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ABSTRACT

The mechanism by which physiological stimuli increaselcyclic
GMP formation in platelets or in other cells is unknown. Aggéﬁcs that
promote the formation of cyclic CMP 1in intact cells have in general not
been found to stimulate the activity of guanylate cyclase [GTP pyrophos~
phate-lyase (cyclizingj, EC 4.6.1.2.] in broken, cell preparatidns.

<. .
Therefore, possible mechaﬁisms\for the activation and control of guanyl-
ate cyclase activity in platélets were investigated in this thesis.

It was found that over 90% of the tétal guanylate cyclase acti-
vity is present in supern;tant fractions of hypotonically lysed platelets.
Platefet pafticclate fractions contained no guanylate cyclase activity
that cculd ;ot be accounted for by contaminating'soluble enzyme, suggest-
ing th;; physiological aggregating agents may incréase cyclic GMP levels
in intact plateiets'th;ough the effects of intermediary factors. Because
of the possiblity that soluble as well as particulate factors may be involv-

ed in the control of‘enzyme activity, whole platelet lysate was used in

studies‘of the properties and accivation of guanylate cyclase.

Under optimal ionic conditions (4.0 mM-MnClz), the specific acti-
vity of guanylate cyclase . in fresh platelet lysates yas about 1Q nmol of
cyclic GMP form&d/20 min per mg of protein .at 30°C, which 1is higher than
that of any other mammalian cells or tissues studied. Activity was 157 of

optimum with 1‘6"0 mMﬂMgClz and negligible with 4.0 mM-CaC12. Synergism

between MnC12 and MgCl; or CaCl, was observed when [MnClz] < [6TP]; under
> . ® T 2 - ® - — & -
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more physio}ogical ionic conditionsg (Mg2+ present), micromolar concentra-
tions of Ca2+ stimulated enzyme activity by about 507%.

Lower than optimal specific activities were obtained in assays
containing large volu;es of platelet lysate, owing to the presence of
inhibitory factors tJat could be removed by ulttrafiltration. Adenine
nucleotides and glut;thione aécounted for less than 50% of.the inhibit;ry
activity. The combine& effects of inhibitory factors and of suboptimal
ionic conditions are likely to lower the guanylate cyclase activity in -«
intact platelets to almost negligible values in the absence of activating
factors.

Dithiothreitol (5.0 mM) and N-eth?lmaleimide (0.1 mM) inhibited
the activity gf platelet lysate by about 70 and 50%, respectively. Pre-
incubation of lysate ‘for 60 min at E}OC increésed guanylate cyclase acti-
vity on average by 225%. This effegt could be blocked with dithiothreitol
or N-ethylmaleimide, but dithiothreitol co&ld not fully reverse activation
once it had occurred. Oxidants such as 4,4'-dithiodipyridine (0.04 'mM),
diamide (0.4 mM) and tert-butylhydroperoxide (1.0 mM) increased enzyme
activity on average, by 40, é? and 165%, respectively. Neithef diamide
nor tert-butylhydroperoxideAhad an effect on enzyme th;t had geen preincu-
bated or treated with N-ethylmaleimide. _

Sodium azide (10.0 mM)-increased guanylate cyclase activity by an

average of 335%; this effect Qa both time- and temperature-dependent.

Activation by sodium azide was not prewszfig/by dithiothreitol. Sodium

nitroprusside (1,0 mM) increased enzyme acfivity by about 1000%; this
effect could be blocked by preincubation or by tert-butylhydroperoxide,

but not by either dithiothreitol or N-ethylmaleimide.

v k¢
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LubrolfPX (1.0%, w/v) 1ncrea§ed'§ganyl te gyclase activity on =
+ | average by 2561, whereas Tritan X-100 was muchy&ess effective. Addition “i

tert butylhydroﬁeroxide , sodium azide- or

/
Although .

I
f‘of Lubrol PX 50 preincubated-
éﬁ‘sodium nitroptusside-treated lysate resulted in ,agproximately tde ‘same
level of actﬂvity es obsecrved- when added to untreate lysate.
neither dith;othreitol nor N-ethylmaleimide/could prevent acti:atlon by

; . ‘ LA . (’,°

Lubrol PX activicy was markedly inhibite?
Anachldonate (l 0 mM) rncreaseq/guanyléte cyclase activ1ty on
average by 245/ and oleate (1.0 mM) by/QO6%, whereas palmlcate was almost
N

/ Pretreatment of lysate with indomethacin dxd not inhibit this

/
.

i

Oleate and arachdidonate caused marked stlmulation

/
inactiveh
ALY
of guanyiate cyclase in prelnoubated lysate, hut 1nhibited enzyme’ activity /
. & . 9/

»

/
effect offarechidonate.
With the exception of arachidonate, aggrega-

ting agents that increase the concgntrativn of .cyclic GMP in platelets did

{

peroxide, Lubrol PX or fatty acids, activation by sodium azide or by s Gium

in Lubrdl PX~treated “lysate.
‘) ' ¢
not ingrease the~éuadylate cyclase activity of whole platelet lysate,
thereby supporting the view that these .agents_ Pncreast cycli® -GMP lewels | ‘
\ * " . @
throngh the effects of intermediary factors. .,
In contrast to enzyme activated by preincubet®on, tert- butyfhy#ro~~'- ;:'
. e. .- N
45 o

<7
-

W

nmitroprusside resulted in a marked increase.in the_ eifectiveness Qﬂ Mgt

sole bivalent eation.
The findings described in this thesis suggest that’ the in .vitro
. . ; .
modulation of platelet guanylate cyclase activity may be a function of the

redox state of sulfhydryl groups on the enzyme itself and/or on an agsociat—
At present, it is not known whether any of the
© e, . o

3 .‘

ed r gulatory)componenb
act vated’and inhibited states of the enzyme induced in vitro exiSt in

intact platelets or have a physiologiqpl parallel
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T 1.1 The role of calcium and cycl}c nucleotides in the regulation

.

Qf platelet fuhction ' . - : N\

A wide varlety 6f pnysioloéical'sfimnli can induce platelet acfi-
vity, includlng cg{;igen fibers, thrombln, ADP, 5- hydroxytryptamlne, epi~
vnephrine, the prostaglaﬁdin endoperoxides PGGy antd PGH,, and thromboxane
. A2 (Mustard & Packham, 1970' Samuelsson et al., 1976). In general, plate-~

lets reSpond to Such agents in the followxng .way. Within seconds "rapid

\"

>

.l'shape‘change takes place in ‘which the nermal disc-shaped platele\\///trans—

.

. .

v

.. formed 1nto a spherical form with pseudopodia’ (Born, 1970). In the case

'.of'solubie agents,;che.spherical structures 1nteract with one another to
! .k .

form.macroscopic aggregates, while insoluble agents (e.g. collagen fibers)

are tovefédfby a monolayer q} adherent platelets., Platelet aggregation is

calcium~dependent, and in theucéee df-sqme agents (e.g. ADP) the presence-

of flbrinogen is necessary as well Platelets can, alSO'undergo a release

“n

reaction during which'prostaglandlns and thromboxanes are synthesized
 (Swich et al., 1973; Hamberg et.al., i -97.'3; Samuelsson et al., 1976) and

the concents -of intracellular storage granules are secreted (Holmsen et al,,
-1969). ‘Platelet aggregation and the release reaction interacc in a com=-
"plex manne;.in that.the granule constituents relEased\include the potent
‘agérégating aéent ADP, as .well as S-hydrbxytrypcamine and catecholamines,

nhich amplify the effect of the original signal, while aggregation poten--
-~

tiates seFretion (Packham et al., 1973). 1In addition to the qentents of

storage,granube&, the prostaglandin endoperoxides PGGs and PGH5, and

ghrqnboxane Aj are seqreted from platelets during the release.reaction

L(Haﬁberé et al., 19743 1975; Smith et al.', 1974; Moncada & Vane,11978) and

L\
-
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————— . v s



although they are produced in very small quantities and are extremely
short lived, they also serve to amplify the response of the platelet to

a given stimulatory agent (Samuelsson et ail., 1976). Thus, platelet adhe-
sLon,.aggregation and the release reaction ;re essential componencs‘in the
‘formation of an effective hemostatic plug or in the development of a;
arterial thrombus (Mustard et al., 1974).

On the basis of evidence from many laboratories, it is presently
believed that the pr;me intracellular ﬁessenger in the regulation of plate-
let function is the ca?” ion. It has been demonstrated in studies using
bivalent cation ionophores'(e.g. A 23187), which‘facilitate the movement of

Ca2+ ions across lipid membranes, and Ca2+ ion antagonists (e.g. tetracaine),
that the induction of platelet responses depends on the release of Ca2+ ions

into the cytosol from intracellular bindigg sites (Feinman & Detwiler, 1974;

. Feinstein et al., 1976; Charo et al., 1976; LeBreton. et al., Massini &

Lischer, 1976), including the dense tubular system, which may be analogous

to the sarcoplasmic reticulum of muscle (White, 1972). Thus, increased

he +

concentrations of Ca2+ ions in the cytosol appear to induce the bilochemical
changes associated with aggregation or the release rgaction such as activa-
Fion of actomyosin ATPase, depolymerization of microtubules, activation of
glycogenolysis and éhospholipase A, and increased‘phosphorylation of
speéific proteins (Haslam et al., 1978a).

In addition to stimulatory agonists, placeleis also respond to
inhibitory agonists such as PGI,, PGD, PGEy, adenosine and B-~adrenergic
agonists, with reversal or inhibition Qf aggregation and inhibition of the
release reaction (Haslam et al., 1978a). At present, there is a great deal

of evidence indicating that these inhibitory agonists exert their effects

»
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by activating adenyl;te cyclase and thereby increasing platelet cyclic AMP
concentrations (Haslam, 1975, 1978; Haslam et al., 1978a,b; Gormag et

al., 1977). .Recent studies (Haslam & Lynham, 1976; Haslam et al., 1978a:
Kdser-Glanzmann, 1977) have provided evidence in 5uppor; of the view (White
et al., 1974; Haslam, 1975) that cyclic AMP acts primarily by stimulating
the active transport of Ca2+ ions out of the cytosol, thereby inhibiting
Ca2+-dependent reactlons. Thus, platelets form a bidirectional control
system, as defined by Berridge (1975) in that the dominant second messenger
stimulating cellular activity in one direction is the ca?”t ion, while the
stimulation of the cell in the opposite direction depends on a decrease in
the concentration of Ca<‘ ions brought about by the negative ;éedback effect
of cyclic AMP.

Although the regulation of platelet function presently appears to
be adequately described by the oPposing actions of Ca’* ions and cyclic AMP,
the coAcept ;hat cyclic GMP gay mediate ;ffects antagounistic to those
mediated by cyclic AMP (Goldberg et al., 1973a, 1974) led to investigations
of the role of-cyclic GMP in platelet function. The initial studies on
cyclic GMP in platelets (dhite’et al., 1973; Haslam & McClenaghan, 1974;
Goldberg et al., 1974; Chiang et al., 1975) indicated that agents causing
aggregation and the release reaction increased cyclic GMP levels, which
suggested an additional second messenger role for cyclfc GMP. Subsequent
studies (Haslam, 1975; Haslam, 1'978; Haslam et al., 1978a,b) indicated that
these increases correlated much more closely with che extent of platelet
aggregation that with the induction of the release reaction. IF was first

found that ADP increased cyclfc GMP levels in heparinized platelet-rich-

plasma, in which this aggregating agent does not induce the release reaction,



o~

suggesting that elevation of cyclic GMP was not a sufficlent stimulus for
release to occur (Haslam, 1975). Secondly, it was found that EDTA blocked
both the aggregation and increase in cyclic GMP caused by collagen without
markedlv diminishing the release of S—hydroxytr;ptamine (Haslam et ai.,
1978a). Thirdly, when aggregatlion was prevented by failure to stir plate-
let-rich-plasma, ADP was shown to cause a change in platelet shape but no
increase in cvclic GMP (Haslam et al., 1978a). Together, these findings led
to the suggestion (Haslam, 1978; Haslam et al., 1978a) that contact between
platelet membranes’ was requlired for increases in platelet cvcle GMP to
occur and that these increases were more likelv to be an effect rather than
a potential cause of aggregation. At present, there 1s no convincing evi-
dence in favour of a regulatorv role for cvelic GMP in platelet tunction.
Although it has been repofted that exogenous cyclic GMP and derlvac;ves can
potentiate the platelet release reaction (Ch}ang et al., 1976), this obser-
vation has not been confirmed By other workers (Claesson & Malmsten, 1977
Haslam, 1978). Similarly, the finding that sodium ascorbate, which has no
known major effect on platelet function, markedly increases platelet cvclic
s
CMP levels (Goldberg et al., 1975; Schoeptlin et al., 1977), throws doubt
on the possibility chat cvclic GMP is involved in platelet activaction. On
the other hand, the recent finding that sodium nitroprusside, a smooth
muscle relaxant which 1is known to inhibit platelet aggregaci&\ and the
release reaction (Glusa et al., 1974), can increase platelet cyclic GMP
‘levels by up'CO SO;fold, even in the absence'of stirring (Haslam ec.al.,
1978a,b) has led to thé suggestion (Haslam et al., 1978a,b) that cvclic GMP

may be a feedback inhibitor of platelet responses rather than a mediator of

platelet activation. However, it is apparent that further studies are
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required to determine whether cyclic GMP is involved in the control of
platelet function. Despite the uncertainty regarding the role of cyclic
GMP in platelet function, it is both of interest and importance t<; investi-
gate possible mechanisms by which physiological and pharmacological stimuli

increase cyclic GMP formation in platelets,

% 4
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1.2, Early studies on cyclic GMP and guanylate cyclase

Although information on guanylate cyclase has increased at a
tremendous rate during the past few years, only the basic properties of
this enzynie had been established when the present investigation was begun
in January Qf 1974, Thereéore, to provide a historical perspective to
this thesis, the early studies on cyclic GMP and guanylate cyclase are
reviewed in the following section, \\'/‘

The discovery of cyclic GMP as a natural constituent of animal
tissues was first reported in 1963 (Ashman et al., l9§3); however, the;e
was no clear indication of the biological importance of this eyclic nucleo-

tide until seven years later when George et al. (1970) reported that acetyl-

w/éholine—induced supression of cardiac contractility was associated with a

rapid elevation of the concentration of cyclic GMP in myocardial tissue.
Thus, ig contrast to cyclic AMP, which was discovered in the course of
E.W. Sutherland's work on the regulation by epinephrine of hepatic glycogen
metabolism (Sutherland & Rail, 1958), the discovery of cyclic GMP preceded
the identification of a possible metabolic function., The relatively slow
progress that characterized the early investigations of the role of cyclic
GMP in cellular processeé has been attributed to analyti?al difficulties
associated with its measurement as the levels of cyclic GMP in a given
tissue are often substantially lower tgan the levels of cyclic AMP
(Goldberg et al., 1973b). However, the development of a highly sensitive
and specific radioimmunoassay for the quantitation of minute amounts of
cyclic GMP in biological material (Steiner et al., 1972) contributed to

the rapid expansion of investigations in this field during the past six

6



years.

l.2.1, Pistribution of cyclic GMP

The natural occurrence of cyclic GMP was discovered as a Epsult
of a study (Ashman et al., 1963) in which 32P-;Labeled organic compéunds
present in rat urine following the administration of 32P-inorganic pboé—
phate were 1§olated and identified. Cyclic CMP was identified by comparing
the physical; cﬁemical and biochemical properties of a 32p_1abeled compound
with authentic cyclic GMP. By 1969, cyclic GMP had been detected in a
wide variety of mammalian tissues (Goldberg et al., 1969) as well as in
a number of different tissues fgom several phyla (Ishikawa et al., 1969).
The identification of cyclic GMP as a natural constituent of many animal
tissues supported the suggestion of Hardman et aI( (1966) that cyclic GMP,
like cyclic AMP, may be a mediator of hormone action. Since 1969, cyclig
GMP has been detected in all phyla of the animal kingdom examined as well
as in prokaryotes (Goldberg et al., 1973b)., In most mammalian tissues,
t@e concentrations of cyclic GMP found were generally in the range of 10 to
£;0 nmol/kg (wet weight) or about 1/10 to 1/15 the concentration of cyclic
AMP (Goldberg et al., 1973b).

ple2.2. Biological role of cyclic GMP

The objecti&e of the initial investigations into.the biological
role of/;yclic GMP was to determine whether agents that induced the ac:umu-
lation o£ tissue cyciic AMP had any influence on cyclic GMP steady-state
levels. However, it was found by Goldberg et al. (1969) that treatment of
animals with epinephrine, glucagon or alloxan (to induce a diabetic state)

had no detectable effect on hepatic cyclic GMP concentrations though each

of these agents promoted the elevation of cyclic AMP concentrations.



These findings, together with similar evidence obtained in a number of

other laboratories (Steiner et al., 1972; Kuo et al., 1972; Schultz et al.,
1972) strongly supported the conclusion drawn by Goldberg .et al. (1969)

that the formation of cyclic AMP and cyclic GMP were under separate hormon-
al and metabolic control and that specific cyclases were likely to be invol-
ved in their biosynthesis., ‘ ) ~

Studying the urinary excretion of cyclic AMP and cyclic GMP in
rats in various hormonal states, Hardman et al. (1966, 1569) were the first
to demonstrate that the levels of the two cyclic nucleotides may be controll-
ed by different hormonal or other biological factors. Similarly, in other
studies of urinary excretion of éyclic nucleotides, it was found that glu-
cagon (Broadus et al., 1970; Murad & Pak, 1972; Steiner et al., 1972) or
f~adrenergic agonists (Kaminsky et al., 1970; Ball et al,, 1970, 1972;

Murad & Pak, 1972), which increase the rate of cyclic AMP excretioﬁ, gad
little or no effect on the rate of excretion of cyclic GMP. Thus, subse-
quent investigations of the role of cyclic GMP were directed toward identi-
fying a biologically active agent that” could promote the cellular accumu-
lation of cyclic GMP at the same time that a definable response could be
demonstrated in cell function.

Cyclic GMP and cholinergic action. The results of a study reported
by George et al, (1970) in which the effects of‘acetylchol;ne on myocardial
contractility and cyclic GMP levels were examined, provided the first evi-
dence suggesting that cholinergic action migﬂt be linked to an action of
cyclic GMP. In these experim;nts; it was found that the depression of
cardiac contractility induced by acetylcholine resulted in a coincident

elevation of the concentration of cyclic GMP, whereas no change or a small
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delayed decrease occurred in cyclic AMP levels. Atropinetblocked the
cholinergic effects on both cardiac function and elevation of éyclic GMP
levels. It was also found that the stimulatory effect of isoproterenol on
cardiac contractility (i.e. stimulation of both the inotropic and chrono-~
tropic responses), which is known to occur in conjunction with an elevation
of éyblic AMP levels, was accompanied by a decrease in the concentration of
cyclic GMP.

Soon after the initial discovéry of a felationship between acetyl-
choline action and tissue cyclic GMP in rat myocardium, similar relation-
ships were reported in a number of other mammalian tissues (Goldberg et al.,
1973b; Schultz et al., 1972, 1973a; Lee et al., 1972). In each case, the.
action produced by cholinergic stimulation was oﬁposite to the effect
promoted by cyclic AMP or by agents known to stimulate the accumulation of
cyclic AMP (Goldberg et al., 1974). It was concluded that only the muscar-
inic type of cholinergic action, and not the nicotinic type, was linked to
cyclic GMP generation, since atropine blocked the functional responsé as
well as the increase in cyclic GMP levels and because cholinergic effects
of the nicotinic type (e.g. neuronal étimulation of skeletal muscle con-
traction) were not associated with tissue accumulation of cyclic GMP
(Goldberg et al,, 1973b, 1974; Lee et al., 1972).

Other hormone~induced changes in cyclic GMP levels. One charac-
teristie common to cholinergic stimulation of the muscarinic type is that
the effectg produced on cellular function and metabolism are uSually‘
opposite to those induced by agents such as B-adrenergic agonists, which
stimulate the generation of ¢yclic AMP, Thus,xic,is not surprising that

LI
agents such as 5-hydroxytryptamine and histaming, which stimulate intestinal

%
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contractility, were also found to enhance tissue cyeclic GMP accumulation
(Schultz et al., 1973&). Similar results have been reported by Goldberg
et al . (1973a,b) who studied the effects of oxytocin, 5- ydroxytryptamine
and prostaglandin Fjy on uterine tissue, Although there is an apparent
relationship\betWeen smooth muscle contraction 7zd/elevated cycllc GMP
levels, the role played by cyclic GMP in the reéulation of excitation-
contraction coupling in smooth muscle is still unclear (Diamond et al.,
1978).

.The "Yin-Yang'" hypothesis of biological control. On the basis
of the observations summari%?d above, Goldberg et al, (1973a,b; 1974)
concluded that there are man; biological systems in whichyclic GMP and
cyclic AMP appear to have opposing or antagonistic regulatorylinfluences.
According to the "Yin-Yang'" or dualism hypotﬁesis proposed by Goldberg ~
et al . (1973a,b; 1974) the opposing actions of-:cyclic GMP and cyclic AMP
are expressed in systems that are susceptible to both stimulatory and inhi-
bitory controlling influences that may be antagonistic to one anpther (i.e.
'bidirectionally controlled' systems)., Although this concept of the regula-
tory relationship between cyclic GMP and cyclic AMP has not been substantiat-
ed, it-provided a valﬁable framework for investigations of the physiological
rolé of cyclic GMP in a wide variety of cellular processes.

l1.2.3. Guanylate.cyclase

In spite of the failure of early.studies to define the biological
significance or funétion of cyclic GMP, it was believed that cyclic GMP
would ultimately be found to have regulatory functions analogous to those

of cyclic AMP. This assumption led to investigations of the basic features

of cyclic GMP biosynthesis in cell-free systems. Although these studies
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(Hardman & Sutherland, 1969; Ishikawa et al., 1969) clearly showed that
the formation of cyclic GMP from GTP is catalyzed by an enzyme system which

@

is separate and distinct in several respects from adenylate cyclase, at-
-~

temﬁ§§,50u9emonstrate in vitro activation of guanylate cyclase by hormones

o

6} other physiological agents that promote the accumulation of cyclic GMP
in intact cells were unsuccessful, This was (and still is) a fundamental
characteristic of the guanylate cyclase-cyclic GMP system that markedly
differs from its cyclic AMP counterpart, ss adenylate cyclase from dis- .
rupted cells can generally be activated by those agents that stimulate
cellular cyclic AMP accumulation., In‘an effort to determine the mechan-
ism(s) by which guanylate cyclase activity is modulated by physioclegical
agents in vivo, the subcellular distribution, ionic requirements and kine;
tic propérties of this enzyme were characterized,

Subcellular'distribution. Unlike adgqylate cyclase, which is al-
most always found solely in the particulate fraction, guanylate cyclase
activity is found in both supernatant and particulate fractions of homo-
genates of most mammalian tissues (White et al., 1969; White & Aurbach,
1969; Hardman & Sutgerland, 1969; Ishikawa et al., 1969; Schultz et al.,
1969; Kimura & Murad, 1%74a, 1975a,b). The distribution of enzyme acti-
vity varies markedly from one ﬁqgéue to anotheF; for example, 80 to 90%
of the total guanylate cyclase activity found in rat lung, spleen and liver -

IR
homogenates was found:%ﬁ high speed supernatant fractions (Hardman & Suther—(iv/B
1and,)l969); whereas iniother tissues, the distribution between the soluble
and particulate fra;tions was either intermediate (e.g. 70% particulate in

rat heart) or almost entirely\particulate (e.g. 90% /}eu%é%e in rat

intestine) (Hardman & Sutherland, 1969; Ishikawa et al.} 1969).

o
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Furthermore, in some instances the subcellular distribution of guanyl-

ate cyclase activity of a g}ven tissue was found to vary with the species

- )
examined (Kimura & Murad, 1975b). In contrast to the varying distribution

of guanylate cyclase activity in the supernatant and particulate fractions
of mammalian tissues, the enzyme activity present in certain lower phylo-
genetic forms, notably the sperm of the sea urchin, Strongylocentrotus
purpuratus (Gray et al., 1970) and the bacterium, Bacillus licheniformis
(Clark & Bernlohr, 1972), appears to be entirely paréiculate: The varying
patterns of distribution of mammalian guanylagg cyclase have suggested that
this enzyme may be associated.with cellular membranes or other structures
in situ but in certain tissues may be released ?rom some sites during the
homogenization or fractionation procedures (Hardman et al., 1973; Goldberg

;
et al., 1973p). 1Insight into this problem was provided by studies in which
synthetic non—idhic detergents such as Triton X-100 and Lubrol PX were
added either to incubation mixtures or dir;ctly to tissue preparations prior
to centrifugation. The apparent subcellular distribution of guanylate cyclaée
activity of many tissues was found to be markedly altered by non-ionic deter-
gents.’ Ishikawa et ‘al. (1969) first demonstrated that Triton X-100 could
produce a 2,5~fold increase in guanylate cyclase activity from a particulate
fraction of rat small intestine. Later, Hardman et al. (1972, 1973)
found that non-ionic detergents could produce a seven- to 10-fold stimu-
lation of pafticulate guanylate cyclase activity frm rat lung, liver or
spleen, but only a two- to three~fold enhancemeé% of the assayable activi- \\ <

ty in the 100 000g supernatant fraction. Althaugh the mechanism(s) by

which these non-ionic detergents stimulated guanylate cyclase activity was

not known, these observations 4;ggested that in some mammalian tissues the

/
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proportion of particulate or membrane-associated catalytic activity was
potentially much greater than had initially been assumed. Thus the guanyl-
ate cyclase activity unmaskeékgy non:ﬁonic detergents became equal to or |
greater than the activity found in tissues in wﬁich as much as
80 to 907% of the total enzyme activity appeared to’be goluble in the absence
of detergeng. While some workers befieved that these findings strongly
supported the view that the appeara#ce of enzyme activity in high speed
supernatant fractions could be attributed to an in vitro artifact-related
to the sensitivity of the tissue to disruptive fractionation procedures
(Goldberg et al., 1973b), other workers suggested that the guanylate cyclase
activities found in both soluble and particulate fractions may in fact repre-
sent two forms of the enzyme that differ in properties other than solubility
(Hardman et al., 1973)., This latter hypothesis stimulated careful examina-~
tion of the physical andlkinetic properties of the soluble and particulate
forms of guanylate cyclase in a number of different tissues. The results
of these studies are discussed in Sectiom 1.3.2.

Bivalent cation requirements. Another characteristic in which
guanylate cyclase différs from adenylate cyclase is its marked dependence

on Mn?% ions for maximum activity. While the bivalent cation requirement

of adenylate cyclase can be satisfied almost equally well by either.uMgz+

or Mn2+, guanylate cyclase was shown to be 10-fold more active in the pre-

sence of Mn2t than with equimplar concentrations of Mg2+ (White & Aurbach,
1969; Hardman & Suthgrland, 1969). The expression of maximum basal guanylate
cyglase activity was also found to be critically dependent upon an optimal
ratio of GTP to Mn2+ by .both White & Aurbach (1969) and by Hardman &

Sutherland (1969) who demonstrated that increasing concentrations of GTP
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(>1.0 mM) markedly inﬂibited enzyme activity when assayed at fixed, low
concentrations o§ Mn2t (1,0 to 3.0 mM). Further studies by Hardman et al.,
(1973) showed that Ca?* (0.1 to 3.0 mM) , though even less effective than
Mg2+ in satisfying the bivalent cation requirement alone, could synergiStic—
ally enhance guanylate cyclase activity several-fold when present together
wiéh Mn2t and concentrations of GTP either equal to or greater than those
of ﬁﬁ2+. Howevgr, when Mg2+ was used instead of Mn2+, Ca®t decreased enzyme
activity. The ability of ca?t but not Mg2+ to act synergistically with
Mn?* in increasing guanylate cyclase activity was atpributed to the dis-
placement of Mn?T from GTP by Ca?" which thereby increased the availability
of free Mn?* for intqu;tion at the presumed activator site. Although it
was not known whether physiological levels of Ca%t c;uld’exert a similar
effect(in intact cells, the apparent stimulation of guanylate cyclase
activity in disrupted cell preparat%ons‘suggesfed a possible role of ca?*
in the regufation of this enzyme, thus supporting the view that there may
be a causal relationship between cholinergic action, calcium translocation
and chang;s in tissue cyclic GMP preoduction (Schulfz et al,, 19735),
Inhibition of, guanylate cyclase activity. A number of cellular
metabolites including various nﬁcleégide t£i—, di- and monophosphates as
well as oxaloacetate and phosphoenolpyruvate were found to inhibit guanylate
cyclase activity from several mammalian tigsues (White & Aurbach, 1969; ‘
Hardman & Sutherland, 1969; Ishikawa et al,, 1969). Howevef, with the ‘
exceﬁtion of ATP, the effective concentrations of these substances were
from one to three orders of maénitude greater than those known to be present

under physiological conditions. Thus, the marked inhibition of guanylate

cyclase by concentrations of ATP normally found in intact cells suggeéted
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that'ATP could bé‘a physiologically impeortant regulator of guanylate cyclase’

-
~

»

Effects of pormones on guanylate cyclase act1v1ty. Initial

v

attempts in a number of laboratories to demonstrate a spec1f1c and direct

%

; aotivation of guanylate cyclade by hormonal or other’physiological‘agents

known to Increase cyclic GMP accumulatioo in intact cells were ungsuccess-

ful (Hafdﬁan & Sutherland, 1969; White & Aurbach, l96§: Bohme, 1970;

échultz et al., 1972; Marks, 1973, Nakazawa & Sano, 19745} While several

reports havajﬁescribad increaaed guanylate cyclase activity in preparations
.- >

from liver (Thohpson et ai,, 1973a, b, 197&) and gallbladder (Amer &

McKinney, 1973; Amer, 1974) with secretin and pancreozymin, respectively;

-

) results from a more recent study (Ichihara et al., 1977) indicate that the

apparent stimulatory eff2cts of these agents may be attributable to bile
* ' ) i\ v . ‘
salt contaminants present in the hormone preparations that are stimulatory

.

to the aoluble enzyme, ~4_ 1

. . e

P0551ble mechan;sms by Whlch guanglate cyclase activity may be

'regulated in vivo bg phgsaologlcal agents. Determination of the precise

' subcellular distribution of guanylate cyclase is crucial to an understand-"

ing of the mechanism.of activation of this enzyme by biological signals.

Comparmmentation of guaoylaté‘cyclase in the cell membrane would enable

- % -

direct interaction of a stimulatory and/or inhibitory agent with a membrane-

bound regulatory component of the enzyme in, a manner analogous to the
adenylate cyclase system. Alternatively, a cytoplasmic locafization of
gua?ylate cyciase would suggest that indirect mechanisms exist.b} which
extracéllular stimyli can activate the soluble enzyme. For example,’

interaction'og_the hormone with a rec¢eptor on the cell membrane ‘would

o -
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then result in the generation or ;he transport of a third component (e.g.
calcium), which could serve as an activator of cytoplasmic guanylate
cyclase activity. Although an association of guanylate cyclase within

*

the cell membrane would suggest a more direct link between hormone recep-
tor and catalytic Fortions of the enzyme, the failure to demonstrate direcga
and specific horgonal effects on the activity of particulate guanylaée

cyclase suggests that an intermediary component may be required under

these conditions as well (Goldberg et al., 1973b).

\F



1.3. Present understanding of the subcellular distribution, physical
and kinetic properties of ghanylate cyclase

From 1974 to 1978, the cyclic GMP f}eld expanded exponentially;
however, despite the vast number of articles that were published during
this period, neither the bilological importance nor the mechanism by which
hormones modulate guanylate cyclase activity has yet been elucidated.
Although recent evidence has provided some new insight into these préblems,
a greai deal of work must be carried out if the cyclic GMP-guanylate cyclase
system is to be understqodqas wall as its cyclic AMP-adenylate cyclase
counterpart. )

l.3.1. Subcellular distribution

Guanylate cyclase activity has now been detected in a wide varie-
ty of tissues from organisms including bacteria (Sun et al., 1974;
ﬁacchia et al., 1975; Silverman, 1975), mollusks (Higgens; 1974; Sulakhe
et al ., 1976), insects (Filburn & Wyatt, 1976; Catalan et al., 1976;
Fallon & Wyatt, 1977), fish and birds (Sulakhe et al., 1976). In mammals,
guanylate cyclase activity has been found in all tissues studied with the
exception of sperm (Gray et al., 1976). Although'guanylate cyclase acti-
vity has not yet been identified in plants, it is likely to be present as
cyclic GMP has been detected in plant tissue (Haddox et al., 1974).

As discussed earlier, the apparent intracellular distribution of
guanylate cyclase acti&ity among soluble and particulate fractions of

broken cell preparations was found to be strongly tissue-dependent. In

dn effort to determine a role for cyclic GMP in various tissues, the



subcellular distribution of guanylate cyclase has been exumined more

closely in recent studies. - These studies have clearlv show hat within a

particular tissue there also appears to be a highly selective distribution
of guanylate cyclase activity in brologically discrete structures or cell
types. For example, the particulate activity in rat liver is sgecifically
assoclated with plasma membrane, endoplasmic reticulum and GoL&i vesicles
(Kimura & Murad, 1975a,c). Particulate guanylate cvclase acﬁi&icv has also
been identifled in sarcoplasmic reticulum of heart (White, 1975), mito-
chondria of brain (Nakasawa & Sano, 1974) and nuclear preparations of liver
(Earp gt al., 1977) and uterus (Siegel et al., 1976). ;
The mammalian recina‘is an excellent example of the selective
distribution of guanylate cyclase activity in specialized subcellular
structures. Initially, very high levels of guanylate cvclase activity were
found in whole retina and in rod outer segments, which are the photorecep-
tor organelles fof scotopic vision (Goridis et al., 1973; Pannbacker,
1973; Bensinger et al., 1974). In a subsequent studyl Virmaux et al.
(1976) demfésnrated that the high retinal guanvlate cvélase activity was
intrinsic to rod outer segments and that enzZyme: activity associated y{ch
inner retinal structures was extremely low in comparison. Other workers
(Raveed et al., 1976) later foPnd that the gu;nylate cyclase activity of
the rod outer segment was actually associated with the ciliary structure.
Together, these findings supported the view (Virmaux, 1976) that cyclic
GMP was the cyclic nucleotide involved in the regulation of photoreceptor
function. |

In the brain, it was found that guanylate cyclase activicy was

selectively enriched in the soluble compartment of the synaptosomes (Goridis
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& Morgan, 1973; Nakazawa et al.,1976; Deguchi et al., 1976) thereby resem-

bling the subcellular distribution of neuronal solubie eizyme markers such
as glutamate decarboxylase ﬁnd tyrosine hvdroxylase. Investigation of
guaqylate cyclase in'pure brain cell cultures revealed that cyclase acti-
Qyity was predomi;a?t%y010cated in nearones, whereas no activity was detect-
able.inééithgr glial or menfngial cells (Goridis et al., 1974). The
apparent prefereg}f&l~neuron;1 loc;lization of brain guanvlate cvclase'is

« -3
fherefoge consistent with a possible role for cvclic GMP in synaptic trans-

o

% . '

missjion {Ferrendelli et al., 1970;°1972; Kuo et al., 1972). s
° L N .
0f the th{ee@regions of the kidney (cortex, outer medulla, inner
* ? - L)
medullazf guanylate cyclase dttivity, was highest in the soluble fractien
. L3
X ]

- ® of the cortek *(Crawen & DeRubertis, 1976). However, subcellular fractfon~’

o “ 4
ation of- the cortex revealed that guanylate cyclase activity was preferen—

-

2

. tially éﬁnichéﬂ.in,particula;e*fractions of pure glomeruli, where its spe-

-

@

- . o
cifig activity w&sﬁébout 45-fold highee that assayed 4n the soluble frac-
v 0 ~ -
o - .
”tian of the tubular fragmentg (Helwig et al., 1975). Thus, although the
. © [y . e .
glomeruli conﬁtituge less than 8% %f the total nass of the kidney cortex,

4

more than 60% of the activity present in the homogenate was gssociated with '~
. . - . A

this structure (Helwig et allt, 1975). Although cyclic GMP has been identi-
fied as a natural constituent of kidney tissug, no functional role has vet

.

been attributed to kidney cyclic GMP. However, the presence of guanylate

cyclase in the glomerﬁli suggests that perhaps part of the cyclic GMP

excreted in urine might be synthesized by the kidney (Helwig et al., 1975).
In the small intestine, it was found that guanylate cyclase acti-

vity markedly increased from the depth of the crypt to the tip of the villus,

and that a major portion of enzyme activity in the villus cell resides in

N\
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the microvillus structure of the intestinal brush border, while the remain-
ing part appears to be localized primarily in the basal-lateral plasma
membranes of the epithelial cell (DeJonge, 1975a; Quill & Weiser, 1975).
Although the villus to crypt gradient of guanylate cyclase s;ggests that
cyclic GMP may have a specialized role in the differéntiated villus cell,
the function of this cyclic nucleotide in the small intestine is entirjly
unknown (DeJonge, 1975b).

The highly active guanylate cyciase of invertebrate sperm appears
to be a fotally particulate enzyme (Gray et al., 1970; 1975). Further
studies of the subcellular distribution of sea urchin guanylate cyclase
activity suggested that the primary and perhaps only intracellular locale
of this enzyme may be the flagellar plasma membrane (Gray & Drummond, 1976;
Sano, 1976). While these observations suggest that cyclic GMP may parti-
cipate in some physiological function of sea urchin sperm, its-function
c¢learly must be unique to invertebrate sﬁerm because guanylate cyclase is
totally iacking from sperm of higher vertebrate forms (Gray & Drummond,
1976) .

1.3.2. _Multiple forms of ‘guanylate cyclase

N

) Detailed investigations (Kimura & Murad, 1974a, 1975a,b,E,d;
!
‘Chrisman et al., 1975) of the kinetic and physical properties of guanylate
v
cyclase present in high speed supernatant and particulate fractions of rat

heart, liver and lung revealed several apparenf differences in both kinetic

properties and molecular sizes that depended Qn subcellular rather than
¢ ~

tissue source. Similar findings have subsequently been reported in a wide
. ,

variety of tissues including kidney (Craven & DeRubertis, 1976), brain

(Nakazawa et al., 1976), intestine (DeJonge, 1975a,b), uterus (Siegel

.



21

et al,, 1976) and parotid (Durham, 1976). In addition, the soluble and
particulate activities in liver appear to have different mechanisms regula-
ting th;;r synthe§is (Kimura & Murad, 1975a,e). This conclusion was
drawn from changes in soluble and particulate activities in’ regenerating
and fetal rat liver studies (Kimura & Murad, 1975a,e). Furthermore,
proliferating tissue, such as regenerating liver, fetal liver, transplant-
able hépatomas and renal tumours, typically exhibit an altered distribution
of enzyme activity with greater amounts associated with the particulaté
fraction (Criss et al,, 1976a,b; Goridis & Reutter, 1575; Kimura & Murad,
1975a). Recently, Blosser & Appel (1978) reported that the specific acti-~
vity of soluyble guanylate cyclase from mouse dystrophic muscle was 2.5- )
fold greater than that of normal muscle, while the particulate enzyme
showed little change; however, denervation incéreased the specific activity
of both forms by approximately two-fold. Selective alteration of soluble
guanylate cyclase has also been shown in rat testes following surgical
crytorchidism (Spruill et al.; 1977).

1.3.3. Physical ;moperties of soluble and particulate
guanylate cyclase

Based on gel filtracion.data, mélecular weights ranging from
30 000 to 906 000 have been estimated for the soluble and particulate
forms of guanylate cyclase in a number of different tissues. Chrisman
et al, (1975) reported that solubie guanylate cyclase present in a 32 000g
supernatant fraction of rat lung homogenate had an approximate molecular
wéight of 450 000, whereas the molecular weight of the Triton X~100-dis-

persed particulate fraction was estimated to be from 700 000 to 900 000.

In the rat renal medulla (Neer & Sukiennik, 1975), the molecular weight of



22

the soluble enzyme was estimated at about 150 000 iﬁ the presence or absen-
ce of detergent (Lubrol PX), while that of the detergent-solublized partic-
ulate form was 300 000. Garbers (1976) found that the apparent molecular
weight of purified, Lubrol.BX—dispersed, particulate guanylate cyclase from
sea ‘urchin sperm was 182.000, which was identical to that of the unpurified
enzyme. The-molecular weight of purified, soluble guanylate cyclase from
Escherichia coli was estimated to be about 30 000 (Macchia et al., 1975).
Furthermore, sodium dodecyl sulfate polyacrylamide gel electrophoretig
analysis indicated that this purified soluble enzyme consisted of a single
polypeptide chain. In another microorganism, Caulobacter crescentus, the
molecular weight of the partially purified soluble enzyme was found to be
about 140 000 (Sun et al., 1974). Thus, guanylate cyclase of C. crescentus
is apparently much larger than that of E. coli. Recently, Asano & Hidaka
(1977) described a method for the purification of soluble guanylate cyclase
from human blood platelets. The apparent molecular weight of this enzyme
preparation was estimated to be about 180 000. ~

In order to elucidate the nature of the Interaction of guanylate
cyclase with non-ionic detergents, Neer & Sukiennik (1975) studied several
physical parameters of both the soluble and particulate forms of guanylate
cyclase from rat renal medulla. On the basis of data obtained from sucrose
density gradient centrifugation and gel filtration in H20 and D70, the
enzyme from the soluble cell fraction was estimated to have the following
properties: A Stokes radius of 54 X, partial ‘specific volume of 0.75 ml/g,
£/fo value of 1.4, axial ratio (prolate ellipsoid), of 7, and an s20,w
value of 6.355. Treatment of the soluble fraction with 0.1% Lubrol PX resul-

ted in increased activity, an increase in the Stokes fadius to. 62 R, a

———



23

-

decrease in the s3g,, value to s:gs,and no change in either the majﬁxor
thg partial specific volume. .From these observations it was concluded
that the detergent-promoted aétivation is the result of the binding of a
small number of detergent molecules to specific hydrophobic sites, which
causes a conformational change to a mo;e asymmetrig protein, rather than
the result of surfactant action or the binding of large amounts of deter-
gent to the enzyme. These workers also found that the phy;ical properties
of guanylate cyclase solubilized from the particulate cell fraction with
1.0%~Lubrol PX exhibited markedly different properties from those of guanyl-
;te cyclase in the soluble cell fra;tion. This form of the enzyme appeared
to be a large, heteroéenous aggregate (molecular weight of 300 000) with a
value of Szp,, of about 10S and a Stokes radius of 65 g. Together, the
findings of Chrisman et al. (1975) and of Neer & Sukiennik (1975) support
the view that two, easily distinguishable forms of guanylate cyclase exist
in the rat lung and renal medulla, respectively.

1.3.4. Kinetic properties of soluble and particulate
guanylate cyclase

The biosynthesis of cyclic GMP has been shown to proceed according
to the following reaction:

2+
crp—retal’ |  celic @MP + PPi

in which the o~phosphate of GTP is incorporated into the cyclic nucleotide
(Hardman et al., 1971). Both of the reaction products have been isolated
and‘identified by Garbers et al. (1975) with partially purified soluble
guanylate cyclase from rat lung. As mentioned earlier, the metal-GTP

complex is believed to serve as the substrate, with Mn4t being the pre-

ferred cation.
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In addition to differences in molecular size, soluble and
particulate guanylate cycléses from a number of different tissues (e.g.ﬂ
lung, liver, heart, brain, kidney, uterus) exhibit séverai marked differ-
ences with respect to their kinetic ;;5?7cteristics (e.g. Kimura & Murad,
1974a, 1975a,b,c,d; Chrisman et al., 19;5; Nakazéwa et al,, 1976; Craven &
DeRubertis, 1976; Siegel et al., 1976)5 Soluble guanylate cyclase exhibits
classical Michaelis-Menten behaviour with respect to GTP concentration with
apparent‘Km values for MéiGTP ranging from approximately 10 to 70uM. 1In
contrast, higher substrate concentrations were required by the particulate
enzyme (i.e. Kp or Sp,s values of 50 to 300 wM) which exhibited apparent
coopera;ive behaviour with Hill coefficients for metal-nuéleotide,binding
sites of 1.4 go 1.7 indicating two or more interactive sites for Mn°*GTP
(Kimura & Murad, 1975a). While both the soluble and particulate guanylate
cyclases clearly require Mn2t in éxcess of Mn*GTP for maximum activity,
the particulate form generally eﬁhibits less of a dependence than the
soluble form in a wide variety of tissues. For example, optimal Mn 2+ to,
GTP ratios of 4:1 have been reported for the heart (Kimura & Murad, 1974a)
and parotid (Durham, 1976) soluble enzymes; wyhereas, ratios of 2:1 and
1.5:1 have been reported for the particulate form'%f the enzyme from the

- " L4
same tiSSuES? respectively. Chrisman\ﬁ; al. §I975) have suggested that
excess‘Mn2+ may serve as an activaFor of guanylate cyclase by binding at
a specific cation site. Thus, in the presence of Mn 2" at saturating
substrate concéﬁtrétion, otheg‘biva}ent cations such as Mgz+ or Ca?t may
stimulate gu; late cyclas; activity either by interacting Airectly w;th
the cation activator site or by displacing Mn?t from GTP which would then

[y

become available to bind at the ac%&vator sigi}, Soluble guanylate cyclase
B P ™ T

-~ .
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from kidney (BShme et al., l970);~e§idermis (Marks, 1973), brain (Nakazawa

& Sano, 1974), lung (Chrisman et al., 19750, heart (Kimura & Murad, 1974a), °

parotid (Durham, 1976) and platelets (Adams & Haslam, 1978) is activated by
millimolar concentrations of Ca?’ in the presence of ﬁn2+ at saturating

~N ‘ )

substrate concentrations; whereas under the same cond}tions, the particu-
late enzyme from heart (Kimura & Marad, 1974a; Sulakhe, 1976), lung
(Chrisman et al., f§75), livgr (Kimura & Murad, 1974a), and parotid {(Durham,

1976) is markedly inhibited. ~

As mentioned earlier, ATP has been shown to be a potent inphibitor

. of guanylate cyclase activity in a number of different tissues (Limbird &

Lefkowitz, 1975; Kimura & Murad, 1974a, 1975a,c; Thompson et al:,.l?73a;
Durham, 1976; DeJongé, 1975; Criss et al., 1976; Deviller et alti }575;
Adams & Haslam, 1978). This effect appears to be the'result ofjeompetition
with GTP at the substrate site. Ky v&lues of 0.011 mM, 0.4 mM and 1.0 mM
have been reported for the soluble enzyme from liver (Thompson f al,,
1973a) and for the heart soluble and particulate enzyme; (Kimura & Murad,
1974a), respectively. in general, the solublé form is more sensitive to.

inhibition than the particulate. The almost complete inhibition of the

soluble enzyme by physiological concentrations of ATP has led Kimura &

Muzad (19}5a) to suggest that under normal conditions in the cell, little
of the soluble guanylate'cyclase activity would be expressed iness
factors exist that can overcome the inhibitory effects of ATP.

i Although the soluble andvparticulate form; of guanylate cyclase

have different properties and appear to have differences in their regula-

tion, it is not possible at present to determiné“whether,og not these diff-
A

"erences are due to different proteins, the environment of the enzyme in .

-
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assays,or other phenomena. Recent studies have shown‘that solublsyapd
par;iculate activities are antigenically different in that antibody pre-
pared .to purified particulate sea urchin sperm guanylate cyclase (Garbers,
1976) inhibits mammalian particulate but not soluble activity (Garbers,
1978). While these studies imply that soluyble and particulate activities
are structurally different, additional studies with purified preparations
are required in order to determine what similarities and differences actu-
ally exist in these proteins and in their regulation. The finding that
purified particulate guanylate cyclase from sea urchin sperm displays
classical Michaelis-Menten kinetics with respect to GTP compared to the
cooperativity of crude preparations (Garbers, 1976) 1s of interest as it

suggests that the two forms of the enzyme may be capable of interconversion.
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1.4, Activation of guanylate cyclase in vitro

A key process that remains to be determined is the mechanism by
which cyclic GMP-linked signals modulate giinylate cyclase activity. The
apparent hormonal insensitivity pf guanylate cyclase in cell-free systems
suggests that the regulation of this enzyme is accomplished indirectly
and/or that a greater degree of cell integrity is necessary to transmit’
regulatory signals to guanylate cyclase. Altho;gh there is no definitive
evidence for an indireét mechanism of activation, reports that guanylatée h

cyclase is stimulated‘?yﬁCa2+ ions (Kimura & Murad, 1974a; Chrismgn et al.,
1935; Katagiri et al.,\i§76; Wallach & Pastan, 1976a), lysophosphatides
(Shier et al., 1976), pposphglipiﬁs (Limbird & Lefkowitz, 1975); fat;y 3
*acids (Wallach & Pastan, 1976b; Barber, 1976; Glass et al., 1977a; Adams

& Haslam, 1978), fatty acid hydroperoxides (Glass et al., 1977a; Hidaka &
Asano, 1977 ; Goldberg et al;, 1978), free radicals (Mittal & Murad, 1977a,
‘b; Murad et al., 1978) or other SUbstanées‘wigh oxidizing potential such
as dehydroascorbic acid (Goldberg & Haddox, 1977; Haddox et al., 1978;
Goldberg et al.,‘l978)‘suggest the possibility of such a mechanism.

.1.4.1. Effects of hormones

Although cholinergiclagents have béen'reported to stimulate
guanylate cyclése activity in a variety of tissues incl9ding hgart (Whiée
et ;1., 1975; St. Louis & Sulakhe, 1976), gall bladder (Amer; 1974) and
‘islets of Langerhans (Howell.& Montague, l974), these finéiqgs hdve not
been confirmed in other laboratories (%toner, 1974; Limbird & Lefkdwitz,
1975). Furthermore, these agents failed to stimulate guanylate cyclase

\
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activity in other choli?ergically—responsive tissues such as brain (Nakazawa
"& Sano, 1974) and renal cortex (Helwig et al., 1975; DeRubertis & Craven,
1976). Other hormones and membrane-active agents that have been fouﬂd to
have no significant effect on guanylate cyclase activity include: serotonin,
//glucagon, histamine, vasopressin, parathyroid hormone, pentagastrin, hyper-
tensin, bradykinin, thyroxin, somatotropin, prostaglandins A,, E,, E,, Fy,,
Fy, and concanavalin A (Goldberg & Haddox, l§77)..
l.4.2. Effects of physiological concéntrations of calcium“
The suggestion that calcium may function as an intracellular ©
regulator of guanylate cyclase was based on a report by Schultz et al.
(1973a) that cholinergically-induced accumulation of cyclic GMP in smooth
muscle was dependent upon Ehe presence of calcium in the medium. Since
then, it has been shown in a number of systems thateextracellular calcium
is an essential requirement for the hormonal activation of guanylate cyclase
in intact cells (Ferrendelll et al., 1973; Van Sande et al., 1975; Clyman .
et al,, 1973; Fain & Butcher, 1976; Pointer et al., 1976; Berridge, 1975).
Furthermore, observations that the basal level of cyclic GMP can be raised
by increasing the ;xFracellular calcium concentration (Schultz et al.,, 1973a)
and that treatment of cells with the calcium ionophore, A 23187, in the
presence of calcium also rapidly increases cyclic GMP levels (Van Sande
et al., 1975; Fain & Butcher, 1976; Pointer, 1976) support the view that
ca?t is a possible regulator of cyclic GMP synthé;is (Schultz & Hardman,
1675; Berridge, 1975).
As discus;ed in Section 1.3.4., calcium has.been reported to
increase' the activity of soluble guanylate cyclase, and under the same

Y .

““\\\ conditions inhibit the activity of the particulate enzyme (Kimura & Murad,

J
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l§74a; Chrisman et al., 1975). These effects of calcium were only evident
with millimolar concentrations of Ca?’ when Mn2¥ was the major cation in
the assay. Thg stimulatory effects of Ca?t did not appear to be due to the
free catipn, but rather to thé Ca-G?P complex which served &s a substrate
and/or ai}eateric,effector of the enzyme (Chrisman et al.i 1975; Garbers

et al., 1974), 1In view of the fact thét thé concentration of free Ca2%t in
the cytosol is in the micromolar range in activated cells,(Rasmusseh, 1970},
and that the amount of Mn2+’in cells 1is about two orders of magnitude less
than that of Mg2+ (Thiers & Vallee, 1957; Cotzias, 1962), these effects of
ca?t and Mn?* on guanylate cyclase activity are unlikely to be relevant to
the in vivo regulation of cyclic GMP metabolism,

.

In an attempt to explain calcium related increases‘;n tissue
¥

cyclic GMP levels, Wallach & Pastan (1976a) studied the effects of physio-

logical concentrations of this cation on the activity of particulate guanyl-
ate cyclase from c::tured fibroblasts., These workers showed that with Mg2+
as the major bivalent cation, 3 uM ca?t fesulted in a 25%. stimulation of
activity whilé 30 uM Ca?t increased activity by about 100%. From Lhese
observations, Wallach & Pastan (1976a) concluded that the in vitro activity
of guanylate cyclase with MgZ+ represents its béhaviour in vivo and that |
caZt regulates cyclic GMP levels in cells by directly stimulating guanylate
cyclase activity: Thus, the alteration in cyclic GMP metabolism associated
;1th‘hormonal stimula;ion would be a secondary response to primary changes

in cytoplasmic calcium distrfibution (Schultz & Hardman, 1975; Berridge, 1975).

\\ 1.4.3. Surfactant effects of non-ionic detergents and lipids

B

As previoﬁgly mentioned, synthetic non-ionic detergents such as .

Triton X-100 and Lubrol. PX have been shown to stimulate the activity of

Wi~ o e
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both the soluble and particulate forms of gugnylate cyclase from a nuéber
of different tissues (Ishikawa et al., 1969; Hardman et al., 1971; Kimura &
Murad, 1974a, 1975a,c; Neer & Sukiennik, 1975; Qhrisman et al., 1975;
Deguchi et al,, 15;6; Adams & Haslam, 1978). Although the marked activa-
tion of particulate guanylate cyclase by non-ionic detergents might simply
be due to the release of a bound form of the enzyme from particulate mater—
1;1 theregy enhancing the interaction of the enzyme with substrate and
cofactors, the ;%aller stimulatory effect on the activity of the super-
natant enzyme cannot be explained by.this mechanism (Kimura & Murad, 1975a).
However, there are a number of other possible ways in which detergents
could activate the nonsedimentable guaﬁylate cyclase; for example, it could
form micelles into which the enzyme inserts and then becomes activated b
the hydrdghobic, membrane-like environment, or a hydrophobic envirogyé;:y
might be proyided by binding of a large amount of detergent to th; surface
of the molecule. Alternatively, the detergent could activate by bin{ing
at a few specific sites causing a conformational change in the enz&me
(Neer & Sukiennik, 1575; Helénips & Simons, 1975). This latter possibility
is strongly supported by the findings of Neer & Sukiennik (1975). |
The'general similarity of the surfactant properties of non-ionic
\ ! .
detergent, lysophosphatides and sodium salts of long chain fatty acids
(Helenius & Simons, 1975) prompted several workers to ;nvestigate the
effects of these naturally occurring detergents on guanylate cyclése
activity. In 19?5, White & Lad briefly reported that both sqiublepand
insoluble guanylate gyclase activities in rat lung were stimulated by
lysolecithin.: This }inding, combined with %ther\observations that lysg—
’}ecithin stimulated mem?rane—associ§ted gialyltransferase (Shier & Tro?ter,

[y

¥
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1976) and galactosyltransferase activities (Kireghgaum & Bo;sman, 1973) in
a manner similar to Triton X-100, lgd Shier et al. (1976) and Zurier et al.

(1976) to study thg effécts of lysolecithin on guanylate cyclaée from cul-
L jod o
: . s
tured fibroblast and neuroblastoma cgllé, respectively. In the former
- " -
study, Shier et al,, (lQ?QQ”Youﬁ& that lysolecithins from varigys plant and

E

animal sgurc?i markedly enhanced the activity of the particulate enzyme;
whereas othet phospholipi@S‘such as lecithin, lysophosphatidylethanolaminé“
and lyso&imethylph;sphatidylethanolamine had no eﬁféct. Thes: results indi-
cﬁted that the observed stimulatoty effect was not specifically related to
the subsgructure of.;ysolecithin, but rather to ite surfactant pr;perties
(gelenlus & Simons, 13&5) Zwill@k et.al. (L976) 31milarly found that

-

ly801ecithin but not “other phospholipids could stimulate the actiGity of

the squble as well as the membrane—asSociated guanylate cyclase. Although
" ol M
these obéerwations 8re conai%tent with the reported stimulation of guanylate

c

qyclase‘ from several tissues by phospholipases A 8t C (Kimura & Murad,
J
197Aaa\White & Lad, 1975; Fujimoto & Okabayasbi, 1975; Shier et al., 1976;

Zw%%lJL et al,, 1976; Sulakhe et alo; 1976), -the role of lysophosphatides
N /J . .

in thy modulation of‘guanylate cyclase activity in vivo is uncertain.

.

\\In addition to the effects of lysolecithin and phospholipases A

and C, Qﬂoaphatidylserine (Limbird & Lefkowitz, 1976) and a number of un-

saturated fatty acids (Wallach & Pastan, 1976b; Barber, 1976; Asakawa et

al., L§76; Glass et al., 1977a; Adams & Haslem, 1978) have been reported

to stimuléte the activity of guanylate cyclase from several tissues.
Wdllach & Pastan (1976b). found that the saturated, .short chain (12 to 16)
’ L ]

fatty acids as well as several longer, unsaturated fatty acids stongly

stimulated particulate guanylate cyclase activity in cultured fibroblasts,

\ | )
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Since the effectiveness of the fatty acids appeared to correlate with
their ability to interact as amphiphiles with protein or 1liplid, the authors
concluded that a specific fatty acid-binding site on the enzyme was unlikely.
However, the observation that optimal concentrations of Lubrol PX potenti-
ated the fatty acid effect indicated that non—-ionic detergents and fatty
acids activated guanylate cyclase by different mechanisms. In these exp-
eriments, the concentration of }atty acid required for optimal stimulation
was about 0.3 to 0.6 mM. SimiXar concentrations of oleic, linoleic, lino-
lenic and arachidonic acids were required to stimulate the particulate
enzyme from jisolated fat cells by seven- to 10-fold (Asakawa et al., 1976).
Although a surfactant-protein interaction may constitute one general me c'h-
anism by which guanylate cyclase activity can be modulated, it is unlikely
that the relatively high concentrations of surfactant required to stimulate
enzyme activity in vitro would be fpund 1n vivo.

l.4.4. Oxidative and reductive modulation of guanylate
cyclase

7

There is increasing evidence th?c cellular events involving
oxidation and reduction may repr;sent a general mechanism for the regula-
tion of guanylate cyclase activity and the metabolism of cyclic GMP
(Haddox et al., 1976). This concept has developed from observations that
a wide variety of agents and conditions activate guanylate cyclase by
processes that appear to 1ﬂvolve alterations in the redox state of the
enzyme and the foEmation of reactive free radicals.

Spontaneous activation. The spontaneous time- and temperature-

dependent activation of guanylate cyclase was first described by Bohme et

al, (1974) in a brief report of the propé}ties of the soluble enzyme from

By s AWl -
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human platelet homogenates. In addition, it was shown that activation °
could be blocked by pretreatment of the enzyme preparation with the redu- &
cing agent, dithiothreitol. - These observations have sinée been confirmed
by Glass et al. (1977a) and extended by Adams & Haslam (1978), Goldberg

et al. (1978) and Haddox et al. (1978). Similar characteristics of
spontaneous activation have been reported for the scluble enzyme from a
number of other tissues, including rat lung (Chrisman et al., 1975; White &
Lad: 1975; White et al., 1976), mouse and guinea pig splenic cells (Haddox
et al., 1976, 1978; Goldberg et al., 1978) and‘rat uterus (Kraska et al.,
1977). The most extensive investigation of the processes involved in spon-
taneous activation of guanylate cyclase has been carried out by White et
al. (1976) with soluble enzyme from rat lung homogenates, These workers
found that the two- to thrée—fold increase in guanylate cyclase activity
produced by preincubation of the enzyme for 30 minutes at 30°¢ required
oxygen (I.e. no effect was obse;ved in an atmosphere of nitrogen) and
copper, and may also involve the intermediate gener;tion of H;0,2. Although
this phenomenon was completely inhibited by thiol-reducing agents such as
2-mercaptoethanol, dithiothreitol and glutathione, addition of 2-mercapto-
ethanol t;la preincubated enzyme preparation could not reverse the acti-
vation., White et al, (1976) hypothesized that guanylate cyclase was ultim-
ately activated by Hy0,, which was believed to be generated non-enzymically
as a result of the interaction of oxyhemoglobin with a proton donor such

as ascorﬁic-acid, both of which are present in lung homogenates. While the
identity of the aectivating species cannot be specifically determined from

this study, the evidence does suggest that spontaneous activation during

preincubation may involve the oxidation of enzyme sulfhydryl groups.
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Activation by oxidants. In 1976, HiSdox ét al, (1976) reported
that sodium periodate increased the concentration of cyclic GMP in mouse
and guinea pig splenic cells by two~ to 10-fold in the absence of extra-
cellular calcium; whereas the reducing agent cysteine, either alone or
together with sodium periodate, significantly lowered the concentration
of this cyclic nucleotide. In subsequent studies (Haddox et al., 1977,
1978), these workers found that while ascorbic acid also igrkedly increased
the steady-state levels of cyclic GMP in intact splenic cehls, it had no
effect on the ;ctivity of guanylate cyclase after cell disruption. On the
other hand, dehydroascorbic acid enhanced intracellular cyclic GMP concen-
trations as well as the activity of both the soluble and particulate forms
of guanylate cyclase from guinea pig splenic cells (Goldberg et al., 1978).
Moreover, the relagively stable dehydroascorbic acid—f%duceb elevation of
cyclic GMP in intact cells or activation of guanylate cyclase in broken
cell preparétions, which persisted after removal of the oxidant, could be
reversed upon reduction with dithiothreitol; while the inhibition induced
by dithiothreitol could alsokbe reversed by the subsequent addition of the_

~ .

oxidant., On the basis of these findings, Haddox et al. (1976, 1977, 1978)

proposed that intracellular oxidative and reductive events may indirectly
modulate guanylate‘cyclas; activity:
Activation by fatty acid peroxides. The report (Glass et al®
1977) that prostaglandin endoperoxide PGG; can serve as an activator of
platelet guanylate cyclase led to the investigation of the effects of other
fatty acid'peroxides on enzyme activity. Hidaka & Asano (1977a,b) believe

that the stimulatory effect of arachidonate on platelet guanylate cyclase

' 1
activity depends on its conversion into the hydroperoxy' derivative by .
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lipoxygenase present in the enzyme preparation. Recently, Goldberg et al.
(1978) reported the reitiss of an’extensive investigation of the effects
of naturally occurring fatty acid hydroperoxides and prostaglandin endo-
peroxides on the activity of soluble guanylate cyclase from guinea pig
splenic cells. This study was carried out to determine whether the.stimu~
latory effects of these agents were a function of their oxidizing potential.
These workers found that micromolar concentrations of PGG, and PGH, incr-
eased guanylate cyclase activity by three~ to four-fold in an oxygen or
argon atmosphere, which suggested that the stimulatory effect of these
prostaglandin endoperoxides was not dependent on the presence of molecular
oxygen., It was also shown that dithiothreitol or glutathione not only pre-
vented, but also reversed activation by éhe endoperoxy- and/or hydroperoxy-
containing fatty acids studied; while low concentrations of the sulfhydryl-
reactive reagent, N-ethylmaleimide, blocked activation. From these results,
Goldberg et al. (1978) concluded that these "hydrophilic" oxidants activate
guanylate cyclase by promoting a sulfhydryl-disulfide interconversion at
specific hydrophobic regulatory sites.

Activation by superoxide dismutase and hydroxyl radical. Mittal &
Murad (1977b) reported that superoxide dismufase marQEHly eﬁhénced the acti-
vity of partially purified soiuble guanylate cyclase froﬁ rat liver. The
presence of superoxide ion in the enzyme preparation combined with obser-
vations thag activation could be prevented by inhibitors of superoxide
dismutase such as KCN or thiols, by catalase, which removes H;0, generated
by superoxide dismutase, or by scavengers of hydroxyl radicals6 suggested
that the formation of both ggperoxide 19n and H,0, were required for acti-

vation. On the'basis of these findings, Mittal & Murad (1977b) proposed



36

that hydroxyl radicals, which are formed by the Haber-Weiss reactioﬂ
(Haber & Weiss, 1934) from superoxide ion and H0,, are ultimately res-
ponsible for superoxide dismutase activ;tion of guanylate cyclase. This
hypothesis is also supported by the observation of White et al. (1976)
that low concentrations of H»05 in the presence of KCN could activate
guanylate cyclase in lung preparations. Although it is not known whether
spontaneous activation is due to an effect of hydroxyl radicals generated
during preincubation, Mittal & Murad (1977b) have suggested that the form-
atioﬁ of superoxide ion, hydrogen peroxide and hydroxyl radical is likely
to be the mechanism for pgysiological and hormonal regulation of guanylate
cyclase and cyclic.GMP.metabolism.

Activation by nitric oxide. Kimuralet al. (1975b) first reportgd
that sodium azide (NaN3), a potent metabolic inhibitor and strong nucleo-
philic agent, can increase guanylate cyclase activity in many but not all
tissue preparations. The presence of activating and inhibiting factors
was demonstrated by mixing azide-responsive and non-responsive preparations
(Ximura et al,, 1975b; Mittal et al., 1975, 1977, 19}8); Some of the inhi-
bitory materials have been identified as hemoglobin and myoglobin (Miki et
al., 1977a; Mittal et al., 1977; Murad et al,, 1978). The "azide activator
factor" has been characterized and is probably catalase (Miki et al., 1977a;
Mittal et al., 1977); however, a variegy of enzymes such ?s pgrogidaée;
cytochrome‘bz and cytochrome c¢ can substitute for the activating factor
(Mittal et 51., 1977, 1978; Murad et al., 1978). These proteins convert
azide to nitric oxide, which can activaté most preparations of guanylate

cyclase that have been tested (Mittal & Murad, 1977b; Murad et al., 1978).

In addition to sodium agzide, a number of other stfbhgly nucleophdilic

~
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compounds can activate guanylate cyclase, such as NaNO2, hydroxylamine,
phenylhydrazine, nitroglycerin and sodium nitroprusside (Kipura et al.,
1975; Katsuki et al., 1977; Mittal & Murad, 1977b). Other'workers have
reported that the'carcinogens; nitrosoguanidine (DeRubertis & Craven, 1976,
1977), nitrosourea; (Vese;y et al., 1977) ;nd hydrazine (Vesely & Levey,
1977;“C¥5ven & DeRubertis, 1977) have similar effects on anylate cyclase
activity. Since these materials can also be converted_gJ§:itric oxide
under the appropriate redox and/or enzymatic conditions, Murad et al.
(1978) have recently hypothesized that the stimulatory effects of these

agents are indirectly due to activation of guanylate cyclase by nitric

" oxide. . !




l.5. Objectives
- . -~

The primary objective of this thesis was to investigate mechaﬁ—
isms that could be involved in the physiological activation and control of
guahylate cyqlase activity in platelets. The studies described in this
thesis were t%grefore directéd towards:
- (a) Establishing the 1inearity’of guanylate cyclase
activity with respect to protein concentration and period of incubation.

(b) Charactérizing the subcellular distribution and ,
bivalent cation requirements of guanylate cyclase in plaﬁelets.

a

{c) Determining whether aggregating agents that
increase the concentration of cyclic GMP in intact platelets have an
effect on guanylate éyclase activity in—broken cell prepaéations.
' (d) Identifying and studying the effects and inter-
actions of a wide range of égents that stimulate or inhibit'enéyme actiQity
in broken cell preparations in order to throw light on mechanisms thar

could be responsible for the modulation of guanylate cyclase activity in

intact platelets.,
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2.1. . Materiqis

2.1.1. Radioactive compounds

[8-3H]6TP (10 Ci/mol), -cyclic [8-1“CJGMP (60 mCi/mmol) and cyclic
[8;3H]GMP.were obtaiped from Amersham Corporation, Oakviile, Ontario.A

[8-3H]GTP was purified by t.l.c. in two dimensions on cellulose, By using

the solvents described by Haslam & McCleneghan (1974).

2.1.2. Proteins and enzymes
Unless otherwise mentioned, all proteins and enzymes were purchas-
ed from Sigma Chemical Company, St. Louis, Missouri, U.S.A.: i.e. protein
standard solution [5% (w/v) human albumin and 3% (w/v) human globulin],
crystalline bovine serum albumin, essentially fatty acid—fre: bovine serum
albumin (prepared from crystalline bovine serum albumin), creatine phospho-
kinase (150 units/mg of protein), cyclic nucleotide phosphodiésterase (0.27
unit/mg 6§ protein), phosphoglycerokinase (2100 units/mg of protein),
glyceraldehyde~3-phosphate dehydrogen;se (55 units/mg of protein), lactate
dehydrogenase (430.uqits/mé of protein), pyruvate kinase (645 units/mg of
protein), myokinaée (2370 units/mg.of protein). Apyrase (EC 3.6.1.5.) was
prepared by the method of Molnar & Lorand 11961) and was a gift from Dr.
J.F. Mﬁstard, McMaster University, ﬁamilton, Ontaric. This preparation
hydrolysed 1.7 umol of ATP/min per mg of protein.

2.1.3. Nucleotides

.All nucleotides were obtained from Sigma Chemical Company, St.
Louis, Missouri, U.S.A.: iI.e. cyclic GMP, GMP, GDP, GTP, cyclic AMP, AMP,

ADP, ATP, NADH.

40
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'2.1.4. Non-ionic detergents

Lubrol PX and Triton X-100 were purchased from Sigma Chemical
Company, St. Louis, Missouri, U.S.A. (

2.1.5. Fatty acids .

Arachidonic, oleic and palmitic acids were obtained from Sigma
Chemical Company, St. Louis, Missouri, U.S.A. Arachidonic acid was puri-
fied .as described by Davies et al. (1976). All fatty acids were d;ssolved
in eéhanol, neutralized with Na2603 and diluted with water to a final con-
centration of 20 mM containing 10% (v/v) ethanol. In experiments with
fatty acids, the final concentration of ethanol in assays was adjusted to
O:SZ, which had no effect on guanylate cyclase activity.

2.1.6. Pharmacological agents

Unless otherwise noted, most agents were obtained from Sigma Ch:g-
ical éompany, St. Louis,'Missouri, UJS.A.: i.e. indomethacin, 5-~hydroxy-
tryptamine, l-epinephrine, sodium azide, sodium nitroprusside, dithiothrei-~
tol, glutathione, oxidized glutathione, cysteine, N-ethylmaleimide, diamide,
4,4'-dithiodipyridine, 5,5"'-dithiobis-(2-nitrobenzoic acid), ethylenedia;ine
tetraacetic acid, ethyleneglycol-bis(f-aminoethyl ether)n,N'-tetraacetic
acid. 3-Isobutyl-l-methylxanthine was purchased from Aldrich Chemical Comp-
any, Milwaukee, Wiscortsin,-U.,S.A., and tert—butylhygroperoxide (purity of

70%, v/v) from Koch-Light Laboratories Limited, Colnbrook, Bucks, England.

2,1.7. Buffers

3

Trizma (tris) base, triethanolamine hydrochloride and N-tris(hydroxy—}

methyl)methyl-2-aminoethane sulfogic acid were obtained from Sigma Chemical

Company, St. Louis, Missouri, U.S.A.
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2.1.8. Chromatographic materials

Neutral alumina (WN-3) was obtained from Sigma Chemicai Company,
St. Louis, Missouri, U.S.A. Anion exchange resin (AG 1-X2, 200-400- mesh,
cl form) was obtained from Bio-Rad Laboratories, Richmond, California,
U.S.A. and cellulose powder for t.l.c. (MN 300 HR) from Brinkﬁan Ipstru-~

ments (Canada), Toronto,.Ontario. i ]

i

-

2.1.9. Ultrafiltration apparatus
Ultrafiltration membrape cones (Centriflo, 224-UF-50) were purcha-
sed from‘;micon Company,‘Lexington, Massachusetts, U.S.A.
” 2,1.10. Liquid scintillat.}';n 'cocktail!
Quantéfluor liquid scintillation cocktail was obtained from

Mallinckredt, St. Louis, Missouri, U.S.A.

All other réagents were of analytical grade.
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2.2, ' Methods . -

2.2.1. Preparat,.lon, of suspensions of washed platehets

Venous blood was obtained from healthy volunteer-dongrs whd had R

not taken any medication for the preceding 10 days. From 150.'~ to 36_,0 ml

of blood was collected into a siliconized flask containing acid—citrate- ;'
ST SN t

dextrose anticoagulant (85 mM~trisodium‘citrate, 71.4 mM-citric acdd, 2%

J(w/v) dextrose) (Aster & Jandl, 1964) to glve a final concentration of 167

v/v). . o .

Platelet rich plasma (PRP) was prepared by centrifﬁgation cf'the- .

blood.at 250 for 10 min at AOC. This step was repeated inrorder to in< '

1

crease the yield of PRP. The supernatant PRP was tﬁansférreﬂ to silicon~ o
s ‘ \ .

ized conical tubes (12 ml) and centrifuged at IOZOg £or 20 min atfﬁoﬁ'in:an: Ty
The supernatant platelet poor plasma (PPP) was‘aspiratem and ,

angle head.
¢ . ¢

the red blood cells removed from the platelet pellet with a‘Pasteur pipette. '
{ .

I

The platelet pellets were resuspended in acid~citrate—dextrose Washing '

solution (13 mM-sodium citrate, 5 mM—dexxrose, 135 mM#NaGl,,adjusted'to‘ 1 ",
pH 6.5 with HC1) (Haslam & Lynham, 1972) and centrifuged at 165g for 20 min, :1 .
L RN

at & C. The weight of the platelet pellec was measured and the Washed '_‘. o

-

4

platelets were resuspended in 150 mMrTris, adjusted to pH 7 4 with RCl, to .

.
! X

give 50 to 100 mg wet weight of platelets/ml (approximatel# 3. 5 to 7. 0! mg

i

of protein/ml). Approximately 500 ng Wet weight of platelets were ogtained

! ‘ ; !

13 L |

from 250 ml of. blood. Platelet puspensions were “stored ati 0°C for up to! .

i ! Lo or
C o S b '
one hour before use. . Coa TR o k { _
Suspensions of washed platelets were also prepared from A to 5
A 1

day old- platelet concentrates stored at 22°C, which were obtained ftom the

‘y " Pt <
' y o . oy
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Canadian Red Cress. The platelet concentrates (50 ml of concentrate/l unit
of whole blood) were centrifuged at 2509 for 10 min. 4t &4 °c to remove any
remaining red blood cells. Washed platelet euspe sions were prepared from
the PRP as-described above. Approximately 800 mg wet weight of pletelets

were obtained from one unit of platelet concentrate.

A

Only plastic ware or silicone—treated glassware was used to pre-
pate\the washed platelet suspensions. ; | '

2.2.2. Enzyme preparations

Platelet lysate was prepared by freezing the washed platelet sus-

pension in a solid COj/acetone bath and then gently shaking the frozen plate-

’

lets in a water bath at 3706 until just completely thawed. The freeze-thaw
cyele was repe;ted once and the platelet lysate was stored at 0°C for up to
two hours before use. In some cases, the platelet suspension was keét fro-
zen at =50°C for ep to five days. On the day of the experiment, the frozen

suspension was thawed .and the freeze-thaw cycle was repeated.

. In some experiments, part of the lysate was preincubated for 60 min

3

at 30°C or at 37°C and then stored at 0°C until. use. In other experiments,
lysate was ultrafiltered in Centriflo membrane cones (approximate molecular
[ .

weigﬁt cut .off of 50 000) that had been soaked in water for at least one

’

‘o hour; In the latter case, up to 2 ml of platelet lysate was centrifuged at

lOOOg for 60 min at 4 C The volume of the ultrafiltrate was measured

(70 tq 907 of that of the lysate) and the concentrate was reSuspended in an

!

f eQuLYalent YOlume of 150 mM-Tris/HCl pH 7.4 and stored at O °c, Ultrafil~

tration teSulted in a loss of about 20% of the lysate protein on the ultra-

filtration membrane.

) Supernatant and particulate fractions of platelet lysate were

‘ N -
'
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iy

usually obtained by centrifugation at 48 000g for 30 min at 4°c. 1In certain
K’experiments, platelet lysate was centrifuged at 100 000g for two hours at

4°c, ;Supernatant and particulate fractions were stored at 0°C until use.

2.2.3. Guanylate cyclase assay »

Assay mixture; (ZSd.ul),contained (final councentrations): l)mM—

[8-3H]GTP (2 mCi/mmol), 1 mM-3-isobutyl-l-methylxanthine, & mM-cyclic GMP,

1 mg of bovine serum albumin/ml, 4 mM-MnCl, and 60 mM-Tris/HCl, pH 7.4.
Phosphocreatiﬁe (5 mM) and creatine phosphokinase (20 units/ml) were includ-
ed unless otherwise indicated. Assays were started by the addition of 10
-to 100 ul of enzyme preparation to freshly mixed reagents at 30°C and were
stopped by the addition of 100 ul of a solution containing 0.001 uci éf
cyclic [8-1%CIGMP (60 mCi/mmol) and 50 mM~EDTA (adjusted to pH 7.6 with
NaHCO3), followed by boiling for 3 mfnutes, . The samples were finally frans-
ferred to an ice bath and 50 mM-Tris/HCl, pH 7.6, was added to give a total
velume of 1 ml. Denatured protein was removed by centrifugation.

2.,2.4. Isolation of cyclic [34]1ecmp

Cyclic [3H]GMP was isolated by a modification of the method of
WhiFe & Zenser (1971). Sample supernatants were applied to columqs Sinter-
nal diameter, 6 mm) confaining 1 g of neutral alumina, which had been washed
wifh 50 mM-Tris/HC1, pH 7.6; the first 2 ml from ea;h~column were discarded
and the next.3 ml was collected into liq;id—scintillation vials and~free§e—
dried. The residues were dissolved in 1 ml of water, mixed with 7.5 ml of
Quantafludr, ;nd éounted for 34 and %C radiocactivity as described in Sec-

\ ,

tion 2.2.7.5.. Recovery of added cyclic'[8-1“C]GMP in the fraction collect-

ed ranged from 40 to 70% (Table 2.2.4,1.). Zero—incubation—time blanks

were included in each experiment and amounted to 100 to 300 d.p.m. of 3y
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§

(about 5% of the total d.p.m. of cyclic [3H]GMP recovered during a typical
assay) (Fig. 2.2.4.1, and Table 2.2.4,2.). This blank was subtracted before
correctdn for recovery. Similar blank values were obtained from samp les
without 4nzyme which wige not boiled (Table 2.2.4.2.), indicating that non-
enzymic formation of d&clic [3H]GMP during boiling (Kimura & Murad, 1974p)
did not oecur. The 3uccessful~ﬁse of [8—3H]GTP in this assay, was dependent
on prior purification of the substrate ‘Table 2.2.4.3.), and the removal by
freeze~drying of small amounts of 3H20 formed during boiling of the samples
(Table 2,2.4.2.).

2.2.5. Radiochemical purity of cyclic [3H]GﬁP isolated from
guanylate cyclase assays -

Pooled elu{Ees from identical samples applied to alumina columns

o~
AR

were. chromatographed on anion-?xchange resin (Dowex AG 1-X2). Cyclic GMP

-

was eluted ad;desc;ibed byrﬁaélam & McClenaghan (1974) and the eluate was
freeze—dried; The residue was taken up in water, a sample was co;nted for

34 and !“C radioactivity and another samplg was incubated for 60 minutes

at 30°C in a reaction mixture (120 ul) containing 0,05 unit of cyclic nucleo-
tide phosphodiesterase, 4 mg of bovine serum albumin/ml, 4 mM-MgSO,, 0.25
mM-EDTA and iO mM-N-tris (hydroxymethyl)methyl-2-aminoethanesulphonic acid
(adjusted to pH 7.5 with NaOH). After the incubation, thé reaction mixtu;;
was boiled and centrifuged, and the supernatant chromatographed on cellu-
lose as described by Haslam & McClenaghan (1974). Product 5'-GMP was
eluted with water aﬂa counted for H and lY%C radioactivity. The ratio of
3Hbto 14c in this 5'-GMP was the same as in freeze—dried eluates from the

columns containing either alumina or anion-exchange resin, indicating that

the standard assay procedure isolated radiochemically pure cyclic [3H]GMP
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{Table 2.2.5.1.).
2.2.6. Measurement) of cyclic GMP phosphodiesterase and guano-

sine triphosphatase activities present in the guanylate cyclase assays

The activity of cycliec G phosphodiesterase remaining under guanyl-

ate cyclase assay conditions,was\determined by substituting unlabeled GTP

for [8~3H]GTP and adding cyclic [8-H]eMP (0.025 uCi) to the assay mixture.
Labeled cyclic GMP was isolated as usual and the percentage of cyclice
[8-3H]GMP broken down was shown to-be less than 7% in 20 minute incubations
with the highest enzyme concentrations used in this study (Table 2.2.6.1,).

To measure GTP breakdown, guanylate cyclase assays were carried out //
- . ~—

-~ as usual, but the reactions were stopped by the addition of 100 ul of 50 mM~
EDTA, pH 7.4, followed by boiling for 3 minutes. After centrifugation, 10
ul of the supernatant was mixed with 0.1 umol each of GTP and of GDP and
chromatographed on cellulose (t.l.c.) in two dimensions (H;slam & McClena~
ghan, 1974). The areas corresponding to GTP and GDP were eluted‘with 2 ml
of water, the extingtion values at 253 nm were measured and fractions of

’

this material were counted for °H radioactivity. Guanosine triphosphataée
activity was expressed as a percentage of the added [8—3H]GTP broken down
and amounted to about 1%/min with 300 ug of platelet protein in an assay
tube (TabL% 2.2.6.2.). Thérefore, in most experiments in which more pro-
tein was uvsed or in which incubations were continued for longer than 20
minutes, phosphocreatine and creating phosphokinase were included.in the
assay mixtures. Although the phosphocreatine/creatine phosphokinase GTP-
regenerating system was found to prevent completely the breakdown of

[8-3H]GTP in guanylate cyclase assays (Fig. 2.2.6.1.), it had no significant

effect on the accumulation of cyclic [3H]oMP.

,.//'\
)~
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2.2.7. .Other methods
2.2.7.1. Protein as;ay. Protein was assayed by the
Fmethod.of Lowry et al. (1951), by using a protein ékandard solution con-
_téining 5% (w/v) human albumin and 3% (w/v) human globulin. Tri;/HCl
(Ji, 1973) and other reagent blanks were subtracted. ‘The concentration of
protein in washed suspensions‘of platelets (100 mg wet weight of plate-
lets/ml) was found to be 0.2L + 0.01 mg of protein/108 platelets (mean #
S.E.M. of 5 detgrminations). Platelets were counted in a hemocyﬂbmeter
chamber’by phase contrast microscopy (Harker, 1974). For every experi-
ment, the concentration of protein in each enzyme preparation was assayed.
2.2.7.2. Lactate dehydrogenase assay., Lactate
dehydrogenase activity in platelet fractions was determined by the method
of Bergmeyer et al. (1965). &
. 2.2.7.3. kdenine nucleotide assays. The cdncengra—

tion of. ATP, AﬁP and AMP in enzyme preparations was assayed by the methods
f’
described by Adam (1965). ’

N 2.2.7.4. Assay of total and non-protein sulfhydryl

d )

groups. The concentration of total, pfbtein—bound and non-protein sulfhy- -
dr?l groups in‘waghed:ﬁla;elet suspgnsions and enzyﬁe prepaFétions was
estimated égéentially as described by Sedlak & Lindsay (1968). This method.
is based on the method of Ellman (1958, 1559), who reported that 5,5'-dithio-
bis—(2-nitrobenzoic acid) (DTNB) is reduced by sulfhydryi groups to produce

1 mole of 2-nitro—5;mefcapcobenzoic acid per mole of thiol. ' The nifro-
mercaptobenzoic acid anion has an intengg ;ellowlcolour that can be use&’to
measure -ssul fhydryl group; spestrophotometrically. i ‘\\\

< 13

All solutions used in the assays were prepared as
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described by Sediak & Lindsay (1968). Reduced glutathione was used as a
standard for both the total and non-protein thiol determinations. The
absorbance (412 nm) produced by thé reaction of DINB with various concen-
trations of glutathione (0.00i to 0.1 mM; final thiol concentration in tﬁe
colour rééction mixture) was linear. The experimentally determined molar
extinction coefficient of reduced glutathione at 412 nm was 14.26 in both

total and non-protein sulfhydryl procedures; The platelet suspensions or ~

enzyme preparations to be assayed were stored for up to one week at -50°¢
—0

\\\

until used.

Determination of total sulfhydryl group;. Aliﬁuots of
60 ul of the platelet Suspension or enzyme preparation were mixed in Eppen—
“dorf micro test tubes with 950 ul of 8 M~urea after which 180 ul of 0 2 M-
Tris/0.02 M-ethylenediamine tetréacetic acid~disodium (EDTA Nas) buffer,
pH 8.2 and 10 ul of 0.012 M~DTNB were added to give a final volume of 1,2
mli. A reagent blank (without sample) and a sample blank (without DTNB)
were prepared in a similar manner. The samples were allowed to stand, with
occasional mixing, at room temperature for 30 minutes to develop the colour.
ThHe samples were then éentrifuged for 6 minutes at.l3 000g and the'absorb—
ance of fhe clear supernatants read at 412 nm. |
| . Determination of non-protein sulfhydryl groups. Ali;
quots of 600 Aul of the platelet suspension bor enzymé preparation were
mixed "in Eppendorf micro test tubes with 480 ul of water and 120 ul of
SOZ (w/v) trichloroacetic acid to glve a final volume of 1, 2 ml. The
tubes were mixed intermitently for 10 to 15 minutes at room‘temperature
.;nd then centrifuged for 6 miuutés at 13 000g. A 240 ul sam;le of the

supernatant was mixed with 470 wl of 0.4 M~Tris/0.02 M~EDTA Najy buffer,

N T ek iad
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s R .
pH 8.9 and 10 h; of 0.012 M-DINB was added to give a final volume of 720
ul. The samples were mixed and the absorbance read at 412 nm within 5
minutes of the addition of DINB.

Determination of protein-bound sulfhydryl groups. The
amount of proééin—bound thiol is calculated by subtracting the non-protein
bo;nd thiol from the total thiol value.

2.2l?,5. Measurement of radiocactivity. Aqueous
solutions of 1.0 ml containing either 4 or 11’C, or both 3& and *C were
counted for radioactivity for 20 minutes in a Beckman LS 230 scintillation
counter after mixing the sample with 7.5'ml of Quantafluor, a toluene-

_ based phosphor. With samples containing only 38 or ll*C, the_gounting eff-
iciencies were approximately 33% and 50%, respectively. For samples con-
taining both 3H and !“C, counting efficiencies of app?oximately 16% and 50%,
respectively, were obtained. Results were corrected for channmel cross-over
and quench corrections were applied for all samples by the external standard
methoq‘(ﬂoward, 1976) after subtraction of the background (approximately
26 c.p.m.). The averag; counting error in assays ranged from about 2 to 5%.
2.2.7.6. Analysis of data. Individual guanylate
cyclase agsays were g%most always performéd in triplicate in eaéh experiment.
Mean values t tHe standard error of the mean (S.E.M.) for each experiment are
reported when guanylate cyclase activity is expressed as sﬁecific activity.
HowéVer; whén activity is expressed as a petcentage of a control sample, only
mean values are indicated, but in this case, 'the mean spécifié activity * S.E.ﬁ.
of the control sample is given in the legend of each table or figure. Standard
errors of triplicate assays within each experiment were almoééxﬁlﬁ%ys less than

. : i ’ '
+5% of the mean. In a few experiments in which the guanylate cyclase activity

Na v e e e s
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was near the limit of the sensitivity of qhe assay (i.e. less than about
0.5 nmol of cyclic GMP formed/20 min per ;g of protein), the standard errors
occasionally ranged from *5% to *10% of the mean.

In many of the tables énd figures presented, the values
given for guanylate cyclase activity are the means * S.E.M. of triplicate

’

determinations from one representative experiment. Although the effects of
various treatments reported were usually observed with lyéates from at least
three separate platelet preparations, the guanylate cyclase activities from '
different experiments were not pooled because of the varigbility of the basal
activities of different platelet lysates (see for example Figs. 3.2.1., 4.1.1.
and 4.1.4.). However, when the changes in guanylate cyclase activity'wére
expressed aséperéentages of basal activity, data from different experiments
could be pooled -and the mean values * S.E.M. from these different experimens§
are reported in the text to indicate the extent of bioiogical variation. - The
significance of the effects of various treatments or égents on guanylate cyclase
activity observed in different experiments were ev;luated by either paired or

unpaired Student's t tests, depending onm the data (Daniel, 1974). When results

expressed in percentage terms were pooled for statistical purposes, it is

o

assumed 1in the calculation of t, that the values for percentage changes in
guanylate cyclase activity are distributed normally. 2P values are indicated

in the text.
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Table 2.2.4.1. Elution of cyclic [8-1%c]GMP frem alumina columns

Assay mixtures containing 2240 d.p.m. of cyclic [8—1“C]GMP were prepared
and applied to alumina columns as described in Section 2.2.4. Cyclic
[8-1%c]eMP was eluted with 50 mM-Tris/HCl, pH 7.6 in individual 1.0 ml
fractions which were collected into scintillation vials and freeze-dried
prior to counting for L4e radioactivity. Fraction 1 contained the sam-
ple. The values given are the means * S.E.M. of 12 determinations. Of
the total amount of cyclic g-1% emMp applied to each column, 84% was
collected in all 10 fractions and 60% in fractions 4,5 and 6.

'Y .
Fraction . he d.p.m. ' % of total
Caomy ‘ cyclic [8-1%c) omp
.
1 . - 1.1 £0.3 - 0.04
2 ’ 7.0 £ 1 0.26
3 361.0 + 46 13.4
4 833.0 % 23 ‘ 31.0
5 512.0 * 15 ' T 1.0
6 264.0 % 12 _9.8
7 . 134.6 t 8 : 5.0
8 71.0.t 4 2.6
9 42.0 £ 3 1.6
10 25,0 £ 1 1.0 ;

.
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Fig. 2.2.4.1. Elution of 3H and of cyclic [8—1“C]GMP from alumina

columns -

Complete assay mixtures containing 931,545 d.p.m. of 1.0 mM-[8-3H]GTP
were prepared as described in Section 2.2.3. Zero-incubation-time blanks
were prepared by the simultaneous addition of %5 ul of platelet lysate
(6.0 mg of protein/ml) and 100 pl of a solution containing 2691 d.p.m. of
cyclic [8-1“C]GMP and 50 mM-EDTA, pH 7.4 to each assay tube. The samples
were quickly mixed and then boiled for 3 min. After boiling, the samples
were transferred to an ice bath'and 50 mM~-Tris/HCl, pH 7.6 was added to
give a final volume of 1.0 ml. The samples were applied to alumina col-
umns as described in Section 2.2.4. Cyclic [8-1"C]GMP and blank-3H were
eluted with 50 mM-Tris/HCl, pH 7.6 in individual 1.0 ml fractions which
were collected into scintillation vials and freeze-dried prior to counting
for 3H and lhe radioactivity. Fraction 1 contained the sample. The values
given are the means * S.E.M. of triplicate determinations. Of the total
amount of [8-3H]GTP applied to each column, 0.149% (1388 4.p.m.) was co-
llected in all 10 fractions and 0.023% (214 d.p.m.) in fractions 4,5 and

6 (@). Of the total amount of cyclic [s-1*c]eMP applied to each column,
86% was collected in all 10 fractions and 58% in fractions 4,5 and 6 (Q).
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Table 2.2.4:2. Effect of boiling assay mixtures and of freeze-drying -
eluted fractions on 34-blank values
!

Complete assay mixtures containing 931,545 d.p.m. of 1.0 mM-[8~3H]GTP
were prepared as described in Section 2.2.3. Incubation blanks (A) were
prepared by the addition of 25 ul of 150 mM-Tris/HCl, pH 7.4 to assay
mixtures in place of platelet lysate. After a 20 min incubation period
cat 30°C, 100 ul of a solution containing 2691 d.p.m. of cyclic [8-1“C]GMP

d 50 mM~EDTA, pH 7.4 was added to each assay tube. The samples were

ansferred to an ice bath and 50 mM-Tris/HCl, pH 7.6 was added to give a
final volume of 1.0 ml. The samples were applied to alumina columns as’
described in Section 2.2.4. Cyclic [8-1"C]GMP and blank-3H were eluted
with 50 mM-Tris/HCl, pH %.6 in individual 1.0 ml fractions which were
collected into scintillation vials and counted for 3H and !“C radio- -
activity. Zero-~incubation-time blanks (B & C) were prepared by the
simultaneous addition of 25 ul of platelet lyszate (6.0 mg of protein/ml)
and 100 yl of a Eolqtion containing 2691 d.p.m. of cyclic [S—I“C]GMP and
SO mM~-EDTA, pH 7.4 to each assay tube. The samples were quickly mixed and
then boiled for 3 min. After boiling the samples were transferred to an ice
bath and processed as described above with the exception that fractions
from zero-incubation-blank "B" were freeze~dried prior to cognting for 3H
and ltc radioactivity. For all blanks, fraction 1 contained the sample.
The values given are the means * S.E.M. of triplicate determinations.
For blanks A,B and C, 59%, 58% and 64%, respectively, of the total amount
of cyclic [B-I“C]GMP applied to each column:was collected in fractions 4,
5 and 6. .For blank A, of the total amount of [8-3H]GTP applied to each
column, 0.152% (1416 d.p.m.) was collected in all 10 fractions and 0.024%
(224 d.p.m.) in fractions 4,5 and 6; for blank B, 0.149% (1388 d.p.m.) was
collected in all 10 fractions and 0.023% (214 d.p.m.) in fractions 4,5 and
6; and for blank C, 0.377% (3410 d.p.m.) was collected in all 10 fractions °
and 0,085%(792 d.p.m.) in fractions 4,5 and 6.

T it
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Treatment ) ' Fraction 34 d.p.m. % qf total
: (1 ml) [s-34) ere

Blank A (unboiled)
Incubation blank (no enzyme)
(Fractions were not freeze-

dried) 1 26 ¥ 6 ¢ 0.003
2 617 * 3 0.066
© 3 373 ¢ 9 0.040
4 68 * 13 0.007
5 72 12 . 0.008
6 72 * 18 . 0.008
7 60 ¥ 12 0.006
8 34 4 0.006
9 37 ¢ 5 0.004
10 - 24 £ 2 0.003
Blank B (boiled)
Zero-incubation-time blank
(Fractions were freeze~
dried) 1 2 23 ¢ 5 0.002
2 651 % 13 0.070
3 343t 8 0.037
4 89 t 10 0.010
: , 5 79 9 - 0.008
6 54 + ¢ 0.006
7 48 t 4 0.005
8 45 £ 10 - 0.005
9 52t 5 0.006
10 28 4 . 0.003
' ' Blank ¢ (boiled) )
Zero-incubation-time blank
(Fractions were not freeze- . .
“dried) 1 14t 1 - 0.002
“ 2 1202 * 28 0.129
' 3 491 * 15 0.053
. 4 283 12 0.030
’ . 5 270 £ 11 "0.029
‘ 6 246 ¥ 14 . 0.026
7 239 & 2 0.026
“ 8 217 * 13 . 0.023
. 9 231 ¥ 14 0.025
. -10 211 *

9 0.023
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Effect of purification of [8—3H]GTP on the présence of
3H-labeled Impurities in eluates from alumina columns

Table 2.2.4.3.

Alumina columns were prepared and eluted as aescrlbed in Seﬂtlon 2.2.4.
Approximately 1.18 X 10° 4. p.m. of unpurified [8- H]GTP was applied to a
column in a total volume of 1.0 ml. [8~3H] TP was purified by t.l.c. in
two dimensions on cellulose, by using the solvents describéd by Haslam &
McClenaghan (1974). 'Apmroxlmately 1.07 x 105 a. p.-m. of this purified
material was applied to a column in a total volume of 1.0 ml. The elution
of [3H]—labelled material is expressed in’ texrms of 3g-4. p:m./1.0 ml frac-
tion and as a percentage of total [8-3H]GTP applled to -each column. All
samples were freeze—drled priov to counting for 3y radloaét1v1ty

I e

s

»
Substrate Fraction 3 d.p.m. $ of total [8-3H]GTP
preparation (1 ml) ’ .
1 3
Unpurified [8-3H]GTP "1 86 +0.07
. 2 8214 6.96
3 1705 1.45
4 612 0.52
5 123 0.10 *~
6 61 0.05
7 45 0.04 "
8 31 0.02
Purified [8-3H) are 1 3 0
2 490 0.05
e 3 361 ¢ 0.03
4 52 0.005
5. 39 0.004
6 35 0.003
7 26 0.002 .
8 30 0.003
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Table 2.2.6.1. Determination of cyclic GMP phosphodiesterase activity
present in guanylate cyclase assays

Cyclic GMP phosphodiesterase activity was assayed as desc¢ribed in Section
2.2.6. and is expressed as the percentage of cyclic [8-3H]GMP broken down
after 20 min of incubation at 30°C. ‘The values given for cyclic GMP phos-
phodiesterase activity are the means * S.E.M. of three separate experiments
in which the lysates contained 6.0 mg of protein/ml.

Concn. of protein Phosphodiesterase activity
in assay (% of cyclic [&-—3H GMP] broken down
{mg) after 20 min incubation)
0.06 2.1 + 1.1
0.12 2.2 £ 0.4
0.30 ’ 4.3 £ 1.4
0.60 6.7 * 0.5




61

Table 2.2.6.2. Determination of guanosine triphosphatase activity
present in guanylate cyclase assays

Guanosine triphosphatase activity was assayed as described in Section
2.2.6. In both experiments, the concentration of protein in the platelet
lysate was 6.0 mg/ml. The concentration of protein in the assay was
varied by the addition of 10, 20, 50 and 100 ul of platelet lysate to
the assay tubes. The values given are single determinations. The guan-
ylate cyclase activity assayed with 0.30 g of protein was 6.60 % 0.20

nmol of cyclic GMP formed/20 min per mg of proteln in Experlment 1 and

4.90 ¥ 0.40 nmol of cyclic GMP formed/20 min per mg of protein in Experi~

ment 2 (mean * S.E.M. of trlplﬁpate determinations). / -

y

—”'/
Experiment Concn. of protein Guanosine triphosphatase activity

no. in assay (% of added [8- H]GTP broken
{mg) down during 20 min incubation)

1 0.06 9.8

0.12 13.1

0. 30 24.1

0.60 ) 45.6

2 0.06 6.6

0.12 -~ 10.6

0.30 22.1

, 0.690 42.3
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Fig. 2.2.6.1. Effect of a phosphocreatine/creatine phosphokinase
GTP-regenerating system on the breakdewn of [6-3#]cTP
during a 10 min incubation at 30°C

. Guanosine triphosphatase activity was assayed as described in Section 2.2.6.
In this experiment, the concentration of [8-3H]GTP in thé assay mixture
ranged from 0.05 to 1.0 mM. The breakdown of added [8-3H]GTP was assayed
in the presence (A) or absence (@) of a phosphocreatine/creatine phospho-
kinase GIP-regenerating system (see Section 2.2.3.). The values given

are single determinations. The platelet lysate contained 4.4 mg of protein/
ml and 50 pl was added to each assay tube.
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. Proj:erties and Subcellular Distribution

of Platelet Guanylate Cyclase

'
i

Chapter 3
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3.1. ' Results: Subcellular distribution

The apparezf subcellular distribution of plaﬁelet guanylate ﬁyc—
iase activity varied wiéh the tonicity of the lysis medium. As indicated
in Table 3.i.1., between 60 and 75% of the total activity was found in the
100 000g supernatant fraction when the cells were lysed by freezing and
thawing in an isotonic medium (150 mM-Tris/HCl, pH 7.4). Under these cond—
itioﬁs, the specific activity of guanylate cyclase in the supernatant frac-
tion was somewhat great?r than in the particulatg fraction. Howeéer, when .
the‘plételets were frozen and thawe& in an hypotonic medium (60.mM—Tris/
HC1, pH 7';)ﬁ aboutF9OZ of the enzyme was soluble, and the specific acti-
vity of thé éuperqatang was about eight-fold greater than thﬁt of the par-
ticulate fract}on. The tonicity of the assay mixture Rad no effect on the
apparent subceliular distributibn of guanylate cyclaseﬁtttivity (Table‘
3.1.2.);$howeve;, the activity‘in the supernatant and particulate éractions
prepared from both hypo~ and isotoniéally freeze-thawed platelet lysates
was inhibited on aver;ge by abqut‘BS%'when assays were carried out in an
isotonic mediumo'yzzzrdisfpibution of‘gﬁanylgte cyclase activity closely
paralleled that.of the soluble enzyﬁe marker, lactate dehydrégenase, in
both isotonic and hypotonic préﬁarations kTablg 3.1.1.). Treatment of the
supernatant énﬂ the particulate fractions with Lubrol fx (1.0%, w/v) did
. not change the relative distributiﬁn of guanylate cyclase activity (Table
3.1.1. and.?ig. 4.4.2.), indicat§ﬁg the absence of latent particle-bound
enzyﬁe. These‘résults show that the only particle-bound guanylate cyclase

found was due to contamination of particulate fractions with soluble enzyme.

@
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In spite of the fact that plgtelet gugnylate cyclase appears to
be a predominantly soluble enzymé, whole platelet lysate was studied in the.
present investigation primarily bebausé of ghe ﬁossibility that particulate
components as well as soluble iptermgdiary factors may be involved in an
indirect mechanism of activation. However, the present results do ﬁot
completely elipinate thé possibility that the soluble form of the enzyme
may originate from cell membranes but is artifactually rendered soluble by
physiological processes or mechanical forces of cell disruption (Goldberg
et al.; 1973b; Limbird & Lefkowitz, 1975; Neer & Sukiennik, 19755. To
establish.beyond_?dubt that the guanylate cyclase activity present.in the
particuiate fraction of isotonically lysed plaéelets is attributable to

N

contamination with soluble enzyme, several properties of these two enzyme

preparations were compared.
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3.2. Results: Bivalent cation requirements~

The maximum guanylate cyclase activity of the platelet lysate wég
observed in the presence of 4.0 mM-MnCl, when the GTP concentration wag‘i.O
. mM (Fig. 3.2.1.). Both MgCl, and CaCl, were found to be poor'Substitutes
for MnCls. Oely 20 + 4% (mean * S.E.M. of six experiments) of ;aximuﬁ acti-
vity was expressed with MgCl, at an optimal concent;ation of i0.0 mM, where~
as almost no activity was measurable with 4.0 mM-CaCly (C.7 # 0.5% of maxi-
mum activity, meaﬁ * S.E.ﬁ.\of three experiments) (Table 3.2.1.). In the
presence of lower cogceqtrations of MnCl; (0.1 or 1.0 mM) together with
either MgCl, (10.0 mM) or CaCl, (4,0 mﬁ), a synergistic'stimulation of guan-
ylate cyclase activity was observed (Table 3.2.1. and 3.2.2.)., As shown ;n
Fig. 3!5.&., the guanylate:eyclase activity of platelet lysate assayed in
the presence of different’concentretiqps‘of MgClé Vas‘markedly enhanced‘gy
the addition of 1.0 mM-MnCl,.- Maximuh synergistic stimulation of activity
was' observed with a concentration of 10.0 mM;MgCIZ. In four experiments,
.68 £ 5% (mean t'SoE,Mo) of maximum activit{ was expressed with 1.0 mM-
MnCl, and 10.0 mM-MgCl, (Table 3.2.1.). As shown :Lnx Fig. 3.2.3., 1.0 mM-
IMhClg markedly stimulated enzyme activity when assayed in the presence of
' several comcentrations of CaClz. The greatest stimulation was expressed
with CaCl, at an optimal concentration of 4,0 mM. In threé exﬁeriments,
65 * 2% (mean * S.E.M,) of maximum activity was observed with 1.0 mM-MnC12
and 4.0 mM-CaCl, (Table 3.2, l Do

In ‘the absence of added MnClg, 4.0 mM—Ca012 had no effect on the

guanylate cyclase activity of p%gtelet lysate ssayed in the presenca of
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10<a\mM—MgC12 (Table 3.2.2.). However, as shown in Table 3.2.3., law con-
centrations of‘Ca2+ (0.1 to 100 uM) significantly stimulated guaﬁylate
cyclase activity when assayed with 10.0 mM-MgCl; whereas higher concentra-

tions of Qaz+ (0.5 to 4,0 mM) had no significant effect.
-~ - -

As observed with platelet lysate, at least 4.0 mM~-MnCl; was

required for the expression of mafimum guanylate cyclase activity in both ‘.

the.Supernathz and particulate fractions obtained after isotonic lysis of
'platelets‘dkig. 3.2.4.). Table 3.2.4, shows that for both enzyme prepara;
tions, less than 20% of maximu& actibity was éxpressgd ;ith 10.0 mM—ﬁgClz;
wkereas almost no activity was meaéurable with 4.0‘mM-Ca6120 A synergistic
séimulation of-gu;nylate‘é§clase activity by low concentrations of MnCly
together with 10.0 mM-MgCls or 4.0 mM-CaCl, was also observed wfih both

platelet fractions (Table 3.2.4.). Thus no significant difference was

found in the bivalent cation requirements of these two enzyme preparations.
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Table 3.2.1. Summary of the effects of biva:ient cations on the

guanylate cyclgse activity of platelet lysate
~ . - -

Guanylate gyclase acﬁivity was assayed as described in Section 2.2.3. The
concentration of protein in the platelet lysates of the 10 experiments
summarized below was 6.2 * 0.5 mg/ml. The guanylate cyclase activity
assayed with 4 mM-MnCl, was 5.26 * 0.62 nmol of cyclic GMP formed/20 min
per mg of protein (mean * S.E.M. of 10 experiments). The values given
below are the means ¥ S.E.M. of the percent activity observed with 4 mM-
MnCl, in the number of separate experiments indicated in parentheses.

>

Bivalent cation concentration (mM) Guanylate cyclase act}vity

A
I \ ) ,
MnCl, Mgll, CaClj (% of activity with 4 mM-MnCljy)
1.0 - C- 31.0 '+ 4.0 (6)
- 10.0 - 20.0 £ 4.0  (6)
1.0 10.0 - . 68.0 = 5.0  (4)
- - 4.0 ’ 0.7 £ 0.5 (3) -
1.0 - 4.0 65.0 £ 2.0 (3) -
. { N
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Fig. 3.2.1. " Effect of increasing concentrations of/MaClj on the
guanylate cyclase activity of platelef lysate

Guanylate cyclase activity was assayed as described An Section 2.2.3.
with the exception that no phosphocreatlne/creatlne phosphokinase GTP-
regeneratlng system was included in the assay mixtura. The protein con-
centration of the platelet lysate was 8.3 mg/ml and 50 yul aliquots were
assayed. The values given are tihe ‘means + S.E.M. of triplicate determin-
ations. Unless otherwise indicated the S.E.M. are within the llmlts of
the symbols. The guanylate cyclase activity observed with 4.0 mM~MnC12
was 2.74 ¢ 0 05 rmol of cyclic GMP formed/20 min per mg of protein.
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Fig. 3.2.2. Effect of 1.0 mM~MnCl2 on the guanylate cyclase activity of
platelet lysate assayed in the presence of increasing
concentrations of MgCl,

Guanylate cyclase activity was 'assayed as described in Section 2,2,3, with
the exception that no phosphocreatip_e/creatine phosphokinase GTP-regener-

ating system was included in the assay mixture. The protein concentration
of the platelet lysate was 8.0 mg/ml and 50 pl aliquots were assayed. The
values given are the means of duplicate determinations. Guanylate cyclase.

activity is expressed in terms of the percentage of activity observed with -

4.0 mM~-MnCly and O, 1,0, 4.0 and 10.0 mM~-MgCl, (1.82 + 0.02 nmol of cyclic
GMP formed/20 min per mg of protein) (mean * S.E.M. of 8 values). Guanylate
cyclase activity assayed in the absence of MnCl, (O)) activity assayed in
the presence of 1.0 mM-MnCl; (@).
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Fig. 3.2.3. Effect of 1.0 mM-MnCl, on the guanylate cyclase activity
,of platelet lysate assayed in the presence of increasing
concentrations of CaClz ‘

Guanylate cyclase activity was assayed as described in Section 2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP-regener-
ating system was ihcluded in the assay mixture. The protein concentration
of the platelet lysate was 5.2 mg/ml and 50 ul aliquots were assayed. The
values given are the means of duplicate determinations. Guanylate cyclase
activity is expressed in terms of the percentage of activity observed with
4.0 mM~MnCly and 0, 1.0, 2.0, and 4.0 mM-CaCly; (4.04 + 0.01 nmol of cyclic
GMP formed/20 min per mg of protein) (mean + S.E.M. of 8 values}. Guanylate
cyclase activity assayed in the absence of MnCly (O); activity assayed in
the presence of 1.0 mM-MnCl, (@).
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Table 3.2.2.

Effects of bivalent cations on the guanylate cyclase
activity of platelet lysate

Guanylate cyclase activity was assayed as described in Section 2.2.3. The
protein concentration of the lysate was 3.5 mg/ml; and 50 ul aliquots were

assayed.
ations.

Bivalent cation concentration (mM)

A

MnCl,

R - <
O O QO o o

[
. .

o0 oo
T

o.0

MgCl,

10.0

10.0

o O

& o O

& OO

S OO

CaCl,

“

The values given are the means * S.E.M. of triplicate determin-

Guanylate cyclase activity

A

£
nmol of cyclic GMP/

20 min per mg of
protein

O

.

~ U1 O W

= Q = O

o O

v b

»H» O N O
[SSTREN B o « VA

1+ 4+ o I+

[e RSN

@ +HN
w N o

w O

1+ i+

HoWw o

4+ 1+

41+

©

0.23
0.13
0.11
0.25

0.06

0.17

0.01
0.09

0.08

0.02

0.09

% of activity
with 4 mM
MnCl

160
113

36
75
60
88

23

12

15
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Fig. 3.2.4. Effect of increasing-concentrations of MnCl, on the
guanylate cyclase activity in supernatant and particulate
fractions of platelet lysate

Guanylate cyclase activity was assayed.as described in Section 2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP~regenerat-
ing system was included in the assay mixture. Supernatant and particulate
fractions of platelet lysate were prepared as described in Section 2.2.2.
The protein concentration of the supernatant fraction (@) was 4.6 mg/ml
and that of the particulate fraction (A) was 4.8 mg/ml. In each chse, 50
#l aliquots were assayed. The values given are the means + S.E.M. of tri-
plicate determinations. Uniless otherwise indicated, the S.E.M. Are within
the limits of the symbols.

.

Guanylate cyclase activity
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Table 3.2.4. Effects of bivalent cations on the guanylate cyclase

activities in supernatant and particulate fractions
of platelet lysate ¢

Guanylate cyclase activity was assayed as described in Section 2.2.3. with
the exception that no phosphocreatine/créatine phosphokinase GTP regener-
ating system was included in the assay mixtures. Supernatant and partic-
ulate fractions of platelet lysate were prepared as described in Section
2.2.2. The protein concentration of the sGpernatant fraction was 2.6 mg/
ml and that of the particulate fraction was 2.0 mg/ml. In each case,

50 ul aliquots of the enzyme preparation were assayed. The values given

are the means * S.E.M. of triplicate determinations, )
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Bivalent cation concentration (mM) Guany late cyclase activity
. e A
r~ N\ I AY
MnCl, MgCl, - CaCl, nmol of cyclic GMP/ % of activity
20 min per mg of with 4.0 mM
protein MnCl,

) A. Supernatant fraction

s

4.0 0 0 14.53 + 0.82 100
4.0 . 10.0 0 ‘16.12 + 0.59 111
1.0 0 0 a 5.15 + 0.24 35
1.0 10.0 0 11.83 + 0.39 81
1.0 0 - 4.0 8.08 + 0.38 . 56
1.0 10.0 4.0 ‘ 11.56 + 0.64 80
. N .
0.1 0 0 ' 0.19 * 0.05 1
0.1 10.0 0 3.35 + 0.23 23"
0.1 0 4.0 0.99 + 0.02 7
0.1 10.0 4.0 1.43 = 0.09 10
0 10.0 0 1.75 + 0.08 12
0 0 4.0 0.47 + 0.29 3
0 10.0 sto 1.00 + 0.07 ‘ 7
B. Particulate fraction
.0 0 0 2.38 + 0.09 " 100
0 10.0 0 3.00 + 0.29 ° 126
1.0 0 0 1.01 +0.09 - 42
1.0 10.0 0 1.89 + 0.09 79
1.0 0 4.0 1.86 + 0.12 ! 78
1.0 10.0 4.0 1.84 + 0.17 77 .
0.1 0 0 0.13 + 0.01 5
0.1 10.0 0 0.70 + 0.01 - 29
0.1 0 4.0 0.91 + 0.18 38
0.1 10.0 4.0 1.38 + 0.38 58
0 10.0 0 0.40 * 0.16 17
0 ) 4.0 0.13 + 0.10 5
10.0 4.0 0.25 + 0.09 . .11
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3.3, Results: Inhibition 2f guanylate cyclaségactivity by factors
present in the lysate

The average specific activity of guanylate cyclase measured with
10 or 20 ul of lysaie:prepared from platelet suspensions céntaining 100 mg

5

wet weight of platelets/ml was about 10 nmol of'cyclic GMP formed/20 min
per mg of protein. .However, when 50 or 100 Ql of 1yéate was assayfd, the
specific activity was d?creased on average by 30% and 607%, respectively
(Fig. N3.1.). This effect was not due to either guandéine triphosphétase
or cyclic GMP phosphodiesterase activity (see Section 2.2.6.). '
Ultrafilération of the 1y£ate caused highly significant increases
in the specific activity of guanylate cyclase in aséays of 50 and ‘100 ul
of enzyme, whereas no effect was observeq with sééller volumes (Fig. 3.3.1.).
Résuspension.of ultrafiltered platelet lysate in ultrafiltraﬁe subétantially
restored the decrease in specific activity observed with 50 or 100 ul of ‘
platelet lysate (Fig. 3.3.2.) which indicated that the stimulatory effect
of ultrafiltratién was not the result of activation of~guanylate.cyclase.
Furthermore, addition of the ultrafiltrate, which contained no measurable
protein, to the uitrggilte?éd lxsate (iable 3.3.192 or to the untreaﬁeq
lyséte (Table 3.3.2.) clearly demonstrated the presence of low-molecular-
weight inhiﬁitory factors. -‘As shown in Table 359.1', treatment of the
ultrafiltrate with charcoal completely removed its inhibitory activity
which suggested that the observed inhibitory effect might be attributable

to platelet adenine .nucleotides. Although the comparatively Smalleech!ge

observed in the E#hibitory activity of ultrafiltrate incubated with apyrase

oy
79 '
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(an average decrease of about 407 in two experiments) (Table 3.3.1.) could

be explained by the fact that ATP and AMP inhibit the guanylate cyclase -
N

activity of platelet lysate by about the same extent, other data indicated
that flatelet adenine nucleotides could not cémpietely account for the
observed inhibitory effect. Measurement of the concentrations of adenine
nucleotides in the'lysate ultrafiltrates ana of their inhibitory activity
against platelet guanylgte cyclase showed that only 51 * 6% (mean tJé.E.M.
of five experiments) of the inhibition of the guanylite cyclase activity of
platelet lysate by wultrafiltrate could be attributed to adenine nucleotides -
(Table 3.3.2. and Fig. 3.3.3.): Itkras similarly found that‘the concen-
tration of-adenine nucleotides present in either the ultrafiltered lysate
or platelet lysate was far too low to'account for fﬁe inhibition of guanyl-
ate cyclase activity obsérved'with l;rge volumes of enzyme preparation in
the aséay mixturel(Table 3.3.3.). These results indicate that in addition .
to adenine‘nucleétides, other low—molecularQQeight factors preéent in the
platélet lysate inhibit guanylate cyclase activigy.

The inhibitory.effecc of ATP and of large voiumes of platelet
lysate ig the aséay was also studied in the presence/o{ 10.0 mM-MpCl,,

instead of 4.0 mM-MnCl,, to determine whether these effects occurred under

-

more physiological ionic coﬁditionso\Jgt was found that in the presence of’ -

(o]

MgCl,, the inﬁibitioh of guanylate cyclase acti?itynby ATP was less than
half that observed with ﬁnClz (Fig. 3.3.4,);_however, the activity of 50 ér
100 ul of plételet lysate was decreased by nearly the same extent when
assayed with either bivalent cation (Fig. 3.3.5.). Thu§, platelet adenine

nucleotides could actount for no more than one quarter 'of the inhibition

NS . -
of guanylate cyclase activity observed with 50 or 100 ul of lysate in the
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assay.with MgCl, as the sole bivalent cation. These results suggest that,
under more physiological conditions, other low-moleculatr-weight factors
present in the platelet lysatehinhibit guanylate cyclase activity more

potently than adenine nucleotides.

The observation that 5.0 mM—-dithiothreitol decreased the guanylate

cyclase activity of platelet lysate by 73 t 27 (mean * S.E.M. of four experi-

§2P<0 .001)
ments)/suggested that platelet non—pratein thiol together yith endogenous

adenine nucleotides, might fully account for the inhibition of enzyme acti-

vity by low-molecular-weight factors present in the lysate. The concentra-

3 ot

tion of non-protein sulfhydryl groups in platelet lysates prepared from

freshly drawn blood (see Section 2.2.1.) was found to be 12.6 * 1.1 nmol/
. mg of protein (or 2.67 £ 0.14 nmo1/108 platelets)(mean * S.ﬁ.M:-of four
‘ experimen;g). Thus, with 50 or 100 ul of -platelet lysate containing 5.5 %
0.8 mg of.prétein/ml (mean * S.E.M. of nine experiments) (see Fig. 3.3.Ll.),
the final concentration of non-proéein thiol in the assay mixtures would be
‘about 0.014 and 0.028 mM, respectively. However, these concentrations of
glutathione were found, to have no significant effect on guanylate cyclase
activity. Moreover, with as much as 1.0 mM of added glutathione, the
guanylate cyclase activity of platelet lysate was inhibited by only Q.Qnd
21% respectively, in two experiments. These results indicate thathplate;
let non-protein thiol (i.e. glutathione) does not inhibit guanyl?te
cyclase activityiunder the‘conditions of the assay. Furthermore, although
the concenfration of non~protein sulfhydryl groups inllysates prepared from
fou; to five—;ay old platelet concentrates (see Section 2.2.1.) was found
+to be about 657 lower than in lysd@es prepared from freshly drawn blood

!

(i.e. 4.4 * 0.4 nmol/mg of protein or 0.91 * 0.04 nmol/10% platelets)
/ ) ' “ —

T b
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(mean * S.E,M. of three experiments)(e,g. Table 4.1.3.), the guanylate
cyclase.activity of 50 or 100 M1l of this lysate preparation was decreased
on average by about 30 and 50%; respectively. Theée results lend further
s?pport to the conclusion that platelet non-protein thiol is not respon-
sible for the observed inhibition of guanylate cyclase activity .by ultra-
filterable (i.e. low-molecular-weight) factors present in the lysate,

The specific activity of guanylate cyclase in Fhe supernatant
fraction was decreased to a somewhat greater extent than that in the par~
ticulate fraction when 50 or 100 ul of either enzyme preparation was assay-
ed (Fig.’3.3.6.).‘ This difference c;£ more likely be attributed to the

-

présence of a lower concentration of ultrafilterable inhibitory factors in '
the particulag; fract;on than to a decrease in the sensitivity of this
enzyme preparation to inhibition by these factors, particularly in view of
the finding that ATP and ADP inhibited the guanylate cyclase activicy in

both fractions by approximately the same extent (Fig. 3.3.7. and Table

5.3.1.).
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Fig. 3.3.1. Effect of ultrafiltration of platelet lysate on the

specific activity of guanylate cyclase measured with
dlfferent volumes of enzyme preparatlon in the assay

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysates were ultrafiltered as described in Section 2.2.2. -Increas-
ing volumes of enzyme preparation were assayea bﬁ‘the addition of 10, 20,

0 and 100 ul to the assay mixtures, which weré ingubated for 20 min.

In some of these experiments, a phosphocreatine/crétitine Rhosphokinase
GTP-regenerating system was not included in the assay. mixtures. Although
Pprotein concentrations in the lysates and in the ultraflltered lysates
varied in different experiments as indicated below, for statistical pur-
poses paired data were grduped according to the volume of lysaggzadded to

<

the assays, .and the significance of the effect of-ultrafiltratigh was
determined by paired t - tests; *2P<0.01, **2P<0.00l1l. Untreated lysate (@),
ultrafiltered lysate (A); results are from 9§ experiments in which the
untreated lysates contained 5.5 + 0.8 mg of protein/ml (mean + S.E.M.) and
the ultraflltered lysates contained 4.3 £ 0.6 mg of proteln/ml (mean + S.E.M.).

P

20 -
=
.,-‘ .
8 - i
0 N
o i
& :
u !
4 . .
15
ol
- R W
2oy :
> o] e e ———————— * 3
P o« '
0 A N~ i
v E I , -
S)J g . e -
25
g‘ g lo = . Ld .
o]
Q 'S}
®
S %
>» O
q o
3 o
[G) R
& 5 I
Y
o. '
g ’ |
. ‘ P
‘ £
j ' p | . | ‘ i J. |
f L s 50 75 100 -
’ . ___/ .

Volume of platelet lysate assayed (ul)

a



- 84

Fig. 3.3.2. Effect of ultrafiltration and of resuspension of ultra- |,
N filtered lysate in ultrafiltrate on the specific activity
of guanglate cyclase measured with different volumes of
enzyme preparatlon in the assay :
Guanylate cyclase activity was assayed as described in Section 2.2.3. with
the exception that no phosphocreatime/creatine phosphokinase GTP-regener-
ating system was included in the dssay mixture. Increasing volumes of
enzyme preparation were assayed by the addition of 10, 20, 50 and 100 ul
to the assay mixtures, which were incubated for 20 min. Platelet lysate
was ultrafiltered as described in Section” 2.2.2. The volume of ultra-
filtrate obtained from each sample of ultrafiltered platelet‘ lysate was
measured and then one sampile of the ulgrafiltered lysate was resuspended
in an equivalent volume of 150 mM-Tris/HCl, pH 7.4 while the other was
resuspended in the ultrafiltrate. The concentration of protein was 6. 0
mg/ml in the platelet lysate (@), 4.8 mg/ml in the ultrafiltered 1ysate
(O) and 4.5 mg/ml in the ultrafiltered lysate resuspended .in ultrafiltrate
(A). The data were grouped according to the volume of enzyme preparation
added to .the assays. The significance of the effect of ultrafiltration (a)
or ‘of resuspension of ultrafiltered lysate in ultrafiiltrate (b) were de-
termined by unpaired Student's ,t tests; *2P<0.01, **2P<0.001. The valwues
given are’ the means + S.E.M. of triplicate determinations. Unless other-
wise indicated, the S.E.M. are within the limits of the symbols.
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Table " 3.3.1. Effect of various treatments of ultrafiltrate from

) platelet lysate on its inhibitory activity
Guanylate cyclase ac%ivity was asbayed as described in Section 2.2.3. with
the exception'that no phosphocreatine/creatine phosphokinase GTP-~regenerat-
ing gystem was included in the assay mixtures. Platelet lysates were ultra-
filtered as described in Section 2.2.2. 1In these experiments, 20 ul ali-
quots of ultrafiltered platelet lysate’ were incubated for 20 min in the
presence of 80 pl of 150 mM~Tris/HCl, pH 7.4 or ultrafiltrate that had been_
subjected to the following trzatments: (a) boiled for 3 min; (b) incubation
with apyrase; and (c) -charcoal absorption. The apyrase treatment was carried
out by incubating 500 ul of ultrafiltrate with 50 ul of an apyrase suspen-
sion (see Section 2.1.2.) for 15 min at 37°C after which the sample was
boiled for 3 min and centrifuged for 4 min at 12 000g. The supernatant
was transferred to an ice bath until used. Charcoal absorption was carried
out by thoroughly mixing 500 ul of ultrafiltrate with 10 mg of activated
charcoal. The sample 'was then centrifuged for 4 min at 12 000g and the
supernatant stored in an ice bath until used. The guanyMate cytlase activi-
ties of the ultrafiltered platelet lysates assayed with 80 ul of 150 mM-
Tris/HCl, pH 7.4 were 15.94 * 0.38 nmol of cyclic GMP formed/20 min per mg
of 'protein in Experiment 1; and, 9.08 * 0.50 nmol of cyclic GMP formed/20
min per mg of protein in Experiment 2. The concentration of protein in the
ultrafiltered platelet lysates was 4.0 mg/ml in EXp. 1l and 4.4 mg‘ml in Exp.
2. The values given are the means * S.E.M. of triplicate determinations.
The significance of the effect of the treatment of the ultrafiltrate on
its inhibitory activity was determined by unpaired ¢t tests; *2P<0.01,
**2P<0.001. )

\

Guanylate cyclase activity

A
Exp.‘ Treatment of [nmol of cyclic GMP/ % inhibition by‘
no. ultrafiltrate 20 min per mg of ultrafiltrate
. protein
1 None . 7.28 £ 0.257 . 54
Boiled for 3 min 10.78 + 0.25 % 32
Incubation with apyrase 13.31 + 0.25 ** 16
Charcoal absorption 17.28 £ 1.54 ** 0
2 None ' _ - 3.88 + 0.04 57
Boiled for 3 min 4.61 * 0.06 * 49
Incubation with apyrase 7.20 *t 0.50 *%* 21
Charcoal absorption 9.11 * 0.50 ** 0 :
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\

Fig. 3.3.3. Inhibition of platelet guanylate cyclase activity by ATP

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The concen-~
tration of protein in the platelet lysate was 7.1 mg/ml and 50 ul aliquots
were assayed. The guanylate cyclase activity of platelet lysate assayed
in the absence of ATP was 4.45 + 0.06 nmol of cyclic GMP formed/20 min

per mg of protein (mean 1+ S.E.M. of triplicate determinations). Guanylate
cyclase activity is expressed as the percent inhibition by ATP. The values
given are the means of triplicate determinations.
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> Fig. 3.3.4. .Inhibition of the guanylate cyclase activity of platelet

lysate by ATP: Comparison of the inhibitory effect of

ATP when assayed in the presence of MnCly; or MgCl,
.Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The concen-
tration of protein in the platelet lysate was 7.9 mg/ml and 25 pl aliquots
were assayed. In this experiment, 4.0 mM-MnCl, (@) or 10.0 mM~MgCl; (M)
was present in the assay mixtures. The guanylate cyclase activity of
platelet lysate assayed in the absence of ATP was 6.10 + 0.10 nmol of
cyclic GMP formed/20 min per mg of protein with 4.0 mM-MnCl,, and 2.10
nmol of cyclic GMP formed/20 min per mg of protein with 10.0 mM-MgCl, “
(mean + S.E.M. of triplicate determinations). Guqnylate cyclase activity

is expressed as the percent inhibition by ATP. The values given are the
means of triplicate determinations.
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Fig. 3.3.5. Effect of bivalent cation availability on the specific
activity of guanylate cyclase measured with dlfferent
volumes of platelet lysate in the assay

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The concen-
tration of protein in the platelet lysate was 6.9 mg/ml. Increasing volumes
of platelet lysate were assayed by the addition of 10, 20, 50 and 100 ul

to the assay mixtures. In this experiment, 4.0 mM-MnCl; (@) or 10.0 mM-
MgCl, (A) was present in the assay mixtures. The values given are the
means + S.E.M. of triplicate determinations. Unless otherwise indicated,

the S.E.M. are within the limits of the symbols.
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Fig. 3.3.6. The specific acitivity of guanylate cyclase measured with

different volumes of supernatant and particulate fractions
in the assay

Guanylate cyclase activity was assayed as described in Section -2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP regener-~
ating system was included in the assay mixtures. Supernatant and particu-
late fractions of platelet lysate were prepared as described in Section
2.2.2. The protein concentration of the supernatant (@) was 3.5 mg/ml
and that of the particulate fraction (A) was 2.5 mg/ml. Increasing vol-
umes of enzyme preparation were assayed by the addition of 10, 20, 50 or
100 pl to the assay mixtures. The values given are the means t S.E.M. of

triplicate determinations. Unless otherwise indicated, the S.E.M.

are
within the limits of the symbols.
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Fig. 3.3.7. Inhibition of the-guanylate cyclase activities in the
supernatant and particulate fractions of platelet lysate
by ATP '

Guanylate cyclase act@vity was assayed as described in Section 2.2.3.
Supernatant and partigulate fractions of platelet lysate were prepared as
described in Section 2.2.2.° The protein concentration of the supernatant
fraction (Q,®) was 5.6 mg/ml and that of the particulate fraction (A, A)
was 3.7 mg/ml. In each case, 50 pl aliquots of enzyme preparation were
assayed. The guanylate cyclase activity in the supernatant fraction assay-
ed in the absence of ATP (0O) was 8.25 + 0.04 nmol of cyclic GMP formed/
20 min per mg of protein and 4.26 * 0.1l nmol of cyclic GMP formed/20 min
per mg of protein in the particulate fraction (A) (mean * S.E.M. of tri-
plicate determinations). Guanylate cyclase activity is expressed as the
percent stimulation by ATP. '
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3.4. - Discussion

3.4.1., Subcellular distribution,

Determination of the intracellular distribution of guanylate
cyclase 1s crucial to an understanding qQf the mechanism of activation of
this enzyme. The results of BShme et al. (1974), Rodan & Feinstein (1976),
Barber (1976) and Glass et al. (1977a) indicate that about 90% of the meas-

I3

urable activity of this enzyme is present in the supernatant fraction from

disrupted platelets. This distribution pattern was observed whether pTlate-" \ :

{

lets were disrupted by sonication (BShme et al., 1974; Rodan & Feinstein,
1976; Glass et al., 1977a), glycerol lysis (Barber, 1976) or freezing and
. thawing (BShme et al., 1974). The findings of the preseﬁt study indicate

’\ A}
that guanylate cyclase activity remaining in the pap&%culate fraction was

sequestered soluble enzyme that had not been releaéed into the supernataht
fraction during lysis. Finally, no latent guanylate cyclase activity was
detectable by treatment of particulate fractions with Lubrel PX.

The subcellular distribution of guanylate cyclase in mammalian
cells has been'foupd to vary from 90% of the total activity in the high-
speed supernatant fraction to 90% in the particulate fraction (Hardman &
Sutherland; 1969; Goldberg & Haddox, 1977): Investigation of the proper-
ties of the enzyme in tliese fractions from several tissues has';;ggested
th;E guanylate cyclase may be present in cells in distin;t éolufle and
particulate forms that could bé regulated by independernt mechanismé (Kimura

& Muréd, 1975a; Chrisman et al., 1975;'Siegal et al., 1976). However,‘as

the platelet enzyme appears to be entirely‘so}uble, the fact that marked

93
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increases in platelet cyclic GMP occur in response to aggregating,(Haslam,

1975; Davies et al., 1976; Haslam, 1978) or other stimuli (Haslam,et al., 1978a)

suggests that 1ndirect mechanisms may exist by which extracellular stiyéll

can activate the soluble enzyme in the cyébsol. \\

3.4.2. Factors affecting ‘the basal activity of platelet

guanylate cyclase . ~,

U v
Basal dctivity. The average basal guanylate cyclase activity of

S
hat
.

platelet lysate, assayed under optimal ionic conditions (4.0 mM-MnCl,), was

approximately 10 nmol of cyclic GMP formed/20 min pexfmg of protein at 30°C.

This value agrees reasonably well with those reported for plafelet guanyl-—

»

ate cyclase by other workers (Bdhme et al., 1974; Barber, 1976; Glass et

al., 1977a; Weiss et al., 1978), when allowance is made for the higher

. temperature (37°C) used by others and the presence of dithiothreitol in the

assay medium in one study (Glass et al., 1977a). Thus the results Lgnfirm

v

that the specific aétivity of platelet guanylate cyclase is substantially
higher thad‘thacxaiﬂaay/bther mammalian cells or tissues studied.
Bivalent cations. The dependence of platelet guanylate cyclase

on free Mn2t (i.e. MnCl, in excess of GTIP) for the exggession‘of maximum
i

basal éctivity has.also been reported by others (Bdhﬁé et al., 1974; Rodan
& Feinstein, 197§§ Glass et al., 1977a). The<présen: results also show
that neither MgCl, nor CaCl, alomne coﬁld effectively substitute f&r MnCl,;
in:contrast, Bdhm; et al. (1974) reported that the éctivity with high con-
centraqioné of MgC}z'kl0.0 mM) was 60% of that assayed in the presence of
ﬁ;C12. This value seems high, as only 10 to 20% of maximum activity has
7
been observed w@fh MgCl, alone in other tissges (Hgfdman et al., 1973), as

.

in this stqdy. 5

\.
4
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The synergistic interaction of MgCl; or CaCly with suboptimal
_concentrations qf MnCl; (i.e. MnCly < GTP) has not been previously reported
for platelet guanylate cyclase, although,similar effects have been observed
in many other tissues (Hardman et al., 1973; Garbers et al., l9f5;

Chrisman et al., 1975). It is probable that the stimulation of guanylate
cyclase activity by high concentrations of'MgClz or CéClz, when MnCl,/GTP
molar ratios are one or less, is due in part to the increase ig.the concen-
tration of free Mn2t resulting from the formation of a Mg+GTP or C;~GTP
complex (Hardman et al., 1973; Garbers et al., 1975). However, in view
of the fact that the amount of Mn2t in cells is ag least” two orders of
magnitude less than that of Mg2+ (Thiers & Vallee, 1957; Cotzias, 1962)
and the concentration of free Ca?t in the cytosol is in the ﬁicrqmolar
range (Rasmussen, 1970), i; is unlikely that the sstjgistic interaction
of MgCl, or CaCl, with millimolar concentrations of MnCly; is of physio-
logical importance. | . ’

Since the concentration of GTP in the platelet cytosdl is about
0.8 mM (calculated from Agarwal & Parks, 1975), it follows tha; the sub-
‘strate of‘guanylate cyclase is likely to be Mg+GTP and the activating .

’

bivalent cation Mg2+. These considerations suggest that the ionic envi- ¢
rénmént in the platelet may alone liﬁit the basal guanylate cyclas; acti-

vity to about 15% of the optimum. The.effect of calcium on enzyme activi-

ty aséayed under more physiological ionic conditions (i.e. millimolar con~
centrations of MgCl, and no added MnCljy) is therefore relevant to the in

vivo regulation of guanylaté'cyclase. Micromola? concentrations of free

Ca,2+ have been found to stimulate guanylate cyclase activity in platelets

(this study) and in fibroblasts (Wallach & Pastan, 1976a) when Mg2+ was

»
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the major bivalent cation. These findingé might be attributable to ‘the
ability of Cazf to serve much more effectively as the essential

éofactor (Z.e. actgyating bivalent cation) for guanylate cyclase, while
the more predomina;t Mg ‘GTP serves as the actual Substraté. Since this

activation of guanylate cyclase by calt

ion; bccurs at physiological concen-
trations of Ca2+ ioms, Mg2+ ions and GTP, it is possible that changes in the
cytoplasmic Ca2+ distribution brought about by hormones and other sub-
stances may thereby indirectly stimulate guanylate cyclase activity and

control cyclic GMP levels.

Inhibitory factors present in platelet lysate. The marked decrease

ic activity of guanylate cyclase observed whén 50 ul or more
of the lysate assayed was due to inhibition of the enzyme by relatively
* low-molecular-weight non-protein faétors, which could be removed by ultra-
filtration of the.lysate. Up to about 50% of this inhibitory activit; was
accounted.for by adenine nucleotides, thch are well known to inhibit gpanyl—
ate cyclase (Hardman & Sutherland, 1969; Kimura & Murad, 1974a, 1975a).
Because .of the release, during freezing and thawing, of, adenine nucleotides
from platelet dense bodies, which contain about 60% of the total present in
platelets (Holmsen & Day, 1971; Agarwal & Parks, 1955), the concentration .

of adenine nucleotides in platelet lysate is likely to be highér than in
similar preparations from other tigsues. In intact platelets, the concen-
tration of adenine nucleotides. in the petabolic compartment a%one is approx-
imately 6.0 mM (Holmsen & Day, 1971). Under optimal ionic conditions (4.0
mM—MnClz),‘thié qoncentration of adenine nucleotides would be suyfficient to

)

inhibit guanylate cyclase activity by more than 95% (Fig. 3.2.3. and 3.2.4.);

whefeas under more physiological conditiomns (10.0 mM~MgCl,), it is Pnlike}y



97

that activity would be inhibited by much more than about 50% (Fig. 3.2.4.).
These results thereﬁore indicate that other inhibitory factors present in

the lysate are likely to be substantially more importapt than adenine nucleo-
tides in 1imiting enzyme activity in intact platelets. The markedJinhibitiop
of guanylate cyclase activity observed with high concentyations of dithio-
‘threitol or glutathione suggested that platélet thiols might contribute to
the inhibitory effect; however, the concentration oﬁ non-protein sulfhydryl
groups in platelet lysate was found to be far too low to have any effect on
enzyme activity in vitro. In contrast, the conceqtration of non—protein‘
thiol in intact platelets was estiméted to be 4,0 to 5.0 mM, which is enough
to inhibit guanylate cyclase activity by about 50%. Although it was not
possible to identify the other ultrafilterabl; non-protein: inhibitory fac- '
tors present in platelet lysgte, the results indicate that the combined
effects of inhibitory factors and of suboptimal ionic conditiens are likely
to lower the guanylate cyclase activit} in intact plate&ets to almost negli-
gible values in the absence of activating factors. The similarity of the
bivalent cation requireﬁents'and sensitivity to inhibition by ATP of the
guanylate cyclase activity in supernatant and particulate fractions of
platelet lysate indica£e'that only the solubié form of ‘the enzyme 1s pre=

:

sent in platelets.
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Chapter 4

Activation of Platelet Guanylate Cyclase
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4.1, Results: Time-~ and temperature-dependent activation

The guanylatercyclase activity of platelet lysate was not linear’
with respect to period of incubation. As shown jn Fig. 4.1.l.a., the
guanylate cyclase activity of platelet lysate increased progressively when
assays were incubated at 30°C for up to 40 min. Similar results were
obtained when assays were carried out at 37?0. Expression of these data
in terms of thé specific activity determined for the three intervals, 0 to
5 min, 5 to 20 min and 20 to 40 min, illustrates the acceleration of guanyl-
ate cyclase'activity during assay (Table 4.1.1.). The average specific
activity of the enzyme during the interval between 20 and 40 min after
starting the assay was over two—fold greater than therglue measured during
the first 5 min of incubation. This increase in activity was not dependent
on components present in the assay,medium, és preincubation of the lysate
for 60 min at 30°C also had a similar stimulatory effect (Tablel4.l.l. and
Fig. 4°1'21)' Furthermore, preincubation of the platelet lysate resulted
in a marked feduction of the acceleration of guanylate cyclase activity
during assay (Fig. 4.l.l.a. and Table 4.1.1.).

As shown in Fig. 4.1.2., the stimulation of guapylate cyclase acti-
vicy by ﬁreincubation of platelet lysate was significantly greater when the
lysate was preincubated at BZOC for up to 120 gin. Maximum stimulation of
enzyme activity was observed after 120 min of preincubation at 30°C or
37°C. The 'rate of activation' or the increase in the specific activity of
guanylate cyclase during the initial 60 min of preincubation at 0°, 30° or
37°C was calculated to be 0.007 * 0.003 nmol of cyclic GMP/10 min per mg of
protein at 0°C (mean * S.E.M. of four experiments), 0.055 * 0.004 nmol of

99
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cyclic GMP/10 min per mg of prqtein at 30°C (mean * S.E.M. of two experi-
ments) and 0.105 * 0.007 nmol of cyélic GMP/10 min per mg of protein at
37°¢C (mean * S.E.M. of three experiments). Thus, the rate of activation
of guanylate cyclase in platelet lysates preincubated at.37°C is approxim-—
ately twice the rate observed in lysates preincubated‘at 30°c¢.

Fig. 4.1.3. shows that while preincubation of the supernatant
fraction resulted in a marked st%mulation of guanylate cyclase activity,
preincubation of the particulate fraction had no significant effect on
enzyme activity.

The magnitude of the stimulatory effecﬁﬂzf preinéubation of plate-
let lysate at 30°C or at 37°C was a function of thefvolume of lysate assay-
ed (Fig. 4.1.4.). Average increases of 44 = 9%, 51 * 7%, 121 * 167 and
204 + 38% were observed with 10, 20, 50 and 100 ul respectively, of lysate
preincubated at QOOC for 60 min amean * S.B.@. of 12 experiments); whereas,
average increases of 98 * 10%, 131 * 18%, 223 * 21% and 348 + 43% were
found with 10, 20, 50 and 100 ul respectively, of lysatg- preincubated at
37°C for 60 min (mean * S.E.M: of three experimen df//Thus, at all volumes
of lysate assayed, the guanylate c&clase activity of lysate preincubated at
37°C was about two-fold greater than that of lysate preincubated at 30°C
(Fig. 4.1.4.).

In contrast to untreated platelet lysate, the specific guanylate
cyclase activity of lysate p%eincubated at 30°C or at 37°C did not signi-

ficantly decrease when more‘lhan 20 pl of lysate was assayed (Fig. 4.1.5.
and 4.1.6.).  This increase in guanylate cyclase activity of 50 and 100 ul
of lysate after preincubation was only partly attributable to decreased

inhibition by ultrafilterable factors, because ultrafiltrate from

s sl e M Elirans o bt =
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preincubated lysate retained a large proportion of the original inhibitory
activity (59 and 89% respectively, in two experiments). Furthermore,
preincubated lysate was as sensitive to inhibition by ultrafiltrate as
untreated lysate. Although preincubation of platelet lysate at 30°C was
found to decrease the concentration of adenine nucleotides in the lysate
vy 67 £ 2% -(mean * S.E.M. of three determinations), this decrease could

not account for the 126 * 11% (mean * S.E.M. of three experiments) increase
in the guanylate cyclase activity of the preincubatéd lysate (Table 4.1.2.).
ATP, ADP and AMP inhibited the guanylate cyclase activities of platelet(
lysate and preincubated lysate to the same extent. The concentration of
platelet non-protein thiol was also measured in lysate that had been pre-
incubated at 37°C; however, no significant decrease was observed even
though guanylate cyclase activity was markedly stimulaced’(Table 4.1.3.).
Moreover, preincubation of lysates prepared from four to five-day old
plaéelet conceptrates at 37°C resulted in a marked stimulation of guanylate
cyclase activity in spite of the fact that the concentration of non-protein
thiol in these lysates was significantly lower than in lysates prepared
from freshly drawn blood (Table 4.1.3.). It is therefore doubtful on the.
basis of these observations that either a change in the concentration of
platelet adenine nucleotides or non-protein thicl or a change in ;he
sensitivity of preincubated lysate to inhibition by these factors can
account for the marked increase in guanylate cyclase activity observed with
large volumes of preincubated lysate in the assay. This conclusion is also
supported by the observation that ultrafiltered lysate showed a substantial

increase 1in guanylate cyclase activity during assay (Fig. 4.1.1.b. and

Table 4.1.1.).
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The effect of dithiothreitol on the stimulation of guanylate
cyclase activity by preincubation was studied in order to throw light on
this process of enzyme activation. As shown in Fig. 4.1.7., the'addition
of 5.0 mM-dithiothreitol to platelet lysate not only inhibited the guanylate
cyclase activity of the lysate by about 70% but also prevented any increase
in activity when present during preincubation of the lysate. However, dithio-
threitol inhibited the activity of enzyme that had already been préincubatéd
by thé same percentage as control enzyme, so that in this case the preincu-
bation effect could still be detected (Table 4,1.4.). Similar results were
obtained with 10.0 mM-glutathione. These observations suggest that acti-
vation of platelet guanylate cyclase by preincubation of the l;sate may be
/the result of oxidation of sulfhydryl or other oxidizable groups on the
.‘énzyme or on other components involved in the regulation of enzyme activity.
To investigate this possibility, the effect of N-ethylmaleimide was studied
as this agent alkylates sulfhydryl groups (Webb, 1966). As found with di-
thiothreitol, the addition of concentrations of N-ethylmaleimide as low as
0.1 mM to platelet lys§fe not only inhibited the guanylate cyclase activity
of the lysate by about 50% (e.g. Fig. 4.1.8.), but also prevented any in-
crease in activity when present during preincubation of tﬁe lysate,
However, in contrast to the effects of dithiothreitol, low concentrations
of N~ethylmaleimide (i.e. less than 1.0 mM) did not inhibit the guanylate
cyclase activity of enzyme that had already Qeen preincubated by the same

percentage as the control enzyme (Fig. 4.1.8.). In four experiments, 0.1

v
AN

mM-N~ethylmaleimide was found to inhibit the guanylate cyclase activity of

: ' 2P<0.02)
platelet lysate by 48 * 9% (mean * S.E.M.); whereas the activiFy\oE pre—

incubated (at 37°C for 60 min) lysate was inhibited by only 25 t 5% (2P<0.05)

O
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On the basis of a paired t test, this difference in inhibition of enzymz)
activity by 0.1 mM-N-ethylmaleimide was determined to be statistically
significant (2P<0,05). However, no significant diféerénce wasibhggrved
between the inhibition of guanylate cyclase activity of platelet lysaié ~ )
(78 £ 5% inhibitionﬁ%ﬁi?gﬁg? of preincubated lysate (71 % 77 inhibiéﬁisy; oL
by a ten-fold higher concentration of N-ethylmaleimide. Thus, activation<
of guanylate cyclase by preincubation appeared to alter the sensitivity of .
this enzyme preparation to inhibition b}‘Iﬁw concentrations of N-ethylmalei-
mide.

The guanylate cyclase activity of‘preincubated platelet lysate was
assayed with M82+ as the sole cation in order to determine whé&her acti--
vation by preintubation affected the requirement ofnthis enzyme preparation
for Mn2T for the expression of maximum activity. Table 4.1.5. shows that

in the presénce of 4.0 mM-MnCl;, preincubation of the 1 te stimulaﬁed
guanylate cyclase activity by an average of 90%; whereazsi;\khe presence of
lO.O/QMngCIZ, activity was increased by an average of only 27%. Thus,
» full expression of the stimulatory effect of preincubation of the lysate
_on guanylate cyclase activity was dependent on the presence of an optimal
concentration of MnClp.. ILt.follows that the effectiveness of Mg2+ as”a

substitute for Mn2+ was markedly decreased with preincubated lysate (Table

4.1.5.).

\
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Fig. 4.1.2. Stimulation of guanylate cyclase activity by preincubation
of platelet lysate: Effect of temperature

Guanylate cyclase activity was assayed as described in Section 2.2.3.
Platelet lysate (0°C) (@) and preincubated lysate, 30°C (A), 37°C (M)
were prepared as described in Section 2.2.2. The protein concentration
of the enzyme preparations was 6.6 mg/ml and 25 ul aliquots were assayed.
The values given are thd means + S.E.M. of triplicate determinati‘ons.
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Fig. 4.1.4. Stimulation of guanylate cyclase activity by preincubation
of plateit) lysate: Effect of temperature and of volume
" of prein™bated lysate assayed ’
C ' '
Guany s clase activity was assayed as described in Section 2.2.3.

Ingreaél g folumes of enzyme preparation were assayed by the addition

of 10, 20, 50 and 100 ul to the assay mixtures. Platelet lysate was

prepared as described in Section 2.2.2. and preincubated for 60 min at

30°C (@) or at 37°C (A). The values given are the means + S.E.M. of -
results pooled from the following numbers of experiments: 30°C preincuba-

tion, 12; and, 37°% preincubation, 3. The mean values + S.E.M. for the ~_‘//
protein concentration of platelet lysates preincubated at 30°C was 6.3 + 0.9
mg/ml and 6.0 + 0.8 mg/ml for lysate preincubated at 37°c. In some of

the experiments with lysate preincubated at 30°C, a phosphocreatine/creatine

phosphokinase GTP-regenerating system was not included in the assay
mixtures. ‘ ’
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Fig. 4.1.5. Effect of preincubation of platelet lysate at 309C on
the specific activity of guanylate cyclase measured with
different volumes of platelet lysate in the assay

f
Guanylate cyclase activity was assayed as described in Section 2.2. 3.
Platelet lysate was prepared and preincubated at 309C as described in
Section 2.2.2. Increasing volumes of enzyme preparation were assayed by
the addition of 10, 20, 50 and 100 pl to the assay mixtures, which were
incubated for 20 min. In some of these experiments, a phosphocreatine/
creatine phosphokinase GTP-regenerating system was not included in the
assay mixtures. For statistical purposes, paired data were grouped
according to the volume of lysate added to the assays, and the signifi-
cance of the effect of preincubation was determined by paired t tests:
*2P<0.01, **2P<0.001l. The values given are the means + S.E.M. of results
pooled from 12 experiments. The protein concentration of the platelet |
lysate (@) and preincubated lysate (A) was 6.3 mg/ml (mean + S.E.M.).
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Fig. 4.1.6. Effect of preincubation of platelet lysate at 37°c on

the specific activity of guanylate cyclase measured with

different volumes @f platelet lysate in the assay

4

Guanylate cyclase activity was assayed as described in Section 2.2.3.
Platelet lysate was prepared from a stored platelet concentrate and
preincubated at 37°C as described in Section 2.2.2. Increasing volumes
of enzyme preparation were assayed by the addition of 10, 20, 50 and 100 ul
to the assay mixtures, which were incubated for 20 min. The protein con-
centration of the enzyme preparations was 4.8%mg/ml. The Yalues given
are the means + S.E.M. of triplicate determinations. Unless otherwise
indicated, the S.E.M. are within the limits of the symbols. Platelet
lysate (@), preincubated lysate (A). ’
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Fig. 4.1.7. Effect of dithiothreitol on the stimulation of guanylate
cyclase activity by preincubation of platelet lysate

Guanylate cyclase activity was assayed as described in Section 2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP-regener-
ating system was included in the asspy mixture. Platelet lysate was pre-
pared as described in Section 2.2.2. Dithiothreitol (5 mM-final concentra-
tion in the lysate, 1 mM-final concentration in the assay mixture) was
added to one portion of the lysate. Both the untreated (@) and the
dithiothreitol-treated (A) lysates were preincubated at 30°C for 0, 10,
20, 40 and 80 min and the guanylate cyclase activity assayed. The protein
concentration of both enzZyme preparations was 3.4 mg/ml and 50 ul aliquots
were assayed. The values given for guanylate cyclase activity are the
means + S.E.M. of triplicate determinations. Unless otherwise indicated,
" the S.E.M. are within the limits of the symbols. Preincubation of the
untreated lysate stimulated guanylate cyclase activity by 68% after 80 min,
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Table 4.1.4. Effect of dithiothreitol on the guanylate cyclase
activities of platelet lysate and of preincubated
platelet lysate

Guanylate cyclase activity was assayed as described in Section 2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTRgregener~
ating system was included in the assay mixture. Platelet lysate was pre-
pared and preincubated at 30°C as described in Section 2.2.2. Dithiothrei-
tol (2 mM~-final concn. in the lysate; 0.4 mM~final concn. in the assay
mixture) was added to one portion of the untreated lysate and to one portion
of the preincubated lysate, The protein concentration of all enzyme pre-
parations was 3.3 mg/ml, and 50 ul aliquots were assayed. The values

given for guanylate cyclase activity are the means * S.E.M. of triplicate
determinations.

Enzyme Addition to the Guanylate cyclase
preparation enzyme preparation activity
N
N ! N
nmol cyclic GMP/ % of
20 min per mg control
protein activity
Lysate None 18.24 *+ 0.55 100
Dithiothreitol ~3.75 % 0.29 21
Preincubated
lysate None 32.71 £ 0.48 207
' DitHiothreitol 9.13 t 0.27 50
AN
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Effect of N~ethylmaleimide on the guanylate cyclase
activities of platelet lysate and of preincubated
platelet lysate

Guanylate cyclase activity was assayed as described in Section 2.2.3. with

the exception that incubations were continued for 10 min.

Platelet lysate

was prepared and preincubated at 37°C as described in Section 2.2.2 The
protein concentration of the platelet lysate (@) and preincubated lysate

(A) was 8.3 mg/ml and 25 ul aliquots were assayed.

N-ethylmalgeimide was

added to assay mixtures at the concentrations indicated on the "abcissa.

The values given are the means of triplicate determinations.

The guanylate

cyclase activity of the untreated platelet lysate was 2.83 + 0.05 nmol of
cyclic GMP formed/10 min per mg of protein, and that of the éieincubated
lysate was 7.2 + 0113 nmol of cyclic GMP formed/10 min per mg of protein
(mean + S.E.M. of triplicate determinations) (preincubation stimulated

guanylate cyclase activity by 154%).
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4.2. Results: Effects of oxidants

The suggestion th;t activation of guanylate cyclase by preincu-
bation may be the result of oxidation of sulfhydryl groups on(the enzyq§
and/o% on regulatory components led to the investigation of the effects of
several oxidants on the activity of plaﬁeiet guanylate cyclase.

At concentrations of 1.0 ‘mM or less, oxidized glutathione had no
significant effect on guanylate cyclase activity; whereas at higher con-
centrations, activity w;s markedly inhibited (e.g. 4.0 and 10.0 mM inhibi-
ted activity by 65 and 100%, respectively'in one experiment). As.shown in

r

Fig. 4.2.1., guanylate cyclase was stimulated by about 40% with an optimal
concent;ation of 0.04 mM-4,4'~dithiodipyridine, whééeas activity was inhi-
biﬁed by the same percentage with only a’slightly higher concentration of
thfé diéplfide. \hlthough a biphasic response was also observed with dia-
mide (Fig. 4.2.4.), the maximum stimulatory effect of this agent was about
twice that observed with 4,4'-dithiodip¥ridine. In five experiments, the
guapylate cyclase activity of plateléfxiysace ;as stimulated by 87 * 11%
(;egn + S.E.M. %ﬁﬁg{qgé)optimal concentration of 0.4 mM~diamide. ’
Preincubatiqn of platelet lysate nearly aSolished the stimulatory
effect of diamide (Fig. 4.2.2.). In three experiments, 0.4 mM-diamide was
found to have no significant effect on the guanylate cyclase activity of
preincubated lysate (i.e. 2 t 7% stimulation) (mean * S.E.M.). As shownsin
Fié. 4,2.3., 'the stimulatory effect of diamide progressively decreased with

increased periods of preincubation of the lysate at 37°C._,As these results

suggested that the stimulation of guanylate cyclase activity by diamide

-
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may be dependent on the availability of specific sulfhydryl groups on the
enzyme and/or on regulatory components, the effect of diamide on the acti-
vity of N-ethylmaleimide-treated lysate was studi;d. Fig. 4.2.4. shows
that diamide did Aot stimulate the activity of lysate treat;d with 0.1 mM-
N—ethylmaleimide to nearly the same extent as that of contr;l lysate.
Moreover, as observed with preincubated lysate (Fig. 4.2.2.), high concen-
trations of diamide markedly inhibited the guanylate cyclase activity of
N-ethylmaleimide~treated lysate (Fig. 4.2.4.). \}he clgse similarity in the
response of preincubated and of N-ethylmaleimide-treated lysates to diamide
suggested th;t inhibition of the stimulatory effect of this agent may be
attributable to oxidation by preincubation or alkylation by N-ethylmalei-
mide of specific Sulfhydfyl groups on or associated with the enzyme.

In addition to 4,4'-dithiodipyridine and diamide, the guanylate
cyclase activity of platelet lysate was markedly stimulated by the oxidant,
tert-butylhydroperoxide (Fig. 4.2.5.). With an optimal concentration of
1.0 mM-tert-butylhydroperoxide, activity was stimulated by 165 *+ 19%

(mean + S.E.M. of 12 experimentsi%P<%ﬁgg})the stimulapory effect of this
agent was approximately two-fold greater than th; effect of diamide and
about four—~fold,greater than that of 4,4'-dithiodipyridine. Furthermore,
in contrast to the effect of high concentrations of 4,4'dithiodipyridine
or diamide, no inhibition of activity was obsefveq with as much as 10.0
mM-tert-butylhydroperoxide..

As observed with diamide, the stimulation of guanylate cyclase
activity by tert-butylhydroperoxide progressively decreased with ighreased

periods of preincubation of the lysate at 37°Cc (Fig. 4.2.6.). Further-

more, after preincubation of the lysate at 37°C for 240 nmin, both diamide
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(Fig. 4.2.3.) and tert-butylhydroperoxide (Fig. 4.2.6.) were found to
significantly inhibit enzyme activity. Onmn ghe basis of these findings,

the effect of tert-butylhydroperoxide on the guanylate cyclase activity

of N~ethylmaleimide-treated lysate was studied. As shown in Table 4,2.1.,
tert-butylhydroperoxide did not increase the activity of lysage treated
with 0.1 mM-N-ethylmaleimide. Thus, N—ethylmaieimide was effective in
blocking the stimulatory effects of both diamide and of tert-butylhydro-
peroxide. It was also found that addition of 0.1 mM-¥N-ethylmaleimide to °
tert-butylhydroperoxide—treated lysaté did not result in a marked inhibition
of guanylate cyclase'activity (Table§§.2.l.). Hence, the guanylate cyclase
act;vity of both preincubated and tert—butylhydroperoxide—treatéd lysates
exhibited a significant decrease in the sensitivity to inhibition by low
concentrations of N-ethylmaleimide. Together, these results indicated

that preincubation, diamide and tert-butylhydroperoxide activate platelet
guanylate cycla;e by similar mechanisms. The similarity of the effects of
preincubation and of tert-butylhydroperoxide was further suggested by ¢
observation that the specific activity of guanylate cyclase measured with
50 or 100 ul of tert-butylhydroperbxide—treated lysate in the assay was not
inhibited in.percentage terms to nearly the same extent as that of control
lysate (Fig. 4.2.7.).

The guanylate cyclase activity of tert—butylhydropegoxide—treated
lysate was also assayed with Mg2+ as the sole cation in order to determine,
whether activation affected the reqpirément of this enzyme preparation for
M2 for the expression of maximum activity. Table 4.2.2. shows that in

the presence of 4.0 mM-MnCl,, tert—butylhydroperoxide stimulaged the acti-

vity of platelet'lysaée by an average of 114%; whereas in the presence of

2

i y
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10.0 mM~-MgClz, activity was.incr?ased by an average of only %SZ. Thus, as
obserQed with preincubated lyéa;e, full expression of the stimulatory efféct
of tert-butylhydroperoxide on guanylate cyclase activity was dependent on
the presence of an optimal concentration-of MnClz. It also follows that
the effectiveness of Mg2+ as a substitute for Mhé+ was markedly decreased
with‘tert—butylhydroperoxide~treated lysate (Table 4.2.4?).

Since tert-butylhydroperoxide had been reported to oxidize gluta-
thione in erythrocytes by an enzymic process (Srivastava et al., 1974), its
- effect on platelet non—protein sulfhy&ryl groups was determined. Table
4.2.3. shows that tdrt-butylhydroperoxide decreased the concentration of
non~protein thiol by an average of 952 in lysates prepared from freshly
drawn blood. However, it is doubtful that the stimulatory effect of tert-
butylhydroperoxide can be attributed to oxidation of glutathione because
the guanylate cyclase activity in lysates substantial;y depleted of non-
protein thiol (i.e. lysates prepared from four to five-day old platelet
concentrates) was increased on average, by about the same percentage as
the activity in lysates that haa much higher’concentrations of non-protein
thiol (Table 4.2.3.). Tert-butylhydroperoxide was found to have no

marked effect on platelet protein thiol.

,
i
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‘'Fig. 4.2.1. Effect of 4,4'-dithiodipyridine on the guanylate cyclase
activity of platelet lysafe R

dﬁanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The effect of
4,4'-dithiodipyridine on guanylate cyc&ige activity is expressed as a per-
centage of the control activity (i.e. w1§b no added 4,4'-dithiodipyridine).
The data shown were pooled from two ideptical éxperiments in which guanyl-
.ate cyclase assays were carried out in triplicate; thus the values given

are the means * S.E.M. of 6 determinations. Unless otherwise indicated,

the S.E.M. are within the limits of the symbols. The guanylate cyclase
activity of the untreated lysate (i.e. control lysate) was 8.84 % 0.26

nmol of cyclic GMP formed/10 min per mg of protein in Experiment 1, and
2.51 ¢ 0.06 nmol of cyclix GMP formed/1Q min per mg of protein ih Experi-
ment 2. The protein con@entrations of the platelet lysates were 'as follows:
(a)Experiment 1, 3.8 mg/m}, 25 Ul aliquots were assayed; and, (b)Experi-
ment 2, 6.7 mg/ml, 25 ul aliquots were assayed. Platelet lysate assayed in the
presence of 4,4'-dithiodipyridine (@), platelet lysate assayed in the
absence of 4,4'-dithiodipyridine (Q).
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Fig. 4.2.2. Effect of diamide on the guanylate cyclase activity of
. Dplatelet lysate and of preincubated lysate -

Guanylate cyclase activity was assayed as described in Section 2.2.3.
Platelet lysate was prepared and preincubated at 37°C as described in
Section 2.2.2. The protein concentration of the platelet lysate and
preincubated lysate was 8.3 mg/ml and 25 ul aliquots were assayed. The
guanylate cyclase activity of the platelet lysate (O) was 2.83 + 0.05
mmol of cyclic GMP formed/lO min per mg of protein and that of the pre-

' incubated lysate (A) was 7-20 + 0.13 nmol of cyclic GMP "formed/10 min °

per mg of protein. Preincubation stimulated the guanylate cyclase
activity of the platelet lysate by 154%. Guanylate cyclase activity is
expressed as a percentage of the control activity of each enzyme prepar-
ation (i.e. O mM-diamide). _ The values given are the means. of triplicate
determinations. . Platelet lysate (@), preinsubated lysate (A) assayed
in the presence of. diamide.
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Effect of diamide on the guanylate cyclase'activity of
platelet lysate preincubated at 09 and at 37°C for
increasing periods of time

Fig. 4.2.3.

‘Guanylate cycl;se activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The platelet
lysate was divided into two portions which were either kept on ice (circles)
or preincubated (triangles) for 0, 15, 30, 60, 120 and 240 min at 37°C. The
protein concentration of thé platelet lysate and preincubated lysate was
7.3 mg/ml and 25 ul aliquots were assayed. Diamide was added to the assay
mixtures at a final concentration of 0.4 mM (closed symbols). Platelet
lysate (Q), platelet lysate assayed in the presence,of diamide (@),
preincubated lysate (A), preincubated lysate assayeé in the presence of
diamide (A). The values given for guanyiate cyclase activity are the
means + S.E.M. of triplicate determinations. Unless otherwise indicated,
the S.E.M. are within the limits of the symbols.
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Fig. 4.2.4. Effect of diamide on the guanylate cyclase activity of
. ‘ platelet lysate pretreated with N-ethylmaleimide

Guanylé%e cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2.. N-ethylmaleimide
(0.1 mM-final concentration in the lysate, 0.0l mM-final concentration in
the assay mixture) was added to one portion of the lysate. The protein
concentration of the enzyme preparations was 6.0 mg/ml and 25 ul aliquots
were® assayed. The guanylate cyclase activity of the untreated lysate (O)
was 2.14 + 0.05 nmol of cyclic GMP formed/10.mis& per mg of protein and

that of the.N-ethylmaleimide-treated lysate (A) was 1.23 £ 0.05 nmol of’
cyclic GMP formed/10 min per mg of protein. N-ethylmaleimide inhibited the
guanylate cyclase activity of the platelet lysate by 43%. Guanylate

cyclase activity is expressed as a percentage of the control activity of
each enzyme preparation (i.e. 0 mM-diamide). The values given are the means
of triplicate determinations. This experiment has been carried out once.

Platelet lysate (@), N-ethylmaleimide-treated lysate (A) assayed in the
presence of diamide.
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Fig. 4.2.5. Effect of tert-butylhydroperoxide on the guanylate cyclase

activity-bf platelet lysate

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The p¥otein
concentration of the platelet lysate was 6.2 mg/ml and 25 ul aliquots were
assayed. The guanylate cyclase activity of the untreated lysate (Q ) was
2.51 + 0.06 nmol of cyclic GMP formed/1l0 min pexr mg of protein. Guanylate
cyclase activity is expressed as a percentage of the control activity
(i.e. O mM-tert-butylhydroperoxide). The values given are the means of
triplicate determinations. Platelet lysate assayed in the presence of
tert-butylhydroperoxide (@).
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Fig. 4.2.6. Effect of tert~butylhydroperoxide on the guangiate cyclase
activity of platelet lysate preincubated at 0° and at 37°C
for increasing periods of time

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.27 The platelet
lysate was divided into two portions which were either kept on ice (circle{s)
or preincshated (triangles) for 0, 15, 30, 60, 120 and 240 min at 37°C.

The protein concentration of the platelet lysate and preincubated lysate
was 7.3 md/ml and 25 ul aliquots were assayed. Tert-butylhydroperoxide was
added to the assay mistures at a final concentration of 1 mM (closed sym-
bols). Platelet lysate (Q), platelet lysate assayed in the presence of
tert-butylhydroperoxide (@), preincubated lysate (A), preincubated lysate
assayed in the presence of tert-butylhydroperoxide (A). The values given
for guanylate cyclase‘activity are the means + S.E.M. of triplicate deter-
minations. Unless otherwise indicated, the S.E.M. are within the limits of
the symbols. ’
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Fig. 4.2.7. Effect of tert-butylhydroperoxide on the specific activity

of guanylate cyclase measured with different volumes of
platelet lysate in the assay

Guanylate cyclase activity was assayed as descrilfed in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. Approximately
10 min prior to assay, tert-butylhydroperoxide was added to one portion of
the platelet lysate to give a final concentration of 1.0 mM. The protein
concentration of the platelet lysate { Q) and the tert-butylhydroperoxide-
treated lysate (@) was 4.8 mg/ml. Increasing volumes of enzyme prepara-
tion were assayed by the addition of 10, 20, 50 and 100 ul to the assay
mixtures, which were incubated for 20 min. The values given for guanylate
cyclase altivity are the means + S.E.M. of triplicate determinations.

Unless otherwise indicated, the S.E.M. are within the limits of the sym-
bols.
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4.3. Results: Effects of sodium azide and sodium nitroprusside
0
Sodium azide (NaN3), a potent metabolic inhibitor and strong
nucleophile (Mittal & Murad, 1977a), greatly increased the guanylate cyclase

activity of platelet lysate (Fig. 4.3.1.). With 10.0 mM-sodium azide, en-

q ‘ (2P<0.001)
zyme activity was stimulated by 335 £ 29% (mean * S.E.M. off 14 experiment$).

: f
Fig. 4.3.2. shows that sodium #zide stimulated the activity in the stUper-

natant fraction to a much greater extent than that in the particulate frac-
tion.
As shown in Fig. 4.3.3., the specific activity of.guanylate cyclase

in sodium azide-treated lysate was decreased by about the same percentage
&
as in the control lysate when 50 or 100 yl of enzyme was assayedy Thus, in

contrast to preincubation or tert~butylhydroperoxide, sodium azide had no
effect on the inhibition of guanylate cyclase activity by low-molecular-
weight factors present in the lysate.

Table 4.3.1. shows that when sodium azide was added to the lysate

~ LY

immediately before assay, the activation of guanylate cyclase activity ob-

served during the first 5 min of agsay was much less than observed subse-

Y G .
quently. This acceleration of activity during assay was greatly decreased

when sodium azide was added to lyséca that had already been preincubat®d

L 2 .
and vas decreased even more when the lysate was preincubated in the presence

- ¥

of sodium azide. However, preincubation of the lysate did not diminish the

», . - \
maximum activity of  guanylate cyclase in the presence of sodium azide

(Table 4.3.1.).

Activation of guanylate cyclase by sodium azide reSuIted\in both

" 131
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a significant increase in the effectiveness of Mg2+ as the sole cation and

a marked decrease in the dependence of this enzyme preparation on Mn2t

for the expression of maximum activity (Table 4.3.4:). In percentage: terms,
the stimulatory effect of sodium azide was over two-fold greater when assays
were carried out in the presence of 10.0 pM—MgClz instead -of with 4.0 mM-
MnCl; (Table 4.3.4.). No change in the inhibition by ATP was observed with
enzyme activated by sodium azide.

The effect of sodium nitroprusside on the guanylate cyclase acti-
vity of platelet lysate was studied as this agent is a potent oxidant of
sulfhydryl groups (Grunmert & Phillips, 1951; Leussing et al., 1960); As
shown in Fig. 4.3.4., enzyme activity was greatly increased with each con-
centration of this agent tested. In nine experiments, 1.0 mM-sodium nitro-~
prusside stimulated platelet guanylate cyclase activity by 943 * 112%

(mean * S;E.M.)XZP}%QRO£{3.S. shows that the stimulatory effect of sodium
nitroprusside, like that of sodium azide, was substantially larger in the
supernatant fraction than in the particulate fraction.

As observed with preincubated or tert;butylhydroperoxide—treated
lysate, the specific activity of sodium nitroprusside¥téeated lysate was

not decreased when 50 or 100 ul of enzyme was assayed (Fig.'4.3.6.). It

L)

is of interest to note thay’this effect of sodium nitroprusside is in con-

trast to that found with enzyme activated by sodium azide (Fig. 4.3.3.).
As shown in Fig. 4.3.7., the stimulatory effect of sodium nitro-

prusside progressively decrease@ with increased periods of pre%qubation

of the f&sate at 30°C in the absence of sodium nitroprusside (identical

results were obtained when lysate was preincubated at 37°C). After 120 min

of preincubation at 30°C or at 37°C, sodium nitrobrusside had no significant

s

-
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e?fect on guanylate cyclase activity. The decrease in’the stimulatory
effect of sodium nitrop?usside was 3pproximately exponential with respect
to preincubation time.

On the basis of the many similarities observed between the prop-
erties of guanylate cyclase in preincubated and tert-butylhydroperoxide-~
treated lysates, the effect of sodium nitroprusside on the activity of the
iatter enzyme preparation was studied. Table 4.3.2, shows that sodium
nitroprusside stimulated the guanyrzte cyclase activity of tert-butylhydro-
perogide-treated lysate by an average of about 307 (53 and 2% respectively,
in two experiments). On the other hand, tert-butylhydropéroxide inhibited
the activity of sodium nitroprusside-treated lysate by an average of only
16% (Table 4.3.2.3. The observatisn that préincubation and tert—butylhyd£b—
peroxide—tre;tment of platelet lysate either blocked or subsequently reduced
the stimulatory effect of sodium nitro?russide suggested that activatioﬁ of
guanylate cyclase by the latter agent may involve the oxidation ofﬁsdlfhy-
dr&; groupg'on.éhe enzyme and/or on a regulatory component, though there
must be differences to account for the greater activity of sodium nitro-
prusside-treated lysate. To inVe;tigate this possibility, the effect of
sodium nitroprugsidé An the activipy of lysate treated with N-ethylmalei-

v

" mide or dithiothreitol was studied. As showr'\‘i'.'x Table .4.3.3., sodium
\h\\/ s |

nitroprusside stimulated the guanylate cyclase activities of untreated-,

>

N-ethylmaleimide (0.1 mM)~- and dithiothreitol (1.9 mM)-treated lysates to

almost the same level of activity (i.e. 385, 483 and 515% respectively,

A\

of control acéivity). Thus, in percentage terms, the magnitude of the
b . )
stimulatory effect of sodium nitroprusside was substantially greater when

- added to N—ethylmaleimihe— or dithioéhreitol-treatéd lysate (Table 4.3.3.).

\

soBf o
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Fig. 4.3.8. compares the stimulatory effect of different concentrations
of sodium nitroprusside on the a;tivity of untreated- and d;thiothreitol—
treated lysates. In addition to tp;se observations, it was found that
0.1 mM-N-ethylmaleimide inhibitéd the guanylate cyclase act%z}ty of sodium
nitroprusside~treated lysate by nearly 75% less Lhaq it inhibited the
activity of unEfeateq‘l§sate, whereas a ten-fold higher céficentration of
this agent decreased the activities of both enzyme prepafations by about
the ‘same perdentage{(Table 4.3.3.). 1In coﬂtrast, 4,0 mM—-excess dithiothrei-
tol had no effect on thénaCtivity of sodium nitroprusside—treated lysate.
As observed with sodium azide, activation of guanylate cyclase
by sodium nitroprusside resulted in both a significant increase in the
effectiveness of Mg2+ as the sole catién and a marked decrease in the de-
pendence of Fhis enzyme preparation on Mn2+ for the expression of maximumh
activity (Table 4.3.4.). ‘In pergéntage terms, the stimulatory effect of
sodium nitroprusside was over two-fold greater when assays were carried
out in the presence df 10.0 mM-MgClz instead of with 4.0 mM-MnClj (Table
4.3.4.). Thus, the bivalént cation requirements of guanxlaté cyélase
activated by either of these agen£s are markedly different from those of
‘enzyme activated by preincubation, disu;fides or tert—butylﬂydroperoxide.

S
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Fig. 4.3.1. Effect of NaN3j on the guanylate cyclase activity of

platelet lysate .

" T /’-d .

Guanylate cyclase activity was assayed as described in Section 2.2.3, and
platelet lysate was prepared as described in Section 2.2.2. The protein
concentration of the platelet lysate was 6.6 mg/ml and 25 {11 aliquots were
assayed. The guanylate cyclase activity of the.platelet lysate (Q) was
9.21 *+ 1.03 nmol of cyclic GMP formed/20 min per mg of protein. Guanylate
cyclase activity is expressed as the percent stimulation by NaN3. The
values given are the means of triplicate determinations. Platelet lysate

assayed in the-presence of NaN3 (@®).
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Fig. 4.3.2. Effect of NaN3 on the guanylate ‘cyclase activities in the
supernatant and particulate fractions of platelet lysate

Guanylate cyclase activity was fssayed as described in Section 2.2.3.
Supernatant and particulate fraftions of platelet lysaté were prepared as
described in Section 2.2.2. protein concentration of the supernatant
fraction. (O ,®) was 4.5 mg/ml and that of the particulate fraction (A,4A)
3.3 mg/ml. 1In each case, 50 ul aliquots were assayed. The guanylate cyclase
activity of the supernatant fraction assayed in the absence of NaN3 (Q) was
15.07 % 1.07 nmol of cyclic GMP formed/20 min per mg of protein, and 5.20 #
0.28 nmol of cyclic GMP formed/20 min per mg of protein in the particulate
fraction (A) (mean * S.E.M. of triplicate determinations). Guanylate
cyclase activity is expressed a¢ the percent stimulation by NaNj. The
values given are the means of triplicate determinations.
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¢

Fig. 4.3.3. Effect of NaN3 on the specific activity of guanylate
cyclase measured with différent volumes of platelet
lysate in the assay

Guanylate cyclase activity %was assayed as described in Section 2.2.3. and

platelet lysate was prepared as described in Section 2.2.2. Approximately

© 10 min prior to assay, NaNjwas added to one portion of the platelet lysate
to give a final concentration of 10.0 mM. The protein concentration of

the platelet lysate (Q) and the NaNj-treated lysate (@) was 3.2 mg/ml.

Increasing volumes of enzyme,preparation were assayed by the addition of

10, 20, 50 and 100 pl to the assay mixtures, which were incubated for 20

min. The values given for guanylate cyclase activity are the means #* S.E.M.

of triplicate determinations. Unless otherwise indicated, the S.E.M. are
within the limits of the symbols.
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Fig. 4.3.4. " Effect of sodium nitroprusside on the guanylate cyclase

- adtivity of platelet lysate
Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The protein
concentration of the platelet lysate was 7.7 mg/ml and 25 pl aliguots were
assayed. The guanylate cyclase activity of the platelet lysaté (Q) was
4.97 + 0.10 nmol of cyclic GMP formed/20 min per mg of protein. Guanylate
cyclase acti®ity is expressed as the percent stimulation by sodium nitro-
prusside. The vasueé given are the means of tripligate determinations.
Platelet lysate assayed in the presence of sodium nitrbprusside (@).
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Fig. 4.3.5. Effect of sodium nitréprusside on the guanylate cyclase
activities in the supernatant and pafticulate fractions
- of platelet lysate —
twi
Guanylate cyclase actiyity was assayed as described in Section 2.2.3. Super-
natant and particulate fractidns of platelet lysate were prepared as described
in Section 2.2.2. The protein concentration of the supernatant fraction
(O,®) was 4.8 mg/ml and that of the particulate fraction (A,A) was 3.5
mg/ml. In each case, 50 ul aliquots were assayed. The guanylate cyclase
activity of the supernatant fraction assayed in the absence of sodium nitro-
prusside (Q) was 15.07 % 1.07 nmol of cyclic GMP formed/20 min per mg of
protein, and 5.20 * 0.28 nmol of cyclic GMP formed/20 Min per mg of protein
in the particulate fraction (A). Guanylate cyclase activity is expressed as
the percent stimulation by sodium nitroprusside. The values given are the
means of triplicate determinations. Supernatant and particulate fractions
assayed in the presence of sodium nitroprusside, (@), (A), respectively
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»~
Fig. 4.3.6. Effect of sodium nitroprusside the specific activity of

guanylate cyclase measured wi di fferent volumes of
platelet lysate in the assay

Guanylate cyclasetactivity was assayed as described in Sectlon 2.2.3. and
platelet lysate was prepared as ‘described in Section 2.2.2. Approximately
10 min prior to assay, sodium nitroprusside was added to one portion of
the platelet lysate to give a final concentration of 10.0 mM. The protein
concentration of the platelet lysate (Q ) and the sodium nitroprusside-
treated lysate (@) was 6.6 mg/ml. Increasing volumes of enzyme prepar-
atiqon were assayed by the addition of 10, 20, 50 and 100 ul to the assay
mixtures, which were incubated for 20 min. The values given for guanylate
cyclase activity are the means #* S.E.M. of ®riplicate determinations.
Unless otherwise indicated, the S.E.M. are within the limits of the symbols..
This experiment has been carried out .once.
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¢
Fig. 4.3.7. Effect of sodium nitroprusside on the guanylate cyclase

activity of platelet lysate preincubated at 09 and at
300C for increasing periods of time

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. wThe platelet
lysate was divided into two portions which were either kept on ice (circles)
or preincubated (triangles) for 0, 20, 40, 60, 120 and 240 min at 30°C.

The protein concentration of the platelet lysate and the preincubated lysate
was 6.6 mg/ml and 25 pl aliquots were assayed. Sodium nitroprusside was
added to the assay mixtures at a final concentration of 1.0 mM (closed
symbols). Platelet lysate (Q ), platelet lysate assayed in the presence

of sodium-nitroprusside (@ ){ preincubated lysate (A), preincubated

lysate assayed in the presence of sodium nitroprusside (A). The values
given for guanylate cyclase activity are the means + S.E.M. of triplicate

determinations. Unless otherwise indicated, the S.E.M. are within the
limits of the symbols.
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Fig. 4.3.8. Effect of sodium nitroprusside on the guanylate cyclase

activity of platelet lysate and dithiothreitol-treated
lysate

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in.Section 2.2.2. Approximately
10 min pridr to assay, dithiothreitol (1.0 mM~final concentration in the
lysate, 0.1 mM-final concentration in the assay mixture) was added to one
portion of the platelet lysate. The protein concentration of the .platelet
lysate (Q,®) and the dithiothreitol~-treated lysate (A,A) was 6.6 mg/ml
and 25 pl aliquots were assayed. The guanylate cyclase activity of the
lysate (Q) was 9.21 + 1.03 nmol of cyclic GMP formed/20 min per mg of
protein, and ‘that of the dithiothreitol-treated lysate (A) was 2.91 + 0.24
nmol of cyclic GMP formed/20 min per pmg of protein. Guanylate cyclase
activity is expressed as the percent stimulation by sodium nitroprusside.
The values givern are the means of triplicate determinations. Platelet
lysate assayed in the presence of sodium nitroprusside (@), dithiothrei-
tbl—i;reated lysate assayed in the presence of sodium nitroprusside (A).
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4,4; Results: Effects of non-ionic detergents

The effects of two non-ionic detergents, Lubrol Pk and Triten X-
100, on the guanylate cyclase a;tivity oﬁ platelet lysate were studied
(Fig. 4.4.1.). Lubrol PX was chosen for use in all subsequent studies as
this non-ionic detéggent was about four-fold ﬁore effective éhan Triton
X-laaﬁz?”EIi«QQEFentratioﬁs tested (Fig. 4.4.1.). In 16 experiments, the
guanylate cyclase activity of platelet lysate was stimulated by 256 * 167%
(méan + S,E.M.) with an optimal concentration of 1.0% (w/v)-Lubrol PX (44
mM). Optimal activation by 1.0% (w/v)-Lubrol PX was obseryéd whether this
concentration of detergent was included in the asséi mixture (see for
example, Figs. 4.4.1., 4.4.4., and Tables 4.4.3., 4.4.4.) or added directly
to the lysate before ass;y (e.qg. Fig. 4.4.3. aqd Tables 4.4.1., 4.4.4.).
Thus, the extent of activation by Lubrol PX depgnded on the highest concen-
tration to which the enzyme was exposed and not on the final concentration
in the assay mixture.

Fig. 4.4.2. shows that the~guanyl;£e cyclase activity in the
* supernatant ana particulate fractions of both isotonically and Hypotonic—
ally lyée& plaEelets was stimulated by an optimal cbncentration of 1.07
‘ (wlv)ﬂLubro; PX. Althéugh the stimulatory e‘!ect of Lubrol PX was slightly
different in each of thesé enzyme preparations, no change in the ;elative
distribution of guanylate cyclase activity was observed with 1.0% (w/v) of
detergent (See also Table 3.1.1.). . ‘

‘Eig. 4.4.3. shows that the specific activity of guanylate cyclase

of Lubrol PX-treated lysate was decreased by about the same percentage as

)
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a
~

that of control lysate when 50 or 100 #l of enzyme was assayed. Hence, in

-

contrast to activation by preincubation, tert-butylhydroperoxide and sodium

njfroprusside, activation by “Lubrol PX had no effect on the inhibition of
guanylate cyclase activity by low-molecular-weight factors present in the
. lysate.

The guanylate cyclase activity of Lubrol PX-treated lysate, un-

like that of untreated lysate, did not increase during assay (Table 4.4.1.).

Treatment of K lysate that had been preincubated at 30°C for 60 min with
Lubrol PX did not result in an additive stimulation of enzyme activity;

instead, the specific activity of this preparation was either equal to or

slightly lower than that of Lubrol PX-treated iysate that had not been pre-.i

incubated (Tables 4.4.1. and 4.4.2.); As shown in Fig. 4.4.4., the stimu~
lation of guanylate cyclase acéivity by Lubrol PX diminished with increas-
ing periods of preincubation at 37°Cc. After 120 min of preincubation at
37°C, Lubrol PX significantlf-inhibited the activity of piateleh iysate.
Simila; results were qbtained with lysate preincubated at 30°¢C. Preincu-
.bation at 30°C in the presence of Lubrol PX ?eSulted in a substantial
‘inhibition of guanylate cyclase activity (Table 4.4.1.).

To invésgigate thé properties of Lubrol PX-activated gqanylate
cyclase, the effects of dithiothreitol and of N-ethylmaleimide were studi-~
ed. Lubrol PX stimulated the activity of platelet lysate pretreated'with
dithiothreitol (Table 4.4.2.) or with N-ethylmaleimide (Table 4.4.3.) by
approxiﬁately the same extent; in percentage terms, aé untreated lysate.
Thus, in contrast to activation of platélet guénylate cyélase'by préincu—

bation or tert-butylhydroperoxide, activation by Luprol PX was not blocked

by either dithiothreitol or N-ethylmaleimide. These observations suggest

B N A

.
= . s, -

4w e
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that acgivation by Lubrol PX does not involve oxidation of sulfhydryl
groups on the enzyme and/or on regulatory components.

The effect of Lubrol PX'oggthé guanylate cyclase activity of lysate
treated with tert—butylhydropero#idé, sodium aéide and sodium nitroprussidée
was also studied. Table 4.4.3. shows that when each of the;e enzyme prep-—
arations was assayed in the pfesence of Lubrol PX, the resulting level of
" guanylate cyclase activity was about the same as that observed with deter-
gent alone. Thus, in the case of tert—buty1hydroperox1de—treate& lysate, .
en;yme activity was slightlx sfimulated by Lubrol PX; whereas in the case
of sodium.azide- or sodium nitroprusside~treated ly;ate, activity was

markedlyoinhibited. Addition of these agents to Lubrol PX-treated lysate

either had no significant éffect (i.e. sodium azide and sodium nitropruss—

~
’

ide) or only a small inhibitory effect (i.e. tert—butylhydroperoxide)_
(Table 4.4,3.)., '

Assays'were glso carried out with Mg2+ as the ;ole'cation in order
to determine whetﬁgr activation of guanylate cyclase by Lubrol QX affected
the requi;ement of this enzyme prepa;ation for Mn2t for the e&pression of
maximumfactiviqy. ‘Table 4;4;4. shows that in the presence of 4.0 ﬁM—MnClz,
Lubrol PX stiﬁuiatéd activity by an average of 279%; wﬁ?reas in the presence
of 10.0 mM-MgClz)‘acgivity was increased by an averaée of oniy_74%. Thus,
total expreséion of ghe stimulatory effect .of Lubrpl PX was dependent on

Il

the presence of an optimal concentration of MnCly, and ‘the effectiveness
of Mg2+ as a substitute for Mn2+ was mafkedly decreased'Qith Lubrol PX-
treated lysate (Table 4;&.4.). Ther;fore, with feépecq to bivalent cation
requirements, Qreincubgtion, tért-butylhydroperoxide and Lubrol PX'have. .

similar effects.on'platelet guanylate cyclase.

s Aot gt n

o a s e s
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Fig. 4,4.1.  Effect of Lubrol PX and Triton X-100 on the guanylate

. cyclase activity of platelet lysate
Ga;;;late cyclase activity was assayed as described in Section 2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP-regener-
ating system was included in the assay mixtures. Platelet lysate was
prepared .as described in Section 2.2.2. The protein concentration of the
lysate was 6.6 mg/ml and 50 ul aliquots were assayed. Platelet lysate
was added to assay mixtures containing Lubrol PX or Triton X-100 at the
final concentrations indicated on the abscissa.. Guanylate cyclase activity
is expressed as the percentage stimulation by Lubrol PX or Triton X-100.
‘The values given are the means of triplicate determinations. In this
experiment, the guanylate cyclase activity of platelet lysate assayed in
the absence of non~ionic detergent was 5.20 + 0.22 nmol of cyclic GMP

':formed/20 min per mg of protein. No addition (@), Lubrol PX (@), Tri-
ton X-100 (A) &,

.
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Fig. 4.4.2. Effect of Lubrol PX on the guanylate cyclase activities
in supernatant and particulate fractions prepared from
platelets lysed in isotonic or hypotonic medium

A suspension of washed platelets was prepared as described in Section 2.2.1.

This suspension was divided into two portions which were centrifuged as
described in Section 2.2. 1. and the pellets were then resuspended in either
isotonic (150 mM- Trls/HC1, pH 7.4) (a) or hypotonic (60 mM-Tris/HCl, pH 7.4)
medium (b). The platelet suspensions were then lysed by freezing and
thawing as described in Section 2.2.2. The lysates were centrifuged at

48 000g for 30 min at 4 C and each particulate fraction was resuspended to
the volume of the corresponding supernatant with the original buffer. The
protein concentrations of the enzyme preparations were as follows: (a)
isotonic supernatant fraction (@), 3.0 mg/ml; isotonic particulate frac-
tion (A), 2.5 pg/ml; (b)hypotonic supernatant fraction (Q), 2.5 mg/ml,
and hypqponig particulate fraction (A), 1.2 mg/ml. In each case, 50 ul
aliquots of the enzyme preparation were assayed. Guanylate cyclase acti-
vity was assayed as described in Section 2.2.3. with the exception that no
phosphocreatine/creatine phosphokinase GTP-regeneratind‘system was inclu-
ded in the assay mixtures. The guanylate cyclase activities of the enzyme
preparations assayed in the absence of Lubrol PX (a,®) (b, ) were as
follows: isotonic supernatant, 2.62 * 0.16; isotonic particulate, 1.08 *
0.06; hypotonic supernatant, 8.08 * 0.37; hypotonic particulate, 1.11 *
0.11 nmol of cyclic GMP formed/20 min per mg of protein (mean * S.E.M. of
triplicate determinations). Guanylate cyclase activity is expressed as

a percentage of control activity. The values given are the means of

triplicate determinations. The data shown in (a) and (b) are from
separate’ experiments,
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Fig. 4.4.3. Effect of Lubrol PX on the specific activity of guanylate

cyclase measured with differdnt volumes of plateiet lysate
in the assay )

Guanylate cyclase activity was assayed as described in Sec¢tion 2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP~regener~
' _ ating system was included in the assay mixtures. Platelet lysate was

ared as described ‘in Section 2.2.2. Approximately 10 min prior to
y, Lubrol PX was added to one portion‘of the platelet lysate to give
"a final concentration of 1.0% (w/v). The protein concentration of the
platelet lysate (@) was 6.6 mg/ml, and that of ‘the Lubrol PX-treated lysate
(A), 5.9 mg/ml. Increasing volumes of enzyme preparation were assayed by
the addition of 10, 20, 50 and 100 ul to the assay mixtures, which were
incubated for 20 min. The values given for guanylate cyclase activity are
the means + S.E.M. of triplicate determinations. Unless otherwise indi-
catad, the S.E.M. are within the limits of the symbols.
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Fig. 4.4.4. Effect of Lubrol PX on the guanylate cyclase activity of
platelet lysate preincubated at 00 and at 37°C

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelet lysate was prepared as described in Section 2.2.2. The platelet
lysate was divided into two portions which were either kept on ice (circlés)
or preincubated {triangles) for 0, 15, 30, 60, 120 and 240 min at 37°C. The
protein concentration of the platelet lysate and the preincubated lysate

was 7.3 mg/ml and 25 pl aliquots were assayed. Lubrol PX was added to the
assay mixtures at a final concentration of 1.0% (w/v) (closed symbols).
Platelet lysate (O), platelet lysate assayed in the presence Of Lubrol PX
(@), preificubated lysate (A), preincubated lysate assayed in the presence
of Lubrol PX (A). The values given for guanylate cyclase activity are

the means * S.E.M. of triplicate determinations. Unless otherwise indicated,
the S.E.M. are within the limits of the symbols.
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4.5. Results: Effects of fatty acids

The effecté of inducers of platelet aggregation on the guanylate
cyclase ac;ivity of platelet lysate were tested. In contrast with S-hydr-
oxytryptamine (10 uM) and l-epinephrine (20 pM), which were without ef@éct,
and with ADP (100 uM), which inhibited enzyme activity by about 30% (méasur—
ed in the absence of phosphocreatine and creatine phosphokinase), aréchi—
donate stimulated the a imifé of platelet guanylate cyclase (Table 4.5.1.).
Iﬁéée agents had similary effects on the guanylate cyclase activity in
supernatant and particylate fractions of platelet lysate (Table 4.5.2.).
The specificity and relevance of the effect of arachidonate on the guanyl-
ate cyclase activity of platelet lysate were studied further,

At an optimal concentration of 1.0 mM-fatrty acid, the guanylate
cyclase activity of platelet lysate-was stimulated by 245 = 28% (mean *
S.E.M. of four experiments) by arachidonate and by 206 * 20% (mean * S.E.M.
of seven experiments) by oleate, whereas palmitate was almost inactive -
(see for example, Table 4.5.3.). Similar results were obtained wichbsupér-
natant and particulate fractions of platelet lysate. Maximum stimulation
og guanylate cyclase activity by arachidonate or oleate was dependent on
the presence of bovine serum albumin 12 the assay mixture (as in Fig.
A.S.l.).\\ﬁhen assays were carried th in the presence of fatty acld-free
albumin (Fig. 4.5.1.b.) or albumin with™gatty acid (i.e. typical assay
conditions) (Fig. 4.5.1.c.), arachidonate stimulated enzyme act}vity to a

.- ,

much greater extent than oleate at all concentrations of fatty acid tested.

However, without added albumin (Fig. 4.5.1.a.), oleate stimulated guanylate

. 158
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cyclaSé activity somewhat more than arachidonate at concentrations greater
than 0.1 mM, Furthermore,_at lower concentrations (1 to 10 uM) at which
oléaée had no significant effect, arachidonate stimulated activity by a
small percentage (e.g. about 60% with 4 uM)(Fig. 4.5.1.a.).

To investigate the physiological relevance of the stimulation of

Pl

guanylate cyclase activity by arachidonate, the, effect of indomethacin, a

fatty acid cyclo-oxygenase inhibitor, was studied. Table 4.5.3. shows that

-

indomethacin had no"effect on either the basal or{fatty acid—stiQ?lated

. . \ .
guanylate cyclase activities measured 'in the presence of albumin; ﬁpus the
observed effect of arachidonate cannot be attr}buted to its metabolism to

prostaglandin endoperoxides.
The effects of‘arachidonate, oleate and palmitate on preinéhbated
and Lubrol PX-treated lysates were also studied. In percentage terms, the

[}

guanylate cyclase activity of preincubatéd lysate was stimulated only §lightly
less by éither‘arachidonate or oleate than ;he_untreated lysate (Table
4.5.3.). Thus, the actu® increase in enzyme activity caused by preincu—‘
bation of tﬁ: lysate and subsequent addition of these fatty acids wés great-
er than the éum of the individualﬂtreatmedts.(Tab}e 4,5.3.). Oleate increas-

. ed the guanylate cyclase activity of preincubaﬁed lysate to vélues far higher

[

than observed on treatment with Lubrol PX alones In contrast, all three

-«

fatty acids exert®d an inhibitory effgct on the éctivity of Lubrol PX-treat-

ed lysate. A&aqhidqnate was the most efieétive, at 1.0 mM-concentration it
. decreased thé enzyme activity.below that of untreated lysate in the absehgs
g oy ” ) .
of arachidonates 4. L. 2
.y » _‘w N , . N i .
To determine whether: the stimulation of guanylate cyclase activity ,

by arachidonate and oléate was dependefit on the presence of .Mn?*: for Fhe

"
~

o o e’ SN P

et e -
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expression of maximum activity, assays were carried out with 10.0 mM-MgCl;

instead of with 4.0 mM-MnCla. Table 4.5.4. shows that in the presence of
. N . V )

MnCl,, arachidonate stimulated enzyme activity by about 200%; whereas in

the presence of MgCl;, activity was -inhibited by about 40%. .Althoggh the

N weai e v R

stimulatory effect of oleate was markedly decreased in the presgﬁce of MgCl,,

b e kD

guanylate cyclase activity was not inhibited by this fatty acid.
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Table 4,.5.1. Effect of aggregating agents on the guanylate cyclase
activity of platelet lysate ' .

Guanylaté cyclase activity was assayed as described in Section 2.2.3. with
the exception that no phsophocreatine/creatine phosphokinase GTP-regenera-
ting system was included in the assay mixture. Platelet.lysate was prepared
as described in Section 2.2.2. The protein concentration of the platelet
lysate was 6.6 mg/ml and 50 pl aliquots were assayed. Aggregating agents
were added to the assay mixtures at the final concentrations indicated.

The values given are the means + S.E.M. of triplicate determinations.

Aggregating . Concn. ' Guanylate cyclase activity
agent . / S A s /
g _ (uM) nmol of cyclic GMP/20 min $ of
per mg of protein control
None - : 4.67 * 0.05 ' 100
5-Hydroxytryptamine  10. 4.77 £ 0.27 N 102
I-epinephrine 20 : 4.93 £ 0.04 . - 106
~ ADP ' " 100° 3.26 * 0.07 .70
Arachidonate - 100 12.49 £ 0.14 268

>
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Table 4.5.2. Effects of aggregating agents on the guanylate cyclase

. activities in the supefnatantvand particulate fractions

.of platelet lysate

Guanylate cyclase activity was assayed as described in Seckion 2.2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP-regenerat-
ing system was included in the assay mixture. Supernatant and particulate
fractions of platelet lysate were prepared as described in Section 2.2.2:
The protein concentration of the supernatant fraction was 4.4 mg/ml and
that of the particulate fraction was 3.9mg/ml. In each case, 50 pl aliquots
of enzyme preparations was assayed. Aggregating agents were added to the
assay mixtures at the final concentrations indicated. The values given for
guanylate cyclase activity are the means * S.E.M. of triplicate determinations.

Enzyme | Aggregating ! Concn. Guanyléte c&ciase activ?ty‘;
preparat;on . agent (i) "hmol cyclic GMP/ % oft
‘ ‘ 20 min per mg control
protein

Supernatant  None . 8.77 + 0.13 \'lOO

| 5-Hydroxytryptamine 10 8.81 % 0.02 101

l-epinephrine E 20 8.69 + 0.22 99

ADP - 100 (uéiﬁe + 0.06 70

Arachidonate , 100 - 22.32 0;44 ; \<\255

o /N

Particulate _ None S - 3.35 £ 0.07 | 100
| s_pyaroxytrptamine 10 3.20 £ 0,07 . . 9%

I-epinephrine " 20 338 %0,13 ., 101

ADP . 100 2.27 £ 0,10 . . 68

Arachidondte 100 12.49 £ 0.23 268

/ ]

) . § :. o
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Table 4.5.3. _Effects of fattg acids on the guanylate cyclase activities
) " of untreated platelet lysate, indomethacin-treated lysate,
preincubated lysate and Lubrol PX-treated lysate
Guanylate cyclése activity was assayed as described in Section 2,2.3. with
the exception that no phosphocreatine/creatine phosphokinase GTP-regener-
ating systen was incéluded in the assay mixtures. Platelet lysate was pre-
pared and preincubated at 30%C as described in Section 2.2.2. Approximately
five min prior to assay, one portion of the platelet lysate was incubated
at 30°C with indomethacin (20 uM-final concentration in the lysate; 4 uM-
final concentration in the assay mixture). Approximately 10 min prior to
assay, one portidn of the lysaté was treated with Lubrol PX (1.0%, w/V -final
concentration in the lysate). The protein concentratlon of the enzyme pre-
parations was 3.6 mg/ml and 50 ul aliquots were assayed Fatty acids were
added to the assay mixtures at the final concentrations indicated. - The
values given’ for guanylate cyclase activity are the means * S.E.M. 6f tripli-
cate determinations.

 Sngpmarin €= x

v e
'



Enzyme
preparation

Lysate

Indomethacin~-
treated '
lysate

. Preincubated
lysate

Lubrol PX- .
treated
lysate

Fatty acid

None
Palmitate

Oleate

Arachidonate

None
Palmitate

Oleate

Arachidonate

None'

. Palmitate

. Oleate

Arachidonate

None
Palmitate .

Olea;e‘

Arachidonate

OO MO
O O = O

164

Concn.
(mM)

P OMOKO
OO O

Guanylate cyclase activity

o,
‘amol of cyclic GMP/ % of
20 min per mg of contrdl
proteip activity
7.52 + 0.15 100
8.43  0.13 112
8.68 + 0.34 116
12.99 + 0.45 ‘173
25.32 + 0.92 337
12.44 + 0.23 165
15.59 # 0.55 208
7.55 + 0.23 100
8.55 * 0.02 . 113
. 8.35 % 0.22 111
13.84 * 1.00 182
i 21.62 + 0.98 284
012.33 *+ 0.12 162
15.96 * 0.38 211
12.03 % 0.39 100
i2.25 ¢ 0.35 103
13.25 * 0.45 111
19.27 + 0.41 161
36.99 + 1.43 308 -
18.50 * 0.07 154
22.30 + 0.36 186
21.72 £ 0.23 100
18.26 £ 0.16  « .84
15.54 + 0.39 71
20.27 + 0.05 94
13.51 £ 0.35 62
. 14.09 * 0.98 65
5.61 % 26

0.58 .
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Table 4.5.4. Effect of fatty Acids on the blvalent .cation requ.r.rements
of platelet lysate

Guanylate cyclase activity was assayed as described in Section 2.2.3. and
platelgt lysate was prepared as’ described in Section 2.2.2. The protecin

concentration of the platelet lysate was 6.0 mg/ml and 25 pl aliguots were
assayed. The values given for guanylate cyclase activity are the means *

S.E.M. of triplicate determinations. This experiment has been carried out
once., '

4

* i
r
‘ f <

éivalent cation Addition to Concn. Guanylate cyclase activity

present in assay the assay . (mM) '/ A N
) mixture: - nmol cyclic GMP/ _ % of
. ' 20 min per mg . control .,
- _protein ‘ activity
MnCl, (4.0 mM) None - - 7 7.83 £0.25 ‘ 100
Arachidonate " 0.01 11.42 £ 0.26 _ T46
1.0 23.67 * 0.63 302
Oleate 0.01: 6.88 + 0.34 - 89
1.0 19.62 £ 2.05 251
MgCl, (10.0° mM) None i - 1.08 *+ 0.05 100
' " Arachidonate 0.0l 0.89 + 0.04 82
, . 1.0 0.63 t 0.15 58 .
Oleate 0.01 0.82 * 0.04 . 76
' 1.0 1.679% 0.34 - 155
)i

N e e e P

JON—.
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4.6, .Discussion: Activation of platelet guanylate cyclase

4:6.14 2reincubation

Incubation of platelet lysate for 60 min at 30°C or at 37°C increas-
ed its guanylate cyclase- activity on average by 120% and 225%, respectively
(Sch;me 1). ‘A similar increase in acFiGity was found on preincubation of
the supernatant -fraction of platelet lyséte; whereas the activity .in the

,.paftigulate fraction was unaffected by preincubation. A spontanequs time-

and temperature~dependent activation of guaﬁylate cyclase ‘has also been.ob-
served’ ifi human platelet homogenates and s&pernatantg b; Bﬁﬁme et al, (l97g,
%978) and Glass et al. (£977a), as'well as in soluble, but not pa:ﬁiculate,

‘fractions of rat lung (Chrisman et al., 1975; White et al., 1976), guinea

pig splenic cells (Haddox et al., 1978; Goldberg et al., 1978) and rat uterus

{

-

(Kfaské et al., 1977). Other workers studying guénylaqe cyclase in human
plagéleté.héve notireported th;g ﬁhenomenon (Barber, 1976; Rodan & Feinstein,
l9§6; Hidaka & Asano, 1977a,b; Weiss et a;:,,l978). :
| The failure of enzyme,in particulate fractions from platelets and
other tissaes‘go«undergq spontaﬁeous activation may be attributable to the
presence of inhibitory: factors and/or thé absence of factors necéssary‘for
the activation process. This explanation is Suéportéd by the observation
that guanylafe cyclése activity in_particulate fractions prgpareévfrom-pfe—
incubated platelet lysate was incrEased by about tﬂe éame_e;tent as tﬁat_in
-whole lyéate. Althougﬁ'if ;s also bossible that enzyme in~particulate . Y
énzyme,ézéno; becoﬁe activated under any circumstances, there is no gyidepce
. . ; ‘

" to date in favour of this Suggesfion. o ’ S B
: ) . - , .
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The findings ofmthe present study show that the increase ‘in
guahylaté cyclase activity during preincubation.cannot be attrib;ted to a
decrease in the inhibitory activity of ultrafilterable factors present in
the lysate or to a decrease in tﬁe sensifivity of the enzyme to inhibition
b9 these factors. Instead, the stimulatory effect of preincubation appears

to be the result of an activation of the enzyme. Since sulfhydryl groups

_ are known to play an important role in the regulation of activity of many

enzymes (Webb, 1966), the effects Qf thiol-containing reducing agents such

as dithiothreitoi’and mercaptoethanol on the pre{ncubation process have beén
studied in several laboratories in order to gain insight into the mechanism
of activation éf‘guanylate cyclase. These compounds have been shown c; pfe-

vent the activation of guanylate éyclase by preincubation in all.€155ues

»

studied (BShme et al., '1974, 1978; Chrisman et al., N975; White et al.,

1976; Glass et al., 1977a; Haddox et al., 1978; Adams & Haslam, 1978).

Since mercaptoethano; and dithiothreitol act as sulfhydryl-protecting rea-

.gents (Cleland, 1964; Webb, 1966), these observations suggested that acti-

vation by preincubation may be the result of the oxidation of specific

»

sul%hydryl gréups involved in enzyme regulation. Although mérqaptoeﬁhano%
will ﬁdt revérse activation once it has occurred (WhiQe et al., 1976),

dithiothreitol has been found to reduce spontaneously eqhanced guanylate

cyclase activity ;é its basal level (Haddox et al., 1978) or below (this

thesis; Adams & Haslam, 1978). While this effect of dithiothreitol suggesfg

?

that activation.can be fully reversed by the reduction of protein disul-

~—

fide groups, this .interpretation is complicated by the fact that this agent '
also markedly inhdbits the basal activity of guanylate cyclase from human
placélets (B&hme et él., 1974, 1978; Adams & Haslam, 1978); guinea pig

|
. . “ .

| - » '
|
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splenic cells (Haﬁdox et al., 1978; Goldberg et al., 1978), as weli as from
various rat tissues, including lung (Bohme et al., 1978). In the present
study, dithiothreitol inhibited'the basal énd preincubation-activated guan-
ylate cyclase activities of platelet l§sate by about the same percentage,
thus even in the presence of this compound, the preincubation effect could
still be detected (Scheme 1). The inhibition of basal guanylate cyclase
activity by-dithiéthreitol suggests that some degree of rev;rsible activa-
tion may ha;e occurred during the preparation and storage of the enzym;{
Furthermore, the failure of both mercaptoethanol and dithioéhreitol to
revérse the stimulatory effect of preincubation does not rule out the
gossibility that activation is the result of oxidation of enzyme sulfhydryl
groups since even oxidation to Aisulfide groups is not necessarily reversed’
by thiols if steric factors prevent reauction, and oxidation to highefk
oxidation states such as the sulfenate (S07), sulfinate (SOz) or sulfonate
(503) state would not be expected to be reversed (Webb, 1966). In any case,
the results of this study as well as those recentlyxrepor;ed by B&hme et

‘al. (1978), indicate that the enzyme obtained by dithipthgeitc;l~treatment .
of the activated enzyme is different from the dithiéthfeitol-stabiliged
form of the enzyme.

Further investigations of the role of s&lfhydryl groups in the
regulation of guanylate cyclage activity were carried out by studying the
.effects of N-ethylmaleimide on the basal and‘p;eincubation—activatgd aoti-

; , . ,
vities of platelet lysate. In contrast to the action of dithipthreitol,
which mainéains protein sulfhydryl groups.ig"thé reduced staté, N-ethyl-
male;mide acts by alkylatingnaccessible sulfhydryl groups which thereby-

. permanently alters the reacted protein (Webb?’1966). Altheigh the
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reactivity.qf N—ethylmaleimi&e is not confined to sulfhydryl groups, demon-
stration of amino reactivity has réquired high concentrations of the reagent
and prolonged 1ncﬁbation periods (Webb, 1966). Thus, under physiological
conditions and if® the absence of excess reagent, it can be assumed that
N-ethylmaleimide reacts quickly and specifically with available sulfhydryl

groups of proteins yielding.producté of the following type (Webb, 1966):

R'— 8 0]
N Vi
HC — ¢”
| ~
Ho /N— CHZTCH3
.C§
O-

¥

The findings of the present study show that N-ethylmaleimide shares with
dithiothreitol the capacity to -prevent activation of guanylate cyclase gy
preincubation thereby supporting the view that the activation process in-
volves the agxidation of sulfhydryl groups. In contrast to the effect of
dithiothreitol, low concentrations of N-ethylmaleimide inhibited guanylate¢
cyclése activity of the preincubated lysate significantly less than that of
the control lyséte. The decrease in the sensitivity of théiactivated enzyme
to inhibition by N-ethylmaleimide can be attributed to a decrease in either
the number or acgessibility of sulfhydryl groups an@/or a conformational
change in the enzyme. The marked decrease in the ability of the preincu-
bated enzyme té utilize Mgz+ as a substitute for Mh2+ suggests that the T
properties of activéted guanylate cyclase are clearly different from the
control enzyme. In contrast, Bdhme‘e: al.  (1978) have recently reported
_ that activation of* platelet guanylate cyclase by preincubation did not
significantly change the ratio of activities méasuredlwith Mn2+ or Mg2+.

Insight into the mechanism of activation by breincdbation 1nit;ally

was provided by White et al. (1976) who demonstrated that both oxygeﬂ and
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copper were required for activation of guanylate cyclase in rat lung super-
natants. A similar oxygen requirement has since been reported for the
activation of the enzyme from splenic cells (Haddox et al.: 1978; Goldbefg
et al., 1978) and platelets (BShme et al., 1978). The observation of BShme
et al. (1978) that millimolar concentrations of EDTA retarded,the activation
of platelet guanylate cyclase, suggested that bivalent cations are involved
in the activation process. This finding may be relacedvto the observation
by White et al., (1976} that Cu2+ is required for activation since EDTA

binds Cu2+ much more effectively than other bivalent cations (Dawson et al.,

1969).

-

z+

Whileg;t is relatively ;ell established that spontaneous attivation
~-dependent process, the mechanism whereby these

is an oxygen and perhaps Cu
factors interact to cause oxidation of protein sulfhydryl groups is not*yet
understood. White e@al. (19116) have hypot:hesizec} that guanylate cyclése

in rat lung supernatants 1is ultimately activated by'HZOZ generated non-
enzymically by the interaction of oxyhemoglobin with a proton donor such as
ascorbic acid. A}though further evidence in support of thisihypothesis has
not yet been reported, the finding of Mittal & M;rad (1977b) that superoxide
dismutasg markedly enhanced the activiéy of guanylate cyclase from rat liver
has in effect confirmed and extended the observations of White et al. (1976),
since H202 is generated by tﬁe dismutation of superoxide anion and also \
because superokide dismutase 1s a cupri-zinc enzéme in eukaryotes (Fridovich,
1976). Mittal & Murad (1977b) found that beth superox}ae anion (OE) andi ,
H20, were required fog activation of guanylate cyclase by superoxide dis-

mutase, and that activation was inhibited by hydroxyl radical (OHe¢) scaven-

gers, On the basis of these findings, Mittal & Murad (1977b) proposed -

™
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that hydroxyl radicals yhich are formed by the Haber-Weiss reaction (Haber
& Weiss, 1934) from superoxide anion and H20,, are responsiblé for the
activation of guanylate cyclase by superoxide dismutase. Thus, one general
mechanism of activation of guanylate cyclaéa‘may involve the formation of
free hydroxyl radicals and subsequent oxidative attack on sulfhydryl or

other groups on the enzyme. Although it is not yet known whether guanylate

)
<

cyclase 1s ultimately activated b; hydroxyl radicals during preincubation,
the available evidence does not-exclude the possiblity of such a mechanism;
4.6.2. Oxidants ' Jﬁ
While many enzymes contain critical sulfhydryl groups which, if
oxidized q} chemically modified result In a loss of catalytic activity
(Webb, 1966), the catalytic activity of guanylate cyclasecappears to be
enhanced by the oxidation of enzyme-associated sulfhydryls. The role of
sulfhydryl groups in the regulation of guanylate cyclase was investigated

further by studying the effects of several oxidants of\éncregsing strgngth

e
]

on the activity of this enzyme in plfggmet lysates. /

In general, disulfides are\;onsidered to be the most specific -
oxidants of pxzotein sulfhydryl groups; however, these aéents have certain
disadvantages that limit their use'in enzyme studies (Webb, 1966). Firstly,
it has égen shown that the reaction of a thiol with a disulfide ig not a
simple ox;dation-reduction but an exchange reaction involving a two-step

ionic displacement, often with the formation of mixed disulfides, as follows:

X—SH + Y—S—§—Y + X—-S—-S§—Y + Y~—SH

i

X—-—§—S§—Y + X-—SH X—8s—Ss—X + Y — SH

(Webb, 1966). Secondly, the reaction of enzymes with disulfides has been

found to proceed very slowly in many cases (Webb, 1966). Thirdly, cﬁe\

~
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envivonment of the enzyme sulfhydryl groups may be unfavourable for the

-

appnoacﬁ of a disulfide or may:affect the redox potential in such a manner

as to deter the interaction (Webb, 1966). Combined, these considérations

make it difficult to interpret tﬁe effect of disulfides on enzyme activity.

Of the two disulfides tested in the present study, i.e. oxidized glutathione

Vi \> ) 7B )
and &4,4'-dithiodipyridineé &d\v_ 5‘5~</___ N , only the latter was, found

0

to significantly stimulate platelet guanylate cyclase acti};ty. However,

~the small .stimulatory effect of 4,4'-dithiodipyridine (di.e. 40% stimulation)

S~

¢
was highly concentration-dependent, since a dramatic inhibition of enzyme .

activity was observed with concentrations only slightly higher than the \

optimuﬁ of 0.04 mM. On the basis of the available evidence, it is not

‘

possible to determine whether this biphasic effect of 4;4'~dithi?dipyridine

is due to the formation of inhibitory mixed diSplfides or to the complete

oxidation of enzyme—associated Sulfhydryls; However, in view of the extreme-

ly slow reactivity of this disulfide with protein sulfhydryl groups (Grass-

etti & Murray, 1967), it is unlikely that either the stimulatory or inhi-

bitory effect could be due to ‘the complete oxidation of all available sulf-

.

‘hydryl groups on the enzyme.

The stimuiatory effect of diamide (diazenedicatboxylic acid bis~

(N ,N~dimethylamide)){(CH3) 2NCON == NCON(CH3),} was more than two-fold great-

er than that of 4,4'-dithiodipyridine (Scheme 1).

introduced by Kosower et al, (1969) as a specific

¢

Diamide was originally

reagent for the rapid
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and complete oxidation of glutathione within erythrocytes. However,

~

in addftion to oxidizing glutathione, diamide has been reported to react

with protein-bound sulfhydryl groups as well as with reduced pyridine nucleo-

-~

“!lr

tides, thereby causing extensive cellular damage (Harris & Bigelow, 1972).
Srivastava et al. (1974) subsequently found that in spite of the indis-

crimdpate, chgmical oxidation of thiols and prgtein sulfhydryl groups by
diamide, not alil sulfﬁydr;l—containing enzymes are affected by the reagent.
Similarly, glutathione reductase, which has adjacent Sulfhydryls in its
active site, is ﬁot affected by diamide presumaHly because £he sulfhydryl
groups ar; protected with a flavin ring (Jones & Williams, 1975). From
these observatiéns, Rebhun et al. (1976) postulated'tﬁat only certain p;o-‘
teins containing sulfhydryl groups will be affected by diamide, and that
theseé are proteins that contain adjacent sulfhydryl groups that are not in
thg active site of an -enzyme. Thus, the stimulation of guanylate cyclase
activity by diamide supports the hypothésis that this enzyme can be acti-
vated by the oxidation of specific sulfhydryl groups. Although the effect
of diamide on the concentration of glutathione in the platelet was not
determined, it is unlikely that the stimulatory effect of thi;\reégent <
can be attributed to the oxidation of endogenous glutathione as it has been
shown that the concentration of non-protein thiol (pre;umably glutathione)
in the compiete assay mixtures is too low, by several orders of magnitude,
to have any ;kfect on enzyme activity (see Section 3.2.). Further evi-
dence in favour of a méchanism involving the oxidation of enzyme sulfhydryl
residues is provided by the observation that either preincubation or

-

N-ethylmaleimide-treatment of the lysate markedly decreased or abolished /

the stimulatory effect of diamide.
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Tert-butylhydroperoxide is a stable organic hydroperoxide which
has been ‘used as a specific oxidant of glutathionge. Since this'compound
can serve as a substrate for the enzyme, glutathione peroxidase, glutathione

is enzymically oxidized by the following mechanism (Srivastava et al., 1974):

(|:H3 ) CH3
tathiéne l
CH3 —C— 0 —Q0H + 2GSH giu . L
3 | . '%froxidase CHs f OH + GSSG + H,0
CHj N . G

[

Although tert-butylhydroperoxide was found to oxidike neérly all the non-
N .

protein thiol present in the platelet lysate, the marked stimulation of

\ guanylate cyclase activity by this agent was unrelated to its effect on non-

\

protein thiol levels. Instead, the data indicate that the activation of
guanylate cyclase by tert-butylhydroperoxide was the result of an oxidation
of specific enzyme-associated sulfhydryls. In view of thé fact that tert-
butylhydroperoxide decomposes in aqueous solution by the following mechaﬁ—
ism (Pryor, 1976):

2t-BuOOH ————— ¢t-BuO+ + H,0 + t-BulO:*
it is possible to speculate that the attacking species Vould be the te}t-
Hhtoxy radicals generated from this reaction since they are extremely power-
ful oxidants.

1)

The results of the present ?tudy suggest that the stimulation of

guanylate cyclage by 4,4'-dithiodipyridine, diamide or tert-butylhydroper-

oxide is roughly proportional to the redox potential of these agents (Scheme

1). However, it is not known Whether the magnitude of the stimulatory

‘effect observed with these agents is a function of the number of sulfhydryl

groups that react, a function-of the staﬁe to which they are oxidized, or
4
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a combination of both. Thé finding that sodium periodate could stimulate
platelet guanylate cyclase activity by about 16-fold (Adams & Haslam, un-
published results), indicates that oxidation to higher oxidatidﬁ"ééates
activated the enz;me to a much greater extent. In any case, the results
also show that the properties of guanylate cyclase activated by oxidative
processes (i.e. preincubation or tett-butylhydroperoxide) are similar to
each other, but different from the control enzyme in two respecﬁs. Firstly,
preincubation abolished and tert—butylhjdropé;oxide markedly reduced the
inhibition of guanylate cyclase activity observed yith 50 or 100 ul of lysate
in the assay. Secondly, enzyme in bothhthe preincubated and tert-butylhydro-
peroxide-treated’lysates ‘exhibited a marked decrease in ability to utilize
Mg2+ as a substitute fof Mn2+. These observations support tpe view that
the stimulatory effects of preincubation and of tert-butylhydroperoxide are
qualitatively s;milar. Although there are no previous studies ogbthe effects
of the oxidants described in this thesig on guanylate cyclase activity in
'any other tissues, Haddox et al. (1978)‘and Goldberg et ai. (1978) have
recently reported that the oxidant, dehydroascorbic acid (f.O mM) can stim- (
ulate the activity of thq soluble and particulate forms of guanylate cyclase
from guinea pig splenic cells by about 200 to 300%. In contrast to. thé
effects of diamide and tert-butylhydroperoxide described in the present

W
study, these workers %ound that the sciﬁulatory effect of dehydroascorbic
acid appeared to be additive with the spontaneous alr activation of the
soluble form of the enzy;e. On the basis of this observation, Goldberg
et al. (1978) suggested that the site of dehydroascorbile aeid activat?on
is separate from the site affected through the spontaneous process. Evi-
degce that oxidation of enzyme sulfh#dryls was involve@ in the dehydroascorbic »®

X C;T
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acid-induced stimulation of splenic cell guanylate cyclase was p;ovided by ?
the finding that N-éthylmaleimide was effective 1in preventing this activa-
tion. Furthermore, both dithiothreitol and glutathione were able to preveﬁt ‘
as well as reverse the aetivation by dehydroascprbic acid (Had&ox et al.,
1978; Goldberg, 1978). Thus, the activation of splenic cell guanylate‘
cyclase by dehydroascorbic acid appears comparable to the activation,of
platelet guanylate cyclase by diamide or tert-~butylhydroperoxide with
respect to oxidation of enzyme sulfhydryl groups by these agents.

Recently, Vesely & Levey (1978) reported that butadiene diepo;ide,
a representative of the epoxide cl?ss of chemical carcinogens, markedly
stimulated (i.e. two- to {7—fold) guanylate cyciaée’activity in’ several

rat tissues. -Although these wérkers did not determine whether activation

by butadiene diepoxide was an oxidative process, the oxidati&e properties

~ of this carcinogen (Mudd, 1976) indicate that such a mechanism is highly

brobable.
Other oxidizing agents such as methylene blue, H30, and K3Fe(CN)g
were found to ﬁave no significant effect on basal guanylate cyclase activity
(Arnold et 3¥,, 1977; Kaksuki'ét al,; 1977; White et al,, 1976).
4.6.3. Sodium azide and sodium nitroprusside
.The activation of-guanyiate cyciase b¥ sodium aziﬁe in some but
not 1in.all tissues was'first reported by Kimurg et aiu (19753). By mixing
azide~-responsive and —nén-responsive preparations, these. workers demonstra-

ted that some factors are required for activation ("azide activato? factor")

while other factors exist that prevent the effect (Kimura et al., 1975a;

. Mittal et al., 1975, 1977, 1978). Thus, the tissue specificity of the

azide effect .is a function of the presence and/or absence of activating-
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and inhibiting fe;c'tors° The "azide activator é;ctor” in sypernatant frac- '
tions from liver has been purified, characterized and is or osely reseﬁ;//"/
. s
les catalase (Mittal et al,, 1975,-1977, 1978). However, peroxidase,’éyto—
chrome b{ and cyfochrome c reductase have been found to be effedtive sub-
stitutes for the activator requirement (Mittal & Murad, 1977a ’Mittal éﬁ
al., i977, 1978; Murad et al., 1978). These enzymes are known!to convert
azide and another activating agent, hydroxylamine (Deguchi, 19;§Q, to nigric
oxide (Keilin & éartree, 1954). Since nitric oxide has beenvfou;é to acti-
vate guanylate cyclase from most tissues tested (Arnold et al.,,l97ga,b;
Katsuki et al., 1977; Murad et al., i978), thé§e workers have hypothesized
that the stimylat of enzyme activity by sodiﬁﬁ azide is indirectly due
to the effect of nitric oxide. Some of the inhibitory factors (Kimura et
al,, 1975a) have also been purified and characterizqd and have been iden-
tified as hemoglobin and myoglobin (Miki et al., 1977a,b; Mittal & Murad,
l977a Mittal et al., 1978; Murad et al., 1978). (

The present study shows that platelet guanylate cyclase can be
activated by sodium azide, which implied that platelets contain™the necéss-
ary.activating facto'r° This finding has recentiy been confirmed by Weiss
et al. (1978). The comparatively small stimulatory effect of sodium azide
on the guanylate cyclase activity in particulate fractions of plapeiet lys-
ét; can be attributed to the selective distribut}on of catalase. or other
azide activating enzymes in the'Supernatant fraction,

®

Activation of platelet guanylate cyclase by sodium azide resem-

3

bled that in other tissues in being time~ and temﬁerature—dependenta The

¥
4

results suggested that there were two components to this process, one that
0 v ) .

can be intérpreted as due to the slow formation of an agtive speci from



sodium azide (i.e. nitric oxide) and anokher that appeared to involve a
'conditioning' of a cpmponent‘of the lysate by preincubation, which enabled
' sodium azide activation of guanylate cyclaSe to occur more rapidly.’

In addition to sodium azide, many other nitrogen containing materi;
als have been found fo stimulate g%anylate cyclase activity. These include
NaNO,, phenylhydrazine (Kimura et al., 1975), hydrazine (Vesely & Leéey,

1977), nitrosamines (DeRubertis & Craven, 1976a,b, »b), nitrosoureas

\
(Vesely et al., 1977), nitroglycerin and n1tropruss1de (Katsuki et al.,

]
1977a,b; Mittal et al., 1977; Schultz et al., 1977; Bbhme et al., 1?78}\\N <
!

which can be converted to nitric oxide under the appropriate conditions

e
e

(MiFtal & Murad, 1977a; Murad et al., 1978). Since activation by nitric
oxi&e~or sodium nitroprusside has no requirement for an activatqf factor

such as catalase (Katsukl et al., l977a,b; Mittal & Murad, 1977a; Arnold et
al., 1977a,b), it is bélieved that any nitro- or nitrosé-compound or amine
that can form nitrlc oxide é0uld activate guanylate cyclése (Mittal & Murad,
1977a; Murad et al., 1978). Although it is not presently known whether '
nitric oxide interacts directly with guanylate cyclase to pfoduce activa-
tion or whether annger intermediate product is involved (Murad et al., 1978),
the thiol reactivity\;P\:ifroxide radicals (Schultz & McCalla, 1969;
Morrisett & Drott, 1969; Schoental & Rive, 1969; Lawley & Thagcher, 1970;
Mirvish et al., 1970; Nagata et al., 19f3; Scribner & Naimy:'1975) Eugggsts
fhat acti&ation may ultimately be the result of the oxidation of enzyﬁé— s
associated sulfhyd;yls. This possibility was investigated by studying the

effects of sodium nitroprusside, which is known to be a potent -sulfhydryl

group oxidant (Grﬁnert & Phillips, 1931; Leussing et al., 1960) as well as -

a smooth muscle relaxant (Kreye et al., 1975), om platelet guanylate )
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‘eyclase activity. - > ,
.The findings of the present study, which have recently Been con-
firmed (ﬁahme et al., 1978; Weiss et al., 1978),~sﬁod that plateletvguanyl—
ate cyclase can be act%;ated by sodiﬁm nitroprussidf. This compound was
found to have a substan;ially greater‘stimulatory’egfect on enzyme activity
:than an& other reagent tested in' this study (Scheme 1). In contrast to its
effect on guanylate cyclase aétivity,in whole platelet lysate or in super-
natant fractions, sodium nieroprusside had only a small stimulatory effect
on the activity in particulate. fractions 6f~platelet lysate. This finding

cannot be attributed to a decrease in the availability ¢f catalase in, the

particulate fraction since activation with sodium nitroprusside has no re-

quirement for an activator factor. Although the concentration of hemoglobin

in platelet lysate was not measured, it would be found in the supernafant
and not the particulate fraction and as such could not‘acc;unt for the
decreased effect of sodium nitroprusside. These considerations suggést
that other factors are ;esponsible for the apparent suppression of the
stimylatory effect of sodium nitroprusside on particulate enzyme acgivity
or induction of its action on supernatant actI%ity.

Whereas preincubation of platelet lysate greatly enhanéed activa-

tion by sodium azide, it had an inhibitory- effect on activation by sodium

nitroprusside. In fact, the results showed that the stimulatory effects of . °

preincubéiion and sodium, nitroprusside were mutually exclusive, which’ sugg-
},
S

ested that the oxidation of specific sulfhydryl groups during preincubation

blocks their oxidation or other modifidation by sodium nitroﬁ}usside.
Bohme. et al.'(l978) similarly found that pr ncubatidn could prevent acti-

y ) .
vation of platelet guanylgkerizglase by sodium nitroprusside. Activation
‘ 4

4
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by sodium nitroprusside was:''also markedly supressed with lysate that .had
been presfgated with tert-butylhydroperoxide. The inhibitory effect of
other'g;;dizing agents such as methylene plue, K3Fe (CN)g and H,0, on the
activation og guanylate cyclase by sodium azide, sodium nitroprusside
(Katsuki et al., 1977a,b) or nitric oxide (Arnold et al., 1977a,b) has been
attributed to the conve;sion of nitric oxide to less effective higher oxides
of nitrogen sucﬂ as nitrogen dioxide} however, in dontrast to tert-butylhy-
droperoxide, these agents do not stimulate basal activity Although an
interaction between tert-butylhydroperoxide and sodium nitroprusside cannot
bg ruled out, an alternative interpretation is that the inhibitory effect
of tert-butylhydroperoxide is comparable to that of preincubation. In any
case, the much larger stimulatory effect of sodium nitroprusside on guanyl-
ate cyciase activity compared to that of preincubation or tert-butylhydro-
peroxide indicates that activation by this agent is unlikely to be due to

a similar oxidation of-sulfhydryl groups at the same reactive site on or
associated with the enzyme.

The finding reported in this study, as well as by BShme et al.
kl978), that pretreatment of the platelet enzyme with dithiothreitol marked-
ly enhanced, in percentage terms, the magnitude of the stimulatory effect of
“-sodium nitroprusside indicated that in the reduced state, this enzyme is
more susceptible to the effects of this agent. However, the relative in-
ability of N-ethylmaleimide (0.1 mM) to block activation by sodium nitro-
prusside suggests that these sulfhydryl groups may not be directly involved
in the activation process. DeRubertis'& Craven (l937a) found thag high

! .
concentrations (i.e. 0.5 to 1.0 mM) of N-ethylmaleimide were required to

inhibit nitroprusside activation of gudnylate cyclase in rat liver

N v e i e s




‘ in tissues. Kimura et al. (1976) also found that after activation of solu-
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homogenates. Similar results might have been obtained had higher coneen-
trations of N-ethylmaleimide been used in the present’ study. The finding

“

that the inhibitory effect of 0.1 mM-N~ethylmaleimide was substantially

;educed in lysate treated with sodium nitropruss%de suégests that the

availability of reactive sulfhydryl groups may be decreased in the nitro-

prusside~activated enzyme. . i ‘ .
Although the precise mechanism wheregy sodium azide and sodium

nitroprusside activate guanylate cyclase inm platelets or in other tissues

is not ‘presently known, it has been shown thar activation of guanylate

cyclase by nitric oxide oy by‘égents that generate nitric oxide results in

a marked change in certain properties of the enzyme (Kimura et al., 1975a,

1976; Mitta)l et al., 1977; Mittal & Murad, 1977a,b; Murad et al., 1978).

While there is no significant change in the molecular size of the enzyme,
the’bivalent catlon specificity is altered as a result of actiyat%on.

Kimura et al. (1975a, 1576) first reported that the activated enzyme can
effectively use either Mg2+ or Mn?* as sole cation. Moreover, after acti-~
vation, soluble rat liver guaﬁylate\cyclase gas no apparent requirement for
free Mn?" but retains its requirement for free Mg2+ (Ki;ura et al., 1976).
In the present study it was EOund that activation by sodium azide or: sodium
nitroprusside markedly increased the effectiveness of Mg2+ as sole cation, .
thereby decreasing the dependence of this enzyme on Mn2+ for the expression
of maximum activity. An alteration such as this may be of particular impor-
tancé in view of the extremely low édncentrations of Mn2+ normally present

. ‘ ‘ . ,
ble liver enzyme with azide or other agents, Ca?” either had no effect or

was somewhat inhibitory. Although inhibition of guanylate cyclase by ATP

9
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has been found to be similar with native or azide-activated guanylate
cyclase (Mittal et al,, 1977; this thesis), activated enzyme can form
significant/amounts of cyclic AMP from ATP (Mittal & Murad, 1977a).

4.6.4. Non-ionic detergents

It is shown in the present study Ehat the non-ionic detergents,
Triton X-100 and Lubrol PX, acéivate plateiet guanylate cyclase.' There
_are no previous studies of the effect of Lubrol PX on the platelet enzyme,
but Triton X-100 bas variously been reported to have an inhibi;ory effect
(Bohme et al., 1974),'3 slight stimulatory effect (Barber, 1976} Glass e%
al., 1977a) or no effect at all (Rodan & Feinstein, 1976). Although the
reasons for these discrepancies are not clear, in the present studies
Triton X-100 was substantially less effective than Lubrol PX in stimulating
guanylate cyclase acEivity, particularly at the relatively low concentra-
tions used by other workers. Lubrol PX was as effective in increasing the
guanylate cyclase activity in 100 0009 supernatant from lysed platelets as
in whole lysate, suggesting that the detergent activates soluble enzyme
rather than solubjlizes particulate enzyme. Comparable results have been
obtained with soluble guanylate cyclase from several mammalian tis;ues
(Hardman et al., 1973; Kimura & Murad, 1974a; Chrisman et al., 1975). Neer
& Sukiennik (1975) have shown that Lubrol PX activates the soluble form of
guanylate cyclase by changing its conformation, possibly as a result of a
smallhamount of detergent binding to specific hydrophobic sites on the
enzyme. .

Addi;ion of Lubrol PX to a preincubated lysate resulted in a fur-

ther increase in guanylate cyclase activity; however, since the activity of

this preparation was roughly equivalent to that of a Lubrol PX-treated

L
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lysate that had not been preincubated, the stimulatory effects of these
gwo treatments were not additive, and‘appegreﬁ‘t%/be mutually exclusive
(Scheﬁe 1). Both Chrisman et al. (1975) and White et al. (1976) observed
that the maximum increases in activity obtained by preincubation or by
‘treatment of ;at lung supernatant with Triton X-100 were aﬁproximacely the
same and that adgition of Triton X~100 to a preinéubation—activated lysate

had no measurable effect on guanylate cyclase activity. The results of the

present stu@y indicate that .the state of activation of guanylate cyclase
after preincubation is different from that i&duced by treatment with Lubrol
PX., Evidence in support of this conclusion 1is provided by the observations
that neither dithiothreitol nor N—ethx}maleimide was effective in prevent-
ing activation by Lubrol PX as well as by the marked similarity between the
effects of Lubro} PX on preincubated and tert—butylhydroperoxide—treated-

.
lisates {Scheme 1). 1; is therefore unlikely that activation of platelet
guanylate cyclase by Lubgol PX is in any way attributable to an oxidation
of’sulfhydryl groups on the enzyme or on a related component. Instead, it
is more likely that Lubrol PX activates guanylate cyclase by binding to
specific ﬁydrophobic sites and subsequently inducing a conformational change.
A conformational change could also exélain the observation that Lubrol PX
was equally effective in preventing and reversing activation of platelet
guanylate cyclase by sodium azide or by sodium nifroprusside. Althouéh
Kimura et al, (1975a,b) first reported that Triton X-100 could prevent
as well as reverse activation by sodium azide, these workers provided no
explanation for this phenomenon. Thé marked decrease im the capaclity of

+ +
Lubrol PX-activated enzyme to utilize' Mg? as a substitute for Mn2", suggests

that in addition to altering bivalent cation requirements, activatiom by
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kubrol PX may affect other kinetic properties of the enzyme.
4.6.5. Fatty acids
The effects of fatty acids on the activity of platelet guanylate N
cyclase have attracted.interest (Barber,-1976; Glass et al., 1977a; Hidaka
& Asano; 1977a,b; Goldberg et al., 1978) because of the specific role in
platelet function of arachidonate and its metabolism to prostaglandin endo-
peroxides and derivatives (Haéberg & Samuelsson, 1974; Hamberg et al., 1975).
However, oleate was found to be almost as effective as arachidonate in acti~
vating guanylage cyclase in pyatelet lysates. This finding is in accord

\
with the results reported by Barber (1976), in suggesting that activation //

of platelet guanylate cyclase by’fétty acids is a relativelf non-specific
effect, pérhaps attributable to the surfactant properties of the faEEy acids.
In contrast, Glass eé al, (1977a) claim that platelet guanyiace cyclase 1is
specifically activated by arachidonate and closely related palyunsaturated
fatty acids through a specific hydrophobic binding site for these fatty
acids. Hidaka & Asano (1977a) believe that the effect of arachidonate
depends on its conversion into the hydroperoxy derivative by lipoxygenase

which thereby activates guanylate cyclase by oxidizing sulfhydryl groups on
the enzyme. Whether the activation of guanylate cyci;se by arachidonate is
gtructurally specific or not, the physiological significance of this effect
is dodbtful., Since the induction of platelet aégregation and . the release
reaction by exogenous arachidonate and the associated increase in the intra-
cellular concentration of cyclic GMP are all blocked by indomethacin, a
potent inhibitor of fatty acid cyclooxygenase? it appears that in intact

platelets all the effects of arachidonate are dependent on its metabolism

by the cyclooxygenase and not the lipoxygenase pathway (Davies et al., 1976;

e St o T A A B = A i e
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Glass et al., 1977b). 1In contrast, activation of guanylate cyclase by

arachidonate in platelet lysates was not blocked by indomethacin (the pre-

-

sent study)nor aspirin (Glass et al., l@77a). Thus, the in vitro activation
! &
of guanylate cyclase by arachidonate is unlikely to be relevant to the

action of this

fatty acid in platelét function.

Much higher concentratilons of ﬁatty aclds were required to acti-
gate guanylate cyclase in the experiments reported in this thesis (i,e.
0.1 to 1.0 mM) than in those reported by Barber (1976) or Glass et al. '
(19773). This Mfference may be attribut;ble to the inclusion of bovine
serum albumin in the assay mixtures in the present study. A small stimula-
tory effect of micromolar concentrations of arachidoﬁate but not of gl%ate
was observed when albumin was omitted.‘ Although the stimulator& effect of
+0oleate was not afféeted by the omission of albumin from the assay mixtures,

r4
the magnitude of the stimulatory effect of millimolar concentrations of

arachidonategwas b;tantiaILY'less; Since arachidonate ingreased guanylate
o { >
cyclase activi&zji?
or control albumin, it is unlikely that éhis effect of arachidonate is due
to displacegent of other fatty acids from binding's;tes on the albumin.
Instead, it is more likely that’the albumin énhancéd the solubility of
arachidonate and/or the 1nterac!30n of arachidonate with hydrophobic sites
on the enzym;.

The Skimulatory effect of oleate or arachidonate was more than
additive with the increase in activity causﬁd by breincubacion, whereas
tﬁese'fatty acids inhibited thg activity og Lubrol PX~treated lysate

(Scheme 1)-. These eiﬁgﬁiggnts suggest that the/fatty acids may exert their

stimulatory effects. on guanylate cyclase by a mechanism that is distinct
o )

approximately the same extent in the presence of defatted

L
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from those responsible for the ‘effects of preincubation and of Lubrol PX,
though in the latter case formation of micelles of mixed composition could
have influenced the results. The finding that the stimulatory effect of
oleate was markedly reduced, whereas arachidonate inhibited enzyme activity
when assays were carried out with Mg2+ in place of Mn2+ as the sole bivalent
cation, suggests that activation of guanylate cyclase by fatty acids alters
this property of the énzyme. In contrast to enzyme activated by sodium-
azide and sodium nitroprusside, activation of guanyiate cyclase by prein-
cubation, tert~butylhydroéeroxide, Lugrol PX and unsaturated fatty acids
resulte%?én.a marked decrease in the ability of the enzyme to utilize Mg2+

N
+ . . .
as a substitute for Mn? . Thus, activation by these agents results in

I
’

markedly different bivalent cation requirements than activation by either
sodium azidé or sodium nitroprusside.

Wallach & Pastan (1976b) have reported somewhat difgerent results

'

with meémbrane-bound guanylate cyclase from fibroblasts. This enzyme was
stimulated by a variety of highly amphiphilic fatty acids, including palmi-
tate and oleate, in the presence of Mg2+ and certain concentrations of
Lubrol PX, which were substantially lower thSn required for optimal acti—\\\
vation of the enzyme in platelet lysates. However, these authors also
concluded that fatty acids and Lubrol PX act by different mechanisus.

Recently, Goldberg et al. (1978) reported that the soluble form
of splenic cell guanylate cyclase could be activated by micromolar conc§3~
trations of the prostaglandin endoperoxides, PGG; and PGHy, as well as by\
the fatty acid endoperoxides, 15-00H-~20:4, 12-00H~20:4 and 13-00H-18:2.

The finding that reducing agents such as dithiothreitol and glutathione
p .

were effective not only in preventing but also in reversing the activation
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once it had occurred, suggested to these workers that the activation of
guanylate cyclase by the endoperoxy- and/or hydroperoxy-containing fatty
acids was the result of an oxidation of sulfhydryl functions associated
with a hydrophobic site on the enzyme or on a closely rel;ted component.
Goidberg et al. (1978) also found that the activation of soluble splenic
cell guanylate cyclase induced by PGG, was somewhat greater when Mg2+ was
used in place'éf Mn2+ as sole cation. This effect of PGG, contrasts with
the effect of unsaturated fatty acids on the bivalent cation requirements
of platelet guanylate cyclase.

Although the role of sulfhydryl groups on or associated with the
enzyme was not investigated with respect to the acti;ation of platelet
guanylate cyclase by arachidonate or oleate, it is unlikely that high
concentrations of unsaturated fatty acids activate the enzyme by ,the same
mechanism as low concentrations of their endoperoxy- or hydroperoxy- deri-
vatives. Instead, it is more reasonable to suggest that unsaturated fatty
acids act as surfactants by binding to hydrophobic sites on the enzyme that
are distinct from tho;e occupied by Lubrol PX, but induce a conformational

change analogous to that induced by non-ionic detergents.
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Scheme 1. Summary of the relative effects of different combinations
of factors that affect platelet guanylate cyclase activity

The approximate guanylate cyclase activities aftér the various treatments
are indicated in terms of the percent stimulation or inhibition of the
activity of untreated lysate. Stimulatory effects are indicated by solid
lines, and §nhibitory effects by broken lines. The sequence of exposure
to each agent or treatment is shown. Depending on the experiment, agents
were either added directly to untreated or preincubated lysate or included
in the assay mixtures; however, the final concentrations of the agents to
which the enzyme was exposed were as follows: arachidonate (1.0 mM);
oleate (1.0 mM); Lubrol PX (1.0%,w/v); 4,4"'-dithiodipyridine (4,4"-PDS)
(0.04 mM); diamide (0.4 mM); tert-butylhydroperoxide (£-BHP) (1.0 mM);
sodium azide (NaN3)(10.0 mM); sodium nitroprusside (SNP)(1.0 mM); dithio-
threitol (DTT)(5.0 mM) and N-ethylmaleimide (NEM) (0.1 mM).

-7
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Chapter 5

General Discussion
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A hypothetical model of the in vitro activation and inhibition of /
. i

platelet guanylate cyclase activity is proposed in order to explain the ob-

servations summarized in Scheme 1. The relationship of this model to those
recently proposed by other workers as well as the relevancg of the findings
of thfs thesis to the regulation of guanylate cyclase activity in platelets.
are discussed in the following sections. . {

5.1. Hypothetical models for the in vitro regulation of guanylate

7
cycjlase activity » <\

In the model illustrated in StHeme 2, it is ﬁ%oposed that the

regulation of guanylate cyclase activity is dependent on the oxidative state
!
of sulfhydryl groups located.at two sites, A and B, that are on the enzyme
P
itself and/or on other components involved in the control of enzyme activﬁsg}

The sulfhydryl groups of Site A ;;g more accessible and therefore.more susc- '
eptible to oxidation than those of Site B. Site A function; as an inhibitor

of guanylate cyclase when in the reduced state, but has no effect on enzyme C’
activity when th% sulfhydryl groups are oxidized to the disulfide stat;.

In addition to stimulating enzyme activity, oxidation of Site A results in

’

an-increase in the accessibility and susceptibility of the sulfhydryl groups

of Site B to oxidative attack. Oxidation of Site B increages enzyme acti-

B

'vity by a much greater extent than oxidation of Site A, thus $ite B appears

to function as an activator of guanylate cyclase when in an oxidized state.
According to the proposed model, Site A would be maintained in the

reduced or inhibitory state by the high concentrations of glutathione nor-

mally present in intact platelets (i.e. 4.0 to 5.0 mM); however, it is

]
-
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suggested that this site is spontane;usly pxidized to the disulfide state
during Fhe preparation of platelet lysate because of the marked dilution
(i.€. approximately 60- to lOO—fofd) of te platelet cytosol and hence of
endogenous glutathione, Thus, the so-galled basal guanylate cyclase acti-
vity assayed iIn vitro actually reflects the a;tivity of enzyme ;hat has
been partiaily activated. The observed inhibition of basal activity by
dithiothreitol can be attributed to the reduction of’ the disulfide bond VT
at Site A and restoration of its inhibitory effect. In‘contrast, inhibi-
tion bf basal activity by N-ethylmaleimide could not involve Site A, but
instead.would be due to alkylation of the available Sulfhydryl groups on
Site B (;ee Scheme 2). %2_ !

As it has been assumed th Site A is oxidized in platelet lysate,

the stimulation of guanylate cyclase activity by oxidants such as 4;4'—61—

. thiodipyridine, diamide and tert-butylhydroperoxide can be attributed to

’

the oxidation of "Site B. The ability of N—ethylmaleimide to block the )
stimufatory effect of diamide and tert-butylhydroperoxide "indicates that
ghe sulfhydryl groups of Site B, but not of Site A, are necessary for acti-,
vation to occuir. On the other hand, if Site A were not already oxidized,
as would be expected in intact plat;lecs, these agents could also activate
the enzyﬁe by oxidizing Site A first, and then Sike B; whereas N-ethylmal-
eimide would block acéivation by reactiqg only with Siﬁé’A (see Sch;ﬁe 2).
To account for the marked differences in the magnitude of the stimulatory
effects of these oxidants, it is suggested that each agent oxidizes the
sulfhydryl groups of Site B to a different extent (see Section 4.6.2.).

. R .

Thus, the relatively small stimulatory effect of 4,4'-dithiodipyridine

2
(i.e. 40% stimulation) could be due to the slow formation oﬁ/mixed

—
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disulfides, whereas the much larger effect of diamide (i.e. approximately
90% stimulation) could result from a more effective oxidation of enzyme
sulfhydryl groups to the disulfide state. Since tert-butylhydroperoxide

is aﬁ‘ext:emely powerful oxidant, the marked stimulation of guanylate
cyclase aétivity caused by this agent (i.e. 165% stimulation) could 'be

due to the oxidation of enzyme sulfhydryl groups to higher oxidation states
such as the sulfenate (SO7), sulfinate (S0;) or sulfonate (SO3) state.

In additibn to oxidants, it is suggested that the stimulation of
guanylate cyclase activity by preincubation of platelet lysate (i.e. 2257
stimulation) is due to the oxidation of Site B. Although it is not yet
established that guanylate cyclase is ultimately activAted by hydroxyl
radicals during preincubation, it is assumed that some powerful‘oxidant
such as the hydroxyl radical, which could be generated in platelet lysate,
is the éttacking species. Since hydroxyl radicals are generated from
tert-butylhydroperoxide, it 1s suggested that this agent and preincubation
activate guanylate cyclase by the same meghasism - i.e. oxidation of Site B
to the sulfenate, sulfinate or sulfonate state. This cdnclhsion is support-
ed by the following observations: the stimulatory effect; of tert—butyl—‘
hydropero%id;‘ahd prg;ncubation are quantitatively similar, their effects
are not additive, and botﬁ treatments decreased the ability qf the enzymg
to utilize Mgz+ as a substitute‘for Mn2+. According to the proposed model,‘
preéreatmentka platelet lysate with dithiothreitol indirectly blocks acti-
" vation by pre&ncubation by restoring and maintaining Site A in tpe reduced
or inhibitory state, which thegfby renders the sulfhydryl groups of Site B

inaccessible to oxidative attack. On the other hand, N-ethylmaleimide

'directly blocks activation by alkylating the available sulfhydryl groups

"o
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on Site B since Site A is assumed to be oxidizéd in platelét lysate (see
Scheme 2). To explain wgy the gtimulafory effect of preincubation is still
detectable in the presénce of dithiothreitol, it is suggested that this '
agent acts 'on Site A, but not on Site B si;ce thiols cannot reverse oxi-
dat%on past the disulfide state. Thus, the marked inhibition of preincu-
bation—;ctivated enzyme by dithiothreitol can be attributed to the reduc-
tion of the disulfide bond at Site A and subseqdent restoratiop of its

N Murad et al. (1978) have recently suggested that the marked stimu-
lation of guanylate cyclase activity by sodium nitroprusside may be attrib-
utable to the effects of nitric oxide, which could be spontaneously gener-
ated from nitroprusside. Although the mechanism by which sodium nitro-
prusside (nitric oxide) stimulates enzyme activity is not known, the find?/)
ings of this thesis indicate that the activation of platelet guanylate -
cyclase by this agent is both quantitatively and qu%iitatively different
from that caused by preincubation or tert-butylhydroperoxide. Firstly,

the stimulatory eféect of sodium nitroprusside (i.e. almost 1000% stimu-
lation) is Substantialiy.laréer than that of tert-~butylhydroperoxide or
preincubation. Secondly, pretreatment of plateleﬁ lysate with tert-butyl-
hydroperoxide markedly reduced the stimulatory effect of sodium nitropruss-
ide, while preincubation abolished it. Thirdly, an excess of 4.0 mM~dithio-
;hreitol failed to inhibit the activity of enzyme pretreated with sodium
nitroprusside. Finally, activation of guanylate cyclaserby sodium nitrsl
prusgide resulted i; a marked increase in the capacity of the enzyme to
utilize M§2+ as sole bivalent cation, whereas activifion by tert-butyl-

hydroperoxide or preincubation had the opposite effect. To explain these

e
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findings according to the proposed model, it is suggested that the acti-
vation of platelet guanylate cyclase by sodium nitroprusside fﬁ:glves an
unique oxid;tion by nitric oxide of the sulfhydryl gréups of Site'B and
thét this oxidgtion induces a conformational change in the enzyme that
agolishes the regulatory function of Site A and alters the properties of
the substrate and/or bivalent cation binding sites. Furthermore, Site B
cannot be oxidized by nitric oxide unless the sulfhydryl groups are in
Ehezfeduced state, which accounts for the failure of sodium nitroprusside
to activate preincubated or tert*buéylhydroperoxide-treated lysates- (see

Scheme 2).

To explain the finding that Lubrol PX results in approximately

the sayé level of guanylate cyclase activity (i.e. 255% stimulation) regard-

less of whether it is added to untreated lysate or to lysate pretreated by.

preincubagion, tert-butylhydroperoxide, sodium azide or sodium nitropruss-
ide, it ig‘pgggpsed that th;s non-ionic detergent binds to Site B and in-
du;es a conformational change which abolishes the regulatory influence of
the'sulfhydryl groups located at this site, thus neither prior nor subse-
quent oxidatioﬁ of this site can result in activation. Although in per-
centage terms, the stimulatory effect of Lubrol PX is not affected by pre-
treatment of lysate with dithioth;eitol or N-ethylmaleimide, the final
level of guanylate cyclase activity attained by these preparations is
markedly lower than that dbserved with untreated or aqgivated enzyme. In
the case of dithiothreitoi, inhibition is attributed to the reduction of
the disulfide bond at Site A and restoration of its inhibitory function.

Thus, Lubrol PX-activated enzyme appears to remain susceptible to the reg-

ulatory influence of Site A, but not of Site B. In the case of
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. N-ethylmaleimide, alkylation of the available sulfhydryl groups of Site B
may irreversibly maintain the inhibitory influence of this site, which

o

cannot be superceded by Lubrol PX, even though activation can still occur
(see Scheme 2).

In summary, it has been proposed that the in vitro modulation of
guanylate cyclase activity may be a function of the redox étate of sulfhy—
dryl groups located at two sites on the enzyme itself or on components
involved in the control of enzyme activity.

In addition to the model described in this thesis, two other models
have recently been proposed by BShme et al. (1978) and by Goldberg et al.
(1978) for the regulation of soluble guanylate cyclase from platelets and
splenic cells, respectively. Althdugh each of these modgls is based on
the concept that the regulation of guanylate cyclase activity involves at
least two oxidizable sipes, probably sulfhydryl groups, that are either on
the enzyme Or on associitednqpmponepts, other aspects of these models are
not directly comparable because somewhat different agents were tested in
each study. As none of the evidence reported iﬁﬂﬁkfgukétdy or by B&hme
et al. (1978) or Goldberg et al. (1978) is contradictory, differences in
the proposed models can bé attributed entirely to the interpretation of
the data avallable in each case. The primary advantage of the modei pro-
posed in this thesis 1is that it is based'gn the interpretation of}the ‘
effects and interactions of a much wider range of treatments and agents
on guanylate cyclasé activity., .

The model proposed by BShme et al, (1978) is based solely on

results obtained from studies of the time—- and oxygen-dependent activation

and of the sodium nitroprusside-induced activation of guanylate cyclase in
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human platelets. Of the two sites thought to be involved in the control
of enzyme activity, ;ne is assumed to be more reactive and susceptible to
modifications than the other. Oxidation of this site during time- and
oxygen~dependent activation, or other modification by sodium nitroprusside
?% believed to cause an increase in enzyme actiyity. Maintenance of this

éﬂ%e in the reduced state with dithiothreitol b;lcks activation by preincu-

o

.</f bation but not by sodium nitroprusside. Thus, in both this model and in
the model proposed in the present study, the same site is believed to be
affected by activation by preincubag}on and by sodium nitroprusside. How-
ever, In contrast to the model described above, BShme et al. (1978) believe
that oxidation or other modification of the less reactive site results in
decreased guanylate cyclase activity., This latter site is also believed to
dominate with respect to effective regulation of enzyme activity. Although
,%he model proposed by these workers can explain th; effects of preincuba-

. tion, sodium nitroprusside and dithiothreitol on the activity of plate-
let guanylate cyclase, the effects of other compounds on enzyme activity
decribed in this thesis are inconsistent with their hypothesis, ’

The possibility that cellular events involving oxidation and reduc- ; .,
tion may represent a general mechanism for the regulation of guanylate

cyclase activity was fiist suggested by Haddox et al. (1976) who found

that the concentration of cyclic GMP in splenic cells could be increased

by oxidants and decreased by reducing agents. The results of subsequent

studies (Hadd:; et al., 1978; Goldberg et al., 1978; Graff et al. 1978)

of the effects'of dehydroascorbic acid, fatty acid hydroperoxides, prost-

aglandin endoperoxides and of dithiothreitol and N-ethylmaleimide on the

activity of guanylate cyclase from splenic cells led to.the suggestion
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(Goldberg et al., 1978) that the enzyme and/or a related componenﬁ exhibicts
separate regulatory sites for hydrophilic and hydrophobic oxidants which
promote a sulfhydryl~disulfide interconversion at these sites, thereby
causing an activation of the enzyme. The presence of separate hydrophilic
and hydrophobic ligand sites was indicated by the observation that the
stimulatory effects of the two classes of oxldants were additive (Galdberg
et al., 1978). Although this model is not directly comparable ,to the model
proposed in this thesis or by Bdﬁme et al. (1978), investigation of the
effects of prostaglandin'endoperoxides and fatty acid hydroperoxides on

the activity of platelet guanylate cyclase would indicate whether differ-
ences between the models ref;cc tissug diff;rences 'or differences in the

activating agents studied.
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Scheme 2. Hypothetical model for the in vitro regulation of platelet
guanylate cyclase activity

In this model it is proposed that the regulation of guanylate cyclase
activity is dependent on the oxidative state of sulfhydryl groups located
at two sites, A and B, that are on the enzyme itself and/or on oqther com-—
ponents involved in the control of enzyme activity. The sulfhydryl groups
of Site A are more accessible and therefore more susceptible to oxidation
than those of Site B. Site A functions as an inhibitor of guanylate cyclase
when in’'the reduced state, but has no effect on enzyme activity when the
sulfhydryl groups are oxidized to the disulfide state. In addition to
stimulating enzyme activity, oxidation of Site A results in an increase in
the accessibility and susceptibility of the sulfhydryl groups of Site B to
axidative attack. Oxidation of Site B increases enzyme activity by a

much greater extent than oxidation of Site Ag thus Site B appears to
function as an activator of guanylate cyclase when in an oxiﬁized state.

The approximate guanylate cyclase activities after the various treatments
are indicated in terms of the percent stimulation or inhibition of the
activity of untreated lysate., Stimulatory effects are indicated by solid
lines, and inhibitory effect® by broken lines. The sequence of exposure
to each agent or treatment is shown. Dithiothreitol {(DTT), N-ethylmalei-
mide (NEM).
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5.2. Physiological relevance of the in vitro activation and inhibition
of platelet guanylate cyclase

Although the specific activity of platelet guanylate cyclase in
vitro is higher than in al@ost all other mammalian tissues, the results of
the present study indicate that the combined effects of inhibitory factors
such as ATP and glutathione and of suboptimal ionic conditions are likely
to lower the guanylate cyclase activity in intact platelets to almost neg-
ligible values in the absence of activating factors. Thus, the net effect
of low levels of guanylate cyclase activity and high levels of cyclic GMP
phosphodiesterase activity in platelets (e.g. >250 pmoles/min pe} mg of
protein with 1 pM cyclic GMP) (Haslam et al., 1975) would be likely to res-
ult in a low steady-state concentration of cyclic GMP in platelets, which
has variously been estimated to bq from 0.3 to 4 pmoles/10° platelets (for
rgview see Haslam et al., 1978a)(n.b. it is likely that the higher values
are in error due to the use of activated platelets or methodological prob-
lems in the assays)(Haslam et al., 1978a).

The marked increases in platelet cyclic GMP that occur in response
to aggregating stimuli (White et al., 1973; Haslam & McClenaghan, 197&;
Haslam, 1975, 1978a,b; Jacobs et al., 1975; Chiang et al., 1975; Davies et
al., 1976; Glass et al., 1977b; Weiss et al., 1978) are gelieved to occur
as a result of an activation of guanylate cyclase rather than as a result
of an inhibition of cyclic nucleotide degradation; however, the mechanism

whereby extracellular stimuli activate guanylate cyclase in platelets or in

other tissues is only beginning to be understood. The fact that the platelet

202
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enzyme appears to be entirady soluble, together with the findiné that agg-
regating agents that increase platelet cyclic GMP levels did not, with the
exception of arachidonate, increase the guanylate cyclase activity of whole
platelet lysate, support the view that indirect mechanisms may exist by
which physiological and pharmacological stimuli can activate the soluble
enzyef in the cytosol. The findings of the presént study combined with

those of other workers (Goldberg et al., 1978; Murad et al., 1978; BShme et

al., 1978; Graff et al., 1978) indicate that processes involving oxidation

- and reduction may represent a general mechanism for the regulation of guanyl-

ate cyclase activity in vivo. It is therefore possible to speculate that
upon stimulation by hormones or other physiological agents that increase

the intracellulat concentration of cyclic GMP, specific 'intermediary ox;—
dants' are generated which couple the signal at the cell membrane with the
activation of guanylate cyclase. Thus, the prostaglandin endoperoxides,
PGG, and PGH, , which are generated from arachidonic acid during

thrombin or collagen—induced platelet aggreé;tion (Hamberg et al., 1974,
1975; Samuelsson et al., 1976),. may serve as the "intermediary oxidants'
that activate'guanylate cyclase in intact platelets. This possibility is
suggested by the observation that PGG, can increase the concentration of
cyclic GMP in intact platelets (Glass et al., 1977b) together with the find-
ing that PGG, or PGH, can stimulate soluble guanylate cyclase from splenic
cells by an oxidative mechanism (Goldberg et al., 1978; Graff et al., 1978)."
Although the effect 6f the prostaglandin endoperoxides on platelet guanylate

cyclase has not yet been specifically tested, there is sufficient evidence

to believe that activation would occur, thereby distinguishing the platelet
’ )
as the only system in which a naturally occurring effector of guanylate:
S



c¢yclase can be identified.
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