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85Kr ions.

ABSTRACT

The formation, structure and composition of anodic-oxide films
"...

on Be is investigated. According to the choice of electrolyte, porosity,

dissolution and crystallinity can be varied almost at will for the formed

anodic films. Also the procedure fQr",the anodic sectioning of Be is

described and applied to determining the depth distributions of energetic
J

The presence and the distribution of eiectrolyte components that

are incorporated into the anodic films are investigated by the photon-

emission technique. T,he depth profiles of the inco~porated species are
,\

correlated with the mecbanism of film formation.
/

Finally, a criterion' for the structure of anodic oxide films on

metals is developed based on the kinetics of the formation and crystal-

The crit~rion is applied andlization processes of the various oxides.
----)

) ,
found to work ~ucceSsfUl~Y with al~ s~stems

available, whereas for unstudied ,~!~te~ it
j

for which information is

enables predictions to be

c,

made.
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CHAPTER 1

I NTRODUCT ION

The pioneer work of G~ntherschulze and Betz in the 19j~'s

initiated much of the present day interest in the formation of anodic

films. Such films have been used extensively in the capacitor industry

for over forty years, with other important uses being in microcircuitry

(1) and thin-film technology (2). More recently, major indirect uses

have emerged for anodic films in the fields of ion-implantation, rad;-

ation damage and low-temperature diffusion. These new uses all centre

around the possibil i~ty Jf~ anodic sectioning.

Anodic sectionin~rpermits the quantitative removal of thin,

uniform layers from a metal: or semi-conductor surface, so that a detail:d
" .

knowledge Gf.the depth distribution of, for example, implanted ions can
-ft

be determin~d. This in turn gives information about how deep the im-

planted ions (often a dopant in the case of semi-conductor) have pene

trated. Similarly, in the field of radiation damage, the distance that

an energetic recoil atom travels through the solid can be experimentally

determined. A closely relat~d. problem is that of determining diffusion

profiles under extreme conditions involving small thicknesses. As an

example of comparing the various techniques employed to determine se1f-

diffusion coefficients, use of lathe sectioning permits measurements of D

d -13 2 h' 1 . b -15own to '" 10 cm Is, c eml.ca etch1ng enables one to go to a out 10 -

10-16 2/ h d . t" (h .bl) .em s, w ereas ano 1C sec 10n1ng were pOSS1 e perm1ts measure-
-18 -19 2ments to about 10 - 10 cm /5.

t


























































































































































































































































































































































