty (1975) states that
"...the effect of the residual variance is negligible beyond a duration of about 400
msec...." (p.6). Getty (1975) does not explicitly state how he arrives at the base duration
of 400 msec for the initial Vr estimation procedure but upon inspection of his data
variances for all base durations below 400 msec were roughly equal and smaller than
variances for larger base durations.

In order to remain consistent with Getty's (1975) procedure, the same procedure
is adopted in the present analysis in which Vr is determined by fitting Getty's model to
the data corresponding to all Ts less than or equal to 466 msec (note: all variance
estimates in that range are small and nearly equivalent). Once Vr is determined in this
way, it is entered into the equation as a constant, rather than as a free variable when
fitting procedures are applied over the entire range of durations. As expected, small and
positive values of Vr are recovered when Getty's procedure is followed. Those are the
values that are shown in Table 2.11, for the sr vs mp functions, and Table 2.12 for the s,
vs m, functions. The statistics for the best fitted case of each of the other models being
evaluated are reported in those Tables as well.

MODELLING THE s;; VS mji FUNCTIONS

According to the original version of Weber's Law there should be a proportional
relationship between sj; and mj; across the full range of durations. It is clear that that
relationship does not adequately represent either the initial or the final functions - r'nost of

the obtained points



TABLE 2.11

Parameter estimates for the best fit case of the four models fitted to the sp vs mg
functions.

LEGEND:
SYMBOL DESCRIPTION
SSE sum of squared errors

All other symbols are parameter estimates of the respective models.



Model: Creelman
Subject SSE
AK 1078.1
LL 234.3
GF 289.7
Model: Getty

Subject SSE
AK 3213
LL 74.8
GF 65.2
Model: Weber
Subject SSE
AK 281.8
LL 66.6
GF 69.7
Model: Kristofferson
Subject SSE
AK 320
LL 25.9
GF 56.8

86942
34972
.61900

.03407
01980
02662

03454
.02087
02740

05621
02827
02993

Vv

-

=
ooo

Vr

22.5
29.3
23.9

31.67
30.68
35.59

308.1
310.2
119.0
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TABLE 2.12

Parameter estimates for the best fit case of the four models fitted to the s vs m_
functions.

LEGEND:
SYMBOL DESCRIPTION

SSE sum of squared errors

All other symbols are parameter estimates of the respective models.



Model: Creelman

Subject SSE
AK 305.2
LL 321.2
GF 657.3
Model: Getty

Subject SSE
AK 68.9
LL 73.8
GF 201.8
Model: Weber
Subject SSE
AK 51.6
LL 64.0
GF 179.7
Model: Kristofferson
Subject SSE
AK 2.9
LL 9.5
GF 12.8

.3783
.3249
5202

0215
.0204
.0261

0220
0207
0265

0306
0311
.0493

17.26
7.60
13.33

18.2
15.5
26.1

301.0
361.1
510.1
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fall below the line predicted by it and SSE is high relative to Kristofferson's model.

Even poorer are the best fitted functions generated by Creelman's and Getty's
models. This is true in terms of SSE being larger and especially because negative values
of Vr were recovered when that variaole's range was not constrained. Not unlike the fit
to the Weber's law model, most of the obtained points fall below the predicted points for
both Creelman's and Getty's models. In suinmary, neither Creelman's nor Getty's
models accurately represent the PTDD Weber functions.

The same, however, cannot be said of Kristofferson's model - it fits the data
extremely well for all subjects and all parameter estimates fall within logically acceptable
limits. Kristofferson's model fits the initial and final Weber functions the best; SSE is
lower for every within subject comparison. Taken together the resulis provide strong
support for Kristofferson's model as being the best description for both unpracticed and
highly practiced PTDD results. Consequently the present discussion will focus on
Kristofferson's model.

Based on a comparison between the total SSE generated by fitting Kristofferson’s
model to the initial and final Weber function, it can be seen that the model fits the post-
practice functions substantially better. For every S SSE was much lower when the model
was fitted to the final function than when it was fitted to the initial function. This is
interesting because while practice improves performance it also leads to a better fit of the
model that best represents it. Figs. 2.12 through 2.14 show the best fitting case of
Kristofferson's model superimposed on the final Weber functions for each subject.
Although Kristofferson's model describes these functions very well, the parameter
estimates differ substantially among subjects within each level of practice and within
subjects between levels of practice. These two considerations emphasize the need o

discuss the analysis separately for each subject.



FIGURE 2.12

The best fitting case of Kristofferson's model superimposed on the final Weber function
(sL vs m) for AK.
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FIGURE 2.13

The best fitting case of Kristofferson's model superimposed on the final Weber function
(s vs mp) for LL.
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FIGURE 2.14

The best fitting case of Kristofferson’s model superimposed on the final Weber function
(sL vs mp) for GF.
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For AK the initial level of performance indicates that Vg equals 32 msec2 and L
equals 400 msec. When compared to the initial level reported by Kristofferson (1976)
for R-SS in which V¢ was equal to 142 msec2, the present estimate is very low. If Vg
represents the sum of central and efferent component variances in R-SS and it represents
only central variance in PTDD then the difference between these two estimates equals the
variance associated with the motor end of the R-SS response. In that case R-SS motor
variance equals 110 msec? (142-32; more will be said about this estimate in Chapter 3).
Furthermore, if afferent variance equals or approaches zero, and the assumptions of
tripartite variance partitioning and that the three components are mutually independent
are valid, the minimum initial variance estimate of the central timekeeper for AK would
be 32 msec2. Interestingly, this estimate matches closely that reported by Hopkins
(1984) in which V, approximately equalled 35 msec2 following extensive practice.

L, the upper limit of the proposed deterministic interval, has a value of 400 msec
which is identical to the value of L reported by Kristofferson (1976) for R-SS after an
estimate of simple reaction time has been removed. Such close correspondence between
these two very different experimental paradigms on this parameter supports the idea that
a 400 msec deterministic delay can be and is inserted into the temporal chain of events.
However, results from these same two paradigms indicate that there is a difference in the
Weber function for base durations greater than L. K, the Weber constant for increments
in duration greater than L, equals 0.056 for AK's initial data but it equals 0.034 for R-SS
data (Kristofferson, 1976). On the other hand there is a remarkably close similarity to the
Weber fraction of (.055 reported by Getty (1975) that was based on unpracticed 2AFC
DD. This limited comparison between initial Weber functions of several experimental
paradigms reveals important similarities and dissimilarities.

An analysis of AK's final Weber function tells a very different story. The
magnitudes of Vg, L, and K each drop over the course of practice; Vg drops from 32 to
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18 msec2, L drops from 400 to 300 msec, and K drops from .056 to .031. How might

these reductions be interpreted within the framework of the present approach? The most
likely possibility is one in which the reduction in Vg is caused by a reduction in temporal
processing variability at the central stage because processing at the afferent stage is
thought to be virtually variance free (e.g., Kristofferson, 1976; Hopkins, 1984). If that
improvement effectively reduces central variability, then the difference between initial
and final estimates of Vg should provide a rough estimate of the degree to which central
variance was reduced. For AK that estimate equals about 14 msec2. The final estimate
should provide the minimum level of variability attributable to the central processor.
That estimate equals the remarkably low value of 18 msec2 for AK. This value of 18
msec2 means that q, one half of the base of the triangular distribution of 1
(Kristofferson's model), equals 10.4 msec.

Kristofferson (1980) reported that values of q range from 12 to 200 in a doubling
series for MFDD. The present quantity of q is theoretically significant because it is very
close to the lowest member of that series. But no other steps that indicate the presence of
other members of the doubling series are found on the PTDD function. The absence of
the doubling series suggests that if there is 2 quantal process operating in PTDD it is
either very different in its operation than the one in MFDD or it is masked by one or
more additional processes for base durations greater than L. Of course there is the
alternative explanation in which the process in PTDD is non-quantal in nature and that
deterministic timing over the lower base durations is independent of a quantal
mechanism.

We have seen that Vg decreased with practice for AK and from Tables 2.11 and
2.12 it can be seen that the same occurred for LL and GF. Vp decreased by about 15
msec2 for LL, and by about 10 msec2 for GF. According to the interpretation given

above, these values should represent reductions in the variability of processing in the
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central stage. If afferent variance equals zero then the final estimates of Vg should
provide an estimate of the minimum level of variance associated with the cental
processing stage.  Averaged over the three subjects, that level of variance equals 20
msec2.

The quantity L appears to change as a function of practice. Changes in L,
according to an interpretation which is consistent with Kristofferson's (1976) model,
indicate that the deterministic interval that is inserted into the chain of events changes in
duration. For AK there is a shortening of L by 100 msec (from 400 to 300 msec). For
LL it increases by about 50 msec from an initial value of 310 msec to a final value 361
msec. The increase is more dramatic for GF. For him the initial value equals 120 msec
and it increases to 510 msec following practice, a change of nearly 400 msec. Thus, for
two subjects L increases as a resuit of practice and for one it decreases.

For the two Ss for whom L increased, it was noted earlier that they had negative
practice effects for the two highest values of T. Although these negative practice effects
were statistically non-significant, there is the possibility that they would contribute to
spuriously high estimates of L. This could happen by forcing the linear portion of the
model to be steeper than it should be thereby moving the intersection of the deterministic
segment and the linear segment to the right. This would have the effect of artificially
lengthening L. However, this effect must be minimal because the negative practice effect
did not even approach significance.

Alternatively, changes in L may indicate the existence of a flexible or adaptable
process. If L. represents the duration of the deterministic interval then that interval is
adjustible. Perhaps S adjusts the deterministic interval in "search" of an optimum
duration in which together timing precision and accuracy are maximized. The outcome
of such a search might depend to some extent on the value(s) of the other parameter(s)

(e.g., K, Vo) or experimental considerations (e.g., the extent of practice, or range of base
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durations). Were that to be the case there should be a detectable relationship between
changes in L and changes in some of these other variables. Indeed there is a positive
relationship between L and K; an increase in L, is aiways accompanied by an increase in
K.

K, the Weber constant in Kristofferson's model for increments in excess of L,
decreases from 0.056 to 0.031 for AK but it increases from 0.028 to 0.031 and from
0.030 to 0.049 for LL and GF respectively. Normally a decrease in K reflects an
improvement in timing at each base duration. However, when K refers to the increments
in iming above a limit L, the relative positioning of L and Vo become important when
interpreting changes in K. Certainly if L and Vg remain constant then a reduction in K
indicates an improvement in timing at each T. However if L increases, as was the case
for LL and GF, then even an increase in K could mean better absolute timing at some, if
not all T contained in the range of base durations described by Weber's Law. Taking
these considerations into account, practice improves timing over the Weber's Law range
for all three subjects.

The observed relationship between L and K means that the mechanisms giving
rise to L and K might not be independent. I say might not be independent because there
is the obvious factor of practice that may affect processes responsible for both L and K.
If a third variable such as practice has similar affects on the mechanisms underlying L
and K, the observed relationship between L and K could result. On the other hand, if the
deterministic interval is generated in the afferent system, as put forth by Kristofferson
(1976), and if K represents activity of the central processor, it is not unreasonable to
suggest that the afferent and central stages might not be independent. Perhaps the
optimum duration of the deterministic delay changes as a result of a change in K.
Conversely it is possible that fine adjustments in L result in changes to K. Whatever the

case may be, both K and L increase as a result of practice.
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SUMMARY

One of the principle reasons for examining the PTDD procedure was to learn
more about the timing mechanisms underlying explicit standard DD. In this regard the
present experiment has provided some answers.

Most importantly, PTDD was investigated in an effort to determine the shape of
the variability versus mean function following extensive and specific practice, The
results show that the proposition that variance increases linearly with mean is clearly
rejected in favour of a proportional standard deviation (i.e., Weber's law) model.

In the PTDD experiment both pre- and post-practice Weber functions were well
characterized by a flat segment over short base durations followed by a rising segment
that obeys Weber's law over longer base durations. The flat segment over short base
durations is consistent with Kristofferson's (1976) proposal that a deterministic delay
exists within the timing chain of events. The present data also indicate that the duration
of the delay changes with increased experience indicating the possibility of a
continuously adjustable deterministic delay.

For temporal increments in excess of L, a Weber's Law timekeeper comes into
operation. Performance at base durations governed by this principle improves with
practice but in contrast to MFDD, a quantal step function does not emerge. This
indicates that the type of standard employed (implicit vs. explicit) is of paramount
importance in terms of the timing mechanisms that are accessible to S. In summary, it
appears that explicit standard duration discrimination is governed by the deterministic
and stochastic principles but not by the quantal principle.

A second principle reason for conducting the PTDD experiment was to determine
if there is a relationship between the principles and/or mechanisms underlying duration

discrimination and those underlying motor timing, Issues concerning this topic will be
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addressed by comparing the PTDD results to data generated by the finger tapping

experiment that is described in Chapter three.



TAPPING EXPERIMENT

INTRODUCTION

The main issue being addressed by the tapping experiment concemns the nature of
the relationship between o¢? and . The primary question regarding that relationship is:
Does o¢? or its square root increase at a constant rate when | increases at a constant
rate? Based on the investigations of Wing (1973) and Wing and Kristofferson (1973) it is
not certain which of these is the case, primarily because the range of durations studied
was not wide enough and too few values of T were investigated. However, if the motor
timekeeper that is used in tapping has similar operating characteristics as the perceptual
timekeeper that is used in DD or R-SS, one would expect the standard deviation, rather
than the variance, to be a constant proportion of the mean (Getty, 1975; Kristofferson,
1980). Several subsidiary questions related to this issue are: 1) Which of the five models
presented in the Introduction best describes the tapping Weber functions? 2) What does
the shape of the function tell us about the characteristics of the underlying timing
mechanism(s)? For instance, does a region or do several regions in which variability is
independent of the mean, emerge as a result of practice? 3) Are the functions consistent
with quantal and/or deterministic and/or stochastic timing principles? 4) What are
estimates of the parameters of the timing models that best describe the data? 5) Finally,
will a comparison of these parameters to those obtained from other temporal tasks
provide evidence to support the idea that a common timing mechanism, or that multiple
mechanisms with common operating characteristics underlie human timing abilities? For
example, will there be a range of durations over which response variability remains

constant? And if there is such a range, will it be equal to 400 msec as was found to be

157



158

the case for R-SS (Kristofferson, 1976). Will a quantal step function emerge as a result
of extensive and specific practice and if one does emerge does it comrespond to the
doubles set found by Kristofferson (1980) in the context of MFDD?

A second goal of the present experiment is to establish the temporal range within
which the TPM is valid. To accomplish that goal the TPM and four of its generalizations
will be evaluated over a wider range of temporal intervals than have been evaluated in
the past. In the present investigation the range will span from a lower limit of 175 msec
to an upper limit of 1468 msec. The TPM has not been systematically evaluated over a
range of T greater than about 500 msec. An analysis of the autocovariance functions will
provide the necessary information to answer the following questions concerning this
issue: 1) Which of the TPM and its generalizations will best predict the obtained
autocovariance functions and what are the optimal parameter estimates? 2) Are estimates
of central (sc2) and efferent delay variance (sp2) valid for each duration studied? 3) If
not, at what point are valid estimates no longer forthcoming? 4) If there appears to be a
violation of an assumption, such as the assumption of independence between C;j and Dj,
can any of the generalizations of the TPM better account for the obtained results?

A third, but less important, goal is to investigate practice effects on IRI timing.
An attempt to determine whether practice significantly improves performance will be
made. Does practice improve performance at the same rate and to the same extent for
each T? If the results are similar to those obtained during DD (Kristofferson, 1980), we
would expect practicé to affect performance differentially at different intervals.
Specifically, if the timekeeper is the same for DD as it is for tapping, we expect that
practice should decrease s¢2 more for those durations that are at the higher end of the
treads of the quantal step function (Kristofferson, 1980). Furthermore, if both efferent
and central components are subject to the effects of practice one would expect that the

improvement in performance should be slightly greater for tapping than DD.
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METHOD

SUBJECTS

Four adult Ss participated in this experiment but only three completed it - the
same three that completed the PTDD experiment. The results of the one S for whom data
are incomplete will not be considered. Of the three whose data will be presented, all are
right handed and LL is the only female. AK has had the most experience as a subject in
previous psychophysics experiments but LL has had extensive experience as well.

APPARATUS

All stimulus and response timing for AK and LL was performed by an Apple He
microcomputer in conjunction with a DI09 interface card and an Assembler program.
During every msec the computer is programmed to control stimulus events (e.g., turn the
pulses on or off when appropriate), scan for a response, store the IRI time if a response is
detected, and perform various other computations. When all of these activities have been
completed the computer waits until the onset of the next msec to start the process over
‘again. The accuracy of all response timing therefore is to within 1 msec - that is, the
duration of an IRI will not vary more than 1 msec from its recorded time.

The accuracy of stimulus timing is even higher than response timing and for the
purposes of the present experiment may be considered to be non-variable. Stimulus
timing for pulses presented to GF was performed by an external apparatus which had an
accuracy of + 1 msec. IRI times for GF were measured by a slightly modified version of
the Assembler program that was used for the other Ss, one that did not use the DIO9 card.
Timing accuracy using that routine was also accurate to within £ ! msec. The reason for
switching to a totally internal timing method was to be able to determine the relative
tirﬁing of stimulus and response events. Because the old method of timing was used for
GF it is impossible to determine the relative positioning of stimulus and response events

for his SP response sequences.
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The response key is housed in a wooden box and placed on a table in front of S
who is seated in a well ventilated sound attenuating booth. Neither the wooden box nor
S's arm are restrained in any way.

PROCEDURE

Each session of this experiment is composed of a predetermined number of
sequences. Except for the first two sequences of each session, all sequences that contain
no unacceptable responses will be used for parameter estimation purposes (for a
description of the details of how a response is defined as acceptable or not, and for how
the problem of key-bounces was handled see Appendix 1). The first two sequences are
excluded as they are used to provide Ss with a period of time to become adjusted to the
experimental situation. Every sequence is made up of a SP and a CP (see Fig. 3.1).

During the SP S is instructed to synchronize Morse telegraph key presses to the
onsets of 15 (for AK and LL) or 25 {for GF) clearly audible clicks which are presented
over headphones. Each click is 10 msec in duration and the interval between the onsets
of two successive clicks, T, is constant for all sequences in a session. The CP begins
immediately after the SP. It involves the same response as in the SP but in the absence of
external stimuli. S is instructed to continue tapping at the rate which was established
during the SP. The sequence is terminated by a computer generated beep after the
completion of 10 CP IRIs (for AK and LL) or 30 (for GF). There is an interval of
approximately 15 seconds between the end of one sequence and the begimiing of the
next. A session typically includes 52 "good” sequences. However, for extremely long T
(e.g. 932 and 1468 msec) this number was reduced, in some cases, in order to avoid

excessive fatigue.



FIGURE 3.1

Stimulus and response events during each sequence in the tapping experiment. The
upper panel shows the events in a sequence. S and R are stimulus and response time
lines respectively. pj marks the stimulus pulses and Rj the corresponding response. SPis
the synchronization phase and CP the continuation phase. The enclosed box shows the
organization of sequences within a session.
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S is asked to tap on the response key with his/her index finger of the preferred
hand and is instructed to keep the mode of responding as constant as possible within and
between sessions. He/she is asked not to count in any way to assist in improving timing
accuracy. Ss are encouraged to run one session per day and only one S may enter the
experimental chamber at any given time.

Seven values of T were used: 175, 233, 367, 466, 734, 932, and 1468 msec.
These values were chosen because they correspond to the lower and higher base duration
values which fall near the extreme ends of the treads on the steps in the quantal step
function (Kristofferson, 1980). In addition, the three higher values are included because
the TPM has not been evaluated in that range. S proceeds from one value to the next
only after it is clear that he has attained a stable low sj2 in the CP. Thus, the number of

sessions run at each T may vary between Ss and between different values of T.

CONTINUATION PHASE: RESULTS AND DISCUSSTON

Due to individual differences Ss required differing numbers of sessions at each T
1o achieve a stable level of responding. The order in which the Ss encountered the
different values of T and the number of sessions each subject ran at each T are presented
in Table 3.1. Data for AK could not be collected at T = 175 msec because that rate of
tapping proved to be too fast.

The TPM (Wing, 1973) was developed to account for the timing of CP, not SP,
IRIs. For this reason the following presentation will focus heavily on an analysis of CP
IRI sequences. A brief analysis of SP IRIs will follow in a later section.

INTERRESPONSE INTERVAL TREND ANALYSIS

~ Figure 3.2 shows my as a function of position in the respf)nse sequence for all

sequences in the last five sessions for each T. In many of these figures it can be seen that

there is a clear point of transition between the end of the SP and the beginning



TABLE 3.1

Details of the tapping experiment.

LEGEND:
SYMBOL DESCRIPTION

O sequential order of T
#S number of sessions



T (msec)

175
233
367
466
734
932
1468

AK

Wi = NN A

34
47
42
57

61

LL

Q _#5
6 15
4 20
7 31
5 31
2 67
1 40
3 38

GF
0 _#5
6 30
2" 53
1 49
3 23
4 20
7 20
5 22
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FIGURE 3.2

Mean IRI computed across all sequences in the last five sessions plotted as a function of
sequence position. Error bars are two standard errors about the mean.

PANEL  SUBJECT T (msec)

A AK 233
B AK 367
C AK 466
D AK 734
E AK 932
F AK 1468
G LL 175
H LL 233

I LL 367
] LL 466
K LL 734
L LL 932
M LL 1468
N GF 175
0 GF 233
P GF 367
Q GF 466
R GF 734
S GF 932
T GF 1468
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of the CP. The first few IRIs following the last pulse in the SP often deviate abruptly
trom all other SP and CP IRIs.

The transitional IRI differs quantitatively as well as qualitatively from all other
CP and SP IRIs. Its uniqueness is a result of its onset being made in an attempt to
synchronize to an external pulse (i.e., the last pulse of the pulse train) and its offset being
made in the absence of an external pulse. No other CP response involves an attempt to
synchronize to an external pulse and no other SP response is made in the absence of an
external pulse. At the very least then, the uniqueness of this transitional IRI disqualifies
it from membership as either an SP or CP IRL.

One might expect a deviation to occur in the transitional IRI if S knows for
certain which pulse corresponds to the end of the pulse train. Knowing when the pulse
train will end could lead to cognitive influences (e.g., expectations) that have effects on
the timekeeping process and that manifest themselves by the observed deviations. This
cognitive hypothesis is plausible because the number of pulses in a pulse train is small
and constant for each S. Thus, counting the pulses during a sequence is possible.

A more appealing alternative to the cognitive hypothesis is one in which the
process underlying the timing of SP IRIs is different from that in the CP. According to
this hypothesis a switch from the SP process to the CP process occurs during the
transitional IRI. That switch causes the transitional IRI to differ from the others
presumably because the switching process consumes some time.

The response that defines the end of the transitional IRI also defines the
beginning of the first genuine CP IRI - that is, an IRI whose defining responses are made
without reference to and in the absence of any external pulses. This first CP IRI also
deviates quantitatively from subsequent CP IRIs in the sequence. Thus it appears that
whatever it is that takes place between the SP and the CP it takes at least until the end of

the first genuine CP IRI to complete. Because these two IRIs may not accurately reflect
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the functioning of the motor processor they will not be considered in attempts to model
the motor process. All analyses and modeling of CP IRI will be based on the last eight
IRIs in the CP of each sequence for AK and LL. For similar reasons the last 25 IR1s will
be considered in analyses of GF's CP data.

Eliminating those two IRIs from consideration reduces the number of sequences
that contain significant monotone trends. However eliminating them might not remove
all potential sources of non-stationarity. It is conceivable that a gradual monotonic trend
might be an inherent characteristic of CP IRIs independent of the transition process. The
analysis that follows is intended to test for this more gradual and, in the present context,
more important form of non-stationarity.

To test for increasing or decreasing monotone trends in CP IRI sequences (i.e.,
nen-stationarities), the Mann statistic (Gibbons, 1985; this statistic was described in
Chapter 2) is computed for each sequence of the last five sessions at each T. The
proportion of sequences that reach statistical significance is compared to the proportion
that is expected to reach statistical significance (p = .05) under the null hypothesis that a
monotonic trend does not exist (i.e., the sequences are stationary). The results, which are
presented in Table 3.2, show that, on average, only 3% of the sequences tested contain
significant rends. This is a reassuring figure because it is in line with what might be
expected to occur by chance and as such it supports the use of the TPM as an analytical
tool.

In a previous assessment of non-stationarity, Wing (1973) compared the mean of
the first half of the IRIs to the mean of the second half and found that the differences
between the means were statistically significant in approximately 50% of the cases
examined. From these results he concluded that there were significant trends in the CP

IRI sequences. But because the change in the mean rate of responding was only about
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1% of T, Wing (1973) decided that the sequences were adequately stationary for his
purposes.

The results of the present study parallel those reported by Wing (1973). The
differences between the means of the first and second halves of the CP, which are shown
in Table 3.3, are statistically significant more often than reported by Wing (1973) (two
standard errors about the mean difference does not include zero in 80% of the cases).
But because the magnitude of the differences are a very small proportion of mj (they are
of the order of 1% of myj or less) the response sequences are considered to be stationary.

Taken together, the two analyses presented above indicate that CP IRI sequences
are adequately stationary for present purposes (especially when the average difference
over subjects is considered - that difference is only -2.17 msec). The proportion of
sequences for which non-stationarities exist is at, or slightly below, the level expected to
occur by chance and the difference between the mean of the first half and the mean of the
second half of the CP IRIs is always a very small proportion of my. These analyses
indicate that while minute trends characterize the data, detrending is not necessary
because the magnitude of the trends are so small.

INTERRESPONSE INTERVAL DISTRIBUTIONS

The distribution of CP IRIs made within the last five sessions at each T can be
described as being unimodal and symmetric with midpoints located very close to T.
Relative frequency IRI distributions for each S are shown in Fig. 3.3 in the form of
relative frequency polygons. These distributions are similar to those reported by Michon
(1967) for T in the same range. However Michon's (1967) distributions for T equal to
1667 and 3333 msec, and on some occassions 1000 msec, showed "pronounced multiple
peaks” (p. 37). Michon interpreted the multimodal shape of his frequency histog;-ams to
suggest the operation of a psychological moment similar in nature to the one suggested

by Stroud (1955). Adjacent peaks in his distributions were separated by about 100 msec,



TABLE 3.2

Proportion of Continuation Phase sequences with significant (p < .05) monotonic trends
in interresponse intervals. Significance based on Mann's test for trend.



T {msec)
175

233

367

466

734

032
1468

Mean

AK

032
040
056
068

033

LL

012
048
028
020
.040
032
.040

031

GF

029
022
018
022
031
023
.040

026
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TABLE 3.3

The average differences between the means of the first and second halves of the
continuation phase sequences over the last five sessions.



T (msec)
175

233

367

466

734

932
1468

Mean overall
change

AK

*2.83
*1.97
1.64
*-3.10
-2.23
*.8.57

-1.24

LL

*1.40
*2.49
*.0.93
*.2.91
*.4.07
*7.11
*-17.30

-4.97

GF

*-0.47
*.0.83
*-1.21
-0.56
*3.95
-0.02
*.3.11

-0.29

* 2 g.e. about the mean difference does not contain zero
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FIGURE 3.3

SP (solid line) and CP (dashed line) IRI relative frequency polygons for all IRIs in the
last five sessions.

PANEL  SUBJECT T (msec)

A AK 233
B AKX 367
C AK 466
D AK 734
E AK 932
F AK 1468
G LL 175
H LL 233
I LL 367
J LL 466
K LL 734
L LL 032
M LL 1468
N GF 175
0O GF 233
p GF 367
Q GF 466
R GF 734
S GF 932
T GF 1468
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a duration which was taken to be equal to that of the psychological moment. If one peak
represents the distribution of a count of n moments then the one to its right must
represent a similar distribution of n+1 moments. Michon (1967) suggests that the
presence of only one peak in the distributions of responses for T less than 1000 msec
reflects the fact that all responses fall within the duration of one moment.

Within the context of Kristofferson's tiine quantum theory, the shape of the
distribution of IRIs should be highly peaked, unimodal, and symmetrical. That should be
the case because it represents the convolution of two rectangular distributions which
represent variability in I, the centrally timed interval, and two small normal distributions
which represent the temporal distributions along the efferent pathway. Thus the overall
shapes of the IRI distributions are consistent with Kristofferson's quantal timing
hypothesis.

INTERRESPONSE INTERVAL VARIANCE ESTIMATES AND PRACTICE
EFFECTS

Figures 3.4 show how mean within session sj changes as a function of session
number for each value of T and for each subject. For these practice curves each point is
composed of the mean within session variance estimated over all good sequences of that
session.

It can be seen that extended practice greatly reduces s;. However, while the
reduction in s is pronounced it is also very gradual; many sessions are required to
achieve consistent between session levels of s;. The practice curves appear to be
negatively accelerating, monotone decreasing functions of session. A test for monotone
trend using Mann's test reveals a significant negative monotone trend for a large
proportion of the practice curves (see Table 3.4). With only one exception (T = 466 for

AK), all of the curves that did not reach significance showed a strong tendency toward



FIGURE 3.4

Mean within session CP IRI standard deviation plotted as a function of session number

for each subject and value of T. Best fitting curve (see text for curve fitting procedure) is
superimposed on data points.

PANEL SUBJECT T (msec)

A AK 367 (triangles), 734 (plusses), 932 (dots)

B AK 233 (plusses), 932 (triangles)

C AK 466 (circles)

D LL 175 {plusses), 367 (circles), 734 (filled
triangles), 1468 (open triangles)

E LL 233 (triangles), 466 (plusses), 932 (dots)

F GF 175 (plusses), 367 (circles), 734 (filled
triangles), 1468 (open triangles)

G GF 233 (triangles), 466 (plusses), 932 (dots)
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TABLE 34

Test for monotone trends in the continuation phase {2 vs session practice functions.

LEGEND:
SYMBOL DESCRIPTION

N number of sessions
T tau statistic
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Subject N T

AK

233 34 -0.5811 *%
367 47 -0.5523 ok
466 42 0.0964

734 57 -0.5388 *ok
932 60 -0.1695 *
1468 61 -0.6158 ok
LL

175 15 -0.0667

233 20 -0.0947

367 31 -0.6237 *k
466 31 -0.3376 Aok
734 67 -0.2022 ek
932 40 -0.1603

1468 38 -0.2603 *
GF

175 30 -0.7287 *k
233 53 -0.6074 ¥k
367 49 -0.6497 *k
466 23 -0.2490 *
734 20 -0.1263

932 20 -0.2000

1468 22 0.5584 ok
* (p<.05)

** (p<.01)
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negative monotonicity. Based on this analysis one can conclude that CP IRI variance
decreases with practice.

In order to learn more about the nature of the practice effect the CP s1 practice
curves were further analyzed. The best fitted logarithmic, power, and exponential
functions were determined according to the least squares criterion for each curve with the
best of these three being superimposed on Fig 3.4. No single function consistently fitted
the practice functions better than the others so no further attempt to model the practice
effect with these functions was made. The only firm conclusion that arises out of this
analysis is that practice significantly reduces CP IRI variance along a monotonic
decreasing axis.

Because of the relatively steep decrease in sy over the first few sessions estimates
of the initial level were made by way of the best fitted functions. That quantity,
symbolized by s, is equal to the predicted point at session 1 for the function that best
fitted the practice curve. Session 0 could have been used for this purpose but it was not
used because that would have involved extrapolating outside the empirical range. The
same procedure was used to estimate the level of IRI variability for the last session of
each practice curve, sp.. s is almost identical to the mean s taken over the last n
sessions, where n is a small number such as 5. sg and sL are presented in Table 3.5a for
all three Ss.

If the reduction in variability is expressed as a percentage of the initial level of
variability one obtains the percent practice effect. This is a useful quantity because it
enables one to compare practice effects across values of T to determine if practice
changes as a function of T. Percent practice, which is expressed as (s - SF)/ SF, is shown
in Table 3.5b along with overall percent practice effect for each S.

The mean overall percent practice effect across Ss is -20 percent but there is

substantial within and between S variability. In general, and as an initial description,



TABLE 3.52

Continuation phase sp and 5[, for each subject and level of T.



175
233
367
466
734
932
1468

175
233
367

734
932
1468

AK
SF

26.11
22.72
16.19
27.91
2843
65.06

15.52
12.03
20.93
17.40
27.13
42.27

LL
N3

7.12

7.14
10.44
11.57
1536
20.20
25.64

LL

6.89
6.63
7.96
9.26
13.91
18.54
21.19

GF
SF

6.43

9.58
13.13
12,23
2177
28.65
47.54

GF
sL

3.85
5.53
8.74
9.64
21.00
26,77
2741




TABLE 3.5b

Continuation phase percent practice effect [(sr. - sp)/sg] for each subject and level of T.



T
175
233
367
466
734
932
1468

Mean Overall

AK

-40.56
-47.05
29.28
-37.66
-4.57
-35.03

-22.60

-3.23
-7.14
-23.75
-19.97
-9.44
-8.22
-17.36

-12,73

GF
-40.12
-42.28
-33.43
-21.18

-3.54
-6.56
4234

-24.89
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practice improves performance most at the low and high ends of the range studied and

least at the intermediate values around 734 msec.

INTERRESPONSE INTERVAL MEAN ESTIMATES AND PRACTICE
EFFECTS

The arithmetic mean of all IRIs of the CP, which is symbolized by my, is taken as
an estimate of Ss ability to accurately reproduce T. my changes very little with
experience. In order to evaluate the extent of the practice effect the CP my versus session
functions were tested for monotone trends. The results of the monotone trend analysis
are presented in Table 3.6. Only 6 of the 23 mj practice curves show statistically
significant monotone trends. Of those, four were upward and two downward trends.
Thus, unlike the s; practice curve, the mj practice curves do not generally contain
monotone trends and when they do, they are not consistently of the same sign.

One might think that there would be a positive trend when my is initially less than
T, o a negative trend when it is greater than T, but that is not always the case. The
results indicate that while mj becomes a better approximation to T in some cases it
becomes a worse approximation in others. Table 3.7a shows mg and my, estimates of
for the first and last session at each T respectively. Computations of mg and my, are
made by the identical procedure used to obtain sp and s;. A comparison between the
values of mg and T and my, and T illustrates how well Ss match my to T.

BIAS AND OSCILLATOR SIGNATURE PATTERNS

Collyer et al. (1992) analyzed CP IRI my vs T functions and reported evidence
supporting their discrete timekeeper hypothesis. Oscillator signature patterns of a
particular form in residual bias functions formed the basis of that evidence. In order to
determine if such patterns were present in the CP data the mp, vs T func_tion was first
analyzed to see if there was an identity relation between those two variables. Table 3.7b

shows regression statistics in which it can be seen that there exists an identity relation



TABLE 3.6

Test for monotone trends in the continuation phase my vs session practice functions.

LEGEND:
SYMBOL DESCRIPTION

N number of sessions
T tau statistic



Subject N T
AK

233 34 -0.21568
367 47 -0.17483
466 42 0.119628
734 57 0.144110
932 60 0.223728
1468 61 -0.11857
LL

175 15 -0.42857
233 20 0.057894
367 31 0.135483
466 31 -0.27526
734 67 0.189507
932 40 -0.15256
1468 38 0.015647
GF

175 30 0.473563
233 53 -0.01814
367 49 -0.06887
466 23 -0.21739
734 20 0.347368
932 20 -0.30526
1468 22 -0.15151
* (p £.05)

**{p<.01)

%%

3]
L8]



TABLE 3.7a

Continuation phase mg and my, for each subject and level of T.



175
233
367
466
734
932

1468

T

175
233
367
466
734
932

1468

AK
mg

235.05
374.94
457.32
729.37
915.16

1495.66

AK
mp

223.38
369.43
476.13
740.07
945.24

1436.70

LL

mF

179.79
230.02
358.73
470.12
709.55
948.78
1478.97

LL
mpL

174.78
230.67
360.52
461.00
728.33
928.80
1481.98

GF

mF

175.89
237.41
370.59
47443
725.80
967.46
1484.04

GF
mL

178.14
234.06
367.63
459.40
750.99
946.87
1456.23

28]
(28]



TABLE 3.7b

Regression statistics for continuation phase mr, vs T function



Subject Slope
AK 0.9811
LL 1.0108
GF 0.9965

Intercept
11.73
-8.03

4.81

r2
0.9990
0.9999
0.9995

* significantly different from 1.0 for slope or from 0.0 for intercept, p<.05

[
L]



between my, and T. None of the slope coefficients differed significantly from 1.0 and
none of the intercept coefficients differed significantly from zero. Thus unlike the
similar analyses performed by Collyer et al. (1992) and for the PTDD cxperiment, the CP
tapping analysis indicates an absence of linear bias.

The absence of linear bias means that it is appropriate to analyze bias rather than
residual bias functions for the presence of oscillator signatures (Collver et al., 1992).
Figure 3.5 shows bias as a function of T. It is clear that the discrete timekeeper
hypothesis proposed by Collyer et al. (1992) is at best only remotely supported by the
shape of GF's function; his function oscillates about zero bias but the oscillations are
very widely separated indicating that there are only two levels of discreteness over the
entire range. In contrast, the functions of AK and LL bear little or no resemblance to
what the discrete timekeeper hypothesis predicts should be the case. Their functions do
not oscillate about zero bias.

In conclusion, the CP bias functions do not support the discrete timekeeper
hypothesis. However, this conclusion is weak because the experimental procedure might
have precluded the ability to detect the true shape of the oscillator signature pattern as a
result of spacing successive values of T too far apart. Consequently it should be
interpreted as being only cursory evidence against Collyer's discrete timekeeper
hypothesis.

Although the analysis of oscillator signature patterns based on Collyer et. al
(1992) failed to reveat much about the motor timekeeper, other information about ﬂle
timekeeper is available in the tapping IRIs, One of the great benefits of the TPM is that it
provides the rationale and the technique to partition sj2 into clock (s¢2) and motor delay
(sp2) variances. Knowing these variances one is placed in a much stronger position to

make statements about the functioning of the component processes.



FIGURE 3.5

Continuation phase bias (m-T) as a function of T for AK, LL, and GF.

LEGEND:
SUBJECT SYMBOL
AK Crosses
LL triangles

GF circles
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PARTITIONING s;2 into sp? AND s¢2

In order to justify the use of the TPM to obtain sp2 and sc2, the CP IR seqrences
must be shown to be stationary. Earlier it was established that small trends were present
but because they were of such small magnitude relative to my it was concluded that they
would present no serious problem for the analysis. Nevertheless, the existence of trends
should be kept in mind throughout the following analysis.

A main prediction of the TPM is that rj(1) should range between -0.5 and (.
Instances when rj(1) is either greater than O or less than -0.5 would be evidence contriary
to the TPM. Figure 3.6 shows mean (1) with the vertical bars indicating two standard
errors to each side of the mean. Each point is the average 11(1) taken over all sequences
within the last five sessions at T.

Because none of the intervals includes values outside the acceptable bounds for
AK, all of his data are consistent with the TPM and inconsistent with any model that
predicts pr(1) should be less than -1/2 or greater than 0. However, for GF and LL some
estimates are inconsistent with the predictions of the TPM. For GF the three highest
values of T generated mean ry(1) that are greater than zero by more than two standard
errors. Only one similar value, T = 1468 msec, was computed for LL. Thus while these
results are consistent with the TPM for T in the low range of durations, they indicate that
the model might be inappropriate for T in the high range.

According to the TPM, -Gj(1) equals sp2 and G1(0) plus 2Gj(1) equals sc2. Mean
sc2 and sp2 are shown in Figs. 3.7 and 3.8 as functions of T for each S. From a glance
at these sp2 functions one can see that the mean is less than zero for LL and GF
whenever the mean rj(1) does not conform to the predictions of the model. When sp?2 is
negative sc2 is greater than s2 by an amount equal to 2sp2. Obviously that should never
happen according to the TPM because 6c2 should be less than sj2. No irregularities of
this kind occurred for AK.



FIGURE 3.6

Continuation phase mean lag 1 serial co-elation, (1), plotted as a function of T. Two
standard errors are shown to each side of the mean.

LEGEND:
SUBJECT SYMBOL
AK Crosses
LL triangles

GF circles
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FIGURE 3.7

Continuation phase biased sc2 as a function of T for AK, LL, and GF.

LEGEND:
SUBJECT SYMBOL
AK Crosses
LL triangles

GF circles
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FIGURE 3.8

Continuation phase biased sp2 as a function of T for AK, LL, and GF with error bars
indicating two standard errors about the mean.

LEGEND:
SUBJECT SYMBOL
AK CTosses
LL triangles

GF circles
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Of particular importance in the present context is to determine how biased sc2
and sp? are related to my (biased estimates of sc2 and sp2 were analyzed in order to
compare to Wing's (1973) analysis of biased functions). The TPM states that sp2 should
be independent of my but it does not specify the form of the relationship between s¢2 and
mi. Table 3.8 shows ANOVA results in which it can be seen that mean sp? changes
across target durations for AK and GF but not for LL.

Wing and Kristofferson (1973) reported sp2 estimates that were not constant over
the range of values of T they used. The same is true of the present data. By way of an
explanation they proposed that if muscle groups involved in the response operate with
greater precision at different response rates, th.en spZ estimates should vary accordingly
(Wing & Kristofferson, 1973). But they also point out that this explanation cannot
account for highly unstable estimates of sp2 at a given T between sessions.

For T greater than or equal to 734 msec, values of sp2 are often negative and
highly variable both before and after practice. This result suggests that the TPM might
be a poor model for CP tapping, especially at the three longest values of T. The model
might become invalid at these long durations because cognitive factors such as attention
may increasingly influence the timekeeper. At the target duration of 1468 msec, for
example, there is sufficient time for one to momentarily become inattentive without
having disastrous consequences on performance - the accuracy time-window in the CP
equals 734 msec. Such a wide window of error gives considerable latitude for timing
error. In any event, values of sp2 generally are incémpatiblc with the TPM for T greater
than 466 msec..

In addition to determining the range of durations over which the TPM is valid,
one of the principle reasons for conducting the tapping experiment is to determine
whether s¢2 is better described as being a linear or quadratic function of my. Table 3.9

shows the analysis of variance (ANOVA) results in which the method of orthogonal



TABLE 3.8

Analysis of variance (ANOV A) results for mean sp2 over the last five sessions at each
level of T for each subject.

LEGEND:
SYMBOL DESCRIPTION
F F statistic
df degrees of freedom
P significance level
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F df p
AK 11.46 (5,24) <.01
LL 1.55 (6,28) n.s

GF 60.21 (6.28) <01




TABLE 3.9

ANOVA results for mean sc2 over the last five sessions at each level of T for each
subject.

LEGEND:
SYMBOL DESCRIPTION
F F statistic
df degrees of freedom
P significance level



AK
GF

F
156.92
44.17
1186.34

df

(1,5)
(1,6)
(1,6)

P

<01
<01
<01

i mponen
F df
4478 (1,5)
13.19 (1,6)

219.65 (1,6)

232

P

<01
<1
<01




ov]
(S
LS

polynomials was applied to determine the degree of the predictive relation between s¢2
and my. In every case there were highly significant linear and quadratic components.

Wing (1973) found significant linear but no significant quadratic components in
an analysis of the relationship between biased sc2 and mj in three of four Ss. He
interpreted that result to support the idea that a simple stochastic process, perhaps a
Poisson pulse generator, formed the basis of the central timekeeper. However, data from
the fourth subject revealed a significant quadratic component and, more importantly, a
non-significant linear component. This result is inconsistent with a simple stochastic
process hypothesis but it is not inconsistent with a process operating in accord with
Weber's law.

Because all three Ss in the present experiment have highly significant linear and
quadratic components in their biased sc2 vs mj functions, the simple stochastic process
hypothesis must be rejected.

As the biased sc2 vs mj functions contain a quadratic component, we should not
be surprised to find that when those functions are further analyzed in terms of the models
presented in the Introduction (e.g., Weber's, Creelman's, Getty's, and Kristofferson's)
that the three models based on Weber's law fit better. Had the number of pulses in the
CP sequences been large (e.g., 200 or greater) bias would have been minimal and it
would have been acceptable to use the biased sc vs my functions for this analysis. But
because the sequences are relatively short, the issue of bias must be addressed.

BIAS CORRECTED s¢2 and sp2

As discussed in the Introduction, the magnitude of bias that is added to GKk) as a
result of using a particular sequence length is inversely proportional to N, the number of
responses in the sequence (Anderson. 1972; Vorberg, 1978; Wing, 1979). Since bias
increases as N decreases, short sequences introduce more bias to Gj{k) than long ones.

Because CP sequences in the present experiment are short, especially for AK and LL, it
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is necessary to account for bias in Gi(k) before modeling the functions. The introduction
of bias in Gy(k) has a tendency to generate values of Gj(k) that are smaller than their
unbiased counterparts. Thus, correcting for the effect of bias in Gy(k) will generate sc2
that is larger, and sp2 that is smaller than their biased counterparts.

It turns out to be a relatively simple but tedious matter to determine the amount of
bias in G(k) that has been introduced as a result of using a specific sequence length.
That quantity equals the sum of the second and third elements of Eq. 1.35. When that
gnantity is subtracted from the biased obtained autocovariance, the result will be called
"bias corrected” autocovariance.

It should be noted that estimates of the parameters of the theoretical
autocovariance function that are inserted into Eq. 1.35 were themselves obtained from the
biased obtained functions. As a result they must not be the best estimates to begin with.
A better, but more complex approach would be to find the parameters of the unbiased
theoretical autocovariance function that minimize the sum of the squared deviations
about the biased obtained autocovariances after bias is added to the theoretical
autocovariances. Such an approach would eliminate the problem of estimating the
parameters of the unbiased theoretical autocovariance function from the biased obtained
function. But that problem must be considered not to be very serious because neither
Vorberg (1978) nor Wing (1979), two other invesitgators who have addressed this issue,
used this alternative approach. In the interest of maintaining consistency, their approach
will be used for present purposes.

Bias corrected autocovariances for lags 0 to 5 were computed for each sequence
in the last five sessions and were used to make bias corrected estimates of sc2 and sp2.
These estimates are given in Table 3.10 and shox.vn in Figs. 3.9 through 3.11 as a

function of my.



TABLE 3.10

Bias comrected estimates of continuation phase s¢2 and sp?2 for each subject and T.

LEGEND:
SYMBOL

TPM
T

mj
SC2
sp?

DESCRIPTION

Two process model

base interpulse interval

mean interresponse interval

bias corrected timekeeper variance estimate based on the TPM
bias corrected delay variance estimate based on the TPM



AK
T (msec)

233
367
466
734
932
1468

LL
175
233
367
466
734
932
1468

GF
175
233
367
466
734
932
1468

mi
228.05
365.25
467.57
730.45
946.41

1464.4%

175.94
230.48
358.80
459.50
729.78
929.49

1494.29

178.60
226.31
367.66
465.12
746.39
927.85

1450.67

TPM

sc2
111.25
139.91
333.72
318.62
718.57
1764.47

24.85
36.40
55.66
98.51
200.12
468.24
844.43

12.40
21.48
54.54
97.58
520.55
654.93
1180.06

85.99
9.89
54.03
-10.59
25.77
90.77

12.50
4.88
6.80
292

-1.32

-26.31
-120.27

1.61
3.46
7.91
6.50
-36.82
-51.88
-157.93

235



FIGURE 3.9

Continuation phase bias corrected sc2 (solid line) and sp? (dashed line) plotted as
functions of mean for AK.
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FIGURE 3.10

Continuation phase bias corrected sc2 (solid line) and sp2 (dashed line) plotted as
functions of mean IRI for LL.
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FIGURE 3.11

Continuation phase bias corrected sc2 (solid line) and sp? (dashed line) plotted as
functions of mean IRI for GF.
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An analysis of the combined bias corrected CP sp? indicates that there is no
change in mean sp2 as a function of T [F,13) = 0.83, p > .05]. This outcome supports
the TPM prediction that sp2 is independent of T. For T less than or equal to 466 msec
(the range studied by Wing, 1973) all bias corrected sp2 are small and positive. Mean
sp2 for T in this range equals 50.6, 6.8, and 4.9 msec2 for AK, LL, and GF respectively.
Collapsing across subjects, mean sp2 equals 20.8 msec2 which corresponds closely to
Wing's (1973) estimates. However, bias corrected CP sp?2 is frequently negative for T
greater than 466 msec. This implies that the TPM is not valid for IRI timing for T greater
than or equal to 734 msec. The exact value of T at which the model becomes invalid is
located somewhere between 466 and 734 msec, but it cannot be more narrowly defined
here because no values of T between 466 and 734 msec were studied.

When bias cotrected values of sc2 are combined across Ss, ANOVA results
indicate that mean sc2 changes as a function of T [F(g,13) = 13.27, p < 0.01]. An analysis
for a linear trend term reveals statistical significance [F(j 6) = 55.34, p < 0.01]. Further
analysis reveals a significant deviation from linearity [F(s,6) = 3.44, p <0.05], so the data
were tested for a quadratic term. The quadratic term was highly significant [F(y,6) =
13.89, p <.01] but the deviation from that term was not [F(4 6) = 0.55, p > 0.05]. For the
first time, these results provide evidence for the existence of a second order relationship
between bias corrected CP sc2 and target duration. That relationship indicates that a
simple stochastic central timekeeper is not involved with the timing of IRIs. Thus, the
pfcsent analysis supports the interpretation based on the analysis of the biased CP s¢2 vs
my functions - both encourage an interpretation that is inconsistent with a simple
stochastic timekeeper.

Although the simple stochastic model of the timekeeper can be rejected by these
results, the results do not necessarily support a Weber's law interpretation. The main

issue here is that the existence of a quadratic term in the sc2 function does not imply
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linearity in the s¢ function. In order to support the Weber's law model one must also test
for and demonstrate linearity in the s¢ function. An ANOVA on the combined biased
corrected s¢ function reveals that mean s¢ changes as a function of T [F(6,13) =20.33, p
< 0.01]. A statistically significant linear term exists {F(1,6) = 104.2, p < 0.01] and
deviation from linearity was found not to be significant {¥(5,6) = 1.77, p > 0.05].

Taken together, these results lead to the rejection of the proportional variance
class of models and to the non-rejection of the proportional standard deviation class of
models. This is a general level of support for Weber's law as it applies to motor timing
and it is particularly important here because Weber's law generally has been shown to
characterize DD data as well.

From figures 3.10 and 3.11 it is clear that extensive and specific practice does
not result in the emergence of a step function for either LL or GF. Instead their functions
increase throughout the entire range. It would be a fair description to say that there is a
segment over the lower range of durations that has a relatively small slope compared to
the segment over the upper range.

In contrast, & step function consisting of two steps did emerge in AK's bias
corrected CP sc2 vs mp function. Moreover, these steps appear to bear a striking
resemblance to those found for the same subject in Kiristofferson's (1980) DD
experiment. They are located over the same temporal ranges as the two intermediate
steps in Kristofferson (1980), and the ordinate at the higher tread is approximately twice
that of the lower tread when converted into standard deviation or quantum units. The
corresponding quantumn values for these two steps are 27 and 44 msec.

The existence of these steps on AK's bias corrected sc2 vs mj function could
reflect the op;-,ration of a quantal timekeeper. But whether that is the case or not, the
similarity of the two functions is of great importance for present purposes. At the very

least this similarity indicates that the timekeeper(s) mediating MFDD (Kristofferson,
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1980) and CP tapping have common psychophysical properties. This does not mean that
one timekeeper mediates behaviour in both tasks but that is a distinct possibility. Having
said that it must be pointed out that some significant differences in the two functions do
exist. For example, only two steps are present in the tapping function, a clear departure
from at least four steps shown to exist in the MFDD function (Kristofferson, 1980). This
is in part due to the fact that tapping at the shortest base durations that were used in
Kristofferson (1980) proved to be impossible. The demanding motor requirements of the
task ruled out the opportunity to investigate AK's function over this low range of
durations.

At the upper end of the temporal range, AK's tapping function differs in an
important way from his DD function. The step that exists on the DD step function over
the 800 to 1600 msec range does not exist on the tapping bias corrected s¢2 vs mp
function. It is not clear how the tapping function changes over this upper range because
only two durations were investigated within it.

The results of determining the best fitting case of each of Weber's, Creelman's,
Getty's, and Kristofferson's models are reported in Table 3.11. Once again,
Kristofferson's model provided the best fit and Creelman's model the worst fit in terms
of minimizing the sum of squared deviations about the functions. This was the case even
though special procedures were followed to estimate Vr for Getty's and Creelman'’s
models. Vy was initially estimated by fitting the models to the first two data points on the
functions. It was then entered into the procedure as a constant when the fitting procedure
was applied to the entire set of points. Without this special procedure both models
frequently returned a negative Vr.

Since all models baséd on Weber's law fitted the functions far better than

Creelman's model, the proportional clock variance class of models must be rejected in



TABLE 3.11

Results of model fitting applied to the bias corrected continuation phase s¢ vs mj
functions.

LEGEND:
SYMBOL DESCRIPTION

SSE sum of squared errors

All other symbols are parameter estimates of the respective models.



Model: Creelman

Subject SSE
AK 177
LL 92
GF 223
Model: Getty

Subject SSE
AK(2) 29
LL(2) 10
GF(2) 35
Model: Weber
Subject SSE
AK 51
LL 14
GF 36
Model: Kristofferson
Subject SSE
AK 24
LL 10
GF 34

0.694
0.374
0.530

0.027
0.020
0.025

0.029
0.021
0.025

0.031
0.020
0.026

Vr (msec?) (2)
64
0a
Oa

Vr (msec?)

93

Vo({msec?)

120
13
02

L (msec)
151
32

4 would be negative if constraint not imposed

-2
3
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favour of the proportional clock standard deviation class of models. Furthermore, within
the proportional standard deviation class of models, Kristofferson's model fitted the best.

There are substantial differences among the three subjects in all three of the
parameters of Kristofferson's model so their results will be considered separately. For
AK, K equals .031 which is identical to the value of K when the same model was fitted to
his final PTDD Weber function. This is interesting because it suggests that the same
Weber's law clock could be in operation over the upper range of durations for both
PTDD and tapping. However, when Vo and L are compared between these two
paradigms important differences exist. The value of L for tapping (151 msec) is about
half what it is for PTDD (301 msec). If L represents the upper limit on the duration of
the deterministic interval then that interval is shortened in tapping. Furthermore, the
shortening of L appears to coincide with a sixfold increase in Vg (from 18.2 msec2 in
PTDD to 120 msec2 in tapping). Thus a change in L appears to correspond with a change
in Vg.

The situation is very different for LL. For her K and L are appreciably smaller
for CP tapping than they are for PTDD. This could be interpreted to indicate that the
Weber law and deterministic timekeepers are flexible and adaptable to the conditions to
which S is exposed. The deterministic process appears to be flexible to the extent that a
deterministic interval of 0 msec is possible (L equals 0 for LL's CP function). According
to the deterministic interval hypothesis, this means that no deterministic interval is
inserted into the timing chain of events for her in CP tapping. For the same S, L equals
361 msec for PTDD. If this equals the upper limit of L for LL, then it appears that the
full range for L. approaches 400 msec, in close agreement to the range identified by
Kristofferson _(1976) in R-§S.

Vo, on the other hand, is nearly the same for both paradigms for LL. It equals

15.5 msec2 for PTDD and 13 msec2 for CP tapping. This value, which here represents



244

the minimum level of central timekeeper variance, is low in comparison to the values of
Vo equal to 142 msec? (Kristofferson, 1976) and approximately 50 msec2 (Hopkins &
Kristofferson, 1980) in R-SS. The present value is probably lower than these because
neither PTDD nor CP bias corrected clock variance functions have an efferent variance
component included in them. In conirast, the efferent variance component had not been
partitioned out of the R-SS estimates. This difference will be exploited in Chapter 4 in
order to extract new efferent variance estimates.

When L equals 0 msec, as is the case for LL, Kristofferson's model becomes
functionally, but not theoretically, equivalent to Getty's model. Both models should
provide identical values of K, and V, should equal V,. However, due to the slight
modification in the procedure to estimate Vy, Vi is slightly smaller than Vq. For both
models K equals 0.02.

Vo, is here interpreted to be a measure of minimum central clock variance. For
AK it equals 120 msec2 and for LL it equals 13 msec2 but for GF it equals 0 msec2. It
seems unlikely that central variance can reach the absolute minimum of 0 msec2, but
such a deterministic central timekeeper must be considered as a possibility. Extremely
low variances in R-SS together with ongoing improvements after 80,000 trials prompted
Hopkins and Kristofferson (1980) to ask whether the lower limit on variance is greater
than zero. If a deterministic timekeeper exists for GF, it appears to operate over the very
narrow range of 0 to 32 msec. Since no base durations were investigated in this range it
is impossible to make a clear statement regarding this possibility.

The analysis provided 32 msec as the value of L for GF but that was partially due
to the positive constraint that was placed on Vo. Since Vo would have been slightly
negative, Vo and L must be considered as only close approximations in terms of
describing GF's CP sc vs my function. However, since L is very small, Vo would have

been a very small negative number indicating that K is a fairly accurate representation of
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the rising portion of his function. This is further supported by the fact that K is 0.025 in
both the original Weber's law model and Getty's generalization of it, a value extremely
close to the value of K based on Kristofferson's model (0.026).

In this section the original TPM (Wing & Kristofferson, 1973) was used to
generate sc2 and sp2 from the IRI tapping sequences in the CP. These parameters were
then used to determine how clock and motor delay variances change as a function of my.
In the next section several generalizations of the TPM will be evaluated and the impact
on the clock and delay variance functions will be discussed.

GENERALIZATIONS OF THE TPM

BIAS AND AUTOCOVARIANCE FUNCTIONS

A main prediction of the TPM is that pi(1) (and hence ¥1(1)) should be negative.
In fact the TPM goes further and states that all yj(k), for k greater than 1, should equal
zero. In contrast, none of the four generalizations of the TPM which have been derived
by Wing (1977) makes that prediction. Each one predicts that some yi(k) for k greater
than 1 should differ from zero. Furthermore, since each has a uniquely shaped
autocovariance function (the predicted shape for each was discussed in the Introduction)
it should be possible to choose the one that best matches the obtained functions. In this
section, autocovariance functions for lags k equal to 0 to 5 will be analyzed in an attempt
to determine which predicted function best matches the obtained functions on the basis of
minimizing the sum of squared errors.

It was reported above that on several occasions Gy(1) was greater than zero, a
result that casts doubt on the validity of the TPM for these data. The TPM also predicts
that all y1(k) for k greater than 1 should equal zero. Upon analysis of Gi(k) for k greater
than 1 it is clear that on many occasions it does differ from zero, and with rare exception,
itis negative in value for these cases. Because several of the generalizations of the TPM

predict that y1(k) should be negative for k greater than 1, the IRI autocovariance functions
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were analyzed in terms of how well they conformed to the predictions of each of the four
generalizations.

IRI autocovariance functions for k equal to 0 to 5 were computed for each
sequence of the last five sessions for each T. Autocovariances with two standard ermrors
of estimate about each mean Gj(k) are shown in Fig. 3.12 as a function of k for each S
and T. Estimates of the parameters of the best fitted theoretical autocovariance functions
for the TPM and its four generalizations were determined for each obtained function.
This was done initially by imposing constraints on all parameter estimates such that the
absolute value of the correlation parameter was not allowed to be greater than 1 and
variance parameters were not allowed to be less than zero. Table 3.12 summarizes the
results of this analysis in which the roman numerals indicate the best fitting
generalization for each combination of S and T.

These results show that Model 1II describes the CP IRI autocovariance functions
best overall; only the three highest values of T for GF and T equal to 466 for AK were
better fitted by other generalizations. Overall they indicate that adjacent delay intervals
(Dj) are correlated in the CP IRIs; only three of the twenty CP autocovariance functions
analyzed provide evidence suggesting correlated clock intervals (Cj; Model I for GF). In
addition, they suggest that the correlation takes a first order autoregressive (AR(1)) form.

In two separate experiments Wing (1973; 1977) published results consistent with
the interpretation that CP responses have AR(1) correlated Dj. Hence, the present results
corroborate Wing's findings. However, as stated in the Introduction, Wing (1973; 1977)
reported that estimates of the correlation parameter (8) were negative for very short T
and that they approached zero and became positive as T increased. This is not the case
here. For both AK and LL estimates of @ are greater than zero and they slowly increase
with T. The results for GF are consistent with Wing's in that estimates of 0 are negative

for three of the four short values of T and positive for the others. The conclusions that



FIGURE 3.12

Bias corrected autocovariance functions, for lags 0 to 5, with two standard errors of
estimate about each mean Gj(k).

PANEL  SUBJECT T (msec)

A AK 233
B AK 367
C AK 466
D AK 734
E AK 932
F AK 1468
G LL 175
H LL 233
I LL 367
J LL 466
K LL 734
L LL 932
M LL 1468
N GF 175
0O GF 233
p GF 367
Q GF 466
R GF 734
S GF 932
T GF 1468
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TABLE 3.12

Results of fitting four generalizations of the TPM to the CP IRI autocovariance functions.

LEGEND:
SYMBOL DESCRIPTION
I Model I
11 Model II
I Model 11

v Model IV
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T (msec) AK LL GF
175 i
233 0 I 1II
367 I m m
466 v I oI
734 m I I
932 01 I I
1468 I I I
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emerge from these comparisons are that Dj is correlated in the CP according to an AR(1)
process for the full range of T tested and that 6 increases with T.

When sc2 and sp? are obtained by fitting Model II1 (or any of the other TPM
generalizations) to the biased obtained autocovariance functions, often they are large and
negative when the procedure does not place constraints on them. Since negative variance
makes no sense its existence casts doubt on the validity of the Model that generates it.
When constraints are placed on these statistics, all sc2 are zero for LL and AK when
Model OI fits the CP autocovariance functions the best. This contrasis with Wing's
(1977) estimates which he graphically shows to be between 50 and 100 msec2 for T =
400 msec. However, values of sp2 are on the same order of magnitude as those reported
by Wing (1977) (between 150 and 300 msec2 approximately). The results of AK and LL
indicate that all the variance in the IRI times arises from variance in Dj. This suggests
that if there is a central process involved in the timing of IRIs there is no variance
associated with the timing of intervals by that process. However, there is an alternative
explanation to the invariant timekeeper hypothesis and it is one that is associated with
bias in Gy(k).

In order to assess how bias due to sequence length alters the degree to which the
four generalizations of the TPM fit the obtained autocovariance functions, the approach
suggested by Vorberg (1978) and used by Wing (1979) was adopted. Their approach,
which was discussed earlier, consists of generating what will be called biased predicted
theoretical autocovariance functions for each model. The biased predicted theoretical
functions will be compared to the biased obtained functions. A model is rejected if any
of the biased theoretical autocovariance estimates fall outside two standard errors of the
biased obtained autocovariances.

The results of this analysis indicate that Model I1I is still superior to the others; a

smaller number of biased theoretical autocovariance estimates fall outside two standard
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errors of the biased obtained autocovariances for Model III than for any of the other
generalizations. The fit is not perfect as several of the biased theoretical autocovariance
estimates fall outside two standard errors of the obtained autocovariances, Nevertheless,
the evidence supports the idea that the correlation in response delays is of the AR(1)
form.

SUMMARY

Extensive practice greatly reduces CP sj2 but no steps were found on the sj2 vs my
functions. Thus the idea that the timing of IRI in the CP is under the control of a quantal
process is not supported. Evidence consistent with a deterministic timekeeper was
identified in the Weber functions in the form of the flat segment over small values of T
for AK and GF. However, the length of the intervals identified were different than those
identified by Kristofferson (1976) in R-SS. In general those functions lowered in
position such that the Weber parameter, K, in Kristofferson's model was reduced to
nearly half its original value. Partitioning s12 according to the TPM reveals that sp2 is
negative for large T and positive, and in the expected range, for small T. This result
supports the position that the TPM is valid for T less than about 466 msec and invalid for
T greater than about 734 msec, It is impossible to state where between 466 and 734 msec
the transition takes place because no base intervals between those two values were used.
Lastly, and of paramount importance for the present investigation, the sc2 vs my
relationship has a significant quadratic component which leads to the rejection of the
proposition that s¢2 increases linearly with my. Thus the idea that a simple stochastic
timekeeper is in operation must be rejected. For one S (AK) two steps were identified on
the s¢c2 vs my function. The existence of these steps suggests the possibility that under
certain circumstances timekeepers that mediate MEDD and CP IRI timing have common
psychophysical properties. Based on the current data it is not possible to conclude that

these steps on AK's Weber function reflect the operation of a quantal timekeeper that
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exhibits deterministic properties. However, because steps do not exist on either LL's or
GF's function it appears that, if the steps do reflect a quantal timekeeper, that such a
timekeeper is not generally available to all Ss. A quantal timekeeper should not be ruled
out by these findings because we know that steps emerge only after very extensive and
specific practice. Of the three Ss AK has had by far the most experience with
psychophysical procedures.

Initially the tapping investigation set out to test several hypotheses regarding the
operation of the CP motor timekeeper. The SP was included in the procedure as a means
to set the motor clock in order to generate CP IRIs. There was no intention to test
hypotheses regarding timekeeping of SP IRIs because no model for repetitive
synchronization was available at that time. During the course of experimentation that
gap has been filled to some extent with the development of the SCM.

The SCM is a generalization of the TPM to SP IRI timing. It involves a re-
interpretation of the two component processes and it offers a new framework for the
analysis of repetitive synchronous IRI timing, This is important first because it may
provide insight on the validity of the assumption that the SP timekeeper sets the IRI
timekeeper for the timing of repetitive responses in the CP. Second, it is important
because it might provide new knowledge on how repetitive responding is accomplished

in the presence of exogenous auditory stimulus pulses.

SYNCHRONIZATION PHASE: RESULTS AND DISCUSSION

INTERRESPONSE INTERVAL TREND ANALYSIS

Figure 3.2 shows SP and CP mj, computed over the last five sessions, as a
function of position in the response sequence. The error bars represent two standard
errors about the mean. From these figures it is immediately evident that the means of the

first few SP IRIs differ from the rest. This difference represents the stage of responding
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during which synchronization is being established. Being interested only in those
intervals for which synchronization has already been established, the first five SP IRIs
will not be considered.

There is a marked difference between the SP and CP mj vs sequence position
curves. Most importantly the SP sequences are much more stationary. The following
table lists the proportion of SP sequences within the last five sessions that contain
statistically significant monotone trends. First, the results shown in Table 3.13 indicate
that the proportion of sequences that contain monotone trends is lower than that which is
expected 1o occur under the null hypothesis. Second, there is a higher probability that a
sequence will contain a monotone trend when T is smaller than 466 msec than when T is
greater than that. In summary, a highly stationary process underlies IRI generation in the
SP, and this is especially true for T in the upper range studied.

In terms of the differences between the means of the first and second halves of the
SP IRI sequences, the results parallel those of the CP. Many of the cases examined
reveal that a band defined by two standard errors about the mean difference in means
does not include zero. Only 50% of the SP cases gave this result in comparison to 80%
for the CP. This further supports the idea that there is a smaller tendency toward non-
stationarity within SP IRI sequences. Also, since the magnitude of the differences are at
most only 1% of mj, and usually much less, responding in the SP is considered to be
controlled by a stationary process.

INTERRESPONSE INTERVAL DISTRIBUTIONS

Figure 3.3 shows relative frequency polygons of the distributions of SP IRIs
within the last five sessions for each S and T. As a general description, SP IRI response
frequency distributions are more sharply peaked than their CP counterparts. Also, the
latter are broader and more irregular in shape than the former, and the modal bin of the

SP distributions are positioned more directly over T. The modal



TABLE 3.13

The proportion of synchronization phase seqences within the last five sessions at each T
for each subject that contain statistically significant monotone trends. Analyses based on
Mann's test for trend with significance level set at .05.



T (msec)
175

233

367

466

734

932
1468

AK

.016
.020
008
.008

LL

J12
084
096
020
024

GF

8883388

272
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bins of the CP distributions were often displaced to the right or left of T by a small
amount, but they too were often positioned directly over T. In summary, the SP
distributions are centered more closely over T and are less variable than their CP
counterparts.

INTERRESPONSE INTERVAL VARIANCE ESTIMATES AND PRACTICE
EFFECTS

Mean within session SP IRI standard deviation, si, generally reduced as a subject
gained more practice. Figures 3.13 through 3.15 illustrate this trend by plotting SP mean
s as a function of session number. Just as was the case for the CP sj practice curves, the
reduction in SP s1 is gradual and an asymptotic level of variance takes many sessions to
achieve. Applying Mann's test for monotone trend indicates that 80% (16 out of 20) of
the SP sy practice curves contain a negative monotone trend. This too is consistent with
the CP analysis which leads to the conclusion that SP IRl variability decreases with
practice.

The initial (sp) and final (sL) levels of SP variability were obtained using the
same procedure that was used to estimate CP sp and sp.. The best fitted logarithmic,
power, and exponential functions were determined for each of the SP s practice curves.
Using the best of these three functions, the predicted point at the first session yielded sg
and the predicted point at the last session, s.. Table 3.14 shows SP s and si, for each
subject.

INTERRESPONSE INTERVAL MEAN ESTIMATES AND PRACTICE
EFFECTS

The SP my vs session number functions for each S and T are remarkably stable
and flat. Thus, there is no reason to believe that a trend analysis would reveal any
significant trends especially since so few such trends were found in the CP.

Consequently, the Mann test for trend was not carried out.



FIGURE 3.13

Mean within session synchronization phase sy shown as a function of session number for
AK.

PANEL T (msec)

A 233 (triangles), 367 (piusses), 1468 (dots)
B 466 (diamonds), 734 (plusses), 932 (triangles)
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FIGURE 3.14

Mean within session synchronization phase sj shown as a function of session number for
LL.

PANEL T (msec)
A 175 (plusses), 367 (circles), 734 (filled triangles),
1468 (open triangles)

B 233 (triangles), 466 (plusses), 932 (dots)
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FIGURE 3.15

Mean within session synchronization phase sy shown as a function of sesston number for
GF.

PANEL T (msec)
A 175 (plusses), 367 (circles), 734 (filled triangles),
1468 (open triangles)

B 233 (triangles), 466 (plusses), 932 (dots)
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TABLE 3.14

Synchronization phase sg and sy, for each subject and level of T.



175
233
367
466
734
932
1468

175
233
367
466
734
932
1468

AK
SF

30.60
18.84
19.27
26.32
26.97
55.88

AK
sL

18.19
10.67
10.98
14.01
16.44
38.63

LL
SF

6.19
6.66
9.51
10.50
17.96
20.32
38.12

LL

6.250
6.630
8.790
9.620
15.27
21.08

- 23.37

GF
sF

3.85

8.97
10.77
11.36
21.77
27.98
51.48

GF
sL

4.63
5.8
8.47
5.95
18.75
22.36
28.82
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However initial (mg) and final (my) means were computed in the usual manner to remain
consistent with CP procedures. Those estimates are presented in Table 3.15 from which
it is evident that the mean of the IRIs in the SP deviates very litdle from the tarpet
duration, T.

BIAS AND OSCILLATOR SIGNATURE PATTERNS

In order to determine if oscillator signature patterns are present in the SP data the
my, vs T function was first analyzed to see if there was an identity relation between my,
and T. Table 3.16 shows regression statistics in which it can be seen that an identity
relation between myp and T does not always exist; the slope coefficient differs
significantly from unity for LL and the intercept coefficient differs significantly from
zero for GF, These results are consistent with those obtained by Collyer et al. (1992) and
with those reported in the PTDD experiment but they do not correspond to that which
was found as a result of the same analysis of the CP. Linear bias, or a non-identity
relation between mL and T, exists in the SP whereas it does not exist in the CP,

Because linear bias was detected on some occasions residual bias functions were
analyzed for the presence of oscillator signature patterns. Figure 3.16 shows residual
bias functions, in which residual bias is expressed as a percentage of T. It is very clear
that none of the three functions oscillates about zero in a manner consistent with
Collyer's et al {1992) discrete timekeeper hypothesis.

The absence of an oscillator signature pattern in the SP residual bias function
means that Coliyer's et al. (1992) discrete timekeeper hypothesis must be rejected. Thus,
evidence suggesting the existence of a discrete timekeeper, as hypothesized by Collyer et
al. (1992), does not emerge in either the SP or the CP. However, this does not mean that
evidence of timekeepers with discrete or quantal characteristics is completely absent
from the data. An analysis of the sg, vs mp, might lead to evidence in support of a quantal
step function such as the one reported by Kristofferson (1980).



TABLE 3.15

Synchronization phase mr and mr, for each subject and level of T.



175
233
367
466
734
932

1468

175
233
367
466
734
932

1468

AK

mg

230.42
362.83
465.07
732.21
927.51

1464.98

AK
mp,

226.36
363.11
462.18
731.88
928.33

1460.79

LL
mg

176.79
231.75
365.4
463.62
730.95
929.145
1462.54

LL
mL,

174.45
230.75
364.96
464.25
731.26
929.53
1463.02

GF
mf

172.51
229.68
367.98
463.38
732.25
929.85
1466.39

GF
my,

172.56
229.89
363.93
462.94
731.48
929.24
1465.8




TABLE 3.16

Regression statistics for synchronization phase my, vs T function



Subject Slope
AK 0.9989
LL 0.9974**
GF 1.0005

Intercept
-3.762
-0.756

=3.043%*

0.9999
0.9999
0.9999

** significantly different from 1.0 for slope or from 0.0 for intercept, p<.01



FIGURE 3.16

Synchronization phase residual bias, expressed as a percentage of T, plotted as a function
of T for all three subjects.

LEGEND:
SUBJECT SYMBOL
AK crosses
LL triangles

GF circles
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sF vs mg AND sg, vs mg, FUNCTIONS

Figure 3.17 shows the relationship between sp and mp and the relationship
between s, and mp.. Common to all three subjects is the lowering of the functions with
practice. Furthermore, the post-practice functions maintain the basic shape of the pre-
practice functions; si, increases with an increase in mp. Finally, none of the functions
appears t0 increase in a stepwise manner.

The best fitting cases of the proportional variance and standard deviation models
will not be determined because there is no model available at present by which to
interpret such results. Instead SP s12 will be partitioned into sc2 and sp?2 variances which
will serve the basis for modeling analyses.

PARTITIONING s;2 INTO sp2 AND s¢2

It was determined in an earlier section that the SP IRI sequences are adequately
stationary for the purposes of partitioning sj2 into s¢2 and sp? according to the SCM.
Because SP IRI sequences are relatively short only bias corrected sc2 and sp2 are
reported in Table 3.17.

The functional relationships between bias corrected sc2 and miy, and sp2 and my
for the SP are shown in Fig. 3.18. The functions for AK and LL appear to be
qualitatively different from GF's function. AK's function is U-shaped and LL's appears
to be linear in shape. sc2 appears to be unrelated to mj for GF.

According to the SCM, sc2 should represent interpulse interval (IPI) variance.
IPI variance should be a very small number approaching zero since all timing is carried
out by the computer's clock. Thus, one prediction of the model is that s¢2 equals zero.
Moreover, IPI variance is expected to be independent of my because there is no reason to

beli=ve that the timing accuracy of the computer's clock changes for different values of T



FIGURE 3.17

Synchronization phase mean within session IRI standard deviation shown as a function of
mean IR]. Open symbols on dashed line shows function for first five sessions (sg vs mg)
and filled symbols on solid line shows function for last five session (si, vs mp).

PANEL  SUBJECT

A AK
B LL
C GF
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TABLE 3.17

my, and bias corrected estimates of synchronization phase s¢2 and sp2, for each subject
and T.



T (msec)
AK

233

367

466

734

932
1468

LL
175
233
367
466
734
932
1468

GF
175
233
367
466
734
932
1468

mp

227.53
362.64
462.02
731.84
028.21

1461.34

174.73
231.00
364.86
464,18
731.18
929.50

1463.58

173.57
231.02
364.36

463.8
732.25
630.01

1465.73

225.44
64.58
47.78

115.24
94.48

680.44

48.21
45.75
42.04
79.93
121.36
207.46
279.96

30.43
34.07
33.54
36.20
49.08
11.70
-11.66

106.77
20.76
48.20
38.76
87.52

364.45

-2.16
0.28
16.09
14.26
58.44
117.30
151.26

-3.97
1.56
17.15
50.22
146.25
214.01
468.18




FIGURE 3.18
Bias corrected sc2 (solid line) and sp2 (dashed line) plotted as functions of my.

PANEL  SUBIJECT

A AK
B LL
C GF
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within the range studied. Therefore, a second prediction of the model is that sc2 is
orthogonal to m;.

There is weak evidence to suggest that GF's SP sc2 vs my function conforms to
the second of these two predictions. An analysis of the slope of the best fitting straight
line reveals that there is a trend between bias corrected SP sc2 and my [slope = -0.033,
t(5) = -2.68, p > .01]. However, when mean sc2, computed over all values of T, is tested
for departure from zero the results reach significance. Mean sc2 equals a low 26.2 msec?
which is significantly greater than zero [t5) = 3.74, p < .01].

Estimates of combined bias corrected my and s¢2 are shown in Table 3.18. When
bias corrected SP sc2 data are combined by averaging over the three Ss the hypothesis of
independence cannot be rejected [Fg,13) = 1.22, p > 0.05]. The conclusion arising from
this analysis is that sc2 does not change systematicaily with T. This conclusion supports
the SCM as it is consistent with the prediction that sc2 should be independent of T.
However, a glance at the individual sc2 vs mj functions suggests that such support for the
SCM is weak.

Bias corrected SP sp2 vs mj functions appear to be of the same basic shape as the
bias comrected SP s¢? functions for AK and LL but the former are slightly lower in
position than the latter. For GF, however, sp2 increases monotonically as a function of
my and the sp2 vs mj function lies above the s¢2 vs my function for the most part.

The hypothesis of independence between sp2 and mj is rejected for combined bias
corrected SP sD2 data, [F(6,13) = 6.48, p < 0.01] and both linear [F(1,6) = 25.25, p <
0.01] and quadratic [F(1,6) = 7.38, p < 0.05] trend components are statistically
significant, These results indicate that there is a quadratic relationship between SP bias
corrected sp2 and my . The SCM does not lead to a prediction of how changes in T
should affect sp2 but it does imply that if a change in SP IRI variability occurs as a result

of a change in T that that change should reflect a change in sp2 (a change in Ss



TABLE 3.18

Combined mean synchronization phase mj and sp for each T.
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T (mséc)MEAN my (msec)MEAN sp (msec)

175 174.22 Qb
233 229.9 4.04
367 364.0 424
466 463.3 5.94
734 731.8 8.75
932 929.2 11.60
1468 1463.6 17.78

a computed over LL and GF only
b square root of negative number
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responding), and not a change in s¢2 (the computer's clock). In this sense the SCM is
supported but further interpretations are impossible at this time because the SCM does
not provide a procedure to decompose sp2 into its component parts.

A quadratic increase in bias corrected SP sp2 means that any model of the
underlying process that gives rise to this pattern of change is not likely to be a member of
the proportional variance class of models. Table 3.19 reports the relevant statistics for
each of the three Weber's law models and Creelman's model when they are fitted to the
combined bias corrected SP sp vs mj functions. It should be emphasized that in the
context of the SCM sp does not necessarily represent a single (central or motor delay)
theoretical component, as was the case in the CP analysis, so the results must be
interpreted with caution.

Of the three Weber-law-based models and Creelman's proportional variance
based model, Kristofferson's model fits the best and Creelman's model the worst. This is
the same result obtained for the CP s¢ vs my function analysis. Thus, once again Weber's
law models describe the functions better than Creelman's model. But at this point it is
impossible to state with certainty what it is that is conforming to Weber's law in this
case. It may be that the central timekeeper is the single component that is primarily
responsible for the changing shape of the function. But since that has yet to be
determined one can only speculate about the similarity or dissimilarity of the central or
motor timekeepers in the two phases of a sequence.

Although it is somewhat difficult to interpret the meaning of sc2 and sp2
estimates obtained from the SCM, the SCM may itself be evaluated by examining the
autocovariance functions from which the above t;.stimatcs are generated.

AUTOCOVARIANCE FUNCTIONS
According to the SCM autocovariance function (see Equation 1.35) Ag(k) = 0 for

k > 1. Similarly, A1(1) should equal -0.5 A1(0}). Figure 3.19 shows that while such a



FIGURE 3.19

Synchronization phase bias corrected autocovariance functions, for lags 0 to 5, with two
standard errors of estimate about each mean Gy(k).

PANEL SUBJECT T (msec)

A AK 233
B AK 367
C AK 466
D AK 734
E AK 932
F AK 1468
G LL 175
H LL 233
I LL 367
J LL 466
K LL 734
L LL 932
M LL 1468
N GF 175
O GF 233
P GF 367
Q GF 466
R GF 734
S GF 932
T GF 1468
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description is adequate sometimes, generally it is inadequate. For the most part Ay(k) for
k>1 deviate significantly from zero and Aj(1) is almost always less than -0.5 A1(0). The
five instances when the model is fairly accurately reflected by the data occur for AK at
T=466 msec. and for GF at T = 466, 734, 932, and 1468 msec.. Thus, while the model is
not completely rejected the level of support for it is tenuous. Clearly, the model needs to
be modified to account for the variety of observed autocovariance functions.

SUMMARY

In summary, it is accurate to say that responding in the SP is governed by a
stationary process. Probably related to this high degree of stationarity is the precision
and accuracy with which responses are made. SP IRI distributions are symmetrical and
unimodal with the modal bin located almost directly over T. By comparison SP IR1
distributions are less variable and more sharply peaked than their CP counterparts.

Practice is an important issue in SP responding as within session variance shows a
downward trend with the number of sessions of experience at most base durations.
Unfortunately an attempt to identify the functional properties of the processes associated
with the practice effect was not fruitful. The only firm conclusion arising from that
attempt is that the practice effect appears to be non-homogeneous. Such a conclusion
points toward a multi-faceted integration of components, linked together into a complex
structure that collectively operate on IRI responding.

We now know that combined bias corrected SP sc2 does not change
systematically with T, sp2, on the other hand, is related to my - both linear and quadratic
trend components are significant. Both of these results are consistent with the SCM.
However, caution was expressed as individual analyses are in some cases contradictory.
Finally, Weber's law models more accurately described the combined SP sp vs mp

function. This means that the combined variability of all the subject related components
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(e.g., central clock and motor delay) are more consistent with the proportional standard
deviation models than with Creelman's proportional variance model.

According to the SCM, sc?, or clock variance, estimates the variability of the
interpulse intervals (note: remember that it is called "clock" because the model states that
the auditory pulses serve as the Ss timekeeper). On the other hand, sp2 represents an
estimate of the variability of the timing of all events occurring between the onset of a
pulse and the synchronization response to the next-pulse. Because of these differences,
scZ and sp? represent very different theoretical entities in the context of the analysis of
CP IRIs, in terms of the TPM, and in the context of the analysis of SP IRIs in terms of the
SCM. As aresult they are not directly comparable between models.

In this regard it is interesting to note that the analysis of the CP s¢2 vs my
functions bears a striking resemblance to the SP sp2 vs my function analysis. The
comparison between SP and CP analyses becomes more interesting when CP sp2 vs m
and SP sc2 vs my function analyses are considered - they too are remarkably similar, The
absence of external pulses in the CP is associated with a reversal in the parameters of the
TPM: CP s¢2 is a quadratic function of my whereas SP sc2 is independent of my, and SP
sp2 is a quadratic function of mj whereas CP sp2 is independent of mj.

Once again, it is difficult to infer anything on the basis of between model
comparisons of sc2 and sp2 because they are measures of variability that refer to
different entities for the TPM and the SCM. However, based on analyses of the IRIs, it is
undoubtedly the case that there is a clear difference between timekeeping in the two
phases. It is impossible to confirm the causes of these differences but they must in part
be due to the existence of pulses in the SP and the absence of them in the CP. Perhaps
fundamentally different timekeepers or strategies are being accessed as a result of the
presence or absence of pulses. The present results illustrate the need to estimate central

and motor component variabilities in the SP that are directly comparable to those



319

obtained from the CP. With those estimates we would be in a position 10 make
meaningful comparisons between timekeepers in the two phases.
OVERALL CONCLUSIONS

The purpose of using the continuation method was to have the auditory pulses of
the SP start and set the CP clock which then continues to contro! IRI responding in the
CP. However evidence from the present expeniment indicates that there might be two
timekeeper processes, one operating in the SP and one in the CP. This two clock
hypothesis is damaging to the continuation method because it means that first the SP
clock is set and then S is forced to switch to the CP clock after the pulses cease.
Although tapping in the SP appears to facilitate timekeeping in the CP because the CP
clock is set very well somehow, the switch from the SP to the CP probably unnecessarily
complicates, and ultimately hinders timekeeping in the CP. Since the primary objective
of the tapping experiment is to investigate motor timekeeping in the CP, a better
understanding of the underlying mechanism(s) calls for the use of an alternative method
to set the CP motor clock.

Clearly, a better alternative method must eliminate the SP but somchow still start
and set the motor clock to run at an experimenter determined rate. The "tap to criterion”
method, which is described below, should achieve that goal.

The tap to criterion method is similar to the continuation method in that there are
two phases within each sequence. However, in the tap to criterion method the SP is
substituted by the criterion phase. The criterion phase is used to set the target rate of
tapping at the beginning of a sequence. During the criterion phase S starts tapping at a
rate he estimates is close to the target rate. If, after several responses the mean IRI does
not sufficiently approximate T, a computer monitoring ongoing IRI times would present
visual feedback informing S of his mean tapping time. S would use this information to

adjust his tapping rate to more closely approximate T (i.e., to increase the tapping rate if
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the mean rate of responding were greater than T, or decrease it if it were less than T).
After the rate of tapping had reached a criterion level of acceptance, S would "continue™
to tap for a prespecified number of intervals in the absence of additional feedback. This
“continuation phase” ends when an audible computer generated signal is presented to the
listener.

Feedback provided during an ongoing sequence might itself be highly disruptive
t0 S. However, S should be able to learn to tap at a fixed rate so that the criterion phase
would become very short or completely eliminated. The kind and amount of practice
will probably be of great importance in such a procedure. If the same base T is used for
all sequences within each session and over many consecutive sessions, there is a good
chance that the criterion phase, if not completely eliminated, will be eliminated from a
high proportion of sequences.

There are many ways in which the criterion could be defined. One method would
involve a comparison between the running mean of the last n IRIs to the target T. For
example, criterion would be reached when a prespecified number of sequential running
means fall within m msec of T. This definition has the advantage that S would never
know exactly when the criterion phase ends and the continuation phase begins. This is an
advantage as it would motivate S to tap to the best of his ability throughout the entire
sequence. However, it would be necessary to place an upper limit on the number of IRIs
in the criterion phase because without such a limit, the sequence could go on indefinitely.

The "tapping to criterion" method circumvents the main problem associated with
the original continuation method. Because the SP is replaced by the criterion phase no
abrupt transitions take place within a sequence. However, one potential problem with the
tapping to criterion method is that the number of IRIs in the criterion phase is not set ata
specific number, so sequence lengths would vary. But this variability in sequence

lengths is due to variability in the number of IRIs in the criterion phase; the number of
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IRIs in the CP would be fixed. This is a potential problem because the extent of
variability in sequence lengths is an empirical matter which must be investigated
experimentally.

Finally, the tapping to criterion method serves as a motor analog to the implicit
standard MF DD method used by Kristofferson (1980) - the standard is never explicitly
presented. From the information available at present, it appears that when an explicit
standard is presented, whether it is in a perception or motor timing setting, the Weber
function is smooth (i.e., it does not increase in a stepwise marner), and when it increases,
it does so in accordance with Weber's law. A method employing an implicit standard has
been investigated in the context of DD (Kristofferson, 1980) and from that study we
know that the step function emerged following extensive and specific practice. What
remains to be determined is the form of the Weber function using a repetitive tapping
procedure in which the standard is implicit and extensive and specific practice is
afforded. The tapping to criterion method allows one to investigate the effects of an

implicit standard in the context of motor timing.



GENERAL DISCUSSION

The idea that a single internal clock, or timekeeper, mediates the temporal control
of all behaviour is certainly incorrect. Nevertheless it is possible that a variety of
behaviours either share a common timekeeper or are mediated by functionally similar
timekeepers. If that is the case it should be possible to integrate results generated by a
variety of experimental paradigms within the general context of timekeeping.

At a very basic level, we know that the results from a variety of experimental
procedures probing the timekeeping abilities of human beings have features in common.
For example, above a critical duration and over a wide range of durations, variability
increases as T increases. This feature can be seen in the PTDD, MFDD, R-SS, and CP
functions. However, it is important to emphasize that over small ranges local features
vary considerably (e.g., Kristofferson, 1980 for MFDD; Kiristofferson, 1976 for R-S85;
Wing & Kristofferson, 1973 for tapping). In other words, the specific nature of the
relationship between variability and temporal interval is not consistent across tasks.

How can these similarities and differences be interpreted in terms of underlying
temporal mechanisms? The approach that is adopted generates estimates of central, and
in some cases efferent, variance from statistics obtained by modeling the various
functions, If different comparisons yield similar estimates for each of these variables,
and they are consistent with others found in the literature, then an integrated and coherent
understanding of the underlying mechanism(s) could emerge.

The main comparisons that will be used are of the shapes and locations of the
variability versus mean functions. Theoretically these functions do not consist of the

same components so extreme care must be taken when comparisons are made. For
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example, theoretically the PTDD sc2 vs my function incorporates only central variability
whereas the sp2 vs mp function obtained in R-SS incorporates both central and efferent
variability. Afferent variance does not enter into consideration in either of these
functions because previous research has shown that it is inconsequentially small relative
to the other components.

Because substantial intersubject differences are obtained in the present
experimental results, generalizations between paradigms will be based upon within §
comparisons when possible. Similarly, since level of practice has an effect on
performance it too will be considered when comparisons are made.

Table 4.1 provides a summary of statistics based on the analyses of the functions
for several Ss from several experimental paradigms. With the exception of MFDD,
Kristofferson's (1976) model provides the best fit to the functions. Because of the
excellent fit of Kristofferson's model to the data, comparisons between functions will be
made on the basis of the statistics generated by that model.

It is very fortunate that AK has participated in and has a high degree of practice
with all four experimental procedures. A high level of practice with all four procedures
will facilitate comparisons. Comparisons are also facilitated because very similar empty
auditory stimuli were employed in all of these experiments. Response demands differed
in these experiments, but it is those differences that allow one to obtain independent
estimates of efferent and central variability. Unfortunately neither LL nor GF have
experience with MFDD or R-SS, so within subject comparisons of their data sets is
limited to PTDD and tapping.

COMPARISONS AMONG SEVERAL PSYCHOPHYSICAL PROCEDURES

If certain assumptions about the underlying lempdral mechanisms are made,

comparisons between any two of the four functions should reveal information about those

mechanisms. For example, estimates of minimum central timekeeper variance, and the



TABLE 4.1

Summary of Kristofferson's generalized Weber's law model fitted to the functions obtained from
PTDD, CP tapping, and R-8S. K, L, and V, are parameter estimates of the model. Also shown
are the estimates of the parameter K for the original Weber's law model for MFDD. AK, LL,
and GF are the three subjects who participated in the current research programme.

1)



324

PTDD: sc? vs mj FUNCTION, KRISTOFFERSON'S MODEL
AK K=0.031, L=301, Vo =18.
LL K=0031, L=36l, Vo =15.
GF K=0.049, L=510, Vo =26.
TAPPING: BIAS CORRECTED sc2 vs mj, KRISTOFFERSON'S MODEL
AK K=0.031, L=15], Vo =120.
LL K=0.020, L=0, Vo=13.
GF K=0026, L=32,Vo=0.

MFDD: sc2 vs mj FUNCTION, WEBER'S LAW MODEL
AK K =0.051, line through origin before practice

K =0.026, step function after practice

R-8S: sp2 vs mgr FUNCTION, KRISTOFFERSON'S MODEL
AK K=0034, L=3550, Vo = 142.
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manner in which central timekeeper variance changes with temporal duration, should be
possible as a result of a comparison among these functions. In addition, new estimates of
cfferent delay variance and the duration of any deterministic intervals should be possible.

In order to compare results among procedures it is assumed that processing
involves at least three distinct stages or components; afferent, central, and efferent.
Unless otherwise stated it is further assumed that each of these stages operates
independently of the others. Thus the total variance for a given procedure is equal to the
sum of the variances of the contributing stages. On the basis of evidence presented
earlier, variability in the afferent system is negligible. For present purposes afferent
latencies are assumed to be non-variable. If that assumption is valid, the points on the
PTDD and MFDD functions are interpreted to be direct measures of central variance.
Similarly, each point on the R-SS function is interpreted to be a combined measure of
central and efferent variances.  The CP IRI tapping function is composed of central
variance plus two times efferent variance since each IRI is defined by two responses.
Further comparisons between the CP tapping functions and the functions of the other
procedures are possible because IRI functions can be decomposed into separate central
and efferent functions via the TPM (Wing and Kristofferson, 1973). The equations
below show the variance (Vcomponent, Where component is ¢ for clock, a for afferent, and
e for efferent) of the contributing components for each point on each of the four functions
under consideration.

MFDD: Ve+ Va=Vif Va=0

PTDD: Ve+Va=Vif Va=0

R-S88: Vc+Va+Ve=Vc+V,ifVa=0

CP TAPPING: V¢+ Ve+ Ve .
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PTDD AND MFDD FUNCTIONS

When AK's PTDD function is compared to his MFDD function a distincaon of
theoretical importance emerges. Early in practice the MFDD function (Kristofferson,
1980) is well described by the strict form of Weber's law in which s¢ is proportional to
my over the full range of base durations. The zero intercept function has a constant of
proportionality equal to 0.053, which is, as Kristofferson (1980) points out, in good
agreement with Getty's (1975) K of between 0.05 and 0.06. In PTDD K equals 0.056 for
AK early in practice. These similar values of K suggest that the pre-practice Weber
constant, K, is the same for PTDD and MFDD.

It is important to realize that the pre-practice PTDD function has a deterministic
component in it that is not reflected in K. The PTDD function is flat at the lower end and
it rises in accord with Weber's law for differences in means above L, which in this case
equals 398 msec. Thus, while the value of K is nearly identical for the two DD
paradigms, the functions differ considerably. As practice continues this difference
manifests itself more dramatically.

Following extensive and specific practice both PTDD and MFDD functions
change. The MFDD function changes both in shape and location; the simple proportional
relationship transforms into the step function (Kristofferson, 1980) which was, for the
most part, lower in location. The PTDD function lowers in position but it maintains its
basic shape - a PTDD step function does not emerge even though extensive and specific
practice is given at each base duration.

What causes these very different functions to emerge? Kristofferson (1980)
proposed that a quantal counting mechanism might be responsible for the emergence of
the MFDD step function. Each step defines a unique quantum value and the slope of the

step indicates that the error in the quantal counter increases with the number of quanta
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counted. The gradual! flaucning of the steps with practice was interpreted to be the
consequence of the reduction in quantal counting error.

It is not obvious how a quantal counting mechanism can explain the PTDD
function but if one supposes that error in quantal counting does not change with practice
under certain circumstances (e.g., with the use of an explicit standard) then such an
hypothesis could preserve the straight line segment that describes the PTDD functions for
durations greater than L. But this hypothesis must be rejected because while K decreases
with practice, the linear sh.ape of the function does not change.

To complicate matters further, K actually increases for two Ss (LL & GF).
According to the hypothesis outlined above, an increase in K should indicate an increase
in counting error with practice. Although possible, that does not seem to be a very
plausible explanation.

In summary, many pieces of evidence suggest that the temporal process
underlying PTDD probably is not an imperfect quantal counter. Rather the PTDD data
support the idea that it is a stochastic process for increments in duration in excess of a
lower limit L. For durations below L the data indicate that a different process is in effect,
one in which variance does not change as a function of base duration.

PTDD and MFDD have many methodological similarities but there is one
significant difference between them that may be related to the type of timekeeping
process that is available to S. That difference is that the standard is implicit in MFDD
and explicit in PTDD.

Kristofferson (1987, 1990) proposed that the method by which the internal
criterion is established may be a critical factor in determining the shape and location of
the resulting function. He proposed that because the standard interval is implici.t in

MFDD, I (the internal interval in the RTCT model) must be fixed indirectly. That in turn
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could lead to a memory controlled criterion. In contrast, a procedure that uses an explicit
standard (e.g., PTDD) could lead to a stimulus driven criterion.

Jezdic (1986) tested the implicit/explicit standard idea and concluded that the
criterion is also memory controlled in PTDD. But, Kristofferson (1990) notes that it is
possible that memorial representations of temporal intervais differ depending on how the
memory is encoded. Particular experimental conditions, such as explicit and implicit
standards, may lead to different memory representation and retrieval processes. From the
available evidence to date it appears that encoding the memory representation of the
PTDD explicit standard does not lead to a quantal retrieval process. However, encoding
the memory representation of the MFDD implicit standard appears to lead to a retrieval
process involving a quantal mechanism.

We now know that the memory representation generated by an explicit standard
can be transferred and used when the standard is switched and becomes implicit (Jezdic,
1986). But we do not know if the reverse holds - that is, whether the memory
representation for a standard generated by an implicit standard can be transferred and
used when the standard is switched and becomes an explicit one. Performing the
appropriate experiment to determine whether that would be the case is important because
it might provide insight into the encoding processes involved with both types of
standards.

From the foregoing discussion it appears that there is a connection between the
way the internal criterion is established (i.e., via implicit or explicit standards) and the
nature of the timing mechanism (i.e., quantal or stochastic). For example, it also appears
that a criterion established by an implicit standard is linked to a quantal timer and one
that is established via an explicit standard is linked to a non-quantal timer that

incorporates deterministic and stochastic processes.
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This connection between the type of criterion and timing mechanism could hold
for other psychophysical procedures as well. In R-8S an explicit standard is potentially
available - on every trial the subject must attempt to synchronize his response to a
stimulus that explicitly defines the end of the synchronization interval. Thus the standard
presented on a given trial is not used for the trial on which it is presented but standards
presented on previous trials could be used on subsequent trials. We do not know if
standards presented on previous trials are used in this fashion but it is interesting that the
R-SS function qualitatively is more similar to the PTDD function than it is to the MFDD
function. This information does not prove that subjects use prior trials to encode their
memory representations of the standard and that that standard is then used on later trials,
but it is consistent with that idea.

It would be informative to alter the basic R-SS paradigm and incorporate an
explicit standard on the trial in which it is to be used. This could be accomplished by
presenting a fixed number of isochronous pulses prior to the R-SS pulse pair in order to
define the explicit standard on each trial. The task would require an attempt to
synchronize a response to the final pulse in the pulse train. This experiment would be
similar 10 the PTDD paradigm except that rather than making a discrimination judgment
to a temporally displaced final pulse, S would make a synchronization response to the
final non-displaced pulse of the pulse train. If the altered R-SS function is qualitatively
similar to the original R-SS function then that would further support the hypothesis that
Ss are using an explicit standard in the original R-SS paradigm.

One more example in which the standard is explicit and the results conform to the
above expectations is the continuation paradigm (Wing, 1973). The standard is explicit
because it is repeatedly presented during the SP. The CP function was found to be

monotonically increasing by Wing (1973) and in the present research.
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There are remarkably few procedures that make use of an implicit standard. The
MFDD procedure is one example (Allan & Kristofferson, 1974) and certain time
estimation procedures may qualify as others. While other procedures could provide
implicit standards it is nct just the type of stimulus that is important for the step function
to emerge. High levels of specific practice are also required, presumably to create the
right conditions to reduce quantal counting error. In this respect I know of no implicit
standard experiment in which Ss are given the degree and kind of practice that
Kristofferson's Ss received. It would be very informative to conduct an implicit standard
experiment, using a procedure other than MFDD (and with sufficient levels of practice),
to determine if the type of criterion/timing mechanism connection is maintained.

One procedure that could be used to accomplish that goal might be called implicit
standard pulse train duration discrimination. On each trial of this procedure a short and a
long reference stimulus would be presented, one following the other. The midpoint (¢.g.,
the arithmetic or geometric mean) of these two reference stimuli would define the
standard. The standard would be implicit because no stimulus equal in duration to it
would ever be presented to S. A short time following the end of the second reference
stimulus the test stimulus would be presented and S would be asked to judge whether the
test stimulus was shorter or longer than the standard. Feedback as to the correctness of
the judgment would be provided at the end of each trial in order to experimentally
categorize responses according to how the standard is defined.

Another set of procedures which derives from Gibbon's (1977) Scalar Timing
Theory (STT) could be used to further probe the type of criterion/timing mechanism
relationship. If PTDD and implicit standard PTDD are carried out without any feedback
given following responses, they would be converted to explicit and implicit standard
pulse train bisection discrimination experiments respectively. STT could then be applied

to the data in order to evaluate the criterion/timing mechanism relationship.
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The implicit standard pulse train duration discrimination procedure borrows the
pulse train characteristic from PTDD and bears a strong resemblance to MFDD (Allan,
1979; Kristofferson, 1980) and the human bisection discrimination experiment (Allan &
Gibbon, 1991). It is similar to the MFDD and bisection procedures in that the standard is
implicit, The feedback characteristic is typical of both PTDD and MFDD and it is the
primary difference between DD and bisection discrimination procedures. Another
feature that distinguishes the proposed procedure from MFDD and bisection
discrimination is that both reference points would be presented on every trial. In Allan
and Gibbon's (1991) bisection discrimination experiment the short and long reference
points each were presented on only 14 of a total of 91 trials and feedback was given on
half of those. In contrast, a reference stimulus was never presented in Kristofferson's
(1980) MFDD experiment and only one test stimulus was presented on a trial.

PTDD AND R-SS FUNCTIONS

The similarities between the PTDD and R-SS functions are most striking. Both
functions have a flat, or deterministic region, over the lower range of base durations and
an increasing Weber's law region, with similar slopes, over the higher ranges.

Although these two functions are very similar, important differences between two
of the statistics generated by the fitting procedure deserve comment. The difference
between estimates of Vo from AK's R-SS and PTDD functions equals 124 msec2 (142 -
18; but 142 probably is an overestimate because later Hopkins and Kristofferson (1980)
obtained much smaller S-R latency variance estimates with modified procedures. Their
estimate was on the order of 50 msec2. But because AK was not a subject in those
experiments the estimates from Kristofferson (1976) will be used for present purposes).
Likewise the difference between estimates of L equals 249 msec (550 - 301).

What might these differences tell us about underlying temporal processes? Let us

assume that Kristofferson's (1977) Real Time Criterion Model accurately models the



temporal processes governing behaviour in R-SS and PTDD. That model states that for
both procedures there is an afferent latency interval that has a smail amount of variability
associated with it, and a centrally timed interval that terminates at the criterion. The time
of occurrence of the criterion is variable and the isosceles triangle distribution is used to
represent its variability.

In PTDD a judgment is made on the basis of a race between the criterion and the
internal event corresponding to the end of the interval being judged. Hence, the only
potential sources of variability are the afferent and central systems. In R-SS, however,
the criterion acts as a trigger to activate the efferent system, a third source of variability
that is not present in PTDD. Because the overt response in R-SS is meant to occur at the
same time as the end of the test stimulus, the internally timed interval (1) terminating at
the criterion is longer in PTDD than it is in R-§5 when the base temporal interval is the
same in both procedures. On average this difference should be equivalent to the sum of
afferent and efferent latencies.

If one assumes that afferent and efferent variability do not change as a function of
temporal interval then all changes in the R-SS function should be due to changes in
central variability. Because PTDD does not include an efferent component, the 124
msec2 difference between Vg estimates in the flat region of the two functions may be
interpreted as an estimate of efferent variability for AK. Similarly, the 249 msec
difference between estimates of L represents the mean sum of afferent and efferent
latencies in R-SS, most of which should represent efferent latency.

The present estimates of efferent latency and variability are higher than those
published in the literature. From the CP of Wing and Kristofferson's (1973) finger
tapping experime‘nt, estimates of efferent variance ranged between 10 and 50 msec2. An
independent estimate of efferent variance obtained by Hopkins (1984), through a

simulation of R-SS data, was about 15 msec2, Thus the present estimate of 124 msec2
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seems high when compared to these other estimates, especially Hopkins' (1984) result.
The difference between the present estimate and Hopkins' (1984) is most likely due to
the substantial modifications in procedure that Hopkins (1984) incorporated into the R-
SS paradigm.

One may be tempted to use simple reaction time variance as an estimate of
efferent variability. Kristofferson (1976, 1977) and Saslow (1974) report simple reaction
time variance to be approximately 350 to 400 msec2 which is substantially higher than
either the present estimate or any of the other estimates discussed. This large difference
suggests that simple reaction time variance is not simply equivalent to efferent variance.

Kristofferson (1976) noticed that simple reaction time variance is typically higher
than R-8S variance. This is interesting because R-88S intervals are longer than the simple
reaction time limit and presumably they include an additional, centrally timed interval
with its own source of variance. Kiristofferson (1976) suggested that one possible cause
of this difference is trigger interference. The internal trigger for a simple reaction
response may add temporal variability as a result of being temporally coincident with the
internal registration of the external stimulus. Separate the trigger from the sensory event,
as in R-SS, and response variance drops significantly (from roughly 375 to a low of about
142 msec2; Vo, Kristofferson, 1976). The difference between these two estimates of
variance could reflect the maximum amount of variance due to trigger interference. That
difference equals 233 msec2.

If trigger interference accounts for 233 ms:c2 of the total .variance then the
remaining 142 msec2 (375 - 233) presumably is the sum of central and efferent
variances. Of that 142 msec2 we have estimated that 124 msec2 derives from efferent
sources. Interestingly, this leaves only 18 msec2 (142 msec2 - 124 msec2) that must

represent the sum of the variances of the afferent and centrai components. Thus if the
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afferent system is variance free, then the central component of the R-8S chain of events
has a variance of only 18 msec2 associated with it.

Estimates of efferent latency also differ from previously published estimates.
Kristofferson (1976), for example, reports minimum simple reaction time latency to be
about 160 msec. This figure closely matches that published by Saslow (1974) and now is
accepted as the established minimum simple auditory reaction time latency. The mean
minimum simple reaction time latency obtained from the three subjects in Kristofferson's
(1977) speeded response MFDD paradigm is 174 msec, slightly higher than 160 msec.
This estimate is higher because two of the three subjects had not yet reached their
asymptotic level of responding. The one subject that did reach the optimal level of
responding had a simple response latency of 168 msec.

The present efferent latency estimate of about 249 msec is 89 msec higher than
the established minimum simple reaction time latency. What might account for this
difference? Kristofferson's (1976) idea that a non-variable delay of up to 400 msec may
be inserted into the temporal chain of events will, for the most part, account for the
difference. Along this line of thinking let us suppose that a delay of up to 300 msec may
be inserted into the centrally timed interval when the task does not involve the efferent
system (e.g., non-speeded MFDD or PTDD). Evidence for this delay can be seen as the
flat portion on AK's PTDD function. Similarly, let us suppose that when the efferent
system is involved (e.g., R-SS) that a delay of up to 400 msec can be inserted into the
central interval. XKristofferson (1976) provides evidence supporting a delay of this
magnitude (L - simple reaction time limit). I can offer no conclusive reason why the
inclusion of a response might extend the duration of the deterministic delay in the central
component. At a speculative level it is possible that the transfer of information from the

central to the efferent systems takes a period of time (100 msec) and that this transfer
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involves a negligible amount of variability. Such a transfer would not exist in PTDD or
MFDD thus giving rise to the shorter deterministic interval.

The two conditions that give rise to the two centrally located deterministic delays,
together with trigger interference, can explain the differences between the PTDD and R-
SS functions and also integrate simple response time data into a logical framework. Fora
simple reaction time response three conditions will give rise to the observed response
latency and variance. They are 1) maximum trigger interference, 2) zero central
variability and zero deterministic interval inserted into the central interval, and 3) efferent
variability. As the R-SS interval increases above the simple reaction time limit,
continuously adjustable deterministic delays are inserted into the central component and
a residual amount (e.g., 18 msec2) of central variability is introduced. The small delay
inserted into the central mechanism serves to separate the response trigger from the
internal sensory event thereby quickly reducing response variance due to trigger
interference. Evidence of such a reduction can be seen in Fig. 5 (Kristofferson, 1976) in
which there is a rapid decrease in variance from the simple reaction time limit to
approximately 280 msec, the upper limit of Region I (Kristofferson, 1976). According to
this interpretation trigger interference is no longer a factor for intervals in excess of 280
msec. Variance remains stable throughout Region II, suggesting the insertion of
additional non-variable delays.

For an R-SS interval of 550 msec the deterministic delay of the centrally tmed
interval is approximately 400 msec. Total variance reflects simple response time
variance, with variance due to trigger interference reduced to zero, plus a small amount
of residual central variance (i.e., 18 msec2). Timing of increments above the 550 msec
point is accomplished via a stochastic mechanism in the central system that obeys

Weber's Law. That timer is activated only after the deterministic delay is fully in place.
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It appears to be the same for both PTDD and R-SS because of highly comparable values
of K (0.034 and 0.030 respectively for AK).

If this line of thinking is correct then we have a starting point toward an
integrated understanding of the differences between the PTDD and R-SS functions. The
present proposal ties together several features of simple reaction time, PTDD, and R-SS
functions. It incorporates deterministic delays in the central timing mechanism as per
Kristofferson (1976) but it differs from Kristofferson's (1976) proposal in that the delay

has a maximum of 300 msec under some conditions and 400 msec under others.

PTDD, CP TAPPING, AND R-SS FUNCTIONS

Estimates of efferent and central variability also can be obtained when the CP
tapping function is compared to the PTDD and R-SS functions. For example when Vg is
calculated from AK's CP IRI function it is substantiaily higher than when it is based on
either his R-SS or PTDD function. But that is exactly as it should be because each IRI,
according to Wing and Kiristofferson's (1973) TPM, has three sources of variance
associated with it - the central component and two efferent delay components. If all
components are mutually independent then the sum of the associated variances should
equal the IRI response variance.

To obtain an estimate of efferent variance from the CP function, an estimate of
central variance first must be subtracted from Vo and the remainder divided by two. If
an estimate of minimum cenitral variance is taken from AK's PTDD function (V¢ equals
18 msec2) efferent variance equals 108 msec2 [(233 - 18)/2]. That value is very close to
the 124 msec2 estimate which was obtained via a comparison between the R-SS and
PTDD functions. However, if an estimate of central variance is taken to be equal to Vo
from AK's CP sc2 vs my function (120 msec2) then efferent variance is reduced to 56.5

msec2 [(233 - 120)/2). The first estimate corroborates well with other estimates in the
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present set of experiments but the latter is more consistent with estimates of efferent
variance cited in the literature (e.g., Wing & Kristofferson, 1973).

Another estimate of efferent variance may be obtained by subtracting Vg based
on the R-SS function (142 msec2) from Vg of the CP IRI function (233 msec2). This
procedure yields an estimate equal to 89 msec2. These estimates must be considered as
slight overestimates because adjacent response delays are not independent (Wing, 1980).
A model based on first-order autoregressive response delays should provide estimates of
efferent variance that are slightly lower than those which are based on independent
response delays. In any case, the present results suggest that efferent variance ranges
between a lower limit of about 50 msec2 and an upper limit of 120 msec?.

Estimates of the central deterministic interval also can be derived from a
comparison between functions. For example, from modeling AK's bias corrected sc2
functions, L equals 151 msec. This is exactly half of that based on his PTDD function.
These dissimilar values suggest that the deterministic interval is available in very diverse
conditions and more importantly that it is adjustable.

At this stage two important points should be be emphasized. First, in keeping
with Kristofferson's (1976) idea that the central deterministic delay is adjustable it
appears that adjustments in the deterministic interval can take place. The value of L
based on the bias corrected sc2 function is exactly half of L. obtained from the PTDD
function. This could be coincidence but it could indicate that the deterministic interval
has a halving/doubling characteristic similar to Kristofferson's (1980) quantal step
function in which both the quantum size and the deterministic delays (the tread widths on
the function) increase in a doubles set. Second, although Kristofferson's (1976) model
fited AK's CP bias corrected sc2 function the i;est among the models evaluated that
function also could be well represented by a two tread step function for T up to and

including 734 msec, and a Weber law component for T greater than 734 msec. With a
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couple of important differences that were described earlier, such a description is very
similar to the MFDD quantal step function obtained by Kristofferson (1980).

The emergence of similar step functions from MFDD and tapping goes contrary
to the hypothesis linking the type of standard to the timing mechanism. In MFDD the
type of standard is implicit while in tapping the standard is explicit, yet in both
procedures very similar step functions emerged. Such a finding means that the link
between the type of standard and the timing mechanism does not always hold, but that
needs to be confirmed. However, on a much more fundamental issue, the emergence of
similar step functions from two vastly different experimental paradigms implies the
possibility of common timing mechanisms for both tasks.

Properties of quantal timing have rarely been cited in the tapping literature and
when they have been there are no cases when those same properties have been
forthcoming on the same subject in a perception task such as duration discrimination.
This is the first such report and it suggests that there might be common ground between
the timekeepers mediating DD and tapping. It emphasizes the necessity to further
investigate the relationship between timekeeping in perception and motor movement.
Several key requirements of undertaking an investigation of this nature are now
becoming clear: The same subjects must be included in both experiments and, at least
initially, within subject comparisons of results are of paramount importance because
subjects differ so much in their experimental results. Extensive levels of practice must be
afforded at each base temporal interval studied before moving on to the next interval.

In the present investigation, the within subject approach of comparing results
obtained from diverse tasks such as tapping and PTDD has obvious limitations. Up to
this point estimates of the various components (e.g., efferent variance) have been based
on the results of one subject, AK. Similar comparisons using simple reaction time or R-

SS functions cannot be made for LL or GF because data for them are not available on
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cither of those tasks. But their results do provide some relevant information with respect
to the present analysis. For example, the maximum delay that may be inserted into the
centrally timed interval is 360 msec for LL and 500 msec for GF. Similarly, the residual
central level of variability is 17 msec2 and 27 msec2 for them respectively. But neither
efferent latency nor variability can be calculated using this approach since estimates of
these quantities can only be made on the basis of a comparison between the R-SS and
PTDD functions. Finally, based on the PTDD function, variability above the
deterministic region is predicted to obey Weber's law and have values of K equal to
approximately 0.03 for LL and 0.05 for GF.

Comparisons between bias corrected s¢2 vs mj functions and PTDD functions for
LL and GF do not follow the same pattern as they do for AK. Their tapping functions are
difficult to interpret in the same manner as AK's functions because L equals zero for LL
and Vg equals zero for GF.

When L equals zero (which was the case for the CP tapping function for LL),
presumably the duration of the deterministic delay equals zero and no such delay is
introduced into the timing chain of events. Although the deterministic delay differs
between the two tasks (L = 361 msec for PTDD) for LL it is interesting that the estimates
of the minimum variance associated with the central process (V,) are very similar (13
and 15 msec2). This is interesting because it implies that while minimum central
variance remains constant, the duration of the deterministic delay is not fixed.

The values of K differ between LL's PTDD and CP bias corrected sc2 functions.
This difference could represent a real change in the stochastic process or it may be
simply a mathematical result of the reduction in L. If it represents a real change in the
stochastic process then we have reason to believe that the processes are different in the
two tasks. However, if it represents a change due to the absence of a deterministic

interval being inserted into the chain of events then we are not forced to conclude that the
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stochastic timing processes involved in PTDD are different from those involved in
tapping.

The comparison of GF's functions indicates that the deterministic interval is
much longer in PTDD (510 msec) than it is in CP tapping (32 msec). [t turns out that this
is a common feature among all three subjects; L is smaller in CP than it is in PTDD.
Again, these results indicate that the deterministic interval is not fixed because the values
obtained from the two procedures are different. Finally, for GF, both V4 and K are
smaller in magnitude in CP tapping than in PTDD.

In summary, the comparisons between PTDD and CP bias corrected s¢2 functions
illustrate that there are significant differences in the timing processes involved in the two
tasks, differences that were commented on in detail above. More importantly however,
they also show that there are substantial similaritics between the timing processcs
involved. For example, for short temporal intervals Ss can insert a non-variable temporal
delay into the chain of events. That delay is adjustable, a fact that makes the entire
process dynamic and flexible in both procedures.

The timing of intervals above the upper limit of the deterministic interval involves
a different process, one that obeys Weber's law. The operation of such a stochastic
process is evident in both PTDD and CP tapping. Although the values of the estimated
parameters often vary a great deal within and between Ss, both principles of timing are
present in the results of each procedure.

Kristofferson (1990) recently outlined three principles of timing; the quantal
principle, the deterministic principle, and the stochastic principle. All three principles are
manifested by the quantal step function first presented by Kristofferson (1980). Data
consistent with the operation of all three principles have once again been identified in the
present set of experiments. The fact that these three principles have been identified in

such a diverse set of procedures indicates the general functional similarities of the
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mechanisms that give rise to them. However, the existence of common principles of
operation does not rule out the possibility that entirely separate timekeeping mechanisms,
be they dedicated or non-dedicated mechanisms, service tmekeeping in perception and
motor timing. The idea that there are many timekeeping mechanisms to serve a large
number of categories of behaviour is not a particularly appealing one because such a
system would be 2 highly inefficient distribution of resources.

The application of STT (Gibbon, 1977) and the connectionist approach (e.g.,
Church & Broadbent, 1990) is sure to provide new questions and hence answers to the
delicate relationship between human timekeeping in perception and motor movement.
Coupled together with the already established principles of timing (e.g., quantal,
stochastic, deterministic) new results are now emerging in the domain of rhythm
perception. Desain (1992) for example, outlines an expectancy theory based on
connectionist principles that he calls the "Connectionist Quantizer". It is this type of
theoretical integration that eventually should lead to new discoveries and answers to
long-standing questions. Unfortunately experimental procedures to test new theoretical
developments often take considerable time to develop and implement. Fortunately, this
new inter-disciplinary era of theorizing and experimentation has begun. It is just a matter
of time before these theories are applied to classical psychophysical paradigms in order

to further our knowledge of human timing mechanisms.



SUMMARY AND CONCLUSIONS
Some of the goals outlined in the Introduction are specific to the PTDD
experiment while others concen only the tapping experiment. In addition, there are
others that pertain to the relationship between these two experiments. This chapter

summarizes the main results and comments on the implications those results hold for the

stated goals.

THE PTDD EXPERIMENT

The main reason for choosing the PTDD method was to assess the significance of
using an explicit standard in the context of duration discrimination. In this regard the
principle goal of the PTDD experiment was to determine the empirical characteristics of
the PTDD function. Those characteristics should reveal certain implications about the
underlying temporal process. A secondary goal, and one which is related to the principle
goal, is to identi{y the role that practice plays in PTDD.

In general, the PTDD function is flat over short base durations and it rises in
accord with Weber's law over longer base durations. Thus, the proposition that variance
increases linearly with mean is rejected in favour of a modified proportional standard
deviation model. These results are consistent with previous work (e.g., Jezdic, 1986;
Schulze, 1989; Halpern & Darwin, 1982). The above description applies to PTDD data
both early in training and following concentrated practice. The only apparent difference
due to concentrated practice is that the function drops to a lower location. A step
function similar to the quantal step function (Kristofferson, 1980) does not emerge. This
difference implies that quantal timing, similar in nature to that identified in MFDD, is not

involved in explicit standard PTDD.
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Of several contemporary mathematical models that were evaluated, Kristofferson's
(1976) model proved to fit the PTDD function the best. As Kristofferson (1976)
hypothesized in the context of R-SS, the flat segment of the PTDD function is also here
interpreted to mean that a deterministic interval is inserted into the temporal chain of
events. For duratons above the upper limit of the flat segment, evidence suggests that
timekeeping is governed by a timekeeper that obeys Weber's Jaw,

The differences between the shapes of the PTDD and MFDD functions led
Kristofferson (1990) to suggest that access to the memory representation of the standard
stimulus might depend on how the stimulus is encoded. He suggested that the process
involved in encoding the representation of an explicit standard may lead to access of that
representation only by non-quantal mechanisms. Similarly, the process for encoding the
representation of an implicit standard may lead to access of that representation only by a
quantal timekeeper. This suggestion forms a logical link between theory and data and it
is one that needs to be thoroughly examined, especially since PTDD results are consistent
with such a link.

THE TAPPING EXPERIMENT

In common with the PTDD experiment, the main goal of the tapping experiment
was to determine the empirical characteristics of the CP s¢2 vs mj function. The range of
base SOAs that was used was considerably wider than previous investigations in order to
determine whether the tapping function was better described as being linear in clock
standard deviation or variance.

The main conclusion emerging from the tapping investigation is that a
proportional standard deviation model, and not a proportional variance model, better
describes the form of the relationship between clock variability and mean IRI. This was

interpreted as support for the existence of a Weber's law timekeeper.
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For LL and GF the smooth shape of the tapping sc2? vs mj function indicates that
if quantal timing is present in tapping, it does not manifest itself in a quantal step
function similar to the one described by Kristofferson (1980). The variability versus
mean functions change with practice but a stepwise function does not emerge. Because
no evidence of quantal timing was found in he tapping data for these two subjects it was
concluded that motor timekeeping probably does not involve a quantal process.

Significantly, AK's CP bias corrected sc2 vs mp function does increase in a
stepwise manner at least over part of the temporal range. This is an important result
because it is consistent with the quantal motor timekeeper hypothesis. However, since
only one subject showed this pattern one cannot state that, in general, the motor
timekeeper is quantal in nature. This result suggests that AK's motor timekeeper
probably is different than that of the other two subjects. On the other hand, AK's CP bias
corrected sc2 vs mp function is remarkably similar to his MFDD implicit standard
duration discrimination function. The resemblance between these two functions implies
that the operating characteristics of the timekeepers are similar for the two tasks. This
does not mean that there is only one timekeeper for both tasks but the data are not
inconsistent with that idea. Unfortunately such a comparison cannot be made for the
other subjects becanse MFDD data are not available for either of them.

The second objective of the tapping experiment was to determine the limits of
applicability of the TPM. Concerning this goal, the TPM was successfully applied to
most base SOAs under 1000 msec. Some difficulties (i.e., negative delay variance
estimates especially for LL and GF) were encountered when the model was applied to
data generated at the two highest base SOAs. At a speculative level, several possibilities
come to mind aé to why these inconsistencies arose. If the TPM is valid for intervals
over the entire temporal range studied then the model might fail for timekeeping at the

higher intervals because of increasing role played by higher level cognitive processes.
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On the other hand, the TPM might only be valid for shorter temporal intervals which
suggests that at least two timekeeping mechanism are available. A third possibility is
that the TPM does not represent the rue underlying mechanism at any interval and only
appears to do so at the shorter intervals. Of these three possibilities the first is most
preferred because other than the few points for which negative delay variances were
reported, the TPM accounts for the data extremely well.

An objective of secondary importance was to describe the process(es) underlying
the effects of concentrated practice in tapping. The most notable empirical feature
related to practice is that the reduction in IRI variance is gradual and steady. That is, a
large number of sessions must be afforded at each base SOA before IRI variance reaches
an asymptotic low level. Once at that low level, IRI variance stays low although small
between session fluctuations occur.

An attempt to model the practice effect by identifying which of several standard
functions best described the practice curves was only marginally successful. Clearly
some of the functions did not describe the practice curves well and they could be
eliminated as viable alternatives. However, no single function consistently described the
practice curves better than the others. Thus the nature of the process underlying practice
appears to be heterogeneous with many variables coming into play.

GENERAL CONCLUSIONS

The idea that a single internal timekeeper underlies PTDD and tapping would be
supported if the PTDD and tapping functions have the same shape and are similarly
located. However, if the functions were of different shape (e.g., straight line versus step
function) and/or they were significantly displaced then the hypothesis of different
timekeepers or timekeeping principles (e.g., deterministic or quantal) would gain support.

Evidence of similarities between motor and perceptual timekeeping exist in the

present research. Both PTDD and CP tapping functions are better described by
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proportional standard deviation models than by proportional variance models. The two
timekeeping systems appear to obey Weber's Law for intermediate temporal intervals,
although estimates of K, the Weber parameter, differ slightly. Thus, the statistical
principle of timing appears in both perceptual and motor timing data and in both cases it
is the proportional standard deviation variety.

Only the statistical principle was found to be common to both experimental
procedures used in the present investigation. However, the comparisons among AK's
MFDD, PTDD, and CP tapping functions are particularly interesting because they show
similarities between motor and implicit standard duration discrimination timekeepers and
similarities and dissimilarities between implicit and explicit standard duration
discrimination timekeepers.

AK's tapping function increases in stepwise increments and is very similar to his
MFDD step function. This shows that sometimes all three timing principies appear to
operate within the domains of perceptual and motor timekeeping. However, AK's PTDD
function does not follow the same pattern. The conclusion that one reaches when
comparing these three functions is that motor timing is similar to implicit standard
duration discrimination and that implicit and explicit standard duration discrimination
differ greatly. These comparisons suggest that it may be unreasonable to hypothesize
artificially distinct temporal domains (e.g., perceptual vs. motor) of timekeeping each
with its own timekeeping mechanism(s) and principles of timing. Rather they suggest
that there might be a pool of resources available to the subject and that many endogenous
and/or exogenous factors contribute to the deployment, or inhibition, of these resources.

Using the ideas of deterministic and statistical timing, a comparison between the
PTDD and R-SS functions led to new estimates of mir.limum efferent latency (249 msec)
and variance (124 msec2) for AK that were higher than established norms. This

comparison also led to a new and shorter estimate of the maximum deterministic delay
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that could be inserted into the centrally timed interval (300 msec) when the efferent delay
was not involved, and to the idea that a similar but longer (up to 400 msec) deterministic
interval could be inserted into the centrally timed interval when the efferent delay was
involved. Finally, a new estimate of minimum central variance (18 msec2) also was

obtained.
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Appendix 1

Due to either equipment malfunctioning (e.g., obstruction of electrical contact of
response key) or improper responding (e.g., lack of sufficient pressure to establish
electrical contact), an unacceptable response might be made in the course of responding.
In the event of such a response, at the end of the sequence S is informed that a problem
occurred and that the sequence will be repeated. In order to detect problems of these
kinds an accuracy time-window was imposed in both phases of every sequence of a
session following the first two sequences which serve to orient S to the task. It is
included in the SP in an attempt to force S to remain attentive to the task throughout the
session. In the SP the time-window is in effect after the fourth response and it is defined
as T/4 msec around the time of onset of the pulse. One is included in the CP primarily to
detect responses for which the electrical contacts of the telegraph key do not meet. It is
twice as wide as that in the SP and it is centered around a referencs point in time defined
by T msec beyond the onset of the preceding response. A resuonse is considered to be
unacceptable if it occurs outside the accuracy time window.

Another problem that is known to exist with the use of a Morse response key is
key bounce. Sometimes a single response will result in numerous electrical contacts
being made and detected. To avoid detecting bounces as separate responses, a debounce
delay was programmed into the timing routine. It operates such that, following an
electrical contact, the next response is scanned for only after a contact-free period of 64

msec had elapsed.





