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ABSTRACT

A combination of high strength and good fracture resistance

is obtained in high str~ngth low alloy (HSLA) steels by the use of

controlled rolling and addition of micro alloying elements to refine

the scale of the microstructure~ In these fine grained materials

traditional property-structure relationshipsdo not adequately describe

the fracture 'behav;our.

This thesis is concerned with the fracture properties of

HSLA-steels at various temperatures and stress states. Three modes
~

of failure are commonly observed. At low temperatures cleavage is the

predominant fracture mode, whereas ~uctile failure by nucleation and

growth of voids occurs athigher tempratures. In the intermediate

temperature range delamination fracture on planes parallel to, the

rolling plane is observed. The various fracture mechanisms are dis­

cussed in terms of the detailed microstructure of the materials which

has been characterized by the use of standard optiFal and electron

. \

metallography. In addition failure criteria for the most common. .
fra,~ure modes have been developed.

It is found that the condition fo~ cleavage failure is

adequat~ly described in terms of a Griffith equation where the crack

length is determined by an effective grain size of the order of twice ~
J

the ferrite grain size. Further it is argued that the low temperature

fracture toughness can be expr~ssed by the cleavage stress and the size
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of the process lone. For fine grained materials the process zone

size is found to be independent of the 'scale of the microstructure.

The resistance to ductile fracture has been characterized in

terms of a critical crack opening displacement (COD). It is argued

that the COD value is determined by the size of the ~ocess zone which is

independent of the'sca1e of pl ast i city. The process zone size is re1afed

to the inclusion spacing.

Delamination is found to occur mainly by a grain boundary

tearing mechanism. However, the presence of inclusion aggregates may

reduce the fracture stress substantially. Delamination by the grain

boundary tearing mechanism occurs at a critical value of the maximum

shear stress indicating that crack nucleation ;s the critical avent .
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