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Abstract 

The attenuation of thermal phonons and acoustical­

ly generated phonons at different power l~S are c~mpared 

in a-quartz. The average attenuation at 1.67 GHz ~t room 

temperature was 27.3 db/cm ± 2.7% and at a freque~y of , o . 
1.856 G~z, it was 32.5 dj/cm ± 2.1%. Woodruff and Ehrenreich's 

theory was used to calCte the 'lifetime of thermal phonons 

i~~ acousti~ attenuation data. The relaxation time for 

thermal phonoqs ~t~300QK was found to be 8.34xlO-12 sec . 
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CHAPTER 1 

INTRODUCTION AND THEORY 

Woodruff and Ehrenreich (47) extending a theory of 

- \ 
Akhieser [1) hav~ derived a theoretical expression for the 

attenuation of low. frequency sound waves in insulators which 

they have compared wi th the experiments conducted by Bemmel 

and Dransfel~ (8). Landau and Rumer (25) provide a quantum 

mechanical treatment limited to nT > 1 where n is the fre-
\ ~ 

quency of the sound wave and T is the mean time between col-

lisionsfor thermal phonons. 'Their theory is not valid for 

the case nT < 1. 

Akhieser's [1) mechanism for absorption of energy 

arises partly from heat flow and partly from viscous damping. 

His calculation of the viscous damping contribution to sound 

absorption is based upon the idea that the sound wave modu-

lates the elastic properties and hence the thermal phonon 

frequencies of the medium through which it propagates. The 

modulated phonons are no longer in therma~ equilibrium but' 

relax towards local thermal equilibrium via phonon-phonon 

collisions, caused by anharmonic interaction. 

I'/oodruff and Eh~reich (47) assume that the sound 

wave varies the frequencies of the,thermal phonons adiaba-

tic~lly, and a' complete Boltzmann equation is set up to 

1 
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determine the response of the ~hermal phonon distribution to 

this disturbance. As the· driving term has an explicit· time 

variation, the collision time is written in cerms of relaxa-

tion times for normal phonon-phonon collision (N-processes) 

and all other processes (V-process) both of which tend to 

relax the distribution. function ·to an equilibrium distribution ,. 
which is character ist.ic of a, 1??9¢,temperature T', 

case of the N processes is shifted in phonon wave 

and in the 

number 

space away from the origin. In fact the temperature T' arises 

here because the perturbation of the distribution function by 

the sound wave (of wave length A) driving the system de-

pends upon the polarization of~the thermal phonons. This 
-;'1-" 

• • leads to a local relaxation of these phonons, by a process 

having no. analog in the theory of thermal conductivity of 
• 

insulators, towards a Planck distribution for which the phonons 

in all branches are at a common temperature T' different from 

the ambient temperature of crystal. 
-> -> First the distribution function N(q,r,t) for the popu-

lation of thermal phonons in a sample of unit volume is de-

termined. 
+ + . + 

N (q, r, t) .l.S the number of phonons of mode q at 
•. -> posl.tl.on r and time t .. The driving sound wave is represented 

as a traveling plane \"ave of elastic displacement of the form 

-> 
where Uo is the amplitude and a and n are wave vector and 
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frequency of the wave respectively. This ap~roach is valid 

so long as a < qth' the wave number of the most, abundant 

thermal phonon excitation, or neglecting the dispersion in 

the velocity of sound so long as 

-..,' 

where kBis Boltzmann constant and·~ being Planck's constant. 

If we ass~me the dire~ion of sound propagation of 
i 

wavelength A is in the z-axis, then 'the Hamiltonian for a 

single phonon q at position z at time,'...t.. under the' influence 

of the externally applied sound wave is 

(Ll) 

where 

and 

or 

( ......... ) . 
~l = • q;a,uo exp[1(az-Dt)] (I. 2) 

Thus the perturbed frequency w is given by , 

• 
(I. 3) 

... ' ... 
where wO(q) is the frequency of a phonon of 'mode q in the 

-+ -+ -+ • 
unstrained crystal and a(q,a,uo) is a coefficient depending in 

-+ -+ -+ . 
a complicated way on q and a and linearly on Uo for small 

amplitudes. 

, 
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,Now we should distinguish three different distribu-

tion functions: 

(a) The thermal equilibrium distribut10n at temperature T. 

1 
-t\wo 

[exp(k T) - 1) 

/ ,B , 

(I. 4) 

the local equilibrium distribution NO(w) corresponding 

to the perturbed frequencies w. 

(c) And finally the perturbed distribution 
... 

N(q;z,t) .' 

Since in practice, the attenuation is Rretty small, we can 
" 

write, to first order, the perturbed distribution function in 

terms,of the total equilibrium distribution as 

N' o ... ... 
k T <I>(q;o,u o) 

B 

... 
N(q,z,t) = NO(W) - x exp[i(az-nt») 

::" 

where (I. 5) 

and 
... ... , 

~(q;o:uo) be~ng the wave function with usual ,notations. 

If we relate the perturbed distribution to the thermal 

equilibriufu distribution in first order 

(I. 6) 

The Boltzmann transport equation can be written as 
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, . 

(I.7) 

whel:e rl.' 'are the position coordinates and the -H'q, ··the momentum . l. 

coordinates of the phonons,here considered as classical par-

ticles. 

.We· know 

(i)' 

(ii) 

The approximation to the collision term is constructed. 

that the scattering processes .fall in:to two classes: , 

N-proces·ses. which conserve the phonon .wave vector. '-

U-process~s which do not conserve.the phonon wavel 

vector. 
I '... ... And 'N(~) and 'u(q) are the respective relaxation times. Now 

both' ty~es'of processes produce relaxation towards Planck dis­

tributions whi~hare characterized,by an effective ~mperature 

T' (z, t) !: T + LIT exp [i (oz'-rlt) 1 (I. 8) , 

where T' (z,t) is the temperature which w.ould ultimately be 

obtained in a sma·ll region around a point, if at time t, this 

region were isolated from the remainder' of the solid but main-

tained in. the state 'of strain existing in it at that time. 
/~ 

And also the total relaxation time is given as • 

_1._ = 1 ... ... 
,(q) 'N(q) 

+ 1 (I. 9) 

Now'since the average rate at which energy is removed from 

the sound wave is equal in the steady state to the average rate 

Q at which energy is transferred from the phonon system to the 



, . 

heat bath 

o = E 
q, j 

<H(aN) •.• > • 
at. colI 

, 

6. 

(I.lO) 

Andi'f equation (I.?) is substituted.in the above equation 

and making relevant approximations; we get 

and the attenuation (r) is given by 
;. 

• r = O/cW 

• 

(I.ll) r 

(I.12) 

where W is the energy density of the sound wave and c being 

the average velocity.of sound wave in the solid. 

.•.. r-...:.:..'-.--; to 
where p is the 

2 2 
.W = pQ UO/2~ 

mass densi ty, and·' I 

(2.-) 
3 c 

. . , 

,. 

(1.13>. 

(1.14) 

where c l and c t are longitudinal and transv~ velocity of 

sound in the media. If \~o(q,j), TN(q,'j), TU(q,j) etc. are knmm, 

we can determine Q. Since the knowledge Qf these functions ,is 

incomplete for most· materials, thus the value of Q is found in 

the liniiting cases when the solid can be represented by the 
~ ./ 

Debye model for which 

.. . .. 
vi (q, j) = cq (1.15) 

" . '! • 
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... 
and tu ar~supposed to be independent of q •. And we 

finally find for Ilt « 1 

r = 
3pC~ ... 

(I.16 ) 

--, 

where Cv is the total la~tice specific heat of the solid ana 

v is a Gruneisen constant (see Appendix III). 

If the thermal conductivity is 

(I.17) 

then 

(I.IB) 

At tenperatur.es greater than Debye tempera~ure. of the solid, 

1 K ~ T Thus KT and h~nce r became independent of temperature. 

On the other hand fo~ nt » 1, we get 

r = 
1Tv 2nC T v 

3 4pc 
(I'.19) 

Equation (I.19) shows that r is independent of T and has the 
• 

same dependence upon nand T as that arrived at by Landau 

and Run~r [25] in tJeir quantum mechanical treatment of the 

case nT > 1. Ivoodruff and Ehrenreich .[471 also discuss the 

case where fiT = 0 and ~ = 0 and this leads to, the result 

-1 
tan (2nT) 

2nT 
(I. 20) 

, 
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Therefore for OT « 1, r in equation (I.20)is three times the 

,value that is given by equation (I.iB). r is considerably 

smaller when liT is considered than when liT is neglected be­

cause for finite liT, the distribution function does not have 

as far to relax. This results in smaller collision terms and 

,hence smaller attenuation. Equations (I.18)' and (I.20) sug-

gest that the low-power attenuation is three times more than 
,---

the high-power one for the same frequency in the nT « 1 range. 

Thus the task before us was to decide which of these 

expressidn~ best agreed with experiment. In the case of high , 

power sound wave, a large liT woul~~expected. Therefore we 

study the attenuation 'of thermal phon ods and acoust~cally , 
generated phonons at different power levels and subsequently 

compare the two values . 

• 

I 



CHAPTER II. 

(al Des cription of the Experiment" 
\ 

By measuring the intensity of light scattered from 

a sound wave, at different positions along the crystal axis, 

it should be possible to measure its attenuation. 

The material used for the acusto-optical experiment 

was a single crystal of a-quartz. Quartz was used as a 

,piezo-electric transdu~er and propagating material on account 

of its mechanical propLrti~s and for the manner in which it 

can be cut and polished' to very close tolerances., Also 

quartz is one of the materials 'for which extensive informa-

tion is available concerning elastic and acoustic properties. 

We employed an x-cut, right circular cylinder with two Z 
", 

polished faces. Its dimensions were 6xSO rom as shown in fi-

gure 1. 

It is w~ll known that acoustic waves in transparent 

materials can be used to scatter light. As a result, a great 

deal can be learned about the energy distribution in the acous-

tic beam by studying the angUlar and posi~ional dependence of 

the optical-acoustic interaction. The sound column is injected 

9 
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\ Fig. 2.1 

Quartzocuts used as mi,crowave u1 trasonic transducers 
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piez~electrically in the x ~iJection by inserting one end of 
> 

the quartz ,single crystal into a re-entrant,microwave cavity. 
, ' 

The cOJq?ressions and rare-factions of the lOJ;lgitudinal acoustic 

wave act like a diffractio~ grating. Rytov [38] has shown 

that'the phenomenon of diffraction of light 'by ultrasonic waves 

differs ~itt~ from diffraction of light by a one-dimensional 

\ grating until 

(11.1) 

(A,A ~ wavelength of light and sound, ~ - length of path of 

light) becomes much smaller ~_ .• unity. liith decrease. in A when 

the expression (11.1) becom s greater than unity, the three dimen-

sional character of the ultr sonic lattice is manifested in 

selective (Bragg) reflec on of light. The intensity of ~ight 

diffracted at an angle ~ to the incident light will be maximum, 

if the angle 9 between the incident light and the plane of the 

sound wave front satisfies the condition 

... 
. 9 1 K 

s~n =-2 
it 

The Bragg angle, which represents 

conservation to occur during the 

9, the equation (11.2) becomes 

... ... 

(II. 2) 

moment~m? the conditio~r 

scattering process, for small 

(II: 3) 

In equation (11.2) K and k are the propagation constants (or 

wave vectors) of the incident so~nd and light beams respec-
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• 
tively. 

~ ; 

Because the sound wave is attenuated, the intensity. 

will decrease with from the end of the crystal·in the 

cavity. 

In our set up, the angle of incidence was determined 
o 0 

by the above equations. Light of wavelength 4.880 A or 5145 A 

from a laser passes through a focusing lens L:j 'which focuses 
• 

the beam and makes it inciden£ at the Bragg angle, to be scat­, 
tered by the sound column. After an iris, to limit the stray 

ligh·t, the scattered beam passes through a single-pass Fabry 
, 0 

Perot interferometer (Appendix A2). The light is finally de-
, 

tected by a photomultiplier tube. A lens between Fabry-Perot 
\ 

and photomultiplier tube is used <to focus the'scattered light >_._ 
on th& PM. The FP was used for qualitative analysis only. 

The sides of the crystal were ground and polished flat 

to allow passage of the light in the desired direction. And 

for the generation of acoustic waves, 'both ends of the crystal 

were flat to A/IO of the \~ave len~ al'ld mutually parallel 

within 10 seconds of .arc. 

The optics of the syst!'!m were first aligned \~ithout 

the crystal. Then the crystal, inserted into the re-entrant 

cavi ty (Appendix Al) was placed on a turntable, which \~as 

already adjusted to the calculated scattering ang.le. The' 

data was collected and analyzed by a Nova-mini computer. In-

dividual sets of data were obtained at different values of 

acoustic power. For a given pQ\~er, various counts were taken, 
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• 

along the whole length of the crystal. in the x direcho~. The 

number of counts 'was qui~e high near the re-entrant cavity end; 

and they became progressively smalle~ going away from the re­

entrant cavity end. 

In order to eliminate the background counts, we col­

lected the data twice'at the same point in the crystal, once 

with the microwave generator 'on' and then 'off'. A typical 

set of data collected is' shown ih tables I and II. 'We did 
t, 

the experimen~ first with the help of a count meter but later 

with the Fabry-Perot interferometer. The output was displayed 

on an oscilloscope andre"orded on an X-Y chart recorder. 

We observed that the attenuation of hypersonic waves 

in quartz is dependent upon the \quare of the frequency of 

the acoustic wave. We found that average attenuation constant 

at 1.67 GHz frequency, was 27.3 db/cm ± 2.7% and at 1.856 

GHz, it was 32.5 db/cm ± 2.1%. I'le were unable to find the 

attenuation constant at 3.456 GHz (at room temperature) because 

we could not detect the signal. The reason for this is that 

the attenuation at this frequency is quite high and th~fore 
makes it quite diff'icul t to see a signal, however, one could 

easily detect a signal in the low frequency region. The elastic 

and phonon peaks at different powers are shown in figure~.4 . 
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BLOCK DIAGRAM 

INPUT OUTPUT 

- + .... 
'" 

P.M.TUBE . DISCRIMINATOR COUNT 
METER \~ 

. __ . 
'1 

". X Y 
" 00 ,00 

,-

MANOMETER X-V RECORDER 

Fig. 2.3 
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Calculation of the Scattering Angle 

(i) 

" 

(ii) 

•. 0 

A = 4880 A 
5 A _ 5.78xlO 

- 1.67xI09 

sine 1 A 
= 2' A 

1 4880xlO- 8Xl.67xl09 
sine = 2' 5.78><105 

o 
A = 5145 A 

sine = 

em 

A· = 

e = 4.49 0 

5.78xl05 

1. 67xI09 

1 5145XIO- 8xl.67xl0 9 

2 5.78xI05 

6 = 4.26 0 

em 

em 

(b) A = S.78XIOS 
em 

1. 8S6xl09 6 = 4.7.3 0 

16 

, 

... 

, 
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Explanation of Variables from Tables I and II , 

• 

(a) Colints is the actual .number of counts due to the signal. 

(b) % difference is the RMS differences with respect to the 

(c) 

(d) 

mean fit curve. 

Set position refers to·the ~arious points across the crys-
.. / 

. tal. r 
Total is the total number of counts~ to both-:rgnal 

and background. 

(e) ATe stands for att~nuation· constant and the values are in 

millimeters. 

Note: All of the counts are in multiples. of one thousand~ 

• 

.~ 



.-~ 

18 -
Table I 

. Typical data f~r 1. 67 GHZ 
(at. room· temperature) 

\ 
POWEn IS 3.24 • 

% Difference position .Counts Log. (Count) 

1 2.02775 .95 33.8266 3.52125 
2 -4.80222 94. 24.06»3 3.18081 
3 -1. 45133 93 18.9965 2.94425 
4 1. 6,9982 92 14.948 2.70458. 
5 .9551::4'2- . 91 11.3144 2.42608 
6 7.07012 90 9.1498 2.21373. 
7 • 887466 89 6,5739 . 1. 88311 
8 2'.15539 88 5.0756 1. 62444 
9 -16.1654 97 3.159 1. 5026 

% Difference Position Counts Log (Count) 

1 . 2.06392 95 33.8266 3.52125 
2 -4:931 94 24.0663 3.18081 
3 -1. 75364 93 18.9965 2.94425 
4 1. 21478 92 14.948 2.7049'6.. 
5 .301106 91 11. 3144 2.42608 
.6 6.19437 90 9.1498 2.21373 

\ 7 -.109003 89 6.5739 1. 88311 
8 ·.973258 88 5.0756 1. 62444 

% Difference Position Counts Log (Count) 

1 1. 86601 95 33.8266 3.52125 
2 -4.76094 94 24.0663 3.18081 
3 -1. 20922 93 18.9965 2.94425 
4 2.15527 92 14.948 2; 70458 
5 1. 61176 91 11.3144 2.42608 
7 1. 95424 89 6.5739 1.88311 
8 3.44379 88 5.0756 1.62444 

-
HFP = 3.66076 +- 2.68164 % RMS Deviation = 2.68681 % 

* 
\ 

The compu ter eliminates the points which may have large 
errors. 

• 
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Table II 

Typical data for 1.856 GHz 
(at" room temperature) 

RUN 
~ .,''1 

No. of data pts., voltage, and no. of itkrations 
? 8? 1? 2500RMS Weight ~actor = ? 2:b " 
Set position and input 1 
? 1 set positipn and input 1 
? 2 set position and input 1 
? g set position and input 1 
? 4 set position and input 1 
? 5 set position and input 1 

\? 6 set position and input 1 
? 7 set position and input 1 
? 8 set position and input 1 
?p9 '1 " ower ~s 

Total % Difference Position 
I>. 

40.8224 -1.17272 1 
23.2688 3.50917 2 
4!2.1348 -3.83569 3 
39.8436 3.62041 4 
24.756 -1.84702 5 
6"7.7684 -4.30906 6 
55.7142 -1. 52801 7 
44.4944 -1.311 8 
Input 1 if recycle the fitting 
? 2 

Counts 

25.5344 
19.3128' 
12.9568 
10.082 

6.8964 
4.8552 
3.608 
2.6112 

routine 
../ 

19 

Log (Cnts. ), 

3.24002 
" ,2.96077 

2.56162 
2.31075 
1. 931 
1.58005 
1.28315 
.959809 

ATC = -3.07177 +--2.10926 % RMS Deviation = 2.90565 % 

Y9 = 0 

• 

, 
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Table III 

Various Constants of Quartz:- (a-cut) 

• 

density 

(X-cut) longitudinal velocity 

slow transverse velocity 

fast transverse velocity 

Debye temperature 1 

No. of atoms/unit cell 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

2.652 grn/cc 

5.78x l05 cm/sec 

3.3xl05 crn/sec 

5.lx l05 cm/sec 

563°K 

(ref. Lord and 
Morrow [25Al 

9 

For various elastic constants, p)ease refer to Appendix III. 
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.CHAPTER III 

CONCLUSION AND DISCUSSION' 

.,.. 
The average .attenuation at 1.67 GHz for the room 

temperature was found to be 27.3 db/cm ± 2.7% and at a fre­

quency of 1.856 GHz, it was 32.5 db/cm ± 2.1%. Assuming a 

frequency squared <n2) behaqiour and comparing these values 

to those obtained by other investigators [24), [41), [8), [16) 

etc. at different frequencies, we find that our measured 

values are 9 little bit high. One point to be noted is tha 

so far most of the 

~en obtained with 

reported values at other frequencies ave 

the pulse-echo.techniques. Even for the 

same frequencies, the me1s~red values reported by different 
'\ . 

authors may differ by 20-25%. This can clearly be seen in 

figure 3.1. The possible error may be in the use of the 

technique itself. In order to get· proper echoes, the ends 

of the crystal should be highly parallel, may be within 0.1-0.25 

Ao' a~f it is not so,. the measured attenuation can be quite 

erroneous. Stewart and Stewart [41) emphasize this point 

They showed that at 3:2 GHz, if crystal plane-parallel is 

0.2~ AO' the ~ttenuation is 4tO.4 Np/cm (1 Np ~ 8.68 db), and 

if the crystal plane-parallel is 1 AO' the atte~uation is 6±0.4 

Np/cm. '. 
, 

22 

• 
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Bommel and Dransfeld [8] have made extensive measu~e-

ments on quartz for the limiting case of nT «1; however 

their values seem to be' on the lower Slide.' Finally it 'should be 

that the 'practical d~ection sensitivity limits the pulse­

J echo. method to attenQ,ation of ,less thad ",ia Idb/om. 

noted 

The theory of:sound absorption in s61iqs involves the 

scattering of ther~PhOnons which are character~zed by a 

relaxation time T. If ,the hypersound has frequency n, the 

condition nT " 1 separates two limiting cases for the oider 

theories. This condition is fulfilled for frequencies'" 3 GHz 

at room temperature. 

The values which we obtained in the case of two fre-

quencies were for a wide range of powers in the milliwatt 

range. The attenuation for each frequency at different powers 

was found to be of constant value within experimental errors. 

Let us now review the theory of, sound.absorption in 

compare different theories. Bommel and Dransfeld [8] 

Noodruff and Ehrenreich [47], as outlined previously, 

loped theories based upon Akhieser's mechanisms [1] of 

• cous damping. Nava et.al. [32] showed that the thermal 

phonons are simultaneously amplitude and frequency modulated. 

Bommel and Dransfeld [8] neglected the velocity of the thermal 

phonons 'vhereas Woodruff and Ehrenreich [47] included velocity 

but assumed it to be dispersionless. Maris [28] incorporate~ 

phonon dispersion into the nT » 1 perturbation limit first 

-' 

• 

,. 
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studied by Landau and Rumer [25]. He applied his result 

to his measurements on quartz which were not, however, all 

taken with rlT », 1 satisfied. Si~ns [45] gave a first 
. 

~ order qua~ mechanic~ perturbation theory valid for all 

\ rlT in a diSpejSiOnless medium. But it was Kwok [18) who in­

~luded the effect of dispersion and the full range of rlT for 
(' ,~ 

, a complete formulation. All t~previous results are 

~ easily derived from KWok' s theory a:, special cases .. 

~mployed~een'S function technique of many body theory to , - , . 

Kwok [18) 

obtain a general expression for Pho7 da'mping. However the 

_approximations necessary to make Kwok's theory usable reduce 

~is expression to that of Woodruff and Eh~enreich. Using the 

relationship between a line width and attenuation constant 

r ~ lTOV ~ av 
- l'. 

(III.l) 
, 

where OV is the full width at half 'maximum [FWHM) or the line-

width and a is the attenuation constant. 'The different ex-

perimental values reported by the various authors were drawn 

on a lo~-log curve as shown in figure 3.1, along with our 

measured valueso. We then fi t I~oodruff and Ehrenreich's ex-

pression to the data with the lifetime of thermal phonons left 

as an adjustable parameter. 

r ~ 
2"C T 

v " V -1 tan 2rlT. (III. 2) . 

The value of the GrUneisen constant v, which was used 

\, 
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was 0.708. A detailed discussion of the calculation of this 
,r 

parameter is given in Appendix A-III, where the values of 

all the GrUneisen numbers in the respective modes can be 

caiculated from the ,third-order elastic constants. In fac't,-

Woodruff and Ehrenreich [47] treat \I as an adjustable para­

meter. The i"riineisen constant calculated by us was bas'ed upon 

BrUgger's [11] formulation for rhombohedral crystals. The 

calculated value is fairly.close to the measured value of 

0.733. This'mea:Surement of \I was based upon the experimental 

determination of therooi expansion: coef:l\cients by Le~is [21]. 

The specific heat of a-'quartz at different tempera­

tures has been measured by Lord and Morrow [2'SA]. The varia-

tion of values with temperature is not that great. In the 

case of s~mple crystals, the value of specific heat is given 

by an expression which assumes that there is one atom per unit 
. 

cell. In the case qf coroplex lattices, which include N atoms 

in a unit' cell instead of one, the specific heat in the expres-

sian for the attenuation must be modified. The specific heat 

required is that for a monoatomic lattice. Therefore, the 

measured heat capacity is 

c' = C INl/3 
v v ~IIr. 3) 

In the case of a-quartz, there are 9 atoms per unit 
, 

cell, hence our value of the specific heat is the measured value 

multiplied by a factor of Nl/3 = 2.08. The line shown in 
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-12 fig. 3.1 is for t = 8.34x IO sec. The lifetime t 

a 'constant for' a given temperature., 

28 

'. --, 
'"'. is,of course, 

Using these values, it'is observed that the measured 

values are l~r than the calculated values for,most of the 

authors. 

From the value of T at 300 0 K (as calculated from Fig. '3.1) , 

we can extrapolate the relaxation time'above or below 300 0 K 

assuming,that it depends on temperature as liT. In this way 

the line width of 28 GHz longitudinal acoustic phonon, in a-
~ 

quartz along the x-axis at various temperatures was evaluated 

and is shown in fig. 111.2. We found that the linewidth calcu-

lated in this way is in agreement with Pine's [34) experimental 

results. 

\~e can also find the lifetime of thermal phonons from 

the definition of thermal conductivity which is given' as in 

the dominant phonon approximati'on. 

where v is the 

by 

1 _2 
K = C V T 3' v 

average velocity of 

3 1 + 2 
=3 = '3 '3 v vJ:. v t 

(III.4 ) 

sound in thlC, medium given 

(IlI.S) 

wh~re vJ:. and v
t are longitudinal and transverse veloc~ty of 

sound in the medium, K at room -2 temperature is 1.SSxlO 
-1 ·1 -1 , cal sec cm K as g~ven in reference [4SA). 

-12 
is then> 3.12xlO culated by equation (III.4) 

The t cal-

sec. which 
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is roughly one third o~ the value deduced from the acoustic 

attenuation. This is not surprising, but it does indicate that 
• 

the usual pr~ctice of using T dedUC~d from thermal conductivity 

data is probably unreliable., 
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RESONANT CAVITIES 
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Cavity designing was one~of the important tasks in 

setting up the apparatus for the experiment. We designed three 

sets of cavities which resonated at 1.67 GHz, 1.856 GHz and 

3.456 GHz respectively. 

All the microwave ultrasonic transducers need a h~gh 

intensity electromagnetic field oscillating at the frequency 

of the ultrasonic waves to be generated. These fields are 

normally produced in a microwave resonant cavity. The require­

ments for generation of high effeciency are that the cavity 

should have a high Q-factor and that the high field region 

of the cavity, occupied by the transducer should be as large 

as possible. 

The re-entrant coaxial cavity has been the most Widely 

uS'ed type when piezo-electric transd'ucers are employed. There­

fore \~e also designed the re-entrant coaxial cavity as shown 

in the di~gram. 

The ele'ctric field is confined to a small region of the 

cavity, if a quarter wavelength cavity is used, thus ensuring 

a large value ,of area/volume and t~e Q-factor can be qUite' 

high. 

• The cavity can be'regarded as having an inductance due 

to the short length of coaxial line which is tuned by the capa-
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citance formed between the post and the opposite wall: The 
• 

resonant' free space wavelength of such a .cavi ty is approximate­

ly given by Moreno's formula [31aj ~ 
KR.rl~ r 1/2 

Ao = 2rr[ 20 109(r~)j ~l) 

where K is the dielectric constant of the medium filling the 

-~other ~YmbOlSare defined in figure AI.l. 

The expression forAO' as wr~tten above, neglects the 

fringing fields and hence gives a slight overestimate of the 

resonant frequency. Thus a cavity with R. = 3.325 cm, 0 = 0.3 cm, 

r
l 

= 0.3 cm and r 2 = 1.9 cm, gives a calculated resonance fre­

quency of 1. 73 GHz for quartz where K = 3.8; whereas "experi-

mentally" this cavity is resonant at about 1.67 GHz. Tlie other • 
two cavities were also resonant at the lower frequencies as 

compared to the calculated resonance frequencies. Neverthe­

less, the given equation is quite good for the cavity design. , 

It is often desirable for the resonant cavity to be tenable 

over a small range and we made it possible in the case of 

our re-entrant coaxial cavity. In general, this can be achieved 

in several ways. The value of 0 is adjustable as the screw 

is provided at the back of the post and hence the depth can 

be adjusted. A similar effect is obtained if the transducer 

is moved in and out; the effective dielectric constant in the 

gap then varies and the reson~t frequency changes. There is 

of course, a limit to the extent of the mov~m~nt of tlie trans-

, 
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'ducers; otherwise it will move right ~ut of the electric 

field of the cavity. .We gave consideration to the various 

other cavity designs bu~ the re-entrant coaxial cavitY,was the 

best. ... ' . 
. ' ,.:...w· 

A-brief theoretical discussion abqut the re-entrant coaxial 
cavity: , 

Let us examine the excitation. process that occurs in 
. ' 

the given·set of, the cavity"as shown in figure AI.2. The 

arrangement· consists of the re-entrant cavity and the piezo-

electric quartz rod, 

oniy,a small volume 

, 
with a cross-se~on, say'q, of wh~ch' 

shall be. 'i~si~e ~e·'cav{ty. T~e electric 

field of the cavity is mainly corrcentr·ated in the volume V. , 

The rod axis parallel to the crystalline x-axis. The x-com-
. . ( . ~ 

ponent of the field is strongest at .the qu~rtz surface: x=0 .. . . 
and decays for larger distances x. As will be evi<!~I1~ the 

form of this decay is of little imp~r:tance, an~ si~h:City 
we will assume an'exponential decay e-~x. since the field , " , . 
al~o 'oscillates with the. resonance frequency W/21T of the cavity, 

" r . , .-. " . 
the x-component'·ol:. ti.eld in the quartz is, . ,~, ~ 

" 

(2) 

If a pow~r P is fed into the cavity by means of a matched 

coaxial lead and if only the x-components of the field are 

taken into account, the energy density of the field can be 

expressed b:iiD 

• . ' . ) 
\ . 

, . 
,. 
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, 

(3) 

where e is the dielectric constant of quartz. 9
0 

being the 

quality factor e unloaded cavity 

defined volume of the rod exposed to electric· 

field. Since the crystal is x-cut - the field a piezo-
"-... 

electric st:ress which in the absence of any str' -·is given 

as 

(4 ) 

~ 

where d
ll 

and c II are the appropriate piezo-electric and 

elastic· ·constants. At the free boundary x=0. the ",total stress 

. Xx must disappear, hence we have a strain 

( 5) 

Now the simplest solution, satisfying the boundary condition, 

is a travelJing wave of the form 

.~ 
I' 

X 
x (6) 

where the acoustical wavele~gth A and the absorption coefficient 

a are assumed tq be field, independent. The energy transferred 

from the electrical field to 'such an acoustic wave equals 

the work done by the strain X· against the piezo-electric stress x . 

x~, and is per period,integ:rated over the whole crysta,l. There-

fore we can find the incident electrical power converted into 
( . 

acoustical energy. The same treatment; can. also be applied 

for the transverse waves .. In figure AI.3. RL and RC are -
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resistances representing losses due to the coupling lead 

and due to dissipation in the .cavity respectively. 

\ 

. . 

\ 
\ 
\ 

, .~ 

•• 

) , 

\ 

• 
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APPENDIX II 

FAB:RY PEROT INTERFEROMETER 

In Our set up, the spectrometer used shOUld be able 

to resolve not only the frequency 'shifts which lie in the 

range of 1 to 100 GHz but must also be able to measure the , 

linewidths down to typically a fe\" megahertz. For such a 
. 

,high resolution the Fabry Perot interferometer is the only 

available instrument. 

The Fabry Perotsare cap~le of extremely high spec-

tral resolution, are extremely efficient and are spectrally 

tunable (transmission typically ranges from 40% to 99%). 

A Fabry Perot is constructed with two partially trans-

mitting mirrors ,which may be flat or radiused, that are 

parallel to each other. This is said to be a Fabry Perot (FP) 

cavity. If the cavity 'is illuminated with a beam of coherent, 

monochromatic light, it will transmit the beam when the optical 

path between the surfaces is an integral number of 
," { 

h' ,quarter or eighth wavelengths of the incident light. The 
, , 

wavelength varies with the type of cavity used. 

In an air-spaceo etalon (as in ,our case) two m:i,rrors 

or plates as they are often called, are used with partially 

transmitting coatings on their "first" surfaces and anti-

reflection coatings on their "second" surfaces. Normally 

the'second surface is slightly wedged (10 to 30 min.) with res-

pect to first surface to avoid forming apditional cavities. 

,. 

: ' 

I. , 
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'Tuning can be accomplished by moving, one mirror, with respect 

to the other - and in our s,etup, it was done by piezo­

electric· crystals.. Piezo-electric tuning is one of the best 

methods and allows rapid, repetitive tuning. , , 

,Fabry Pero,ts tYl?ically use 1 n to 2" diameter mirrors ~ 

• I 
with flAtness of A/lOa, to >./200 where plots are no:r,:mally speci-

0' 

fied for, 'A = 5000 'A. The parallelism and position of two 
o 

mirrors must be maintained.to within A/lOa to A/200 A for many, 

hours in our case. A, FP should have adequate thermal and 

mechanical stability. And such stability is atta~ned by mas-
. . , 

sive constructi~n, welllconstrained symmetr~cal design, use 

of hi'ifh line~rity piezo-electb;ic d:t;ives fo'r remot~ adjustments 

and tuning and extensive use of low thermal expansion materials. . ~. . 

The condition for constructive interference for a trans-

mitted wave front is 

2ndcos8 = rnA (1 ) 

where n is the refractive in ex of the medium between the two 

reflecting surfaces; d is the mirror spacing;, 8 is the incli-

nation of the,normal of the mirr wavefront d~rection; 

m is the order of interference and ;""""t:,fte'-lllavelength •. 

'The spectral display obtained with a FP is· repetitive. 

The range of wavelengths which can be displayed in the same 

spectral order without falling into adjacent orders is termed 

Free Spectral·Range (FRS) = c/~d; where c is the velocity o~ 

light •. And free t:ectral range, (FSR) plays a very important 

role in the system. The 'output of th,e ,FP for incident light of 

," 
-
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.. 
wavelength Al is a series of ~eaks. The instrument acts as 

a tunable filter whose peak transmission is. close to unity. 

over a narrow spectral interval. Outside the intetVal the trans-

mission is very low. 

The width of the transmission peak determines the 

resolution of the ins..trument. The ratio of F.S.R. to width is 

known as the Finesse (F). 

FSR 
F = width 

The F is typically 50 to 100 - in our case; it was in the 

range of 40:50.' The finesse is the key measure of the inter-

'ferometer's ability to resolve closely spaced lines ~_ The major .. , 

factors that could limi t'the net finesse are: 

(a) mirror reflectivity of less than unity 

(b) lack of parallelism and/or planeness of , the mirrors 

(c) diffractipn losses ~rising from the finite aperture 
" 

of the interferometer. 

We can define another fines.se as reflectivity finesse 

FR given by, 

1T/R 
F' = -­R l-R 

(2) 

There is yet another type of fine~se, which 'is defined as 

-

Pinhole finesse F. If we see figure A2.2, we find the maximum 
p 

path length change is 

d - dcosS = 

cosS we get 

1 >. 
F 2 

p 
(3) 

.. 
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(4) 

where d is the plate spacing; D is the pinhole diameter as 

shown in figure A2.2. If fl'is focal point o~ lens L
l

, then 

6= 2~1 
Normally F should'be 2 or 3 times the value of the 

p 

desired operating finesse~ although it may result in some loss 

of transmission. And also the pinhole must be exectly on axis or 

the pinhole finesse will be much reduced due to the nonlinear 

change 'in fringe radius with angle. 
, -

pi o-electric 

~or nt by adjusting the vol'tage 'to each element separate-
, , 

tuning and adjusting the voltage to all three simul-
J ' 

To improve upon ,contrast and resolution, we changed' 

our single pass system to the triple-pass interferometer. 

TRIPLE PASS INTERFEROMETER: 

The light is passed through one interferometer three 

times. Corner cub~ reflectors were used to return the light 

parallel to itself as shown in figure A2.3. The triple-pass 

was about optimum for high contrast with low losses and moderate 

finesse. The peak transmission was as high as 25% to 40%. The 
• 

multipass interferometer can be operated up to quite high reso­

lution by increasing the mirror spacing. 
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How to ali gn a Fabry-Pero't in terferorneter : , 

There are two requirements for aligning a FP. First 

the FP'must be aligned relative to the incoming radiation. In 

most cases, FP is normal to the input. The c!egree of angular 

alignment required is not great.' Reflecting a gas laser refe~nce 

beam, which is coincident of optical axis, back to itself as 

well as can be determined visually is normally adequate. The 

input radiation should be centred on the FP apertures. 

Second, the FP plates should be aligned relative to each 

other. ,Initial alignment is easiest. wi th a small eli-laser; 

the wavelength is not important since even 20% to 30% ref lec-

tivity is adequate for this step. . ' 

When we illuminate the FP with the laser and look at , 

the output on a white card, we observe a train of dots, resul-

ting from reflections on the misaligned plots as shown in figure 

A2.4. The coarse adjust mechanism should be used to collapse 

the d<?ts to a single spot. Now the plates wi,ll be sufficiently 

well aligned to see the fringes. 

Now if FP is 'illuminated with a large, collimated mono-

chromatic beam at a wavelength within the spectral range of the 

plates; a couple of'straight line fringes will be observed on a 

white card. Fine adjust meChanism should be used to adjust for 

fringes and for even transmission across the aperture when the 

FP is tuned to the input wavelength. 

" 
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APPENDIX III 

GRUNEISEN CONSTANT 

In an infinite single crystal, 'it is possible to propagate 

in any given direction three plane elastic waves with mutually 
, 

orthogonal displacement vectors. Except for propagation on cer-

tain symmetry ,axis,' these waves have different velocities and ( 

attenuation coefficient. We know, that the ultrasonic attenuation 

can arise from interactions of ultrasonic wave with 

a) thermal phonons . 
b) free electrons 

c) dislocations (This interaction was ,ruled out by Bommel 

et.al. [8]) 

d) isotopes of different mass from the majority. (This 

interaction was ruled out by Orbach [32aJ.) 

e) lattice defects and specimen boundaries 

f) relaxation and diffusion mechanism involving imp~rities 

and other lattice defects 
I 

g) paramagnetic impurities 

h) spin waves. 

Only recently it has been found, that the dominant ultrasonic 

attenuation in good single crystals ,of dielectric materials is 

by mechanism (a); .and at high. tempera ture,( one well known 

attenuation of type (a) is the thermo-elastic mechanism. As 

we know, in Akhieser [1] mechanism, the ultrasonic wave catises 

a separation in the temperature of diffe'rent groups of thermal 
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phonons. The subsequent relaxation' of this non-'equilibrium distri­

bution by phonon-phonon ie Umklapp process resu+ts in ultrasonic 

attenuation. 

The third order'elastic-cons~ant measurements determine 

the frequency change of·a low frequency ultras when 

propagating in a materi~l subjected stress. 

The results of the1e can'be used :0 compute thefrequ~ncy change 

of thermal phonons in the crys~al when propagating in the stress 

field of a high frequency ultrasonic wave. Brugger [10] gives ... 
a detai~ed discussion on this aspect of the theory. 

The anharmonic properties of solids are generally des-

cribed in terms -of tl}e Gruneisen parameter v as 

ex ex (1) v = KC->- KC 
T v s p, 

with ex being the thermal volume expansivity, KT and K the 
s 

isothermal and isentropic compressibilities and C
p 

and C
v 

the 

isochoric and isobaric capacities. Gamma can also be expressed 

as the weighted average of generalized parameters v, 
1. 

v = 

l.: v·c. 
1. 1. i 

l.: c. 
1. i 

(2) 

where v. expresses the volume dependence of the lattice vibratio-
1. 

nal frequency for a mode i and c. being the heat capacity associa-
1. 

ted with that mode. Now the thermal expansion of rhombohedral 

.or trigonal crystals are fully described by the diagonal elements 

of the expansivity tensor, therefore according to Brugger and 



45 

(3) 

where. 'J 1 :: 'J (pe:tpendic~lar) and 'J II = v (parallel) • Brugger 

gives thb general formulation in the case of trigonal crystals 

as 

1: 
... .... 

dO r(p,N) I; (p,N) 

v = (4) 
1: dO I; (p,th • 

) 
p' 

f 1: dO r1(p,N)I;(P,N) 
p v1 = (5) 

rf dO 
... 

l;(p,N) 

f 
->- .... 

1: dO r
ll 

(p,N) I; (p,N) 

VII = E (.6 ) f dO I; (p,N) 1: 

All the notations us';d are e'xplained belO\~:-

.... B 
r(p,N) = - 2w (1 + 2wp + r) (7) 

... B [N 2 2 2r
1

(p,N) = - 2w + N2 :t" 2wP1 + r11 1 , 
(8) 

"- , 
->- B [N

2 
+ .2wp II rll(p,N) = - 2w + rill 3 (9) 

where 
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P 1 (1;» =. (Sl1 + S12) (U1
2 

+ U2
2

) + 2s13u 3
2 

PII (p) = S13(U1
2 

+ U/) + S33 U/' 

also 

r(p,N) 
6 

= E T.R. 
i=l ~ ~ 

6 ... 
rl(p,N) = r (JiRi 

i=l 

6 

with 

Rl(P,N) 
. 2' 

= (NI U
l

+N
2

U
2

) 

R2 (p,N) = (N
I

U
2

-N
2

U
l

) 2 " 
R3 (p,N) = N2U2 

3 3 
... 2 2 

R4 (p,N) = (N 2U
3

+N
3

U2 ) + (N
3

U
l 

+N
l 

U
3

) 

... 
Rs(p,N) = 2(NIUl+N2U2)N3U3 
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(12) 

(13) 

(14) 

(15 ) 

(16) 

R6 (p,N) = 2 [(N~-N~) U
2

U
3

+N 2N
3 
(Ui-U~) +2N

l 
U

1 
(N

2
U3 +N

3
U2 ) 1 (17) 

Also , " " T. = (SU+s 12+s 13)Ci 
+ (2S

13
+s

33
) c

i ~ 

, 
" cr. = (Sl1+s 12)Ci 

+ 2s
13

C
i ~ 

, " TT. = s13 c i + s33c i (18 ) 
~ 
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, " " 
C

1 
= Clll + Cll2 C

1 
=, Cll3 

, 
1 ( • " 1 C

2 = 2' -Cll2 + C222 ) C2 = 2'(Cll3 - C
123

) 

" , " C
3 = 2C133 C3 = C

333 
, 

" 'C4 = C
144 + .C1SS 

' C = C344 
,,' 4 , " Cs = Cll3 + C123 

Cs = C133 

" C6 = Cll4 + C
124 C

6 = C134 . (19) 

In studying the thermo-elas,tic properties of crys tal, one 

is directly concerned with only eleven Laue's groups and not 

with the ,thirty-two point groups. This results from the fact 

. that thermo-elastic properties are alwaysentrosymmetrical. 

!J}ll point groups ,belonging to the. same Laue group have common 

; arrays of elastic coefficients. 

" -
When we substitute plane wave solutions into the ~quations 

of motion for ahisotropic medium gives the well k-nown relations 

(20) 

"and 
• 

X mn 

where the.summation over 

==c NN ' 
mrnS r s .\L:\ 

repeated indi~' is 

(21) 

implied. p is the 

density of the medium and V. ,the wave speed. U and .N a;t'e un,it 

vectors along the directions o'f. polarization and propagation 

'and hence their components U , Nr etc. are direction cosines. . m 

The smqll c's are the second order adiabatic elastic stiffness 

" 

!' 

( 
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'., 
coeff iclerit in tensor, p",tations.' Now ac.cordin9 to Brugger [HJi,­

,in the first, rhomDohedralgroup RI, the first coordinate axis 

is diagonal arid theref6:x:e, 
• 

2 2 '. 2 -, 2 2' 2' i 2 2 
N2N3[(NI:N2)A-N3C] + [3NI(N3-N2)-N2(3N3-N2)]a = 0,' ' (22) 

222 '2 2 2 
NIN3 [(NI +N2)A-N

3
C] - NIN2 [3Nr-N

2
-6N

3
]a >= 0 

-The a-direction remains unchanged as in the figure. 

; N = 1 3 ' 
, 

(23) 

(24) 

The f)-directions =Ve in to the c60rdin'ate plane perpendicular. 

to the diagonal axis 

N = 0 
1 

where k satisfies the above equation q with p=O or 
; 

k 3. + 3a k2 
C 

A ' 
-' C k - ~ = 0 

whereas for the v-direction 

The notatiOlC-ed 

N2/Nl = 13 ; 

in the above equations are 
• • 

(25) 

Now to determine. the polarization directi?ns and wave spe~ds, 

equation (20) is solved for all mode directions N determined 

., 
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, . 

'O~qitudin,,(.,~e 
II> /I 

, as above. For, the L, ope has simply U = N, 

for the two transverse IIOdes TI ~d T", the componep.ts of the 
'" 

corr,espond~qpolarization vectors U and V.:'can tie 'expressed 

in tei:~'of' the 'components of N and the angle v enclosed py 

V and the vertical plane through N. 
, 

2 -1/2 
Ul =, (1-N3 ) [-NlN3sinv-N2cosv] 

" 2-1/ 2 . .02 = (.1..,N 3) [-N2N3s~nv+N1coSV] (27) 

, 1/2 
U3 =: (l-N~) sinv 

U1 ) U2 
" 

RI 
""-ex 

N -N -0 1-,2- L b 0 1 

N3=l, T cosS sinS O. 

RIS 

L 0 l/x k/x 

Nl=O T1 1 0 0 

N3/N2=k T2 0 ~k/x l/x 

RIv -I. 
a 

13/2 L 1/2 0 

N2/Nl = ,i]' Tl 
,,·1 - 1 casv'" sin,," .-'2 (3cosv" '2 

N =0 T ' ,1]/2 sinv" 1 sinv" cos"," 3 2 -'2 

, 

.' 

) 

~ 

> 
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. 1/2' 
x = (l+k2 ). 

cot2\1" 

Thus after substitution, we' calculate 
, , , 

C1 -5.55 
j 

C2 = 0.065 C 3 = 6.24 

- , , 
<r4 = -3.34 C5 - -2.82 C' = -1. 78 6 

(All the values are multiplied by 
12' 2 

10dYlle/cm ) 

Similarly 
.. .. .. 

Cl = 0.12 C2 = -1.41 C3 = -0.815 

". .. .. 
C4 = -1.10 C

5 = "':3.12 C = 0.02 Ii . 

(All the values of C"'s are again multiplied 

12 2 11 2 by 10 dYJCle/cm or 10 N/metre) 

Also elastic compliances S .. given in 10-12 2 -1 are m N 
~J 

S11 = 12.77 S12 = -1.79. S44 = 20.04 

S14 = 4.50 • S33 = 9.60 S66 = 29.12 

S13 = -1.22 

then 
,r , .. 

T . = 9.76 C. + 7.16 C. 
~ ~ ~ , 

-' 2.44 
.. 

cr. = 10.98 Ci C· 
~ ~ , .. 

1T. = -1.22 C. + 9.60 C. 
~ ~ ~ 
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Now the values of· third order elastic constants are given by. 

McSkimmin et.al. [16] 

Clll 
= -2.10 

C1l2 = ~3.45 

Cll3 = 0.12 

C
ll4 

= -1. 63 

C123 = -2.94 

. C124 = -0.15 

= 0.02 

C144 = -1.34 

C155 = -2.00 

C222 = -3.32 

C333 = -8.15 

C344 = -1.10 

C
444 

= -2.76 

Aga n all the values are multiplied by 1012 dynes/cm2 • On 

substituting these values we get 

Similarly 

and 

'1 = -5.33,088 

'3 = -11.92564 

'5 = -4.98624 

0
1 

= 6.,12318 

0 3 = -4.~6292 

= -2.33508 

0.7923 

1T3 = -7.06272 

1T 5 = -2.65116 

, = 0.94612 
2 

'4 = -!i.04744 

'6 = -1. 72296. 

o = 0.41541 
2 

0 4 = -3.39892 

0
6

'= -1. 95932 

1T2 = -1.36153 

1T4 = -0.648~ 

1T6 = 0.23636 

:. r 

., 
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We also know the value of elastic stiffness in the units of 

lQll dynes/cm2 as given below 
, 

" 

ell = 8.674 c
12 = 0.699 ') 

'. 
c

33 = 10.72 c 13 = 1.191 

c 44 = 5.79 c14 = -1. 791 

If we deal with only longitudinal case 'and if we substitute 

these values in equations (8), (9), (10), (1'1), (12) and (-13), 
, J 

we get the value of 

~109 2 3.7 ~ ~dynes/cm . 

'the formula v = v II 

The value of B used is 

Therefore combining the ,two values with 

+Z~l' give us the value of the Gruneisen 

constant, which is 0.708 for the x-direction and along the 

z-axis it is-0.35l. The calculated,values are fairly close 

Cthe measured-values reported by Lewis' (21) . 

I. 

, '/ 

\ 
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