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Abstract

The agtenuatibn of thermal phénons_and acoustical-
__1y-genérated phonons at different power Iﬂ..ls are compared
in a-quart#. The average attenuation at 1.67 GHz;>t room
temperagpré was 27.3 db/cm £ 2.7% and at a freq%shcy of
1.856 égz, it was 32.5 d /cm‘t 2.1%. Woodruff and Ehrenréich's
thsory was used to calgdlate the lifetime of thermal phonons

~

‘from acoustic attenuatiolf data. The relaxation.time for

12

,/ thermal phonons at.300°K was found to be 8.34x10 ~° sec.
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CHAPTER 1

INTRODUCTION AND THEORY

Woodruff and Ehrenreich [47] extending a theory.of
Akhieser 11] have derived a theoretical expression for the
attenuation of low frequency sound waves in insulators which
they have compared with the exéeriments conducted by BSmmel
and Dransfelq [8]. Landau and Rumer [25] provide a.quantum
mechanica; t}eatment-limited to @t > 1 where Q is the fre-
quency of\Ehe sound wave and t is the mean time bet&gen col-
lisions' for thermal phonons. :Their theory is not wvalid for
the case Qt < 1. |

| Akhieser's [1) mechanism for absorption of energy
arises éartly from heat flow and pargly from viscous damping.
His calculation of the viscous damping contribution to sound
absorption is based upon the idea that thé sound wave modu-
lates the elastic properties and hence the thermal phonon
frequencies of the medium throughwhich it propagétes. The
modulatéa phonons are no longer in thermél equilibrium but’
relax towards local thermal equilibrium via phonon-phonon
collisions, caused by anharmonic interaction.

Woodruff and Eh;eﬁ}eich [47] assume that the sound

wave varies the frequencies of the thermal phonons adiaba-

ticglly, and a complete Boltzmann equation is set up to



éetermine the response of the thermal ﬁhénop‘distribution to
this disturbance. As the driving term has an explicit:time
variation,'the.collision Eime_is written in terms of relaxa-
tion times for normal phonon—phbnon collision‘(N—processeé)
and all other processes (U—érOCesé) both of which tend to
‘relax the distribution_functidn't0‘$ﬁ equilibriﬁm‘éistributioh
which.isch;racteristic of a ioc 1 temperaturé T', and in the
case of the N processes iségzaji;i in phonon wave number
spade away from the origin. In fact the temperature T' arises
here becauée-the perturbation of the diétribution function by
the sound wave (of wave length A) driving the system de- ~
pendg upon the polarization of#the thermal phonohs. This
leads to-a local relaxation of these phonons, by a processﬁ
having no.analog in the theory of thermal conductivity of
insulators, towards a Planck distribution for which the phonons
in all branches are aﬁ a common temperature T' different from
the ambient temperature of crystal.

First the distribution function N(&,?,t)'for the popu-
lation of thermal phonong in a sample of unit volume is de-
termined. N(a,;,t)_is thé number of phonons of mode E at

C + . . . .
position r and time t.. The d4riving sound wave is represented

as a traveling plane wave of elastic displacement of the form

uocos[i(g.f—nt)]

where Uy is the ahplitude and o and I are wave vector and



7 frequency’of the wave respectively. This approach is valid
so long as g < qth; the wave number of the most abundant
‘thermal phonon excitation, or neglecting‘ the dispersion in

the velocity of sound so long as

< Q <_k'
N . B

‘'where kp is Boltzmann constant and-ff being Planck's constant.

T/4

If we assume the dirqu}on of sound propagation of
wavelength A is in the z-axis, then 'the Hamiltonian for a
single phonon g at position z at time.t, under the' influence

of the externally applied sound wave is

H(qQ,2z,t) = HO(E).+ Hl(é,z,t)'=-ﬁw(3;z,t) (I.1)
where _
- -+
Ho(q} = ﬁwo(q) .

and '

H) = a(d;3,U )y (@ expli(oz-0t) ] f
Or . N N -

Hy = $(q:8,0y)expli(oz-2t)] . (1.2)

Thus the perturbed frequency w is given by

w(q,z,t) = wy (@ {1 + a(g:o Uy expliloz-at)) (1.3)

where wo(a) is the frequency of a phonon of ‘mode a in the
unstrained crystal and a(a,g,ﬁo) is a coefficient depending in
a complicated way on a and ¢ and linearly on 30 for small

amplitudes.



‘Now we should distinguish three different distribu-
tion functions:
(a) The thermal equilibrium distribution at temperature T.

. '_ 1 '
No(woj = (ﬁwoj N (I.4)
[exp(+—=) ~
. kBT |

(b) . the local equilibrium distribution Nb(w) corresponding

to the perturbed frequencies w. ' . ~
(¢) And finally the perturbed distribution
-
N(q;z;t) L.

Since in practice, the attenuation is pretty small, we can
write, to first order, the perturbed distribution function in

terms, K of the total equilibrium distribution as

[}
No

N(d,z,t) = Ny() - o (3:3,u,) x expli(oz-0t)]
. B .
' (I.5)
where
Nl _ dNO(mo)
0 -hmo «
d (=)
kBT

and ¢(a;3,uo) being the wave functiom with usual .notations.
If we relate the perturbed distribution to the thermal

equilibrium distribution in first order

N(3,z.8) = Nylug) + N (1.6)

The Boltzmann transport equation can be written as
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3 - ~ " .
9 oN. &l ° dN OJH oN- 9H -
(EH) = =% I - ) (I.7)
Ot o011 9t -K } 0r; dq; - 9q; ari. :

. - | _ . | | o
whete x; are the position coordinates and the'ﬁqi*the momen tum

' coordinates of the phonons,here considered as classical par-
ticles.‘
The approxlmatlon to the COlllSlOn term 1s constructed.

We: know that the scatteringprocessesfallJniotwo classes:

(i) N-processes. which conserve the phonon.wave vector.
(ii) ' U-processes which do not conserve.the phonon wave
vector.

. . i !
And tN(a) and Tu(a) are the respective relaxation times. Now
both‘types“qf processes produce relaxation towards Planck dis-

tributions whigh-are characterized by an effective temperature
T'(z,t) T T + AT expli(oz-Qt)] (I.8)
L

where T'(z,t) is the temperature which would ultimately be
obtained in a small region around a point, if at time t, this
region were isolated from the remainder of the solid but main-
tained in. the state '‘of strain existing in it at that time.
Anq_algb the total relaxation time is given as
L.l .1 (1.9)
(@  Tel@ T (@)
Tiq N U

. Now since the average rate at which energy is removed from
the scund. wave is equal in the steady state to the average rate

Q at which energyis transferred from the phonon system to the



heat bath

) Q=- & <HED " >, (I.10)
i ' q.3 " coll

[

And if equation (I.7) is substituted.in the above équation

and making relevant approximations; we get

) . . aH . \‘.“
. \ 3 * 1 3
- Q@Q=—x1I | dq Re{N, —=} , (I.11) 7 .
. &
and the attenuation (') is given by ‘3-
. R f

A

.where W is the energy density of the sound wave and c being

the average velocity of sound wave in the golid.

: W = pa%ud/2 | (I.13),
where p is the mass density, and =~ ) ‘ 7
(i%) = (ji) + (j%) ' - (I.14)
c <y cy

where ¢, and c, are longitudinal and transﬁ?f§a velocity'of
sound in the media. If WO(E,j), TN(E,E), Tu(a;j) etc. are known,
we can determine Q. Since the knowledge of these functions .is
incomplete for most materials, thus the yalué of ¢ is found in
E?e limiting.cases when the solid can be represented by the

Debfe model for which

-

> >
wi(g,j) = cq . (I.15) *{ 1



Also T ana‘TU are supposed to be independent of E‘ .And we

finally find £6r QT << 1
' -CvTv292T . .
T = I : (r.16) -
. 3pc” o~ _
where C_ is the total 12ttice specific heat of the solid ana
v is a Griineisen constant (see Appendix‘III).

If the thermal conductivity is

1 2 : -
then 2 9
. VvEReTK '
' ' I' = —'——5— . (I.lB)
. oc

At temperatures greater than Debye temperé;ure,of the solid,
K a'% . Thus KT and hence I' became independent of temperature.
On the other hand foy §it >> 1, we get
. wvlac T IR
P o= —a . (zl.19)
dpc ’
'Equation (I.19) shows that I' is independent of T and has the
same dependence upon {§ and T as that arrived at by Landau
and Rumer [25] in tﬁeir quantum mechanical treatmeﬁt of the

case T > 1. Woodruff and Ehrenreich.[47] also discuss the

I

case where AT = 0 and A 0 and this leads to, the result
Lo . .
r =~3v292TK tan_l(zﬂr)

- PIVT . (1.20)
pc




Therefore for QT << 1, T in equation (I.20) is three tgmes the ‘
.value that is given by‘équdtion (I.i8). T is considerably
smaller wﬁén AT is consideréd thén wheﬁ'AT is neglected be-
cause for finite AT, the distributién function does not have .
as far to:;elax. This results in smaller collisioh terms and
_hence smaller attenuation. Equations (I.18) and (I.20) sug-

-

gest that the low-power attenuation is three times more than
the high-power one for the same frequency in £HEWET'<< 1 range.
Thué the task before us was to éecide which of these
expressidné best agreed with experiment. In the case §f high
powef'sound wave,‘é large AT wou;éJbe expected. Thereforg we
study the attenuation -of thermai phono ; and acoustically

~

' ‘ :
generated phonons at different power levels and subsequently

-

compare the two values.

L ]



CHAPTER II .

\

~ {a) Description of the Experiment.

By measuring thé intensity 6f.1ight scattered from
a sound wave, at different poéitions along the Crysfél axis,
it should be possible to measure its attenuation.

The material useé for the acusto-optical expgriméné
was a single crystal of a-quartz. Quartz was used as a |
. piezo-electric transduter and prOpagating material on account
of its mechanical properties and for the manner in which it
can be cut-and poliéhed‘to very close tolerances. Also
‘quartz is one of the materials for which extensive inforﬁa—
tion is avaiiable concerning elastic ;nd acoustic properties.
We employed an X-cut, right circular cylinder with tﬂp Z
polished faces. Its dimensions were 6x350 ﬁm as shown in fi-
gure 1.

It is well known that acoustic waves in transparent
materials can be used to scatter 1ight..As a result, a great
deal can be learned about the energy distribution in the acous-
tic beam by studying the angular and positional dependence of

the optical-acoustic interaction. The sound column is injected



Fig. 2.1

Quartzpycuts used as microwave ultrasonic transducers
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pigzq;electricélly in the x ﬁi}ectibn by inserting one end of
the quartz.sipdlé‘crysﬁal intb’a re-entrant microwave cavity.
‘The compreésipné'énd rare-factions of the 1op§itudina1 acoustic
wave act like a diffraction gréting. Rytov [38] has shown
that-the.phenomenon'of diffraction of.light'by ultrasonic waves
differs littig)from diffr#ction of light bf a one-dimensional
grating until

A%/N* . (I1.1)

(A\,A - wavelength of light and sound, & - length of path of

light) becomes much smaller unity. With decrease in A when

the expression (II.l) becomé¢s greater than unity, the three dimen-
' sional character of the ultrasonic lattice is manifested in
selective (Bragg) reflectfon of light. The intensity of light
diffracted at an angle ¢ to the incident light will be maximum,
if the angle 6 between the incident light and the.plane_qf the

sound wave front satisfies the condition

sinb = . (II.2)

2

R+

The Bragg angle, which represents the conditioa&gﬁgr momentum
conservation to occur during the scattering process, for small

8, the equation (II.2) becomes

g ==A_2 (II.3)

-+ -
In equation (II.2) K and k are the propagation constants (or

wave vectors) of the incident sound and light beams respec-

—
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. N G - . N . .
tively. Because the soundjwave is attenuated, the intensity-

#

will decreéase with distande from the end of the crystal in the
) 1 . . - }

+

A ' F

In our set up, the angle of incidence was determined

cavity.

by the abové equations. Light of wavelength 4880 ; or 5145 R
'from a laser passes through a focusing lens ﬂ;fwhich fécusé§
the beam and makes it incident at tha ﬁraéglanéle, to be scat-
tered by the sound column; -After an iris; to limit the stray
ligh;, the sc#tteredlbeam péssgs through a single-pass Fabry !
Perot interferometer (Appendix A2). The ligﬁétis finally de-
tected by a photomult%plier tube. A leng between Fabry-Perot °
* and photomultiplier tube is used‘to focus the scattered light

on the PM. The FP was used for gqualitative analysié only.

The sides of the crystal were ground and polished flat
té allow passage of the light in the desired direction. Aﬁd
for the generation of acoustic waves, both ends of £he crystal'
were flat to A/ld of the wave lenGth and‘mutually parallel
within 10 seconds of .arc.

The optics of the system were firs£ aligned without
the grystal. Then the crysfal, inserted into the re-entrant
cavity (Appendix Al) was placed on a turntable, which was
already adjusted to the calculated scattering angle. The"
data was qollected and analyzed by a Nova-mini coﬁputef. In-
dividual sets of data were obtained at.different values of

acoustic power.  For a given power, various counts were taken,



i4

along ﬁhe wholerlength of the crystal.in the x airecéioﬂ. Tﬁe
nunber of counts was quite high near the re-entrant cavity end;
and they became progressively smaller going away from the re-
entrant cavity end.

In order to eliminate the background counts, we'cbl—
lected the data twice’at the same point in the crystal, once
with the microwave generator '6n; and then 'off'. A typical

+

set of data collected is shown in tables I and II. 'We'd;d

the experiment first with the hglp of a count meter but later
with the Fabry—Pérot interferometér. The output was displayed
" on an osc¢illoscope an@mégqorded on an X-Y chart recorder.

We observed that the attenuation of hypersonic waves
in quartz is dependent upon the}Equare of éhe frequency of
the acoustic wave. We found that average attenuétion conétant
at 1.67 GHz frequency, was 27.3 dﬁ/cm + 2.7% and at 1.856
GHz, it wés 32.5 db/cm * 2.1%. We were unable to find the
attenuation constant at 3.456 GHz (at room temperature) because
we could not detect the signal. The reascon for this is that
the aﬁtenuation at this frequency is gquite high and thé?Efore
makes it guite difficult to see a sigﬁal, howeVer, one  could
easily detect a'signal in the low frequency region. The elastic

and phonon peaks at different powers are shown in figure-=2.4.
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calculation of the Scéttering Angle

. S 5
Ly o 5.78x10
(i) A = 4880 A A = -;--__g cm
. 1l.67x10° -
. 1 A
sinb = 5 X
. -8 . .9
, _-1°'4880%x10 "x1.67x10
sinf = 3 - =
5.78x10
6 = 4.04°

9

(b) A = 5.78x10°/1.856x20% cm 6 = 4.49°

5
Q
(ii) A = 5145 A A= §;73x109 em
‘ l1.67x10
. Y
_8 9
: 1 5145%x10 "x1.67%10
sinf = 3 g
5.78x10
8 = 4.26°
5.78x10°
{(b) A = s e 6 = 4.730

1.856x10
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Exglanation of variables from Tables I and II

C(a)
(b)

(c)
()

(e)

the:

Set position refers to the various points across the ctys-

CQunts is the actual number of counts due to the 51gnal.

% dlfference is the RMS differences w1th respect to the

mean fit curve.

tal,

Total ié the total number of counts dg; to both s'gnai
and backgroﬁnd. | |

ATC stands for atﬁénuationlconstént and the values éfe in

millimeters.

All of the counts are in multiples. of one thousand-
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POWER IS 3.24

00~ O L1 b Lo B
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o~ Wi

MFP = 3.66076

- Table I

.Typical data fer 1.67 GHz
(at. room temperature)

% Difference

2.02775
~4.80222
-1.45133

1.69982

.955142

7.07012
. 887466
2.15539

-16.1654

©2.06392
-4.931

-1.75364 -

1.21478
.301106
6.19437
-.109003

..973258

Difference’

1.86601
-4.76094
-1.20922

2.15527

1.61176

1.95424

3.44379

+= 2.68164 %

e

Position

.85
94 .
93
92
91
90
89
88
87

- Difference Position

95
94
93
92
91
90
89
88

Position

95
94
93
92
51
89
88

Counts

33.8266
24.06L£3
18.9965
14,948

. 11.3144

9.1498

6.5739 .

5.0756
3.1589

Counts

33.8266
24.0663
18.9965
14.948
11.3144
9.1498
6.5739
5.0756

Counts

33.8266
24,0663
18.9965
14.948
11.3144
6.5739
5.0756

RMS Deviation

3.52125
3.1808X

18

Log. (Count)

2.94425 -
2.70458

2.42608
2.21373.
1.88311
1.62444
1.5026

3.52125
3.18081
2.94425
2.70478
2.42608
2.21373
1.88311
1.62444

3.52125
3.18081
2.94425
2.70458
2.42608
1.88311
1.62444

2.68681 %

Ldg (Count)

Log (Count)

The computer eliminates the points which may have large

errors.
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L " Table II

Typ1ca1 data for 1.856 GHz
(at - room temperature)

RUN .

) < e
No. of data pts., voltage, and no._of 1£Efatlons
? 8?7 1? 2500RMS Weight factor = ? 2

Set position and input 1

1l set position and input 1

2 set position and input 1

3 set position and input 1

4 set position and input 1

5 set position and input 1

6 set position and input 1

7 set position and input 1

8 set position and input 1

9 .
Power is 1 .
Total $ Difference Position Counts Log (Cnts.)

1N : :

40.8224 -1.17272 1 25.5344 3.24002
23.2688 3.50917 2 19.3128+ ©.2.96077
22.1348 -3.83569 - 3 12.9568 2.56162
39.8436 3.562041 4 10.082 2.31075
24.756 -1.84702 5 6-.8964 1.931
67.7684 ~-4.30906 6 4.8552 1.58005
55.7142 -1.52801 7 3.608 1.28315
44.4944 -1.311 8 2.6112 .959809
Input 1 if recycle the fitting routin%/
? 2 . .
ATC = -3.07177 +--2,10926 % RMS Deviation = 2.90565 &

Y9 =0
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Table IIT
Various Constants of Quartz:- ({a-cut)

density ‘ o= 2.652 gm/cc

(X-cut) longitudinal velocity 5.78x10° cm/sec .

slow ﬁrangverse velocity . = 3.3><105 cm/sec
fast transverse velocity = 5.1x105 cm/sec
Debye temperature F ' = 563°K

Cv - ' . .: (ref. Lord and

Morrow. [25A)

No. of atoms/unit cell = 9

For various elastic constants, pﬁease refer to Appendix III.




'CHAPTER IIIX

CONCLUSION AND DISCUSSION

The average attenuation at 1.67 GHz for theﬁzooﬁ
temperature was found to be 27.3 db/cm * 2.7% and at a fre-
guency of 1.856 GHz, it was 32.5 db/cm t 2.1%. Assuming a
frequency sguared (92) behaxiour and comparing these values
to those obtﬁined by other investigators‘[24], [41], [8]), [l6]
etc. at different frequencies, we find that our measured
values are @ little bit high. One point to be noted is tha
"so far most of the reported values at other frequencies have
\‘apen obtained with the pulse-echo techniques. Even for the
same frequencies, the meésﬁred values reported by different
authqfs ma& differ by 20-25%. This éan clearly be seen in
figure 3.1. The po;sible efror may be in the use of the
. technique itself. 1In order to get: proper echoes, the ends
of the crystal should be highly pafallel, may be within 0.1-0.25
AO; gii/;f.it is not so,.the measured attenuation can be guite
erroneous. Stewart and Stewart [41] emphasize this point .

They showed that at 3.2 GHz, if crystal plane-parallel is
0.25 Ao the attenuation is 4:0.4 Np/cm. (1 Np = 8.68 db), and
if the crystal plane-parallel 1is 1‘A0, th? attenuation is 6*0.4

Np/cm_ : - ' N . '

22



Bommel and Dranéfeid [8] h&ve made extensive measuxe-
ments.on quartz'fgf the limiting case of Qt << 1; however
their values seem to be'dn the lower side. Finally it should be
noted that the pract1ca1 dé;ectlon sen51t1v1ty limits the pulse-
echo method to attenuatlon of less than ~ lOldb/em.

The.theory of 'sound absorption in sélids involves the
scattering of theﬁﬁgiﬂphonons which are charécterized by a
relaxation time T. If the hypersound has frequency @, the
condition QT ¥ 1 separates two limiting cases for the older

theories. This condition is fulfilled for frequencies ~ 3 GHz

at room temperature.

_ The values which we obtained in the cage of two fre-
guencies were for a wide range of powers in the milliwatt
range. The attenuation for each frequendy at different powers -
was found to be of constant valué within.experimental errors.

Let us now review the theory of.sound-absofption in

soli compare different theories. BSmmel and Dransfeld [8]

and Woodruff and Ehrenreich [47], as outlined previously,

deQ loped theéries based upan Akhieser's mechanisms [1l] of
cous damping. Nava et.al. [32] showed that the thermal
phonons are simultaneously amplitude and frequency modulated.
Bommel and Dransfeld [8] neglected the velocity of the thermal
phonons whereas Woodruff and Ehrenreich [47] included velocity
but assqmed it to be dispersionless. Maris [28] incorporateds

phonon dispersion into the Qt >> 1 perturbation limit first
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studied by Landau and Rumer [25]. He applied hié result
to his measurements on quartz which were not, however, all
ﬁakén with Q1 >> 1 satisfied. Si%éns [45) gave a first
order qua meChanitq} perturbation theory valid fd; all
T in a dispensionless medium. But it was Kﬁbk,[lsllwho in-
luded the effect of dispersion_and the fuiiﬁiénge of Qt for
. a complete formulation. All the previous results are
Weasily derivéd from Kwok's theory as special cases. Kwok [18)
empléyed/qfé;éen's function technique of many body‘theo:y to
l obtain a genéral expression for phono ddmping; However the
-approximations necessary to make Kwok's theory usable reduce
his expression to that of Woodruff and Eh;enreich._'Using the
relationship between a line width and attenuation constant

'
(IT1.1)

where 8v is the full width at half 'maximum [FWHM] or the line-
width and a is the attenuatioh constant. The different ex-
perimental values reported by the various authors were drawn
on a log-log curve as shown in figure 3.1, along with our
measured valuesﬁ We then fit Woodruff and Ehrenreich's ex-

pression to the data with the lifetime of thermal phonons left

as an adjustable parameter.

2.C T
VR -1
' = 3 tan T2Q71 . (IXI.2)
2pvg

The value of the Grineisen constant v, which was used



was 0.708, A detailea-discussion of the calculation of th&s K
parameter is giVen'iﬂ Appendix A-III, where thé values of.
all the Grﬁneisén nﬁmbegi_in the respective médes can be
caiéulated from the third-ordet elastic constanté. - In fééi -
Woodruff and Ehrenreich [47] treat v as an adjustable pa;a—"
__Neter. The_grﬁneisen constant calculate& by us was based upon
Briigger's [l11l]) formulation for_rhombohedral cfystals. The
éalculatedlvalue is fairly -close to the measured value of ”
0.733.- Thi;'meaéuremen; of v was béﬁed upon the experimenggl
detefmination of ther&ai expansiﬁn;coeff&pients by Léyis [21].
The specific heat of anuaftz at d&fferent tempera-
tures has been measured by Lord and Morrow [2§A]. The varia-
tion of values with temperature is not that great. 1In the
case of siﬁéle crystals, the value of specific heat is given
by an expression which assumes that there is one atom per unit
cell. 1In the case Qf complex lattices, which inciude N atoms
in a unit cell instead of one, the specific heat in the expres-
sion for the attenuation must be modified. The specific heat
required is that for a monoatomic lattice. Therefore, the
measured heat capacity is

~ 1/3
C, = C,/N . .\(111.3)

In the case of a-guartz, there are 9 atoms per unit

cell, hence'our value of the specific heat is thé measured value

1/3

multiplied by a factor of N = 2,08. The line shown in
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ey

. N,
12 se¢.  The lifetime T is,of course,

fig. 3.1 is for T = 8.34x10°
a constant for a given temperature.,

Using these values, it'is observed that the measureﬁ ‘
values are loﬁer than the calculated values for most of the
authors. ‘ _

| From the value of T at 300°K (as calculated from Fig. 3.1),
we can extrapolate thg relaxation time'abgve or below 300°K
assuming.that it depends on temperéture as 1/T. In this way
the line width‘oflée GHz longitudinal acoustic phonon, in;a—
quartz along the x-axis at various temperatures was evéluated
and is sﬁown in fig. III.2. We found that the linewidth calcu-
lated in this way is in agreement with Pine}s (34] exéerimental

results.

We can also find the lifetime of thermal phonons from
the definition of thermal conductivity which is given' as in

the dominant phonon approximation.

1 -2 .
K = 3- CVV T : (III.J)

where v is the average velocity of sound in the medium given

by

3 1
5=t (III.5)
Ve

<l

2
§E
t

wheére vy and v, are longitudinal and transverse velocity of

sound in the medium, K at room temperature is 1.55x1072
cal sec t emt k1 as given in reference [45A]. The 1t cal-
culated by equation (III.4) is then ¢ 3.12X10—12 sec. which

>
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o

is roughly one third of the value deduced from the acoustic

attenuation. This is not surprising, but it does indicate Ehat

the usual practice of using T deduqsd from thermal conductivity

data is probably unreliable.

-
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APPENDIX I

RESONANT CAVITIES

Cavity designing was onefof the iméortant tasks in
setting up the apparatus for the experiment. We designed three
sets of cavities which resonated at 1.67 GHz, 1.856 GHz and
3.456 GHz respectively..

All the microwave ultrasonic transducers need a high
inteﬁsity electromagnetic field oscillating at the frequency
of the ultrasonic waves to be generatéd. These fields are
normally produced in a microwave resonant cavity. The require-
ments for genefation of high effeciency are that the cavity
should have a high Q-factor and that the high field region
of the cavity, occupied by the transducer should be as large
as possible.

The re—entranf coaxial cavity has been the most widely
us'ed type when piezo-electric transducers are employed. There-
fore we also designed the re-entrant coaxial cavity as shown
in the diagram.

The electfic field is confined to a small region of the
cavity, if a quarter wavelength cavity is used, thus ensuring
a large value .of area/volume and the Q-factor can be guite'
high. |
- The cavity can be regarded as having an inductance due

to the short length of coaxial line which is tuned by the capa-
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citance formed between the post. and the opposite wall. The

resonant free space wavelength of such a cavity is approxlmate—

ly glven by Moreno's fornmla {3la]’J)

- 2 172
Kir r .
Ay = 2 1og(——)1 @_1)

where K is the_dielectric constant of the medium filling the
":/gﬁg—;;;”other symbols are defined in figure AI.l.

The expression forbko, as written aﬁove, neglects the
_fringing fields and hencé gives a élight overestimate of the
resonant frequency. Thus a cavity with 2 = 3.325 cm, 6 = 0.3 cm,
r, = 0.3 cm and r, = li9 cm, gives a calculated resonance fre-
quency of 1.73 GHz for quartz where K = 3.8; whereas experi-
méntally~this cavity is resonant a£ about 1.67 GHz. THe gother
two cavities were also resonant at the lower frequencies as
compared to the calculated resonance frequencies. Neverthe-
less, the given equation is quite good for the cavity‘design..-
It is pften desirable for the resonant cavity to be tenable
over a small range and we made'it possible in the case of
oux ré—gntrant coaxial cavity. In ‘general, this can be achieved
in several ways. The value of § is adjustable as the screw
is provided at the back of the post and hence the depth can
be adjusted. A similar effect is obtained if the transducer
is moved in and.out; the effective dielectric constant in the
gap then Qafies and the resonant frequency cﬁanges. There is

of course, a limit to the extent of the movemént of the trans-
' f

>
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" ducers; otherwise it will move right out of the electric
field of the cavity. We gave consideration to the various
~other cavity designs but the re-entrant coaxial cavity.was the
best. = . =~ |

-

. .
A-brief theoretlcal discussion abqut the re-entrant coaxial

_Cav1t¥

I rLet us examine the excitation.proqess‘that occurs in

the given .set of the cavity, as showh in figure AI.2. Tﬁe

arrangement consists of the re-entrant cavity'and the piezo-
electric quartz rbd, with a cross-section, say‘q, of whiéﬁ' “
oniy,a‘small volume shall be:iﬁsiae(;i:ﬁcaviiy. The éleqtric-
'field.of the cévity is mainly concentrated in the Qolpme V.
The rod axis parallel to the cnystailine‘x—axis. The x-com-
ponent of the field is strongest ét the unrtz sdrface: x=0
and decays for larger distances x. As will be eV1den ' the
form of this decay is of little 1mporpance, an&Q@g& 51mp11c1ty
we will assume an'exboneqtialldegéy.e_wx. Since the fie{a
-élso_bscillates with therresonance-frequency m/gn of the cavity,

R ,
the x-component: of.field in the quartz is.

pd .
)

f(..
o

E = Eoe-wXCOSwt. ' {2)

If a power P is fed into the cavity by means 6f a matched
coaxial lead and if only the x-components of the field are
taken into account, the energy density of the field can be

expressed bah

-5 o . . )
L . . - :



-

9o __0 (3)

‘ * ,

defined "effelitife". volume of the rod exposed to'thg electric-

field. Since the crystal is x-cut - the field caus a piezo-
R 4 . \
electric stress which in the absence of any str -.is given
as
P =
X = q1f11% - (4)

*

a

where dll and ¢y, are the appropriate piezo-electric and

-

elastic..constants. At the free boundary x=0, the total stress

. X, must disappear, hence we have a strain

\

" o i Xx = —dllE . (5}

_§oy the simplest solution, satisfying the boundary condition,

‘ is a travelling wave of the form

e

-

, ' < - 2MX, _~aX
"”\7 X, = -4 Eqcos (ut - LEye (6)

£

where the acoustical wavelength A and the absorption coefficient

" a are assumed to be field independent. The energy transferred

from the electribal‘field to 'such an acoustic wave equals
the work done by the strain Xy against the piezo-electric stress
Xi, and is per period,integrated over the whole crystal. There-

fore we can f%nd the incident electrical power converted into

~

acoustical energy. The same treatment can.also be applied

and'R are

for the transverse waves.. In figure AI.3, Ry c
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’ . .
resistances representing losses due to the coupling lead

"and due to dissipation in the .cavity respectively.




APPENDIX II

FABRY PEROT INTERFEROMETER

In o6ur set up, ﬁhe spéctrometer used should be able
to resolve not only the frequency 'shifts which lie in the
range of 1 to 100 GHz Buf must also be able to measure the -
linewidths down to typically a few megahertz. For such a
.high resolﬁtibn the Fabry Perot interferometer is the only
available instrument.

The Fabry Perots are capable of extremely high spec-
tral resolution, are extremely efficient and are spectrally
tunable (transmission typically ranges from 40% to 99%) .

A Fabry Perot is constructed with two partially trans-
. mitting mirrors which may be flat or radiused, thaf are
parallel to each other. Thiéis said to be a Fabry Perot (FP)
cavity. If the cavity is illuminated with a beam of coherent,

‘monochromatic light, it will transmit the beam when the optical

path between the surfaces is an integral number of

- _
‘,quarter or eighth wévélengthslof the incident light. The
- fr ctionai wavelength varies with the type of cavity used.

In an air-spaced etalon (as in our case) two mirgors
or plates as they are often called, are used with partially
transmitting coatings on their "first" surfaces and anti-
reflection coatings on their "second" surfaces. Normally
the- second surface is ;lightly wedgéd (10 to 30 min.) with res-

o

pect to first Surface to aveoid forming agditional cavities.

- -~
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'Tuning can be'accomplished_by movihg. one mirror,wiﬁﬂhrespecf'
to the other —‘and in our set hp, it wa§ done‘by piezo- .
electrlc crystals. Piezo-electric tuning is one of the best
methods and all;ws rapid repetltlve tunlng.

Fabry Perots typically use 1" to 2" diameter mirrorsh
w1th flatness of A/lDO to A/200 where plots are normally spec1-
fied for A 5000 A. The parallelism and p051tlon'of two
mirrors must be maintéined_ﬁo within A/100 to A/200 R for many ;
hours in our case. A. FP should have adequate thérmal énd
mechanical stability. And: such Stablllty is attained by mas-
sive constructlon, wellaconstralned symmetrkcal deSLgn, use
of hlgh llnearlty piezo-electiric drives for remote adjustments
and tuning gnd extensive use of low thermal expansion materials.

The condition for constructive interference for a trans-

" mitted wave front is

v

2ndcosf8 = ma : (1)

where nis the refractive index of the medium between the two
reflecting surfaces; d is the mirror spacing;.8 is the incli-
nation of the normal of the mirr to the wavefront direction;
m is the érder of interference and A is avelength.

"The spectral display obtained Qith a FP is repetitive.
The range of wavelengths which can be displayed in the same
speptfal order without falling into adjacent orders is termed
Freé Spectral'Ranée ({FRS) = c/2d4:; where ¢ ié the velocity o
liéht..'And free ﬁPecéral range. (FSR) plays a very important

~role in the system. The output of the FP for incident light of
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ar ' ‘ o '
wavelength 1; is a series of peaks. The instrument acts as
a tunable filter whose peak transmission is close to unity .

over & narrow épectral interval. Outside the interval the trans-

mission is very low.

The width of the transmission peak determines the -
resolution of the instrument. The ratio of F.S.R. to width is

‘known as the Finesse (F).
T~
_ PSR
~ width i

The F is typically 50 to 100 - in our case, it was in the
range of 40;50:' The finesse is the key measure of the inter-
‘férometer's ability to resolve closely spaced lines. The major

o .
factors that could limit the net finesse are:

(a) mirror reflectivity of less than unity'
(b) lack of parallelism and/or planeness of.the mirrors
(c) diffraction losses arising from the finite aperture

of the interferometer.

We can define another finesse as reflectivity finesse

éR given by,
FR = i-R ° . {(2)

There is yet another type of fineSse, which 'is defined as

Pinhole finesse Fé. If we see figqure A2.2, we find the maximum

path length change is

d - dcosg = fL- . (3)

P

[N TP

2
Putting cosg = 1 - %T + --+- we get
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Fp =. 227 (4)

where d is the plate spacing; D is the pinhole diameter as

then

shown in figure A2.2. If fl'is focal point of lens L

l'

2f, _
Normally Fy should be 2 or 3 times the value of the

desired operating finesse; although it may result in some loss

of transmission. And also the pinhole must be exactly on axis or

[N

the pinhole finesse will be much reduced due to the nonlinear
‘ \

change in fringe radius with angle. -

o—electric drive:

Pi
- Three independen iezé-electric elements were.used

"\{or alién nt by adjdéting the voltage to each element separate-
£qnihg and adjusting the &oltaée to all three simul-
To improve upon-contrast and rescolution, we changed-

our single pass system to the triple-pass interferometer.

TRIPLE PASS INTERFEROMETER:

The light is passed through one interferometer three
times. Corner cubé reflectogs were used to return the light
parallel to itself as shown in figure A2.3. The triple-pass
was about optimum for high contrast with low losses and méderate
finesse. The peak transhission was as high as 25% to 40%. The

s

multipass igterferometéi can be operated up to Quite high reso-

lution‘by increasing the mirror spacing.
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How to align a Fabry-Perot interferometer:.

There are two requirements for aliéning a FP. First.
the FP' must be aligned relative to the inéoming radiation. In
most cases, FP is ndrmal to the inputf The degree of angular
alignment required is not great.: Refletting'a gas laser refemwence
beam, which is coincident of optical axis, back to itself as
well as can be determined visually is normally adeguate. The
input radiation should be centred on the FP apertures.

Second, the FP plates should be aligned relative to each
other. -Initial'alignment i§ easiest with a small CW-laser;
the wavelength is not important since even 20% to 30% reflec-
tivity is q&quate for this step.

When we illuminate the FP with the laser and_look at
the ouﬁput on a white card, we obsérve a train of dots, resul-
ting from reflections on the misaligned plots as shown in figufe
A2.4., The coarse adjust mechanism should be used to collapée
the dots to a single spot. Now the plates will be sufficiently
well aligned to see the fringes. B

Now if FP is illuminated with a large, collimated mono-
chromatic beam at a wavelength within the sbectral range of the
plates; a couple of' straight line fringes will be observed on a
white card. Fine adﬁust mechanisﬁ should be used to adjust for
fringes and for even transmission across the aperture when the

FP is tuned to the input waﬁelength.
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APPENDIX III

GRUNEISEN CONSTANT

In an infinite single cfystal, it is possible to propagaté
in any given direction three pléne elastic waves with mutually
orthogonal displac¢ement vectors. Except for propagation on cer-
tain Symmetry-axis, these waves have different velocities and

attenuétion coefficient. We know.that the ultrasonic attenuation

can arise from interactions of ultrasonic wave with

aj) - thegmal phonons
b) free electrons G
c) dislocations (This interaction was ruled out.by Bommel
et.al. [8])
d) isotopes of different mass from the majority. (This
interaction was ruled out by Orbach [32a].)
e) lattice defects and specimen boundaries
£) reiaxation and diffusion mechanism involving impurities
and other lattice defects
g) l;aramagnetic impurities
h) spin waves.
Only recently it has been found. that the dominant ultrasonic
attenuation in good singlé crystals of dieleci}ic materials is
by mechanism (a); and at high temperature, one well known
attenuation of tyée (a) is thé thermo-elastic mechanism. As

we know, in Akhieser [l] mechanism, the ultrasonic wave causes

a separation in the temperature of different groups of thermal



phonons. The subsequent relaxatlon of this non—equlllbrlum distri-
bution by phonon—phonon ie Umklapp process results in ultrasonic
attqnuation.

The thiré order'elasﬁic—cons;ant measurements determine

the frequency change of-a low freguency ultras

propagating in a materiél subjecte§ to a unifdrm st tic stress.
The results of the%é can-be used Eo compute the. frequency change
of thermal phonohs in the crystal when propagating in the stress
field of.a high frequéncy ultrasonic wave. Briigger [10] gives‘

. «
a detailed discussion on this aspect of the theory.

The anharmonic properties of solids are generally des-

cribed in terms of the Griineisen parameter v as

a a ' -
v o= = (1)
-
KpCy KSCP1 .
» with a being the thermal volume expansivity, KT and Ks the

‘isothermal and isentropic compressibilities and Cp and Cv the
‘isochoric and isobaric capacities. Gamma can also be expressed

as the weightéd average of generalized parameters v

where v, expresses the volume dependence of the lattice vibratio-
nal freqﬁency for a mode i and cs being the heat capacity associa-
" ted with that mode. Now the thermal expahsion of rhombohedral
or trigonal crystals are fully described by the diagonal elements
of the expansivity tensor, therefore according to Brigger and

i 2 = w - = !
Fritz [12], vl Vi Voo and uII Vagr Therefore
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.U =2\’l‘i' VII : | {(3)

(perpendicﬁlar) énd v]] = v(parallel}). Brugger

where vl = v
gives thb general formulation in the case of trigonal crystals

as

o

L ¢ d I'(p,N)E(p,N)
. N

: : (4)
aq &(p,N) | ’

. aQ rl(p,ﬁ)gcp,ﬁ)
.V"J_= : : (5)

—g— g 1 0

oM

T de £(p,N)
L
oz §,d§2 r.“(p.ﬁ)acp,ﬁ)
v, =B (6)
[ -
T aae & (p,N)
All the notations used are éxplained below:-
- - ._7_ _E_ .
P(p,N) = - 5= (1 + 2uwp + r) : (7)
s+ B 2 2
2Fl(p,N) =" % (N7 + Ny F 2wpl + rl] (8)
. \\\\
B 2 ‘ .
rll(p,ﬁ) = - 5g N3 +.20p | +x ] (9)
where
-
w(p,N) = c13R) + CggRy * ©33R3 + oy R, clBRS + c14R6 (10}

4



a6

-

. ) ,
p(p) = (Si; + Sy, + 8.0 (0% + 0,%) + (25,5 + 8,902 Q)
py ) = (S + 5,,) (U 2 + UIZ) + 28..U0 2 (12)
ARG RS i bs B 1373 -
- 2 2 2 '
pl,(p) = 313(U1 + U,7) + 53405 (13)
also
rip,N) = I T.R, : (14)
' i N, .
. J‘_=]_
o 6 . .
ry(p,N) = I o.R; (15)
1 j=1 T2
. R 6 .
rll(p,N) = ; niRi : (16)
with
R, (p,8) = (N U,+N_U,)2
1\Pr 1Y17NoV2
— - 2 a
Rz(p,ﬁ) (N, U,=N,U)
_ 22
R3(p,§) = N3U3
R, (p,H) = (NJU.4N.U.)2 + (N.U.+N.U.)?2
q'\Pr 273 N3Y2 3°17N1Y3
R (p,N) = 2(N U +N,U,)IN U,
R (p,N) = 2 [{(82-N2)u_ U +N_N_ (U2-U2)+2N_ U, (N U +N.U)] - (17)
6 =’ 1 2°727377273'"1 T2 171772737372 )
Also _
- N 12s..45..)C.
Ty = (8y#8),48,3)C; + (25,34835)C,
t n X
o3 = (557¥81,)C; + 25,3C;

Teo= SlBCi + S33Ci ‘ (18)
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a7

‘s

= C + C c.=C

9]

lll 112 1 7113

.
1
! "1 )
- G = 3G * o)) - € = 313~ G123
* ] ) : . "
Gy = 2Cy33 C3 = C333
 } . 11}
€4 = Cr44 * G155 © L4 = Cay4
' \\ "
C5 = C113 * Cj23 €5 = Cia3
v 7 "
€6 = €114 * C124. - % = Ci3a - (19)

iIn studying the thermo-elastic properties of crystal, one

is directly concerned with only eleven Laue's groups and not
with the.thirtyQtwo point groups. .This results from the fact
ithat thermo—elastlc properties are always entrosymmetrlcal

All point groups belonglng to the, same Laue group have COMIMOIN

rarrays of elastic coefficients. "

by
g

When we substitute plané wave sodutions into the equations

of motion for anisotropic medium gives the well known relations

oviU = AUl , (20)

}and

N mn Cm.rnsNrNs { (21)

>,
r

" where the summation over repeated indi s is implied. p is the
dehsity of the medium and V the wave speed. U and N are unlt

vectors along the dlrectlons of . polarlzatlon and propagation

-~

-and hence their components Um} N, etc. are dlrectlon cosines.

The small c's are the second order adiabatic elastic stiffness
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-
coefficient in tensor netations.  Now according to Briigger [16],-
" in the first rhombohedral .group RI, the first coordinate axis

is diagohal and therefoté,_

- 2.2 .2 9 9. 2 2 3
N N [(NJHNZ) A-NIC] + [3N] (N3-ND)-NZ (3N3-ND)a = 0.° ' (22)
. . 2 2 2 2.2 2. o
) N N, [ (NJ4N5)A-N3C] - NN, [3NF-N2-6N2]Ja= 0 (23)
N.N (N2—3N2)ah= 0 : : (§4f
1N3 (Ny=3N, - : - (2

////f -The a-direction remains unchandged as in the figﬁre.

St = - ’ - _—_ ) . . . '

. N, =N, = 0 N3 1. ‘

The B-directions move into the cdordinate biane perpendicular.
to the_diaéonal axis

‘Nl = 0 i N3/N2 = k
where k satisfies the above equation q with p=0 or
" ' '

3.,3a ,2 A, _a _

k™ + TT‘k - Z k = 0 7 (25)

" whereas for the v-direction

~

The notations used in the above gqqations are

N,/Ny = V3 ; ‘N, =0 .

= C H = . = g - - . = - -
87 Cq 7 3= G5 7 A= 03720703 ¢ € =C33m20mc 4. (26)
Now to determine the polarization directions and wave speeds,

_ eqﬁation (20) is solved for all mode directions N determined



"fas abote; ‘For;the longitudinal de L, one has sxmply U =N,

for the two transverse modes T' and T", the components of the

-

- ccrrespondrngpolarlzatlonvectcrs U and V. can be expressed

-

A

in terms of the conponents of N and the angle v enclosed by

v and the vertlcal plane through N.

L4

. % :
Ul = (1—N ) [ .N1N3slnv—N2cos.v]
u, = (le )y o[- N2N351nv+Nlcosv] - (27)
| 2. 1/2
U3 Tf(l"NBJ sinv
| | Ul ). . U2‘ U3
RIG . Ty~ )
R ° ’ : ’
N3= . S U cosé siné 0. .
RIB
" . L 0 1/x © k/x
Nl=0 ‘ Tl 1 0 ) 0 ‘
RIU 4 : ) .
L RS v3/2 0 - :
1\]2/Nl= Y3 Tl 'f—'% /3cosv" % cosv"™ . sinv”
. - : 1] _l > n "
N;=0 T, /3/2 sinv 5 sinv"  cosw




N3/N2 =k

c

cot2v" =

Thus after substitution, we-
) ' v
cl = =5.55 Cz
. &
[} [}

R V2
x= (1l+k”).
1172%347 %12 )
4cl4
calculate
= 0.065 C, = 6.24
[ ] .'. )
‘= -2.82 C, = -1.78 .
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(All the values are miltiplied by 1012 dyne/cm’)

Similarly
Cl = 0.12 C2 = =1.41 C3 = 70:815
Cy = -1.10 , C5 = =3.12 CQ = 0.02
(All the values of C"'s are again multiplied
by 1ol? dyr}e/cm2 orlOlJ‘N/metrez)
. . ' . : -12 2 -1
Also elastic compliances Sij are given in 10 m N
Si11 = 12.77 Sia = -1.79. S44 = 20.04
k . '
814 = 4.50 a 533 = 9.60 ‘ 866 = 29.12
| . 513 = ~1.22
then
T, = 9.76 C, + 7.16 C.
] 1 1 .1
t -~ "
o; = 10f98 c; - 2.44 Ci
t "
., = =1.22 C, + 9.60 C, .
i i i
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Now the values of third order elasti¢ constants are given by.

" McSkimmin et.al. [46]

c

c

C

C

c

‘111
“112
113
"114

123

€124

- C

133

= -2.10

'=3.45
= 0.12
= —i.63
= -2.94

= -0.15

= =-3.12

Ci3s

c

Cis5

C

222

C333

C344

€444

‘Aga¥n all the values are multiplied by 10

substituting these values we get

Similarly

and

il

n

[]

-5.33088

-11.92564

-4.98624

6.12318
~4.86292
-2.33508
0.7923
~7.06272

-2.65116

.

~l
fi

I

Q
Il

Q
)

Il

144 =

= -0.64852
' o~

= -1.34

= -2.00

= -3.32 '
= -8.15

= -1.10

= -2.76 .

12

dynes/cm?. Oon

0.94612

-4.04744

~1.72296.

0.41541
~3.39892
-1.95932

-1.36153

0.23636



..'

. We also know the value of elastic stiffness in the units of

1011 dynes/cm2 as'given below .

- .

. ¥

€y = 8.674 €12 = 0-699 3
o3 = 10.72 ¢y3 = 1-191
Cyq = 579 e, = ~1.791 .

If we deal with only longitudinal case and if we Substitute
these values in equations (8)5 {(9), (10), (11);.(12) and (13),
we get the value of vl and v[I. The value of B used is b
3.7 Ogédynes/cmz. Therefore combining the two values with
:Fhe formula ? = vli +2Vl; give us the value of theléfﬁneisen
constant, which is 0.708 for the x-direction and along the
z-axis it is.-0.351. The calculated,valués are fairly close

t0 the measured values reported by Lewis [21].
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